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Preface 

The purpose of this book is to provide the reader with a comprehensive introduction 
to the applications of symmetry analysis to ordinary and partial differential equations. 
The theoretical background of physics is illustrated by modem methods of computer 
algebra. The presentation of the material in the book is based on Mathematica 3.0 note­
books. The entire printed version of this book is available on the accompanying CD. 
The text is presented in such a way that the reader can interact with the calculations 
and experiment with the models and methods. Also contained on the CD is a package 
called MathLie-in honor of Sophus Lie---carrying out the calculations automatically. 
The application of symmetry analysis to problems from physics, mathematics, and en­
gineering is demonstrated by many examples. 

The study of symmetries of differential equations is an old subject. Thanks to Sophus 
Lie we today have available to us important information on the behavior of differential 
equations. Symmetries can be used to find exact solutions. Symmetries can be applied 
to verify and to develop numerical schemes. They can provide conservation laws for 
differential equations. The theory presented here is based on Lie, containing improve­
ments and generalizations made by later mathematicians who rediscovered and used 
Lie's work. The presentation of Lie's theory in connection with Mathematica is novel 
and vitalizes an old theory. The extensive symbolic calculations necessary under Lie's 
theory are supported by MathLie, a package written in Mathematica. 

Each chapter of the present book includes theoretical considerations and practical 
applications of MathLie and Mathematica. The Mathematica examples range from 
simple definitions to complete notebooks discussing specific problems. The examples 
include definitions of general derivatives, derivations and solutions of determining 
equations, drop formations in liquids, and the first atomic explosion. 



viii Preface 

The end of a definition and a theorem in the text is indicated by O. The end of an 
example is indicated by D. On the CD, MathLie and Mathematica notations in the text 
are denoted by the color dark red. Mathematica input is given in red while the output 
is in blue. 

I wish to express my gratitude to Peter Olver, Willy Hereman, and Mike Mezzino for 
reading the manuscript. My appreciation goes to Gerda GOler and Joachim Engelmann 
for proofreading the text. I also acknowledge contributions by Gemot Haager, Gerald 
LandhiiuBer, and Ronald Schmid. 

Any suggestions and comments related to the book or to MathLie are most appreciated. 
Please send your e-mail to Gerd.Baumann@physik.uni-ulm.de or visit my home page 
at http://www.physik.uni-ulm.de/mathlgbaumannlbau.html. 

Gerd Baumann 
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1 

Introduction 

Symmetry principles play an important role in the laws of nature. They summarize 
the regularities of the laws that are independent of the specific dynamics. Thus, 
invariance principles provide a structure and coherence to the laws of nature, just as 
the laws of nature provide a structure and coherence to the set of events. In fact, it is 
hard to imagine that progress could have been made in deducing the laws of nature 
without the existence of certain symmetries. The ability to represent experiments in 
different places at different times is based on the invariance of the laws of nature 
under space-time translations. Without regularities embodied in the laws of physics, 
we would be unable to make sense of physical events; without regularities in the laws 
of nature, we would be unable to discover the laws themselves. Today we realize that 
symmetry principles are even more powerful-they dictate the form of the laws of 
nature. 

An important implication of symmetry in physics and in mathematics is the existence 
of conservation laws. For every global continuous symmetry (i.e., a transformation 
of a physical system that acts the same way everywhere and at all times), there exists 
an associated time-independent quantity. This connection went unnoticed until 1918, 
when Emmy Noether [1918] proved her famous theorem relating symmetry and 
conservation laws. Thus, due to the invariance of the laws of physics under spatial 
transformations, momentum is conserved; due to time-translational invariance, 
energy is conserved; and due to the invariance under a change in phase of the wave 
function of charged particles, electric charge is conserved. It is essential that the 
symmetry be continuous; namely that it is specified by a set of parameters that can be 
varied continuously, and that the symmetry transformation can be arbitrary close to 
the identity transformation. The discrete symmetries of nature, such as time-reversal 
invariance or mirror reflection, do not lead to new conserved quantities. 
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Until the 20th century, principles of symmetry played only a small role in theoretical 
physics. The Greeks and others were fascinated by the symmetries of objects and 
believed that these were mirrored in the structure of nature. Even Kepler attempted to 
impose his notions of symmetry on the motion of the planets. Newton's laws of 
mechanics embodied symmetry principles realized in the equivalence of inertial 
frames, or Galilean invariance. These symmetries implied conservation laws. In the 
19th century, this ancient situation changed dramatically beginning with Lie. His 
great advance in 1873 was to put symmetry first, to regard the symmetry principle as 
the primary feature of nature that constrains the allowable dynamical laws. Lie 
applied his theory to different models given by differential equations. In this way, he 
created the symmetry analysis of differential equations. 

Thus, symmetry analysis of differential equations is an old theme in the field of 
applied mathematics and physics. The subject of the present book started in the late 
19th century with the work of Marius Sophus Lie. The theory in its basic form was 
developed and applied by Lie during the period 1872-1899. Until now there have 
been extensions of the theory and a continuous application in physics, especially in 
hydrodynamics, mechanics, electrodynamics, quantum theory, statistical mechanics, 
field theory, particle physics, etc. Today, symmetry analysis is one of the rare 
theories which allows one to derive solutions of differential equations in a completely 
algorithmic way. Among other solution procedures like the inverse scattering theory 
and the Hirota technique, Lie's theory takes an outstanding position. Although Lie's 
theory is applicable to any sort of differential equations, the other theories are 
commonly useful in the solution of so-called completely integrable equations or 
underlie some other restrictions. However, we will present here an overview of Lie's 
procedure and its application to some examples which are either of practical or 
theoretical interest. During the last few decades, there has been a revival of interest in 
Lie's theory and significant progress has been made due to the efforts of several 
mathematicians and physicists. 

Lie's theory is powerful, versatile, and fundamental to the development of systematic 
procedures that lead to invariant solutions of boundary value problems. As this theory 
is not based on linear operators, superposition or other requirements of linear solution 
techniques, they are applicable to both linear and non-linear differential models. 

A central problem in physics, mathematics, and engineering is to find solutions of a 
given system of differential equations. These equations may be linear or nonlinear. 
The generic case of practical problems which handle ordinary as well as partial 
differential equations are nonlinear models. Let us summarize all these equations by 
the notation 

i = 1,2, ... , m (1.1) 
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where x is a p-dimensional vector of independent variables and U(k) denotes the 
derivatives up to order k = 0, 1, ... of a q-dimensional vector of dependent variables 
u. The central question for such a general system of nonlinear partial or ordinary 
differential equations is: Can we find a universal procedure which gives us solutions 
for this system of equations? We do not try to find the general solution but simply a 
solution. That this is not a trivial task has been known for a long time. In the last 
century, Lie pointed out this central problem in a foreword to his lecture 
Differentialgleichungen as follows: 

Die alteren Untersuchungen iiber gewohnliche Differentialgleichungen, 
wie man sie in den gebrauchlichen Lehrbiichem findet, bilden kein 
systematisches Ganzes. Man entwickelte specielle Integrationstheorien 
z.B. fur die homogenen Differentialgleichungen, fur die linearen 
Differentialgleichungen und andere specielle integrable Formen von 
Differentialgleichungen. Es war aber den Mathematikem entgangen, daB 
diese speciellen Theorien sich unter eine allgemeine Methode unterordnen 
lassen. Das Fundament dieser Methoden ist der Begriff der infinitisemalen 
Transformation und der darnit auf das engste zusarnmenhlingende Begriff 
der eingliedrigen Gruppe. 

-Auszug aus Differentialgleichungen von Sophus Lie, Leipzig 1891 

The translation of these comments is: 

The older examinations on ordinary differential equations as found in 
standard books are not systematic. The writers developed special 
integration theories for homogeneous differential equations, for linear 
differential equations, and other special integrable forms of differential 
equations. However, the mathematicians did not realize that these special 
theories are all contained in the term infinitesimal transformations, 
which is closely connected with the term of a one parametric group. 

-Quotation from Differentialgleichungen by Sophus Lie, Leipzig 1891 

One of the main deficiencies of Lie's theory is the tremendous amount of work 
necessary to derive a solution of a given differential equation. This work of algebraic 
manipulation increases if the differential equation depends not only on one but on 
several independent variables. It increases even more if we study a system of 
equations. For such general situations, it may happen that we have to handle 
hundreds of equations to find a single solution. In the past, this large amount of work 
was a severe barrier for using Lie's theory. Today, we are able to overcome the 
problems of algebraic manipulation of this great number of expressions. Using 
computer algebra systems like Mathematica, Maple, Macsyma, or Axiom, to name the 
more powerful systems, we can manage the laborious work in an up-to-date fashion. 
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In this book, we prefer Mathematica to carry out the calculations. An overview of 
programs written in other programming languages is given in recent articles by 
Hereman [1994,1996]. Hereman shows that there exists a large number of programs 
with different capabilities in different programming languages. Our choice of using 
Mathematica as a programming language has been motivated by several reasons. 
First, Mathematica is a language which is easy to use. Second, Mathematica allows a 
direct formulation of the problem. Third, Mathematica is a very powerful high-level 
programming language designed for pattern matching, which is needed in Lie's 
theory to find structures of a certain type. Finally, Mathematica allows a very simple 
formulation of the theory of Lie. These four points were considered in our decision 
process to choose the programming language. 

To appreciate the present text, the reader should have a moderate understanding of 
Mathematica. You will find the explanations for the commands used in the examples 
in Appendix B. 

Lie's classical theory is a source for various generalizations. Among these 
generalizations is the non-classical method of BIuman and Cole [1974], which was 
the focus of some research in the last few years uncovering the connection with the 
direct reduction method of Clarkson and Kruskal [1989]. A recent development in 
Lie's theory by Baikov, Gazizov, and Ibragimov [1989] is the introduction of 
approximate symmetries, allowing the asymptotic solutions for a range of parameters 
to be derived. Another adornment of Lie's classical theory is the introduction of 
generalized symmetries, which is extensively discussed by Olver [1986]. Generalized 
symmetries are symmetries which are a generalization of contact symmetries. The 
generalization of Lie's theory releases one or more of the basic properties obeyed by 
the classical theory. 

The fundamentals of Lie's theory of symmetry analysis of differential equations are 
based on the invariance of the equation under a transformation of independent and 
dependent variables. This transformation forms a local group of point transformations 
which establishes a diffeomorphism on the space of independent and dependent 
variables, mapping solutions of the equations to solutions. 

The description of the fundamentals of Lie's theory, Lie groups, and Lie algebras is 
the starting point for our discussions in Chapter 2. Chapter 3 presents fundamental 
aspects of derivatives and their definitions in Mathematica. Chapter 4 on ordinary 
differential equations discusses the application of Lie's integration theory in 
connection with point symmetries. Chapter 5 deals with point symmetries in 
connection with partial differential equations. Several examples demonstrate the 
broad application of Lie's theory. Chapter 6 extends the classical point symmetries to 
non-classical symmetries. In Chapter 7, potential symmetries of partial differential 
equations are examined. The recent development of approximate symmetries is 
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contained in Chapter 8. The generalized symmetries of PDEs and second-order ODEs 
is presented in Chapter 9. The last chapter contains a special topic of symmetry 
analysis, i.e., the automatic solution of a system of overdetermined equations. 

The material contained in the chapters is based on theoretical considerations 
necessary to understand what is going on in the related functions of MathLie. 
MathLie is a Mathematica package supporting the calculations in the book and more. 
A full version of MathLie accompanies the book on CD-ROM. A great number of 
examples contained in each chapter demonstrate the broad application of Lie's theory 
in connection with MathLie. The examples are designed in such a way that the reader 
can take an active part by calculating the results interactively. This opens the way to 
experimentation with the calculations. Thus, the present book is not a book just for 
reading but a book for experimental mathematics and physics. 
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Elements of Symmetry Analysis 

At the beginning we will introduce some basic concepts which will be important 
throughout the whole book. First, we define the general properties of a group. These 
group properties are extended to Lie groups in the next step. The related Lie algebra 
connected with the Lie group is then introduced. We also introduce the notion of a 
vector field which is closely related to Lie algebras. We present all these highly 
abstract terms in connection with Mathematica. Different examples serve to vitalize 
the mathematical expressions. This chapter serves also to describe the first steps in 
Mathematica and introduce its notation. The elementary representation of 
mathematical expressions in Mathematica provides the connection between 
mathematics and computer algebra. 

2.1. Groups and Lie Groups 
It is the purpose of this section to record, for later reference, some of the results from 
group theory which will be needed in the text. The notation of a group is introduced 
in this chapter and the most important properties of group elements are deduced. 
Illustrations are given from a few very simple groups. Proofs will be minimal or 
omitted. 

2.1.1 Groups 

Although we shall soon come to some illustrative examples, it is worth beginning 
with the abstract definition of a group which is very simple and yet leads to many 
important consequences. 
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Definition: Group 

A set G of elements {G I , G2 , G3 , •.. } is said to form a group if a rule of composition 
is defined for the elements satisfying certain conditions. The result of a 
multiplication involving two elements Gi and Gk is called the product or composition 
of the two elements and is written Gi E9 Gk • The conditions which such a product has 
to satisfy are as follows: 

(i) Closure relation: 

The product Gi E9 Gk of any two elements is itself an element in the set, i.e., 

(ii) Associativity: 

If three elements G i , Gk, and G j are multiplied, it does not matter which product is 
carried out first, i.e., 

This equality shows that the use of brackets is not necessary. 

(iii) Identity element: 

One element of the set G, denoted by E and called the identity element, must have 
the properties 

Gi and Gi E9 E = Gi 

for all G i E G. 

(iv) Inverse: 

To each element G i in the set G, there corresponds another element in the set, 
denoted by a-; I and called the inverse, which has the properties 

Gi E9 Gil = E = Gil E9 G i . 0 

In general, it is not permissible to change the order of multiplication of group 
elements; i.e., G i E9 G j is not, in general, the same element as G j E9 Gi . A group 
which satisfies this exception, Gi E9 G j = G j E9 G i , is called an Abelian group. Its 
elements are said to commute. The axioms (i)-(iv) stated above are the main 
ingredients of group theory. However, these properties are abstract entities which 
need a practical realization. A convenient method of recording the multiplication, 
Gi E9 G j = Gk, of elements of a particular group G is to build the multiplication 
table in which the rows and columns are labeled by the group elements and the result 
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Gk of the multiplication is entered at the intersection of the row G i and the column 
G j • The definition of a group implies that every group element must appear once and 
only once in each row and in each column. 

Deliberately, we did not specify the number of elements in the group. In fact, the 
number may be finite or it may be infinite. Correspondingly, the group is called a 
finite or an infinite group. In this book, we shall encounter both groups since they 
both are of importance in symmetry analysis. If we find a finite group order, we will 
denote the number of elements n as the order of the group. 

The simplest examples of group elements are natural numbers with ordinary 
multiplication. We will discuss two examples. 

Example 1 

Let us assume we only know the two numbers 1 and -1 and the ordinary 
multiplication as group operation. The identity of this group is clearly 1. The inverse 
of the identity is again the identity. The inverse of -1 is -1 itself. The properties of 
this group are contained in the group mUltiplication table tab] below. We can create 
the group table in Mathematica by defining the group G as the set 

G = {-1, 1}; 

Using all combinations of the elements Gi in the group table, we get 

tab1 = MatrixPorm[Table[G[i] G[j], {i, 1, 2}, {j, 1, 2}]] 

representing the core of the multiplication table. D 

Example 2 

A slightly larger group of the same kind is the set of numbers 

G2 = {-1, 1, -x, X} 1 

which possesses the multiplication table 

tab2 = MatrixPorm[Table[G2[i] G2[j], {i, 1, 4}, 

{j, 1, 4}]] 

1 -1 I -I 

-1 1 -I I 

I -I -1 1 
-I I 1 -1 
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Because ordinary multiplication is used in both examples, these groups must be 
Abelian since it does not matter in which order the elements of the sets are used. To 
demonstrate this, let us exchange the jth element by the ith element in the table above. 

IlatrixForm[Table [G2[j] G2[i]. {i. 1. 4}. {j. 1. 4}]] 

1 -1 I -I 

-1 1 -I I 

I -I -1 1 
-I I 1 -1 

Comparing both group tables of G2 demonstrates that the order of the group elements 
in the multiplication does not matter. D 

For physical systems, rotations are of considerable importance. It is well known that 
various sets of rotations form groups. The rotations were one of the favorite groups 
used by Lie to demonstrate the action of his examinations. In reminiscence of this 
historical note, let us examine a few examples related to that topic. The law of 
multiplication in this case is defined by transition from one location to another-if a 
rotation R] carries a system from position A to position B and if R2 carries it from B 
to C, then the product R] $ R2 carries it from A to C. It is obvious that this 
definition of multiplication can, in general, not create an Abelian group. Of course, 
rotations about a common axis are Abelian. However, rotations in 
higher-dimensional spaces in general do not commute. Let us demonstrate these two 
statements by simple examples. 

Example 3 

To illustrate the commutative and non-commutative properties of rotations, let us 
define a function which carries out a two- and a three-dimensional rotation of an 
object. The function Rotation[] uses the standard package Geometry'Rotation' to 

represent the rotation matrices in two and three dimensions. The function Rotation[] 
will take a polygon and an angle as input parameters. This function generates the 
geometrical shape of the object and carries out a rotation. First, let us define the 
geometrical object by a polygon 

hexagon = polygon [ Table [ {Cos [i). Sin [i) } • 

27f 
{i. O. 27f. -}]]; 

6 

Our favorite object is a hexagon which can be graphically displayed by the following 
lines: 
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Show[Graphics[{RGBColor[l, 0, 0], 

hexagon}], AspectRatio .... Automatic] 

This object will be rotated by our function Rotation[] . In a two-dimensional space, 
the function is defined in Mathematica terms by 

« -Geometry'Rotations'" 

Clear[Rotation]; 
Rotation [polygon_Polygon, angle_] : = 

Block [ {point 8} , 

points = polygon / . Polygon [x __ ] .... x; 

Polygon [ (Rotate2D[il, angle]&) /Opoints]] 

The function Rotation[] needs a polygon and the angle of rotation as input quantities. 

It returns a clockwise-rotated polygon. The application of the function Rotation[] on 
our hexagon gives us 

Show[Graphics[{RGBColor[O.OOO, 0.000, 1.000], 
Jf 

Rotation [hexagon, -]}], AspectRatio .... Automatic] 
5 
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The result shows that the original hexagon is rotated by an angle of rr/5. Having the 
function Rotation[] available, we are able to check the group properties of a group. 
Let us start by testing if the two rotations commute. If we assume that the first 
rotation Rl rotates the hexagon through an angle -rr/3 and the second R2 through an 
angle -rr/4, we can combine the rotations either by R 1 61 R2 or R2 61 R 1 . These two 
mathematical relations are realized in Mathematica by the following lines. The result 
of the two different sequences of rotations is shown in the following: 

Show [GraphicsArray[ 

{Graphics [{RGBColor [0, 0, 1], 
7f 7f 

Rotation[Rotation[hexagon, -], - -]}, 
3 4 

AapectRatio -+ Automatic] , 

Graphica[{RGBCOlOr[l, 0, 0], 
7f 7f 

Rotation[Rotation[hexagOn, --], -]}, 
4 3 

AspectRatio -+ Automatic] } ] ] 

The result of the two sequences of rotations is the same. Thus, we conclude from this 
graphical experiment that these two rotations in the plane commute. The net effect of 
the two rotations is a total rotation through an angle of rr1l2. To illustrate the 
non-commutative property of rotations in higher dimensions, let us examine rotations 
in 1R3. For example, let Rz be a rotation through an angle rr/5 about the z-axis and Rx 
a rotation through rr!7 about the x-axis. The geometrical object we will rotate is again 
a hexagon located in the (x, y)-plane. The polygon in Mathematica is represented in 
three dimensions by 

hexagon = Polygon ['1'able [{Cos [i], Sin [i], O}, 

27f 
{i, 0, 27f, 7}]]; 

with its z coordinate set equal to zero. The hexagon is displayed in three dimensions 
by 
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Show[Graphics3D[{RGBColor[1.000, 0.000, 0.000], 
hexagon}], AspectRatio ~ Automatic] 

To carry out the rotations about the three coordinate axes, we define three functions, 

RotationX[], RotationY[], and RotationZ[], in Mathematica. The arguments are again 
the geometrical object and the angle of rotation with respect to the denoted axis. 

Clear [RotationX, RotationY, RotationZ]; 

RotationZ [polygon_Polygon, angle_] : = 
Block [ {points, _t1, _t2}, 

points = polygon / . Polygon [x __ ] ~ x; 

_t1 = RotationMatrix2D[angle]; 

_t2 = :Identitytlatrix[3]; 
_t2[1, 1] = _t1[1, 1]; 

_t2[2, 1] = _t1[2, 1]; 
_t2 [1, 2] = _t1 [1, 2]; 

_t2[2, 2] =_t1[2, 2]; 

Polygon [ (_t2. 11&) /@points]]; 

RotationX [polygon_Polygon, angle_] : = 
Block[{points, _t1, _t2}, 

points = polygon / . Polygon [x __ ] ~ x; 

_t1 = RotationMatrix2D[angle]; 

_t2 = :Identitytlatrix[3]; 
_t2[2, 2] = _t1[1, 1]; 

_t2[2, 3] =_t1[1, 2]; 

_t2[3, 2] = _t1[2, 1]; 
_t2[3, 3] = _t1[2, 2]; 

Polygon [ (_t2 . 11&) /@points]]; 



RotationY [polygon_Polygon, ang18_] : = 
Block [{points, _t1, _t2}, 
points = polygon / . Polygon [x __ ] .... x; 

_t1 = RotatioDMatrix2D[angle]; 
_t2 = l:dentityMatrix[3]; 
_t2[1, lD =_tl[l, lD; 

_t2 [1, 3D = _t1 [1, 2D; 
_t2[3, lD = _tl[2, lD; 
_t2[3, 3D =_t1[2, 2D; 
Polygon [ <_t2 .11&) /@points]] 
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The two rotations about the z- and x-axes mentioned above are graphically 
represented by the following lines: 

Show [GraphicsArray [ 

{Graphics3D[ 
1f 1f 

Rotationx[RotationZ[h8XagOn, --], --], 
5 7 

AspectRatio .... Aut~tic, 

ViewPoint .... {1.300, -2.400, 2.000}], 

Graphics3D[ 
1f 1f 

RotationZ[Rotationx[hexagon, --], --], 
7 5 

AapectRatio .... Aut~tic, 

ViewPoint .... {1 . 300, -2.400, 2 . 000}]}]] 

The graphic shows that the two rotations applied to the same object in a different 
order results in two different states of the hexagon. Thus, by a simple example, we 
graphically verified that two rotations in a three-dimensional space are 
non-commutative. The reader may check this result by different rotations about 
different axes using different angles of rotation. 0 



14 Elements of Symmetry Analysis 

Another important term in group theory governing the relations between two groups 
is the notion of isomorphism. 

2.1.2 Isomorphism 

The given definition of a group is very abstract, yet general. With respect to this 
generality, it sometimes happens that two groups whose elements are defined in very 
different ways may nevertheless be related so closely that they may be regarded as 
the same group. This fact is expressed in the following definition. 

Definition: Isomorphic groups 

We say that two groups G and H are isomorphic if a one-to-one correspondence 
Gi +-+ Hi may be set up between the elements Gi of the group G and the elements Hi 

of H, in such a way that if Gi EB Gk = Gj , then Hi E9 Hk = H j • 0 

Closely related to the term isomorphism is the subject of homomorphism. The word 
homomorphism is used for such a relationship if the one-to-one correspondence is 
absent. Due to the definition of isomorphism, two isomorphic groups have the same 
group multiplication table with possible re-ordering of the group elements. Thus, the 
knowledge of the isomorphism of two groups helps to avoid repetitions and to draw 
useful analogies between the groups. 

2.1.3 Lie Groups 

Lie groups are special groups which have an additional property apart from the group 
properties. In addition to the basic group properties, a Lie group carries the structure 
of a manifold, where a manifold is a topological space which resembles Euclidean 
space locally. A differentiable manifold is a manifold for which this resemblance is 
sharp enough to allow partial differentiation and, consequently, all the features of 
differential calculus on the manifold. In studying Lie groups, we may, therefore, 
combine calculus, algebra, and topology. The present section aims at showing the 
sense in which the global study of a Lie group may be reduced to its local study. In 
the next section, we shall go even further, showing that the study of the local 
structure can be reduced to the study of the infinitesimal structure. Lie groups are 
extremely useful in the theory of transformation and in the examination of 
differential equations. The notion of a Lie group was introduced by Weyl [1928] at 
the beginning of this century. Weyl used the following definition to distinguish Lie 
groups from classical groups. 
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Definition: Lie group 

A Lie group is a group which, in addition to the group properties, carries the structure 
of a differentiable manifold. More precisely, we require that a Lie group G be C'" 
manifold endowed with a group structure in which multiplication and the inversion 
are C'" operations. 0 

The essential feature of a Lie group is that it satisfies the properties (i)-(iv) and 
carries the structure of a smooth manifold. This means that the group elements G i can 
be continuously varied. Thus, a Lie group is a group G which also carries the 
structure of a manifold in such a way that both the group operation G E9 G -+ G and 
the inversion are smooth maps between manifolds. In the following, we will 
demonstrate these descriptions by a few examples. 

Example 1 

The first simple example of a Lie group is the real line IR I with ordinary addition as 
the group multiplication. Let us denote this group by IA. If we add two real numbers, 
we get a real number as a result. We all know that we can add three real numbers in 
any order to get the same result. The identity element of this group in IR I is zero and 
the inverse are all the negative real numbers. Thus, we can map IR I X IR I -+ IR I , and 
the inversion as a smooth map also exists. These properties of addition for the real 
numbers are actually implemented in Mathematica and are accessible by the function 
N[] converting rational numbers to real numbers. The + sign represents the 
multiplication of the group IA. The manifold on which all these operations are 
possible are the set of real numbers IR I . 0 

Example 2 

A more sophisticated example for a Lie group is given by continuous matrix groups, 
or, more generally, continuous groups of linear transformations of a vector space, 
called linear Lie groups. The set of all non-singular n x n matrices form the group 
known as general linear group GL(n,fR). A subset of all n x n matrices with 
determinant 1 form a group called the unimodular group which is denoted by 
SL(n,fR). The orthogonal group O(n) is the group of n x n matrices that satisfy 
M E9 MT = 1. A special orthogonal group SO(3) is connected with rotations. 

Studying the properties of continuous matrix groups, we start with the 
two-dimensional matrices 
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This representation of a linear group SL(2,1R) immediately shows the property 

from which we can conclude that the group of two-dimensional matrices is 
isomorphic to the group IA of our first example. To support this conclusion, let us 
examine the properties of the two-dimensional matrix group by using Mathematica. 
First, let us define a function allowing us the representation of Ma. Afterward, we 
use this function to check the group axioms (i)-(iv) for this representation of a group. 
Since Ma depends on one continuous parameter a, we define the matrix Ma by 

M[a_] := {{l, a}, {O, 1}} 

The matrix function M[] uses two nested lists to represent the two-dimensional 
matrices needed. We check the axioms by using the matrix product for the group 
multiplication. This type of product is denoted by a lower dot in Mathematica. In the 
sequel, we use the function MatrixForm[] to represent the resulting matrices in a 

two-dimensional table. Multiplying two different matrices M[a] and M[b], we find 

MatrixForm[M[a] • M[b]] 

We immediately verified that axiom (i) is satisfied. The property of associativity is 
checked by interchanging the multiplication order 

MatrixForm[ (M[a] • M[b]) • M[c]] 

MatrixForm[M[a] • (M[c] • M[b])] 

The inverse element of the group corresponds to the inversion of the matrix. Matrices 
are inverted in Mathematica with the help of the function Inverse[]. Inverse[] returns 
the inverse of a square matrix. The application of this function shows us 

mi = Zuverse [M[a] ] ; mi II Matrixl'orm 
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which is the inverse of Ma stored in the variable mi. Next, we can check axiom (iv) 
by 

ident = mi. M[a]; ident / / MatrixForm 

Thus, we find the identity element of the two-dimensional matrices Ma as the 
identity matrix in two dimensions. It is obvious from the calculations that the set 
m = { Ma I a E IR} is a representation of addition in IR 1, thus the two Lie groups IA 
and m are isomorphic. 0 

Generally speaking, a representation of a group G on a vector space V is a 
homomorphism from the group G into an invertible linear transformation of V. 
These representations must not be matrix representations but can be defined on the 
infinite dimensional vector space c~ (IR), which represents the space of infinitely 
differentiable functions in one dimension. 

Example 3 

The addition in IR 1 can also be represented by a translation in the space of C~ (IR) 
functions. Let us assume that we can define an operator Ta, which acts on a function 
defined on IR 1 in the following way: 

Ta f(x) = f(x + a). 

The shift a translates the argument of the function f by a step a to the left. The 
definition of a shift operator Ta in Mathematica looks like 

This simple definition assumes that the function f depends exclusively on x. The 
sequence of instructions on the right-hand side of the definition sign ( :=) means that 
the argument x of f, if any, is replaced by x + a. The properties of the group are now 
checked by applying the operator Ta on functions j(x). The identity element of the 
Lie group is given by a = 0, 

To [£ [x] ] 

f[x] 

The inverse element is represented by a negative shift -a. We check the inverse 
behavior of the transformation by applying the inverse element to a regular element 
of the group. The expected result is the identity 
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T_a [Ta [£[x]]] 

f[x] 

The property of associativity is expressed by the iterated application of the translation 

operator Ta [] for different translations a, b, and c and the interchange of two 
parameters 

Te [Tb [Ta [£[x]]]] 

f[a+b+c+x] 

Tb [Te [Ta [£[x]]]] 

f[a+b+c+x] 

Again, we observe that the Lie group of translations in IR 1 is isomorphic to the group 
of addition IA. In conclusion, we can say that the same Lie group can be represented 
by different tools like addition of real numbers, matrix multiplication, and 
translations of functions. These different tools for representing the behavior are 
known as representations of the group. The idea of a representation of a Lie group 
helps to clarify the subtle distinction between an abstract group and a variety of its 
realizations. Thus, IA = 1R1, the set of matrices Ma , and the translations Ta are all 
distinct but isomorphic representations of the same abstract group. 0 

Apart from an isomorphism which is invertible, the term homomorphism is an 
important quantity in group theory. A Lie group homomorphism is a smooth map <I> : 

G ~ H between two Lie groups respecting the group operations. If <I> has a smooth 
inverse, it determines an isomorphism between G and H, otherwise it is a 
homomorphism. 

Understanding the action of the group clearly, we discuss the example of a translation 
a second time. This kind of symmetry is a symmetry frequently recognized in the 
analysis of differential equations. To illustrate the action of such a group, we will 
realize it by a graphical representation. 

Example 4 

For example, let us study the group properties of a parabola f(x) = x 2 under the 
action of our function Ta. Applying Ta to r, we mathematically get the expression 
r + 2 ax + a2 • The expanded result represents the translation Ta in a more or less 
mixed form containing products of a and x. However, the action of the group is much 
simpler to grasp if we present it graphically. The shift a along the x-axis is clearly 
shown in the figure below. 
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P~ot[ 
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The command Evaluate[] used in the function Plot[] forces Mathematica to do the 
calculations first and then display the results. The shift of translation in the example 
is set to a = - 2. We clearly observe that the parabola is translated to the right by the 
length a. 0 

Example 5 

Another example frequently encountered in symmetry analysis of differential 
equations is the scaling group. A scaling transformation reduces or enlarges an object 
depending on the amount of the scaling factor. A scaling of a geometrical object is 
carried out practically by multiplying the coordinates of the object by the scaling 
factor. A function allowing this operation can be defined in Mathematica by 

Clear[Sca~ing]; 

Sca~ing[object_Po~ygon, factor_] := 

points = object /. po~ygon[x __ ] -+ Po~ygon[factorX] 

This definition assumes that the geometric object is given by a polygon. Applying 
this function to an object, for example, a pentagon, we can reduce or enlarge the 
figure depending on the second argument of the function. Choosing the factor greater 
than 1, we stretch the object; taking a factor smaller than 1, we shrink: it. The 
pentagon is generated by 

pentagon = Po~ygon ['l'ab~e [ {Cos [i], Sin [i] } , 

271" 
{i, 0, 271", 5}]]; 
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Let us now examine how the shape of the pentagon changes when the scaling factor 
is changed. An animation of this change of scaling factors helps us to recognize the 
meaning of scaling. The following Mathematica code contains a Do[] loop which 
allows the decrease of the scaling factor. For the animation, we choose the scaling 
factor in the range from 1 to 0.1 in steps of 0.05. The action of the scaling is boosted 
by changing the color of the pentagon. 

Do[ 

Show[Graphics[{Hue[i], ScaIing[pentagon, ill, 

AspectRatio .... Automatic] , 

PIotRange .... {{-I, 1}, {-1, 1}}], {i, 1, .1, -.OS}] 

• • • 

The animation of the scaling transformation shows us the action of the group. Every 
time we reduce the scaling factor, the pentagon is reduced but keeps its shape, 
meaning that we create self-similar objects of the same type. This kind of symmetry 
transformation satisfies all the properties stated in properties (i)-(iv) of a group. The 
reader may verify this easily. D 

So far we discussed the essentials of group theory including Lie groups. The 
discussed topics are all relevant for the examination of differential equations. In the 
following section, we will discuss a related term, the so-called Lie algebra, 
representing the algebraic properties of a Lie group. 
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2.2. Lie Algebras 

In this section, we show how the study of a Lie group G may be greatly simplified by 
considering the so-called tangent space V of G around the identity of the group. We 
shall show how a multiplication may be introduced in V and that the resulting 
algebraic structure---called a Lie algebra-determines the local structure of a group. 
Thus, two groups will be locally isomorphic if and only if their Lie algebras are 
isomorphic. The Lie algebra is a finite dimensional algebra. Therefore, the local 
study of Lie groups is entirely equivalent to the study of certain finite dimensional 
linear algebraic structures. 

We defined a Lie group as a group connected with an analytic manifold. In this 
connection, it makes sense to talk about the tangent space V to that manifold and, in 
particular, the tangent space at the identity of a group. The tangent space itself is 
called a Lie algebra. To be more precise, let us consider a Lie group depending on r 
parameters klo k2' ... , kr • The group under consideration is also known as a 
continuous group with an infinite number of group elements. However, the properties 
of the group may be deduced from a finite number r of operators, called the 
infinitesimal operators. It will be convenient to use the symbol k for the set of 
parameters klo k2 , ••• , kr • Consider a representation T(k) of the group G. By 
convention, the parameters are chosen such that the identity element has all kq = 0, 
so that 

T(O) = 1 (2.1) 

If all parameters kq are small, then to first order in these parameters, 

r 

T(k) = 1 + .L: kq Vq , (2.2) 
q=! 

where the Vq are some fixed linear operators, independent of the parameters kq. 

These operators are called infinitesimal operators of the representation T and are 
given explicitly as partial derivatives 

T(O, 0, ... , kq, ... , 0, 0)- T(O, 0, ... , kq +e, ... ,0,0) 8T(k) I 
v q = lim.-->o kq = --ar;- <=0' (2.3) 

These linear operators form the basis of a Lie algebra defined as follows. 
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Definition: Lie algebra 

Let us consider a finite dimensional vector space V over a field K of real or complex 
numbers. The vector space V is called a Lie algebra over K if there is a rule of 
composition (ii, w) -+ [ii, w] in V which satisfies the following axioms: 

(i) Antisymmetry: 

[ii, w] = - [w, ii] for all ii, w E V. 

(ii) Linearity: 

[aii + {3w, U] = a [ii, It] + {3[w, U] for a, {3 E KandV /1, ii, WE V. 

(iii) Jacobi identity: 

[ii, [w, /1]] + [w, [/1, ii]] + [/1, [ii, w]] = 0 for all ii, /1, w E V. 0 

The operator [, ] is the multiplication relation of the algebra and is known as Lie 
product or Lie bracket. From axiom (iii) it follows that the Lie product is, in general, 
non-associative. If K is the field of real numbers, then V is called a real Lie algebra; 
otherwise, if K is complex, V is a complex Lie algebra. A Lie algebra is said to be 
Abelian or commutative if for any ii, w E V we have [ii, w] = O. 

A subspace N of a Lie algebra V is a subalgebra, if [N, N] U N, and is an ideal if 
[V, N] U N. Clearly, an ideal is automatically a subalgebra. A maximal ideal N, 
which satisfies the condition [V, N] = 0, is called the center of V, and because 
[N, N] = 0, the center is always commutative. 

Let el, e2, ... , en be a basis of the vector space V. Then the commutator /1 = [ii, w], 
when expressed in terms of the coordinates via ii = 2:7=1 Vi ei, w = 2:~1 Wi ei, takes 
the form 

i,k=1 

i j k 
Cjk V W, i = 1,2, ... , n, 

where [ej, ek] = L:~=I C~k ej. The numbers C~k are called the structure constants, and 

n denotes the dimension of the Lie algebra. 

Taking axioms (i) and (iii) into account, it is clear that the structure constants C~k 

satisfy the conditions 
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n 

2: (c~m cJ1 + c~m cZ; + cim cij ) o. 
m=l 

The existence of subalgebras or ideals of a Lie algebra V is reflected in certain 
definite restrictions on the structure constants. If e), e2, ... , ek are the basis 
elements of a subalgebra, then the structure constants must satisfy the relations 

cij = 0 for i, j s k, m > k 

and, if they are the basis elements of an ideal, then 

cij = 0 for i s k, m > k and an arbitrary j. 

So far, we defined some basic properties of a Lie algebra. These relations are useful 
when applied to physical problems. One of these problems is related to the algebra of 
Pauli matrices widely used in quantum mechanics. In the following example, we 
discuss the algebraic properties of the Pauli spin matrices. 

Example 1 

Let V be the set of all skew-Hermitian 2 x 2 matrices with vanishing trace. From 
quantum mechanics, we know that V is three dimensional. We choose the basis in V 
by the three matrices 

~el =..!..( O. -i) ~ 1 (0 -1) ~ 
2 -I 0 ' e2 ="2 1 0 ,e3 = 

These matrices are represented in Mathematica by 

1 
e1 = - {{O, -I}, {-I, O}}; MatrixForm[ed 

2 

1 
82 = - {{O, -l}, {l, O}}; MatrixForm[e21 

2 

1 
e3 = - {{-I, O}, {O, I}}; MatrixForm[e31 

2 

..!..(-i 0). 
2 0 i (2.4) 
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The Lie product [v, w] of V is defined in quantum mechanics by the commutator 

[v, w] = vw -wv with v, WE V. 

For our specific system of two-dimensional matrices, we replace the right-hand side 
of this relation by the difference of two matrix products. The Lie bracket in 
Mathematica can be expressed by 

LieProduct[v_List, w_List] :=v.w-w.v 

Knowing the Lie bracket, it is easy to check axioms (i) to (iii) of a Lie algebra. We 
first demonstrate the antisymrnetric behavior of the Lie product using the relation 
[v, u] + [u, v] = O. In Mathematica, we get 

MatrixForm [LieProduct [el' e2] + 

LieProduct[e2' e 1 ]] 

The linearity of the Lie brackets is shown by 

MatrixForm [Simplify [LieProduct [a el + b e2, e3] -

(a LieProduct [el' e3] + b LieProduct [e2 , e3])]] 

The Jacobi identity is checked with 

MatrixForm[LieProduct [e1 , LieProduct [e2 , e 3 ]] + 

LieProduct [e2, LieProduct [e3, el]] + 

LieProduct [e3' LieProduct [el' e2]]] 

Carrying out some experiments with LieProduct[] by interchanging the basis 
elements ek in the Lie bracket, we observe that the following relation holds: 

(2.5) 

where Elk is the totally antisyrnrnetric tensor in 1R3 (Levi-Civita density). The 
elements of V are linear combinations of ej with real coefficients. In physics, the 
matrices (Tk = 2 i ek are known as Pauli matrices and satisfy the relations 
[(Tj, (Tk] = 2 i 2:7= 1 Elk (Tt. Hence, V is the three-dimensional, real Lie algebra with 
structure constants elk Elk. If we want to check this relation for the structure 
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constants, we fIrst have to define a representation of the Levi-Civita density in 
Mathematica. The function LeviCivita[] has to satisfy the following properties: 

if any index is equal to any other index 

if i, j, k, form an even permutation of 1,2, 3. 
if i, j, k, form an odd permutation of 1, 2, 3 

The sequence of instructions in Mathematica to simulate this behavior is given by 

LeviCivita[i_, j_, k_] := Block[{out, list, ll}, 

list = {i, j, k}; 

11 = union [list, {l, 2, 3}]; 

:If [Length[ll] < 3 II Length[ll] > 3, 

out = 0, 

out = Signature [list] ] ; 

out] 

(2.6) 

This function makes use of the Mathematica functions Union[], Length[], and 

Signature[] to implement the properties of the Levi-Civita density. The first step of 
the function is the collection of the numeric indices i, j, and k in a list. Then, the 
condition of uniqueness is checked by using the function Union[], verifying that only 
the integers 1, 2, and 3 occur. Checking the length of the result allows us to 
distinguish two cases. First, are there two or three indices equal, and second, are there 
indices different from the numbers 1, 2, and 3? If this happens, the function is 
terminated with a return value O. If the indices i, j, and k are contained in the set 
{ 1, 2, 3}, then the signature of the permutation is calculated. The return value is + 1 
if the permutation of 1, 2, and 3 is even and -1 if the permutation is odd. 

The function LeviCivita[] allows us to verify relation (2.5) connecting the structure 
constants dk and the E-tensor. Checking the relations with Mathematica, we need to 
defIne two additional functions generating the right-hand side of relation (2.5) and 
verifying the equality of both sides. We call these functions rhs[] and 

CommutativeQ[]. We also collect the three matrices e[, e2, and e3 in a common list. 

3 

rhs[i_, j_] := L:LeviCivita[i, j, k] eList[kD 
k=1 

commutativeQ[i_, j_] := LieProduct[eList[iD, eList[jD] 

rhs [i, j] 
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The check of the relation (2.5) between the structure constants and the E-tensor is 
carried out by 

'l'able[CODIIIIUtativeQ[i. k]. {i. 1. 3}. {k. 1. 3}] 

{{True, True, True}, {True, True, True}, {True, True, True}} 

The result shows that the relation is satisfied for all combinations of i and k in the 
range i, k = 1,2,3. This example demonstrates that the structure of a Lie algebra can 
be realized by matrices or tensors. On the other hand, in symmetry analysis Lie 
algebras are represented by differential operators. These operators are the basic 
elements of the vector space whose Lie product is defined by the commutator of 
differential operators. 0 

2.2.1 Representation of a Lie Algebra 

In this section, we briefly discuss the representation of an algebra. Before we discuss 
the theoretical definition, let us continue with another example. In the previous 
example, we became familiar with a matrix representation of a Lie algebra. The 
following example shows how a Lie algebra is represented in connection with 
differential operators. We will find that the two different representations are 
isomorphic to each other. 

Example 2 

Another example for the representation of a Lie algebra are the three differential 
operators generating the Lie algebra of rotations in IR 3 • This kind of algebra is 
connected with the symmetry of rotations. Assume we know the three operators 
given by 

a a 
RI = x3 -- - x2 

ax2 ax3 ' 

I a 3 a 
R2 = X -- - x --, 

ax3 axl 

2 a I a 
R3 = X -- - x 

axl ax2 

acting in IR 3 with Cartesian coordinates xl, r, and x 3 • The three operators allow a 
unique formula if we make use of the Levi-Civita density elk: 

3 3 

Ri = L L -et xl ax' . 
k=1 j=1 
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This formula is used to define the three differential operators in Mathematica: 

R [i_, £_] I = Block [ {variables = {xl ,x2, x3}}, 

3 3 

L:L:-LeviCivita[i, j, k] variables[j]J Ovariahla8[1I:] £] 
11:=1 :1=1 

The Lie bracket in the related vector space is defined by 

(2.7) 

where f is an arbitrary function. The definition in Mathematica looks quite similar: 

LieBracket [i_, j_, f_] := R[i, R[j, £]] -

R[j, R[i, £]] 

The right-hand side of the commutator (2.7) can be again expressed by the 
Levi-Civita symbol 

3 

[Rj,Rd = L~kRI. 
1=) 

We define the right-hand side of the commutator (2.8) as 

3 

rhs[i_, j_, f_] := L:LeviCivita[i, j, k] R[k, £] 
11:=1 

The check of the commutation relation for arbitrary i is calculated by 

Clear [CommutativeQ] 

CommutativeQ[i_, j_, f_] := Simpli£y[ 

LieBracket[i, j, £]] ==Simpli£y[rhs[i, j, £]] 

(2.8) 

Using these definitions, we can verify that relation (2.8) holds. The use of the 
function CommutativeQ[] in connection with Table[] allows us to verify this 
proposition: 

Table[CommutativeQ[i, j, £[xl, x2, x3]], 

{i, 1, 3}, {j, 1, 3}] 

{ {True, True, True}, {True, True, True}, { True, True, True}} 

The arbitrary function f[xl, x2, x3] in CommutativeQ[] is used as an argument for the 
three operators R j. These differential operators act, for example, on the infinite 
dimensional vector space C'" (IR 3 ), thus providing an infinite dimensional 
representation of the Lie algebra so(3) related to the special orthogonal group 80(3). 
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The result is that the rotation operators in IR 3 possess the same structure constants as 
the Lie algebra of the Pauli matrices. Thus, we can state that the two representations 
are isomorphic. The conclusion is that two different representations of a Lie algebra 
may result into the same structure and especially possess the same structure 
constants. So we face the problem of representation of a Lie algebra. 0 

Generally, a representation of a Lie algebra 9 on a vector space V is a mapping p 
from .9 to a linear transformation of V such that 

p(av + pw) = a p(v) + P pew) (2.9) 

and 

p([V, wD = [p (v), pew)], (2.10) 

where [, ] is the Lie product of the algebra 9. The dimension of the representation is 
equal to the dimension of V. 

In Chapter 5, we shall discuss procedures to find the differential operators that 
represent the symmetries of differential equations. For example, the symmetries or 
respectively the basis of the Lie algebra for the heat equation Ut - Uxx = 0 are given by 

(2.11) 

(2.12) 

(2.13) 

The basis elements of the Lie algebra are also called vector fields. This notion will 
become clear in Section 3.2 where we discuss tangent vectors. For the moment, let us 
call the elements in (2.11), (2.12), and (2.13) vector fields. These operators form a 
six-dimensional Lie algebra V. A convenient way to display the structure of such an 
assembly of operators is to write it in tabular form. For the six-dimensional Lie 
algebra {VI' V2, ... , V6}, the commutator table for V will be the 6x6 table whose 
(i, i)th entry expresses the Lie bracket [Vi, Vj]. From axiom (i), it is clear that the 
table is always skew-symmetric, and the diagonal elements are all zero. The structure 
constants can be easily read off the commutator table. The coefficient C~k is the 

coefficient of Vi in the (j. k)th entry of the table. For the above set of operators, we 
find the commutator table 
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[ , ] Vi V2 V3 V4 Vs V6 

Vi 0 0 0 -Vi V3 -2 Vs 
~ 

0 0 0 -2 V2 -2 Vi 2 V3 - 4 V4 V2 

V3 0 0 0 0 0 0 
~ 

2 V2 0 0 
~ 

-2 V6 V4 Vi -VS 
~ 

2 Vi Vs -V3 0 Vs 0 0 
~ 

2 Vs -2 V3 + 4 V4 0 2 V6 0 0 V6 

Table 2.1 

The entry (2,6), for example. is given by 

(2.14) 

the other entries can be calculated in a similar way. The related structure constants are 

C~6 = C~4 = c~5 = c~6 = c~2 = -2, 

C~l = C~2 = C~2 = c~ = c~6 = 2, 

C~5 = C~l = -1. C!l = C~5 = C~5 

with all other C~k ' s being zero. 0 

2.2.2 Properties of Lie Algebras 

1, 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

This section discusses a few properties of Lie algebras useful in the classification of 
the solutions of differential equations. We introduce the notion of a derived algebra, 
the derivation of an algebra, the adjoint algebra, the Killing fonn of a Lie algebra, 
and some definitions related to the solvability of a Lie algebra. 

If the commutator table or the structure constants are known, it is straightforward to 
calculate the so-called derived Lie algebras. These algebras are useful for classifying 
the Lie algebra. The Lie algebra V(l) = [V, V] is called the first derived algebra of 
the Lie algebra V. By construction, VO) is an ideal. The higher-order derived algebras 
are recursively defined by 

v(n+l) = [yin), v(n)], n = 1, 2, 3, .... (2.19) 

The derived Lie algebras can be used to classify the original algebra. One of the 
central tenns in connection with derived Lie algebras is solvability. If a Lie algebra 
can be classified as solvable, we know that the related differential equation can be 
solved. This observation of Lie is central for the solution procedures discussed in 
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Chapter 4. A Lie algebra V is called solvable if yin) = 0 for some n > O. The simplest 
examples are the commutative Lie algebras. With this remark, all one- and 
two-dimensional Lie algebras are solvable. This observation will be of importance in 
Section 4.4.2 where we will use this criterion to integrate second-order and 
higher-order ordinary differential equations. A few examples will illustrate the term 
solvability for partial differential equations. 

Example 3 

The six-dimensional Lie algebra of the diffusion equation with its basis VI, ... , V6 is 
not solvable because the fITst derived Lie algebra V(l) contains all operators of the 
six-dimensional Lie algebra and, thus, cannot vanish (cf. Table 1). 0 

Example 4 

An example of a solvable Lie algebra is given by the vector fields for the 
Korteweg-de Vries (KdV) equation Ut + U Ux + Uxxx = O. The basis of the Lie 
algebra calculated in Chapter 5 reads 

For this equation the commutator table is given by 

[ , ] Vl V2 V3 

Vl a a iL 
2 

V2 a a 3 V:2 
-2-

V3 V1 _ 3 v, a -2 2 

V4 a Vl -V4 

Table 2.2 

V4 

a 

-Vl 

V4 
a 

(2.20) 

(2.21) 

Examining this table, we recognize that the first derived Lie algebra contains only the 
operators V(I) = {VI' V2, V4}. V(I) is just given by the entries in the commutator 
table. The second derived Lie algebra consists only of VI, i.e., V(2) = {VI}, thus, the 
third step gives V(3) = {} . Thus, the Lie algebra of the KdV equation is solvable. In 
fact, it is known that the KdV equation belongs to the equations, which are 
completely integrable. So far, we manually calculated the Lie algebra and its 
properties. The package MathLie offers a way to do the calculation completely 
automatically. 

The determination of the solvability was based on a representation of the Lie algebra 
by vector fields. Vector fields in symmetry analysis are, on the other hand, based on 
infinitesimal symmetries. The infinitesimal symmetry of the KdV equation is given by 
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infKdV = {xi [1] -+ Function [{x, t, u}, k3 + k2 t + k4 x] , 

xi[2] .... runction[{x, t, u}, k1+3k4t], 

phi [1] .... l'unction[ {x, t, u}, k2 - 2 k4 u] }; 

where the constants ki represent the group constants connected with the vector field 
given above. How these infinitesimal symmetries are calculated is the subject of 
Chapter 5. For the moment, we assume that the infinitesimal symmetries are known. 
This information can be used to apply the function 

SolvableAlgebrasOfOrcierH[infKdV, {u}, {x, t}, 4, 

Vectorl'ieldRepresentation .... True] 

{{V[l], V[2], V[3], V[4]}} 

to the infinitesimals. The above MathLie function also needs the dependent and 
independent variables and the number of elements in the algebra or subalgebra. The 
option VectorFieldRepresentation ~ True creates the output in the symbols of the 
vector fields. For the KdV equation, we find that the largest solvable Lie algebra is 
given by the total Lie algebra. We also can use this function to create all solvable 
subalgebras for the KdV equation by 

Map [SolvableAlgebrasOfOrderH 

[infKdV, {u}, {x, t}, # 

Vectorl'ieldRepresentation .... True] &:, 

{2, 3, 4}] 

{{ {V[l], V[3]}, {V[l], V[4]}, 

{V[2J, V[3]}, {V[2J, V[4]}, {V[3], V[4]}}, 

{{V[l], V[2], V[3]}, {V[l], V[3], V[4]}, {V[2], V[3], V[4]}}, 

{ {V [1] , V [2] , V [3], V [4] } } } 

The result is a list containing all subalgebras of second, third, and fourth order. The 
function SolvableAlgebrasOfOrderN[] is extensively applied in connection with the 
integration of ordinary differential equations. 0 

Another important property of a Lie algebra useful in the study of differential 
equations is the derivation V or its infinitesimal automorphism. A derivation V of a 
Lie algebra V is a linear mapping of V into itself, satisfying 

V([v, w]) = [DO'), w] + [v, V(w)] V v, W E V. (2.22) 

It is evident that for two derivations VI and V 2 of V, the sum a VI + f3 V 2 is also a 
derivation. Moreover, if VI and V 2 are derivations, then 
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D 1 D2 ([V, iii]) = DJ ( [D2 (v), iii] + [V, D2 (iii)]) 

= [D1 D2 V, iii] + [D2 11, DJ iii] +[DJ v, D2 iii] + [v, DJ D2 iii]. 

(2.23) 

(2.24) 

Interchanging the indices 1 and 2 and subtracting both formulas from each other, we 
get 

[D1 , D2] ([11, iii]) = [[DJ, D2] v, iii] + [11, [D1 , D2] iii], (2.25) 

meaning that the commutator of two derivations is again a derivation. Let V now be a 
Lie algebra over the real numbers IR 1 or the complex numbers C. Using the above 
general definitions, we introduce an operation for the classification of Lie algebras. 

Consider the linear map ad v of V into itself defined by 

ad 11 (W) := [v, iii] with 11, iii E V. (2.26) 

Using the Jacobi identity (iii) in connection with the definition of the derivation, we 
can write 

ad V([W, u]) = [ad v(iiI), u] + [W, ad v(u)]; (2.27) 

i.e., the map ad v represents a derivation of V. Furthermore, from the Jacobi identity 
and the definition of ad v, we obtain 

ad[v, iii] (U) = [ad 11, ad iii] (it) . (2.28) 

Hence, the set Va = {ad v I 11 E V} is a linear Lie algebra and a subset of the Lie 
algebra of all derivations and is called the adjoint algebra. The map tlJ : 11 ~ ad v is 
the homomorphism of V onto Va. In addition, the kernel of the homomorphism 4> is 
the center of V. 

The representation of ad v, called the adjoint representation of the Lie algebra, always 
provides a matrix representation of the algebra. If {Vi} is a n-dimensional basis for V, 

then 

n 

ad i\(ad Vj) = 2: ct Vk. (2.29) 
k=J 

Therefore, the matrix A associated with the transformation ad Vi is given by the 
structure constants 

(2.30) 

where (Ai)i represents the (j, k)th entry for the ith matrix. Note the transposition of 
the indices j and k. So if we know the structure constants of a Lie algebra, we also 
know the matrix representation of the adjoint Lie algebra. 
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Example 5 

As an example. let us examine the rotations about the three coordinate axes X. Y, 
and Z. The group of the rotation can be represented by the three matrices 

Rx[a_] := {{1, 0, O}, 

{O, Cos[a], -Sin[a]}, 

{O, Sin [a] , Cos [a]}} 

Ry[/L] := {{Cos[I3], 0, Sin[I3]}, 

{O, 1, O}, {-Sin[I3], 0, Cos[I3]}} 

Rz[y_] 1= {{Cos[y], -Sin[y], O}, 

{Sin[y], Cos[y], O}, {O, 0, 1}} 

A representation of the corresponding Lie algebra follows if we calculate the first 
coefficient of a Taylor expansion around the identity. meaning that the representation 
of the Lie algebra is given by the first derivatives with respect to the parameter 
around the identical rotation. 

81 = a"Rx[a] /. a -+ 0; MatrixPorm[8d 

( 
0 0 0) o 0 -1 
o 1 0 

82 = a{3 Ry [13] /. 13 -+ 0, MatrixPorm [82 ] 

and 

83 = a" Rz [y] /. y -+ 0; MatrixPorm[83] 

(0 -1 0) 
100 
000 

These three matrices also build the basis for the Lie algebra so(3). We will see in 
Chapter 4 that the matrices el. e2. and e3 are the infinitesimal generators of the Lie 
group. At the other hand. we know from our examinations above that the structure 
constants of so(3) are given by the Levi-Civita tensor. Knowing the structure 
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constants, we also know a representation of the adjoint Lie algebra. The structure 
constants of so(3) arec7j = <}. Applying relation (2.30), we can represent the adjoint 

Lie algebra by 

So the matrices 

ae1 = MatrixForm[Array[-LeviCivita[l, #1, #2]&:, 

{3, 3}]] 

ae2 = MatrixForm[Array[-LeviCivita[2, #1, #2]&:, 

{3, 3}]] 

and 

ae3 = MatrixForm[Array[-LeviCivita[3, #1, #2]&:, 

{3, 3}]] 

(2.31) 

are the adjoint representation of the Lie algebra so(3). In fact, these matrices are 
identical with the original matrices of so(3). In the above input lines, we used as 
argument of Array[] a pure function. A pure function in Mathematica is terminated 

by & and allows so-called slots (#1, #2) as input channels. In the above lines, the 
function LeviCivita[] with two slots and one fixed argument was used as a pure 
function. D 

With the definition of the adjoint algebra, we introduced the homomorphism 
v ~ ad v. In terms of coordinates, we have 

{ad v (ad W)}i ad Vi (ad Vj) 

i.e., 

n 

L: Cik vi w< , 
k,l=l 

(2.32) 

(2.33) 
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Using these relations, we are able to define a scalar product in a Lie algebra by the 
following relation, 

(y, w) = Tr(ad y ad w) . (2.34) 

This product satisfies the following properties: 

(i) Symmetry 

(Y, w) = (w, v) (2.35) 

(ii) Bilinearity 

(av + {3w, u) = a(v, u) + f3(w, u) (2.36) 

for all v, w, U E V and a,f3 E IR or C. And, the relation 

(iii) 

(ad v(w) , u) + (w, ad v(u» = 0 (2.37) 

or 

([y, wl, u) + (w, [v, ul) = o. (2.38) 

These properties are immediately derived from the properties of the trace. 

The symmetric bilinear form (Y, w) on V x V is called the Killing form of the Lie 
algebra. In terms of the coordinates, this expression is given by 

n 

(v, w) = Tr( (ad v)~ (ad w):) = L eik vi e~i w m 

n 

= L glm vlwm, 

I,m=! 

where the symmetric second-rank tensor 

n 

glm = L eik~i 
i,k=! 

I,k=! 

(2.39) 

(2.40) 

is called the Cartan metric tensor of the Lie algebra V. Note that for some algebras 
the Killing form can be degenerate. Especially for commutative algebras we find 
degeneration; i.e., det (gik) = O. 

The Killing form and the Cartan metric tensor play a fundamental role in the theory 
of Lie algebras and their representations. For example, a simple criterion for the 
solvability of a Lie algebra in terms of the Killing form is: if (v, v) = 0 for each 
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V E V, then V is called a solvable Lie algebra, or if an algebra V is nilpotent, then 
(v, v) = 0 for all v E V. 

We have separated the type of solvable and nilpotent algebras from the set of all Lie 
algebras by the above criteria. However, we do not know much about the terms 
simple and semisimple Lie algebras. In the following, we define the class of simple 
and semisimple Lie algebras, which are important in the study of the structure and 
classification of Lie algebras 

Definition: Semisimple Lie algebra 

A Lie algebra V is semisimple if it has a non-zero commutative ideal. 0 

The criterion for semisimplicity is given by the following theorem: 

Theorem: Cartan' s theorem 

A Lie algebra V is semisimple if and only if its Killing form is non-degenerate. 0 

This theorem of Cartan is useful for classifying the algebras obtained in the 
symmetry analysis as semisimple or not. A simple Lie algebra is defined as follows: 

Definition: Simple Lie algebra 

A Lie algebra V is simple if it has no ideals other than {O} and V and if 
V(l) = [V, V] "* O. 0 

The discussed terms are useful for expressing some relations of differential equations 
in the following sections. All are the basis for a theory which is general in its settings 
and can be used in different applications of physics and mathematics. 



3 

Derivatives 

The symmetry analysis of differential equations is based on several differential 
operators. Among these operators are the ordinary differentiation, the total 
differential, the Frechet derivative, the Euler-Lagrange derivative, and the 
prolongation, to name the main operators. The basis of the symmetry analysis is the 
prolongation of a differential equation. Unfortunately, the prolongation as a 
differential operator is not implemented in Mathematica. This chapter will discuss 
the different types of derivatives used in the calculus of symmetry analysis and will 
demonstrate their application by several examples. Another subject of the present 
chapter is the presentation of the theoretical background for the derivatives. One 
point we will discuss is the connection of the theory with the practical 
implementation of these operators in Mathematica. Application of the defined 
operators to several examples will demonstrate their use. Throughout the text, we use 
subscripts to denote a differentiation. The subscripted representation in Mathematica 
is created by the function LieTraditionalForm[]. This MathLie function converts the 
standard form of differentials in Mathematica to a traditional form frequently used in 
mathematics. 

3.1. Ordinary and Partial Derivatives 

Ordinary and partial derivatives are widely used in calculus. As a matter of fact, this 
kind of calculation is also applied in the symmetry analysis of differential equations. 
Gauss, Leibniz, and Newton introduced the notion of derivatives in the 17th century 
in order to have a measure for the slope of a function. Still today, we continue to use 
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derivatives to measure the slope of a function at a position x. The definition of a 
differential is one of the fruitful concepts mankind invented to describe nature in 
mathematical terms. Newton and Leibniz introduced the calculus of differentials to 
describe physical and mathematical relations by means of differential equations. The 
main ingredients of differential equations are derivatives combined in a linear or 
non-linear way. The definition of a derivative in terms of a limiting process is given 
by the following: 

Definition: Ordinary derivative 

Given a smooth function f: IR ~ IR, the derivative of f is defined by the relation 

df . f(x+h) - f(x) 
-:= hm . 0 
dx h ... O h 

(3.1) 

This definition is the mathematical expression of how to manage the calculation of 
the slope for a known function f. The meaning of this formula is that we have to take 
two neighboring points separated by a distance h in the x domain and calculate the 
ratio of the difference of the function at these points. If we assume that the distance h 
becomes smaller and smaller, we end up with a value describing the slope of the 
function at the point x. Here we used the representation of the derivative in 
mathematical terms. The definition of the derivative given in (3.1) is not only a 
symbolic formula but also of practical relevance. In Mathematica, we can 
demonstrate the practical use by just applying relation (3.1) to a specific function. Let 
us assume that the function f is given by the trigonometric function 

f [x_l : = sin [xl 

Formula (3.1) in terms of Mathematica reads 

[ f [x + hl - f [xl ] 
Df = Limit , h-+ 0 

h 

Cos [x] 

which provides us with the expected result. We certainly know that the derivative of 
the sin is given by a cos. The result can be checked by a symbolic calculation using 
the differentiation 

Cos [x] 

which gives the same result. We realize that Mathematica provides the same result by 
different algorithmic procedures. However, the standard way of calculating 
derivatives of functions f is the application of the operator Ox to f[x]. The pattern 
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ax f[x) or D[F[x), x) serves to calculate all the ordinary differentials of a function f 

with one independent variable. 

Another way of looking on relation (3.1) in the definition above is based on a 
geometrical interpretation. Rewriting the original formula (3.1) helps us to 
understand the geometrical contents. Let us first replace the limit in equation (3.1) by 
another representation. The derivative defined on the left-hand side of equation (3.1) 
can be represented by introducing a condition on the right-hand side. Dropping for 
the moment the Limit[] and introducing a reference point Xo on the x-axis, we are 
able to rewrite the right-hand side. We assume that Xo is a distance h away from our 
point of interest x. The resulting value on the right-hand side of (3.1) is an 
approximation of the derivative at the point Xo. In Mathematica, we write 

Clear[f] 

f [x + h] - f [x] 
Df = I • h ... xO - x 

h 

-f[x] + f[xO] 
-x + xO 

The left-hand side in equation (3.1) can be represented by the differential operator ax. 
The calculation is carried out at the location x = Xo. This representation of the 
derivative gives us 

Dlf = ax f [x] I. x ... xO 

f' [xO] 

Combining the two expressions, we get an approximate representation of a derivative 
for the function f at the location Xo by 

df = Dlf == Df 

f' [xO] == -f[x] + f[xO] 
-x + xO 

The geometrical way of reading this equation is to consider df as a parametric 
definition of the function f[x). The parameter Xo denotes a specific location in the 
domain of the independent variables. An explicit representation of the function f 
follows from df by solving it with respect to f[x): 

Boll = Solve [df, f [x)) /. f [x] ... w 

{{W-4 f[xO] +xf' [xO] -xO f' [xO]}} 

The replacement of f[x) by an auxiliary variable w is necessary to define the function 
f[x) in a pure function as 



40 Derivatives 

fun = f ~ Function [ {x, xO}, w] /. Flatten[soll] 

f~Function[{x, xO}, f[xO] +xf'[xO] -xOf'[xO]] 

The result is a representation of the function f[x] defined at any location x knowing 
at the same time the same function f at a point Xo. In addition, we also have to know 
the derivative off at this location. The relation appears somewhat strange at the first 
look. However, the geometrical content of this expression is easy to understand if we 
represent it graphically. To perceive the implications of the relation, let us examine a 
plot of f Being specific in the plotting, we set the function f to the trigonometric 
function sin 

f [x_] : = Sin [x] 

In another step, we define a function g[x, xo], combining our results for f[x, xo]. 
The new function g[x, xo] allows us to represent fat any points x and Xo: 

Clear[g] 

g [x_, xO_] : = f [x, xO] /. fun 

If we plot both functions f[x] and g[x, xo] in a common coordinate frame, we get the 
following picture: 

Plot [ 
7T 

Evaluate[{f[x], g[x, 1]}], {x, 0, -}, 
2 

AxesLabel ~ {"xn, "f, gn } , 

PlotStyle ~ {RGBColor[l, 0, 0], 

RGBColor[O, 0, 1]} 1 

f,g 

1 

0.8 

0.6 

0.4 

0.2 

0.25 0.5 0.75 1 1.25 1.5 x 

From the above figure, we clearly see the geometrical meaning of g andf In fact, g is 
the representation of the tangent of the function f at a certain location xo. In the figure 
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above, we chose Xo = 1. The figure allows us to interpret the derivative of f as a 
slope. The relation derived in df clearly displays a linear dependence in the 
independent variable x. Examining the slopes of the function f[x) at other points Xo, 
we get a set of tangents. A graphical representation of this set is given below. This 
sort of plot represents an envelope of the function f[x). The following lines of 
Mathematica are necessary to create the envelope off: 

Plot [zvaluate[ 
7f 7f 

'l'able [g [x, xO], {xo, 0, -, -}]], 
2 20 

7f 
{x, 0, -}, Axe.Label-+ {RX., Rg"}, 

2 

PlotStyle -+ 'l'able [RGBCOlor [1, 0, 0], 
7f 7f 

{xo, 0, -, -}]] 
2 20 

9 

1.5 

1.25 

0.25 0.5 0.75 1 1. 25 1.5 x 

The above figure shows that the slope of the function sin [x] starts with a finite value 
at Xo = 0 and ends up with a vanishing value at Xo = 1r / 2. The following figure, 
showing the function and the derivative of the function, represents another way to 
examine the behavior of the slope. 

Plot [zvaluate[ 

{f [x], Bx f [x] }] , 
7f {x, 0, -}, 
2 

Axe.Label .... {·x·, Rf, fl.}, 

PlotStyle .... {RGBColor[O, 0, 1], 

RGBColor[l, 0, O]}] 
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f, f' 

0.8 

0.6 

0.4 

0.2 

0.25 0.5 0.75 1 1. 25 1.5 x 

The figure shows us the derived behavior of the slope in a more compact way. The 
slope of sin [x] starts with the value 1 at x = 0 and finishes with 0 at x = Tel2. 

Knowing the geometrical meaning of differentiation, we can ask for additional 
properties of this operation. In the following, we will discuss some of these 
properties. We only state a few of these features known by Mathematica. One of 
these properties is the product rule which governs the differentiation of a product of 
functions, e.g., f and g. The product rule is implemented in Mathematica and 
automatically applied to products of functions: 

Clear[f, g] 

prule = ax (f [x] g [xl) I I LieTraditionall'orm 

The result represents the expected relation which is known from standard texts in 
calculus. Another feature of derivatives is the rule for rational functions. The 
differentiation of the ratio f[x]/g[x] gives 

f [x] 
qrule = Sim;plify[ax --] II LieTraditionall'orm 

g[x] 

which is the standard formula. The chain rule of Leibniz is useful in differentiating 
nested functions 

crule = ax f [g [x]] I I LieTraditionall'orm 



Ordinary and Partial Derivatives 43 

which indicates that we first differentiate the function / with respect to g followed by 
a differentiation of g with respect to x. The properties stated above and more are 
known by Mathematica to manage the calculation of differentials. 

In symmetry analysis. we frequently have to deal with functions depending on 
several independent variables. A function of a set of variables can be differentiated 
with respect to one of these variables at a time. The rest of the independent variables 
will stay unchanged in this calculation. The slope of a function of several variables is 
not just a single function, since the independent variables may vary in different ways. 
All the rates of change for a function of m variables are described by m functions. 
called its partial derivatives. In the discussion above. we introduced the definition of 
the derivative known as an ordinary derivative which is defined for functions 
depending on a single independent variable. The more generic case is that we have 
functions depending on several independent variables. The partial derivatives of a 
function of several variables are its ordinary derivatives with respect to each variable 
separately. We can define this as follows: 

Definition: Partial derivative 

Given a smooth function I: IRm ~ IR depending on m independent variables Xm • we 
define the partial derivative of/with respect to the independent variable Xq by 

al 
= aXq 

(/(Xl. X2 • .... Xq +h, .... xm) - I(x], X2, .... xq • .... xm)) 
lim --------'-------------'-------. 0 
h~O h 

(3.2) 

This formula allows us to calculate the vanatlon of I with respect to different 
coordinates xq • The partial derivative of a function is an operation known by 

Mathematica. The partial derivative is accessible under the same pattern aD D. 

Although we can access partial derivatives and ordinary derivatives by the same 

symbol D[]. Mathematica is capable of distinguishing the different operations. 

Consider, for example, a function / = I(XI. X2) of two variables. If we treat X2 as a 
constant. / may be differentiated with respect to Xl' The result is called a partial 
derivative of/with respect to Xl' In Mathematica. we carry out this by 

OXl f [Xl' X2] / / LieTraditionalForm 
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The resulting symbol for the representation of a partial derivative in Mathematica is a 
superscripted expression of the function f. The superscripts denote the order of 
differentiation with respect to the independent variables. In our example, we get the 
first derivative with respect to XI. The derivative with respect to X2 follows in the 
same way by 

ax. f [X1, X2] / / LieTraditionalForm 

The combination of both operations allows us to calculate higher-order derivatives 

Ox
"

x. f [X1, X2] / / LieTraditionalForm 

Higher-order derivatives follow by carrying out the differentiation with respect to 
different variables. The calculation of higher derivatives is done for functions with 
only one independent variable in a similar way. Since both operations are nearly 
identical, here we will give only the definition for the case with more than one 
independent variable. The one-dimensional case is included in this definition. The 
kth-order derivative is defined as follows: 

Definition: kth-Order derivative 

Given a smooth function f: IR m ~ IR depending on m independent variables xq , we 

call 

(3.3) 

the kth-order partial derivative of fwith respect to the m independent variables x. The 
non-sorted multi-index J = (jl, j2' ... , A) denotes the derivative with respect to one 
of the m coordinates. The integers I ~ jk ~ m of this k-tuple indicate which 
derivatives are being taken. The order of differentiation k is equivalent to the sum of 
all indices A, which we denote by I J I = 2::=1 j;. 0 

Using this definition, we are able to calculate, for example, the second-order 
derivative of the function f The calculation of the partial derivative in Mathematica 
is as simple as the application of the ordinary derivative even for higher-order 
derivatives. For example, the sixth-order derivative of f is derived by 

O(x1,2}.{x2,4} f [xl, x2] / / LieTraditionalForm 

f x1 ,xl,x2,x2,x2,x2 
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So far, we discussed simple examples of derivatives already implemented in 
Mathematica. The following sections will illustrate how special types of derivatives 
are implemented. We will discuss tangent vectors, vector fields, Frechet derivatives, 
prolongations of vector fields, and variational derivatives also known as Euler 
derivatives. The special types of derivatives we are going to discuss are useful in 
examining symmetries of differential equations. 

3.2. Tangent Vector 

Sometimes it is important to know how a real-valued function!: IRn ~ IR varies in 
different directions. The partial derivative discussed above only measures how 
much! changes in a certain direction. However, it is also possible to measure the 
variation of! in other directions. Measuring the variation of! at a location x E IRm 

along a straight line t::;: x + txo, where Xo E IRm, we need the tangent vector vX • Since 
we are dealing with differential operators, we define the tangent vector as an operator 
acting in the space of functions. Actually, a tangent vector is a vector with a cetrain 
direction and a finite length. However, in view of the application in symmetry 
analysis, let us define such an operator. 

Definition: Tangent vector 

We assume that!: IRm ~ IR is a smooth differentiable function. The tangent vector Vx 
is defmed by the relation 

(3.4) 

where Xo E IR n and t is a real parameter. 0 

This definition is known as directional derivative in calculus. A more explicit way to 
write the definition is given by 

(3.5) 
1--+0 

Relation (3.5) is more convenient in comparison with the definition of an ordinary 
derivative. On the other hand, equation (3.4) is more useful in the implementation of 
the tangent vector in Mathematica. Although the second definition (3.5) is based on a 
complicated mathematical process involving the determination of a limit, the first 
expression is easier to handle symbolically. The reason is that equation (3.4) contains 
basic operations like an ordinary differentiation and a substitution. Both of these 
operations are easily handled by Mathematica. Since Mathematica does not know 
how to calculate the tangent vector of a function, we must define an operator which 
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handles this kind of calculation. Let us now examine equation (3.4) in more detail to 
see how an implementation can be based on it. In the calculation of the tangent vector 
for an arbitrary function f, we need to know the function J itself, the independent 
variables :t, and the support point xo. We use these three components as input 
parameters for our function TangentVector[]. We define the function 

TangentVector[] in the following way: 

TangentVector [f_, x_List, xO_List] : = 
Block[{rule, res, t}, 

rule = Thread [x -+ x + t xO] ; 

res = fl. rule; 

res = Ot res I. t -+ 0] 

These few lines closely follow the definition given in equation (3.4). The lines just 
state that the original argument is replaced by a new argument and that after the 
replacement, a differentiation with respect to the parameter t takes place. At the end 
of the calculation t is replaced by zero. The actual calculation is reduced to an 
ordinary differentiation with respect to a parameter. All other operations are 
replacements given as a transformation of the argument and as a side condition. The 
definition given in Mathematica is capable of reproducing the general formula in 
(3.4) at a certain point :to. As an example, we demonstrate here the calculation for a 
functionJdepending on four independent variables: 

TangentVector [f [xl, x2, x3, x4], 

{xl, x2, x3, x4}, {xlO, x20, x30, x40}] II 
LieTraditionalForm 

xlO fx' + x20 fX2 + x30 fX3 + x40 fX4 

As expected, the result of our calculation is a sum of four products. Each product 
consists of a partial derivative with respect to the coordinate Xq and the component 

XOq of the related location. Similar to the ordinary differentiation, the function 

TangentVector[] satisfies some additional properties. Some of these algebraic 
features of the directional derivative are listed below. Let us assume that we have two 
real numbers a and b and two independent functions Jand g. Then, we can show that 
the relation 

TangentVector[af[xl, x2] +bg[xl, x2], {xl, x2}, {xlO, x20}] == 
a TangentVector[f[xl, x2], {xl, x2}, {xlO, x20}] + 

bTangentVector[g[xl, x2], {xl, x2}, {xlO, x20}] 

True 

is satisfied. This behavior of the tangent vector is known as linearity. Thus, we can 
say that TangentVector[] is a linear operator. The application of TangentVector[] on 
a product gives us 



TangentVector[f[xl, x2] g[xl, x2], 

{xl, x2}, {xlO, x20}] 

g[xl, x2] (x20 f IO . 1) [xl, x2] +xlO f I1 . O) [xl, x2]) + 

f[xl, x2] (x20g I0 . 1) [xl, x2] +XlOg I1 . O) [xl, x2]) 
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which is just the scalar product of the vector (J, g) with a vector containing the two 
tangent vectors of f and g as elements. There is also a chain rule for the tangent 
vector similar to the case of ordinary differentiation. For example, let gl and g2 be 
two differentiable functions depending on XI and X2' For a function F given by 

f = F [gl [xl, x2], g2 [xl, x2] ] 

F [gl [xl, x2], g2 [xl, x2]] 

we can derive the tangent vector in the form 

TangentVector[f, {xl, x2}, {xlO, x20}] II LieTraditionalForm 

Fgl (xlOglxl +x20glx2 ) +Fg2 (xlOg2 x1 +x20g2x2 ) 

which is a superposition of the vector field of gland g2 multiplied by the derivatives 
of F. As we demonstrated, all these properties are immediately available without any 
additional definitions. This behavior is actually based on the implementation of the 
derivative in Mathematica. 

The name used for our function to calculate the tangent vector of a given function is 
somewhat misleading. Actually, we calculate a scalar product of the tangent vector 
and a support vector Xo using our function. In some calculations, however, it is 
necessary to have the vector components of the tangent vector available. Such an 
application, for example, is the calculation of the tangent surface on a hypersurface. 

The components of the tangent vector Vx become available by altering 
TangentVector[] in an appropriate way. The following lines generalize the function in 
such a way that the result of the calculation is a vector of differentials applied to a 
function. We also assume in our definition that the support point is arbitrary and thus 
can be created by the operator TangentVector[] itself: 

TangentVector[f_, x_List] := Block[{rule, res, t}, 

xO = Table [Unique [ n $aUn ] , 

{i, 1, Length[x]}]; 

rule = Thread [x -+ x + t xO]; 

res = fl. rule; 

res = at res I. t -+ 0; 

Table [Coefficient [res, xO [iD] , 

{i, 1, Length[xO]}]] 
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The application of the function TangentVector[] on a function I depending on three 
independent variables gives us 

Clear[f]; 

TangentVector[f [xl. x2. xl]. {xl. x2. xl}] / / LieTraditionall'o:z:m 

which is, in fact, the gradient of the scalar function f We note that the function 
TangentVector[] needs only two arguments, the function I and a list of independent 

variables. 

For some applications in geometry and physics, we need to calculate the tangent 
surface of a given function. Recalling the definition of the tangent of a function given 
at the beginning of this section, we generalize this one-dimensional definition to a 
two-dimensional version. Using the vector representation of the tangent vector at a 
certain point x for the two-dimensional case, we can represent the tangent surface by 

Is = I(Xo, Yo) + ex - xo) . 'Ox (f), (3.6) 

representing the sum of the function at the support point (xo, Yo) and the scalar 
product of (x - xo) and the tangent vector. Similar to the definition of a tangent 
vector, we can implement a tangent surface by 

Clear[TangentSUrface]; 

TangentSUrface[f_. X_List. xO_List] := 

Block [ {rule. tvector. sf. surface}. 

rule = Thread [x .... xO] ; 

tvector = TangentVector[f. x]; 

sf = f /. rule; 

surface = sf + (x - xO) • tvector] 

Using the function TangentSurface[], we can determine the tangent space located at 
Xo of a given function f. As an example, let us consider a function h in a 
two-dimensional space with coordinates x and y 

h = Sin [xl Cos [y] 

Cos [y] Sin [x] 

The function h[x, y] has the graphical representation 

pll = 
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We calculate the tangent surface of this function at the point (xo, Yo) = (n/2, 0) by 
using our function 

7r 
ht = TangentSurface [h, {x, y}, {-, o}] 

2 

1 + ( - ; +x) Cos [x] Cos[y ] -ySin[x ] Sin [y] 

A graphical representation of this relation for the tangent surface follows with 

p12 = Plot3D[ht, {x, .5, 2}, {y, -1, 1}, 

Colorl'unction -0 HUe] 

Superimposing both surfaces demonstrates that the two functions have the common 
point (xo, Yo)=(n/2, 0). 

Show[pll, p12, PlotRange-o {{-2, 2}, {-2, 2}, {-1, 1}}, 

ViewPoint -0 {3 .130, -1.044, O. 751}, Boxed -0 False] 
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-2 
y 

In the above figure, we observe that the tangent surface is located below the surface 
h. The tangent surface is plotted for a smaller interval in the x and y directions to 
prevent intersections of h and the tangent surface. This example shows that the 
one-dimensional notion of a tangent can be generalized to a two-dimensional version. 
This generalization is not restricted to two dimensions but can be extended to higher 
dimensions. Since the higher-dimensional cases cannot be represented easily by 
graphics, we suppress a further discussion of these tangent surfaces. 

This section was intended to show how a Mathematica function for a derivative can 
be defined if we know an appropriate mathematical definition. We also notice that 
not every mathematical definition is an efficient definition for an implementation in 
Mathematica. An essential point to efficiently implement a mathematical relation in 
Mathematica is a mathematical definition based on structures which are basic 
elements in Mathematica. In the case of the TangentVector[] function, it was 
essential that we used the pattern matching of Mathematica in the replacement rules. 
The application of such simple operations allows us to write refined functions. In the 
next section, we will come back to a derivative already known by Mathematica, the 
total derivative. 

3.3. The Total Derivative 

Let us consider functions J depending on a set of independent variables x = 
(Xl' X2, ... , xn) and a set of dependent variables U(k), k = 0,1,2, ... , where u(k) 

represents all possible derivatives of U = (u l , u2, ... , u<>:) with respect to the 
independent variables x. We are interested in the derivative of these functions with 
respect to all independent variables. If we assume that u depends on the vector x, we 
must consider all derivatives ofJwith respect to X and u(k)' In other words, we obtain 
the total derivative ofJby differentiating Jwith respect to x, while treating all the U<>:'S 

and their derivatives as functions of x. 
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Definition: Total derivative 

The total derivative of a function f(x, U(k)) with respect to the independent variable 
Xi is given by 

of q '" of 
Di f = OXi + II Uj,i ou'" 

<>=] j ] 

where for J = (j], jz, ... , h), 

au) 

aXi 

and the sum in (3.7) runs over all J's of order 0 !> I J I !> k with I J I 
is the highest order of the derivatives occurring in! 0 

(3,7) 

(3,8) 

The Mathematica analogue of this definition is available by the function D[], which 
S, Wolfram [1991] calls a partial derivative. Showing the equivalence of both 
notions, let us demonstrate the action of the function D[] by considering a simple 
example. 

Let us examine a functionjgiven by f = xuuxy , where U = u(x, y) is a function of 

X and y. We apply the function D[] on this expression in two steps. First, we use x as 
the variable of differentiation, and in a second step, we differentiate with respect to y: 

f = x u [x, y] OX,y U [x, y]; f / / LieTraditionalForm 

u x Ux,y 

D[£, x] / / LieTraditionalForm 

u Ux,y + x U x Ux,y + U x Ux,x,y 

D[f, y] / / LieTraditionalForm 

x U y Ux,y + U x Ux,y,y 

Comparing the results obtained by Mathematica with the definition given above 
demonstrates the equivalence of both notions. Higher-order total derivatives are 
defined by a repeated application of the single operator (3.7) with different variables 
of differentiation. If J = (j], jz, ... , jm) is a mth-order multi-index, with 1 !> jm !> P 

for each m, then the jth total derivative is denoted by 

(3.9) 
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For example. we find the Dx Dy and Dy Dx derivatives by successively applying Dx 

and D y. In Mathematica. we can realize this by 

dfl = D[D[f, x], y]; dfl II Lie'l'raditionall'orm. 

U y Ux,y + x U;,y + x Uy Ux,x,y + U Ux,y,y + x U x Ux,y,y + U X Ux,X,y,y 

df2 = D[D[f, y], x]; df2 II Lie'l'raditionall'orm. 

Uy Ux,y + x U~,y + x tiy Ux,x,y + U Ux,y,y + x U x Ux,y,y + U x U",x,y,y 

Subtracting both representations of the mixed derivatives from each other. we get 

dfl- df2 

o 

It is obvious that both expressions contain the same result. This implies that we can 
commute the Dx and D y. In general. we can interchange the D's in the calculation in 
any order. 

Another representation of derivatives instrumental in the calculation of symmetries is 
the prolongation. A prolongation is not a completely new derivative; however. it 
introduces a geometrical concept in th-e manifold. allowing a greater flexibility in the 
use of coordinates. 

3.4. Prolongations 

In the calculation of symmetries. we frequently have to calculate the prolongation of 
a given system of differential equations. Here. we first define the term prolongation 
for a function. In Section 3.7. we will discuss the application of prolongations to 
vector fields. This definition is extended to differential equations in an additional step 
in Section 4.2.5 for ODEs and in Section 5.4.1 for PDEs. 

The term prolongation actually means an extension of the space of coordinates by 
their derivatives up to a certain order. As a simple example. we can extend or prolong 
the space of variables u for a function u : R ~ R by its first derivative. In classical 
mechanics. such an extension of the configuration space with coordinates u to a space 
with u and u' as coordinates is known as an extension of the configuration space to 
phase space. A more specific example occurring frequently in mathematical physics 
is given by a vector-valued function u = f(x) = (/1 (x) •...• fm(x)) with n independent 
variables x = (Xl ••.•• xn) and m dependent variables. For such an n X m space. the 
definition of the prolongation reads 
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Definition: Prolongation 

For a given vector-valued function f: R n -7 Rm, we define the kth prolongation of f 
by 

pr(k) f(x) := U(k). 0 (3.10) 

This relation means that we have to determine all derivatives of u up to a certain 
order k. The result of such a calculation is a set of terms containing all possible 
derivatives of u up to kth order. 

The calculation of the kth prolongation is in some sense equivalent to the calculation 
of the first k coefficients in a Taylor expansion off at the point x. 

Let us demonstrate the calculation of the prolongation for a single function 
f = f (x, y, z). Here, n = 3 and m = 1. We are looking for the second prolongation 
of f; i.e., k = 2. We use Mathematica to carry out such a calculation. If we do the 
calculation by hand, we have to collect the derivatives of f with respect to the 
independent variables x = (x, y, z) up to order 2 

pr(2) f (x, y, z) = 

[ 
Jf Jf 

f, fh'iii' 
Jf a2 f J2 f ~ f ~ f J2 f J2 f 1 
~' JxJy' JxJz' JyJz' Jx2 ' Jy2 ' J Z2 . 

(3.11) 

This list of terms represents the expansion coefficients of a Taylor series of f around 
Xo. The first few terms can be read off from the following series expansion: 

Clear[f, x, y, z, xO, yO, zOl; 

Normal [Series [f [x, y, zl, {x, xO, l}, 

{y, yO, l}, {z, zO, l}ll //LieTraditionalForm 

f+ (x-xO) fxo + (y-yO) (fyO + (x-xO) f xo . yo ) + 

(z-zO) (fzo + (x-xO) fxo,zo + (y-yO) (fyo,zo + (x-xO) fxo,yo,zo)) 

Using Mathematica, we do the calculation for the prolongation by applying the 
function Outer[] in connection with the differentiation D[]. The aim is to reproduce 

the content of equation (3.11). So we have to define a function called prolongation[] 

using lists as input variables for the functions f and the independent variables x. The 
third argument of prolongation[] determines the largest order k of differentiation: 

prolongation[f_List, X_List, order_l := 

Block [ {aux, dresul t} , 
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result = f; 

aux = result; 

Do [aux = OUter [D, aux, x]; 

AppendTo[result, aux], {i, 1, order}]; 

Sort[Union[Platten[result]], 

derivativeOrder[#l, #2]&]] 

The function prolongation[] is based on the auxiliary function derivativeOrder[]. This 
function determines the order of a differential expression. The result of 

derivativeOrder[] influences the sorting of the derivatives in the function Sort[]. 

derivativeOrder[] allows us to sort the derivatives by an increasing order. 

derivativeOrder[exprl_, expr2_] := 

If [preeQ [expr1, Derivative] II 
FreeQ[expr2, Derivative], True, 

plus [exprl /. _ (x_l [ __ ] -+ x] < 
Plus [expr2 /. _(x_l [ __ ] -+ x]]; 

The function derivativeOrder[] checks the two arguments exprl and expr2 on 
derivatives. If the expressions are free of derivatives, the function returns True. If the 
expressions contain derivatives, the function only returns True if the order of the 
derivatives increases. The application of prolongation[] on f[x,y,z] up to second order 
gives us the coordinates of the extended space 

prolongation[{f[x, y, z]), {x, y, z}, 2] //LieTraditionalForm 

From a mathematical point of view, we determined the coordinates of a jet-space of 
order 2 (cf. Olver [1986]). The kth prolongation pr(k) (f(x)) is also known as the k-jet 

of f The related space of independent and dependent variables extended by the 
derivatives is thus called jet-space. Thus, if u = f(x) is a function whose graph lies in 
the space of dependent and independent variables, the kth prolongation pr(k) (f(x)) is 
a function whose graph lies in the k-jet space. 

3.5. The Frechet Derivative 

In the previous sections, we discussed differential operators available in 
Mathematica. This section deals with a differential operator instrumental in the 
theory of symmetry analysis. Here, we discuss a generalized derivative and its 
definition in Mathematica. The derivative is called a Gateaux or Frechet derivative. 
This kind of derivative is very useful in the calculations of symmetries (Olver [1986], 
Fokas [1980, 1987], Fokas and Fuchssteiner [1981], Baumann [1997]). Such a 
derivative uses not only the steepest descent of a function but also puts a weight on it. 
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Definition: Frechet derivative 

Let 1= I(x, u(n) be a function in p independent and q dependent variables. u(n) 

denotes all the derivatives in this function up to order n = 0, 1,2, .... The Frechet 
derivative Df of a function f based on w(x, u(n) is defined in such a way that 

(3.12) 

holds for aU auxiliary functions w. We call the function I the support of the Frechet 
derivative and w the test function. 0 

The algorithmic content of this definition is that Df(w) is calculated by replacing U 

and all of its derivatives in I by U + E W. If we later differentiate the resulting 
expression with respect to E and set E = 0, we determined the Frechet derivative. The 
result of these two steps is the Frechet derivative of f based on the test function w. 
Using the steps in a pencil calculation for one independent and one dependent 
variable, equation (3.12) can be reduced to an explicit expression like 

(3.13) 

In (3.13) U(k) denotes the kth derivative of U with respect to x. The sum in (3.13) is 
finite since the order of the largest derivative of the support is finite. This is the case 
in all practical situations. 

Let us consider as a support function I = Ux ux,x,x + u;. The Frechet derivative with a 
test function w = w(x, ux,x,x) contained in the class of support functions f is given by 
applying equation (3.13) to f: 

Df(w) = (ux,x,x + 2 ux ) Dx w + Ux Dx.x,x w, (3.14) 

where Dx and Dx,x,x denote the first- and third-order total derivatives. If we choose 
the test function as w = u; /2, we get from relation (3.14) 

(3.15) 

representing a differential expression containing only derivatives of u. The definition 
of the Frechet derivative given above for one independent and one dependent variable 
is easily generalized to a vector of r support functions I = (fl, ... , Ir) and q test 
functions w = (WI> W2, ... , wq ). Then the Fr6chet derivative of such an r-tuple is 
given by the relation 
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[

II (UI + EWI, UZ' ... , Ur ) + ... + II (UI, UZ' ... , Ur + EWr ) 1 
d f2(UI +EWI, Uz, ... , Ur )+ .. · + IZ(UI, Uz, ... , Ur +EW r ) 

Df(w) = - . <=0' (3.16) 
dE : 

Ir(UI +EWI, Uz, ... , Ur )+ .. · + Ir(UI, Uz, ... , Ur +EWr ) 

Introducing the q test functions as a column vector allows us to define the qxr matrix 
differential operator 

J.l = 1, ... , r, a = 1, ... , q. (3.17) 

This expression is equivalent to the matrix differential operator 

J.l = 1, ... , r; a=l, ... ,q. (3.18) 

The sum in (3.18) extends over all multi-indices 1. To define the Frechet derivative in 
Mathematica, we use relation (3.12) and its matrix version (3.16). We note again that 
the UCl and all their derivatives are replaced by UCl + E WCl. After the replacement of the 
arguments, we differentiate with respect to E and set E = 0 in the next step. The result 
in the general case is a matrix containing the derivatives of the support I based on the 
test functions WCl. The implementation of the Frechet derivative in Mathematica is 

FrechetD[support_List, dependVar_List, 

independVar_List, testfunction_List] := 

Block[{indep, frechet, deriv, e, rO, xl, x2}, 

rO = Function [indep, xl + e x2] ; 

frechet = {}; Do [deriv = {}; 
Do[AppendTo[deriv, 0. (support[jD /. 

dependVar[iD -+ (rO / • 

{indep -+ independVar, 

xl-+ dependVar[iD@@independVar, 

x2 -+ testfunction[iD@@independVar}» /. e -+ 0], 

{i, 1, Length[support]}]; 

AppendTo [frechet, deriv], 

{j, 1, Length[support]}]; 

frechet] 

The code of the Frechet derivative follows closely the relation given in equation 
(3.12). In FrechetD[], we first define a pure function stored in the variable roo This 
function serves as a general pattern to replace the original argument by a varied 
argument. A loop extending over the number of dependent variables replaces the 
independent and dependent variables. This step creates an explicit rule for the 
replacement. After the replacement, a differentiation with respect to the parameter E 

is performed and, at the end, E is replaced by zero. The resulting expressions are 
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collected in the list /reehet which is returned by the function. An example will 
demonstrate the application of the function. 

Example 1 

Consider a set of two expressions representing a system of partial differential 
equations given by 

Vx - u = 0, 
Ux 

VI - - = 0, 
u2 

(3.19) 

where u and v are functions of x and t. This set of equations is equivalent to a 
non-linear diffusion equation in v. Our aim is to calculate the Frechet derivative of 
the left-hand side of the system (3.19). Let us define a variable eqsys containing the 
left-hand side of the equations: 

eqsys / / LieTrll.ditioDlI.1J'oE1ll 

The application of our function FrechetD[] to this expression gives us 

FrechetD[eqsys, {u , v}, {x, t}, {wl, w2}] / / 

MatrixJ'oE1ll / / LieTrll.ditionalJ'oE1ll 

( 
-wl w2x 1 

2 wl U x _ wlx w2 
u3 u 2 t 

The calculation of the Frechet derivative using FrechetD[] is carried out by supplying 
four arguments containing the equations: the dependent variables of the support, the 
independent variables, and the test functions WI and W2. The result is a 2 x 2 matrix 
containing expressions of WI and W2 and their derivatives. From the result, we can 
get the corresponding operators if we consider WI and W2 as auxiliary functions. The 
related matrix operator reads 

( 
-1 

2 Ux __ 1_ a 
u3 u 2 x 

(3.20) 



58 Derivatives 

In our symmetry calculations, we sometimes need also the adjoint representation of 
the Frechet derivative. In general, the adjoint representation of a differential operator 
is defined via an integral expression. Assume that we know the differential operator 
(3.12). We denote the adjoint operator ofDf by Dj satisfying 

LVDfWdx = LWDjVdx. (3.21) 

Equation (3.21) holds for any pair of functions Wand V. If we examine definition 
(3.21) in more detail, we can replace the integral operation by a plain differential 
representation (cf. Olver [1986]). The corresponding expression to (3.18) is given by 

CDj ) P'" = L: C _1)1 D 1 ( : ~~), J1 = 1, ... , r; a = 1, ... , q. 
1 1 

(3.22) 

In view of an algorithm in Mathematica, this means that we convert derivatives of the 
test functions to derivatives of the support multiplied by some coefficients. This is 
strictly the definition of an adjoint differential operator. The described procedure is 
implemented in the following function AdjointFrechetD[]: 

AdjointFrechetD[support_List, dependVar_List, 

independVar_List, testfunction_List] := 

Block [ {subrule, $testf, frechet, n, b}, 

subrule = b_o $testf(n~) @@independVar H 

(-1) Plu ..... {n) ODelete [Thread [{independVar. In} }]. 0] (b $testf@@independVar) 

frechet = FrechetD [support, dependVar, 

independVar, testfunction]; 

Do [frechet = frechet / ° 

(subrule / ° $testf -+ testfunction[i]]) , 

{i, 1, Length[testfunction]}]; 

frechet = Transpose [frechet]] 

The adjoint representation of the Frechet derivative of the system eqsys is thus given 
by 

AdjointFrechetD[eqsys, {u, v}, {x, t}, 

{w1, w2}] / / MatrixForm / / LieTraditionalForm 

( 
-wl 

- w2 x 
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3.6. The Euler Derivative 

In this section, we will discuss the Ewer derivative. The Euler derivative, also known 
as the functional derivative, has its origin in the calculus of variations. The tenn 
calculus of variations was first coined by Leonhard Ewer in 1756. He used it to 
describe a new method in mechanics which Lagrange had developed 1 year earlier. 
Thus, the original application of the Euler derivative originates from mechanics. In 
this context, Euler and Lagrange used this sort of derivative to write down their 
famous equations, the Euler-Lagrange equations. Up to now, the main application of 
this derivative in physics has been the fonnulation of dynamical equations. In 
Chapter 9, we will show that the Euler derivative is a useful tool in connection with 
Lie-Backlund or generalized symmetries. Before we discuss the Euler derivative and 
its implementation, we recall briefly the basic properties of the origin in the calculus 
of variations. 

3.6.1 The Problem of Variation 

The calculus of variations was first used by Johann Bernoulli in July 1696, when he 
presented the brachystochrone problem. The problem can be fonnu1ated as follows. 
A point mass is moving frictionless in a homogenous force field along a path joining 
two points. The question is which curve connects the two points for the shortest 
travel. Johann Bernoulli announced the solution of the problem, but did not present 
his findings in public. He preferred to first challenge his contemporaries to examine 
the problem, too. This challenge was particularly aimed at his brother and teacher 
Jakob Bernoulli, who was his bitter enemy. Jakob found one solution, but did not 
present it to Johann. It was only upon the intervention of Leibniz, with whom Jakob 
had a lifelong friendship and a scientific correspondence, that he sent it to his brother 
in May 1697. The most fascinating event was that this solution was a cycloid, a curve 
also discovered at this time. 

As mentioned above, the main idea in the calculus of variations arose from the work 
of Euler and Lagrange. Later, Hamilton contributed the tenn minimum principle to 
the theory, and it is still in use today. The main idea of all these considerations of 
Euler, Lagrange, and Hamilton is the assumption that there exists a generating 
functional F. This functional is responsible for the dynamical development of the 
motion. The key point in the calculus of variations is to find a function which 
extremizes the functional F. The solution of this issue is to vary the function by 
introducing a test function. Thus, the variation of F is actually carried out by 
replacing the function u by a slightly changed new function u + E W, where E is a 
small parameter and W denotes an arbitrary test function. After replacing u and all of 
its higher derivatives in the functional F, we have to determine the extreme of F. The 
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functional in this representation can be considered as a function of the parameter E. 

The maximum or minimum of F is found if we use the standard procedure of calculus 
for finding extreme values. In mathematical terms, we need to calculate the 
derivative of F with respect to E under the condition that E vanishes: 

(3.23) 

The basic problem of the calculus of variations is to determine a function u(x) such 
that the integral 

F[u] = [2 f(x, U, Un ••• ) d X = [2 f(x, U(k) d X, 

XI XI 

k = 1,2, ... (3.24) 

assumes an extreme. An extreme here is either a maximum or a minimum. In 
equation (3.24), Ux = au / a X denotes the partial derivative of u with respect to the 
independent variables x, where X is a vector of coordinates. Let us assume first that 
we have only one independent variable x. This assumption will make it easier to 
represent and discuss the theory. A generalization to more independent variables will 
be given below. 

The expression F[u] given in equation (3.24) is called a functional defined by an 
integral over a density f which depends on the independent variable x and the 
unknown function u. In general, this density may also depend on derivatives of u up 
to a certain order k, denoted by U(k). The limits in the integral (3.24) are assumed to 
be fixed. We note that fixed limits are not necessary. If they are allowed to vary, the 
problem increases in such a way that not only u(x) but also Xl and X2 are needed to 
bring F to an extreme value. The question is how to manage the functional F in 
becoming an extreme. Let us assume that an extreme of F exists if a function 
u = u(x) makes the functional F a minimum. Then, any neighboring function, no 
matter how close it approaches u(x), must make F increase. The definition of a 
neighboring or test function may be as follows. We introduce a parametric 
representation of u = u(x; E) in such a way that for E = 0, U = u(x; E = 0) = u(x), we 
get the identity and the functional yields an extreme. We write the small perturbation 
ofu as 

u(x; e) = u(x; 0) + E w(x), (3.25) 

where w(x) is the test function which has continuous derivatives and vanishes at the 
endpoints Xl and X2. We note that the vanishing of w(x) at Xl and X2 

W(Xl) = W(X2) = 0 is one of the basic assumptions of the calculus of variations. 

If functions of the type given in equation (3.25) are considered as variations of u, the 
functional F becomes a function of E : 
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F[u;e] = [2 f(x, u(x; e), Ux(x, e), ... ) d x. 
XI 

(3.26) 

The condition that the integral has a stationary value (in other words, an extreme) is 
that F be independent of e in first order. This means that 

(3.27) 

for all functions w(x). This is a necessary condition but not a sufficient one. We will 
not pursue the details of the sufficient conditions here. They were extensively 
discussed by Blanchard and Bruning [1992]. To demonstrate how these formulas 
work in detail, let us consider the simple example of the shortest connection between 
two points in an Euclidean plane. 

Example 1 

Let us consider the equation of a curve in a Euclidean space which yields the shortest 
distance between two points in the plane. The geometrical increment of distance ds in 
the (u, xl-plane is given by 

ds = ~dx2+du2 = )1+(:)2 dx. (3.28) 

The total length s of the curve between two points Xl and X2 is 

s = [2 ~l +u; dx == F[u]. 
XI 

(3.29) 

We know that the shortest connection between two points in the Euclidean plane is a 
straight line given by 

u(x)= a X + p, (3.30) 

where a and p are constants determining the slope and the intersection of the line 
with the vertical coordinate axis. Now let us consider the line in the range X E [0, 21r]. 

To demonstrate the numerical behavior of the functional F, we choose a special test 
function w(x) = sin(4 x). Using our representation of u given by equation (3.30) with 
a=l and p=O for example, we get for the derivative of u, 

Ux = 1 + 4ecos(4 x). (3.31) 
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Inserting this representation into (3.29) we find 

(211 
F[E] = Jo ...; 1 + 4 Ecos(4 x) dx. (3.32) 

This relation represents our specific functional. Weare looking for the minimum of 
this function to get the extreme of the functional. Considered as a function of E, this 
relation cannot be solved for E. However, to get an idea of the dependence on the 
parameter E, we can use Mathematica. If we define equation (3.32) as a function 
depending on E, we can use the numerical capabilities of Mathematica to graphically 
represent the dependence of F on E. First, let us define equation (3.32) by 

F [e_] : = N:Integrate [ 

-V1+ (1+4eCos[4x])2, {x, 0, 21f}] 

We then use the defined function F[] in connection with Plot[] to represent the value 
of the functional for certain values of E: 

Plot [Evaluate [F[e]] , {e, -1, 1}, AxesLabel-+ {lien, nF"}, 

PlotStyle -+ RGBColor[l, 0, 0]] 

-1 -0.5 

F 

18 

16 

14 

12 

0.5 1 E 

The result of our calculation shows that the value of the functional is minimal for e=0 
and increases for all other values of E. Thus, we demonstrated numerically that the 
minimum of the functional exists. In a second plot, we demonstrate the influence of E 
on the function u(x) = x for different values of E. This shows us that the value of 
F[u; E] is always greater than F[u; 0], no matter which value (positive or negative) is 
chosen for E. 



Plot [Evaluate [ 

1 
{y[x, 0], y[x, 1], y[x, --]} /. 

2 

y -+ Function [ {x, e}, x + e Sin[4 x]]], 

{x, 0, 2 7r}, 

AxesLabel -+ {"x", nyn}, 

PlotRange -+ All, 

PlotStyle -+ {RGBColor[O, 0, 0.996109], 

RGBColor [1. 000, 0.000, 0.000], 

RGBColor[O.OOO, 0.251, 0.251]}] 

y 
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x 

From this figure, we can conclude that the line u(x) = x is one realization of the 
shortest connection between two points in the Euclidean plane. D 

3.6.2 Euler's Equation 

In this section, we derive the analytical representation of the Euler derivative. The 
construction of this sort of derivative is based on condition (3.27). If we carry out the 
differentiation with respect to E, equation (3.26) will provide 

8F 8 [2 - = - f(x, u, Ux , ... )dx. 
8E 8E Xl 

(3.33) 

Since the limits of the integral are fixed, the differentiation affects only the density of 
the functional F. Hence, 

(3.34) 

If we now use the representation of u = u(x; E) as given in (3.25) to introduce the, E 

dependence for the variable u and the derivatives u(k)' we get 
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au 
- = w(x), ae 

Using these relations in equation (3.34), we find 

(3.35) 

(3.36) 

The result so far is that the integrand contains derivatives of the density t and the test 
function w. Since we do not know anything about the derivatives of w, we need to 
reduce (3.36) in such a way that it only contains the test function w. The reduction 
can be obtained by an integration of parts with respect to the test function. Additional 
use of the conditions w(x,) = W (X2) = 0 simplifies expression (3.36) to 

(3.37) 

The integral in equation (3.37) seems to be independent of E. However, the function 
u = u(x; E) and all derivatives of U are still functions of E. We know from the 
representation of u(x; E) that this dependency disappears if we set E = O. Before we 
start this calculation, we generalize (3.37) to arbitrary orders in the derivatives: 

(3.38) 

where u(n) = ~:: denotes the nth derivative of u with respect to x. Our aim was to 

find the extreme of F. A necessary condition for the existence of an extreme is the 
vanishing of the derivative ': 1.=0 = O. In our calculations, we assumed that w is an 

arbitrary function. Thus, the derivative of F can only vanish if the integrand vanishes 
and so we end up with the result 

= 

L n d' (at) (-1) - -- = 0, 
d xn aU(n) 

(3.39) 

n=O 

where U and all the derivatives of U are now independent of E. This result is known as 
Euler's equation and it is a necessary condition for the functional F to allow an 
extreme; The Euler equation is reduced to the well-known Euler-Lagrange equation if 
we restrict the order of the derivatives to 2. Since the Euler equation is needed in the 
calculation of symmetries, we define a special symbol for this operation and call it 
the Euler operator. 
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3.6.3 Euler Operator 

The Euler operator is also known as a variational derivative in the field of dynamical 
formulations or statistical mechanics. In this section, we define this operator as a 
special type of derivative. 

Definition: Euler operator 

Let f = f(x, u, ux , •.. ) be the density of a functional F[u]. Then we call 

= 

8F I n tl' ( 8f ) _.- (-1) - --
8u .- d~ 8u(n) 

n=O 

the functional derivative of F and 

= 

€:= "" (-It Dn _8_ L....J 8u(n) 
n=O 

an Euler operator. Dn = !nn denotes the nth-order total derivative. 0 

The actual information of this definition is that the functional derivative Ef... can be au 
replaced by ordinary and partial derivatives if we know the density of the functional 
F. Consequently, we can introduce a general derivative, the Euler operator, which is 
based on known operations. The essential content of the definition above is that 
knowing the density f of a functional F is sufficient to calculate the corresponding 
functional derivative. The functional derivative follows just by differentiation of the 
density f. An additional merit is the knowledge of the Euler equation for this 
functional F. The definition from above is a result of the calculus of variations. Thus, 
the Euler derivative can be calculated by an algorithmic procedure. 

3.6.4 Algorithm Used in the Calculus of Variations 

Our next goal is to define a Mathematica function allowing the calculation of the 
Euler derivative. Before we present the function, we briefly repeat the main steps of 
the calculus of variations. These steps are intimately related to the definition of the 
Euler derivative and are thus the basis of the calculation. The four main steps of the 
algorithm are as follows: 
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1. Replacement of the dependent function u by its variation u = u + E W. 

2. Differentiation of the functional density with respect to the parameter E and 
replacement of E by zero after the differentiation. 

3. Use the boundary conditions for the test function to eliminate the derivatives in w. 

4. The coefficient of the test function w delivers the Euler equation. 

These four steps define the calculation of the Euler derivative algorithmically. The 
function defined in Mathematica is based on these four steps. When looking at the 
definition of the Euler derivative E, we realize that we need at least three pieces of 
information to carry out the calculation. First, we should know the density of the 
functional F, second the dependent variable, and third the name of the independent 
variable. From our discussions of the algorithm, we expect that the highest order of 
differentiation should be determined by the function itself. Thus, we define the 
function EulerD[] with three necessary arguments. A fourth optional argument allows 
influencing the representation of the result of the function. The following lines 
contain the code for EulerD[]: 

(* --- Euler derivative for ---*) 
(* --- one dependent and one independet variable ---*) 
Clear [EulerD] ; 

Options [EulerD] = {eXpand -+ False}; 

EulerD[density_, depend_, independ_, 

options __ ] : = 
Block[{fO, rule, fh, e, w, y, expand}, 

(*--- check options ---*) 
{expand} = {eXpand} / ° {options} / ° 

Options[EulerD]; 

(*--- rule for the variation of u---*) 

fO = Function [x, y [x] + e w [x] ] ; 

(*--- rule for the replacement of 

derivatives of w --- *) 
rule = b_o W(D_) [independ] :ot 

(_l)n Hold [O{1ndapend,n) b]; 

(*--- step of variation ---*) 
fh = density / ° depend -+ fO / ° 

{x ... independ, y -+ depend} ; 

(*--- differentiation with respect to e ---*) 
fh = Expand[oe fh / ° e -+ 0]; 

(*--- transformation to w ---*) 
fh = fh / ° rule / ° w[independ] -+ 1; 

(*---- Euler equations --- *) 
:If [expand, fh = ReleaseHold [fh], fh]] 
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Using this function, it is straightforward to calculate the functional derivative of any 
density containing one dependent and one independent variable. We demonstrate the 
application of this function by discussing the famous brachistochrone problem 
already mentioned in the introduction. 

Example 1 

Let us discuss the classical problem of the brachystochrone solved by Johann 
Bernoulli in 1696. The physical content of this famous problem is the following: 
Consider a particle moving in a constant force field. The particle with mass m starts 
at rest from some higher point in the force field and moves to some lower point. The 
question is which path is selected by the particle to finish the transit in the least 
possible time. Let us reduce the problem to the point of deriving the Euler equation. 
The dimensionless functional density governing the movement of the particle can be 
derived from the integral t = iP'l/vds where t is time, ds the line element, and v 

PI 

the velocity. Expressing the line element and the velocity in Cartesian coordinates, 
we can express the density of the functional by 

( 
1 2 )1/2 + Ux 

f(x, u, Ux ) = -- , 
2gx 

(3.40) 

where u describes the horizontal coordinate and x the vertical one. The application of 

our function EulerD[] on this functional density 

f = 
1 + (ax u [x] ) 2 

-------; f / / LieTraditionalForm 
2gx 

J 1 +u~ 
gx 

gives us 

EulerD [f, u, x, eXpand -+ True] / / PowerExpand / / Simplify / I 
LieTraditionalForm 

U x + u~ - 2 x ux,x 

2 Y2 .yg X 3/2 (1 + u~) 312 

a second-order ordinary differential equation for the variable u. The solution of this 
equation is a cycloid and can be derived by applying Mathematica (cf. Baumann 
[1996]).0 
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Example 2 

Another example of the application of the function EulerD[] is the derivation of the 
Euler-Lagrange equation for a mechanical system with one degree of freedom. The 
functional density for such a problem is generally given by the Lagrange function 1: 

.c = 1 [t, q[t], q' [t]]; .c / / LieTraditionalForm 

where q denotes the generalized coordinate of the particle and t the time. The 
Euler-Lagrange equation for this general Lagrangian then follows by 

EulerD[.c, q, t, eXpand -+ False] 

-Hold[8It . l } 1(0.0.1) [t, q[t], q' [t]]] + 1(0.1.0) [t, q[t], q' [tll 

representing the left-hand side of the expression 

~t - ~(~t) = O. 
8q dt 8qt 

(3.41) 

The disadvantage of this representation is the appearance of the function Hold[] in 
the equation. However, if we are only interested in the explicit form of the equations, 
we can set the option eXpand~True. Then, the result reads 

EulerD[.c, q, t, eXpand -+ True] == all LieTraditionalForm 

This equation is the general representation of the Euler-Lagrange equation. 0 

The Euler operator defined above was the result of the variation of a functional. We 
demonstrated the calculation for a single dependent variable u = u(x) which was a 
function of one independent variable x. The generic case in applications is more 
complex. We rarely find systems with only one dependent variable. Thus, we need a 
generalization of the formulation considering more than one dependent variable in 
the functional F. In the following exposition, we assume that a set of q dependent 
variables uO: exists. The functional F for such a case is represented by 

i X2 
1 2 3 1 1 

F[u,u,u, ... J= f(x,u, ... ,ux, ... )dx. 
x, 

(3.42) 

The variation of the dependent variables is now performed by introducing a set of test 
functions wO:. Using this set of auxiliary functions, we can represent the variation by 

uO: (x; E) = uO: (x; 0) + E wO: (x), a = 1, 2, 3, ... , q. (3.43) 
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The derivation of the Euler operator proceeds in exactly the same manner as 
presented above. We skip the detailed calculations and present only the result: 

aF [2 q ~ af 
aE = L {L (-It D(n) aua }wa (x)dx. 

XI a=l n=l (n) 

(3.44) 

Since the individual variations wa (x) are all independent of each other, the vanishing 
of equation (3.23) when evaluated at E=O requires the separate vanishing of each 
expression in curly brackets. Thus, we again can define an Euler operator for each of 
the q dependent variables uu • 

3.6.5 Ellier Operator for q Dependent Variables 

In this section, we extend the definition of the Euler derivative to a set of q dependent 
variables. Let f = f(x, u 1, u2 , ••• , u; , u; , ... ) be the density of the functional 
F[u1 , u2 , ••• ]. Then, we define the Euler operator €a as 

~ a 
€a := .L: (_I)n D(n) --a-' a = 1,2, ... , q, 

n=O aU(n) 
(3.45) 

which will give us the ath Euler equation when applied to the density f, 

(3.46) 

The only difference between this definition and the definition for the single variable 
is the number of equations contained in (3.46). The occurrence of the q equations in 
the theoretical formulas must now be incorporated in our Mathematica definition for 
the Euler derivative EulerD[]. The theoretical definition (3.45) only alters our 
Mathematica function in a way that, for several dependent variables, a set of Euler 
equations results. Thus, we change our Mathematica function in such a way that all 
dependent variables are taken into account in the application of the €a operator. We 
realize this by including a loop scanning the input list of the dependent variables. The 
code of this generalized Euler operator is 

BulerD[density_, depend_List, 

independ_, options __ ] : = 
Block[{fO, fh, e, w, y, expand, 

euler = {}, wtable}, 

{expand} = {eXp&DC!} /. {options} /. 

Options[BulerD]; 

wtable = 'l'able [w[i], 

{i, 1, Length[depend]}]; 

fO = l!'\lnction[x, y[x] + ew[x]]; 
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rules[i_] := 

b_. wtable[i]] <'u [independ] :-+ 

(-1)" Hold [O{i"depend,n} b]; 

Do[ 

fh = density I. depend[j]] -+ fO I. 
{x -+ independ, y -+ depend[j]], 

w -+ wtable[j]]}; 

fh = Expand[oe fh I. e -+ 0]; 

fh = fh I . rules [j] /. 

wtable[j]] [independ] -+ 1; 

AppendTo[euler, fh], 

{j, 1, Length[depend]}]; 

J:f [expand, 

euler = ReleaseHold[euler], 

euler]] 

Let us demonstrate the application of this function by two examples. 

Example 1 

Assume that we know the functional density of a two-dimensional oscillator system. 
Let us further assume that the two coordinates of the oscillators are coupled by a 
product. We expect that the two equations of motion follow by applying the Euler 
derivative. The Lagrange density of the system reads 

1 = u[t] v[t] + (Ot U[t])2 + (Ot v[t])' - u[t]' - V[t]2; 

1 II LieTraditionalForm 

The corresponding system of second-order equations follows by 

EulerD[l, {u, v}, t, eXpand -+ True] II LieTraditionalForm 

{ - 2 U + v - 2 u t , t, U - 2 v - 2 v t, t } 

which are the left-hand sides of the Euler-Lagrange equations. 0 

Note that we used the same name, EulerD[], for the operators € and €a. This sort of 
definition is possible in Mathematica and provides a great flexibility in the 
application of a single symbol for different operations. Mathematica is able to 
distinguish the two different functions by the different arguments. 

Example 2 

Another example for a two-dimensional Lagrangian is given by the function 
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f = u [t] v [t] + «Jt U [t] ) 2 + «Jt V [t] ) 2 + 2 (Jt U [t] (Jt v [t] ; 

f II LieTradi tionalForm 

U v + u~ + 2 U t V t + v~ 

This density is a special model of a Dirac Lagrangian containing the derivatives with 
respect to time as a binomial. The corresponding Euler-Lagrange equations read 

BuJ.erD[f, {u, v}, t, eXpand .... True] II LieTraditionaJ.Form 

{v-2u t ,t -2v t ,t. u-2ut ,t -2vt ,t} 

representing a coupled system of second-order ordinary diffemntial equations. D 

So far, we are able to handle point systems depending on one independent variable. 
However, equations occurring in real situations depend on more than one variable. 
Thus, we need a generalization of our Euler derivative to more than one independent 
variable. In fact, the definitions of an Euler operator can be extended from the 
q+ I-dimensional case to the q + p-dimensional case. We define this operator in the 
following section. 

3.6.6 Euler Operator for q + P Dimensions 

Here, we will discuss the general definition of an Euler operator. This sort of 
operator, for example, is used to write down field equations such as Maxwell's 
equations, SchrOdinger's equation, Euler's equation in hydrodynamics, and many 
others. 

Definition: (q,p)-Dimensional Euler operator 

Let f = f(x, u(n) be the density of the functional F[u] with x = (xl, x?, ... , xP ), and 
u = (u l , u2 , ••• , uq ) the p- and q-dimensional vectors of the independent and 
dependent variables. By u(n) we denote all the derivatives with respect to the 
independent variables. We call 

(3.47) 

the general Euler operator in q dependent and p independent variables. J is a 
multi-index J = (jl' ... , A) with 1 s Asp, k ~ O. 0 

Since the functional densities f depend on a finite number of derivatives uj, the 
infinite sum in (3.47) is terminated at this upper limit. Again, the Euler equations for 
a given functional F[u] follow from the application of €" to F: 
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€a F = 0, a = 1,2, ... , q. (3.48) 

From a theoretical point of view, we know the general Euler operator. Our next step 
is to make this operation available in Mathematica. We define the generalized Euler 
operator by taking into account the different independent variables. The 
corresponding definition of EulerD[] for q + p dimensions is given by 

Clear [BulerD] 

BulerD[density_, depend_List, 

iDdepeDd_List, options __ ] : = 
Block[{fO, fh, e, w, y, x$m, expand, 

euler = {}, wtable}, 

{expand} = {eXpand} /. {options} /. 

Options[BulerD]; 

wtable = 'l'able[w[i], 

{i, 1, Length[depeDd]}]; 

fO = I'uDction [x$m, y + e w] ; 

ruleg [i_] : = 
b_. wtable[i] (,,--) Mindepend:o+ 

(-1) Plu._{I1) Hold [aDelete [Threa4[{iDdepen".{I1) )].0] b] I 

Do[ 

fh = density /. depend[j] .... fO /. 

{x$m .... independ, 

y .... depeDd[j] OOindepeDd, 

w -+ wtable[j] OOindepend}; 

fh = Bxpand[a. fh /. e -+ 0]; 

fh = fh /. ruleg[j] /. 

wtable[j] Mindepend .... 1; 

Append'l'o [euler, fh], 

{j, 1, Length[depeDd]}]; 

J:f [Not [expand] , 

euler = ReleaseBold[euler], 

euler] ] 

We demonstrate the application of the function EulerD[] to the wave equation in 2+1 
dimensions and to a system of coupled non-linear diffusion equations. 

Example 1 

Let us consider a functional in q = 1 and p = 3 variables and assume that the density 
is quadratic in the derivatives given by 

F[u] = ~ I (U;1 (Xl> X2, X3) - U;2 - u;,) dx, dX2 dX3 . (3.49) 
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Calculating the variational derivative, we immediately find that the Euler equations 
are given by the Laplace equation: 

(3.50) 

Using the generalized definition of EulerD[], we can reconstruct the result of our 
pencil calculation. First, let us define the density by 

1 2 
f = - {(ax1 u[xl, x2, x3]) -

2 
(ax2 u[xl, x2, X3])2 - (ax3 u[xl, x2, X3])2}; 

f / / Lie'l'raditionalForm 

The application of EulerD[] to f gives 

wave = BulerD[f, {u}, {xl, x2, x3}]; 

Hap [# == O&:, Flatten [wave] ] / / Lie'l'raditionalForm / / 'l'ableForm 

-Uxl,xl + U x 2,x2 + u x 3,x3 == 0 

The resulting equation is known as the wave equation in 2 + 1 dimensions. 0 

Example 2 

In this example, we will consider a system in two field variables (q = 2) and two 
independent variables (p = 2). The physical background of this model is the diffusion 
of two components in a non-linear medium. The Lagrange density of this field model 
has the representation 

1 = v[x, t] at u[x, t] + ax u[x, t] ()x v[x, t] +u[x, t]2 v[x, t]2; 

1 / / Lie'l'raditionalForm 

The related equations of motion follow by 

cnondiffu = BulerD[l, {u, v}, {x, t}]; 

Hap [# == O&:, cnondiffu] / / Lie'l'raditionalForm / / 'l'ablePorm 

2 U v 2 - Vt - vx,x == 0 

2 u 2 V + Ut - ux,x == 0 

representing two coupled non-linear diffusion equations for the variables u and v. 0 
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So far, we discussed differential operators like tangent vectors, prolongations, 
Frechet derivatives, and several versions of Euler derivatives. All these differentials 
are non-standard operators with special applications. One of these applications is 
symmetry analysis of differential equations. In the following section, we discuss the 
central usage of these differential operators. We will show that the Frechet derivative 
is the main link between differential equations and their symmetries. 

3.7. Prolongation of Vector Fields 

In Lie's theory, a vector field takes a central role in analyzing symmetries of 
differential equations. A vector field is closely related to the term of the tangent on a 
curve. The following will show the connection between the tangent of a curve and the 
related vector field. We will also calculate the prolongation or extension of a vector 
field which is instrumental in symmetry analysis. The calculation of the extension of 
a vector field is one of the central terms in Lie's theory. 

As discussed in Section 3.2, we define a tangent vector as a measure to determine the 
variation of a function in all its independent variables. Closely related to the tangent 
vector is a vector field. Let us assume that we have a smooth curve C on a manifold 
m given in a parametric form by <I> : I -+ M, where I is a subinterval of IR. The 
local representation of the curve is thus given by the m coordinates of m by 
<I> = (<1>1 (t), <1>2 (t), ... , <I>'" (t», where t is a parameter. The tangent vector of the 
curve is given by the derivative with respect to the parameter t and is calculated by 

~~. An example for this notation is the three-dimensional spiral defined by the 

function 

fh {2co.[t], 2Sin[t],-v't} 

{2 Cos[t], 2 Sin[t], -ft.} 

A graphical representation of this curve is created by 

pll = ParametricPlot3D [I!'latt.n [ {II, 

RGBColor[l, 0, O]}], {t, 0, '7r}, 

Axe.Lab.l .... {.xa , .yn, nza}] 
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2 

2 

The tangent vector of the curve is just calculated with the definition by differentiating 
4> with respect to the parameter t: 

tang = "t ill 
1 

{-2 Sin [tJ, 2 Cos [t]. ~} 
2 -y t 

The derived tangent vector depends on the location on the curve. In the parametric 
representation, we also observe that the tangent vector is infinite in the origin and 
becomes smaller and smaller if t increases. If we plot the tangents on different 
locations along the curve, we get a field of vectors derming the vector field v. The 
function Line[] allows us to graphically represent the vector field in connection with 
the curve: 

vfield = Table [ 

{RGBColor [0. 000, o. 000, 1. 000], 

tang 
Line [ {ill, ill + } ]} , 

.y tang. tang 

{t, 0.1, ... Jr, .7}]; 

The vector field and the curve are shown below. We combine the plots and the 
graphic primitives as follows: 

Show[pll, Graphica3D[vfield], 

PlotRange -+ All] 
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We observe that the vector field v of our spiral assigns a tangent vector to each point 
(x, y, z). The vector field itself varies smoothly from point to point. In Cartesian 
coordinates, the vector field of our spiral is given by 

(3.51) 

This representation is based on the basis vectors of IR 3 • In symmetry analysis of 
differential equations, it is convenient to replace the Cartesian basis by a 
representation using the partial differentiations with respect to the Cartesian 
coordinates. The partial derivatives with respect to the coordinates can be interpreted 
as placeholders for the Cartesian basis. Thus, we define a vector field as a differential 
operator in local coordinates as follows. 

Definition: Vector field 

A vector field v on a manifold m is a tangent vector Vx to each point x E m varying 
smoothly from point to point. In local coordinates, a vector field has the 
representation 

(3.52) 

where the ~i are smooth functions of the coordinates x. 0 

The related Mathematica definition is thus given by 
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Clear[VectorField]; 
VectorField[coef_List, 

vars_List] :=Block[{F, k}, 

Length [coef ] 

F = k@@vars; 2:: coef[i] OvarS[i] F] 
1=1 

Application in a three-dimensional manifold m with coordinates (x, y, z) gives 

var = {x, y, z}; 

coefficients = {vl@@var, v2@@var, v3@@var} 

{vi [x, y, z], v2 [x, y, z], v3 [x, y, z]} 

VectorField[coefficients, var] / / LieTraditionalForm 

vi kx + v2 ky + v3 kz 

The differential operators are represented in our result by derivatives of an arbitrary 
function k with respect to the coordinates contained in the variable var. Let us look at 
this example from a more physical point of view, which was the original view of Lie. 
Assume that the components of the vector field are the components of a velocity field 
of a laminar fluid flow. Then, at each point (x, y, z), the vector Vx describes the 
velocity of the fluid particles passing through the point x. Thus, we are able to 
describe the velocity field of a fluid by using the mathematical term of a vector field. 

Now, let us look at our example of the spiral in a different way. Knowing that the 
vector field describes the velocity field of the fluid, we may ask for the stream lines 
or potential representation of the flow. From a physical point of view, the vector field 
is connected with the flow if we consider the laminar behavior. To derive the 
potential representation of the flow of our example, we have to consider the 
components of the vector field as the defining components of the flow of the 
coordinates. The defining equations read 

flowEquations = 
1 

Thread[{Oex[e], oey[e], oez[e]} == {-y[e], x[e], }] 
2 z [e] 

{X' [EJ == -Y[E], y' [E] == X[E], Z' [E] == 1 } 
2 Z [E] 

The right-hand sides of these flow equations are the components of the tangent vector 
or the vector field. The flow has to satisfy that the vector x at t = 0 is reproduced at 
the origin. The solution of these equations under the initial conditions x(O) = xo, 

yeO) = Yo, z(O) = Zo gives us the flow related to the vector field 
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flow = Simplify [ 

DSolve[ 

Join[flOWZquations, {x[O] == xO, y[O] == yO, z [0] == zO}], 

{x[e], y[e], z [e]}, e]] 

{{z[e] -7 _-./Z02 +e, X[E] -7xOCos[e] -yO Sin[eJ, 

y[e]-7yOCos[e] +xOSin[eJ}, {z[e] -7-./z0 2 +e, 

x[E]-7xOCos[e]-yOSin[eJ, y[e]-7yOCos[e] +xOSin[eJ}} 

The result shows that the flow of our vector field is given by a rotation in the 
(x, y)-plane and a special translation along the z direction. This flow describes the 
spiral we started from in a different representation. We must remember that 
(xo, Yo, zo) is an arbitrary position of the three-dimensional space. This initial vector 
is transformed to another position if we change the parameter E. This transformation 
acts like the flow in a fluid. Generalizing this example, we can define a flow of a 
vector field by the following: 

Definition: Flow of a vector field 

If v is a vector field, we call the integral curve passing through a point x in the 
manifold m the flow <I>(x, t) generated by v. 0 

The flow of a vector field has the properties 

<I>(<I>(x, E), 15) = <I>(x, E + 15), X Em, (3.53) 

meaning that the application of the flow on the same point x of m at different values 
of E results in the flow at x at a location of the sum in E and 15. Another property the 
flow has to satisfy is the representation of x at the origin of E; that is, at E = 0, we 
have the identity 

<I>(x, 0) = x. (3.54) 

Equation (3.54) describes the identity of the flow for a vanishing parameter E 

reproducing the original vector x. Comparing the two properties with the features 
discussed in Chapter 1 on groups, we see that the flow generated by a vector field v 
has some characteristics in common with groups. The derivation of the flow or the 
one-parameter group generated by a given vector field v is known as exponentiation 
of the vector field and represented by the notation 

(3.55) 

In the following, we will denote the flow by <I>(x, E). As already discussed, the flow is 
a result from the solution of a system of ordinary differential equations related to the 
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vector field v. The vector field v is the generator; precisely, the infinitesimal 
generator of the transformation. Expanding the flow around x = 0, we find the 
infinitesimal representation 

~(x,e) = x + e~(x) + O(~), (3.56) 

where ~ = (gl, g2, ... , gn) are the expansion coefficients of the vector field v. The 
related determining equations of the flow also known as characteristic equations are 
given by 

dx; (e) ~ . -- = gi(x(e», 1= 1,2, ... , n 
de 

(3.57) 

with the initial condition x (e = 0) = x. Above, we discussed the spiral as an example 
in three dimensions m=IR 3 . Several other examples will demonstrate the application 
of the theoretical considerations connecting the flow and the vector field on a 
manifold. 

Example 1 

Another example describing a one-dimensional translation in m=IR is given by the 
vector field v = ax. The corresponding characteristic equation for the coordinate x 
reads 

onedim = c3e x[e] == 1 

X'[E)==l 

This equation was created by applying equation (3.57) with gl = 1. The solution of 
this simple first-order ODE under the initial condition x(e = 0) = x representing the 
identity (3.54) is 

flowODedim = DSolve[{onedim, x[O] == xO}, x[e], e] /. xO -+ x 

{{X[E)-7X+E}} 

which is just a translation of the coordinate. We define the flow ell in Mathematica by 
the relation 

Using this representation of the flow, we can check the properties (3.53) and (3.54). 
The combination of two translations e and 8 satisfy the condition 

II! [II! [x, e], c5] = = a! [x, e + c5] 

True 
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representing the closure relation of the group of translations. The second property 
(3.54), the identity of the group, gives 

m[x, 0] ==x 

True 

Knowing the identity of the group, we are able to construct the inverse element of the 
group. The inverse element of the associated group follows from the relation 

x == m [InverseFunction[m [x, e]], e] 

== m[m[x, -e], e] 

E + InverseFunction [x + E J == x 

Solve [e + InverseFunction[x + e] == x, InverseFunction[x + e]] 

{ {InverseFunction [x + E J --> x - E} } 

The found solution represents an inverse translation if we assume that E > O. The 
associativity of the underlying group follows from 

m [m [m [x, e], c5], w] = = 

m [m [m [x, c5], w], e] 

m [m [m [x, w], e], c5] 

True 

We demonstrated for the vector field v = ax, generating a translation in x, that the 
corresponding flow possesses all properties of a group. The symmetry of translation 
is one of those symmetries frequently encountered in symmetry analysis. D 

Example 2 

Another one-dimensional example in m = R also possessing the group properties is 
given by the vector field v = xax ' From equation (3.57), the corresponding 
characteristic equation is 

scale=CJ.x[e] ==x[e] 

x' [E J = = x [ E J 

This equation allows the solution 

flowScale= DSolve[{scale, x[O] ==xO}, x[e], e] /.xO-+x 

{ {x [ E J --> EE x} } 
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The result defines a scaling transformation of the variable x. We consider the factor 
g as a constant greater than or less than 1 depending on the sign of E. For positive E, 

the original value of x is enlarged, and for negative values of E, x is reduced in its 
value. We can check the two basic properties of the closure and the identity of the 
group by defining the flow as 

The closure of the scaling group now reads 

II [II [x, e], 6] == II [x, e + 6] 

True 

and the identity is given by 

lI[x, 0] == x 

True 

The two relations demonstrate that the transformation group of scaling is closed and 
contains the identity transformation. 0 

Example 3 

In this example, we will reverse our calculations. Knowing the flow, we will derive 
the related vector field. A global transformation commonly encountered in physics 
and mathematics is a rotation. To simplify things, let us consider the rotation of an 
object in the plane. The corresponding flow of this transformation is given by 

II [x_, y_, e_] := {xCoB[e] -ySin[e], xSin[e] +yCoB[e]} 

Knowing the flow of a group, we are able to calculate the infinitesimal representation 
of the flow by calculating the vector field v. According to equations (3.55) and (3.56), 
the infinitesimals g of the flow define the coefficients of the vector field. For the 
present example, in two dimensions the vector field has the representation 

(3.58) 

The infinitesimals are calculated by the relation 

diP I g= - . 
dE E=O 

(3.59) 

From the flow for rotations, we get the infinitesimals 

, = as II [x, y, e] I. e .... 0 

(-v. xl 
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Thus, the vector field v of plane rotations has the representation v = -y8x + x8y • 

Again, we can reverse our considerations and calculate the flow starting from the 
vector field. The flow or the global group transformation follow by solving the 
characteristic equations, which are a system of ordinary differential equations. 

rotation = {o.x[e] == -y[e], a.y[e] ==x[e]} 

{x' [E] == -Y[E], y' [E] == X[E]} 

The related flow follows by solving these equations: 

flow = Si~lify [ 

DSolve[Join[rotation, 

{x[O] ==xO, y[O] ==yO}], {x[e], y[e]}, ell /. 

{xO -+ x, yO -+ y} 

{{X[EJ->XCOS[E]-ySin[EJ, y[E]-,yCOS[E] +xSin[E]}} 

reproducing the relation with which we started. 0 

Example 4 

As a final example, let us consider the global group action of a flow containing 
rational expressions which are related to a projective group: 

Differentiating this expression by using equation (3.59), we find the infinitesimals of 
the flow to be 

g = o. iii [x, y, e] /. e -+ 0 

{_x3 y, y2} 

which gives us the vector field in the representation v = -XJ y8x + l By. Knowing 
the infinitesimals, we are able to graphically represent the vector field. A plot of the 
vector field corresponding to the rational flow is given below. The package 

Graphics'PlotField' is useful for the representation of vector fields. 

« nGraphics'PlotField'n 

PlotVectorField[g, {x, -2, 2}, 

{y, -2, 2}, ColorFunction -+ Hue] 
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So far, the discussion of flows and the related vector fields was restricted to a set of 
independent coordinates. Let us now ask the question: What happens if we apply the 
flow concept to a function f depending on a set of independent coordinates? Let us 
assume that v is a vector field on the manifold m and / : m ~ IR is a smooth function. 
Our intention is to get a formula describing the changes of / if we apply the 
transformation cI> on the independent variables. To simplify things and make them 
easier to read in Mathematica, we restrict our considerations to the case m= IR. In 
local coordinates, the vector field is thus given by v = 5 (x) ax. Now, let us examine 
the behavior of the function / if the flow cI> is applied on the independent variable x . 
After the transformation of the independent variables, we calculate the derivative of 
/ with respect to the parameter E: 

Clear[m, {] 

a. f[lII[x, e]] 

f ' [~ [ x, E] ] ~ (0,1) [x, E] 

The result is an expression containing derivatives of / and cI>. From our 
considerations above, we know that the flow cI> at E = 0 has to represent the identity. 
We also know that the first derivative of the flow at E=O is a representation of the 
infinitesimals f We use these conditions to define the transformation rule 

rulel = {III [x_, 0] :-+x, 111(0,1) [x_, 0] :-+ {[x]} 

{~[x_, 0] H X, ~ ( 0,1 ) [x_, 0 ] :~ ~[x ] } 
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The second element of this list of delayed rules introduces an abbreviation for the 
coefficients of the vector field f If we again evaluate the differentiation of the 
function f at E = 0 and use rule 1, we find 

0. f [il! [XI e]] /. e -+ 0 / • rulel 

{; [x] f' [x] 

This relation can be identified with the application of the vector field v on f; 

i.e., v f(x) = §(x) ax f(x). The presented calculation shows that the notation for a 
vector field is generally useful for simplifying the representation of the infinitesimal 
flow. The one-dimensional example can be generalized to higher dimensions. The 
vector field v acts as a first -order partial differential operator on real functions f on 
m. On the other hand, we can expand the function f containing the transformed 
arguments in a Taylor series around E = O. The result of this sort of calculation is 

Series[f[il![x, ell, {e, 0, l}] /. rulel 

f[x] + {;[x] f'[x] E+O[E]2 

representing the infinitesimal change of f under the flow generated by the vector 
field v. We can summarize that the flow changes the function f in the following way: 

f(cI>(x, E» = f(x) + EV f(x) + o(il ), (3.60) 

where 'Of gives the infinitesimal change in the function f under the flow generated 
byv. 

So far, we discussed the meaning of a vector field in a manifold m of independent 
variables. We observed that the ensemble of the tangent vectors at different positions 
defines the vector field. We also introduced the vector field by replacing the 
Cartesian basis with a differential basis. The examination of a function under the 
action of the flow demonstrated that the transformed function is represented by the 
function itself and the infinitesimal change of the function caused by the application 
of the vector field on the function. Up to now, we assumed in our discussions that the 
variables in the manifold are independent of each other. Let us now assume that we 
have a manifold containing also some dependent variables. Here, the question arises 
of how to transform the derivatives contained in such a manifold. This is closely 
related to the problem of prolonging or extending a vector field. 

We discussed in Section 3.4 how to extend or prolong a manifold. The procedure in a 
nutshell is that we add new coordinates, representing the derivatives, to the manifold. 
On the other hand, if we extend the manifold by new coordinates, we naturally have 
to extend the vector field by these new coordinates. We can write such an extension 
symbolically by 
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(k) ~ J: a A.a a A.,a a pr v = ~i Xi + 'I' u· + 'I' u~ + .... (3.61) 

In expression (3.61), we divided the variables of the manifold m into two sets: one 
known as independent variables x = (Xl> X2, ••• , x p ) and the other known as 
dependent variables u = (u1, u2 , ••• , uq ). ¢l,a denotes the symbol of the transformed 
derivatives uf=aua laxi. The difficulty with relation (3.61) at the moment is that we 
do not know how to calculate the coefficients ¢l,a of the extension. However, to get a 
feeling of how derivatives change under a transformation, let us go back to the basics 
of calculus. 

Assume that we have to examine the transformations of a curve u = I(x) in one 
independent variable X and one dependent variable u(x). The transformation of this 
curve is given by two rules defining the change of the original variables x and u to the 
new variables X = Sex, u) and U = 4>(x, u), respectively. In Mathematica, we define 
this transformation by the following set of rules: 

Clear[O, X, III, 3]; 

transformation = {X -+ FuDction [{x, u}, 3 [x, u [x] ] ] , 

0-+ I'WlctiOD [{x, u}, III [x, u [x] ] ] }; 

where the transforming functions B and 4> are given functions of the original 
variables x and u. Applying the transformation on the curve u = I(x), a new 
representation U = F(X) results. The variables U and X in the new representation 
depend on the variables of the old representation (x, u). Our intention is to examine 
the derivative of the curve in the new coordinates. The calculation of the derivative of 
U in this new coordinate system needs to take into account the changes of all the new 
variables. These changes are best represented if we use the total derivative to realize 
the derivative. The slope of the curve in the new coordinates is calculated at each 
point (x, u) of the old coordinate system by 

Dt[O[x, u]] 
t1' = ; t1' II Lie'l'raditionalJ'orm 

Dt [X[x, ull 

Dt [u] Uu + Dt [x] Ux 

Dt [u] Xu + Dt [x] Xx 

The result shows that the derivative in the new coordinate system is a function of the 
old variables. If we explicitly express these dependencies by the transformations 
connecting the old and the new coordinates, we get 

0' = t1' I. tranafoz-matioDl tr II Lie'l'raditionall'orm 
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This is a basic result from calculus and fundamental for our further examinations. 
The formula above says that a transformed derivative itself becomes a function of the 
transformation in the new coordinates. The connecting link between our current 
examinations and the prolongation of the vector field are the transformations 8 and ~ 
which represent the flow of the related vector field. The variable U' in our notation is 
nothing else than the representation of the symbol ~,a. This symbol was introduced in 
relation (3.61) for the extended vector field. The difference between the 
considerations on vector fields and the representation of the extension in calculus is 
that the latter does not depend on a parameter E. However, this dependence is not 
essential, as we will show in a moment. We can actually assume that the 
transformations 8 and ~ depend on E. The definition of these one-parameter 
transformations reads 

transformation = {X -+ Function [{x, u}, :;;; [x, u [x], e]], 

U -+ Function [{x, u}, it [x, u [x], e]]}; 

These transformations do not change the previous result. The relations for the 
extended vector field are derived if we replace the original transformations by the 
E-dependent transformations. Then, the derivative in new coordinates gets the form 

Dt [U[x, u]] 
U' = / • transformation; U' / / LieTraditionalForm 

Dt [X[x, u]] 

where E is just a parameter in this expression. This representation of the 
transformation is a general transformation determined by the arbitrary functions 8 
and ~. Lie demonstrated that this general transformation can be replaced by a much 
simpler version, the so-called infinitesimal transformation. We know from our 
considerations above that the infinitesimal transformations of the manifold m are 
given by 

infinitesimalTransfo:rmation = 
{X -+ Function[{x, u}, x + e ~[x, u[x]]], 

U -+ Function [{x, u}, u [x] + e rjJ [x, u [x] ] ] }; 

Using these infinitesimal transformations of the variables, the first derivative in the 
new coordinate system becomes 

Dt [U[x, u]] 
U' = /. infinitesimalTransformation; 

Dt [X[x, u]] 

u' / / LieTraditionalForm 

Ux + E (ux 4>u + 4>x ) 
1 + E (ux ~u + ~x) 



Prolongation o/Vector Fields 87 

Remembering the fact that in symmetry analysis, an infinitesimal representation is 
based on the linear part of the parameter E, we are able to reduce this rational 
expression to a simpler form by expanding U' around E = 0 

U' = Expand [Series [U' I {e I 0 I 1}]]; u' / / LieTradi tionall'oZ'1ll 

u x + (ux (-ux ~u - ~x) + u x cPu + cPx) E + 0 [E]2 

The result is that the derivative U' is given by the old derivative u' plus terms 
characteristic of the transformation. This expression represents the infinitesimal 
transformation of the first derivative depending on the derivatives of the 
infinitesimals 5 and cp for the independent and dependent variables. The 
representation of the prolonged vector field is thus given by 

prolongation = AppendTo[infinitesimalTransformation, 

Upri_ -+ l'unction[ {XI u} I w] /. w -+ (Normal [0'] /. u [x] -+ u) ] 

{X ~ Function [{x, u}, x + E ~ [x, U [x]]] , 

U ~ Function [{x, u}, u [x] + E cP [x, u [xl] 1 , 
Uprime ~ Function [ {x, u}, u' [xl + E (u' [x] cP(O,l) [x, u] + 

u' [x] (-u' [xl ~(O,,) [x, ul - ~(l,O) [x, u]) + cP(l,O) [x, u])} 

The variable prolongation contains the infinitesimal transformations for the 
independent and dependent variables x and u and the first prolongation cp' of this 
manifold. Knowing the infinitesimal transformations of the variables, we are able to 
write down the corresponding vector field. The once extended vector field thus 
becomes 

vectorl'ield [f_] : = {[x, u] ax f + t/J [XI u] au f + 

Coefficient [NoZ'1ll&l [U'] I e] ap f 

The application of this function on an auxiliary function / depending on the variables 
(x, u, p) gives us the first extended vector field in its general form: 

vectorl'ield[f [XI U , p]] / / LieTraditionall'oZ'1ll 

We changed the notation slightly by introducing the variable p for the first derivative 
in u. This substitution simplifies the representation and clarifies the fact that Ux is 
considered as another coordinate of the manifold m. The result shows that the first 
extended vector field depends in a characteristic way on the derivatives of the 
dependent variables as well as on the first derivatives of the flow components 5 and 
cp. Recalling the steps of the calculation for deriving the first extension of the vector 
field, we can go to the next order in the extension. The steps we needed in the 
calculation were as follows: 
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1. Replace the old differentials by the new differentials. 

2. Use the infinitesimal representation of the transformations. 

3. Expand the result around E = 0 up to first order. 

The second extension of the vector field follows by using the same steps but 
incorporates the results of the first extension. The second extension is calculated by 
the formula 

0"= 

Bx ( Dt [U[x,u]] /. infinitesi_l'l'ransformation) 
[ 

• [ Dt [X[x,u]] 
Normal Ser1es ---------------------------------------------/. 

Bx x [x, u [x] ] 

infinitesi_l'l'ransformation, {e, 0, l}]]; 

t1" / / Lie'l'raditionall!'orm 

Ux,x + E (2 (-ux';u - ';x) ux,x + <Pu ux,x-

Ux (';u ux,x + Ux ';x,u + Ux (ux ';u,u + ';x,u) + ';x,x) + Ux <Px,u + 

Ux (ux <Pu,u + <Px,u) + <Px,x) 

The result of the calculation contains a large number of terms. However, looking at 
the first terms of the result, we observe that the second derivative. ux,x' is altered by a 
sum of terms containing derivatives of the infinitesimals ~ and ifJ. The components of 
this expression are derivatives of the dependent variable and the flows ~ and ifJ up to 
second order. The twice extended vector field thus follows by 

Clear[vectorl!'ield]; 

vectorl!'ield [f_] : = '[x, u] Bx f + 4» [x, u] Bu f + 

Coefficient [Normal [U'], e] Bp f + 

Coefficient [11", e] B" f 

Applied to an auxiliary function, we get the expression 

vectorl!'ield [f [x, u, p, q]] / / Lie'l'raditionalForm 

<P fu +'; fx + fp (ux (-ux';u - ';x) + Ux <Pu + <Px) + fq (2 (-ux';u - ';x) ux,x + 

<Pu ux,x - Ux (';u ux,x + Ux ';x,u + Ux (ux ';u,u + ';x,u) + ';x.x) + 

Ux <Px,u +ux (ux <Pu.u + <Px,u) + <Px,x) 

In conclusion, the second extension of the vector field v follows from the first 
extension which was created using the infinitesimals itself. If we are interested in the 
third extension, we need the second and the first extension. In other words, the higher 
extensions of the vector field are recursively defined. This recursive definition was 
first observed by Lie and Engel [1888]. Today, the extensions are calculated by a 
general formula combining all the discussed steps in a nutshell. The prolongation 
formula in its modem form is given by 
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(k) ~ ~ ~ "" ] a pr v = v + 66¢J,,(x, U(k)) -,,-. 

a=1 ] au] 
(3.62) 

The second summation in this expression extends to all multi-indices 
J = (h, ... , j/) with 1 :::;; jl :::;; p, 1 :::;; I :::;; k. The kth expansion coefficients ¢J~ of the 
prolongation are recursively given by 

(3.63) 

where uf = a ua / a Xi and U~,i = a uJ / a Xi' This step corresponds to the recursion 
discussed above. For a detailed discussion of the recursive prolongation formula, see, 
e.g., BIuman and Kumei [1989], Ibragimov [1985], and Olver [1986]. 

The problem of such a complicated recursive calculation of the prolongation is that 
for the kth-order calculation, we always need to know the k - 1 previous results. If k 
is a large number, this can be very time- and memory-consuming if done by 
computer, not to mention the labor of a pencil calculation. Thus, we need a method 
which simplifies the calculation and makes it efficient for a computer. Actually, there 
exists a way to derive the extensions of a vector field much quicker. 

The calculation of the prolongation of a vector field is simplified if we keep the 
following two points in mind. First, there exists a representation of the infinitesimals 
which simplifies the transformations. This representation is known as the 
characteristics. Second, the differentiation process of the prolongation can be 
eliminated by using the Frechet derivative. The combination of these two tools 
provides us with a procedure to overcome the recursive definition of the prolongation. 

Before discussing the implementation of the prolongation in Mathematica, let us 
briefly show the equivalence of both formulations. To fix terms, we call the first 
procedure the recursive prolongation formula and the second, the Frechet 
prolongation. The first step to prove the equivalence of the two methods is the 
introduction of the characteristics of a vector field. The characteristic function of a 
general vector field is defined by (cf. Olver [1986]) 

(3.64) 
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If we assume that the characteristics Q depend on the dependent variables and its 
derivatives, we can write down a relation connecting the prolongation of a function !J. 
with the Frechet derivative. The function !J. is a member of the extended manifold and 
depends on derivatives up to kth order. The vector field vQ based on the 
characteristics Q allows us the inclusion of first-order derivatives of u in the 
transformation. The connection between the prolongation of vQ and the Frechet 
derivative is given by 

(3.65) 

This relation follows from the definition of the prolongation of the vector field 1IQ 

(3.66) 

where, in general, Q", = Q", (u(k» depends on derivatives up to order k = 0, I, .... If, 
in addition, we use the definition of the Frechet derivative, introduced in Section 3.5, 
we are able to reproduce equation (3.65). 

Relations (3.63) allows us to calculate the kth expansion coefficient of the 
prolongation by a total differentiation 

p 

l/J~ = DJ Q", + 2:~i U~.i· (3.67) 
i=1 

Substituting this expression for the general representation of the prolongation 
formula (3.62) and rearranging terms in the sums, we get 

(3.68) 

A comparison of the terms in curly brackets with the definition of the total derivative 

af ~ '" '" af 
Di f = aX' + L... L... UJ,i au'" 

I a=1 J J 

(3.69) 

shows that we can replace the prolongation (3.62) by 

P 

prlk) 11 = pr(k) 1IQ + 2:~i Di, (3.70) 
i=1 
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where we used definition (3.66) to express the kth prolongation of vQ. If we now use 
relation (3.65), we can express the prolongation of a vector field v by the Fr6chet 
derivative as 

p 

pr(k) v = DA(Q) + L:gi Di . (3.71) 
i=1 

Thus, we demonstrated the equivalence of the two methods. Both procedures are 
available in the package MathLie. The advantage of relation (3.71) is that the 
prolongation of a vector field v is free of any recursion. If we replace the 
characteristics by their infinitesimal representations, we get a formula which contains 
all the necessary information: 

p 

pr(k) v = DA(Q) Qa =</!a - I,;=J' ~:~ +.tt gi D i · (3.72) 

Relation (3.72) seems very complicated at first glance. This formula is awkward if 
we do the calculation by hand. However, using a computer, (3.72) is just the 
expression we need. From a computational point of view, equation (3.72) contains 
simple operations. These operations are differentiation, summation, and a 
substitution. Each one of these operations is carried out by a computer very 
efficiently. Another advantage of calculating the prolongation of a vector field using 
(3.72) is the flexibility of its application. We can also use this formula to calculate the 
prolongation in connection with Lie-Backlund symmetries. This type of symmetries 
is discussed in Chapter 9. 

The implementation of the prolongation follows formula (3.72) very closely. The 
following lines show how the prolongation is implemented in MathLie. The 
prolongation function is based on the function FrechetD[]. For the correct work of 
Prolongation[], it is thus necessary that the Frechet derivative is also available. The 

function Prolongation[] is based on the differentiation and substitutions as 
represented in (3.72). The function itself needs three arguments. The first argument 
represents the function on which the prolongation is applied. The second and third 
arguments contain the sets of dependent and independent variables of the manifold. 
All three arguments are lists. The result is a general expression of the infinitesimals 
representing the kth prolongation. The order k of the prolongation is determined by 
the function itself. The symbolic names for the infinitesimals gi and rPa are also 
created by the function itself. 

Clear[proloagatiOD]; 
Prolongation [equations_Liat, 
depend_List, iDdepeDd_Liat] := 
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Block [ {Depend = {}, vars, test = {}, 

eta = {}, subrule = {}, prol = {}, 
prolong, mainrule, xyzt, wxc, uvw}, 

Do[ 
AppendTo[Depend, 

depend[iD@@independ], 
{i, 1, Length[depend]}]; 

vars = I'latten[Join[independ, Depend]]; 

Do [AppendTo[eta, 

Length [ independ ] 

phi [i] @@vars - 2:: xi [j] @@vars 0independITH Depend[iD], 
j=l 

{i, 1, Length[depend]}]; 

Do [AppendTo[test, 
unique [nw$t n] ] , 

{i, 1, Length[Depend]}]; 
mainrule = wxc -+ l'unction[xyzt, uvw]; 

Do [AppendTo [subrule, mainrule /. 

{wxc -+ test [iD , 
uvw -+ eta [iD , 

xyzt -+ independ} 1, 
{i, 1, Length [eta] }] ; 

prolong = I'rechetD[equations, 
depend, independ, test]; 

prolong = Expand [prolong /. subrule]; 
prolong = Apply [Plus, prolong, 1]; 

Do[ 
AppendTo[prol, 

Expand [prolong[jD+ 

Leng'th [independ] 

2:: xi [i 1 @@vars aindep.ndITi] equations] ] , 
i=l 

{j, 1, Length[prolong]}]; 

I'latten[prol]] 

Now, we can use this function to check our interactive calculations given above. By 
applying the function Prolongation[] to an arbitrary function depending on one 
independent and one dependent variable and its derivative, we can check our 
calculations. Since the function Prolongation[] uses the Frechet derivative in the 
calculation, it is not necessary to specify the highest order of derivatives. The 
function automatically detects the order of the derivative. The application of 
Prolongation[] to the simple example discussed above gives us 

prolongation = Prolongation [{ f [x, u [x], ax u [x] ] }, {u}, {x}] 
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{u' [x] phi[l] (0,1) [x, u[x]] f(O,O,l) [x, u[x], u' [x]]­

u' [X]2 xi[l] (0,1) [x, u[x]] f(O,O,l) [x, u[x], u' [x]] + 

phi [1] (1,0) [x, u [x]] f(O,O,l) [x, u [x] , u' [x]] -

u' [x] xi [1] (1,0) [x, u [x]] f(O,O,l) [x, u [x] , u' [x]] + 

phi[l] [x, u[x]] f(O,l,O) [x, u[x], u' [x]] + 

xi[l] [x, u[x]] f(l,O,O) [x, u[x], u' [x]]} 

If we compare this result with the result obtained by the interactive calculation, we 
detect a complete equivalence. The result created by Mathematica is difficult to read, 
The prolongation becomes more readable if we apply the function 
LieTraditionalForm[] to the result of the above calculation. 

pro1ongation II LieTraditiona1Porm 

The function LieTraditionalForm[] uses the variable TraditionalLieForm containing 
rules to transform dependent variables and their derivatives to a shorthand notation. 
This representation uses subscripts to denote differentiations and suppresses the 
arguments of the functions. The result of the transformation is shorter and contains 
the information in condensed form, The representation reminds one of the traditional 
mathematical notation but is not usable by Mathematica. An abbreviation for 
LieTraditionalForm[] is L TF[]. This function additionally represents the argument as 
equations in a table. Both functions deliver easy-to-read output but are inconsistent 
with Mathematica's notation. However, we can solve this notational inconsistency for 
Mathematica by storing the result of Prolongation[] into the variable prolongation 

and suppressing the output. Afterward, we apply the rules TraditionalLieForm to that 
variable, In this way, we gain both a consistent representation in Mathematica and a 
condensed representation of the result. We will demonstrate this procedure by 
calculating higher-order prolongations, We can use the function Prolongation[] in a 
manner as simple as in the previous example. The result for the second extension of a 
vector field reads 

secondPro1ongation 

Pro1ongation [{ f [x, u [xl, O{x,l} u [xl, O{x,2} u [xl 1 }, 
{u}, {x} l; secondPro1ongation II LieTraditiona1Form 

{fx';l + fu ¢l - fux u~ (';d u - fux Ux (';d x + fux Ux (¢d u + fux (¢l)x-

3fux ,x Ux (';duux,x-2fux,x (';dxux,x+fux,x (¢l)uUx,x-

fux,x u; (~1) u,u - 2 fux,x u; (~1) X,ll - fux,x Ux (~1) x,x + 

fux,xu~ (¢du,u+2fux,xux (¢ilx,u+fux,x (¢dx,x} 

Applying the transformation to the variable secondProlongation delivers the 
shorthand notation. Multiple differentiations of the dependent variables are denoted 
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by subscripts separated by commas. However, the variable secondProlongation 
contains the full Mathematica representation of the result. We can display the 
Mathematica expression by 

secoDdProlongation 

{u"[x] phi[l] 10,1) [x, u[x]] f IO ,O,O,l) [x, u[x], u'[x], u"[x]]-

3 u' [x] u" [x] xi [1] 10,1) [x, u [x]] fIO,O,O,l) [x, u [x] , u' [x] , u" [x]] + 

u' [X]2 phi [1] 10,2) [x, u [x]] f IO ,O,O,l) [x, u [x] , u' [x] , u" [x]] -

u' [X]3 xi [1] 10,2) [x, u [x]] f IO ,O,O,l) [x, U [xJ, u' [xJ, u" [x]] -

2u"[x] xi[l]ll,O) [x, u[x]] f IO ,O,O,l) [x, u[x], u'[xJ, u"[x]] + 

2 u' [x] phi [1] 11,1) [x, u [x]] f IO ,O,O,l) [x, u [x] , u' [x] , u" [x]] -

2 u' [X]2 xi [1] 11,1) [x, u[x]] f IO ,O,O,l) [x, U [x], u' [x] , u" [x]] + 

phi[l] 12,0) [x, u[x]] f IO ,O,O,l) [x, u[xJ, u'[xJ, u"[x]]-

u' [x] xi [1] 12,0) [x, u [x]] f IO ,O,O,l) [x, U [xJ, u' [xJ, u" [x]] + 

u' [x] phi [1] 10,1) [x, u[x]] f IO ,O,l,O) [x, U [x], u' [x], u" [x]] -

u' [X]2 xi[l] 10,1) [x, u[x]] f IO ,O,l,O) [x, u[x], u' [x], u" [x]] + 

phi[l] 11,0) [x, u[x]] f IO ,O,l,O) [x, u[xJ, u'[x], u"[x]]-

u' [x] xi [1] 11,0) [x, u [x]] f IO ,O,l,O) [x, U [xJ, u' [xJ, u" [x]] + 

phi [1] [x, u[x]] f IO ,1.O,0) [x, u[x], u' [x], u" [x]] + 

xi [1] [x, u[x]] f l1 ,0,0,0) [x, u[x], u' [x], u" [x]]} 

The application of a prolonged vector field to a differential expression is used 
extensively in the symmetry analysis of differential equations. Let us demonstrate the 
application of this function by two examples. 

Example 1 

Assume that we know that the infinitesimal flow is given by a rotation in the plane: 

flows = {xi [1] .... I'uDction [{XI y} I -y[x]] I 

phi [1] .... !'unction [{XI y} I x]}; 

We are interested in the behavior of the differential expression a = Ef2 y(x) / a:x?­
under this kind of flow. First, we will calculate the prolongation of a by using the 
function Prolongation[]. 

pro12 = Prolongation [ {B{x.2} Y [x] } I {y} I {x}]; 

pro12 / / Lie'l'radi tionalJ'orm 

{-2 (';dxYx,x-3yx (';dyYx,x+ (ct>dyYx,x-Yx (';dx,x-

2~ (';dx,y-Y~ (';dy,y+ (ct>llx,x+2yx (ct>llx,y+~ (ct>lly,y} 

The result is an expression containing a combination of derivatives for the 
infinitesimals gi and ¢a and the dependent variables. The prolongation of the vector 
field v is simplified if we insert the known representation of the flow 
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pro12 /. Y [x] .... Y /. flows / / Lie'1'raditionall'orm. 

{3 Yx Yx,x} 

The result is that the prolongation of y" under a rotation results into an expression 
which is closely related to the original expression tJ.. We will later show that the 
result derived is a consequence of the symmetry group of the equation y" == O. 0 

Example 2 

Another example invariant under the given flow is given by the following example. 
2 -3/2 

The differential expression tJ. reads tJ. == y" (1 + y') . The corresponding 
prolongation of tJ. under the condition of the symmetry of rotation is 

Simplify [prolongation [ 

{a{X.2}Y[X] (1+ (ax Y[X])2)-3/2}. {y}. {x}] /. y[x] .... y/. 

flows] 

{OJ 

2 -3/2 
The result shows that the prolongation of the expression yxx(l + Yx) under an 
infinitesimal rotations vanishes. D 

So far, we discussed the basic tools of symmetry analysis. The following chapters 
will show you how these tools are used to find the symmetries of functions and 
differential equations. 



4 

Symmetries of Ordinary 
Differential Equations 

4.1. Introduction 

Let us start with the following question. Suppose you have to solve an ordinary 
differential equation of second order like 

equationl = (I{X,2) u [x] - (x - u [xl) (Ix u [xl == 0; 

equationl / / LieTraditionall!'oDD. 

- (-u + x) u x + u x •x == 0 

How can we proceed to find the solution of this simple-looking equation? The first 
idea is to use Mathematica to solve the equation. If we apply DSolve[] to the 
equation, we get the answer 

solution = DSolve [equationl, u, xl 

DSolve [- (x - u [xl) u' [xl + u· [xl == 0, u, xl 

After this dissatisfying result, you may check your knowledge as to whether the 
differential equation belongs to a class you know. Or you may try to find a 
transformation which will put the differential equation into a standard form. If you 
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are not successful, you perhaps look up a table of standard equations or you try to 
make some ansatz to find a solution. If none of your tasks solved the problem, you 
have to leave it unsolved. But you may have an uneasy feeling that there is a method 
you may have overlooked or of which you are unaware. 

In this section, we will show you a procedure which perhaps solves your problem and 
which is simple in its application when MathLie is used as a tool. The method we will 
present is a rather ancient method invented at the end of the last century by the 
Norwegian mathematician Sophus Lie. He produced a tremendous work on 
symmetries which is applied not only to solve differential equations but also to fields 
like quantum mechanics, function theory, perturbation theory, etc. In this chapter, we 
restrict our considerations to ordinary differential equations. In Chapter 5, we will 
discuss partial differential equations, too. 

The story of symmetry analysis started in the middle of the 19th century when Lie 
and Klein met in Berlin. Both mathematicians contributed a lot to the theory of 
symmetries. Lie invented his famous work to examine symmetries in connection with 
algebraic and differential equations. In his Gottinger program, Klein developed the 
discrete and algebraic parts of the application of symmetries on functions. Lie 
merged into the large field of differential equations which was very useful for 
classifying the differential equations in a new way. The theory developed by Lie is 
very laborious if done by hand. This was one of the reasons why the application of 
this theory disappeared for solving practical problems. Very few people used Lie's 
procedure to examine their differential equations. One of these was Birkhoff [1950] 
who in the 1950s applied the theory to hydrodynamic problems. In recent years, more 
and more attention was paid to the theory of Lie as one of the rare methods to deliver 
solutions, especially for non-linear differential equations. Today, Lie's procedure is 
accessible for a broad application if the computational power of computer algebra is 
used. The very extended algebraic calculations today are carried out by computers. In 
the past 20 years, there has been a tremendous increase of computer power and of the 
development of symbolic languages, allowing the problem to be tackled in an even 
simpler way. A summary of the development of symbolic programs was recently 
given by Hereman [1994, 1996]. One of these symbolic languages usable for the 
implementation of Lie's procedure is Mathematica. Mathematica with its powerful 
matching procedures is well fitted as a tool to carry out calculations used in Lie's 
theory. 

Lie's main idea was that the symmetry properties of a differential equation can be 
used to solve the equation. How this works and how Lie's theory is used within 
MathLie will be discussed in the following sections. 
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4.2. Symmetry Transfonnations of Functions 

Before we apply Lie's method to ordinary differential equations, we will briefly 
discuss symmetries in connection with functions. This section serves to introduce the 
main concepts of the theory occurring throughout the book. 

4.2.1 Symmetries 

One of the most remarkable discoveries of Lie in the theory of groups was the 
invariance of a function under some transformations. When dealing with differential 
equations, one very often tries to simplify the equation by an appropriate change of 
variables. This transformation generally involves both the independent and the 
dependent variables. In Mathematica, we can represent such transformations by the 
following list of rules: 

rulel = {x .... !'unction [{x. u}. X [x. u]] • 

u .... Function [{x. u}. u [x. u]]} 

{x --+ Function [{x, u}, X [x, u]], u --+ Function [{x, u}, u [x, u] ] } 

This kind of transformation involving the original independent and dependent 
variables (x,u) is usually called a point transformation, meaning that a point (x, u) of 
the manifold m is transformed into another point (X, U). A point transformation 
takes only into account a change of the coordinates. The point transformations 
actually considered by Lie were transformations depending on at least one parameter 
E. As we will see, the parameter E is the parameter of the corresponding group. Thus, 
we call E the group parameter. A one-parameter transformation is thus given by 

rule2 = {x .... !'unction[{x. u. e}. X[x. u. e]]. 
u .... Function [{x. u. e}. U[x. u. e]]} 

{x --+ Function [{x, u, E}, X [x, u, E]], 

u--+Function[{x, u, E}, U[x, U, E]l} 

Such transformations have the following properties: They are invertible if the 
corresponding Jacobi determinant exists, repeated application yields a transformation 
of the same type, and the identity of the transformation for E = 0 exists. As we know 
from Chapter 2, these three properties are the basis of a Lie group. They can be 
summarized in the definition of symmetry transformations. 
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Definition: Symmetry transformation 

A set G of transformations given by 

x --+ X(x, u, E), 

u --+ U(x, U, E) 

is a one-parameter group if it contains the identical transformation I = To and 
includes the inverse 1.1 and the composition T. ® Tp E G. By a suitable choice of 

the group parameter E, the main group property T. ® Tp E G can be written 

that is, 

X(X(x, u, E), U(x, u, E), f3) = X(x, u, E + f3), 

U(X(x, u, E), U(x, u, E), f3) U(x, u, E + f3). 

(4.1) 

(4.2) 

(4.3) 

In particular applications, the two conditions hold only for sufficiently small values 
of E and f3. There, we arrive at what is called a local one-parameter group G or an 
infinitesimal group. 0 

These simple properties ensure that the transformations given in rule2 form a 
one-parameter group of point transformations. A simple example to show how point 
transformations work can be given by considering the shift of a function. 
Mathematically, a shift is defined by T. f(x) = f(x + E), where T. represents the 
translation operator. A definition of such an operator in Mathematica reads 

This definition assumes that f is a function of x and that x is replaced by x + E in the 
argument of f. To demonstrate the properties stated above, we start with the 
verification of the identity transformation for E = 0: 

'1'[f[x], 0] 

f[x] 

which demonstrates the existence of the identity transformation. The inverse 
transformation can be checked by creating a translation and the corresponding 
reverse by 

'1'['1'[f [x], 6], -6] 

f[x] 
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meaning that the inverse transformation is represented by a negative shift. The 
operation of translation and its inverse yield the original representation of the 
function. The closure of the transformation means that the function created by the 
transformation is again of the same type. This behavior can be demonstrated by the 
following specific example choosing lex) = Xl - ~: 

To demonstrate the action of the transformation, we will graphically represent the 
results for the identity and for a shift with E = - 2. 

Plot [zvaluate[{'1'[x2 _x3 , 0], '1'[x2 _x3 , -2]}], 

{x, -2, 4}, 

PlotStyl .... {RGBColor[1.000, 0.000, 0.000], 

RGBColor[O.OOO, 0.000, 1.000]}] 

-2 -1 4 

It is obvious from the figure that a shift by -2 in the argument translates the function 
by a distance of 2 to the right. Using the animation capabilities of Mathematica, we 
can readily demonstrate the shifting process by a small simulation. The process of 
shifting is demonstrated by the following animation where the parameter E is varied 
from -1 up to 1 in steps of 1120. 

x,2 x 3 

Do [Plot [Bvaluat. ['1' [- - -, e]], 
2 4 

{x, -2, 2}, 

PlotJtang .... {-.4, .6}, PlotStyl .... {Ku.[e]}], 

1 
{e, -1, 1, -}] 

20 



-2 -1 

-2 -1 

-2 
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2 -2 -1 2 -2 -1 
-0.2 -0.2 -0.2 

-0.4 -0.4 -0.4 

0.4 0.4 

0.2 

-2 -2 -1 1 2 
-0.2 -0.2 

-0.4 -0.4 

0.4 

2 -2 2 2 

The sequence of graphs shows a continuous movement of the curve along the 
horizontal axis. This movement is created by the translation operator T, if we 
continuously change E. Each value of E is represented by a different color in the 
animation. Another property of our translation is the associativity of the 
transformation which can be formulated by 

T[T[T[f[x], a], 13], x] ==T[T[T[f[x], a], x], 13] 

True 

The result True states that the exchange of two of the three parameters cr, /3, and X 
does not alter the final result. This specialty is not contained in the basic properties of 
a group. However, if a group satisfies the associativity, we call it an Abelian group. 

Example 1 

Another simple example of a one-parameter group is given by a rotation III the 
(x, u )-plane. This sort of point transformation is represented by the rules 
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rotation = {X-+l'unction[{x, u, e}, xCos[e] -uSin[e]], 

U -+ Function [{x, u, e}, x Sin [e] + u Cos [e] ] } 

{X-?Function[{x, u, EJ, XCOS[E] -uSin[E]L 

U-?Function[{x, u, EJ, xSin[E] +UCOS[E]]} 

The one-parameter group defined in rotation and its action can be visualized as 
motion in an (x, u)-plane. To show the action, we take for E = 0 an arbitrary point 
(xo, uo) in the plane and follow the motion of the point when E varies. The image of 
the initial point will move along some curve. 

u 

Table [parametricPlot [Evaluate [ 

{X[x, u, e], U[x, u, Ell /. rotation/. {x-+l, u-+l}], 

{e, 0, end}, 

AspectRatio -+ Automatic, PlotRange-+ 

{{-l.S, loS}, {-l.S, 1.S}}, PlotStyle-+RGBColor[O, 0,1], 
7r 7r 

AxesLabel-+ {-X", nun}], {end, N[2 -], N[27r], N[2 -]}] 
20 20 

u u 

.,+T' x .1.~-r., x .'~' 
-1. 5 -1. 5 -1.5 

u u u 

.,(Fl.' x .,~., x .,~:, 
-1. -1. -1.5 

u u u 

.,$, x ·,W, x .,$, 
-1. -1. -1. 

x 

x 

x 
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The animation shows that an initial point (xo, uo) moves along a circle if we change 
the group parameter E. By repeating this kind of transformation for different initial 
points, a picture representing the global action of the transformation in the 
(x, u)-plane is gained. The following picture contains the orbits of the transformation 
given in rotation for several initial points. The initial points are chosen along the 
x-axis. 

parametricPlot[Evaluate[ 

Table [ {X [x, u, e], U [x, u, e]} / • rotation /. {x -+ xo, u -+ 1}, 

1 
{xo, 1, 5, -}]], {e, 0, 27T}, 

2 

AspectRatio -+ Automatic, PlotStyle -+ Table [Hue [x] , 

1 
{x, 0, 1, -}], AxesLabel-+ {nx", nun}] 

5 

u 

x 

Once again, this picture shows that the given transformation will move a point along 
a circle if E is varied. Each curve represents points that can be transformed into one 
another by the given transformation. 0 

4.2.2 Infinitesimal Transfonnations 

One of Lie's essential findings was that a transformation as given above can be 
simplified. This simpler transformation is called infinitesimal transformation. The 
content of this idea is that it is sufficient to represent the transformation in its lowest 
approximation in E, meaning that the finite transformation can be expanded in a 



104 Symmetries of Ordinary Differential Equations 

Taylor series around the identity transfonnation. In Mathematica, we have direct 
access to such an expansion of the transfonnation by applying the function Series[] to 
it. Let us again examine the general point transfonnation in the (x, u)-plane. We 
derive the infinitesimal representation by expanding the one-parameter 
transfonnation around E = 0 up to the first order in E: 

infinitesimalTrafo = 

Series[{X[x, u, e], U[x, u, e]), {e, 0, l} ] 

{X[x, u, 0] + XIO.O,l) [x, U, 0] E+O[E]2, 

U[x, u, 0] + UIQ,Q,l) [x, U, 0] E+O[E]2} 

If we use the group property of the identity X(x, u, E = 0) = x and U(X,U,E = 0) = u, 

we can simplify the expression. The calculation shows that the transfonnation is 
represented by the identity plus some tenns linear in E. The coefficients of the 
parameter E are called the infinitesimals of the transfonnation and are usually denoted 
by sand ¢: 

infinitesimalTrafo = TableForm[ 

infinitesimalTrafo /. ({ae X[x, u, e] -+ {[x, u], 

a. U[x, u, e] -+ q,[x, u], 

X[x, u, 0] -+ x, 

U[x, u, 0] -+u} /. e-+O)] 

x+';[x, u] E+O[E]2 

u+¢[x, u] E +O[E]2 

This result for the infinitesimal representation of a transfonnation was summarized 
by Lie in his first theorem. The theorem considers the inverse problem of an 
infinitesimal representation. It treats the situation when the infinitesimals sand ¢ are 
known and asks for the global transfonnation. 

Theorem: Lie's first theorem 

There exists a parameter representation of a transfonnation such that the global 
transfonnation is equivalent to the solution of the initial value problem for the system 
of first-order differential equations 

{a. X[e] == {[X[e], U[e]], 

a.u[e] ==q,[X[e], U[e]]} //TableForm 

X' [E] == ';[X[E], U[E]] 

U' [E] == ¢[X[E], U[E]] 

with the initial conditions 
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{X[O] == x, U[O] == u} / / TableForm 

X[O] == x 

U[O]==u o 

Using this theorem, the finite transformation represented by X and U is derived from 
the initial value problem by an integration with respect to E. After the integration the 
parameter E is eliminated. 

Let us assume we know the infinitesimals g and ifJ. Then, we can apply Lie's first 
theorem in a straightforward way. Two examples will demonstrate the application of 
this theorem. 

Example 1 

As a first example, let us consider a scaling transformation. The infinitesimals of this 
kind of transformation are given by 

{[x, u] =x; 

and 

4>[x, u] = -2u; 

The related defining equations for the global transformations are then 

defequation = {c3.X[e] == {[x, u], 

c3.U[e] ==4>[x, u]} /. {x-+X[e], u-+U[e]} 

{X' [E] == X[E], u' [E] == -2 U[E]} 

The initial conditions for this system of equations are 

initial = {X[O] == x, U[O] == u} 

{X[O] == x, U[O] == u} 

Combining these two sets of equations in a common list, we can solve the initial 
value problem using standard functions of Mathematica 

eqin = Join [defequation, initial] 

{X' [E] == X[E], U' [E] == -2 U[E], X[O] == x, U[O] == u} 

The solution of the initial value problem follows by applying DSolve[] to eqin 

scalingtrafo = D80l ve [eqin, {X, U}, e] 

{{X --7 (E#1 x&) , U --7 (E- 2 #1 u&) }} 
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u 

The result is the representation of the scaling transformation for the variables x and u. 
We can represent the global transformation properties by plotting the new 
coordinates X and U if we change the group parameter E. The following animation 
shows the action of the transformation: 

Table [parametricPlot [Evaluate [ 
{X[e], U[e]} /. scalingtrafo[l] /. {x ... 1, u ... 1}], 

{e, 0, end}, 

AspectRatio ... Automatic, PlotRange'" {{ 0.9, 3}, {O, 1.2}}, 

PlotStyle ... RGBColor[O, 0, 1], 
AxesLabel ... {nx", nun}], {end, 0.1, 1, .1}] 

u u 

°t~ __ o·L ..... o~_ 0.6 0.6 0.6 
0.4 0.4 0.4 
0.2 0.2 0.2 

1.5 2 2.5 3 X 1.5 2 2.5 3 X 1.5 2 2.5 3 X 

u u u 

o.~ o·L o.~ 0.6 0.6 0.6 
0.4 0.4 0.4 
0.2 0.2 0.2 

1.5 2 2.5 3 X 1.5 2 2.5 3 X 1.5 2 2.5 3 X 

u u u 

°l~ __ o.~_ o~ 0.6 0.6 0.6 
0.4 0.4 0.4 
0.2 0.2 0.2 

1.5 2 2.5 3 X 1.5 2 2.5 3 X 1.5 2 2.5 3 X 

o 

Lie's first theorem can be incorporated in a Mathematica function, allowing the 
determination of the global symmetry transformation. All solution steps used above 
are combined in this function. The function GlobalSymmetryTransformation[] will 
calculate the global symmetry transformation if the infinitesimals of the 
transformation are known. The input variables for this function are the infinitesimals 
g and cp. For the calculation, we also need the dependent and independent variables. 
The function is designed to calculate a general representation of the global 
transformation for an arbitrary number of independent and dependent variables. 
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Clear [GlobalSymmetyTransformation] 

GlobalSymmetyTransformation[xi_List, phi_List, 

depend_List, independ_List] : = Block [ 

{vars, Vars, infini, dVars, equations, 

initial, sol}, 

vars = Join [depend, independ]; 

infini = Join [phi, xi]; 

Vars = ToBxpression /@ToUpperCase /@ToString /@vars; 

dVars = Table[Vars[i]@@{e}, {i, 1, Length [Vars] }]; 

equations = Table[oe dVars[i] == infini[i], 

{i, 1, Length [Vars] }] /. Thread [vars -+ dVars]; 

initial = Thread [dVars == vars] /. e -+ 0; 

equations = Join [equations, initial]; 

sol = DSolve[equations, Vars, e]] 

The application of this function to the infinitesimals of Example 1 gives us the result: 

GlobalSymmetyTransformation[ {x}, {-2 u}, 

{u}, {x}] 

{ {U ~ (E- 2 #1 u&) , X -) (E#1 x&) } } 

which is identical with the result calculated above. Another example to check the 
function is the symmetry of rotation. From our earlier discussions, we know the 
global representation of a rotation. The infinitesimals for this kind of symmetry group 
are g = -u and ¢ = x. Applying the function GlobalSymmetryTransformation[] to 
these infinitesimals, we get 

GlobalSymmetyTransformation [{ -u}, {x}, 

{u}, {x}] 

{{U~ (uCos[#1] +xSin[#1]&), x~ (xCos[#1]-uSin[#l]&)}} 

The result found is identical with the representation discussed in Section 4.2.1. It 
represents the rotation of an initial point (xo, uo) around the origin. 

4.2.3 Group Invariants 

In this section, a criterion of invariance is formulated which is useful in the 
application to ordinary and partial differential equations. A point transformation of an 
ordinary differential equation is a symmetry transformation if it maps solutions of the 
equation into solutions. We will show in this section that a symmetry transformation 
does not change the form of the differential equation. For the moment, we will 
restrict our considerations to the case in which only first-order derivatives are 
present. The invariance of higher-order differential equations will be discussed in 
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later sections. We know that a one-parameter group of transfonnations is represented 
by the infinitesimal transfonnations or the related tangent vector field v. As the 
transfonnation is applied to an initial point, it moves along a path in such a way that 
the path maps into itself. This basic concept needs an analytical fonnulation. As 
mentioned in the previous section, it is always possible to represent the relations in a 
manifold by an algebraic expression. For the moment, we will thus restrict our 
considerations to curves in the plane. 

Group invariants are basic quantities of a symmetry analysis. A group invariant is 
defined as follows: 

Definition: Group invariant 

A function F(x, u) is an invariant of the group of transfonnations if 

F(X(x, u, E), U(x, u, E)) = F(x, u) (4.4) 

identically in x and u for all values of the group parameter E. 0 

This definition is the basis for an invariant in symmetry analysis. It states that a 
function is an invariant if it has the same representation in the original and in the new 
coordinates. The definition also shows us a way to calculate the invariants F. 

Curves in a plane can be represented by F(x, u) = const. As we know, this curve is 
said to be invariant under a transfonnation if the curve remains the same in both 
coordinate systems: the old and the new. The transfonnations are represented by the 
infinitesimal transfonnations due to Lie given by 

Clear [~, cfi]; 

infini = {X -+ Function [{x, u, e}, x + e ~ [x, u]], 

U-+Function[{x, u, e}, u+ecfi[x, u]]} 

{X~Function[{x, u, E}, x+Ef[x, ul]' 

U~Function[{x, u, E), U+E<I>[X, ul]} 

The expression of invariance is given in (4.4) and reads in tenns of Mathematica, 

invar=F[x, u] ==F[X[x, u, e], U[x, u, e]] 

F[x, ul == F[X[x, u, El, U[x, u, Ell 
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meaning that the form of the curve is the same in the old and new coordinates. The 
application of our transformation delivers the invariance condition in an implicit 
form: 

ivarJ: = invar /. infini 

F [x, ul == F [x + E c;[x, ul , u + E cP [x, ul 1 

The explicit representation of the invariance condition is obtained by a Taylor 
expansion of the equation of invariance with respect to the parameter E: 

Thread [Series [i varI, {e, 0, 1}], Equal] / / LieTradi tionalP'orm 

If we examine this expression, we observe that the invariance condition is satisfied if 
all terms containing the infinitesimal parameter E vanish. However, the first term 
linear in E can be represented by the vector field v. To show this relation, let us apply 
the tangent vector field to F. A definition of the function TangentVector[] for more 
than one independent and dependent variable follows below. So we get the 
infinitesimals in a subscripted form. 

TangentVector [P' [x, u], {u}, {x}] / / LieTradi tionalP'orm 

The result is equivalent to the terms linear in E. Now, if we assume that the 
application of the tangent vector field onto the curve has to vanish, we can conclude 
that all higher terms in E containing multiple applications of the vector field v on the 
curve also have to vanish. Thus, a sufficient condition that a curve is invariant under 
an infinitesimal transformation is that the application of the tangent vector field to the 
curve must vanish. 

Uncovering a practical realization of the group properties, let us formulate the 
following theorem. It is again Lie's first theorem in a different representation. The 
theorem allows us the derivation of a group invariant. The group invariant is the 
function for which we are looking. Lie himself was a great systems analyst who 
based his total work on three fundamental theorems. The first of these fundamental 
theorems reads: 

Theorem: Group invariants 

A function F(x, u) in q independent x = (XI, X2, ••• , Xq) and p dependent variables 
u = (u l , u2 , ••• , uP) is an invariant if and only if it satisfies the partial differential 
equation 
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t~i 8F(x, u) + LifJa 8F(x, u) = 0, 
~I 8~ =1 8~ 

(4.5) 

where ~i and ifJa are the infinitesimals of a point transformation. This relation is also 
known as the characteristic equation of the tangent vector field 

It follows that every one-parameter group of point transformations in the plane has 
one independent invariant. This invariant can be taken to be the left-hand side of any 
first integral lex, u) = C. The first integral follows by integration of the 
characteristic equation which are based on the tangent vector field. The determining 
equation for the integral reads 

~ [x, u[x]] 
chareq = axu[xl -- -----; chareq II Lie'l'raditionalJ'orm. 

~ [x, u[x]] 

Then, any other invariant is a function of l. 

Example 1 

Let us consider a circle. We know that a circle is invariant under a rotation around its 
center. We already know that the tangent vector field of the group of a rotation is 
given by the operator 

'l'rot [function_l : = -u ax function + x au function 

A circle in the coordinates x and u is represented by 

circle = x 2 + u 2 - const 

The application of the operator Trot[] on the circle gives us 

'l'rot[circlel 

o 

This result shows that the tangent vector field applied to a curve invariant under the 
given symmetry vanishes. Thus, each circle is mapped into itself. This condition is 
very useful in the determination of symmetries not only for curves but also for 
differential equations. D 
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Example 2 

Before we consider differential equations, let us discuss the other non-trivial case 
when the mapping of the vector field does not vanish. In this example, we apply a 
transformation on a curve which is not mapped into itself but in another member of 
the same family of curves. To examine the behavior of such a case, let us again 
consider the transformations of rotations for the family of straight lines. Rays are 
represented by the left-hand side of the expression 

u 
rays = - - const 

x 
U 

-const +­
x 

The application of the vector field TrotD on these lines gives us 

rl = Trot [rays] 

which represents a single ray with slope 1. A second application of Trot[] on the 
transformed rays results into 

r2 = Trot [rl] 

2 u 3 2 U 
--+--

x 3 X 

which is, again, a ray with slope 1 in a more or less complicated representation. Thus, 
we observe that the application of a tangent vector field on a curve can produce two 
types of results. First, a transformation of the curve into itself, and second, a 
transformation to a curve contained in the family of the curves. 0 

Example 3 

In this example, we determine the invariant from the characteristic equation. Let us, 
again, discuss the symmetry group of rotation. The infinitesimal representation of this 
symmetry is 

rot = {'~l'uDction[{x, u}, -u], tP~l'unction[{x, u}, x]} 

{';~Function[{x, uL -uL ¢~Function[{x, uL xl} 

The corresponding characteristic equation is thus 

charaqr = chareq /. rot; chareqr II LieTraditionalPorm 

x 
U x == - 1:1 
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which has the solution 

Bo1 = DSo1ve[chareqr, u, x] 

{{u~ (---1-#12 -2C[1] &)}, {U~ (-)-#12 -2C[1] &)}} 

The first integral follows by solving one of these expressions with respect to the 
constant C[I]: 

Bolint = r1atten [Solve [ (u[x] /. Bo1[lD) == u[x], C[l]]] 

1 
{C[l] ~ 2 (_x2 -U[X]2)} 

The result defines a circle of radius V - 2 C[ 1] . D 

In the examples discussed, we used group invariants in a two-dimensional plane. As 
stated in the theorem, the relations are also useful in higher-dimensional space. In our 
discussions, we used the term tangent vector to represent an operator which is central 
in the theory of symmetries. In the following section, we will examine this operator 
in more detail. 

4.2.4 Tangent Vector 

A very useful concept closely related to the infinitesimals g and ¢ is the concept of a 
tangent vector v. The tangent vector v is also called the infinitesimal generator of the 
transformation or tangent vector field or, in short, a vector field. We already 
discussed the term tangent vector field in Sections 3.2 and 3.7 in connection with a 
manifold m of m independent variables. Here, we will extend the definition to a 
q x p-dimensional manifold of q independent and p dependent variables. The tangent 
vector can be understood as a generator of the symmetry. The term generator 
indicates that repeated applications of the infinitesimal transformation will generate 
the finite or global transformation. This point of view for a vector field was stressed 
by Lie in his older papers (cf. Engel and Heegaard [1912] Vol. V, p. 2). Lie called the 
tangent vector the generator of the infinitesimal transformation. Today, this operator 
is called a tangent vector of a transformation, its definition is 

Definition: Tangent vector field 

A vector field on a manifold m in q x p coordinates is a tangent vector v to each 
point (x, u) E m varying smoothly from point to point. In local coordinates, a vector 
field has the representation 
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q a P a 
v = 2:: ~j - + 2:: cfJa -, (4.6) 

i=1 aXj a=1 aua 

where the ~i and cfJa are smooth functions of the coordinates (x, u). 0 

The functions ~ and cfJ are the infinitesimals of the related infinitesimal 
transformation. The present definition extends the previous definition to a manifold 
m spanned by independent and dependent variables. Some authors call the vector 
field v a Lie symbol. Actually, this operator goes back to Lagrange, and, thus, as an 
equivalence, deserves the name Lagrange operator (cf. Kowalewski [1931)). We 
recognize that the vector field has an old tradition in mathematics. We already 
mentioned that Lie, in his lectures, used this kind of operator in connection with a 
hydrodynamic flow. He called the paths of the infinitesimal transformation v f the 
stream lines of the flow. The infinitesimal generator v is used to generate such flows. 

The following function implements the definition of a vector field given in (4.6). The 
function TangentVector[] needs three arguments. The first argument specifies the 

function to which the vector field is applied. The second and third are lists containing 
the independent and dependent variables. The calculation of the vector field follows 
formula (4.6) very closely: 

Clear[TangentVector]; 

TangentVector[function_, dependent_List, 

independent_List] := Block [ {vars, xi, phi}, 

vars = Join[independent, dependent]; 

xi = Table[ApplY[Gi, vars], 

{i, 1, Length[in4ependent]}]; 

phi = Table [Apply [~a' vers], 

{a, 1, Length[dependent]}]; 
LelllJth [independent] 

2: xi [iD aindepen4ent [i] function + 
101 

Length[4ependent] 

2: phi [aD a4epeD4ent [a] function 
a=l 

The result of this function is the general representation of the vector field applied to a 
given function depending on the variables x and u. Let us demonstrate the application 
for a 2 x 2 manifold. A general function f depending on the independent variables 
(x, y) and on the dependent variables (u, v) has the vector field 
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'1'angentVector [f [x, y, u, v], {u, v}, {x, y}] II 
Lie'1'raditionalPor.. 

fx ?;l [x, y, u, v] + fy ?;2 [x, y, u, v] + fu rPl [x, y, u, v] + 

fv cP2 [x, y, u, v] 

The infinitesimals g1 , g2, ¢1, and ¢2 are arbitrary functions. The function 

TangentVector[] allows us to calculate the general expression of the vector field for a 
given function f. If we know, on the other hand, the global symmetry 
transformations of the coordinates, we are able to derive the infinitesimals. 
Remember that the global transformation was a result of Lie's first theorem. If we 
invert this theorem, the infinitesimals of the q x p-dimensional global transformations 
(X(e), U(e» follow by 

C,' = dXj(e) I 
~, de .=0, i = 1, 2, 3, ... , q (4.7) 

and 

a=I,2,3, ... ,p. (4.8) 

These relations are identical with the defining equations stated in the first theorem of 
Lie. The side condition e = 0 in equations (4.7) and (4.8) guarantees that the initial 
conditions of Lie's theorem are satisfied. Thus, if we know the global representation 
of a point transformation, we are able to write down the corresponding vector field. 
How this works for specific transformations will be shown in the following. 

To simplify the representation, we restrict our discussions to a two-dimensional 
manifold m in x and u. This reduction of the q x p-dimensional manifold allows us to 
create a graphical representation of the vector field. In the following examples, we 
will show how the vector field is calculated. The infinitesimals of the vector field will 
serve as components in the graphical representation. Let us start with the well-known 
group of rotations. 

Example 1 

The global representation of the group of rotation was discussed in an earlier 
example. The transformations for the coordinates x and u are defined in rotation. We 
can represent the transformed coordinates by 

trans = {X[x, u, e], l1[x, u, e]} I. rotation 

{xCos [e] - u Sin[e] , uCos [e] + x Sin[e]} 
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Using relations (4.7) and (4.8), we can derive the infinitesimals by 

rotinfinitesi_ls = iJ. trans /. e -+ 0 

{-u, x} 

The first element of this list represents the infinitesimal g and the second ¢. The result 
is a list containing - u and x as components of the tangent vector in the 
(x, u)-manifold. We can use this vector representation of the infinitesimal generator 
to graphically represent the vector field. Two-dimensional vector fields are plotted 
with a function contained in the package 

« nGraphics'Plotl"ield' n 

The function PlotVectorField[] allows us to plot the two-dimensional vector field 

PlotV.ctorl"ield[rotinfinites~ls, {x, -2, 2}, 
{u, - 2, 2}, Colorl"UDct ion -+ BUe] 

, ' ~ ...... - ... '" , , ~ # 

, , , ... .. ... . 
, , ' , ' ' ~ -
......... .. .. 

As a result, we get a figure representing the vector field by vectors in the plane. We 
observe that vectors of the same color are tangential to a circle, thus the name tangent 
vector field. The vector field also contains information on the transformation 
properties. This information is stored in the arrangement of the arrows in the 
(x, u)-plane. We also gain an impression on the strength of the rotation on different 
locations of the (x, u)-plane by considering the lengths of the arrows. So a graphical 
representation of a vector field helps us to assess the behavior of a transformation. 0 
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Example 2 

Another frequently encountered example for a tangent vector field is the group of 
scaling. Let us assume that we know the global transformations of an inhomogeneous 
scaling of the coordinates x and u. A global scaling transformation is given by 

scaling = {X -+ Function [ {x, u, e}, x]!l"], 

U -+ Function [ {x, u, e}, U]!l2.]} 

{ X~Function[ { x, u, EJ, xE€ ] , U-->Function[{x, u, E}, uE2 € ]} 

The infinitesimals of this transformation follow by using equations (4.7) and (4.8): 

scalinginf = 0. {X [x, u, e], U [x, u, e]} /. scaling /. e -+ 0 

{x, 2 u} 

Again, we get a vector of two components containing the infinitesimals sand <p of the 
transformation. The vector field of this transformation has the graphical 
representation 

PlotVectorField[scalinginf, {x, -2, 2}, 
{u, -2, 2}, Colorrunction -+ HUe] 

. , 

, 

.. .. 

, , 

showing us that, in both directions, the scales are changed if one moves from the 
center to a point of the rim. 0 
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So far, we demonstrated some basic concepts of Lie's theory. In particular, we 
discussed the first theorem which deals with infinitesimal transformations. The 
concept of infinitesimal transformations is the basic tool in the derivation of 
symmetries of a differential equation and thus serves as a cornerstone in the solution 
of the equations. The presented infinitesimal generator or vector field is an essential 
part in the calculation of the infinitesimal transformations and is used to derive the 
symmetries from the equations. This behavior is related to the fact that the tangent 
vector is always a linear operator possibly creating a complicated form of the finite 
transformations. So far, we demonstrated transformations which only involved 
dependent and independent variables. However, if we examine differential equations, 
we have to extend or prolong the concept of transformations to derivatives as well. 

4.2.5 Prolongation of Transformations 

As discussed in Section 3.4, a prolongation is an extension of a transformation from 
the independent and dependent set of variables (x, u) to a space including the 
derivatives of the dependent variable (x, u, u'). This extension, for example, is 
necessary to examine the point symmetries of a first-order ordinary differential 
equation. In this section, we present the concept of prolongation in a 
three-dimensional space with coordinates (x, u, u') where u' = p = : is the slope of 

the given curve u = u(x). Knowing how the curve in the plane transforms should 
enable us to calculate how u' transforms. To demonstrate the prolongation procedure, 
let us recall the results known from calculus. We assume for our examinations that 
the transformation of the plane into itself is given by the rules 

ruleS = {x ... Function [(x, u}, {[x, u [x]]], 

u ... Function [{x, u}, I/l [x, u [x]]] } 

{X --? Function [{x, u}, .; [x, u [x]]] , 

U --? Function [{x, u}, rP [x, u [x]]] } 

Our interest is to examine the transformation of an arbitrary curve and its derivatives. 
The functions q and ¢ representing the transformation are given functions of the 
variables x and u. The curve we will examine is given by the general expression 

curve = u == f [x] 

u == f [x] 

which has its representation in the new coordinates by 
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n8WCurve = U == P [X] 

U == F[X] 

The slope of the curve in the new coordinates is calculated at each point (x, u) by the 
relation 

Dt [U[x, u]] 
Uprime = /. ruleS; Uprime / / Lie'l'raditionalPorm 

Dt [X[x, u]] 

This formula expresses the derivative in new coordinates' by the ratio of the total 
differentials of the transformed variables. Using the result for Uprime, we can define 
the first extended transformation in terms of ~ and ¢J by 

rule6 = {X -+ Function [{x, u}, {[x, u [x] ] ] , 

U -+ Function [{x, u}, I/J [x, u [x] ] ] , 

u' -+ Function [{x, u}, w] /. w -+ Uprime} 

{x --7 Function [{x, u}, nx, u [x]] J, 

U --7 Function [{x, u}, rj; [x, u [x]]] , 

, . [ u' [x] rj;(0,1) [x, u [x]] + rj;(1,0) [x, U [x]] 1 
U --7 Functlon {x, u}, u' [xl ';(0,1) [x, u [x] 1 + ';(1,0) [x, U [x] J } 

Evidently, U' is the slope of the transformed curve at the point (X, U). The second 
extension of the transformation is calculated by using the same ideas. Using the result 
contained in Uprime, we are able to calculate the ratio of the total derivative of 
Uprime and X. Carrying out the calculation, we find 

Ox Uprime 
Uciprime = ------; Uciprime / / Lie'l'radi tionalPorm 

Ox X [x, u [x] ] 

¢u Ux,x + U x ¢x,u + U x (ux ¢u,u + ¢x,u) + ¢x,x ) 

U x ';u + ';x 

This result allows us to prolong the transformation of the variables (x, u) up to 
second-order derivatives. rule6 is extended by 
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AppendTo[rule6, U" -+Function[{x, u}, w] /. 

w -+ Udprime]; rule6 / / LTF 

U == ¢ 

X ==; 

U' = = u x ¢u + ¢x 
U x ;u + ;x 

U" == (_ (ux ¢u + ¢x) (~u ux,x + U x ;x,u + U x (ux ;u,u + ~x,u) + ;x,x) 
(ux ;u + C) 2 

rule6 contains the extended transformation of second order. We note that the 
transformation of the derivatives essentially depends on the structure of the finite 
transformations ~ and rp. The derivatives of the functions ~ and rp determine the slope 
in the new coordinates in a characteristic way. Going back to symmetry analysis, for 
examining differential equations we need the extensions of the infinitesimal 
generator represented by the vector field v. To derive the relations describing the 
extended vector field, we consider transformations depending on the group parameter 
E. The global transformation for the coordinates (x, u) read 

rule7 = {X-+Function[{x, u, e}, {[x, u[x], e]], 

U-+Function[{x, u, e}, cII[x, u[x], e]]} 

{X --> Function [{x, U, E}, ; [x, u [xl, Ell, 

U-->Function[{x, u, E}, ¢[x, u[xL Ell} 

The extension formula is calculated in the same manner as in the parameter-free case 
by 

Dt [U[x, u, e]] 
Uprime = /. rule7 /. Dt [e] -+ 0; 

Dt [X[x, u, e]] 

Uprime / / LieTradi tionalForm 

Since the group parameter E is not a component of our manifold spanned by 
(x, u, u', u", ... ), we have to assume that the variation of the group parameter 
vanishes; i.e., we set Dt[E]---70. We simply use the fact that E is a constant and thus its 
derivatives are zero. The first extended transformation is thus 

rule7 = {X-+Function[{x, u, e}, {[x, u[x], ell, 
U-+Function[{x, u, e}, cII[x, u[x], e]], 

U' -+ Function [{x, u, e}, w] /. w -+ Uprime 
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{X-->Function[{x, u, EJ, £lx, U[Xl, E]l, 

U --> Function [{x, u, E}, ¢ [x, u [x], E]], u' --> Function [ 

u' [x] ¢(0,1,0) [x, u [xl, E] + ¢(1,0,0) [x, u[xl, :ll} 
{x, u, E}, u' [x] ,;(0,1,0) [x, u [x], E] + ';(1,0,0) [x, u[x], 

In rule 7, we get the global transformation of the once extended space. The second 
extension can be calculated in the same way as discussed above. Starting from a 
group G of point transformations and then adding the transformation of the first 
derivative, one obtains the group G j , which acts in the space of the three variables 
(x, u, u'). By further adding the transformation of the higher derivatives, one obtains 
the group Gz acting in the space (x, u, u', un) and so on. The generalization of these 
arguments results in the definition of prolonged groups. 

Definition: Prolonged groups 

The groups G j , Gz, '" Gn are termed the first, second, and nth prolongations of G, 
respectively. 0 

Actually, we are interested in the infinitesimal representation of the transformation. 
This sort of transformation is given by 

infini = {X -+ Function [ {x, u, e}, x + e ~ [x, u [x] ]] , 

u-+J'unction[{x, u, e}, u[x] +eq,[x, u[x]]]} 

{X --> Function [{x, u, E}, X + E .; [x, u [x]] J, 

U-->Function[{x, u, E}, u[x] +E¢[X, u[x]]]} 

The representation of the first derivative in the new coordinates follows from 

Dt [U [x, u, e]] 
derivat = /. infini /. Dt [e] -+ 0; 

Dt[X[x, u, ell 
derivat / / LieTraditionalForm 

U x + E (ux ¢u + ¢x) 

1 + E (ux ';U + ';x) 

Since symmetry analysis in an infinitesimal representation is based on the linear 
dependence of the group parameter E, we can restrict our considerations to first-order 
terms in E. The infinitesimal part of the transformation follows by a Taylor expansion 
in E around E = O. The result is 

infinider = Normal [Expand [Series [derivat, 

{e, 0, l}]]]; infinider / / LieTradi tionalForm 
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The representation of the infinitesimal transformation of the slope shows that the old 
derivative is changed in the new coordinates by four parts, depending on derivatives 
of the infinitesimals g and cpo The representation of the prolonged transformation is 
thus given by 

prolongation = {X -+ Function [{x, u, e}, 

x + e {[x, u] ] , 

U-+Function[{x, u, e}, u[x] +et/J[x, u]], 

U' -+ Function [{x, u, e}, w] /. 

w -+ (infinider / • u [x] -+ u) } ; prolongation / / L'l'F 

U == U + E <P 
X == x + E ~ 

U' ==Ux+E (ux (~ux~u~~x) +ux<Pu+<Px) 

The second prolongation of the infinitesimal transformation is derived by 

oxderivat 
dderivat = -------- /. infini; 

oxX[x, u[x], e] 

dderivat / / Lie'l'raditionalForm 

1 

1 + E (ux ~u + ~x) 

(~(E (Ux+E (ux<Pu+<Px)) (~uux,x+ux~x,u+ux (ux~u,u+~x,u) +~x,x)) / 

(1 + E (ux ~u + ~x) ) 2 + 

and a Taylor expansion of the result up to first order 

infinidder = Normal [Expand [Series [dderivat, {e, 0, 1}]]]; 

infinidder / / Lie'l'raditionalForm 

Ux,x + E (2 (~ux ~u ~ ~x) ux,x + <Pu ux,x ~ 

Ux (~u ux,x + Ux ~x,u + Ux (ux ~u,u + ~x,u) + ~x,x) + Ux <Px,u + 

Ux (ux<Pu,u+<Px,u) + <Px,x) 

The second-order prolongation is thus given by 

Append'l'o[prolongation, 

U" -+ Function [{x, u, e}, w] /. 

w -+ (infinidder /. u[x] -+ u)]; prolongation / / L'l'F 

U == U + E <P 
X == x + E ~ 

U' == Ux + E (ux (~ux ~u ~ ~x) + Ux <Pu + <Px) 

U" == Ux,x + E (2 (~ux ~u ~ ~x) ux,x + <Pu ux,x ~ 

Ux (~u ux,x + Ux ~x,u + Ux (ux ~u,u + ~x,u) + ~x,x) + Ux <Px,u + 

Ux (ux <Pu,u + <Px,u) + <Px,x) 
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Now, we know the infinitesimal transformation rules allowing a change of the 
coordinates, including the transformation of the first and second derivatives. It 
becomes obvious from the representation of the infinitesimal transformation that only 
the infinitesimals g and </J have to be known to find an explicit representation of the 
transformation. Some examples will demonstrate the calculation of the prolongations. 

Example 1 

As a first example, let us again consider the group of rotation whose infinitesimals 
are given by 

rotation = {{ ~ li'unction[ {x, u}, -u], 

tP ~ Function [{x, u}, x] } 

{.; ~ Function [{x, u}, -u], ¢ ~ Function [{x, u}, x] } 

The related infinitesimal transformations for the variables and the derivatives are 
obtained in its explicit form for the group of rotation if we insert the infinitesimals 
into the prolongation formulas and the transformations 

infirot = {X[x, u, e], U[x, u, e], 

u' [x, u, e], U" [x, u, e]} /. prolongation /. 

rotation; infirot / / LieTraditionall'orm 

Thus, the derivatives of a function are replaced by the derivative itself plus 
infinitesimal terms quadratic in the derivative of u. So far, we demonstrated the 
calculation of the prolongation by directly using the formulas derived above. In 
Section 3.7, we already discussed the general prolongation formula for a 
q x p-dimensional manifold. The following example will recall the application of the 
function Prolongation[]. Be sure that the functions Prolongation[] and FrechetD[] are 
known by Mathematica for the following example. 0 

Example 2 

The second example will serve to show how a vector field in I x 1 dimensions is 
calculated by using the function Prolongation[]. We assume that the infinitesimals of 
the group are known; e.g., an inhomogeneous scaling group with 

iscaling = {{l ~ Function [{x, u}, x], 

tPl ~ Function [{x, u}, 3 u] } 

{';1 ~ Function [{x, u}, x], ¢1 ~ Function [{x, u}, 3 u] } 
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The vector field for a function f depending on a second derivative is thus given by 

veetorfield = Prolongation [ {f [x, u [x], CJx u [x], CJxox u [x] ] }, 

{u}, {x}] /. u [x] .... u /. isealing; 

veetorfield / / Lie'l'raditionall!'orm 

{fx ~1 + fu rf>1 - fux u; (~du - fux U x (~dx + fux U x (rf>d u + fux (rf>d x -

3 fux,x lix (~du ux,x - 2 fux,x (~dx ux,x + fux,x (rf>d u ux,x-

fux,x u; (~du,u - 2 fux,x U; (~dx,u - fux,x U x (~d X,x + 

fux,x u; (rf>1) U,u + 2 fux,x U x (rf>1) X,u + fux,x (rf>1) x,x} 

Contrary to the interactive calculation, we get the vector field as a scalar. The 
coefficients of the derivatives of f contain the infonnation on the infinitesimals and 
their prolongations. The replacement of u[x] -+ u is necessary since we defined the 
infinitesimals as functions of x and u. The function Prolongation[], however, creates 
the infinitesimals depending on u[x]. The prolongation procedure discussed so far is 
usable to extend the space of variables to higher orders of derivatives as well. D 

So far, we introduced basic concepts of symmetry analysis for functions. We 
discussed the tenn of a point transformation, an invariant, and the meaning of the 
vector field. These tenns are not only useful for functions but also important in the 
examination of differential equations. The following sections will discuss these 
subjects in connection with ordinary differential equations. 

4.3. Symmetry Transformations of Differential Equations 

In this section, we collect the main tools for determining the symmetries of 
differential equations. We define the notion of symmetry for a differential equation 
and discuss the main properties of the symmetry group. Using these definitions, we 
interactively calculate the infinitesimal symmetries of differential equations. We also 
introduce the notion of canonical variables useful in deriving the solution of a 
differential equation. Let us first start with the definition of a symmetry group. 

4.3.1 Definition of a Symmetry Group 

Let G be a group of point transformations and let Gj, G2 , ••• be its first, second, ... 
prolongation. Then, we define the symmetry of a differential equation as 
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Definition: Symmetry of a differential equation 

A group G of point transfonnations is a symmetry group of an nth-order ordinary 
differential equation 

( du If' U) 
60 x, u(x), dx' ... , dxn = 0 (4.9) 

or (4.9) admits G if the nth extended manifold mn is invariant with respect to the nth 
prolongation Gn of the group G. 0 

This definition actually contains the special case for first-order ordinary differential 
equations. For this special type of equation, we will discuss the application of the 
definition. A first-order differential equation 

6o(X, u(x), u' (x)) = 0 (4.10) 

admits a group G if the once extended manifold ml, the surface in the space x, u, u', 
is invariant with respect to the first prolongation G j of G. This means that equation 
(4.10) is invariant under the coordinate transfonnation X = X(x, u, E) and 
U = U(x, U, E). The invariance condition can be fonnulated as 

6o(X, U, U') = 6o(X, u, u'). (4.11) 

This kind of relation also holds for the general case of an nth-order equation. Lie 
demonstrated that the invariance condition of the differential equation has a direct 
consequence for the solutions. He summarized this behavior in a theorem which is 
one of the main properties of a symmetry group. 

4.3.2 Main Properties of Symmetry Groups 

Let us consider again the case of an nth-order ordinary differential equation. We 
represent the equation in such a way that ~ nU is the left hand side of the general 

expression. The general equation reads 

If'u 
~ = f(x, u(x), u'(x), ... , u(n-l) (x)), (4.12) 

with a smooth function f depending on the derivatives up to (n - l)st order, u(n-l). 

The main property of a symmetry group first proved by Lie in 1891 is the following 
(cf. Scheffers and Lie [1891] p. 352, Theorem 1): 
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Theorem: Symmetry transformation 

A group G is a symmetry group of an nth-order ordinary differential equation if and 
only if G converts any solution of the equation 

d"u f ' dX' = (x, u(x), u (x), ... , u(n-l) (x)) (4.13) 

into a solution of the same equation. 0 

This theorem is one of the cornerstones of Lie's theory. It serves as the starting point 
for the calculation of the symmetries. 

4.3.3 Calculation of the Infinitesimal Symmetries 

We already mentioned that a sufficient condition for invariance is the vanishing of 
the extended tangent vector field applied to the differential equation, meaning that we 
use the condition pr(k) v(A) as the defining equation for the infinitesimals gj and epa. 
This condition follows from the invariance of the differential equations A = 0 under 
the transformation of independent and dependent variables. The derivation of this 
invariance criterion follows from a similar calculation as presented for functions in 
Section 4.2.3. The invariance condition of the tangent vector field supplies a system 
of equations serving as the determining system for the infinitesimals. We will see that 
this system is linear but coupled in gj and epa. As mentioned in Section 3.7, the 
invariance condition is closely related to the prolongation of the vector field. 

Before discussing the application, let us describe the algorithm of constructing 
infinitesimal symmetries. For first-order equations, it is known that an infinite 
number of symmetries always exists (cf. Stephani [1989]). For special cases, 
however, we find so-called conformal symmetries which are a subset of the possible 
symmetries (cf. Olver [1986] and Hydon [1994]). Because of these difficulties, it is 
more convenient to start our discussion with second-order equations: 

A(X, u(x), u', un) = o. (4.14) 

Using the definition of the symmetry group in connection with the extended vector 
field, 

Tangent [ll._] : = ~ [XI u] ax ll. + C/J [x, u] au ll. + C/J(1) [x, u] ap ll. + 

C/J(2) [XI u] a'1.ll. 
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where p and q are abbreviations for the first and second derivatives of u. The 
infinitesimal invariance criterion contained in equation (4.11) takes the form 

pr(k) veil) I.~=o = o. (4.15) 

This expression follows by expanding (4.11) around the identity E = 0 and taking into 
account the prolongation formulas for the derivatives. A detailed derivation of this 
formula can be found by Olver [1986] or BIuman and Kumei [1989]. The general 
equation (4.15) reduces for a second-order ODE to the relation 

Tangent [ll. [x, u, p, q]] == 0 /. ll. [_l -+ 0 / / LieTraditionalPorm 

where cp] and CP2 are the fIrst and second components of the prolongation, 
respectively. They are computed via the prolongation formula given in Section 3.7. 
The equation derived is called the determining equation for the group admitted by the 
ordinary differential equation. 

If the differential equation is written in the representation of (4.12) 

equat = q - f [x, u, p] 

q-f[x,u,pj 

we can derive the explicit fonn of the determining equation by applying the twice 
extended vector field on this expression: 

determining = Tangent [equat] ; determining / / LTF 

The remaining unknowns in this result are the first and second extensions cp] and CP2' 
We are able to extract the representation of cp] and CP2 from the variable prolongation 
calculated in the section on prolongation of transformations. Using the variables X, 
U, U', and U" and searching for the coefficients of the group parameter E, we end up 
with the infinitesimals ~ and rfJ and the fIrst and second extension cp] and CP2: 

prol = Coefficient [(X[x, u, e), U[x, u, e), 

U' [x, u, el, Un [x, u, e)} /. prolongation, el /. 

u [x] -+ u; prol / / LTF 
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~ == 0 

¢ == 0 

u x (-ux ~u - ~x) + u x ¢u + ¢x == 0 

2 (-ux ~u - ~x) ux,x + ¢u ux,x-

o 

U x (~u ux,x + U x ~x,u + U x (ux ~u,u + ~x,u) + ~x,x) + 

Ux ¢x,u + U x (ux ¢u,u + ¢x,u) + ¢x,x == 

For our calculations, we only need the expressions representing ifJ) and ifJ2 given by 
the third and fourth element of the list prol. In the next step, we define two rules 
representing ifJ) and ifJ2 by 

rulel = {4Jl -+ Function [{x, u}, w] , 

4J2 -+ Function [{x, u}, v] } /. 

{w -+ prol[311, v -+ prol[411} 

{¢, .... Function [ {x, u}, u' [xl ¢10,1) [x, ul + 

u' [xl (-u' [xl ~IO,,) [x, ul - ~ll,O) [x, ul) + ¢lloO) [x, ull, 

¢2 .... Function [{x, u}, 

u" [xl ¢10,1) [x, ul + 2 u" [xl (-u' [xl ~IO,,) [x, ul - ~ll,O) [x, ul) + 

u' [xl ¢Ilo 1) [x, ul + u' [xl (u' [xl ¢ 10, 2) [x, ul + ¢ll,l) [x, ul ) -

u' [xl (u" [xl ~10,1) [x, ul + u' [xl ~llo1) [x, ul + 

u' [xl (u' [xl ~IO, 2) [x, ul + ~11, 1) [x, ul) + ~12, 0) [x, ul) + 

¢12,0) [x, ull} 

These expressions are used in the determining equation to eliminate ifJ) and ifJ2 : 

determ = determining /. rulel; determ / / LTF 

-¢ fu - ~ fx - fp (ux (-ux ~u - ~x) + U x ¢u + ¢x) + 2 (-ux ~u - ~x) Ux,x + 

¢u Ux,x -Ux (~u Ux,x +ux ~x,u +ux (ux ~u,u + ~x,u) + ~x,x) + 

U x ¢x,u + Ux (ux ¢u,u + ¢x,u) + ¢x,x == 

o 

The above calculations deliver an expression containing the determining equations of 
the infinitesimals q and ifJ in an implicit way. The main characteristic of the result is 
the dependence on derivatives of u. However, we know that the equation equal has to 
be satisfied on the manifold m. This allows us to eliminate certain derivatives by 
using the equation itself. By replacing one type of derivative, we eliminate redundant 
information in the expression determ. The replacement is carried out by 
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dete:r:mi = dete:r:m I. (Solve [equat == 0, q] I. 
q -+ 0 {x, 2} U [x] ) ; dete:r:mi II LTF 

-¢ fu - ~ fx + 

o 

2 f (-ux ~u - ~x) + f ¢u - fp (ux (-ux ~u - ~x) + U x ¢u + ¢x) -

U x (f ~u + U x ~x,u + U x (ux ~u,u + ~x,u) + ~x,x) + 

U x ¢x,u + U x (ux ¢u,u + ¢x,u) + ¢x,x == 

Here /[x, u, p] is a known function. On the other hand, the infinitesimals g and ¢ are 
unknown functions of x and u. Thus, the expressions containing first-order 
derivatives of u are independent from each other. This independence creates a system 
of determining equations in the variables x and u, An additional feature of these 
equations is that we find more determining equations than unknown functions g and 
¢. Thus, the system of determining equations is overdetermined. Solving this system, 
we find the infinitesimal symmetries g and ¢ of the equation. 

Example 1 

Let us examine the infinitesimal symmetries of the second-order equation 

{jx U [x] 
dequ2 = {j{x,2} u[x] + - Exp[u[x]]; dequ2 II LTF 

x 

_ EU + U x + U = = 0 x x,x 

We use here the function L TF[] to represent the equation in mathematcal index 
notation. The highly nonlinear ordinary differential equation of second order has a 
right-hand side / given by 

p 
subrule= f-+Function[{x, u, p}, Exp[u] --] 

x 

f --> Function [ {x, u, p}, Exp [ul - ~ 1 

The defining equation for the infinitesimals follows by inserting the rule for / into 
the expression determi and replacing the derivatives p by u' 

detexl = dete:r:mi I. subrule I. {p -+ {jx u [x] }; detexl II LTF 

_Eu¢_ ~ux +2 (EU_~) (-u ~ _~) + 
x2 X x u x 

o 

( u U X ) '" U x (-ux ~u - ~x) + U x ¢u + ¢x 
E - X 'l'u + X -

U x ((Eu - -; ) ~u + U x ~x,u + U x (ux ~u,u + ~x,u) + ~x,x) + 

U x ¢x,u + U x (ux ¢u,u + rPx,u) + ¢x,x == 
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The resulting expression is a third-degree polynomial in the derivatives of u'. Since 
the infinitesimals g and if> do not depend on the derivatives the determining equations 
decompose into the following three relations. These equations follow by setting the 
coefficients of the various powers of u' equal to zero 

tabl = Flatten [Table [Coefficient [Expand [detexl) , 

(oxu[x)i), {i, 3, 1, -l}));tabl//LTF 

-.;u,u == 0 

2 ';u 
-x- - 2 ';x,u + ¢u,u == 0 

- ~ - 3 EU ';u + -; - ';x,x + 2 ¢x,u == 0 

The fourth equation free of any u' is derived by the following line 

AppendTo [tabl, 

Expand[detexl- PlusH (tabl. {(oxU[X)3, 

(ox U [X])2,ox U [X)}»)); 

tabl = Flatten [tabl) ; tabl / / LTF 

-.;u,u == 0 

2 ';u 
-x- - 2 ';x,u + ¢u,u == 0 

- ~ - 3 EU ';u + -; - ';x,x + 2 ¢x,u == 0 

- EU .+. - 2 EU ; + EU '+' + ~ + .+. - - 0 If' Sx \flu X '+'x,x--

These four equations are the defining equations for the infinitesimals g and ¢. The 
next step in finding the symmetries is the solution of these equations. We do this step 
by step. If we integrate the first and second equation, we find the general expressions 
for the solution 

rule2 = {~-+ Function [{x, u}, p [x) u + a [x) ) , 

( p [x) ) 
<p -+ Function [ {x, u}, Ox P [x) + -x- u 2 + 

(2 (Ox a [x) - a ~) ) + q [x) ) u + b [x) ] } 

{.; --7 Function [{x, u}, P [xl u + a [xll, ¢ --7 Function [ {x, u}, 

(oxP[X l + P~Xl) u 2 + (2 (Oxa[Xl- a~xl) +q[Xl) u+b[xl]} 

where p, q, a, and b are arbitrary functions of x. Substituting this result into the 
determining equations in tabl, we get a reduced set of determining equations 
connecting the arbitrary functions a(x), p(x), b(x), and q(x). 
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tab2 = Expand [tabl /. rule2]; tab2 / / LTF 

True 

4 P == 0 
x 

U 3a 5pu 3ax 5upx 
-3 E p + -;(2 -~ - -x- + --x- + 2 <Ix + 3 ax,x + 3 u Px,x == 0 

b U U U 2au pu 2 2aEu 2aEu u 2Eu pu 
- E +E q-E qU-~+--;(3---x-+ x + x 

o 

EU P u 2 2 U 2 u ax b x u 2 u 2 Px 
X - E u ax + ~ + x - E u Px -~ + 

uqx b 
-x- + X,X + 

2 u 2 Px,x 2 2 
+ U <lx,x + U ax,x,x + U Px,x,x == x 

The second equation shows us that the function p(x) has to vanish identically to 
satisfy the equation. Using this fact in the representation of the infinitesimals, we can 
simplify the results to 

rule3 = rule2 /. p -+ Function [x, 0] 

{f,-7FUnction[{x, u}, Function [x, Ol[xlu+a[xll, r:P-7FUnction[ 

( Function [x, 0 1 [Xl) 2 
{x, u}, Ox Function [x, 0 1 [xl + x u + 

( 2 (ox a [xl - a ~l ) + q [Xl) u + b [xl] } 

These expressions can be used again to simplify the set of the determining equations 

tab2 = Expand[tabl /. rule3]; tab2 / / LTF 

True 

True 

3 a 3 ax 
-;{2 - -x- + 2 <Ix + 3 ax,x == 0 

b u u u 2au 2aEu 
- E +E q-E qu-~--x--+ 

o 

A second glance at these equations shows us that a combination of x-dependent 
auxiliary functions a, b, and q occur in connection with u-dependent coefficients. 
Since the auxiliary functions do not depend on u, the determining equations 
decompose into another set of equations. Let us extract the equations from the terms 
containing factors like u Exp[u] and Exp[u] . 
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coefl = DeleteCases [Flatten [ 

Table [Coefficient [ 

tab2, Exp[u] u i ], {i, 1, 0, -1}] /. u -+ 0], 0]; coefl / / LTP 

2a 
-q + -----x- - 2 ax == 0 

2a 
-b + q - -----x- == 0 

The remaining set of equations follow from the terms containing pure coefficients 
in u: 

AppendTo [coef1, 

DeleteCases[Coefficient[ 

tab2 /. I£xp[u] -+ 0, u], 0]]; coef1 / / Flatten / / LTF 

2a 
-q + -----x- - 2 ax == 0 

2a 
-b + q - -- == 0 

x 
2a 2ax ~ 

- X3 + ~ + x + ~,x + 2 ax,x,x == 0 

The last set of equations follows from those temlS which are free of u: 

AppendTo[coef1, DeleteCases[ 

tab2 /. {Exp[u] -+ 0, U -+ O}, 0]]; coef1 / / Flatten / / LTP 

2a 
-q + -----x- - 2 ax == 0 

2a 
-b + q - -- == 0 

x 
2a 2ax ~ 

- X3 + ~ + x + ~,x + 2 ax,x,x == 0 

3 a 3 ax 
--;{2 - ----x- + 2 ~ + 3 ax,x == 0 

b x X +bx,x == 0 

Thus, the complete set of determining equations reads 

coefl = Flatten [coef1] ; coef1 / / LTP 
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2a 
-q + --x- - 2 ax == a 

2a 
"-b + q - --x- == a 

2a 2ax ~ 
-~ + ~ + x + ~,x + 2 ax,x,x == a 
3 a 3 ax 
--;{2 - ---x- + 2 ~ + 3 ax,x == a 
b x 
X +bx,x == a 

To find the most general solution of these equations, we start by solving the last 
equation of this set. This second-order equation in b has the solution 

so11 = I!'latten[DSo1ve [Last [coefl] == 0, h, x]] 

{b -+ (C[ 2] + C [1] Log [ # 1] &) } 

As expected, the solution contains two integrating constants C[l] and C[2]. Applying 
this solution to the remaining equations 

coef2 = coefl /. Boll; coef2 / / LTI!' 

2a 
-q + --x- - 2 ax == a 

2a 
q- --x- -C[2] -C[l] Log[x] == 0 

2a 2ax ~ 
-~ + ~ + x + ~,x + 2 ax,x,x == a 
3 a 3 ax 
X2 - ---x- + 2 ~ + 3 ax,x == a 
True 

simplifies the expressions. We find determining equations for a and q. If we examine 
the equations, we realize that the second equation is a purely algebraic equation 
which can be solved either for a or q. We decide here to solve the equation for a: 

8012 =l!'latten[Solve[coef2[2D == 0, a[x]] /. a[x] ... w] 

1 
{ w -+ - "2 x (C [2] + C [1] Log [x] - q [x]) } 

For further use of this solution, we convert the result into a pure function. 

80121 = a ... I!'unction[x, w] /. Bo12 

a-7FUnction[x, -; x (C[2] +C[l] Log[x]-q[x])] 

The application of this solution to the determining equations simplifies the equations 
to an overdetermined system in q: 
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coef3 = SillliPl.ify[coef2 I. 80121]; coef3 II LTP 

-q+C[l] -xqx == 0 

True 

2~ -----x- + 4 ~,x + x qx,x,x == 0 

1 
2 (7 ~ + 3 x ~,x) == 0 

True 

If we examine these equations, we observe that all three equations are connected by 
the derivatives of q. Solving the first equation with respect to q' and substituting the 
result into the rest gives us 

hel.l = Sol.ve[coef3[1] == 0, "xq[x]] 

{{q'[x] ~_ -C[l]x+q[x]}} 

coef3 = platten [coef3 I. hell] ; coef3 II LTP 

True 
True 

2 (q-C[l]l 
x 2 

+ 4 qx,x + x qx,x,x == 0 

~ (_7 (q-xC[l]) +3X~,x)==O 

True 

a system of two coupled equations which are connected by q". The solution of the 
second equation with respect to q" and the reinsertion of the result into the equations 
gives 

he12 = Platten [Sol.ve [coef3[4.] == 0, O{x.2) q[x]]] 

{ "[] _ 7 (C[l] - q[x]) } 
q x ~ 3 x2 

coef3 = Pl.atten [Simplify [coef3 I. hel.2]]; coef3 II LTP 

True 
True 

22 q- 22 C[l] + 3 x 3 ~,x,x == 0 
3 x 2 

True 
True 

a single equation of third order in q. One solution of this remaining equation is given 
by a constant q[x] = C[l]. Thus, we can define q as 
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Bo13 = q .... Function [x, C [1] ] 

q~Function[x, C[l]] 

We check this solution by 

coef3 /. Bo13 

to, 0, 0, 0, O} 

The infinitesimals g and ¢J are thus given by 

!nfini = Simplify [ {~[x, u], ~ [x, u]} /. 

rule3 /. Boll/. 80121 /. Bo13] 

{- ~ x (-C[l] +C[2] +C[l] Log [x]) , C[2] +C[l] Log[x]} 

Thus, the infinitesimals depend on two arbitrary parameters C[1] and C[2] 
representing the group parameters. In view of the linearity of the detennining 
equations, the general solution can be represented as a linear combination of two 
independent solutions 

nfinil = infini /. {C[l] -+ 1, C[2] .... O} 

1 { -"2 x (-1 + Log [x] ), Log [x] } 

and 

nfini2 = infini /. {C [1] .... 0, C [2] -+ 1} 

{-~,1} 

This means that our original equation admits two linearly independent operators and 
that we have to consider a two-dimensional vector space with the basis given 
above.D 

The example discussed shows that the derivation of the determining equations is very 
laborious when done interactively. Therefore, it is our goal to present a procedure 
which automatically delivers at least a prolongation of the equation. 

We already know that the prolongation is related to an expansion of the 
infinitesimals. The actual connection is a special form of a derivative known as 
Frechet derivative. The definition of a Frechet derivative was introduced in Chapter 
3. Here, we will shortly recall the definition in an appropriate form applicable on 
ordinary differential equations. A Frechet derivative is a generalization of an ordinary 
derivative including a weight of the differential. The symbolic definition is 
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d 
Dp(Q) = dE P(u + E Q(u» 1.=0' (4.16) 

In MathLie this definition is realized by the function FrechetD[]. 

The operational meaning of equation (4.16) is that the dependent variables are 
replaced by their variations in the support function P. The dependent variables are 
replaced by the variables and by the test function Q multiplied by E. Mter the 
substitution a differentiation with respect to E is carried out and finally we set E = O. 
This relation defined in general for an r-dimensional support function P and for a 
q-dimensional test function Q allows a very efficient implementation in Mathematica. 

In Section 3.7, we discussed the connection between the prolongation and the 
Frechet derivative. This relation is given by 

p 

pr(k) v(A) = Da(Q) + 2:~i Di(A) (4.17) 
i=l 

where the test function Q is a combination of the infinitesimals ~ and <p. 

a = 1,2, ... , q. (4.18) 

The actual invariance condition for a given system of differential equations is then 
given by 

(4.19) 

The algorithm for calculating the prolongation now consists of three steps. These 
steps are contained in equations (4.17)-(4.19). They are verbally expressed by the 
following: 

1. Define the test functions Q using the infinitesimals as given in (4.18). 

2. Calculate the Frechet derivative and the complete derivative by equation (4.16). 

3. Apply the side conditions (4.18) and the original equation to the result. 

The three steps of the calculation for an ordinary differential equation are collected in 
the function ProlongationODE[]. The function ProlongationODE[] needs the 
equation, the dependent and independent variables, as input parameters. The function 
is written in such a form that only one dependent and one independent variable is 
allowed. The general definition of ProlongationODE[] is given in Section 3.7. 



136 Symmetries of Ordinary Differential Equations 

Clear[ProlongationODE]; 
ProlongationODB[equations_, dependent_, 

independent_] : = Block [ 
{vars, eta, testfunction, mainrule, prolong, 

ux, x, w}, 

vars = Flatten [Join[ 

{dependent@@{independent}}, {independent}]]; 

eta = 9»@@vars - '@@vars aindependent dependent@@{independent}; 

test function = Unique [nw$xn] ; 

mainrule = ux -+ Function [x, w] ; 

prolong = FrechetD [ {equations}, {dependent}, 

{independent}, {testfunction}]; 

prolong = prolong I. (mainrule I . 
{ux -+ testfunction, x -+ independent, 

w -+ eta}); 
prolong = Expand [Apply [Plus, prolong, 1] + 

'@@vars aindependent equations]] 

The action of the function ProlongationODE[] is demonstrated by applying it to some 
examples. 

Example 1 

Let us consider the general ordinary differential equation 

ode3 = ax u [x] - F [u [x] , x] ; ode3 II LTF 

-F + U x == 0 

The function ProlongationODE[] actually only treats the left-hand side of the 
equation ax u - F(x, u) = O. The application of the function to the equation provides 
the following information: 

prolode3 = ProlongationODE[ode3, u, x]; prolode3 II LTF 

The resulting expression contains derivatives of the arbitrary function F and the 
infinitesimals. We notice that the derivative of the dependent variable u occurs in 
different locations. We know that the first derivative of u can be expressed by the 
differential equation itself. In this way, we can replace the first derivative by F: 

pode3 = prolode3 I. 0,. u [x] -+ F [u [x] , x] ; pode3 II LTF 
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Thus, we eliminated the redundant information contained in the original differential 
equation. Since the prolonged vector field must vanish according to equation (4.19), 
we get conditions determining the infinitesimals. The arbitrary function F in our 
example is known for a certain type of equation. Thus, the partial differential 
equation for g and ¢ has solutions g = g(x, u) and ¢ = ¢(x, u). The three steps of 
deriving the prolongation can be simplified in Mathematica by 

Map [# == O&:, ProlongationODE [odel, u , x]] /. 

Solve [odel == 0 I ~x U [xl] / / LieTraditionalForm / / TableForm 

With this expression, we are able to derive the invariance condition for any ordinary 
differential equation. A specific example may demonstrate the derivation of the 
invariance condition. 0 

Example 2 

Let us assume that we have to find the invariance properties of the equation 

ode4 = ~x U [x] - g [u [x] 1 f [x] ; 

Map[# == O&:, {ode4}] / / LieTraditionall"orm / / Tablel"orm 

-f g + U x == 0 

where f and g are arbitrary functions of the independent and dependent variables, 
respectively. The invariance condition for this differential equation is given by 

pode4 = prolongationODE[ode4 , u , x] /. 

Solve [ode4 == 0 , ~x U [x]]; pode4 / / l"latten / / LTI" 

A solution satisfying the invariance equation is given by 

1 
infiode4 = {~-+ l"unction [{u , x} I --] 

f [x] I 

q, -+ l"unction [{u , x} I O]} 

{.; --) Function [{u, x}, f [lXl 1 ' rjJ --) Function [{u, x}, 0 J } 

We can check this result directly by inserting the solutions into the invariance 
condition 

pode4 / • U [xl -+ U /. infiode4 

{ { O} } 
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The result demonstrates that the given solutions satisfy the invariance condition. 0 

A special note on the arguments of functions is appropriate here. In the above 
calculations, we used the functions F, ~, and ¢J depending on independent and 
dependent variables. In paper and pencil calculations, we are free to interchange 
these arguments because we know that these functions are the same, independent of 
the order of the arguments. However, in a symbolic calculation, we cannot change 
the slots of the variables, since a computer does not know how to handle the same 
function with interchanged arguments. So a good rule is to fix the arguments at the 
beginning of the calculation and to use the same order in all calculations. 

In the above example, the infinitesimals are given. How these solutions are derived 
from the invariance condition will be discussed below . We saw in the example 
discussed that we can always express the invariance condition of first-order 
differential equations free of any derivative. One consequence of this observation is 
that a first-order differential equation actually has an infinite number of symmetries. 
This behavior can be read off directly from relation pode3, where ~ is connected by 
¢J. However, there are exceptions to this statement where only a finite number of 
symmetries exist. 

Example 3 

The derivation of a finite number of symmetries can be best demonstrated with a 
higher-order differential equation. In the examples above we restricted our 
discussions to first-order differential equations. If one has to examine higher-order 
differential equations, we have to extend or prolong the tangent vector field to the 
order of the differential equation; e.g., to the second prolongation for second-order 
differential equations. To demonstrate the calculation let us examine the following 
general second-order equation 

odeS = CJ{X,2} U [xl - P [x, u [xl, CJx u [xl l; odeS // L'l'P 

-F + Ux,x == 0 

The invariance condition (4.19) for this equation stays the same. The only difference 
is the higher order of differentiation which the function ProlongationODE[] detects 
by itself. 

pedeS = pro1ongationODB[odeS, u, xl /. 
So1ve [odeS == 0, CJ{x,Z} u [xl 1 ; podeS // P1atten // L'l'P 

-cP Fu - .; Fx - 3 F UX ';U + Fux u; ';U - 2 F ';X + Fux UX ';X + F cPu - Fux Ux cPu -
Fux cPx - u~ ';u,u - 2 u; ';u,x - ux ';x,x + u; cPu,u + 2 ux cPu,x + cPx,x == 

o 
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From this relation we have to determine ~ and ¢J. The equation found is an identity in 
x, u and Ux • As a consequence of the point symmetries the infinitesimals are 
independent of Ux • This condition will split the general relation into several equations 
according to the different dependence of its parts on u'. We see that the same function 
ProlongationODE[] is useful to calculate the invariance relation (4.19) independent 
of the order of differentiation. In Section 4.4.2 on second-order differential equations 
we will show how we can extract the determining equations from such a relation. For 
the moment we stop at this point and discuss another useful tool called canonical 
variables. 

4.3.4 Canonical Variables 

In his work Lie pointed out that the introduction of suitable variables will drastically 
simplify the representation of a group. We discuss here the so-called canonical 
variables. On the other hand, canonical variables are a very efficient tool in the 
solution of ordinary differential equations. In this section we consider the 
distinguished situation of having a group consisting of two independent infinitesimal 
transformations. 

Two infinitesimal transformations given by their vector fields \\ and )12 are 
independent from each other if the following relations do not exist 

(4.20) 

where c is a constant, and the Lie product delivers 

(4.21) 

where c) and C2 are constants again. The second relation can be simplified by 
assuming that the two independent transformations can be used to represent the 
product in a different way. If we assume that c) and C2 are equal to zero, we get 

(4.22) 

On the other hand, we can assume that the infinitesimal transformations are given by 
a linear combination of the transformations by 

(4.23) 

where ai and hi, i = 1, 2, are constants. In these cases, the group is represented by 
commuting infinitesimal transformations. If, for example, c) '* 0, we represent the 
two infinitesimal transformations by 
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and 

1 ~ 
112 = -V2· 

cI 

By using this representation, we can rewrite the above condition as 

Thus, we can write down the following theorem 

Theorem: Canonical variables 

(4.24) 

(4.25) 

(4.26) 

Each two-dimensional group of infinitesimal transformations VI and V2 can be used to 
represent the product of the two transformations in each of the following forms: 

(4.27) 

or 

(4.28) 

Each of the two results is independent from the other. 0 

This theorem divides the two-dimensional groups in two classes. Each of these two 
classes can be divided into two subclasses. 

Canonical variables now follow from the definition: 

Definition: Canonical variable 

Every one-parameter group of transformations reduces to the group of 
translations f = t + E and w = w, with the vector field 

V = at (4.29) 

by a suitable change of variables t = t(x, u) and w = w(x, u). The variables t and w 

are the canonical variables. 0 

The proof of this theorem follows from the fact that the tangent vector field in the 
original variables transforms according to the formula 
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v = (vt)Ot + (v w)Ow . (4.30) 

In other words, canonical variables follow from the solution of the following linear 
partial differential equations. These two equations represent the invariance of the 
transformation 

canonicalBquations = {, [x, u] Ox t [x, u] + 

,,[x, u] Ou t [x, u] == 1, 

,[x, u] oxw[x, u] +,,[x, u] ouw[x, u] == OJ; 

canonicalBquationsIILieTraditiODalro~/ITablero~ 

¢ tu +, tx == 1 
¢wu + ,wx == 0 

The two equations follow from the definition by applying the tangent vector v to the 
canonical variables t and w 

vt = 1, vw = O. (4.31) 

The relations (4.24)-(4.26) define the canonical variables and present a way how 
these variables can be determined. The following examples discuss the derivation of 
canonical variables. First, we carry out a manual calculation of the canonical 
variables, and at the end of the section, we discuss an automatic procedure. 

Example 1 

To see how these concepts work in practical applications, let us examine a specific 
problem. We will examine a scaling symmetry represented by the vector field 

veccan = {, .... Punction [{x, u}, x], 
til .... l'unction [{x, u}, -u]} 

{' ~ Function [ {x, u}, xl, r/J ~ Function [{x, u}, -ul} 

For this example, the defining equations for the canonical variables reduce to 

caneq = canonicalBquations I • veccan; 
caneq II LieTraditionalro~ II Tablero~ 

-u tu + x tx == 1 
-uwu +xWx == 0 

These two linear partial differential equations are solved by using the function 

DSolve[] capable of solving first-order partial differential equations. The solution for 
t follows by 
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solei = DSolve [eaneq[l] I t [XI u] I {XI u}] 

{{t[x, u] -7 Log[x] +C[l] lux]}} 

and the solution for w reads 

sole2 = 0801.". [eaneq[2] I W[XI u] I {XI u}] 

{{w[x, u] -7C[l] [ux]}} 

The result for t logarithmically depends on x and allows an arbitrary function C[I] 
combining the two old variables x and u by a product. The second canonical variable 
w is given by an arbitrary function which also connects x and u by a product. Since 
we are only interested in a special solution of the defining equations, we can simplify 
the arbitrary function by 

rl = C[l] [ux] -+xu 

C[l] lux] -7UX 

For the inhomogeneous equation, we are mainly interested in a special solution. 
Thus, the general solution derived by the function DSolve[) reduces if we set the 
arbitrary function C[1][x, u] to zero. Applying the reasoning to our solutions, we get 

esol = Platten [ {solel/. C [1] [xu] -+ 0 , 

sole2 I. rl}] 

{t[x, u] -7 Log[x] , w[x, u] -7ux} 

We can check the derived result by inserting the solutions into the defining equations 
caneq. First, we have to transform the representation of the solutions into a pure 
function 

r2 = Thre.d[{t , w} -+ 

(!'Unction [{XI u} I 11] to) /0 ({t [XI u] I 

W[X, u]} /. esol)] 

{t -7 Function [{x, u}, Log [x]] , w -7 Function [{x, u}, u x] } 

The application of the result on the original equations gives us a list containing True 
for each equation: 

Simplify [eaneq /. r2] 

{True, True} 

This result shows that the solutions given in csol satisfy the defining equations for the 
canonical variables. D 
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Example 2 

Another example of great interest is the group of rotations. For this kind of symmetry 
group, the infinitesimals are given by 

veccan = {g -+ Function [{x, u}, -u], 

tP -+ Function [{x, u}, x]} 

{~-+ Function [{x, u}, -ul , cj; -+ Function [{x, u}, xl } 

The equations determining the canonical variables are thus given by 

caneq = canonicalEquations / • veeean; 

eaneq / / LieTraditionalForm / / TableForm 

x tu - u tx == 1 

xWu-uwx==O 

The solution for the new independent variable t follows from 

solct = DSolve [caneq[l], t [x, u], {x, u}] 

{ { t [x, u 1 -+ - ArcTan [ b 1 + C [ 1 1 [~ (- U 2 - x 2 ) 1 } , 

{t[x, ul -+ArcTan[ b 1 +C[ll [~ (_u2 _x2 ) l}} 

The new dependent variable w is determined by 

solew=DSolve[caneq[2], w[x, u], {x, u}] 

Again, we are only interested in a special solution which follows from 

solct = PowerExpand[solet[2] /. C[l] [_] -+ 0] 

{t[x, ul -+ ArcTan [ ~ l} 

The solution for w is extracted with 

solew = Flatten [solew /. C [1] [x_] -+ x] 

The complete expression of the canonical variables are thus 
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r3 = 'l'hread[{t, w} ... 

(I'u.DctioD [{x, u}, #1] &) 10 ({t [x, u], 

w[x, u]) I. {solct[l], solow[l]})] 

{t --+ Function [{x, u}, 

W --+ Function [{x, u}, 

ArcTan [ : J J, 
u 2 x 2 

-T-T]} 

The canonical variables of the rotation group are given by the ArcTan of x divided by 
u and the representation of a circle. 0 

Example 3 

Another kind of symmetry frequently encountered in problems is given by a 
projective group 

veccaD = {{ ... I'u.Dction [{x, u}, xu], 

4J ... I'u.Dction [{x, u}, u] } 

{~--+ Function [{x, u}, xu] , ¢ --) Function [{x, u}, u] } 

The corresponding determining equations are 

caneq = caDoDicalll:quatioDs I. veccan; 

caneq II Lie'1'raditionall'orm II Tablel'orm 

u tu + U x tx == 1 

u Wu + U x Wx = = 0 

We solve these equations by using the function DSolve[] for the first and second 
equations: 

solct = DSolve [caneq[l], t [x, u], {x, u}] 

{{t[x, u]--)Log[u] +C[l] [u-Log[x]]}} 

solow = DSolve [caneq[2], w[x, u], {x, u}] 

{{W[x, u] --+ C[ 1] [u - Log [x]]}} 

We extract a special solution from these expressions by 

csol = 1'1atteD[ {.olct I. C[l] L] ... 0, 

solow I. C [1] [x_] -+ x}] 

{t[x, u]--)Log[uJ, w[x, u]--)u-Log[x]} 

and transform the relations to 
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r4 = 'l'hread[ {t, w} -+ 

(I!'u.nction [{x, u}, #1] &) /@ ({t [x, u], 

w[x, u]} /. csol) ] 

{t ~ Function [{x, u}, Log lull , w ~ Function [{x, u}, u - Log [xll } 

The result is a representation of canonical variables for the projective group. 0 

The interactive steps of the calculation can be collected in a Mathematica function 

CanonicalVariables[]. The function needs the dependent and independent variables of 
the old coordinates. We also supply the infinitesimals for these coordinates as input 
information. The last two arguments contain lists of the new variable names for the 
dependent and independent variables, respectively. 

The function CanonicalVariables[] calculates the general transformation using the 
ftrst-order partial differential equations deftning the determining equations. The 
function is designed to generalize the theory in such a way that an arbitrary number 
of independent and dependent variables can be transformed. The returned result of 
the function CanonicalVariables[] is a list of solutions represented in a pure function 
form. The following code serves as the deftnition of this function. 

Clear [Canonica1variab1es] 
CaDOnica1Variab1es[depeDd_List, iDdep_List, 

xi_List, phi_List, 

ndepeDd_List, nindep_List] := 
Block [ {equations = {}, solutions = {}, 

ssol, rule, csol}, 

vara = Join [indep, depend]; 

infini = Join[xi, phi]; 

nvars = Join[ndepend, nindep]; 

newvars = 'l'ab1e [unique [ ·w$ • ] , 

{i, 1, Length[vars]}]; 

dnewv = 'l'ab1e[newvars[i] Mvars, 
{i, 1, Length[newvars]}]; 

rule = 'l'hread[newvars -+ nvars]; 

Do[ 
Append'l'o[equations, 

Length [vars] L: infini[i] BvarB [1D dnewv[j] == 0], 

{j, 1, Length[cmewv] -1}]; 

AppeDd'l'O[equations, 

Length [vAre J L: infini[i] Bvaro [1] Last [dnewv] == 1]; 
1=1 
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Do[ 

AppeDdTo[solutions, 

DSolve [equatiODs[i]l, dDewv[i]l, vars]], 

{i, 1, LeDgth[equations]}]; 

ssol = PowerBxpaDd[Table [solutions[i]l I. 
C [_] [x_] :-+ {xHi]l, 

{i, 1, Langth[solutiODs] - 1}]]; 

AppeDdTo [ssol, PowerBxpaDd[Last [solutions] I. 
C L] [_] -+ 0]] ; 

csol = Platten [ssol] I. rule; 

Thread [nvars -+ 

(PuDction[vars$, #1]&:) 1@(dDewv I. 

rule I. cso1)] I. vars$ -+ vars] 

The application of the function CanonicalVariables[] to different symmetry groups is 
demonstrated in the examples below. Let us fIrst examine an inhomogeneous scaling 
group for two variables u and x. The names of the new variables are w and t: 

CaDOnicalVariable. [{u}, {x}, {a x}, 

{bu}, {w}, {t}] 

{W ~ Function [{x, u}, u x-} 1, t -7 Function [ {x, u}, LOga[X] l} 

The result is a logarithmic dependence in the new independent variable t and a 
quotient of u and xl'/a . Another example is related to the projective group. The result 
becomes more readable if we apply the function LTF[]: 

Canonical Variables [ {u}, {x}, {~u}, {1}, 

{w}, {t}] I I L'l'P 
t == -u 

u 2 1 
w=="""2 + x 

A further example is the inhomogeneous translation group 

CanonicalVariab1es [{u}, {x}, {1}, {k}, 

{w}, {t}] IILTP 
x 

t == T 
-lu+kx 

W== - 1 

The symmetry of rotation is connected with the canonical variables 

CaDODicalVariables [{u}, {x}, {u}, {-x}, 

{w}, {t}] I I L'l'P 
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t == -ArcTan [~] 

u 2 x 2 

W== -2 - 2 

The scaling of one of the coordinates allows the canonical variables 

CanonicalVariablas[{u}, {x}, {x}, {1}, 

{w}, {t}] / / L'l'J' 

t == Log[x] 
W == u - Log[x] 

CanonicalVariables[{u}, {x}, {1}, {u}, 

{w}, {t}] II L'l'J' 

t == x 
W == E-X u 

Several other examples demonstrate the capabilities of this function. The occurrence 
of the Log[] in one of the infinitesimals demonstrates the flexibility of the function 

CauonicalVariabl •• [{u}, {x}, {Log[x] u}, {1}, 

{w}, {t}] II L'l'J' 

t == -u 
2 

W == T - LogIntegral [x] 

An example with parameters in the infinitesimals shows that CanonicalVariables[] 
can handle rational expressions: 

CanonicalVariablas [{u}, {x}, {kl + k2 x}, 

{k3 + 2 k2 u}, {w}, {t}] /I L'l'J' 

t == Log [kl + k2 x] 
k2 

-k3 - 2 k2 u 
W == - -------;-

2 k2 (kl + k2 x) 2 

An example for a higher-dimensional manifold m is examined next: 

CanonicalVariabl •• [{u, v}, {x, t}, {x, t}, 

{O, O}, {un, VD}, {xn, tn}] /IL'l'F 

tn == Log[x] 

un == u 
vn == v 

t 
xn== -

x 
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This list of examples can be extended by the reader's experiments. We demonstrated 
that the knowledge of the infinitesimals allows the introduction of new variables. Lie 
pointed out that these canonical variables simplify the solution of the original 
equation. The advantage of canonical coordinates is that we may simplify the 
solution algorithm. This algorithm consists of first finding the infinitesimals, second, 
calculating the canonical variables, and third, transforming the original equation to a 
simpler form. These three steps will be the subject of the next sections. 

4.4. Analysis of Ordinary Differential Equations 
The Lie point symmetries of an ordinary differential equation A = 0 are determined 
by calculating the general solution for the infinitesimals g and <p. The procedure 
follows the steps discussed in Section 4.3. The first step is to write down the 
invariance condition for the equation and then solve the linear determining equations. 
The steps of deriving and solving the determining equations are accessible within 
MathLie and can be carried out automatically. The calculations done by hand are 
very cumbersome, but using computer algebra, the work is easy to accomplish. 
However, the view taken here is somewhat optimistic and cases exist which 
sometimes involve peculiar results. 

One of these peculiarities is the case of first-order differential equations. As we will 
soon show, first-order differential equations always have an infinite number of 
symmetries and are thus not very appropriate for Lie's method. However, we will 
discuss a procedure which allows us to find a restricted class of point symmetries, the 
so-called conformal symmetries. 

4.4.1 First-Order Equations 

The general representation of a fIrst-order ordinary differential equation is given by 

F(X, u(x), :) = 0, (4.32) 

where F is an arbitrary function combining the independent and dependent variables 
x and u, respectively, and the derivatives in a general way. Our intention here is to 
use point symmetries to solve this type of equation. We state the main result at the 
beginning of this section. A first-order differential equation always has an infinite 
number of symmetries. This is immediately obvious if we consider the geometrical 
interpretation of the equation. As we know, the set of solutions of a first-order 
differential equation is a one-parameter family of curves which look like the 
ensemble in the following figure: 
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u 

~------~----~------~----~~----~ x 
1.4 1.6 1.8 2 1.2 

A symmetry transformation is by definition a transformation mapping solutions into 
solutions. As the example in the above figure shows, new solutions follow from old 
solutions by successively changing the involved integration constant. Every 
symmetry transformation is represented by a generator V corresponding to a vector 
field leading from curves to their neighboring curves. As we know, the vector field 
always exists and can be represented by the infinitesimals .; and </J. A different choice 
v' of the vector field will result in a different location on the target curve; however, 
both points on the target curve are connected by a third vector field S (see the figure). 
This is one of several ways to interpret a differential equation. Another view is the 
following: 

From a conceptual point of view, a differential equation contains two components: 

(i) the skeleton of the differential equation 

(ii) the solution manifold. 

These two parts of a differential equation will be the subject of the following. The 
term skeleton was introduced by Lie [1899] to denote the extended manifold on 
which the differential equation exists. We will show you how the symmetries connect 
these two parts. We start with the skeleton of a first-order ordinary differential 
equation. 

4.4.1.1 The Skeleton of an Ordinary Differential Equation 

As mentioned, the concept of an ordinary differential equation has two components. 
Let us first consider the first-order differential equation in the form 

F(x, u(x), u') = 0, (4.33) 

where u' = ': is the first-order derivative. The two components of an ordinary 

differential equation are as follows: 
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Definition: The Skeleton 

The skeleton of a differential equation is defmed as the surface 

F(x, U, p) = 0 (4.34) 

in the space of the independent variables x, u, and p. U and p denote the sets of 
dependent variables and derivatives, respectively. The corresponding differential 
equation follows from the skeleton with the replacement of p by the derivatives 
u(l).O 

This general definition reduced to first-order equations introduces nothing more than 
an extension of the manifold m. This extended manifold consists of the independent 
and dependent variables with the third direction denoting the first derivative. The 
once extended manifold is a very useful term in the discussion of first-order ordinary 
differential equations. Another term we need is the class of solutions. 

The class of solutions is defined in consensus with certain mathematical or physical 
assumptions. 

Definition: A class of solutions 

A solution is a continuously differentiable function h(x) such that the curve U = h(x), 

u' = d':1:) belongs to the skeleton, that is, F(x, hex), d':i:») = 0 identically in x for 

some interval. 0 

The combination of both terms allows us to solve the first-order equation. The crucial 
step in integrating differential equations is a simplification of the skeleton. This 
simplification can be gained by a suitable change of variables x and u. To this end, 
we use symmetry groups of differential equations, leaving the skeleton invariant. 
Provided a symmetry group is known, a simplification of the skeleton can be carried 
out by introducing canonical variables, for example. This kind of simplification is 
demonstrated by the following examples. 

Example 1 

Let us consider the Riccati equation as a first example: 

2 
riccati = CJx u [x] + U [xj2 - - == 0; riccati II 1.'1'1' 

x 2 

2 
u 2 - X2 + u" == 0 
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The skeleton of this Riccati equation is defined by the algebraic equation 

and its surface, a so-called hyperbolic paraboloid, can be displayed by defining the 
skeleton as a Mathematica function: 

The corresponding surface in three dimensions is given by 

pll=Plot3D[f[x, u], {x, 0.25, 2}, {u, -5, 5}, 

Boxed -+ True, Axes -+ True, Mesh -+ False, 

Ticks -+ None, PlotPoints -+ 30, 
3 

BoxRatios -+ {l, -, l}, 
5 

ViewPoint-+ {1.975, -1.884, 2.000}, 

AxesLabel -+ {RXR, nuR, Rpll}] 

u 
x 

p 

This figure shows that the skeleton in the coordinates x, u, and p has a singularity in 
the limit x --t O. We also observe the parabolic shape of the surface for large x-values . 
Thus, the surface is twisted in two directions, which obviously baffles the discovery 
of the solution. Our goal is to find a transformation which reduces the twisted shape 
to a simpler representation. For the Riccati equation, a one-parameter symmetry 
group is provided by the following scaling transformations. Ibragimov [1994] calls 
this transformation a non-homogeneous dilation. 
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transformation = {x .... r Bxp [-a] , 
u .... l'Unction[x, w[xBxp[a]] Bxp[a]]} 

{x~E-ar, u~Function[x, w[xExp[a]1 Exp[a]]} 

We can check the invariance of the Riccati equation by taking into account that the 
derivatives also need to be transformed by the rule 

dtrafo=v_(D_) [a_.x_] Ha-D v(ll) [ax] 

v_(n_) [a_. x_] Ha-nv(n) [ax] 

The rule dtrafo represents the fact that the nth derivative of a function under a scaling 
is replaced by the nth derivative divided by the scaling factor an. The application of 
transformation and dtrafo to the Riccati equation gives us 

triccati = riccati I. transformation I. dtrafo; triccati II LTP 

We note that the original equation riccati is reproduced up to a common factor E2 a . 

In the definition of the transformation, it is essential that we use the new variables in 
the representation for the original variables. x is simply replaced by the new 
independent variable r multiplied by the factor ~a. The dependent variable u is 
replaced by w~. Since w depends on the new variable r, we have to use the 
representation of r in the form x E'. We also have to take into account that the 
derivatives need a special treatment which is contained in the rule dtrafo. Combining 
all these rules in the transformation of the original equation, we end up with the 
equation given in triccati. The different replacements of variables are actually the 
steps necessary to carry out the transformation by hand. The application of the 
transformation on the first derivative shows us that its behavior is 

ax u [x] I. transformation I. dtrafo II L'l'1' 

which in conventional notation reads w' -+ u' e-2a • Thus, we observe that the 
equation's skeleton is invariant under the inhomogeneous stretching r -+ x ea , 

w -+ ue-a , w' -+ u' e-2a which is obtained by extending the transformations of the 
group to the first derivative u'. We can also check the invariance of the skeleton 
equation by applying the extended vector field to the skeleton equation. We define 
the vector field by 
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The skeleton of the Riccati equation is 

skeleton = riccati /. {Bxu[x] -+p, u[x] -+u} 

2 2 
p +u - - == 0 

X2 

The application of the vector field gives us 

Vect/Oskeleton 

2 4 
-2 p - 2 u + X2 == 0 

If we compare the two expressions, the original and the transformed, we observe that 
the original equation is reproduced up to a factor -2. Thus, if the skeleton vanishes, 
the application of the vector field to the skeleton also vanishes. This result shows us 
that under a scaling transformation, the skeleton of the Riccati equation is invariant. 0 

Example 2 

Another example for a first-order ordinary differential equation is 

Bx u [x] ( u [x] 2 U [x] 3 ) 
example2 = - x 2 + ----;;- + --x- == 0; example2 / / LTl!' 

This example is also invariant with respect to an inhomogeneous scaling 
transformation. We define this sort of transformation by a transformation rule like 

scalingtrafo = {x .... Bxp[-a] r, 

u -+ Function [x, w[x Bxp [a] ] Bxp [a] ] }; 
dtrafo = v_ (IL) [a_. x_] a a-n v(n) [a x] ; 

scaling [x_] : = x / • scalingtrafo /. dtrafo 

The application of the function scaling[] to the second example shows the invariance 
of this equation 

scaling[example2] / / LTl!' 

E4 a w2 E4 a w3 E4 a Wr 
-r-2 - + --r-- - _r_2- == 0 

The graphical representation of the skeleton for this equation is created by 
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Plot3D[u2 - xu3 , {x, -1, 1}, {u, -2, 2}, 

PlotRange -+ All, AxesLabel ... {nx", nun, "pn}, 

ViewPoint ... {5.287, 3.905, 3.613}, 
3 

Mesh ... False, Ticks ... None, BoxRatios'" {1, -, 
5 

x 

p 

u 

1}] 

This three-dimensional representation of the skeleton looks like a stingray. The 
structure of this entangled surface is simplified if we apply the following canonical 
transformation: 

w[Log[x]] 
canonical = {x ... Exp [t], u ... Function [x, ] }; 

x 
canonicaltransform[x_ ] := Simplify [PowerExpand [ 

x / • canonical]] 

The transformation is carried out by 

canonicaltransform[Thread[example2 Exp [4 t], Equal]] / / LTF 

w+vl- +W3 -Wt == 0 

The related skeleton simplifies the surface: 

Plot3D[W+w2 +w', {t, -1, 1}, {w, -2, 2}, 

PlotRange ... All, ViewPoint ... {2.460, -1.182, 2.000}, 

AxesLabel ... {ntn, nwn , "W' n}, 

ViewPoint ... {5.287, 3.905, 3.613}, 

PlotPoints ... 30, Mesh ... False, Ticks -+ None, 

3 
BoxRatios ... {1, -, 1}] 

5 
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w' 

w 

which is a third-order parabola translated along the t-axis. This example shows that 
the introduction of canonical coordinates radically simplifies the shape of the 
skeleton and thus allows access to the solution. 0 

Example 3 

Another example demonstrating the concept of the skeleton is given by the first-order 
equation 

example3 = xaxu[x] -u[x] + ~ u~] == 0; example3 II LTI' 

-u + fi + x u x == 0 

This type of equation is invariant with respect to the global transformation S = 1 :€X 
and ell = _Y-; the related canonical variables are w = !!... and t = 2. The equation in 

I-EX x x 

canonical variables reads 

cexample3 = at w[t] + ~ == 0; cexample3 I I LTI' 

Vw + W t == 0 

Each skeleton of these two equations is represented in the following figure: 

Show [GraphicsArray[ 

u~ 
{Plot3D[----X-, {x, .1, 1}, {u, 0, 2}, 

x x 

PlotRange -. All, AxesLabel -. {nxn, nun, RpR}, 
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vi_Point -+ {- 2.566, 1.572, 1.548}, Mesh -+ False, 

Ticks -+ None, PlotPoints -+ 30, 
3 

DisplayFunction -+ Identity, BoxRatios -+ {1, -, 1}], 
5 

Plot3D[-Vw, It, .1, 1}, {w, 0, 2}, 

PlotRange-+All, AxesLabel-+ {"t", "w", ·w ' ·}, 

ViewPoint-+ {-2.566, 1.572, 1.548}, Mesh-+False, 

Ticks -+ None, PlotPoints -+ 30, 

DisplayFunction -+ Identity, 

3 
BoxRatios -+ {1, -, 1}]}], 

5 

Displayl"unction -+ $DisplaYFunction] 

p 

w u 

w' 

It is obvious from this figure that the skeleton of the original equation is reduced to a 
much simpler representation. The convex shape of the original skeleton reduces to a 
concave surface which is invariant with respect to a translation along the t-axis. 0 

Upon observing that a canonical transformation simplifies the skeleton, we approach 
the second component of a differential equation. The second component was 
concerned with the solution of the equation. The question now is: How can we use 
the information of the symmetries to find solutions of any first-order equation 
possessing some symmetries? One idea to solve this problem is to use canonical 
variables which allow a transformation to a simpler representation of the equation. 

Returning to our first example of the Riccati equation, we know that the canonical 
variables for a non-homogeneous dilation is given by 
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w[Log[x]] 
trafo1 = {x -+ Exp [t], u .... l'unction[x, ]} 

x 

{X~Et, u~Function [ x, W[LO~[Xl l l} 

In Section 4.3.4, we derived this type of transfonnations by solving the defining 
equations for t and w. The solution used here is a special type of the general solution 
derived in Section 4.3.4. Application of this transfonnation to the Riccati equation 
gives us the following result: 

riccati1 = Simplify[Thread[ 

PowerExpand[riccati I. trafo1] Exp[2 t], Equal]]; 

riccati111 loTI' 

-2 -w+~ +Wt == 0 

The transformation straightens out the skeleton of the original Riccati equation, 
taking it to a parabolic cylinder 

The right-hand side of g is independent of t; thus, the skeleton reduces to a 
cylindrical surface centered along the t-axis. 

p12 = Plot3D[g[t, w], {t, 0.25, 2}, {w, -5, 5}, 

Boxed -+ True, Axes -+ Tru., ... sh -+ False, Ticks -+ None, 

3 
PlotPoints .... 30, BoxRatios .... {1, -, 1}, 

5 
ViewPoint-+ {1.975, -1.884, 2.000}, 

Ax.sLab.l .... {ntn, nWn, nw· n}] 

w 
t 

w' 
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The simplification of the skeleton is the reason why the Riccati equation takes the 
integrable form when written in canonical variables (cf. the skeleton of the original 
Riccati equation). 

The stretching of the original Riccati equation is replaced by a group of 
translations f = t + E, W = u, and w' = u'. The calculations so far executed by hand can 
be collected in a Mathematica function. The information we need for the calculation 
are the original equation and the names of the dependent and independent variables. 
We also need the canonical transformations which are derived by the function 
CanonicalVariables[]. Finally, the function has to know the names of the new 
coordinates. The representation of the original equation is carried out by the function 

CanonicalRepresentation[] : 

Clear [CanoniealRepresentation] 

CanoniealRepresentation[equatian_, depend_, 
ind.pend_, eanoniealtrafo_List, newdepend_, 

newindepend_] : = 
Block [{patterni, trafoi, eqin, etrafo, 

canonical variables, sol, equat}, 
aDt [u] 

patterni = a_" u_' [x_] + p_" == 0 :-+ + p; 
Dt [x] 

trafoi = depend@O {iDdepend} -+ depend; 

eqin = equation / " patterni /" trafoi; 

etrafo = eanoniealtrafo /" Rule -+ Equal; 

eanoniealvariableB = Platten [eanoniealtrafo /" 

(a_ -+ b_> -+ {a}] ; 

sol = Solve [etrafo, {depend, independ}]; 

equat = Expand [eqin /" Bol]; 

equat = .quat /" newdepend ... newdependH {n_independ} ; 

equat[lD == 0] 

We demonstrate the use of this function by applying it to the Riccati equation. We 
know that the Riccati equation is invariant with respect to an inhomogeneous scaling 
transformation. The related canonical variables are given by 

eeoord = CanoniealVariables [{u}, {x}, {x}, {-u}, 

{w}, {t}] 

{w ~ Function [{x, u}, u x], t ~ Function [{x, u}, Log [x]] } 

The result is identical with the variables stated above. Using this transformation, we 
can reduce the Riccati equation to 

eriee = Canoniealaepresentation[rieeati, u, x, 

{w ... xu, t -+ Log [x] }, w, t]; eriee / / LTF 



Analysis of Ordinary Differential Equations 159 

The resulting equation has the same structure as the manually derived one. The 
common factor e-2 t is a non-vanishing term which can be eliminated by multiplying 
with the inverse: 

cricc = Simplify [Tbread[cricc Exp [2 t], Equal]]; cricc II LTI' 

-2-w+w2+Wt==o 

This equation can be solved by quadrature or a separation of variables. We use here 
the Mathematica function DSolve[] to integrate the equation. 

sricc = DSolve[cricc, w, t] 

The solution in the original variables follows by applying the canonical 
transformation again, 

solricc = Simplify[w[x, u] -- (w[t] I. aricc) [1] I. 
t -+ t [x, u] I. ccoord] 

and solving the implicit solution with respect to u, 

Solve [solricc, u] 

The second of our examples discussed above allows the same scaling symmetries. 
The reduced equation follows from 

cex2 = Canonicalaapresentation [e~le2, u, x, 

{w -+ xu, t -+ Log [x] }, w, t]; cex2 II LTI' 

The common factor is eliminated by 

cex2 = Simplify ['1'hread [cex2 BKP[' t], Equal]]; cex2 II LTI' 

The solution in the canonical variable w follows by separation of variables and 
integrating the left-hand side and the right-hand side: 
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sex2 = Si~lifY[f 1 dlw == fl dlt + c] 
w+w +W3 

ArcTan [ 1\J~ w ] 1 
V3 +LOg[W)-2 Log [ 1+W+vi') == c + t 

Since the solution contains transcendent functions, it is hard to get an explicit 
solution at this stage. The inversion of the canonical transformation does not resolve 
this problem: 

iex2 = Bex2 /. {w -+ w[x, u], t -+ t [x, u]} /. ccoord 

ArcTan[1 +J3UX ] 1 
V3 + Log [u x) - 2 Log [ 1 + u x + u 2 x 2 ) == C + Log [x) 

However, we can resolve this problem by a graphical representation of the solution. 
We create a contour plot by displaying the implicit function for a fixed parameter c: 

iex2h = iex2 / • a_ == b_ -+ a - b / • c -+ 1; 

ContourPlot[iex2h, {x, .01, 2}, {u, .01, 1}, 

ColorFunction -+ Hue, PlotPoints -+ 20] 

o. 

o. 

o. 

o. 

Generally, we observe that u increases if x increases. For small values of u, there 
exists a nearly linear relation between u and x. 

The third example discussed above is represented in canonical variables by 

cex3 = CanonicalRepresentation [ex~le3, u, x, 

u 1 
{w -+ -, t -+ - - }, w, t]; cex3 / / LTF 

x x 
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-JW + W t == 0 

The solution of this equation for w follows from 

sex3 = DSolve[cex3, w, t] 

Inverting the transformation and solving for u gives us the explicit solution 

u 1 
solex3 = - == (w[t] I. sex3) [1] I. t -+ --

x x 

.2:.== ~ (~+ 2C[1] +C[1]2) 
x 4 x 2 X 

so13 = Solve [solex3, u] 

So far, we have discussed some examples to show that canonical variables can be 
used to simplify the integration process of first-order equations. The method of 
canonical variables is useful not only in the integration process of first-order ordinary 
differential equations but also in the integration of higher-order ordinary differential 
equations. We will come back to this general procedure in Section 4.4.2.2. 

Before proceeding with second-order equations, we first discuss another approach to 
integrate first-order ordinary differential equations. This method uses the fact that a 
first-order equation can be integrated if an integrating factor is known. The procedure 
introduced by Lie in 1891 is very useful if one knows the point symmetries of the 
equation in an infinitesimal representation. 

4.4.1.2 Integrating Factor 

The common belief in literature is that the method of an integrating factor is only 
useful in connection with a first-order ordinary differential equation. For the moment, 
we will take this point of view. However, in Section 4.4.2.2, we will generalize the 
method of an integrating factor to higher-order equations. In Section 4.2.3, we 
demonstrated by several examples that a curve is invariant under a symmetry 
transformation if the tangent vector applied to the curve vanishes. Let us assume that 
the curves discussed are integral curves or solutions of a first-order differential 
equation. For example, the ODE is 

odel = oxu[x] == f[x, u[x]]; ode1 II LTF 

-f + U x == 0 
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where / is given by the ratio of two functions U and X 

U [x, u[x]] 
f [x, u [x]] = ----­

x [x, u[x]] 

If F[x,u] = const. are integral curves, we get 

invarl = Dt [F[x, u]] == 0; invarl I I LTF 

Dt [ul Fu + Dt [xl Fx == 0 

Let us further assume that the differential equation is invariant under an infinitesimal 
transformation represented by the vector field v. Then, we find 

invar2 = Tangentvector [F [x, u], {u}, {x}] == H; invar2 I I LTF 

-H + Fx <':1 [x, ul + Fu ¢1 [x, ul == 0 

We always can rescale invar2 in such a way that the right-hand side equals 1. 

invar2 = invar2 I • H -+ 1; invar2 I I LTF 

Thus, we derived two equations for the derivatives of the invariant curve which have 
to be satisfied under the given infinitesimal transformation. We can solve these two 
equations for the derivatives of F by 

sol. = Sol. ve [ {invarl, invar2}, 

{oxF[x, u], ouF[x, u]}] I. {Dt[u] -+U[x, u], 

Dt [x] -+ X[x, u]} 

{ { U [x, ul F ( 1 , 0) [x, u 1 -7 ~~-~=--cc----'c-'---~-----o--,--oc-----c-
U[x, ul <':1 [x, ul -X[x, ul ¢1 [x, ul ' 

(0 1) X [x, ul }} 
F ' [x, ul -7 - U[x, ul <':1 [x, ul -X[x, ul ¢1 [x, ul 

We understand from this result that the partial derivatives of the integral curve are 
known as functions of x and u. On the other hand, the result shows that the total 
differential of the integral curve F is known. The following expression represents the 
total differential Dt[F]: 

invar3 = Simpl.ify[invarl I. sol. I. 0 -+ Dt [F]] 

{ Dt [xl U [x, ul - Dt [ul x [x, ul == Dt [Fl } 
U [x, ul <':1 [x, ul - X[x, ul ¢1 [x, ul 
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Recall the definition of an integrating factor J.l(x, u) which is, by definition, a 
function of x and u that makes Dt[x] Y - Dt[u] X the differential of the integral curve 
F. This information allows us to extract from our result invar3 the integrating factor 

1 
/A = . . Denam1nator[1nvar3[l, 1D] 

1 
U[x, u] ';1 [x, u] - X[x, u] ¢1 [x, u] 

This result was obtained by Lie in 1874. For the derivation of integrating factors, it is 
important to know the structure of the equation and the symmetries. 

In 1874, Lie proved that a first-order ordinary differential equation can be solved by a 
quadrature if the symmetries of the equation are known. He collected his 
observations in the following theorem. 

Theorem: Integrating factor 

The first-order ordinary differential equation 

Vex, u) dx - X(x, u) du = 0 (4.35) 

possesses a one-parameter group allowing the vector field v = 5 ax + ¢J au if and 
only if the function 

1 
J.l = tV-¢JX 

(4.36) 

is an integrating factor with tv - ¢JX *- O. If this is the case, the original equation is 
solved by a quadrature: 

JVdx-XdU 
----- = const. 0 
tV-¢JX 

Relation (4.37) can be simplified if we introduce the following determinants: 

( dx du) 
db. = det X V 

and 

(4.37) 

(4.38) 

(4.39) 
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Then, equation (4.37) reduces to the simple relation 

f(~) = const. (4.40) 

Equation (4.40) combines all information necessary for a solution in a nutshell. All 
we need to know are the infinitesimals and the left-hand side of equation (4.35). 
Integration over the manifold provides us with the solution. A few examples will 
demonstrate the application of Lie's theorem. 

Example 1 

As an example of these considerations, let us examine the first-order ODE 

Tan [x - u] 
ode2 = ax u [x] == 1 + ; ode2 / / LieTraditionall'orm 

U x == 1 _ Tan [u - xl 
x 

x 

The functions X[x, u] and U[x, u] are found by extracting the coefficients of the 
differentials. First, we extract this part from the ODE free of any differential: 

ode2h = ode2 [2] 

1- Tan[u - xl 
x 

Then, we generate a common denominator, 

ode2h = Together [ode2h] 

x- Tan[u- xl 
x 

and determine X[x, u] by 

X[x, u] = DeDOID.inator[ode2h] 

x 

U[x, u] is then given by 

17[x, u] = Numerator [oda2h] 

x - Tan[u - xl 
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The infinitesimals of the fIrst-order equation ode2 are 

~l[X, u] = 0; 

and 

1 
1/11 [x, u] 

xCos [x - u] 

Knowing these relations, we use the definition of jJ to get the explicit representation 
of the integrating factor 

-Cos [u - x] 

The related total differential of the integral curve reads 

Expand [invar3] 

{-Cos[u-x] (-xDt[u] +Dt[x] (x-Tan[u-x])) ==Dt[F]} 

This equation has to be integrated on the right-hand side with respect to F, and on the 
left-hand side with respect to x and u. The result is 

ip = F == f Coefficient [ 

Expand [invar3 [1, 1D], Dt [u]] dlu + 

f Coefficient [Expand [invar3[1, 1D], Dt [x]] dlx 

F == 2 x Sin [u - x] 

defining the solution of ode2 in an implicit form. To see how this solution behaves in 
the variables x and u, we graphically represent this solution for three values of the 
constant F. The use of the function ImplicitPlot[] creates a contour plot of the 
implicit function in the (x, u)-plane: 

« nGraphics'ImplicitPlot'· 

iph = Table[ip /. F .... i, {i, .1,2, .9}] 

{O.1==2xSin[u-x]. 1. ==2xSin[u-x]. 1.9==2xSin[u-x]} 

J:D\PlicitPlot [iph, {x, -10, 10}, {u, 0, 20}, 

AxesLabel .... {nx·, nun}, PlotPoints .... 100, 

PlotStyle .... {RGBColor[1.000, 0.000, 0.000], 

RGBColor[O.OOO, 0.000, 1.000], 

RGBColor[O.OOO, 0.251, O.OOO]}] 
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u 

We clearly observe that small values for F will force the function to be located at the 
vertical axis at x = O. Larger values of F push the function away from this vertical 
axis. Examination of this example demonstrates that the knowledge of the 
infinitesimals is very useful in constructing solutions of first-order differential 
equations. For the present equation, we only stated the existence of the infinitesimal 
transformations. In Section 4.4.1.3, we will show how such infinitesimals can be 
derived from the invariance condition of the differential equation. D 

Let us demonstrate the application of Lie's integrating factor theorem by another 
example. We are especially interested in collecting the steps of calculation in a 
Mathematica function. The basis of this function is the above theorem. 

Example 2 

Let us again examine the Riccati equation discussed in connection with the skeleton 
of a first-order ordinary differential equation: 

riccati / / L'l'P 

Considering this equation, it is useful to determine the symmetry. Since this equation 
is of a polynomial type, it is natural to assume that the symmetries of this equation 
are of a scaling type. We already know that the infinitesimals are given by g = x and 
ifJ = -u. If we represent the Riccati equation in the form 
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ricc = Dt[u] + (u2 - :2) Dt[x] == 0 

Dt[u] + (u2 - x~ ) Dt[x] == 0 

we are able to use Lie's theorem to determine the integrating factor in a 
straightforward way: 

1 
lot = SillliPlify ['l'ogether [ 2 ] ] 

X (u2 - -;;-) -u 

x 

Multiplying the equation rice by the integrating factor p, we get 

riccl = Simplify ['l'hread [ricc II1II, Equal]] 

x (Dt [u] + (u2 - ±) Dt [x] ) 
- 2 - u x + ~2 x2 = = 0 

Integrating the coefficients of the total differentials with respect to the differential, 
we get for Dt[u] and Dt[x] respectively 

solu = f Coefficient [Expand [riccl(lD ], Dt [u] ] c:lIu 

1 1 3 Log [ - 2 + U x] - 3 Log [1 + U x] 

and 

solx = f Coefficient [ZXpand[riccl(lD], Dt [x]] c:lx 

1 1 
Log[x] + TLog[-2+ux]- TLog[l+ux] 

Comparing the two integrals, we observe that common terms exist. Thus, the 
complete solution which is equal to a constant C[l] follows: 

1 
isol=Expand[- «solx-solu) + solu+ solx)] ==C[l] 

2 

1 1 
Log [x] + T Log[ -2 + ux] - T Log[l + u x] == c [1] 

After the collection of logarithmic terms and an exponentiation, we get 

iisol = 'l'bread [Exp [isol 110 a_o Log [b_] +C_o Log [d_] -+ 

Log [b- de] ] , Equal] 
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x (-2 +UX)'/3 

(1 + u x) 1/3 
== EC [lJ 

The solution of this relation with respect to u reproduces the known result: 

Solve [iiBOl, u] 

{{U-7 
E3C [1] + 2 x 3 

X (- E3 C [1] + x 3 ) }} 

All these steps to solve a first-order ordinary differential equation are completely 
algorithmic. That is why we can collect them in a common function called 

IntegratingFactor[]. The function IntegratingFactor[] needs as input parameters, the 
equation, the dependent and independent variables, and the infinitesimals. The 
following lines define this function using the steps of the calculation discussed above: 

Clear [XntegratingFactor] 

XntegratingFactor [equation_, depend_: Symbol, 

independ_: Symbol, xi_, phi_] : = 
Block [ {pattern1, pattern2, eq, eqin, q, p, 

ifactor, t1, t2, it1, it2}, 

Xf [equation / " p_" u_ (n_> [t_] + ~ == 0 H n > 1, 

Return [Hold [XntegratingFactor [equation, 

depend, independ, xi, phi]]]]; 

Xf [FreeQ [equation, Equal] , 

Return [Hold [XntegratingFactor [equation, 

depend, independ, xi, phi]]]]; 

trafo = dependH {independ} -+ depend; 

itrafo = depend -+ dependH {independ}; 

pattern1 = p_" u_' [t_] + ~ == 0 H -p Dt [u] + q Dt [t] ; 

pattern2 = p_" u_' [t_] + ~ == 0 :-+ {q, -p}; 

eqin = equation / " trafo; eq = eqin / " pattern1; 

{q, p} = eqin / " pattern2; 
1 

ifactor = ------
xiq-phip 

eqh = Together [eq ifactor]; 

num = Numerator [eqh] ; 

den = Denominator [eqh] ; 
Coefficient [num, Dt [independ]] 

t1 = 
den 

Coefficient [num, Dt [depend] ] 
t2 = 

den 

it1 = f t1 cIIindepend; 
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it2 = f t2 dldepend; 

J:f [FreeQ [itl, J:ntegrate] &:&: FreeQ [it2, J:ntegrate], 

1 
itl = Expand [ - «itl- it2) + itl + it2)], 

2 

Return [Hold [J:ntegratingFactor [equatioD, 

depend, independ, xi, phi]]]]; 

Simplify [itl == C[l] I. itrafo] • 

The following examples demonstrate the application of the function 

IntegratingFactor[] . 

Example 3 

The first equation solved by this function is a first-order equation containing a ratio 
of dependent and independent variables: 

x 2 + u[x] 2 
eq2 = oxu[x] - == 0; eq2 II LTF 

xu[x] 

Knowing the infinitesimals g = x and if> = u, the function IntegratingFactor[] is able 
to calculate the implicit solution in the form 

ieq2 = J:ntegratingFactor[eq2, u, x, x, u] 

U[X]2 
Log[x] - 2"X2 == e[l] 

Solving this equation with respect to u, we find that the solution is given by two 
expressions containing a Log[x] in the radicand of a square root: 

Solve[ieq2, u[x]] 

{{U[X] --7 -I -Y2 -v'x2C[1] -x2 Log[x] }, 

{ U [x] --7 I -Y2 -J x 2 e [ 1] - x 2 Log [x] }} 

Extracting -1 from the constant of integration C[1], we find the same solution as 

DSolve[] does: 

DSolve[eq2, u[x], x] 

{{U[x] --7--Y2 -JX2 e[l] +X2 Log[x]}, 

{ U [x] --7 -Y2 -J x 2 e [ 1] + x 2 Log [x] }} 

o 



170 Symmetries of Ordinary Differential Equations 

Example 4 

Another example for which an integrating factor exists but the quadrature is 
impossible is given by 

eq3 = ax u [x] - u [x] (1 - u [x] 2 Exp [u [x] ]) == 0; eq3 / / LTP' 

-u (1 - EU u 2 ) + u x == 0 

The function IntegratingFactor[] returns the original input 

ieq3 = J:ntegratingP'actor[eq3, u, x, 1, 0] 

IntegratingFactor[-u[x] (l_EU lx l U[X]2) +u'[x] ==0, u, x, 1, 0] 

The function IntegratingFactor[] is simple to use. If the function cannot find an 
integrating factor or is unable to carry out the integrations, it returns the input line. 0 

The presented method of an integrating factor for first-order equations can be 
generalized to higher-order equations. This generalization is further discussed in 
Section 4.4.2.2 for second-order and in Section 4.4.3.1 for higher-order equations. 
The method of an integrating factor was only useful in cases where we knew the 
infinitesimals. At the beginning of this section, we noted that the first-order equations 
have some peculiarities in determining the symmetries. The following section will 
discuss how this problem can be partially solved by introducing conformal 
symmetries or using heuristic ansatze for the infinitesimals. 

4.4.1.3 Infinitesimals of First-Order Ordinary Differential Equations 

The determination of infinitesimal transformations of first-order ordinary differential 
equations is a special problem in Lie's theory. The problem is that first-order 
ordinary differential equations allow an infinite number of symmetries. This property 
is an essential obstacle in the calculation of the symmetries. The central point in a 
practical calculation is that the determining equations for the infinitesimals reduce to 
a first-order partial differential equation. Let us demonstrate this by the general 
equation of a first-order ODE: 

odell = ax u [x] - CIl [x, u [xl 1 ; odell / / LTP' 

-w + U x == ° 
Applying the function DeterminingEquations[] of MathLie to this ODE, we find a 
single first-order POE for the two unknowns gt and CPt : 



Analysis of Ordinary Differential Equations 171 

DeterminingEquations [{odell}, {u}, {x}, {ax u [xl} 1 / / LTV 

Such an equation has no unique solution in general. Thus, the problem is that we 
cannot derive an overdetermined system of determining equations allowing us to 
calculate the symmetries. This is due to the elimination of the fIrst-order derivatives 
in the prolongation formula. 

To solve this diffIculty, several approaches are discussed in the literature. The fIrst 
and original, already discussed by Lie, is to use group classification, i.e., to fInd 
families of ODEs that are invariant under the group generated by a particular 
transformation. Most elementary methods are based on this idea. A more recent idea, 
suggested by Olver [1986], is to regard the fIrst-order equation as an inappropriate 
reduction of a second-order ODE which has a solvable non-Abelian Lie algebra. This 
procedure will lead to hidden symmetries of type I. Hidden symmetries are used by 
Abraham-Schrauner and Guo [1993] to classify families of ODEs. 

Neither of the above methods is helpful when w is given and the equation odell does 
not belong to a family of ODEs having known point or hidden symmetries. A way 
out of this dilemma is a restriction of the admitted symmetries. Olver [1986] and 
Hydon [1994] introduced the term of a conformal symmetry. The background of this 
notion is that a vector field v = 2:7=1 ai ax, generates a one-parameter group of 
conformal transformations if 

(4.41) 

and 

(4.42) 

for a certain function 'P(x). The condition for a one-parameter group thus reduces to 
the Cauchy-Riemann equations 

(4.43) 

In turn, the invariance condition simplifies to 

(4.44) 

This relation is a result of Lie's theorem on fIrst-order differential equations. 
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Theorem: Symmetries offirst-order ODEs 

A first-order ODE u' = w(x, u) allows a one-parameter group ~ ax +¢au if the relation 

(4.45) 

or, equivalently, 

(4.46) 

holds for all values of x and u. 0 

This theorem was given by Lie (Vol. 3, XIII, Theorem 1, Engel and Heegaard 
[1912]) to determine the infinitesimals of a first-order ODE. 

Introducing in (4.43) the complex variables 

and 

z = x + iu, z = x - iu 

and the real functions 

( ( z + Z z - z)) 
/-1(z, z) = arctan w -2-' 2i with II E (-~ ~) ,.. 2' 2 ' 

the invariance condition reduces to 

( i dw ) 
1m - - + W /-1z = o. 

2 dz 

(4.47) 

(4.48) 

(4.49) 

(4.50) 

The bars over wand z in relations (4.46)-(4.48) denote the complex conjugate values. 
Subscripts in these relations indicate a differentiation with respect to the variable. 

The replacement of the variables w and w by the functions 

f 1 - f 1 {(z) = - dz and {(z) = -- dz 
w(z) W(z) 

(4.51) 
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and the derivatives 

1 1 
( (Z) = - and r' w = -

w(z) W(z) 
(4.52) 

allows the representation of the infinitesimals by 

~ = Im«( (z» and ¢J = Re«(' (z» . 
I( (z) 12 I( (z) F (4.53) 

In addition to the infinitesimals, the canonical variables are defined by 

(z) + rw = J¢JdX -~du s = 
2 ~2 + ¢J2 

(4.54) 

and 

(z) - rW = J~dX +¢Jdu 
2i ~ + ¢J2 . (4.55) 

Relations (4.45)-(4.53) are helpful to reformulate Lie's theorem on infinitesimal 
symmetries. 

Theorem: Conformal symmetries 

A first-order ordinary differential equation u' = w(x, u) = tan(/i(x + iu, x - iu» 
allows a one-parameter group of conformal transformations if 

i i _ 
/i(z, z) = F(r) + -In((' (z» - -In (' (z), 

2 2 
(4.56) 

where F is a real function and ( an analytic complex function. 0 

If we know the conformal symmetries, we also know the general solution of the 
equation. The solution follows either from the theorem on an integrating factor or via 
canonical variables. 

So far, we have discussed symmetries and solution procedures of first-order ODEs. 
The problem of first-order ODEs was the assessment of the infinitesimal 
transformation. This problem dissolves if we consider ODEs of higher order. In the 
following section, we discuss the solution of second-order ODEs by utilizing 
symmetry methods. 
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4.4.2 Second-Order Ordinary Differential Equations 

Second-order ordinary differential equations are very important for applications in 
physics and engineering. All equations based on Newton's second law are 
second-order equations. Thus, mechanics, for example, is mainly based on 
second-order ordinary differential equations. The integration theory of second-order 
ODEs was developed by Lie during the years 1871-1874. In 1891, Lie's theory of 
integration was published by Scheffers and Lie [1891] in Vorlesungen iiber 
Differentialgleichungen mit bekannten infinitesimalen Transformationen. Scheffers, a 
student of Lie, assembled all of Lie's work on ordinary differential equations in a 
beginner's book. In another series of books compiled by Lie and Engel [1888], Lie 
describes the problem of integrating a differential equation as follows: 

"I observed that a large number of ordinary differential equations integrated by older 
integration methods are invariant under easily derivable classes of transformations. 
The older integration methods are all based on the transformation properties of the 
equation. In other words, I realized that the term differential invariant of a finite 
continuous group is contained implicitly in every textbook on ordinary differential 
equations. Discovering the connection between transformation groups and older 
integration strategies I started to develop a general integration theory based on the 
finite or infinitesimal transformation of the equation. In my investigations it was clear 
from the beginning that the related transformations always created a group for each 
case." 

We will exemplify Lie's line of thought below. The most general form of a 
second-order ODE is given by 

F(x, u, u', u") = 0, (4.57) 

where primes denote differentiation with respect to x. For our purposes, we assume 
that equation (4.57) is solvable with respect to the second-order derivative. Thus, we 
consider equations in the form 

u" = w(x, U, u'), (4.58) 

where w is a given function of x, u, and u'. 

For the general equation (4.58) or (4.57), there exist several procedures to derive the 
solution. Common to each method is the symmetry of the equation. In contrast to 
ttrst-order equations, the determination of symmetries is not difficult. However, the 
problem here is to apply the appropriate solution procedure to a specific equation. In 
the following, we discuss three methods which allow us to identify the solution of a 
second-order ODE. 
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4.4.2.1 Integration by Group Classification 

Following the reasoning of Lie, we can solve a second-order ODE if we can classify 
the group. The idea is the following: If a second-order equation admits a Lie algebra 
of dimension r ~ 2, it can be integrated by a group-theoretic quadrature method. This 
can be done in various ways, one of which is given by the following algorithm: 

1. Compute the admitted Lie algebra Lr. A basis of Lr is the set v" v2' ... , vr. 

2. If r = 2, go to the next step; 
if r > 2, then distinguish any two-dimensional subalgebra ~ of L r • 

If r = 1, The order of the equation may be lowered; 
if r = 0, the group method is not useful. 

3. Determine the type of the algebra ~ obtained by the following table: 

I [vi' V2] = 0 Vi ®V2 *- 0 Vi = ax, V2 = au u = f (u') 

II [Vi' V2] = 0 Vi ®V2 = 0 Vi = au, V2 = ax u = f (x) 

III [v\, V2] = VI V: i ®';2 *- 0 = au' 
~ 

= x ax +u au = f (u') Vi V2 U 

IV [Vi' V2] = Vi V: i ®';2 = 0 Vi = au' V2 = U au u = f (x) 

Ix 
(4.59) 

u' 

Cases I to IV of the table are identified by computing the commutator [v, , V2] of 
v, and V2, and their pseudo-scalar product Vi ® V2 = g, ifJ2 - ifJ, g2' The 
subscripts of the infinitesimals gi and ifJi denote the number of the vector field Vi. 
If [v" V2], is neither 0 nor v" then choose a new basis v~, v;, such that 
[~' ~'] ~ v,, v2 = v,. 

4. Bring the basis of ~ into agreement with cases I-IV by going over to canonical 
variables t, w. Rewrite the equation in canonical variables and integrate it. 

5. Rewrite the solution in terms of the original variables. 

The stated algorithm is based on the fact that in the complex case, any Lie algebra of 
dimensionality r > 2 has a distinguished two-dimensional subalgebra. However, the 
structure of a two-dimensional Lie algebra with bases V, and V2 can be described in 
terms of the commutator [v" V2] = V, V2 - V2 V, and the pseudo-scalar product 
v, ® V2 = g, ifJ2 - ifJ, g2' For more details compare the work by Scheffers and Lie 
[1891], Olver [1986], and Bluman and Kumei [1989]. Let us demonstrate these five 
steps by two examples. 
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Example 1 

The first example considers a second-order ODE. This equation was discussed by 
Ibragimov [1994] in connection with Lie's group classification. We use the same 
example here to demonstrate how symbolic calculations with a computer can clarify 
the solution steps. The equation reads 

CJxu[x] 1 
equation = {CJ{X,3} U [x] - + }; equation / / L'l'1' 

U[X]2 u[x] x 

_1 __ ~ +u == 0 
u X u2 x,x 

The first step of the algorithm consists in fmding the Lie algebra of the equation. This 
step is practically revealed by using the package MathLie. MathLie contains a 
function designed to determine the infinitesimal transformations. The name of the 
function is Infinitesimals[] and has a symbolic template of the form P~,AA]. This 
operator takes the independent and dependent variables as subscripts and the 
parameters as superscripts. The equation is given as a fourth argument. The equation 
above is free of any parameters. The determination of the infinitesimals is carried out 
by 

inti = f>S~!}, {x} [equation] ; infi / / LTI' 

¢l == + u (kl + 2 k2 x) 

~l == x (k1 + k2 x) 

The result is a representation of the infinitesimals for the independent and dependent 
variables. xi[l] corresponds to the independent variable x and phi[J] to the dependent 
variable u. It turns out that our equation admits a two-dimensional Lie group. The 
two parameters kl and k2 are the group parameters. As discussed in Chapter 2, to 
each symmetry group there exists a related Lie algebra. We can inspect the structure 
of this algebra again by applying MathLie. The package provides tools to calculate 
the commutator table and the structure constants. The commutator table is created by 

LieCommutatorTabl. [infi, {u}, {x}] / / Tablel'orm 

o -V[2] 

V[2] 0 

The result of this calculation shows that the corresponding algebra Lz belongs to type 
ill of Lie's classification. This becomes obvious if we interchange the vector fields Vi 
and calculate the pseudo-scalar product of the infinitesimals 
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The calculation of the pseudo-scalar product in Mathematica needs the lines 

infi1 = {xi [1] [x, u], phi [1] [x, u]} /. infi /. {k1 -+ 1, k2 -+ O}; 

infi2 = {xi [1] [x, u], phi [1] [x, u]} /. infi /. {k1 -+ 0, k2 -+ 1}; 

p •• uc!oSca1arProc!uct = infi1[1D infi2[2D - infi1[2D infi2[1D 

ux2 

-2-

In step 4 of the integration algorithm, we introduce canonical variables which have to 
satisfy the conditions VI (t) = 0 and VI (u) = 1. Solving the related characteristic 
equations by conducting the function CanonicalVariables[], we end up with 

transformations probably simplifying the original equation. In the following 
Mathematica line, the first two arguments, {u} and {x}, denote the dependent and 
independent variables, and the next two, {x} and {t}, are the infinitesimals for 

kl = 1 and k2 = 0 of the independent and dependent variables, respectively. The last 
pair {w} and {t} are the new dependent and independent canonical variables, 
respectively: 

substitution = 
u 

CanonicalVariable. [ {u}, {x}, {x}, {-}, {w}, {t}]; 
2 

substitution / / L'1'1!' 

t == Log [xl 
u 

W== Yx 

The result belongs to the subgroup with kl = 1 and k2 = O. The second set of 
transformations follows by the choice kl = 0 and k2 = 1: 

secondtransformation = 
Canonical Variable. [ {u}, {x}, {~}, {x u}, {w}, {t}]; 

secondtransformation / / L'l'1!' 

1 
t ==-­

x 
u 

W== -
x 

The next step in the algorithm is to use these transformations to change the 
representation of the equation. For this kind of calculation, MathLie offers the 
function CanonicalRepresentation[]. This function needs the input of the original 

equation, the canonical transformations given by rules, and the target variables. The 
first set of canonical variables descending from the subgroup with kl = 1 and k2 = 0 
leads to the reduced equation 
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canonicall = CanonicalRepresentation[ 
U 

equation[l]], U , x, {W-+ --, t-+L09[X]}, w, t); 
.y; 

canonicall / / LTF 

At this stage of the calculation, we can use the Mathematica function DSolve[] to 
solve the second-order equation. We note that the achieved equation is as 
complicated as the original equation and, thus, DSolve[] may fail to find a solution. 
In fact, we get 

soll = DSolve [canonicall , w, t] 

DSolve[2w[t]-w[t]3 -4w'[t] +4W[t]2W"[t] == 0, w, t] 

However, using the second set of canonical variables, we discover the reduction 

canonica12 = CanonicalRepresentation[ 

U -1 
equation[l]], U , X, {w-+ -, t -+ -}, W, t); 

x X 

canonica12 / / LTF 

3 (Wt ) t ""W2 - Wt,t == ° 
which looks much simpler. This simplification is one aim of symmetry analysis. 
Exerting the Mathematica function DSolve[] to this equation, we acquire 

so12 = DSolve [canonica12 , w, t] 

InverseFunction: :ifun : Warning: Inverse functions are 

being used. Values may be lost for multivalued inverses. 

(
1 + ProductLog[E~l+C[lJ' (H~C[2J)] 1 

{{W-4 e[l] & }} 

As expected, the solution of the equation in canonical variables is given by a function 
containing two constants of integration. The ProductLog[] function depicts the 
solution for w in z = wew • The function is a generalization of a logarithm. It can be 
used to represent solutions to a variety of transcendental equations. 

The last step of the integration procedure by Lie is the inversion of the 
transformation. This back substitution of the canonical variables is also supported by 
the package MathLie. The related function is BackTrafoCanonical[]. For the inverse 
canonical transformation, we need the solution in canonical variables, the set of 
canonical variables themselves, the original variables, and the transformation 
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between the two sets of variables. Knowing these quantities, we are able to apply the 
function to the solution: 

solu = BackTrafoCanonical [so12, w, t, u, x, {u -+ w x, t -+ -1/ x}] 

. x (1 + productLog[E-1+C[1]2 (-}-C[2J)J) 
{u-+Functlon[x, e[l] ]} 

The derived solution satisfies the original equation. We can check this by inserting 
the solution into the equation: 

equation /. solu / / I'ullSimplify 

{O} 

The result confinns the solution. Since the solution contains a special function, we 
have no clear idea of the graph of this function. We can graphically represent the 
solution by specifying the constants of integration. For a set of five constants C[1] at 
fixed C[2], we create a table containing the different solutions: 

soluC = Table[u[x] /. solu /. {C[l]-+e, C[2]-+1}, {e, 1, 5}]; 

A LogLog plot shows that the solutions with fixed C[2] have a common slope: 

« Graphics'Graphics' 

Log-Log-Plot [Evaluate [BoluC], {x, 0.001, 10}, Plot Style -+ 

{RGBColor[O, 0, 0.250004], RGBColor[0.996109, 0, 0], 

RGBColor[O, 0.500008, 0], RGBColor[0.500008, 0, 0.250004], 

RGBColor[0.700008, 0, OJ}, 

AxesLabel-+ {RXR, nuR}] 
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Varying C[2] we observe only a minor change in the slope: 

soluC = Table[u[x] /. solu /. {C[l] .... 1, C[2] .... y}, {y, 1, 5, 1}]; 

LogLogPlot [Evaluate [soluC], {x, 0.001, 10}, PlotStyle .... 

{RGBColor[O, 0, 0.25000'], RGBColor[0.996109, 0, 0], 
RGBColor[O, 0.50000B, 0], RGBColor[0.50000B, 0, 0.25000'], 

RGBColor[0.700008, 0, OJ}, 
AxesLabel .... {·x·, ·u·} 1 
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In conclusion, we see that Lie's algorithm of group classification is straightforward to 
derive explicit solutions of a second-order ODE. All the steps needed to carry out the 
calculation are supported by MathLie. Thus, it is fairly easy to construct a solution. 
The next example discusses the solution procedure for a more complicated equation. 

Example 2 

The second example is connected with kinetics and heat transfer (cf. Ames [1968]). 
Ames'· equation also occurs in certain other problems like vortex motion of 
incompressible fluids, in the theory of the space charge of elasticity around a glowing 
wire, and in the nebular theory for the mass distribution of gaseous interstellar 
material under the influence of its own gravitational field. 

We concentrate our attention on the one-dimensional representations of these 
problems. The equation is discussed in cylindrical coordinates. For this special case, 
the equation reduces to a second-order ordinary differential equation (Ames [1968]) 
given by 
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ames = l'x.x u [xl + 
l'x u [xl 
---- + a Bxp [u [xl 1 ; ames == 0 / / LTI' 

x 

EU ex + ~ + U x x == 0 x ' 

When trying to solve this simple equation by DSolve[], we end up with the 
dissatisfying result 

DSolve [ames == 0, u, x] 

u' [xl 
DSolve [EU[X j ex + ~-x- + u" [xl == 0, u, xl 

Thus, Mathematica is unable to find the solution. However, we are currently 
discussing a constructive procedure to derive solutions of second-order equations. 
Thus, a solution should be accessible if we know the symmetry transfonnations. The 
symmetries of the equation are calculated by the function Infinitesimals[] or the 
operator PS~,x[~]. The application of this operator provides 

ps1~L{x} [ames] / / LTI' 

<Pl == k2 + kl Log [xl 

~1 == -+x (-kl+k2+klLog[xl) 

a two-dimensional symmetry group with group parameters k1 and k2. The subgroups 
created by the parameters k1 and k2 are the cornerstones of the integration process. 
Let us consider the subgroup related to k1 = 0 and k2 = l. This choice of the group 
parameters allows to derive the canonical variables w and t to be 

ctransformation = 
CanonicalVariables [{u}, {x}, {-x / 2}, {l}, {w}, {t}] 1 

ctransformation / / LTI' 

t == -2 Log [xl 

w == u + 2 Log [xl 

Converting the original equation ames into the new coordinates simplifies the 
representation of the equation: 

canonical = CanonicalRepresentation[ 
ames, u, x, {w-+u+2Log[x], t-+-2Log[x]}, w, t]; 

canonical / / LTI' 
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The introduction of the canonical variables allows the elimination of the tenn 
containing first derivatives. As a result, the original equation was simplified. Trying 
again DSolve[] to disclose the solution in canonical coordinates, 

cso1 = DSo1ve[canonica1, w, t] 

{ {w ~ (LOg [~ (c [1] -

C [1] Tanh[! (Y2 #1 -VcTiT - Y2 -JCflT C [2]) ]2) ] &)}, 
{ w ~ (Log [~ (c [1] -

C [1] Tanh [! (- Y2 #1 -VcTiT + Y2 -JCflT C [2] ) ]2) ] & ) }} 

The inversion of the canonical transfonnation provides the solutions in the original 
variables u and x: 

8011 = Back'1'rafOCanonica1 [801, w, t, u, x, 

{u ... w - 2 Log [x] , t ... -2 Log [x] }] 

{U~Function[x, -2 Log[x] +LOg[~ (C[l]-C[l] 

Tanh[! (-Y2 -VcTiT C[2] - 2 Y2 -JCflT LOg[x])] "2)]], 

u~Function[x, -2Log[x] +LOg[ ~ (C[l]-

C [1] Tanh[! (Y2 -VcTiT C [2] + 2 Y2 -JCflT Log [xl) ] "2) ]]} 

Inserting the derived solutions into the original equation ames, we can check the 
solution 

ames /. 8011 / / Sim;plify 

o 

To get an impression of the solution, we plot it for a set of constants C[l] at fixed 
C[2] and a. 

Plot [Evaluate ['1'ab1e [u [x] /. 8011[1]) /. 

{C[l] ... 1, C[2] ... 1, a ... l/l00}, {I, 1, 5, 1}]], 

{x, .1, 100}, P10tSty1e ... RGBCo10r[0.996109, 0, 0], 

AxesLabe1 ... {nx·, nu·}] 
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u 
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This example shows that solutions of a second-order ordinary differential equation 
are easy to derive if we know the symmetries of the equation. 

Actually, we did not use in our calculations the complete theory of Lie discussed 
above. In this second example, we only used the existence of a certain symmetry. 
This symmetry is sufficient to determine the corresponding canonical variables. 
Thus, a canonical transformation can be carried out independently of the 
classification scheme by Lie. The canonical transformation of the equation into new 
variables simplified the representation. In both examples, this simplification was the 
main step toward the solution. However, in Lie's theory, there exists a more efficient 
way to detect the solvability of the equation. In tum, there is a procedure which 
reduces the complete calculations to quadratures. The following section will discuss 
this procedure in detail. 

4.4.2.2 The Integrating Factor Method 

In Section 4.4.1.2, we discussed the method of an integrating factor for a first-order 
ODE. We remarked that this method has a generalization to higher-order equations. 
In this section, we generalize the method to second-order equations. The main result 
of this procedure is that a second-order equation can be solved by pure quadratures if 
the equation possesses an appropriate number of symmetries. The solution procedure 
based on integrating factors is completely algorithmic. The algorithm consists of five 
steps which Lie discussed in his numerous papers (cf. Engel and Heegaard [1912]). 

According to Lie, we can state the integration procedure in the following way: If a 
second-order equation admits a finite symmetry of dimension r 2: 2, it can be 
integrated with a group-theoretic quadrature method by 
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1. Computing the Lie algebra Lr. A basis of Lr is the set VI, V2, ... , lIr . The 
tangent vector fields Vi follow by appropriately specifying the group constants. 

2. If r = 2, go to step 3; 
if r > 2, distinguish any two-dimensional subalgebra L2 of L r • 

If r = 1, the order of the equation may be lowered; 
if r = 0, the group method is not useful. 

3. Calculate the Lie determinants dA.i and A. and determine the two first integrals by 
integration. The Lie determinants are defined by 

(4.60) 

and 

(4.61) 

where t;i and <Pi are the infinitesimals corresponding to the vector field Vi, and <P; 
denote the first extensions of the infinitesimals <Pi. The first integrals I/Ii related to 
the Lie determinants dA.; are given by 

i = 1, 2. (4.62) 

The constants C; denote the integration constants of the ODE. 

4. Solve one of the two integrals with respect to the first-order derivative and 
substitute the result into the remaining relation. 

5. If we can solve the resulting relation from step 4 with respect to the unknown 
function u, we end up with an explicit solution. Otherwise, we get the solution in 
an implicit form. 

These five steps are implemented in the package MathLie. The functions of MathLie 
carry out the necessary calculations automatically. To show how the solution 
procedure works interactively, we demonstrate the algorithm by two examples. The 
functions needed for the interactive calculation are Infinitesimals[] for the 

determination of the symmetries, the function SecondOrderAlgebras[] for the 

extraction of the second-order subalgebras, the functions DeltaMatrix[], and the 

Firstlntegral[], which are responsible for the determination of the integrals. 
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Example 1 

The fITSt example considers a non-linear second-order equation in which the 
nonlinearity is given by the square of the first derivative. This non-linear term is 
multiplied by a real constant a: 

firstExample = a{x.2) u[x] - a (ax u[x])2; firstZXam;ple II L'l'1' 

-0: u~ + 1lx,x == 0 

The infinitesimal symmetries are derived by the function Infinitesimals[]. which is 
part of the package MathLie. 

iafi = Xafiaitesimals[firstBKample, 

u, x, {a}, SubstitutioDllules .... {a{x.2) u [x] }] ; 

iafi II L'l'1' 

- E-U C< k6 + EU C< k7 + EU C< kl x + k8 0: + k2 x 0: 
¢1 == 0: 

E-ua k3 
~1==k4+(k5+E-uak6)x- -k2x2 0: 

ex 

The option SubstitutionRules is set to the second-order derivative ux•x to help 

Infinitesimals[] to find the side conditions more easily. The result is a symmetry 
group with eight group parameters ki • i = 1.2 •... 8. The infinitesimals g, = xi[1] and 
,p, = phi[l] are represented in a pure function form. The group constants ki 
characterize the symmetries of the equation. We note that this eight-parameter group 
is the largest group a second-order ODE can have. Lie proved that such an equation 
allows a transformation reducing the original equation to the simple form y" = O. 
This reduction is always possible if a second-order equation allows a symmetry 
group of order eight (Scheffers and Lie [1891]). Thus. the above equation should be 
solvable. 

To detect that the non-linear second-order ODE is solvable. we examine the algebraic 
properties of the corresponding Lie algebra. If we can find a solvable subgroup of 
order two in the eight-dimensional algebra. we succeeded. This argument is based on 
the fact that all second-order Lie algebras are solvable. To detect all the solvable 
subgroups. we apply the function SecondOrderAlgebras[] to the infinitesimals. This 
function determines all the second-order solvable subalgebras and represents them by 
a set of rules for the group constants: 

secAlgebras = SecoDdOrderAlgebras [iafi, {u}, {x}, {a}] 

{ { {kl -7 l}, {k2 ~ l} }, {{ kl -7 l}. {k5 -7 l}}. {{ kl ~ l}. {k7 ~ l} }. 

{ {kl ~ l}, {k8 ~ l} }, {{ k2 -7 l}, {k5 ~ l} }. {{ k2 -7 l}. {k6 ~ l} } , 

{ {k2 -7 l}. {k8 ~ 1 } }, {{ k3 -7 l}, {k4 ~ l} }, {{ k3 -7 l}, {k5 -7 l} } • 
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{{k3 -d}, {k6 -41}}, {{k3 -'>1}, {k8 -4 1}}, {{k4 -4 1}, {k5 -4 1}}, 

{ {k4 -4 1}, {k7 -4 1} }, {{ k4 -4 1}, {k8 -4 1} }, {{ k5 -4 1}, {k6 -4 1} } , 

{ {k5 -4 1}, {k7 -4 1} }, {{ k5 -4 1}, {k8 -4 1} }, {{ k6 -4 1}, {k8 -4 1} } , 

{{k7-41}, {k8-41}}} 

The function SecondOrderAlgebras[] returns a list containing substitution rules for 
second-order algebras. The input of the function are the infinitesimals, the dependent 
and independent variables, and the parameters of the equation. This set of rules is 
useful in selecting one of the possible two-dimensional solvable subalgebras which 
will serve to solve the equation. For the following calculation, we select the seventh 
rule to represent the set of infinitesimals by 

infhelp = {{xi [1] [x, u]}, {phi [1] [x, u]}} I. infi I. kS -+ /3 I. 
secAlgebras[7D I. {k1 -+ 0, k2 -+ 0, k3 -+ 0, 

k4-+0, kS-+O, k6-+0, k7-+0, kS-+O} I.u-+u[x] II 
Si~lify 

{ { { - x 2 a}, {x + /3 }}, {{ O}, {/3}}} 

Actually, we changed the subgroup by choosing the group constant k8 to be an 
arbitrary constant {3. In addition to the infinitesimals of the subgroup, we need the Lie 
matrix for the integration. The function DeltaMatrix[] serves to create this kind of 
matrix, which is defined by relation (4.61). 

Lie's matrix, part of the integrating factor, is calculated by the function DeltaMatrix[]. 
This function needs information on the independent and dependent variables on the 
right-hand side w of the ODE, the order of the ODE, and the selected subgroup of the 
algebra: 

tunatrix = DeltaKatrix [x, u, a (ax u [x]) 2, 2, infhelp]; 

TableForm[tunatrix] I I LieTraditionalForm 

o 
1 

x+/3 

/3 o 
au~ 

The result is a 3x3 matrix containing the infinitesimals, the first prolongation of the 
two subgroups, and the right-hand side of the equation. The determinant of this 
matrix 

Det [tunatrix] I I LieTraditionalForm 
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is a non-vanishing expression contammg a second-order polynomial of first 
derivatives. The coefficients of this polynomial depend on the independent variable x 
and the parameters a and p. Inserting the Lie matrix into equation (4.62), we are able 
to calculate the first integrals of the non-linear ODE 

integrals = 
Thread [Pirst:Integral [x, u, &llatrix, {l, 2}] == {cl, c2}]; 

integrals II LieTraditionalPorm II TablePorm 

1 1 == cl 
xa xa(l+xaux ) 

1 u Log [1 + x a U x 1 1 
- x ex + 73 - ex f3 + -x- a,------;(:c:;l-+-,-x- a::-:u-x--) = = c 2 

The result contains two expressions for the integrals combining the variable u and its 
first-order derivative in an algebraic way. These two first integrals define two 
surfaces in the space (x, u, u'). The projection of the intersection of these two 
surfaces onto the (x, u)-plane defines the solution for which we are looking. The 
following figure represents a case with fixed values c] and C2' 

u' 

2 

Figure 4.1. Intersection of the two integrals for c1 = c2 = 1. The parameters a and,8 take the 

values a = 1/10 and,8=I. The intersecting line represents the solution of the equation if we 
project the intersection to the (x, u )-plane. 

Since we know two first integrals, we are able to eliminate the derivatives from the 
two integrals analytically. We solve the first relation with respect to u': 
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soll = Solve [integrals [1] , u I [xl 1 / / Simplify 

-1 + E" (-c1 (3+u [x] ) 

{ {u' [x] ~ x ex } } 

Substituting this result into both integral expressions delivers 

int21 = integrals /. soll[l, 1] / / PowerExpand / / Simplify 

1 _ Eel " (3-" u [x] 

{ True, x ex = = c2 } 

The resulting list contains the identity and an implicit representation of the solution. 
The explicit solution follows from the second relation if we solve it with respect to u: 

solution = Solve [int21[2], u [xl 1 

-c1 ex (3 + Log[x (-c2 + }" ) ex] }} 
{{u[x]~- Cl 

The constants Cl and C2 denote constants of integration. a and f3 are the model 
parameter and the introduced group parameter, respectively. The occurrence of the 
group parameter f3 as a mUltiplier reminds us of the fact that the additive integration 
constant Cl is related to the group of translations. 

The solution steps so far discussed are collected in the MathLie function 

SecondOrderIntegrate[]. The application of this function to a second-order ODE is 

similar to the use of DSolve[]. The function needs the equation under discussion, the 
dependent and independent variables, and the parameters contained in the ODE. The 
example discussed above is solved by 

sol = SecondOrderJ:ntegrate [firstExample, u, x, {a} 1 

{u ~ Function [x, - _L_O..::.g--,-[_-X~C_I--,-[~_]"---_C_I--,-[_2=-] '-] l} 

where CIU] and Cl[2] are constants of integration. The solution obtained looks 
different in comparison with the solution presented above. However, the extraction of 
the multiplier CIU] and a rescaling of CI[2] will create the same representation of 
the solution. The same solution as found by the manual calculation is derived by the 
function DSolve[]: 

DSolve [firstExample == 0, u, xl 

{ { u ~ (c [2] _ Log [#1 ~ - C [1]] &)} } 
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Again, a constant is extracted from the argument of the logarithm. This example 
shows that the solution steps of Lie's method of fust integrals result in the same 
solution as that of Mathematica. 0 

Example 2 

The second example for a second-order ODE is related to the problem of a suspended 
cable equation: 

2 1/2 
ux,x - a (1 - ux) = O. (4.63) 

The problem of the suspended cable is discussed by Ames [1968]. We examine here 
a generalization of the cable equation by introducing an arbitrary power v in the 
second term of the ODE: 

2 v 
ux•x - a(1 - ux ) = O. (4.64) 

The original model follows from our model with v = 1/2. The present problem is 
similar to the fust example we discussed. The difference is that we added a to the 
square of the derivative and raised the second term to the vth power. These small 
changes lead to substantial variations in the solution: 

.econdBxample = ox.xu[x] -a (1+ (oxU[X])2)V == 0; 

.ecoDC!BxlUllPle II L'l'F 

-0: (1 + u~) v + ux,x == 0 

In applying Lie's algorithm to this equation, we first calculate the point symmetries 
of this equation for arbitrary v. 

The infinitesimals follow by applying the MathLie function Infinitesimals[] to the 
equation: 

infi = Znfiniteaimala[aecoDdBxample, 

u, x, {a, v}, SuhatitutionRule. -+ {O{x.2} u [x] }] ; 

infi II L'l'J' 

cPl == k1 

~1 == k2 

The result is a two-dimensional symmetry transformation which itself is solvable. 
The symmetries represent translations in the independent and dependent variables. 
The fust difference in comparison to Example 1 is that the group is smaller. This 
reduction of the group order has consequences with regard to the solutions. 
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The two subgroups necessary for integration are derived by independently setting 
each of the group parameters kl or k2 to unity. Since the symmetry group is two 
dimensional, we know from Lie that the algebra is always solvable. In the worst case, 
the solution may in the end be represented by an implicit representation. The 
infinitesimals for the two subgroups follow from 

inf1 = 
{ {xi [1] [x, u] }, {phi [1] [x, u]}} I. infi I. {k1 .... 1, k2 .... O} I. 
u .... u[x]; 

inf2 = 
{{xi[l] [x, u]}, {phi [1] [x, u]}} I. infi I. {k1 .... 0, k2 .... 1} I. 

u .... u[x]; 

So far, we put no restrictions on the exponent v. The following derivation of the 
solution however assumes a specific value for v. We arbitrarily choose v == 3. The 
related Lie matrix for this case is calculated by 

bmatrix=DeltaKatrix[x,u, a(l+ (Bx U[X])2)3, 2, {inf1, inf2}]; 

TablePor.m[bmatrix] II LieTraditionalPor.m 

o 
1 

1 

1 

o 

The determinant of this matrix is given by a polynomial of sixth order in u': 

Det [bmatrix] II LieTrac!itionalPoxm 

-a - 3 a u; - 3 au! - a u! 

The first integrals for the generalized cable equation with v = 3 follow from 

integrals = 

Thread [Pirst:Integral [x, u, bmatrix, {1, 2}] == {e1, e2}]; 

integrals II LieTraditionalPoxm II TablePor.m 

u+ 

x-

1 == c1 
4a (1+u~)2 

3 ArcTan lux 1 
8a 

3 U x == c2 
8 a (1 + u~) 

Solving the first relation with respect to u' allows us to eliminate this term in the 
second integral: 

soll = Solve [integrals[lB, u I [x]] /I Simplify 
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{ {u' [xl -4 -

2 cl + jCi=uj"xT - 2 u [xl 

-2C;:2U[Xl }, 

{u' [xl -4 

2 c1 + jCi~;;Tx-Y - 2 u [xl 
Va } 

-2 cl + 2 u [xl ' 

-2 Cl+~+2 u[x] 

cl-u [x] 

{u' [xl -4 - --'-----{2~2---}' {u' [xl -4 

-2 cl+ ~+2 U [x] 

cl-u [x] 

-'------{2-,=2~--} } 

The solution for u' consists of four expressions containing square roots of u. The 
differences in the four solutions are the signs in front of the first and second terms. 
Inserting, for example, the second solution into the second first integral, we get the 
final solution in an implicit representation: 

int21 = integrals[2] /. soll[2, 1] 

3 ArcTan [ 
2 cl+ ~-2 u [x: 

-2 cl+2 u [x] 
x- ------L-8~a--------

c2 

2 Cl+~-2 u[x] 

-2 cl+2 u[x] 

2 Cl+~-2 ulxj ]2 

-2 cl+2 u [xl 

3 
2 cl+ ,/Ci-=-~T~T -2 u [x] 

Ie; 
-2 cl+2 u[x] 

2 Cl+~-2U[Xl 
-2 cl+2 u [x] 

An explicit solution of this expression is impossible since it contains transcendental 
functions: 

solution = Solve [int2l, u [xl 1 

Solve: : tdep : 

The equations appear to involve transcendental functions 

of the variables in an essentially non-algebraic way. 

2Cl+~-2U[XJ 
3 ArcTan [ 201+2 u [x] 

Sol ve [x - ------L-8=-a--------

4a 

u[xl] 

2 cl+ ~T;Y -2 u[x] 
Va 

-2 cl+2 u [x] 

2 Cl+~-2 u[x] ]2 
-2 cl+2 u [x] 

3 
2 cl+ v~l-u(;J -2 u [x] 

Va 
-2 cl+2 u [x] 

2 Cl+~-2U[Xl 
-2 cl+2 u [x] 

] == c2, 
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At this point, we have to accept that the solution can only be represented in an 
implicit form. The solution of the original equation follows in one shot by 

80J. = Sec:ondOrder:Integrate[aec:ondBxampJ.e I. v ~ 3, u, x, {a}] 

Solve: : tdep : 
The equations appear to involve transcendental functions 

of the variables in an essentially non-algebraic way. 

1 
8a [ 8 x a + 3 ArcTan [ 

2CI[1] + VcI[~UfXT -2u[x] 
---_-:2=--C=cI::-7:[ 1;--']'-"+'-:::-2-u--;[-x~]-- 1 + 

4aCI[1] 

4au[x] 

4 CI [1] + 2 vcITiT=UfXT - 4 u [x] 
Va 

-CI[l] +u[x] 

4 CI [1] + 2 :/CiIiT-UfXT - 4 u [x] Ya 
-CI[l] +u[x] 

3 Y2 Va VCI [1] - u[x] 
2 CI [1] + {CiTiT::U1XT - 2 u [x] :ra 

-CI [1] + u [x] 

CI[2] 

The result is an implicit representation of the solution. CI[l] and CI[2] are the 
constants of integration. Trying to solve the original equation by Mathematica, we 
learn that DSolveD is not capable of resolving the relation for the first integral. A 
glance at the result of DSolve[] explains the reason: 

DSoJ._[aec:~J.e I. v ~ 3, u, x] 

Solve: :dinv : The expression (1- I «30» [x] j «30» [xl' (2+«1»') 

involves unknowns in more than one argument, so 
inverse functions cannot be used. 

Solve::dinv: The expression (l-I «30»[X]j«30»[X]' (2+«1»2) 

involves unknowns in more than one argument, so 
inverse functions cannot be used. 

Solve::dinv: The expression (l_IU'[X]jU'[X]' (2+«1»2) 

involves unknowns in more than one argument, so 
inverse functions cannot be used. 
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General: : stop : Further output of Solve::dinv will 

be suppressed during this calculation. 

{solve [ (3 ArcTan[u' lUll - 8 ex #l + 

5u'[#1] +6ArcTan[u'[#1]] U'[#l]2 -16ex#lu'[#1]2 + 

3 u' [#1]3 + 3 ArcTan [u' [#l]] u' [#l]4 - 8 ex #1 u' [#1]4) / 

(8 (1 + u' [# 1] 2 ) 2) = = C [1] , 

{u' [#1] }]} 

The above result shows that a transcendental function is given in an essential 
non-algebraic way. The steps presented above demonstrate that the solution of the 
generalized cable equation is solvable in an implicit form. 0 

The two examples demonstrate that the technique of an integrating factor can be 
generalized to second-order equations. We also realize that the presented procedure is 
capable of deriving solutions for cases in which Mathematica fails. In Section 
4.4.3.1, we will discuss the extension of the integrating factor technique to a general 
nth-order ODE. Lie called this procedure the method of generalized multipliers. In 
the following section, we discuss another solution procedure helpful in solving 
second-order ODEs. This method is related to canonical variables and the skeleton 
introduced in Sections 4.3.4 and 4.4.1.1 for first-order ODEs. The following method 
uses the canonical variables to integrate the equation. 

4.4.2.2 Method of Canonical Variables 

Here, we demonstrate by a single example that the term skeleton is also useful for the 
case of second-order equations. The combination of canonical variables and the 
method of first integrals serves to derive an explicit solution for an ODE for which 
only an implicit representation of the solution is known (cf. Ibragimov [1994]). The 
considerations serve to demonstrate that a proper combination of different methods 
will lead to a solution of the ODE. 

Example 1 

Again, we use the equation from Example 1 of Section 4.4.2.1. This second-order 
ODE serves to show how canonical variables simplify the skeleton and the solution 
steps. The specific example we discuss is given by the equation 
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(ax u [x]) 1 
firstl:xam;ple = ax,x u [x] - + 

U[X]2 xu[x] 

firstl:xam;ple II LTP 

1 U x 
ux - U2 +ux,x == 0 

This second-order equation admits the symmetries 

infinit •• =Znfinit •• imal.[ 

firatBxample, u, x, SubstitutionRules -+ {a",x u [x] } ] ; 

infinite. 1/ LTP 

1 
rP1 == 2" u (kl + 2 k2 x) 

';1 == x (kl + k2 x) 

representing a two-dimensional group of scaling and projections. The skeleton of this 
equation exists in a four-dimensional manifold m = {x, u, u' = p, un = q}. Since the 
dimension of the manifold m is larger than three, we cannot directly represent the 
skeleton as a surface. However, Mathematica with its animation capabilities offers 
the opportunity to represent the fourth dimension in a sequence of figures. The 
combination of these figures in an animation allows us to represent the manifold m 
in a special way if one of the coordinates of m is smoothly changed. The resulting 
sequence creates the impression of an evolution of the manifold if one moves along 
the distinguished coordinate. For the above equation, we define the skeleton in the 
fonn 

p 1 
.keleton [u_, x_, p_] : = - -

u 2 xu 

representing the surface for un = q in an explicit fonn. For our animation, we select 
the x-axis as the distinguished coordinate. The three-dimensional surface represents 
the submanifold m. = {u, u' = p, un = q} for certain values of x. The different 
pictures are created by 

Map[Plot3D[skeleton[u, I, p], 

{u, 0.1, 1}, {p, -3, 3}, PlotRange -+ {-200, 200}, 

Tick. -+ Pal.e, PlotPoint. -+ 35, 
.. ah -+ ralse, Ax.sLabel -+ {nu., np., nqn}, 

ViewPoint -> {0.717, -2.988, 1.'17}, 

PlotLabel -+ StringJoin [nx=·, ToString [I] ] ]., 

Table[i, {i, .01, .1, .01}]] 
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q q 

u u u 

q q 

u u u 

x=O. l 
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On top of each picture, the specific x-value is given. This allows us to locate the 
position along the x-axis. The animation shows that the manifold along the x-axis 
changes rapidly for small x-values. For greater values of x, there are no dramatic 
changes in m. We again realize that the skeleton in the original coordinates 
represents a complicated manifold. 

In Section 4.4.1 .1, we remarked that the method of canonical variables allows us to 
simplify the skeleton. To demonstrate this behavior, let us calculate the canonical 
coordinates related to subgroups kl and k2 for the above ODE. First, we carry out the 
calculation for subgroup kl representing the scaling group for this equation 

u 
cckl = CanonicalVariables [{u} I {x} I {x}, {-}, 

2 

{w}, {t}], cckl II LTl" 

t == Log [xl 
u 

w == --Ix 
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The second set of canonical variables follows from the subgroup with kl = 0 and 
k2 = I by 

cck2 = CanonicalVariables [{u}, {x}, {X2}, {x u}, 

{w}, {t}]; cck2 / / I..TF 

1 
t ==-­

x 
U 

W == 
x 

For each set of canonical variables, there exists a representation of the original ODE. 
The equation in canonical variables for kl = 1 and k2 = 0 reads 

ceqkl = CanonicalRepresentation[firstExample, u, x, 

cckl, w, t]; ceqkl / / LTI." 

2 W - w3 - 4 w t + 4 w2 Wt,t == 0 

The second representation related to the second set of canonical variables is 

ceqk2 = CanonicalRepresentation [firstExample, u, x, 

cck2, w, t]; ceqk2 / / LTI." 

Both equations are embedded in the reduced manifold me = {w, w', w"}. This 
manifold is free of the independent variable t and thus simplifies the representation 
of the equation. The surface of the two manifolds in canonical coordinates is given in 
the following figure: 

2w-r-4p 
Show [GraphicSArray [ {Plot3D[ - , {w, .1, 2}, 

4w2 
{p, -3, 3}, AxesLabel ... {"w", "P", "Q"}, PlotPoints ... 35, 

Mesh ... I."alse, ViewPoint -> {O.717, -2.988, 1.417}, 

Ticks ... I."alse, Displayl."unction ... I:dentity] , 
p 

Plot3D[-, {w, .1, 2}, {p, -3, 3}, 
w2 

AxesLabel ... {own, "P", IIQII}, PlotPoints ... 35, 

Mesh ... I."alse, ViewPoint -> {O. 717, -2.988, 1.417}, 

Ticks ... I."alse, Displayl."unction ... I:dentity] }, 

Displayl."unction -+ $Di splayl."unct ion ] ] 
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Q Q 

'IT 

Figure 4.2. The two figures show the skeleton of the equation 

(ax u[x]) 1 
ax x u[xl - 2 + -[-I = ° . u[xl xu x 

in canonical representations. Left: skeleton of equation 

Right: skeleton of 

2 w[tJ- w[tl3 - 4 w' [tl + 4 w[tl2 w" [tl = 0. 

( W'[tl -w"[t])=O. 
w[tl2 

w 

The variables P and Q denote the first and second derivatives of canonical variable w, 

respectively. 

We observe that the two figures look very similar. However, the skeletons in their 
analytical representations are different. Applying canonical coordinates to the 
original equation, we impressively simplified the skeleton of the equation. The 
simplification occurs by the elimination of one of the coordinates from the 
manifold m. 

The question arises of whether there are different solutions eXIstmg for similar 
looking skeletons or whether the solutions are equal. We will examine this question 
by solving the two canonical representations. First, let us solve the original equation 
by DSolve[]: 

DSo1ve [firstExamp1e == 0, u, x] 

1 [ 1 u ' [x ] " [] 0 1 DSo ve [] - --2- + U x == ,u, x 
xu x u[x] 

The result is disappointing. Mathematica is unable to solve the second-order 
equation. Calculating the solution of the first canonical reduction with DSolve[], 

so11 = DSo1ve[ceqkl, w, t] 

DSolve[2w[t]-w[t]3-4w'[t] +4W[t] 2 W"[t] ==0, w, t] 
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shows that again Mathematica is unable to solve the equation. The following idea 
might reveal this problem. We know that a given equation admits a certain type of 
symmetry. This is also true for the first canonical reduction. The symmetries of the 
first canonical reduction follow by 

infceqkl = J:nfinitesimals [ceqkl. w. t]; infceqkl / / L'l'F 

cP1 == Et kl W 

';1 == 2 Et kl + k2 

representing a two-dimensional symmetry group with an exponential dependence in 
t. Since the subgroup with k2 *" 0 only represents a translation in t, we restrict our 
examinations to the case kl = 112 and k2 = O. The canonical variables for this 

subgroup follow by 
Et w 

ccceqkll=canonicalVariablea[{w}. {t}. {Bt }. {--}. 
2 

{v}. {a}]; ccceqkll / / L'l'P 

s == _E- t 

V == E- t/2 W 

Inserting these new coordinates into the first canonical reduction, we get a second 
canonical representation of the first reduction: 

ceqkll = CanonicalRepreaentation[ceqkl. w. t. 

ccceqkll. v. a]; ceqkll / / platten / / L'l'P 

-4 I --fS (vs -v2 vs,s) == 0 

The calculation shows that the two canonical representations of the first and second 
symmetry levels are identical, Compare the second canonical reduction of the first 
symmetry level with the present result: 

eqh = Thread [ ceqkll [i) / (- 4 J: Va ). Equal] = = 0; eqh / / L'l'F 

Vs _v2 vs,s == 0 

The symmetry analysis of this equation illustrates that the equation admits a 
second-order group. We know from the above discussions that a second-order group 
is sufficient to solve this kind of ODE, The infInitesimals of this ODE follow by 

infh = J:nfiniteaimala [eqh. v. a]; infh / / L'l'P 

cP1 == k2 v 
2 

';1 == kl + k2 s 

To solve the equation eqh, we apply the method of first integrals in an adapted form. 
First, let us determine the Lie matrix with the infInitesimals 
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inf1 = 
{{xi [1] [s, v]}, {phi [1] [s, v]}} /. infh /. {k1-+ 1, k2 -+ O} /. 

v-+v[s]; 

inf2 = 

{{xi [1] [s, v]}, {phi [1] [s, v]}} /. infh /. {k1 -+ 0, k2 -+ 1} /. 

v-+v[s]; 

Inserting the infinitesimals into the Lie matrix, we get 

. . [ v' [s] . 
Lmlatr1x = DeltaMatr1x s, v, ---, 2, {1nf1, 

v[s] 2 
inf2}]; 

TableFo~[Lmlatrix] //LieTraditionalFo~ 

1 0 0 
v vs 

s 
2 2 

1 vs 
vs 
V'2 

whose determinant is a non-vanishing quantity 

Det [Lmlatrix] / / LieTraditionalForm 

Vs v~ --+-
2v 2 

One of the two first integrals follows from 

integra12 = FirstJ:ntegral [s, v, &!latrix, 2] c2 

2 Log [v [s]] - 2 Log [1 + v [s] v' [s]] == c2 

The second first integral is not accessible by an integration: 

integral1 = FirstJ:ntegral [s, v, &!latrix, 1] c1 

f(V[S]' [t] (- ~ v' [s] [t] _ S [t] v' [s] [t] ) + 
2 v[s] [t]2 

, ( v' [s] [t] 1, 2 ) 
s [t] 2v[s] [t] + 2 v [s] [t] + 

(- ~ v [ s] [t] + s [ t] v' [s] [t] ) v" [s] [t] ) / 

( v' [s] [t] + ~v, [s] [t]2) dlt == 
2 v[s] [tJ 2 

cl 

However, the solution of the equation eqh is derived if we take the first integral as a 
defining equation for v. Thus, another integration by DSolve[] gives us the solution 
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c801_2 = DSo1ve[integra12, v, 8] 

InverseFunction: :ifun : Warning: Inverse functions are 

being used. Values may be lost for multivalued inverses. 

{ {v ~ (EC2l2 (1 + ProductLog [E-1+E-C2 (#1-C [1]) 1 ) &) } } 

This type of solution also follows by applying the function SecondOrderIntegrate[] to 
the equation in canonical variables: 

SecoDC!Order:J:ntegrate [eqh, v, 8] 

InverseFunction: :ifun : Warning: Inverse functions are 

being used. Values may be lost for multivalued inverses. 

v~ Function s, E-'--- 1 + productLog[E-l+E (s-C[l]) 1 { [ CI[2J ( -CI[2 J ) 1 } 

The solution of the original equation in variables x and u thus follows by inverting 
the canonical transfonnations 

c801 = «V[8] I. cBo1ex2) [1] == v I. 
{v -+ v[t, w], S -+ B [t, w]} I. ccceqk11) I. 

{w -+ w[x, u], t -+ t [x, u]} I. 
cck1 

EC2/2 (1 + productLog[E-1+E-C2 (--}-C[l]) l) u 
x 

The explicit solution for the original equation thus reads 

801 = Solve [c801, u] II Simplify 

{{ ( 
E-c2 (i1-xC[l]) ) 

U ~ Ec2/2 X 1 + ProductLog [E- l - xl} } 

where the constants C2 and C[l] are constants of integration. This example shows that 
a solution of an ODE is derived if a hybrid algorithm, combining the method of first 
integrals, the method of canonical variables, and the solution procedure of 
Mathematica, is applied. The solution calculated above is not accessible by DSolve[] 
or one of the two other methods alone. We can check the solution by inserting the 
result into the original equation: 

firstBxulp1e I. (u -+ I'uDction [x, w] I. (801[1, 1] I. u -+ w» II 
Simplify 

o 

The resulting zero demonstrates that the derived solution satisfies the original 
equation. This solution is new in the sense that the explicit representation for the 
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original equation is given. The solution in an implicit representation was given by 
Ibragimov [1994]. A graphical representation of our result, for fixed constants C2 and 
C[1], is shown by 

Plot[u /. sol /. {c2-+l, C[l] -+l/2}, 

{x, -.20, .0SlO}, PlotStyle-+RGBColor[0.996l09, 0, 0], 

AxesLabel -+ {DXB, By"}, PlotRange -+ All] 

-0.2 -0.15 -0.1 -0.05 

y 

0.1 

-0.1 

-0.2 

-0.3 

-0.4 

.5 

-0. 

0.05 x 

The example presented in this section illustrates how the combination of different 
strategies allows the derivation of a solution. In the following section, we will 
generalize the presented procedures to higher-order ODEs. 

4.4.3 Higher-Order Ordinary Differential Equations 

Differential equations of higher order arise naturally in physics. For example, 
third-order ODEs come up in fluid dynamics and fourth-order ODEs in elasticity. For 
general higher-order equations, there exist hardly any techniques for obtaining 
explicit symbolic solutions. This means that higher-order ODEs are thus not well 
studied in the literature. In the following, we will present a symbolic technique for 
producing explicit solutions independent of the order of the equation. The method 
described in the preceding sections can, without essential changes, be generalized to 
the solution of differential equations of higher order. 

4.4.3.1 Integrating Factor Method 

The essential change in the theory of an integrating factor for higher-order ODEs is 
the extension of the Lie matrix to higher prolongations. Extending the Lie matrix to 
higher prolongations is the key step for generalizing the procedure of integrating 
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factors. Lie called this extension the determination of the multiplier of the differential 
equation. 

The five steps of integration discussed for second-order equations remain the same 
for higher-order equations. However, the dimension of the Lie matrix changes from a 
3 x 3 matrix to an (n + 1) x (n + 1) matrix. Before we discuss the algorithm, let us 
state the general settings for higher-order equations. 

The most general form of an nth-order ODE is given by 

F(x, u, u', un, ... , u(n») = 0, (4.65) 

where u(n) = ':t:." denotes the nth derivative of u with respect to x. In the following, 

we assume that equation (4.65) can be solved with respect to the nth derivative. Thus, 
the actual equation under consideration is 

u(n) = w(x, u, u', ... , U(n-I»), (4.66) 

where w is a given function of x, u, u', ... , u(n_l). 

If an nth-order equation admits a finite symmetry of dimension r 2: n, then the 
equation can be integrated by group-theoretic quadrature methods. This, also, can be 
done in various ways. For a discussion of other procedures, compare Sections 4.4.1 
and 4.4.2. One of the group-theoretic algorithms is based on first integrals. The 
algorithm for an nth-order ODE is summarized as follows: 

1. Compute the Lie algebra Lr. A basis for Lr is the set Vlo V2, ... , Vr. The tangent 
vector fields Vi follow from appropriately specifying the group constants. 

2. If r = n, go to the next step; 
if r > n, distinguish any n-dimensional subalgebra Ln of Lr. 
If r = n - 1, the order of the equation may be lowered; 
if r = 0, the group method is not useful. 

3. Calculate the Lie determinants dl:1i and 1:1, and if possible, determine the n first 
integrals by integration. The Lie determinants are defined by 

da, =~H 
du du' du(n-I) 

¢2 ¢~ ¢~n-I) 
(4.67) 

u' un w 

and 
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gl ifJI ifJI' ifJin - l) 

d!1i = det dx du du' du(n-I) (4.68) 

1 u' u" w 

where i denotes the row of the Lie matrix in which infinitesimals are replaced by 
differentials. The n x n Lie determinant !1 reads 

gl ifJI ifJ'l ... ifJin -
l) 1 

!1 = det ~2 ~2 ~~ ... ifJin:- I
) , 

1 u' u" w 

(4.69) 

where gi and ifJi are the infinitesimals of the vector field Vi and ifJ~ denotes the first 
and ifJ~n -I) the (n-l)th extension of the infinitesimals ifJi' The corresponding first 
integrals !/Ii are given by 

f d!1 i 
!/Ii = T = Ci, i = 1,2, ... , n, (4.70) 

The constants Ci denote the integration constants of the ODE. 

4. Solve one of the n integrals with respect to the (n-l)th-order derivative and 
substitute the result into the remaining relations. Repeat this procedure until no 
derivative remains in the relations. 

5. If we can solve the resulting relation with respect to the unknown function u, we 
have found an explicit solution. Otherwise, our solution is implicit. 

This procedure becomes very cumbersome with increasing orders of the equation if 
done by hand. In principle, the procedure can be applied to any kind of linear or 
non-linear ODE. How the algorithm works in particular examples is demonstrated 
below, 

Example 1 

The first example is a third-order equation listed by Kamke [1977] as No. 7.13: 

thirdOrderExam;ple = Bx,xu[x] B{X'3}U[X]-0I.~1+f3l (Bx,xU[X])2 ; 

Map [# == O&:, {thirdOrderExample}] / / Lie'l'raditionall'o:rm / / 

'l'ablel'o:rm 

-0 Vi + (32 u~,x + ux,x ux,x,x == 0 
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The parameters a and f3 are real constants. According to Kamke, this third-order 
ODE is solvable and the solution can only be represented in parametric form. We will 
show here that an explicit solution of the equation is possible. First, let us check if 
Mathematica can solve the third-order equation. 

DSolve [thirdOrderExam,ple == 0, u, x] 

Dso1ve[-a,jl+(32 u "[x]' +u"[x]u(3) [x] ==0, u, xl 

The above line shows that Mathematica is not capable of solving the equation. The 
question now is: Can we derive the necessary number of symmetries in order to 
integrate the equation? Deriving the symmetries is the first step in the general 
algorithm. The calculation of symmetries is carried out by the MathLie function 

Infinitesimals[] 

infi = Infinitesimals[thirdOrderExample, u, x, {a, ~}, 

SubstitutionRules -+ {c3 IX ,3} u [x]}] 

{phi [1] -? Function [{x, u}, k2 + k3 x] , 

xi [1] -? Function [{x, u}, kl]} 

The result is a symmetry group of order three. The number of group constants is 
equal to the order of the equation. This allows us to apply the integrating algorithm 
discussed above. The specific symmetries are denoted by the group constants kl, k2, 
and k3. Each of these parameters is related to a vector field 1\, i = 1,2, 3. Since the 
number of vector fields is equal to the order of the equation, we can go to step 3 of 
the algorithm. In the third step, we determine the Lie matrix by inserting the 
prolongations of the infinitesimals and the equation itself: 

inf1 = {{xi [1] [x, u]}, {phi [1] [x, u]}} /0 infi /0 

{k1 -+ 1, k2 -+ 0, k3 -+ O} / 0 

u -+ u [x] ; 

inf2 = {{xi [1] [x, u]}, {phi [1] [x, u]}} /0 infi /0 

{k1-+ 0, k2 -+ 1, k3 -+ O} /0 

u -+ u [x]; 

inf3 = {{xi [1] [x, u]}, {phi [1] [x, u]}} /0 infi /0 

{k1-+0, k2-+0, k3-+1} /0 

u -+ u[x]; 

The Lie matrix is derived by 

&llatrix = DeltaMatrix[x, 

u, 
a...j1+~2 (c3x ,xU[X])2 

--~-----------------, 3, {inf1, inf2, inf3}]; 
c3x ,x u [x] 

TableFo~[&llatrix] //LieTraditionalFo~ 
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1 

o 
o 

1 

o 
1 

x 

o 
o 
1 

One of the three first integrals is 

o 
o 
o 
0: -VI + f32 U;,X 

integl = l'irstXntegral [x, u, ~trix, 1] 

integ1 / / Lie'l'rac:Htionall'orm 

== cl 

c1 / / Simplify; 

The result depends on u" and now allows us to rewrite all tenus containing u" in the 
Lie matrices. Next, we solve the first integral with respect to u". Since the integral 
depends quadratically on u", we get two solutions: 

soll = Solve [integ1, A .. , .. U [x] ] 

{ {u" [xl ~ -) - -W- + c12 0:2 f32 - 2 cl x 0:2 f32 + x 2 0:2 f32 }, 

{u" [xl ~) - f3\ + c12 0:2 f32 - 2 cl x 0:2 f32 + x 2 0:2 f32 } } 

The first of the two solutions is used to replace u" in the Lie matrix. The reader can 
easily do the calculation for the second solution by himself: 

dmat = ~trix /. soll[l] 

{{l, 0, 0, a}, {O, 1,0, A}, {O, x, 1, A}, 

{I, u'[xJ, -)-;, +cI20:2f32-2clx0:2f32+x20:2f32, 

- (0: .J (1 + f32 (- -W- + c12 0:2 f32 - 2 cl x 0:2 f32 + x 2 0:2f32 ) ) ) / 

( ) - ;2 + c12 0:2 (32 - 2 c1 x 0:2 f32 + x 2 0:2 f32 l}} 

The simplified Lie matrix is used again to calculate the second first integral of the 
third-order equation: 

integ2 = FirstXntegral [x, u, dmat, 3] c2 / / simplify 
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( J -(3\ + c12 a 2 (32 - 2 c1 x a 2 (32 + X 2 a 2 (32 

(-1 + c 1 2 a 2 (34 - 2 c 1 x a 2 (34 + X 2 a 2 (34) + 

a (32 -V (c1-x)2 a 2 f34 u' [xl J / 

( a (32 -V (c 1 - x) 2 a 2 (34 ) 

c2 

As expected, we find the integral depending only on first derivatives of u. Since this 
integral is linear in u', it is uniquely solvable in u' 

8012 = Solve [integ2, u' [x]] / / Sill\Plify 

{ {u' [xl -4 c2 - (-V (- ;2 + c12 a 2 (32 - 2 c1 x a 2 (32 + x 2 a 2 (32) 

(-1 + c12 a 2 (34 - 2 c1 x a 2 (34 + x 2 a 2 (34) ) / 

( a (32 -V (c 1 - x) 2 a 2 (34 ) } } 

The resultant expression contains radicals of quadratic polynomials in x. Inserting 
this result into the Lie matrix, we are able to eliminate the dependencies on u'. We 
find ' 

dmatl = dmat /. 8012[1~ lD / / Sill\Plify 

{i1, 0, 0, a}, {a, 1, 0, a}, {a, x, 1, A}, 

{1, c2 - (J -(3\ + c12 0:2 f32 - 2 c1 x a 2 (32 + x 2 a 2 (32 

(-1 + c12 a 2 (34 - 2 c1 x a 2 (34 + x 2 a 2 (34) J / 

(a (32 -V (c1 - x) 2 a2 f34 ) , 

The last step of integration is inserting the Lie matrices into the third first integral 
depending on u and x: 
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integ3 = FirstI:ntegral [x, u, dmatl, 2] -- c3 II Si~lify 

) - /3\ + c12 ex 2 /32 - 2 c1 x ex2 /32 + X2 ex2 /32 -

2 .J ( ~; + C 12 ex2 /3 2 - 2 c 1 x ex2 /32 + X2 ex 2 /32 ) -

2 x 2 ex2 /3 4 .J (;; + c12 ex2 /32 - 2 c1 x ex2 /3 2 + X2 ex2 /32 ) ) + 

2 .J ( ~; + c12 ex2 /32 - 2 c1 x ex2 /3 2 + X2 ex2 /32) + 

6 x 2 ex2 /3 4 .J ( ;; + c12 ex2 /32 - 2 c1 x ex2 /3 2 + X2 ex2 /32 ) ) + 

(c1 - x) 2 ex4 /38 U [xl 1 / 

( (c1 - x) 2 ex4 /38 ) 

c3 

The integral contains the dependent variable u again as a linear variable. In turn, we 
end up with a unique solution for the Kamke equation 7.13, which is 
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solution Solve[integ3, u[x]] II Simplify 

(X3 a 3 [36 _.) (cl- X)2 a 2 [34 + x 2 a 2 [34 .) (cl- x) 2 a 2 [34 ) + 

c1 2 a 2 [34 

(2 .) ( ;~ + c12 a 2 [32 - 2 cl X a 2 [32 + x 2 a 2 [32) (-1 + 3 x 2 a 2 [34) -

c2 a [32 (x a (32 + -J(;l - x) 2 a 2 [34 ) ) + 

c2 a [32 (xa(32 +.) (cl-x)2 a 2 (34))) / 

( (cl - x) 2 a 4 [38) } } 

The solution depends on three constants cl, c2, and d, all of which are constants of 
integration. The parameters a and f3 are the parameters of the original equation. To 
get a feeling how the solution evolves, we plot the solution for different parameter 
sets c1, c2, d at fixed a and f3: 

sl = Table[ 

(U[X] I. solution I. {Cl-+ 1, c2 -+ ~ , c3 -+ i, a -+ 1, /3 -+ ~}) [lD, 

(i, 0, 5}); 

Plot[Evaluate[sl], 

{x, 5, 7}, PlotStyle-+ {RGBColor[O, 0, 0.996109], 

RGBColor[O, 0, 0.62501], RGBColor[0.500008, 0, 0.500008], 

RGBColor[0.500008, 0, 0.996109], 

RGBColor[0.996109, 0, 0.500008], 

RGBColor[0.500008, 0, 0.250004]}, 

AxesLabel -+ {nxn, nun}] 
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The figure represents the real valued solutions of the equation 

8x,x u[x] 8{x,3} u[x] - a..J 1 + jJ2(8x,x U[X])2 = 0, 

The different curves represent the solutions for values of c3 E {O, 1,2,3,4, 5} and 
fixed values for c2 = 112, c 1 = 1. The parameters of the equation are a = 1 and f3 = 
112. 

We note that the solution is explicitly represented by a complicated expression 
containing radicals and polynomials. This result is new, as Kamke only offers a 
parametric representation of the solution. The example shows that with Lie's 
procedure, we are able to arrive at a solution for higher-order ODEs. Mathematica, 
by itself, is not yet able to handle this type of equation. 0 

Example 2 

The second example for higher-order equations is a third-order equation. In this case, 
the equation has no direct physical origin. It is only used for checking the integration 
procedure: 

ux.x,x + Re (ux ux,x - u(x) ux.x.x ) = 0, (4.71) 

where Re is a positive constant. The equation has some resemblance to hydrodynamic 
equations if the first term of the equation is replaced by a fourth-order derivative 
ux,x,x,x' However, the fourth-order equation does not possess the necessary number of 
symmetries to start the integration process. The reader may check this. The equation 
under consideration is thus 

thirdOrder = o .. , .. , .. u[x] + Re (oxu[x] o .. , .. u[x] - u[x] ox, .. , .. u[x]); 

Map [# == O&:, {thirdOrder}] II LieTraditionalPorm II TablePorm 

Ux,x,x + R, (ux Ux,x - U ux.x,x) == 0 
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where Re is a real constant. The equation has a minimum of required symmetries 
given by 

infi = :rnfiDitesima~s [thirdOrder , u, x, {Re}, 

SubstitutionRu~es -+ {a{x,3} u [x] }] 

{xi [1] -7 Function [{x, u}, k1 + k2 x] , 

. . [ k3 (- 1 + u Re) l} phl [1] -7 Functlon {x, u}, Re 

The calculation below shows that the functions of MathLie are not able to find all 
first integrals in a single run. We need to split the integration into a few steps 
considering the symmetries given by the vector fields Vi. The three symmetries 
related to the vector fields are given by 

iDf1 = {{xi [1] [x, u]}, {phi [1] [x, u]}} /. infi /. 

{k1 -+ 1, k2 -+ 0, k3 -+ O} /. 

u -+ u[x]; 

inf2 = {{xi[1] [x, u]}, {phi[1] [x, u]}} /. infi /. 

{k1 -+ 0, k2 -+ 1, k3 -+ O} /. 

u -+ u [x] ; 

inf3 = {{xi [1] [x, u]}, {phi [1] [x, u]}} /. infi /. 

{k1 -+ 0, k2 -+ 0, k3 -+ 1} /. 

u -+ u [x] ; 

The right-hand side of the third-order equation w is given by 

w = (So~ve [thirdOrder == 0, ax,x,x u [x]]) [1, 1, 2D; 

w // LieTraditiona~Form 

Re U x ux,x 
-1 + U Re 

The 4 x 4 Lie matrix follows by inserting the infinitesimals of the vector fields and w 

into the function DeltaMatrix[]: 

lImatrix = De~taMatrix[x, u, w, 3, {inf1, inf2, inf3}]; 

TableFor.m[lImatrix] /1 LieTraditionalFor.m 

1 0 0 0 

x 0 -ux -2ux ,x 

0 
-1 + U Re 

R 
u x lix,x 

1 u x lix,x 
Re U x ux,x 
-1 + U Re 

The determinant of the Lie matrix is a polynomial in u, u', and u": 
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Det [llmatrix] / / LieTraditionalForm 

In order to obtain first integrals for the equation, the second line of the above .l 
matrix is replaced by the differentials: 

integl = FirBtI:ntegral [x, u, lImatrix, 2] cl / / Simplify 

; (Log [ -1 + Re u [x] 1 - Log [u" [x]]) == c1 

The remaining two integrals r/l1 and r/l3 are not accessible to Firstlntegral[]. The 

reason for this is that the function Integrate[] of Mathematica cannot solve certain 
types of integrals. However, the result so far derived is helpful to find a solution of 
the equation. If we look at the first integral r/l2, we observe that this relation is a 
second-order ODE. The solution for u" clearly shows 

Boll = Solve [integl, ox,x u [xl 1 / / Simplify 

{{u" [x] --7 E-2c1 (-1 + R, u[x])}} 

If we transfonn Rule to Equal, we get the equation 

eqh = (Boll /. Rule -+ Equal) [1, lD 

u"[x] ==E-2c1 (-l+Reu[x]) 

a second-order equation which is now solvable by DSolve[]: 

Bo12 = DSolve [eqh, u, x] /. cl-+ C [3] 

{{U--7 (~e +E-E-CI31YR:#lC[1] +EE-CI3JYR;#lC[2]&)}} 

Inserting this solution into the original equation, we can verify that the original 
equation is satisfied, 

thirdOrder /. Bo12 II Simplify 

{O} 

meaning that the left-hand side of the equation vanishes, and, in tum, equality has 
been established. Solving the original equation with Mathematica, we get 

DSolve [thirdOrder == 0, u, x] 

DSo1ve [u (3) [x] + Re (u' [x] u" [x] - u [x] U (3) [xl) == 0, u, x] 
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showing us that Mathematica in the present form is not capable of handling 
third-order equations. 

The example demonstrates that we can even find solutions for cases where we know 
fewer first integrals than the order of the equation. The procedure of integration splits 
heterogeneously using different tools to solve the reduced equation. This behavior of 
higher-order ODEs creates some difficulties in the automatic solution process. D 

Example 3 

The third example considers the fourth-order ODE No. 7.16 of Kamke [1977]. This 
equation is a non-linear ODE containing second-, third-, and fourth-order derivatives. 
The problem with such an equation is that no standard procedure in literature offers a 
way to construct the solution given by Kamke. We will demonstrate that the 
integrating factor method is very effective for the construction of the solution. The 
equation No. 7.16 by Kamke reads 

kamke716 =3ax,xu[x] O{x,4}U[X] -5 (ax,x,xU[X]) 2 ==0; 

kamke716 / / LieTraditionall"orm 

-5 u~,x,x + 3 ux,x ux,x,x,x == a 

Kamke also lists the solution of the above ODE in implicit form: 

(4.72) 

where C1 , C2 , C3 , and C4 are real constants. The following examinations will 
demonstrate that this simple solution follows from our procedure. The first step of 
Lie's procedure is the determination of the infinitesimals: 

infkamke = :rnfinitesimals [kamke716 , u , x, 

SubstitutionRules -+ {a{x,,} u [x] }] 

{phi[l] -->Function[{x, u}, k3+klu+k4xJ, 

xi[l]-->Function[{x, u}, kS+k2u+k6x]} 

The result of this calculation is a symmetry group containing six group parameters ki • 

The second step consists in finding a solvable sub algebra of dimension four from 
these infinitesimals. The determination of all solvable subalgebras of dimension four 
is carried out with 

solvabJ.e = SolvableAlgebrasOfOrderN[infkamke, {u} I {x} I 4] 

{ { {kl --> l}, {k2 --> l}, {k3 --> l}, {kS --> l} } , 

{ {kl --> l}, {k2 --> l}, {k4 --> l}, {k6 --> l} } , 

{ {kl --> l}, {k2 --> l}, {kS --> l}, {k6 --> l} } , 
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{{kl~l}, {k3 ~ l}, {k4 ~ l}, {k5 ~ l}}, 

{{kl ~ l}, {k3 ~ l}, {k4~l}, {k6 ~ l}}, 

{{kl ~ l}, {k3~l}, {k5 ~ l}, {k6~l}}, 

{{k2~l}, {k3 ~ l}, {k5 ~ l}, {k6~l}}, 

{{k3 ~ l}, {k4 ~ l}, {k5~l}, {k6~l}}} 

From the result, we can choose one of the eight solvable algebras. The related 
coefficients of the vector fields creating these subalgebras are derived by inserting 
the above result and assuming the other group constants equal to zero: 

vactorBasis = 
Map [ ( { {xi [1] [x, u]}, {phi [1] [x, u]}} I. infkamke I . .. I. 

(k1 .... 0, k2 .... 0, k3 .... 0, k4 .... 0, kS .... O, k6 .... 0, u .... u[x]})&, 

solvable] 

{{{{O}, {u[x]}}, {{u[x]}, {O}}, {{O}, {l}}, {{l}, {O}}}, 

{{{O}, {u[x]}}, {{u[x]}, {O}}, {{O}, {x}}, {{x}, {O}}}, 

{{{O}, {u[x]}}, {{u[x]}, {O}}, {{l}, {O}}, {{x}, {O}}}, 

{{{O}, {u[x]}}, {{O}, {l}}, {{O}, {x}}, {{1}, {O}}}, 

{{{O}, {u[x]}}, {{O}, {l}}, {{O}, {x}}, {{x}, {O}}}, 

{{{O}, {u[x]}}, {{O}, {l}}, {{l}, {O}}, {{x}, {O}}}, 

{{{u[x]}, {O}}, {{O}, {l}}, {{l}, {O}}, {{x}, {O}}}, 

{{{O}, {I}}, {{O}, {x}}, {{l}, {O}}, {{x}, {O}}}} 

Knowing the infinitesimals of the solvable subalgebras, we can proceed to the 
integration step of the algorithm. The information from the original equation 
kamke176 about the right-hand side of the equation is extracted by 

t&I = Solva[kamke716, B(X,4j u[x]] [[1, 1, 2]]; 

t&I II LieTraditionalPorm 

5 u~,x,x 
3 ux,x 

The Lie matrix of the equation is then calculated for the fourth subalgebra by 

.6matrix = Del tallatrix [x, u, t&I, 4, vectorBasis [411 ] ; 

TablePorm[.6matrix] II LieTraditionalPorm 

a u U x ux,x ux,x,x 

0 1 0 0 0 
0 x 1 0 0 

1 0 0 0 0 

1 Ux ux,x ux,x,x 
5 U~,XIX 

The determinant of the !J. matrix is 

Det [Alllatrix] II LieTraditionalPorm 

_~ u 2 
3 x,x,x 

3 ux,x 
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Knowing that the determinant of Lie's matrix is a non-vanishing quantity, we can 
calculate the first integrals of the equation. One of these integrals is 

integ1 = FirstJ:ntegra1 [x, u, Amatrix, 1] == c1 / / Simplify 

1 2 (5 Log[u" [xl 1 - 3 Log[u (3 ) [xl l) == cl 

A second first integral follows by 

integ2 = FirstJ:ntegral. [x, u, Amatrix, 4] c2 / / Simplify 

3 u" [xl 
x + 2 u(3) [xl == c2 

At this point of our calculation, we know that equation No. 7.16 by Kamke allows 
two conserved quantities given by integl and integ2. The right-hand sides of these 
differential expressions cl and c2 are two real constants. The two integrals contain 
derivatives of third and second order. Since we know that both expressions are 
conserved, we can use one of these quantities to eliminate higher derivatives. We 
decide to eliminate the third-order derivative in the first integral integl by 

sl = Solve[integ2, ox,x,xu[x]] //Simplify 

{ { U I 3) [x 1 --> 3 u" [x 1 } } 
2 c2 - 2 x 

The elimination of the third-order derivative in integ 1 gives us 

integ1Help = integ1 /. sl[lD 

1 ( 3 u" [xl ) 2 5 Log [u" [xl 1 - 3 Log [ 2 c2 _ 2 x 1 == cl 

representing an integral containing only second-order derivatives. The solution of this 
expression with respect to the second integral delivers 

s2 = Solve [integ1Help, ox,x u [x] ] 

{{ u" [xl 
3 Y3 Ecl 

--> - -vB c2 3 - 24 C22 x + 24 c2 x 2 - S x 3 }, 

{u" [xl 
3 Y3 Ecl 

--> -YSC2 3 -24C2 2 X+24C2x2 -SX3 }} 

The two resulting expressions can be integrated twice to find the solution. However, 
we apply DSolve[] to the expressions to find the solution. Before we can use 
DSolve[], we need to transform the rules to equations by 
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eqh = s2 /. Rule -+ Equal / / Platten 

{u" [X] 

u" [X] 

3 -f3 Eel 

V8c2 3 -24c22 x+24c2x2 -8 X 3 

3 -f3 Eel 

V8 c2 3 - 24 C22 X + 24 c2 X2 - 8 X3 

Solving the first equation gives us 

soll = DSolve[eqh[ [1]], u, x] 

{{u--> (C[l] +C[2] #1-

3 -f3 Eel V8 c2 3 - 24 C22 #1 + 24 c2 #1 2 - 8 #13 

2 (-c2+#1) 

The second relation for un delivers the second solution 

so12 = DSolve[eqh[ [2]], u, x] 

{{u--> (C[1] +C[2] #1+ 

3 -f3 Eel V8 c2 3 - 24 C22 #1 + 24 c2 #1 2 - 8 #1 3 

2 (-c2 + #1) 

In conclusion, we find two solutions in an explicit representation. This has to be 
expected since the solution given by Kamke contains the unknown variable u in 
quadratic form. The derived solution can be inserted into the original equation to 
verify that the gained results are correct. For the first solution, we find 

kamke7l6 /. soll / / Si~lify 

{True} 

meaning that the first solution satisfies the equation. The second solution also 
satisfies the equation 

kamke716 /. so12 / / S~lify 

{True} 

At the end, we demonstrated that the integrating factor method is capable of solving a 
fourth-order equation. 0 



5 

Point Symmetries of Partial 
Differential Equations 

5.1. Introduction 

The subject of this section is to discuss the basic tools of Lie's symmetry method in 
connection with partial differential equations. These tools will support the practical 
calculations. We will show how the theory of Lie becomes vital again by using 
computer algebra calculations. 

The theory under discussion is the symmetry theory of Lie. This theory is useful for 
solving partial differential equations in a systematic way. The question Lie had raised 
more than 100 years ago was how to systematically solve differential equations. He 
was wondering about the many methods his colleagues used in solving differential 
equations. Up to the present day, this question of deriving solutions for a given 
differential equation has been of topical interest for physicists and mathematicians 
alike. Lie found a solution to this problem by introducing a method which allows the 
examination of symmetry transformations of equations. Using this method, he was 
able to find solutions not only for ordinary differential equations as discussed in 
Chapter 4 but also for non-linear partial differential equations. 

From these remarks, we can deduce that Lie's method is capable of handling a large 
number of equations. The application of this method depends neither on the type of 
the equation nor on the number of variables involved in the equations. Lie's method 
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is a general procedure appropriate for any type of differential equation. However, 
perusing the literature on Lie's method, we observe that this method has rarely been 
applied, compared with the wealth of differential equations in practical and 
theoretical problems. 

The reason for the widespread rejection of Lie's method during the last hundred years 
by the community of mathematicians and physicists is that his method demands a 
huge number of algebraic calculations in order to extract the symmetries of a 
differential equation. Even for simple equations, the algebraic amount of calculations 
is large compared to other methods. If someone is genial enough to guess a solution 
to solve a particular problem, he probably does not have a deeper insight into the 
solution structure of the equation. However, if he or she is interested in a complete 
solution of the symmetry problem, the reader is offered the ability to obtain the 
information needed on an equation by using a symbolic calculation in MathLie. This 
tool allows us to completely solve the symmetry problem either in a non-interactive 
or an interactive way. 

This chapter is organized as follows: In Section 5.2 we review Lie's method using the 
terminology of today. In Section 5.3, we introduce the invariance condition based on 
Frechet derivatives. Section 5.4 discusses some capabilities of the package MathLie 
and presents some examples of how to use MathLie to find symmetries. Section 5.5 
introduces the term similarity reduction. Section 5.6 is devoted to a number of 
applications of MathLie. 

5.2. Lie's Theory Used in MathLie 

In his work, Lie pointed out that the symmetry of any differential equation is defined 
as follows: 

Definition: Lie symmetry 

A Lie (point) symmetry is characterized by an infinitesimal transformation which 
leaves the given differential equation invariant under the transformation of all 
independent and dependent variables. 0 

The Lie symmetries of differential equations (DEQs) naturally form a group: Since 
the composition of any two symmetries is also a symmetry, there is an identity 
transformation; the composition of symmetries is obviously associative; and any 
symmetry has an inverse. Such groups are called Lie groups and are invertible point 
transformations of both the dependent and independent variables of the DEQs. The 
DEQs may depend on continuous parameters. Lie pointed out that this group is of 
great importance in understanding and constructing solutions of DEQs. Lie 
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demonstrated that many techniques for finding solutions can be unified and extended 
by considering symmetry groups. Today, we know several applications of Lie groups 
in the theory of differential equations (cf. Ibragimov [1985], Bluman and Kumei 
[1989], Olver [1986], Ovsiannikov [1982], Ibragimov [1994-1996], Baumann 
[1987]). 

To use the symmetry groups in any application, we first need to find the symmetries 
of the equations. A first approach to finding point symmetries of such systems is to 
make a general change of all variables and then enforce the new variables to satisfy 
the same set of DEQs. This approach leads to complicated non-linear systems of 
DEQs for the functions used in the transformations. Lie demonstrated that such a 
procedure is unnecessary. He established an efficient method based on an 
infinitesimal formulation of the problem of finding the symmetry group of a set of 
DEQs, replacing these highly complicated and in most cases intractable non-linear 
equations by tractable linear overdetermined systems of partial differential equations. 
The solution of these so-called infinitesimal determining equations can be used to 
determine symmetry transformations. 

Let us consider the general case of a non-linear system of differential equations for 
an arbitrary number q of unknown functions uO: which may depend on p independent 
variables Xi. We denote these sets of variables simply by u = (u l , u2 , ... , uq ) and 

X=(XI,X2, •.• ,Xp ), respectively. The general case is given by a system of m 

non-linear differential equations 

i = 1,2, ... , m (5.1) 

of order k. The term u(k) is understood as the kth derivative of u with respect to x. 

We note that m, k, p, and q are arbitrary, positive integers. Consider, further, a 
one-parameter E-Lie group of transformations 

X' = 8(x, u, E), 

u' = <I>(x, u, E) 

(5.2) 

(5.3) 

under which (5.1) must be invariant. The star on the variables X and u denote the new 
variables. Invariance of (5.1) under the action of (5.2) and (5.3) means that any 
solution u = 0(x) of (5.1) maps into some other solution v = '¥(x; E) of (5.1). Let 
u = 0(x) be a solution of (5.1). If we replace the dependent and independent 
variables u and x by v and x* = 8, respectively, equations (5.1) become 

L~/(X*, V(k» = 0, i = 1, 2, ... , m. (5.4) 

Then, v = 0(x*) are solutions of (5.4). This implies that if (5.1) and (5.4) have a 
unique solution, then 

0(x*) = <I>(x, 0(x), E). (5.5) 
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Hence, e satisfies the one-parameter functional equation 

®(8(x, E» = <I>(x, e, E). (5.6) 

Expanding equations (5.2) and (5.3) around the identity E = 0, we can generate the 
following infinitesimal transformations: 

i = 1, 2, ... , p 

u·a = ua + Et/>a(X, u) + O(~), a = 1,2, ... , q 

(5.7) 

(5.8) 

where the functions gi and t/>a are the infinitesimals of the transformations for the 
independent and dependent variables, respectively. In order to find the unknown 
infinitesimals gi and t/>a, we need to extend or prolong the transformation group to 
include the properties of the derivatives. It is an infinitesimal approach which 
considers the Lie algebra .£. corresponding to the Lie group G. Generalizing the 
formulas of Chapter 4, the infinitesimal transformation (5.7) and (5.8) can be put into 
the form 

P a q a 
v = L:g;(x, U) - + L:t/>a(X, U) --, 

i=1 aXi a=1 aUa 
(5.9) 

where v represents a linear combination of the vector fields generating .£., which, in 
tum, is based on the characteristic quantities gi and t/>a of the transformation (5.7) and 
(5.8). The algorithm used in MathLie for finding the infinitesimals gi and t/>a is 
described below. We emphasize that the infinitesimals in this simple form only 
depend on independent and dependent variables. A prolongation of the dependencies 
to derivatives extends the Lie symmetries to so-called generalized Lie symmetries, 
which are discussed in Chapter 9. Transformations (5.7) and (5.8), together with the 
transformations for the first, second, ... derivatives of the ua ' s, are called first, 
second, ... prolongations. Using these various extensions, the infinitesimal criterion 
for the invariance of (5.1) under the group (5.2) and (5.3) is derivable by 

(5.10) 

where the kth prolongation of the vector field v is given by 

(k) ~ ~ ~ '" ] a pr v = v + L...J L...J t/>a(X, U(k» -a-' 
a=1 ] au] 

(5.11) 

The second summation extends over all multi-indices J = (jl, ... , jz) with 
1 ~ jz ~ p, 1 :5 I ~ k. The kth prolongation coefficients t/>~ are given by 
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(5.12) 

where ur = a ua / a Xi and U~,i = a uJ / a Xi. Thus, the system of differential 
equations (5.1) is invariant under the transformation of a one-parameter group with 
the infinitesimal generator (5.9) if the g/s and ifJa's are determined from equation 
(5.10). 

So far, we discussed the standard procedure to derive the determining equations for 
the infinitesimals gi and ifJ". This procedure is widely used in the literature (cf. Olver 
[1986], Ibragimov [1985], BIuman and Kumei [1990], and Ovsiannikov [1982]). 
From a calculation point of view, the procedure described above is very inefficient 
and time- and memory-consuming. The main slowing-down step of the procedure is 
the recursive calculation of the expansion coefficients in equation (5.11). The 
following section will discuss a more efficient way to derive the determining 
equations. This procedure is based on the powerful pattern-matching capability of 
Mathematica and uses the Frechet derivative to represent the invariance condition 
(5.10). 

5.3. Invariance Based on Frechet Derivatives 

The Frechet derivative can be considered as a generalization of the complete 
derivative. In this section, we will use this type of derivative to formulate an efficient 
procedure for the calculation of the invariance condition used in the derivation of the 
determining equations. 

The Frechet derivative of a support function P with respect to a test function Q was 
defined in Chapter 2 by 

(5.13) 

The meaning of equation (5.13) is that in the support P, we have to replace the 
dependent variables and their derivatives by a variation of the original variables. The 
variation is represented by the variables themselves and by a test function weighted 
by a parameter E. After the substitution, we differentiate with respect to E and then set 
E = O. 

This relation defined for an r-dimensional support P and for a q-dimensional test 
function Q can be implemented very efficiently in Mathematica. The implementation 
was given in Section 3.5. 



lnvariance Based on Frechet Derivatives 221 

Let us now briefly discuss the connection between the invariance condition (5.10) 
and the Fr6chet derivative. To calculate the detennining equations, we need the 
prolongation of a vector field vQ applied to the system of differential equations fl.. If 
we assume that the related characteristic Q depends on the dependent variables and 
their derivatives, we can write down a relation which connects the prolongation of a 
differential system with the Frechet derivative of the system in an evolutionary 
representation (cf. Olver [1986]). The term evolutionary representation means that we 
consider infinitesimal transformations independent of the independent variables. The 
connection between the prolongation and the Frechet derivative is given by 

(5.14) 

where Q is now the support and we have in mind that fl. is the system of partial 
differential equations. This relation follows from the definition of the prolongation in 
evolutionary representation: 

(5.15) 

with Qa = Qa(u(k») depending only on the derivatives of the dependent variables 
k = 0, 1, .... If, in addition, we use the definition of the Frechet derivative given by 
equation (5.13), we can immediately reproduce equation (5.14). 

Thus, the prolongation operator is related to the Frechet derivative. We can utilize 
this relation to reformulate the invariance condition (5.10). Applying relation (5.14) 
and the definition of the evolutionary vector field, we are able to replace the 
invariance condition (5.10) by the relation 

(Dd(Q) + t g; D;fl.) I =0. 
(5.16) 

Qo:=4Ja-Li=l~i u~ 

At first glance, this expression appears to be very complicated from the calculation 
point of view. Indeed, it is very cumbersome if one tries to use this formula in a 
manual calculation. In fact, in a pencil calculation, we first have to replace all 
dependent variables and their derivatives by the variation of the dependent variables 
which must be extended up to the kth order in the derivatives. Mter the substitutions, 
we have to differentiate the expression obtained with respect to E and afterward set 
E = O. These steps contain a lot of work if we do them by hand. However, with 
Mathematica, all the steps are very easy to handle. This is possible because 
Mathematica offers powerful matching procedures already implemented in its kernel 
to carry out the calculations. 
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The advantage of this method to calculate the prolongation of a given system of 
differential equations is not only its fast calculation but also the flexibility in 
choosing expressions for the characteristics in the calculation which allows an 
extension to generalized symmetries. 

All the steps given above to derive the determining equations are incorporated in the 
package MathLie. The result of the MathLie functions is a system of linear 
homogeneous partial differential equations for the infinitesimals gi = gi(X, u) and 
¢a = ¢a(x, u), in which x and u are vectors of the independent and dependent 
variables. These are the so-called determining equations for the symmetries of the 
system d. 

At this point of the discussion, we note that equation (5.16) looks very similar to the 
invariance condition of the non-classical symmetry method. The difference is that the 
second side condition Qa is not equal to zero in relation (5.16). 

In summary, in this section we discussed the algorithm in mathematical terms to 
calculate Lie point symmetries. The essential steps of this calculation are as follows: 

1. Calculate the prolongation of the system of differential equations up to kth order 
by 

pr(k) Vd = O. (5.17) 

2. Use the equations themselves to eliminate redundant information of the 
prolongation 

pr(k) v d L~=o = o. (5.18) 

3. Extract the determining equations from the prolongation by setting the 
coefficients of the derivatives in the dependent variables equal to zero. 

4. Solve the resulting determining equations. 

Steps 1 to 3 will be discussed in this section. The fourth step deals with the solution 
of the determining equations to be discussed in detail in Chapter 10. We note at this 
stage that the determining equations are always solvable in closed form since they 
build up an overdetermined system of linear partial differential equations. 

5.4. Application of the Theory 

In this section, we discuss the application of the theoretical formulas discussed to 
appropriately calculate Lie point symmetries. We apply the theoretical notions in 
terms of MathLie functions. The main tools discussed here are the prolongation 
operator and the derivation of the determining equations. 
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5.4.1 Calculation of Prolongations 

Calculation of the prolongation in MathLie can easily be carried out by using the 
formula based on the definition of the Frechet derivative. The theoretical concept of 
the prolongation is realized in MathLie by the function Prolongation[]. The on-line 
information on this function reads 

:tnformation ["proJ.ongation", Longl'orm .... l'aJ..e] 

Prolongation [equation_, 

dependent_,independent_,parameters_: {}] 

determines 

the prolongation of an equation or a system of equations. 

This function expects four different quantities as input. The first argument of the 
function contains the equations tl. = 0; the second and third arguments specify the 
dependent and independent variables. The fourth slot contains the parameters of the 
equation. This input quantity is optional and can be omitted if the equation contains 
no parameters. The function Prolongation[] applied to an arbitrary partial differential 
equation F(x, t, U, Ut) = 0 allows us to calculate the prolongation for this expression. 
Let us first define the equation by 

equatl = I'[x, t, u[x, t], "t u[x, t]] == 0 

F[x, t, u[x, t], U(O,l) [x, t]] == 0 

Applying the function Prolongation[] to this expression, we have to supply the 
additional two arguments as well. The second and third lists contain the dependent 
and independent variables. Collecting this information, we can write 

prl = ProJ.ongation[equatl, {u}, {x, t}] 

{U(O,l) [x, t] phi[l] 10,0,1) [x, t, u[x, t]] 

F(O,O,O,l) [x, t, u[x, t], U IO ,l) [x, t]] -

U IO ,l) [x, t] U(l,O) [x, t] xi [1] (0,0,1) [x, t, u[x, t]] 

F(O,O,O,l) [x, t, u[x, t], U IO ,l) [x, t]] _U(O,l) [x, t]2 

xi [2] (0,0,1) [x, t, u[x, t]] FIO,O,O,l) [x, t, u[x, t], U(O,l) [x, t]] + 

phi[l] (0,1,0) [x, t, u[x, t]] F(O,O,O,l) [x, t, u[x, t], U(O,l) [x, t]] -

U(l,O) [x, t] xi [1] (0,1,0) [x, t, u[x, t]] 

F(O,O,O,l) [x, t, u[x, t], U IO ,l) [x, t]] _U(O,l) [x, t] 

xi [2] (0,1,0) [x, t, u[x, t]] F(O,O,O,l) [x, t, u[x, t], U(O,l) [x, t]] + 

phi[l] [x, t, u[x, t]] F 10 ,0,1,0) [x, t, u[x, t], U(O,l) [x, t]] + 

xi[2] [x, t, u[x, t]] F(O,l,O,O) [x, t, u[x, t], U IO ,l) [x, t]] + 

xi [1] [x, t, u [x, t]] F(l,O,O,O) [x, t, u [x, t], U (0,1) [x, t]]} 
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The infinitesimals in MathLie are by default denoted by xifp] [x, u[x, t]] and 
phi[q] [x, u[x, t]], where xi stands for the infinitesimals of the independent variables 
and phi for the dependent one. The number in square brackets denotes the first, 
second, third, etc. variables in the set of independent and dependent variables, 
respectively. Here, xi[l] stands for the first independent variable x and xi[2] for the 
second variable t. In our example, only one dependent variable u is present, so the 
related infinitesimal is phi[l]. The argument of the infinitesimals contains the 
independent and dependent variables with all the dependencies. 

The result of the above calculation represents the first-order prolongation of the 
general equation F (x, t, u, Ut) = O. Alternatively, we can use a shorthand notation 

for the function Prolongation[] by the symbol (p,k v()D.], This symbol is part of a 

palette accompanying MathLie. Thus, the more symbolic representation of the 
prolongation is 

prolong = (pr'< v) :~}'{X,t} [equatl] 

{U IO . , ) [x, t] phi [1] 10,0,1) [x, t, u[x, t]] 

FIO.O,O,l) [x, t, u[x, t], UIO,l) [x, t]] -

U ID ,l) [x, t] U ll . D) [x, t] xi [1] 10.0,1) [x, t, u [x, t]] 

FIO,O,O,l) [x, t, u[x, t], UIO,l) [x, t]]_U ID . l ) [x, t]2 

xi [2] 10.0,1) [x, t, u[x, t]] FIO,D,O,l) [x, t, u[x, t], UIO,l) [x, t]] + 

phi [1] 10,1,0) [x, t, u[x, t]] FID,O,O,l) [x, t, u[x, t], UIO,l) [x, t]] -

Ull,O) [x, t] xi [1] 10,1,0) [x, t, u[x, t]] 

FIO,O,D,l) [x, t, u [x, t] , U,a,l) [x, t]] - UIO,l) [x, t] 

xi [2] 10,1,0) [x, t, u[x, t]] FIO,D,O,l) [x, t, u[x, t], UIO,l) [x, t]] + 

phi[l] [x, t, u[x, tJJ FIO,D,l,O) [x, t, u[x, tJ, uID,l) [x, tJJ + 

xi [2 J [x, t, u [x, t J J F (0, 1, ° , 0) [x, t, u [x, t J, u I a , 1: [x, t J J + 

xi [lJ [x, t, u[x, tJ J FILD,D,D) [x, t, u[x, tJ, UID,l) [x, t] J} 

The result created by this operator is identical to the result derived by Prolongation[]. 

The function behind the operator (p~ v()D.] automatically detects the number of 

variables involved and creates the representation of the infinitesimals. Input 
quantities needed are just the independent and dependent variables and the equation. 
To some, the result may look somehow strange. If one likes to have the result 
represented in a more traditional form, the standard representation of this expression 
can be transform by means of LieTraditionaIForm[]. The result contains Greek letters 
and indices for the numbering of the infinitesimals. The transformation of the 
previous result is carried out by the following line: 

prolong// LieTraditionalFor.m 

{Fx ~l +Ft ~2 +Fu<Pl -Fut Ux (~l)t -Fut Ut Ux (~l)u -Fut Ut (~2)t­

Fut u~ (~2)u +Fut (<Pdt +Fut Ut (<pil u } 
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To be more specific, let us calculate the prolongation of the Burgers equation as 
another example. The Burgers equation, u, + uux - ux•x = 0, is one of the standard 
equations treated in non-linear physics. This equation was used by Burgers [1948] as 
a mathematical model of turbulence. The Burgers equation in the field variable 

U=u[x, t]; 

reads 

burgers = at U + U ax U - O(x,2} U == 0; LieTraditionalForm[burgers] 

U t + U U x ~ Ux,x == 0 

The prolongation of this equation follows with the prolongation operator or the 
function Prolongation[] as 

(pr'< v) ~~ (x,t) [burgers] II LieTraditionalForm 

{ux ¢i -Ux (';d t -Ut U x (';d u -uu; (';d u -UUx (';il x -Ut (';2)t-

u~ (';2)u -UUt Ux (';2)u -UUt (';2)x + (¢d t +Ut (¢d u +UUx (¢d u + 

U (¢d x + 2 Ux (';2) u Ux, t + 2 (';2) x Ux, t + 3 Ux (';d u u x, x + 

2 (';dxux,x+Ut (';2)uUx,x- (¢iluux,x+u~ (';du,u+ 

2u; (';i)x,u +ux (';i)x,x +Ut u; (';2)u,u +2ut Ux (';2)x,u + 

Ut (';2)x,x- U; (¢ilu,u-2ux (¢ilx,u- (¢ilx,x} 

The result contains derivatives of the infinitesimals gl, g2, and 4>1 related to the two 
independent variables and the dependent variable. We note that the numbers of the 
indices of the infinitesimals are related to the occurrence of the variables in the 
argument of u. Index 1 is connected to x and 2 denotes the second independent 
variable t. 

Another function more flexible in its specification of the infinitesimals is 

FrechetProlong[]. This function allows us to supply expressions for infinitesimals. 

The first three arguments of the function are the same as in Prolongation[]. The 
difference is that, in general, we have to deliver infinitesimals in the last two 
arguments in such a way that there exists an expression for each variable. The 
position in the first list is directly related to the position of the independent variable 
in the arguments of dependent variables. The order in the second list depends also on 
the order of dependent variables in the arguments of the infinitesimals. Concerning 
the names of the infinitesimals, we can arbitrarily choose them. We demonstrate this 
by calculating the prolongation of the Harry-Dym equation. Originally a pure 
mathematical object, the Harry-Dym equation today is discussed in connection with 
physical applications (Kadanoff [1990)). It is a special feature of FrechetProlong[] 
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that only the left-hand sides of the equations are needed. In case of the Harry-Dym 
equation 

(5.19) 

the left-hand side of the equation is expected in a list: 

harryDym = {at U - A u 3 a{x.3} U}; harryDym II LTI!' 

U t - u 3 A ux,x,x == 0 

The Harry-Dym equation is a third-order non-linear partial differential equation in u. 
A is a real parameter in this equation. The prolongation in the infinitesimals f, T, and 
tP follows by 

pharryDym = I!'rechetProlong [harryDym, {u},' {x, t}, 

{£' [x, t, uJ, 1: [x, t, uJ}, {II! [x, t, uJ} J ; 
pharryDym II LieTradi tionall!'orm 

{-Ux';t -Ut ux';u -Ut Lt -u~ Lu +git +ut giu + 3 u 3 A LU Ux,t ux,x + 

3 u 3 A';u u~,x + 6 u 3 A u~ ux,x ';u,u + 9 u 3 A U x ux,x ';x,u + 3 u 3 A ux,x ';x,x + 

3 u 3 AU; Ux,t "'[u,u + 3 u 3 .A U t U x ux,x t:u,u + 6 u 3 .A U x Ux,t I:x,u + 

3 u 3 AUt ux,x LX,u + 3 u 3 A Ux,t Lx,x - 3 u 3 A U x ux,x giu,u - 3 u 3 A ux,x gix,u + 

3 u 3 A U x Lu ux,x,t + 3 u 3 A LX Ux,x,t - 3 u 2 A gi ux,x,x + 4 u 3 A U x ';u ux,x,x + 

3 u 3 A';x ux,x,x + u 3 AUt LU ux,x,x - u 3 A giu ux,x,x + u 3 AU! ';u,u,u + 

3 u 3 A u~ ';x,u,u + 3 u 3 A u~ ';x,x,u + u 3 A U x ';x,x,x + u 3 A U t u~ LU,U,u + 

3 u 3 AUt u; Lx,u,u + 3 u 3 AUt U x "'[x,x,u + u 3 .A lit I:x,x,x -

u 3 A u~ gju,u,u - 3 u 3 A u~ gjx,u,u - 3 u 3 A U x gjx,x,u - u 3 A gix,x,x} 

This representation of the prolongation contains the infinitesimals in a more 
indicative form connecting the name of the independent variables with the names for 
the infinitesimals in Greek. However, the direct access by sUbscripts is lost. We see 
that the use of names for the infinitesimals is by no means restricted. 

Another problem frequently encountered in the calculation of infinitesimal 
transformations is the partial knowledge of the infinitesimals. We illustrate this kind 
of calculation for the heat equation. The heat equation 

(5.20) 

is a second-order partial differential equation used in the description of temperature 
changes in solid and fluid media (BIuman and Kumei [1989]). The left-hand side of 
the equation for the scaled temperature field u depending on the temporal and spatial 
coordinate reads 

heat = {at U - a(x.2} U}; heat II LTF 
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If we know a partial representation of the infinitesimals, we can use this information 
to define the infinitesimals for the function FrechetProlong[]. For the heat equation, 
let us assume that the infinitesimals are given by linear functions in u. The 
infinitesimals for the independent and dependent variables are thus 

indepJ:nfinite.imals = {f [x, t] U + Sl [x, t], h [t] } 

{g[x, t] + f[x, t] u[x, t], h[t]} 

dependentJ:nfinitesimal. = {k[t] U} 

{k[t]u[x, t]} 

This representation of the infinitesimals contains incomplete information about the 
final form and thus restricts the solution manifold for the gi and ifJa' Inserting this 
form for the infinitesimals in FrechetProlong[], we end up with a special 
representation of the prolongation: 

pheat = FrechetProlODSl [heat, {u}, {x, t}, 

indepJ:nfinitesimals, dependentJ:nfinite.imals]; 

LieTraditionalForm[pheat] 

{ukt +kut -ht Ut -uft Ux -gt Ux - fUt Ux +2 fx u; +uUx fx,x + 

Ux gx,x - k ux,x + 2 u fx ux,x + 2 gx ux,x + 3 f Ux ux,x} 

The result gained is an expression containing functions f, g, h, and k. If we know 
these arbitrary functions, we can check the invariance of the equation directly. It is 
sufficient to know a subgroup of the complete group to check the invariance. It is 
well known that the heat equation is invariant with respect to translations (Bluman 
and Kumei [1989]). As we know from Chapter 2, these symmetries are represented in 
infinitesimal form by 

indepndJ:nfinitesilllls = {kl, k2} 

{kl, k2} 

dependentJ:nfinite.imal. = {k3} 

{k3} 

The group constants kl, k2, and k3 are real constants. Inserting these infinitesimals in 
our function FrechetProlong[], we find 

pheat. = FrechetProlonSl [heat, {u}, {x, t}, 

indepndJ:nfinites~., dependentJ:nfinite.imals] 

{O} 
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The result reveals that the heat equation is invariant with respect to translations. It is 
now easy to manually check other types of symmetries for the heat equation. We only 
have to specify the infinitesimals in the function FrechetProlong[]. Let us assume 
another type of invariance to be given by a rotation of the independent variables and 
a translation of the dependent variable. The check of these hypothetical infinitesimals 

pheata. = FrecbetProJ.ong[beat, {u}, {x, t}, 

{-k1 t, k1 x}, {k2}]; pheata. II L'l'F 

kl Ux + 2 kl Ux,t == a 

shows that the heat equation is not invariant with respect to rotations in the 
independent variables. 

The function FrechetProlong[] can be used not only to derive the prolongation of an 
equation but also to calculate the expansion coefficients of the prolongation in 
general. For example, if we need the general representation of the first coefficient of 
the prolongation related to variable t, we construct this term by 

fir.tBxten.ion= FrecbetProJ.ong[{"tu[x, t]}, {u}, {x, t}, 

{xi [1] [x, t, u [x, t]], xi [2] [x, t, u [x, t]]}, 

{pbi[1] [x, t, u[x, t]]}]1 

fir.tBxtenaion II LieTraditionaJ.Fo~ 

The result represents the general formula for the first extension with respect to t. This 
sort of expression is tabulated in the book of Bluman and Cole [1974] and is now 
available to any order or number of variables. The general expression of the second 
prolongation with respect to x follows from 

aecondBKten.ion = FrechetProJ.ong[{"<X.2) u[x, t]}, 

{u}, {x, t}, 
{xi[1] [x, t, u[x, t]], xi[2] [x, t, u[x, t]]}, 

{phi [1] [x, t, u[x, t]]}]; 

aeco:o.dExte:o.aion II LieTraditio:o.aJ.Fo~ 

{-2ux (';2)uUx,t -2 (';2)xUx,t -3ux (';lluux,x-

2 (';l)xUx,x-Ut (';2)uUx,x+ (C/h)uux,x-u; (';l)u,u-

2 U~ (';1 )x,u - Ux (';1 )x,x - Ut U~ (';2 )u,u - 2 Ut Ux (';2 )x,u -

Ut (';2) x,x + U~ (<P1) U,u + 2 Ux (<P1) X,u + (<P1) x,x} 

Comparing the results with expressions given in Bluman and Cole [1974], it is 
obvious that the formulas are identical. The reader may calculate, for example, the 
fifth expansion coefficient related to terms ux,x,t,t,t. 
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The function FrechetProlong[] is also capable of calculating the prolongation of a 
general expression containing derivatives. Let us demonstrate this behavior by 
examining the general partial differential equation of second order given by the 
relation 

The left-hand side of this general second-order equation in Mathematica reads 

{F[x, t, u[x, t], Ull,O) [x, t], UIO,l) [x, t], U I2 ,O) [x, t] J} 

The prolongation formula for this general PDE of second-order follows from 

PrintDf [FrechetProlong [pde2, {u} I {XI t} I 

{xi [1] [x, t, U [XI t]] I xi [2] [XI t, U [XI t]]} I 

{phi [1] [x, t, U[XI t]]}] II LieTraditionalForm] 

{Fx {l + F t {2 + Fu ¢l - FUt Ux ({l) t - FUt U t Ux ({l) u - Fux u~ ({l) u -

Fux Ux ({l) x - F ut u t ({2) t - Fut u~ ({2) u - Fux u t Ux ({2) u -

Fux U t ({2)x +Fut (¢l)t +Fut u t (¢l)u +Fux U x (¢d u +Fux (¢l)x-

2 Fux,x Ux ({2) u Ux,t - 2 Fux,x ({2) x Ux,t - 3 Fux,x Ux ({l) u ux,x -

2Fux,x ({l)x ux,x -Fux,x U t ({2)u ux,x + Fux,x (¢l)u Ux,x-

Fux,x u~ ({l)u,u - 2Fux,x u~ ({l)x,u -Fux,x U x ({l)x,x-

Fux,x U t u~ ({2)u,u -2 Fux,x U t Ux ({2)x,u -Fux,x U t ({2)x,x + 

Fux,x u~ (¢l) u,u + 2 Fux,x U x (¢l) x,U + Fux,x (¢l) x,x} 

(5.21) 

The result of this calculation was converted to a more readable form in index notation 
by the function LieTraditionaIForm[]. This function reduces the standard 
Mathematica output to a shorter representation by deleting the arguments of any 
derivative and using the variables of differentiation as an index. The expressions free 
of any derivatives remain unchanged. 

So far, we discussed some applications of the functions Prolongation[] and 

FrechetProlong[], allowing us to derive the prolongation of a differential equation. As 
we know from the theoretical considerations, the prolongation of a differential 
equation is the basis for the derivation of determining equations. In the following 
section, we will discuss a function of MathLie which is instrumental in the derivation 
of determining equations. 

5.4.2 Derivation of Determining Equations 

Determining equations for infinitesimals are the result of invariance condition (5.10). 
The package MathLie provides a function allowing us to derive determining 
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equations for a given system of differential equations. The name of the function is 

DeterminingEquations[]. The on-line description of the function 

:Information ["DeterminingEquations", LongPorm .... False] 

DeterminingEquations[equations_List, dependvar_List, 
independvar_List,substitutionTerms_List,parameters_List: 
{}] calculates the determining equations for a given 

system of equations. The function uses the Frechet 
derivative to calculate the prolongation. 

tells us that we need five input arguments. The first argument contains the left-hand 
side of the equation a = O. The second and third arguments are lists for the dependent 
and independent variables. The fourth list contains terms for which the equation a = 
o is solved. The solutions with respect to these terms are used as side conditions in 
the invariance relation (5.10). If the equations under examination contain parameters, 
we can feed in these symbols in the last list. This list can be suppressed if no 
parameters are contained in the PDE. The function DeterminingEquations[] uses the 

function FrechetProlong[] to calculate the kth prolongation of the equations. After the 
calculation of the prolongation, the side conditions are applied to the result of the 

function FrechetProlong[]. This step reduces the redundant information in the 
manifold of the equation. Upon application of the side conditions, the determining 
equations are extracted as coefficients of the derivatives of the dependent variables. 
Since the infinitesimals themselves are independent of derivatives, we find the 
determining equations as a set of coupled PDEs. 

Application of the function DeterminingEquations[] is demonstrated by the heat 
equation. The determining equations of the infinitesimals for the heat equation follow 
from 

detheat = DeterminiDg'Bqu.ations [heat, {u}, {x, t}, 

{at tJ} ] ; detheat II L'l'F 

(td u == 0 

(t2 )u == 0 

(¢l)u,u == 0 

(t2)x==O 

-(tl)t + (tdx,x -2 (¢ilx,u == 0 

(¢d t - (¢ilx,x == 0 

2 (td x - (t2)t == 0 

The result of this calculation detheat consists of a list containing the left-hand sides 
of the seven determining equations. We transformed these expressions to a system of 
equations by LTF[] adding zero to the right-hand side, and the result is displayed in a 
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table. The seven equations contain the unknown functions tl, t2, and fIJI' The 
function DeterminingEquations[] automatically implants these names for the 

infinitesimals. The unknown functions tl' t2' and fIJI depend on the independent 
variables x and t and on the dependent variable u. The symmetries of the heat 
equation are determined by this set of equations. 

Taking a closer look at these equations, we realize that they are linear but coupled. 
However, the main observation is that they are linear. Linearity of the equations is a 
general feature of the determining equations for point symmetries. This feature is of 
great advantage in solving the equations. Another general property of the determining 
equations is that this set of equations is always overdetermined. This means that, in 
general, there exist more equations than unknown functions. This fact helps a lot in 
the derivation of the solution. 

In the present case of the heat equation, we find seven equations for three unknowns 
tl' t2' and fIJI' Another example demonstrating these two general properties again is 
the general second-order partial differential equation 

Clear [I'] 

gheat = {at U + F [a{x.21 U] }; gheat II LTI' 

F + Ut == 0 

representing one of many generalizations of the heat equation. If we apply the 
function DeterminingEquations[] to this equation, we find 

detgheat = DeterminingEquations [gheat , {u} I {x, t} I {at U}]; 

detgheat II LTI' 

(~1l u == 0 

(~2) u == 0 

(ct>l)u,u == 0 

(ct>1l t == 0 

(~l)t == 0 

(~2) x == 0 

(ct>l)x,x == 0 

- (~llx,x +2 (ct>ll x,u == 0 

- 2 (~1) x + (ct>1l u = = 0 

(~2)t - (ct>ll u == 0 

Looking at this system of 10 equations, we recognize the same 2 properties as in the 
example for the heat equation linearity and a larger number of equations than 
unknown functions. The equations are linear in the infinitesimals independent of the 
form of general function P, and they are overdetermined. This general behavior does 
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not change if we examine non-linear equations like the Burgers equation or the 
Harry-Dym equation. The detennining equations for these two models follow by 

DeterminingEquations [ {burgers [1] }, {u}, {x, t}, {CIt U}] I I LTF 

(';d u == 0 

(';2) u == 0 

(¢d u.u == 0 

(';2)x==O 

¢l - (';d t -u (';d x +u (';2)t + (';d x.x -2 (¢d x.u == 0 

(¢l)t +u (¢l)x - (¢l)x.x == 0 

2 (';d x - (';2)t == 0 

which are six determining equations in the case of the Burgers equation 

DeterminingEquations[harryDym, {u}, {x, t}, {CltU}, {A}] II LTF 

(';d u == 0 

(';2)u==O 

(¢l)u.u==O 

(';2) x == 0 

- (';1 ) t + U 3 A (';1) x. x. x - 3 u 3 A (¢l) x. x. u = = 0 

(¢d t - u 3 A (¢d x.x.x == 0 

- (';d x.x + (¢d x.u == 0 

3 ¢l - 3 u (';1) x + u (';2) t = = 0 

and eight determining equations for the Harry-Dym equation. Since the Harry-Dym 
equation contains a parameter ,:t, we have to tell the function DeterminingEquations[] 
that A is a variable in the equation which does not depend on the independent 
variables. The last argument of the function DeterminingEquations[] contains this 
information. 

Up to now, we discussed equations containing only a single dependent variable. The 
following example examines a system of two equations. The physical background of 
these equations is the flow in a polytropic gas. Following Ibragimov [1985], we can 
write down the equations of motion for polytropic gas in two spatial dimensions and 
one temporal dimension. In polar coordinates, the radial and angular velocity fields 
are 

Vr = vr[r, B, t]; 

VB = v6[r, B, t]; 

The depth h of the fluid above a flat bottom is given by 

H = h [r, B, t]; 
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The equations of motion for this fluid are given by 

ve o"Vr 
poly = {Ot Vr + Vr Or Vr + + Or H, 

r 

veo"ve o"H 
Ot ve + Vr Or ve + + --, 

r r 
ve 0" H ( Or (Vr r) 08 ve ) 

Ot H + Vr Or H + + H + -r- }; poly I I LTF 
r r 

Va (vr)a 
hr + Vr (Vr ) r + (Vr ) t + r == 0 

he Va (Va) a r + Vr (va) r + (va) t + r == 0 

h h ha Ve h ( Vr + r (vr ) r (va) e ) == 0 
t + r Vr + -r- + r + --r-

This system consists of three equations for the dependent variables vr, vB, and h. The 
independent variables are the radius r and the angle B. The determining equations for 
the polytropic gas follow by specifying the knowledge on all the variables and the 
equations in the function DeterminingEquations[]. The equations do not depend on a 
parameter, so the parameter list is empty. 

DeterminingBquations[poly, 
{vr, ve, b}, {r, e, t}, {OtVr, Otve, OtH}, 0] II 

LTF 

(';d h == 0 

(';2 ) h == 0 

(.; 3 ) h == 0 

($3) ve == 0 

(';d ve == 0 

(';2) ve == 0 

(';3)ve == 0 

($3) Vr == 0 

(';d Vr == 0 

( ';2 ) Vr == 0 

(';3 )Vr == 0 

- Ve ';1 + r $2 - r2 V r (';2) r - r2 (';2) t - r Ve (';2) e + 

r Vr Va (';3) r + r Va (';3) t + h (';3) a + V~ (';3) e + h r ($2) h == 
o 
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-Ve;l +r<l>2 _r2 Vr (;2)r _r2 (;2)t -rVe (;2)e + 

rVrVe (;3)r+ rVe (;3)t+h(;3)e+V~ (;3)e- hr (<I>2)h== 
o 

-Ve ;1 + r <1>2 - r2 Vr (;2) r - r2 (;2) t -

rVe (;2)e+rVrVe (;3)r+ rVe (;3)t+~ (;3)e== 
o 

-r (;2)r +Ve (;3)r + (<I>2)Vr == 0 

r (;2)r -Ve (;3)r + (<I>d ve == 0 

-h Vr ;1 + h r <1>1 + r Vr cf>3 + h r v: (;3) r + 
hrvr (;3)t +hvr Ve (;3)e +hr2 (cf>d r +hr (cf>2)e­

hrvr (cf>3)h +r2 Vr (cf>3)r +r2 (cf>3)t +rVe (cf>3)e == 
o 

rcf>l -rVr (;d r -r (;d t -Ve (;d e +hr (;3)r + 

r~ (;3)r+rVr (;3)t+VrVe (;3)e+hr(cf>tlh== 
o 

rcf>l- rVr (;tlr-r(;l)t-Ve (;tl e + hr (;3)r+ 
r~ (;3)r +rVr (;3)t +Vr Ve (;3)e -hr (cf>tl h == 

o 

rcf>l -rVr (;d r -r (;d t -

Ve (;1) e + r v: (;3) r + r Vr (;3) t + Vr Ve (;3) e == 
o 

rcf>3 -hr (;tl r +2hrvr (;3)r + 

h r (;3) t + h Ve (;3) e + h r (cf>d vr - h r (cf>3) h = = 

o 

hVr (;3)r -hvr (cf>tl h +rVr (cf>d r +r (cf>d t +Ve (cf>l)e +r (cf>3)r == 0 

-h;l + r cf>3 - h r (;2) e + h r Vr (;3) r + 

h r (;3) t + 2 h ve (;3) e + h r (cf>2) ve - h r (cf>3 ) h == 

o 
-r (;1) r + 2 r Vr (;3) r + r (;3) t + Ve (;3) e - r (cf>1) Vr + r (cf>3) h == 0 

-;1- r (;2)e+ 
rVr (;3)r +r (;3)t + 2ve (;3)e -r (cf>2)ve +r (cf>3)h == 

o 
-(;3)r + (cf>d h == 0 

h v r (;3) e - h r v r (cf>2) h + 
r2 Vr (cf>2)r +r2 (cf>2)t +rVe (cf>2)e +r (cf>3)e == 

o 
-(;de+vr (;3)e+ r (cf>d ve ==0 

(;de-vr (;3)e+ r (cf>2)vr ==0 

- (;3) e + r (cf>2) h == 0 
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The resulting 29 equations are again linear. The symmetries of polytropic gas follow 
by solving this set of overdetennined equations. For polytropic gas equations, we not 
only have to provide three dependent variables but also three terms in the list for the 
substitutions. Compared with the examples discussed above, the typing is a little bit 
tedious, but the gain of the calculation is greater than this little hazel. To simplify the 
input of the information MathLie provides a template for the function 

DeterminingEquations[] which looks like VetEq~·.~ [a] . This operator has the same 

functionality as function DeterminingEquations[] itself. In fact it derives the 

detennining equations using the function DetenniningEquations[]. The following 
example shows the location of the input variables for the Harry-Dym equation. 

detHarryDym. = !DetEq{"tU},{A} [harryDym] ; detHarryDym. / / LTF 
{u}, {x,t} 

(';,)u == 0 

(';2)u == 0 

(ch)u.u==O 

(';2)x==O 

- (';,) t + u 3 .A (';,) X,X,x - 3 u 3 .A (eP,) X,X,u == 0 

(eP') t - u 3 .A (eP') X,X,x == 0 

- U;, )x,x + (eP1 )x,u == 0 

3 eP1 - 3 u (';,) x + u (';2) t == 0 

So far, we have been able to calculate the detennining equations for a given system 
of partial differential equations, The question arises of how to solve these equations. 
The following section will discuss an interactive procedure to construct solutions for 
the detennining equations, In Chapter 10, we will discuss procedures allowing the 
automatic solution of the determining equations. 

5.4.3 Interactive Solution of Determining Equations 

In the above discussions, we found a lot of equations detennining the infinitesimal 
transformations of the different models. We realized that a common property of all 
these systems of equations was their linearity. Since detennining equations are linear, 
contrary to the equations we started from (compare with the Burgers or Harry-Dym 
equations), we expect that the linear equations can be solved more easily. How to 
tackle this problem interactively by MathLie is the content of this section. We will 
show you a way which is similar to the automatic procedure of solving equations. 

Let us demonstrate the interactive solution steps for the heat equation. The seven 
determining equations for the heat equation are 
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detheat / / LTI' 

(~du == 0 

(~2)u==O 

(4)l)u,u==O 

(~2 ) x == 0 

- (~dt + (~dx,x - 2 (4)d x,u == 0 

(4)1) t - (4)l)x,x == 0 

2 (~dx - (~2)t == 0 

Before discussing the solution of these equations, let us introduce some 
simplification, During the solution steps of these equations, the variables x, t, and u 
are taking the role of independent variables, Taking this behavior into account in our 
calculations, we can remove the dependencies in u, In Mathematica, we just replace 
the dependent variable by the variable itself: 

detheat = detheat / • u [x, t] -+ u 

{xi [ 1 J (0, 0,1! [x, t, u J , xi [ 2 J (0, 0,1! [x, t, u J ' phi [ 1 J (0, 0,2! [x, t, u J , 

xi [ 2 J (1, 0, O! [x, t, u J, - xi [ 1 J (0,1, 0) [x, t, u J -

2 phi [lJ (1,0,1) [x, t, uJ + xi [lJ (2,0,0) [x, t, u] , 

phi [lJ (0,1,0) [x, t, uJ -phi [1] (2,0,0) [x, t, uJ, 

- xi [2] (0,1, 0) [x, t, u J + 2 xi [ 1 J (1, 0, 0) [x, t, u] } 

This simplifies a little the representation of the equations but does not solve them, If 
we look at the first four equations, we observe that the infinitesimals ~1 , ~2' and cfJ! 

are reduced to special presolutions resulting especially from single terms, For 
example, the first two equations state that the infinitesimals for the independent 
variables are independent of the dependent variable u, The fourth equation says that, 
in addition, ~2 is independent of x, The third equation in the list detheat suggests that 
the infinitesimal cfJ! is linear in u, All this information can be collected in rules 
allowing us to simplify the detennining equations: 

infinil = {xi[l] -+Function[{x, t, u}, xi[l] [x, t]], 

xi [2] -+ Function [{x, t, u}, xi [2] [t] ] , 

phi [1] -+ l'unction[ {x, t, u}, fl [x, t] u + f2 [x, t] ]} 

{xi[l] ~Function[{x, t, u}, xi[lJ [x, tJJ, 

xi[2J ~Function[{x, t, u}, xi[2J [t]J, 

phi[l] ~Function[{x, t, u}, f1[x, tJ u+f2[x, t]]} 

where fl and j2 are two arbitrary functions depending on x and t, Inserting this 
primal representation of the infinitesimals into the determining equations, we end up 
with the following system: 
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detheatl = detheat /. infinil; detheatl / / LTF 

True 
True 
True 
True 
-2 flx - (';d t + (';dx,x == 0 

u fl t + f2 t - u flx,x - f2 x,x == 0 

2 (';d x - (';2) t = = 0 

The seven equations reduce to three equations for the unknown functions ql, qZ, Jl, 
andj2. Considering the last equation of this set by differentiating with respect to x, 

Ox Last [detheatl] / / LTF 

we realize that a single tenn remains. This term defines a partial differential equation 
of second order for ql. The solution of this equation is given by a linear function in x. 
Thus, we define 

infini2 = {xi[l] -+Function[{x. t}. gl[t] x+g2[t]]} 

{xi[l]-7Function[(x. t}. gl[t] x+g2[t]]} 

Inserting this partial solution again into the reduced determining equations detheatl, 
we can simplify the determining equations a second time. The resulting equations 
read 

detheat2 = detheatl /. infini2; detheat2 / / LTl!' 

True 
True 
True 
True 
-2 flx -xgl t -g2 t == 0 

u fl t + f2 t - u flx,x - f2 x ,x == 0 

2 gl - (';2) t == 0 

An integration of the fifth element of the list detheat2 with respect to x gives us 

integ = J detheat2 [5] dlx - g3 [t] ; integ / / LTl!' 

meaning that functionJl can be expressed by 
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sol =Platten[Solve[integ== 0, f1[x, t]] I. f1[x, t] .... w] 

{w~ ~ (-2g3[t]-x2 gi'[t]-2xg2'[t])} 

which is converted in a pure function by 

infini3 = f1 .... l'unction[{x, t}, w] I. sol 

f1~Function[{x, t}, ~ (-2g3[t] -x2 gi'[t] -2xg2'[t])] 

Inserting the result again in the reduced set of determining equations, we find 

4etheat3 = Simplify[4etheat2 I. infini3] I 4eth.at3 II L'l'P 

True 
True 
True 
True 
True 

u git 1 
f2 t + --2- - f2 x,x - 4 u (2 g3 t + x (x git,t + 2 g2 t ,t)) == ° 
2 gl - (~2) t == ° 

Apart from xi[2], the equations contain only relations for the auxiliary functions gl, 
g2, g3, andj2. Extracting the coefficients of u, u x, and u x2, we get the following set 
of equations: 

equat='l'able[Coefficient[detheat3, UX!], {i, 2,1, -1}]; 

equat II Lie'l'ra4itionalPo:rm 

{ { git t } { g2 t t } } 0, 0,0, 0, 0, ---r' 0, 0,0, 0, 0, 0, -~, ° 
Append'l'o[equat, Coefficient [4etheat3 I. x -+ 0, u]]; 

Append'l'o [equat, (detheat3 I. u .... 0) [6]] ; 

equat II Lie'l'ra4itionalPo:rm 

{ { git t } { g2 t t } 0, 0, 0, 0, 0, ---r' 0, 0,0, 0, 0, 0, -~, ° , 
{ git g3 t } } 0,0,0,0,0, -2---2-' 0, f2 t -f2x,x 

h1 = DeleteCase. [Platten [equat] , 0]; h111 L'l'P 

_ git.t == ° 
4 

g2 
- -----t-"- = = ° 
~-~==o 

2 2 
f2 t - f2 x ,x == ° 
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The final set of detennining equations is solved step by step using the function 
DSolveO. By renaming the constants of integration, we prevent misinterpretations of 
the group parameters. Function g I follows from the first equation of the set hI by 

81=DSolve[hl[1] ==0, gl, t] /. {C[l] ... kl, C[2] ... k2} 

{{gl..., (k1 +k2 #1&)}} 

The second auxiliary function g2 is 

82 = DSolve [hl[2] == 0, g2, t] /. {C [1] ... k3, C [2] ... k4} 

{{g2..., (k3+k4#1&)}} 

The last of the auxiliary functions g3 reads 

83 = DSolve[hl[3] == 0/. 81, g3, t] /. {C[l] ... kS} 

{{g3..., (k5+k2#1&)}} 

Knowing the representations of functions gI, g2, and g3, we can integrate the 
remaining equation of the detennining system 

84 = DSolve[(La8t[detheat3] /.81)[1] == 0, xi[2], t] /. 

C[l] ... k6 

{{xi[2]..., (k6+2k1#1+k2U2 &)}} 

Knowledge of the auxiliary functions allows us to write down the solutions for the 
infinitesimals: 

in:Hnite8i_18 = rlattan[ {xi [1] [x, t, u] , 

xi [2] [x, t, u], phi [1] [x, t, u] } /. infinil / • 

infini2 /. infini3 /. 81 /. 82 /. 83 /. 84] 

{k3 + k4 t + (k1 + k2 t) x, k6 + 2 k1 t + k2 t 2 , 

1 "4 u (-2 (k5 + k2 t) - 2 k4 x - k2 x 2 ) + f2 [x, t]} 

The result shows that the infinitesimals depend on six parameters kI-k6, which are 
the group parameters of the symmetry group. In addition to these six parameters, the 
infinitesimals contain the auxiliary function 12 which satisfies the heat equation. The 
heat equation remains as a last condition in variable hI. The symmetry represented 
by 12 is related to an infinite dimensional group. This infinite dimensional group is 
characteristic for linear partial differential equations. The subgroups detennined by 
one of the parameters kI-k6 are related to translations, scalings, and Galilean boosts. 
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We demonstrated by the above calculation how the linear coupled system of partial 
differential equations is solved by using simple integration steps. The package 
MathLie offers a function to carry out all these simple steps in one shot. The name of 
the related MathLie function is Infinitesimals[]. This function allows the automatic 
derivation of the infinitesimal transformations. The shorthand description of the 
function shows us the information needed to carry out the calculation: 

XDfozmation [ftXDfiDite.imal.-, LoDgForm ~ Fal.e] 

Infinitesimals[equations_, 

dependentVariables_, independentVariables_,parameters_, 

options ___ ] The function Infinitesimals calculates the 

point symmetries of a given system of equations. 

The results of the calculation are not saved in a 

file. They are available in a pure function representation. 

The application of this function to the heat equation reads 

XDfiDitesimals [heat, {u}, {x, t}, {}] 

{{xi[l] ~Function[{x, t, u}, kS-2k2t+k6x+k4tx], xi[2] ~ 

Function [{x, t, u}, k3 + t (2 k6 + k4 t)] , phi [1] ~ Function [ 

( k4 t k4 x 2 ) {x, t, u}, u k1- -2-- + k2 x - --4-- + free [1] [x, t]]}, 

{-free[l] (0.1) [x, t] + free[l] (2,0) [x, t]}} 

The result of the function Infinitesimals[] consists of a nested list. The first part of the 
list contains the infinitesimals; the second, a list of remaining equations. The 
remaining equations of the second part are equations which are not solved by the 
MathLie package. The function free[l] occurring in the remaining equation is also 
part of the infinitesimals. This result has to be expected since the original equation is 
a linear equation which has to satisfy the superposition principle reflected by the 
occurrence of the auxiliary function free[l]. The first list of the result circumscribes 
the infinitesimals in a pure function representation. This cast allows direct 
substitution of the infinitesimals into any equation containing the infinitesimals or 
their derivatives. The result found for the heat equation represents a six-dimensional 
finite group which is isomorphic to the finite group derived by our manual 
calculations. 

Having the function Infinitesimals[] available, we are able to determine the point 
symmetries of the other equations discussed above. For example, the Harry-Dym 
equation allows the symmetries 
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symharryDym = J:nfinitesi_ls [ 

atu[x, t] -Au[x, t]3 ax.x.xu[x, t] == 0, {u}, {x, t}, {A}] 

{xi[1] ~Function[{x. t. u}. k3+x (k4+k5x)]. 

xi [2] ~ Function [ {x. t. u}. k1 + k2 t]. 

phi[1] ~Function[{x. t. u}. u (_ ~2 +k4+2k5x)1} 

The result shows that the Harry-Dym equation allows a five-dimensional finite group 
independent of the parameter A. Group parameters k3 and kl represent the invariance 
of the Harry-Dym equation with respect to translations. The scaling symmetries are 
determined by the parameters k4 and k2. The remaining parameter, k5, represents a 
non-standard conformal transformation. 

Another example for a calculation of point symmetries is given by the 
two-dimensional polytropic gas discussed above. The symmetries follow by 

sympoly= J:nfinitesi_ls[poly, {vr, ve, h}, {r, e, t}] 

{xi[1] ~Function[{r. e. t. Yr. ve. h}, (k2+k3) rJ, 

xi[2] ~Function[{r. e. t. Yr. ve. h}, -k4]. 

xi [3] ~ Function [ {r. e. t. Yr. ve. h}. kl + k2 t] • 

phi [3] ~ Function[{r. e. t. Yr. ve. h}. 2 h k3] • 

phi [1] ~ Function[{r. e. t. Yr. ve. h} • k3 vr] • 

phi [2] ~ Function [{r. e. t. Yr. ve. h}, k3 vel } 

The resulting point symmetries are given by a four-dimensional group. The 
symmetry transformations are translations in the time coordinate and the angular 
direction. The related group parameters are kl and k4. In addition to the translations, 
the polytropic gas enables a scaling of the radial and temporal coordinate denoted by 
k2. Group parameter k3 represents a special type of scaling. 

The function Infinitesimals[] can not only explicitly treat given equations but is also 
capable of analyzing equations of a general form, like 

(5.22) 

where F is an arbitrary function depending on a set of independent variables x and a 
set of dependent variables u. An example of such an equation for one dependent and 
two independent variables is given by the general second-order equation 

geneq = {at U - F [x, u, ax u, a x•x U]} 

{-F[x. u[x. t]. Ull,O) [x. t]. U(2,O) [x. t]] +UIO,l) [x. t]} 

The corresponding infinitesimals for this type of equation follow by 
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symgeneq = l:nfinitesi_ls[geneq, {u}, {x, t}] 

{phi[l]--+Function[{x, t, u}, 0], xi[l]--+Function[{x, t, u}, 0], 

xi[2] --+ Function[{x, t, uL kl]} 

representing a one-dimensional symmetry group. Parameter kl characterizes the 
translations under which the general evolution equation is invariant. Let us now 
specify the auxiliary function F in a more explicit form. For example, let us assume 
that F is replaced by a function f independent of u and x. We further assume that the 
second derivative in u with respect to x is created by a derivative of f with respect to 
x. Taking into account all these assumptions, we end up with an expression for a 
general nonlinear diffusion equation: 

geneqe = {"t U - "x f ["x U] }; geneqe / / LTr 

The symmetries of this general non-linear diffusion equation are 

symgeneqe = l:nfinitesi_ls [geneqe, {u}, {x, t}] 

{xi[l] --+ Function [ {x, t, uL k2 + k~X l, 
xi [2] --+ Function [ {x, t, u}, k3 + k4 t], 

phi[l]--+Function[{x, t, uL k1+ k~U]} 

The four group parameters kl, k2, k3, and k4 represent the translation and scaling 
symmetries of the equation. If we further assume that f is given by a power of the 
derivatives ux , we get the equation 

geneqe = {"t U - "x ("x U) ~ }; geneqe / / LTP 

where J.l is a real parameter. The infinitesimals of this non-linear heat equation read 

symgeneqe = l:nfinites~ls [geneqe, {u}, {x, t}, {II}] 

{xi[l]--+Function[{x, t, u}, k4+kSx], 

xi[2]--+Function[{x, t, u}, kl+t (-k3 (-1+/1) +kS (1+/1»], 

phi [1] --+ Function [{x, t, uL k2 + k3 u] } 

The five-dimensional group contains translations and scaling symmetries. In addition 
the symmetry group depends on the parameter J.l. 

The function Infinitesimals[] is also available in a shorthimd operator notation. The 

related operator template is 'P~.Ad]. As input quantities, this operator needs the 
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independent and dependent variables, the equations, and the parameters. The example 
of the Harry-Dym equation reduces to 

psl~L {x.tj [harryDym] 

{xi[l] ~Function[{x, t. u}, k3+x (k4+k5x)], 

xi[2] ~Function[{x, t, u}, k1+k2t], 

phi [1] ~ Function [{x, t, u}, u (- ~2 + k4 + 2 k5 x) l} 

5.4.4 Data Basis of Symmetries 

The package MathLie offers a few functions allowing the creation of a database for 
differential equations. The database consists of different files containing information 
on the specific equation. Each file stores information on the equation itself and 
results gained by the application of different functions. The merits of such a database 
are the consecutive collection of information on symmetries, on algebraic properties, 
on transformation properties, and on solutions for the equation under consideration. 
Since the information is stored on disk, it can always be retrieved from there. 

The basic element of the database is a file containing information on each individual 
equation. Such a file is created by the function LieEquations[]. The file contains 
information on the independent and dependent variables of the equation and the 
equation itself. It also contains information on possible parameters of the equation. 
Also included in the file are the expressions for which the equations are solved and 
applied as side conditions in the determining equations. After the solution of the 
determining equations, the file contains information on the infinitesimals. 
Sometimes, it is helpful to have the source or name of an equation available. This 
information is contained in two different global variables called Title and Source. The 
entire information needed to carry out a symmetry analysis can be created by exerting 
the function LieEquationsO. An example will show us how to facilitate this function. 

Example 1 

Let us again discuss the heat equation. The first step in adding information to the 
database is the creation of the related file. For the heat equation, we create the file 
heat.dgl. The function LieEquations[] will do the necessary job: 

LieBClUatioD8["heat.dgl". {Btu[x. t] -dB{x,2jU[X. t]}. 

{u}. {x. t}. {d}. {"Heat eClUation"}. 

{{"G. Baumann"}. {"Ulm 1997"}}] 
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The file with the name heat.dgl is created by this function in the current directory. 
The file contains the equation, which is given as second argument in a list. The third 
and fourth arguments of LieEquations[] are lists containing the dependent and 
independent variables. The fifth argument is a list containing the parameters of the 
equation-in our example the diffusion constant d. The sixth and seventh arguments 
of LieEquations[] are lists containing strings. The sixth list carries the name of the 
equation, here Heat equation, and the seventh list consists of sublists specifying for 
example the source of the equation. The file created by LieEquations[] contains this 
information and more. We can print the contents of the file by 

I ! heat. dgl 

Title = {-aeat equational 
Source = {{nG. Baum&DDn }, {nUlm 1997 n}} 
ZndepVar = {x, t} 
DepeDdVar = {u} 
BqLiBt = {Derivative[O, 1] [u] [x, t] -

d*Derivative[2, 0] [u] [x, t]} 
SubsList = {Derivative [0, 1] [u] [x, t]} 
ParameterS = {d} 
ListXi = {} 
ListPhi = {} 

The above printout shows that the file contains variables like Title, Source, IndepVar, 

DependVar, EqList, SubsList, ParameterS, ListXi, and ListPhi. These variables are 
global variables in MathLie and are used extensively in the package. Be sure not to 
use these names in your calculations. If you set up this file, it provides you with the 
information needed in symmetry calculations. For example, if you have to derive the 
determining equations for the heat equation, you can use the function LieD of the 
package MathLie. The function Lie[] delivers in its simpler applications, results 
similar to those obtained by the program of Champagne et al. [1991]. 

The function Lie[] needs one argument and a set of options. The options of Lie[] 
influence the properties of this function. 

Let us calculate the determining equations for the heat equation. We start the 
calculation simply by 

detheat = Lie [nhaat.dgln] ; datheat II LTP 

(';l)u == 0 

(';2)u==O 

(<Pdu.u==O 

(';2)x==O 



- (c;d t + d (c;dx,x - 2 d (cPdx,u == 0 

(cPd t - d (cPdx,x == 0 

-2 (c;d x + (c;2)t == 0 
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Function Lie[] calculates the prolongation of the equation using the Frechet 
derivative. After extraction of coefficients and a simplification of these equations, the 
function returns the determining equations collected in a list. This list can be used to 
manipulate the equations. For example, you can manually solve them as discussed in 
Section 5.4.3. As mentioned above, the behavior of the function Lie[] is controlled by 

different options. One of these options is called ScreenPrint which is set to False by 
default and thus suppresses all printing. If we want to see how the calculation 
proceeds, we can set the option TraceSteps~True, which is another option of Lie[]. 
These two options are helpful in checking the calculation if one is curious about the 
steps operated by Lie[]. The options also help in locating some errors that occurred 
during the calculation. The silent calculation done for the heat equation then looks 
like 

Lie [nheat .dgl-, TraceSteps -+ True, ScreenPrint -+ True] 

+--------------------------------------------+ 

Welcome to MathLie~ 

for the calculation of the symmetry group 

by G. Baumann, © 1992 - 1999 
+--------------------------------------------+ 

Loading previous calculations 
of the determining equations from HEAT.DEQ 

Loading data from HEAT.DGL 

Title of the equations: 

Heat equation 
Source of the equations: 

G. Baumann 
Ulm 1997 
Equations of motion: 

Equation No. 1 

u t - d ux,x == 0 

Substitution No. 1 

We are using all the equation(s) checking the infinitesimals 

of the given system consisting of 1 equation(s) in total. 
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We find 7 determining equations after simplification. 

A list of the determining equations follows. 

Equation No. : 1 

Equation No. : 2 

(xi (2) l u == 0 

Equation No. : 3 

(phi [1) l == 0 
U,u 

Equation No. : 4 

Equation No. : 5 

-2d (phi[l)lx,u - (xi[l)lt +d (xi[l)lx,x == 0 

Equation No. : 6 

(phi [1) l t - d (phi [1) l X,x == 0 

Equation No. : 7 

- 2 (xi [1) l x + (xi (2) l t = = 0 

We 

have to treat 7 determining equations after simplification. 

Results are collected in the list FinalResult. 

{xi [1) (0,0,1) [x, t, u) , 

xi (2) (0,0,1) [x, t, u [x, t)), phi [1) (0,0,2) [x, t, u [x, t)), 

xi (2) (1,0,0) [x, t, u [x, t)), -xi [1) (0,1,0) [x, t, u[x, t)) -

2dphi[l)(l,O,l) [x, t, u[x, t)) +dxi[l)(2,O,O) [x, t, u[x, t)), 

phi[l) (0,1,0) [x, t, u[x, t))_dphi[l)(2,O,O) [x, t, u[x, t)), 

xi(2)(O,l,O) [x, t, u[x, t))_2xi[l)(l,O,O) [x, t, u[x, t))} 

The results of the calculation are again the determining equations. If you look at the 
beginning of the calculation, you will realize that Lie[] opens a file called heat.deq 

containing the determining equations. This file was created by Lie[] at the end of the 
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first run for the specific equation. The file contains the complete set of determining 
equations, thus keeping information on one equation in two different files. The first 
file with extension .dgl contains the essential information on the equation itself. The 
second file with extension .deq is used as source of derived information for the 

determining equations. Whenever you call Lie[] or derivatives of the function Lie[] 
be aware that both files contain information on the same equation. 0 

Let us now solve the determining equations. This can be done by using the function 

LieSolve[]. This function allows the solution of the determining equations by 

exerting the same procedures as the function Infinitesimals[]. The difference is that 
the information gained is saved in the file currently opened. In the case of the heat 
equation, we get 

solheat = LieSol ve ["heat. dgl n] 

{{xi[l]-->Function[{x, t, uL kS-2dk2t+k6x+k4txJ, xi[2]--> 

Function[{x, t, ul, k3+t (2k6+k4t)], phi[l]-->Function[ 

( k4 t k4 x 2 ) {x, t, u}, u kl--2-+k2x-~ +free[l] [x, t]]}, 

{ _ free[l] (0,11 [x, t] f [1] (2,01 [ 
d + ree x, tJ) } 

The result of this calculation is a list containing the infinitesimals and the remaining 
equations. The remaining equations are usually not solvable by the procedures used 
by LieSolve[]. If we look at the first part of this list, we realize that the infinitesimals 

xi[ 1], xi[2], and phil 1] for the heat equation are given in a pure function 
representation. This representation allows us to use the results for the infinitesimals 
in further calculations. The second part of the resulting list contains the unsolved 
equations, which in the present case is given by the original equation. We have to 
expect that the arbitrary function freer 1] must satisfy the heat equation since we 
analyzed a linear partial differential equation. As noted, the function LieSolve[] saves 

the derived infinitesimals in the file heat.dgl. The information on the structure of the 

infinitesimals is contained in the lists ListXi and ListPhi. We can check the contents 

of heat.dgl again by 

! ! heat. dgl 

Title = {Heat equation} 

Source = {{G. Baumann}, CUlm 1997}} 

IndepVar = {x, t} 

DependVar = {u} 

EqList = 

{Derivative [0, 1] [u] [x, t] - d*Derivative[2, 0] [u] [x, t] l 
SubsList = {Derivative [0, 1] [u] [x, t]} 

ParameterS = Cd} 
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ListXi = {} 
ListPhi = {} 
ListXi = 

{k5 - 2*d*k2*t + k6*x + k4*t*x, k3 + t* (2*k6 + k4*t)} 

ListPhi = {(k1 - (k4*t) /2 + k2*x - (k4*x A 2) / (4*d)) * 

u [x, t) + free [1) [x, t)} 

ListEquations = 
{- (Derivative [0, 1) [free [1)) [x, t) / d) + 

Derivative [2, 0) [free[l)) [x, t)} 

In addition to the two augmented lists ListXi and ListPhi, the file contains a new 

variable ListEquations storing the unsolved equations. Mter the application of Lie[] 

and LieSolve[] to the heat equation, we created an infonnation basis on the 
symmetries of the equation. The symmetries of the heat equation are presented by 
constants kl to k6 and by the arbitrary function Jree[l]. We can independently check 
the gained infonnation to verify the invariance of the heat equation. Again, we apply 
function Lie[] in connection with the option Info.-?True. The application of Lie[] to 
heat.dgl in connection with the option Info.-?True gives us 

Lie [ "heat. dgl" I :Info -+ True] / / LTF 

The function Lie[] takes the infonnation on the infinitesimals and carries out the 
calculation of a symmetry analysis. In the last step of the calculation, the 
infinitesimals are inserted into the detennining equations. The result shows that the 
original equation must be satisfied by the arbitrary function r.. = free[1]. It is 
essential for this example that the check reproduces the heat equation; otherwise, 
there would exist an error in the calculation. We note that for other equations the 
result may be an empty list, especially if the equation is a non-linear one. We also 
note that the check of the results is completely independent of the solution procedure 
used by LieSolve[]. Thus, we have an independent tool allowing us to examine the 

results of LieSolve[]. 

Example 2 

Let us demonstrate the whole procedure of deriving the symmetries for another 
example. Closely related to the heat equation is the so-called non-linear filtration 
equation (lbragimov [1994]). The equation of motion is given for a field u = u(x, t) 

by 

(5.23) 

where k(ux ) is an arbitrary function of Ux . In Mathematica's notation, the left-hand 
side of the equation reads 
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filtration = {Otu[x, t] -k[oxu[x, t]] O{X.2}U[X, t]}; 

filtration / / LTF 

u t -kux,x == 0 

We suppressed the right-hand side of the equation and collected the left-hand side in 
a list. The file containing the information on this equation is created by 

LieEquations[Dfiltra.dgl D, filtration, {u}, {x, t}, {}, 

{DNonlinear Filtration Equation n }, 

{{"J:.Sh. Akhatov, R.K. Gazizov and N.H. J:bragimov"}, 
{"Group classification of nonlinear filtration equations"}, 

{"Soviet Math. Dokl. 35, 384, 1987"}, 
{"The equation is listed in the CRC Handbook 

of Lie Group Analysis of Differential Equations"}, 

{"Vol. 1, Chapter 10.3, p. 129"}, 
{nEd. N.H. J:bragimov n}, 

{"Boca Raton 1994"}}] 

The symmetries of this equation follow by 

solfilt = LieSolve["filtra.dgl"] 

{{xi[l]-,>Function[(x, t, u), k2+ k~xl, 
xi[2]-,>Function[(x, t, u}. k3+k4t], 

phi [1] -'> Function[ {x. t. u}, k1 + k~ u l}, 

{}} 

The result is isomorphic to the result given by Ibragimov [1994] representing 
translations and scaling, Since the filtration equation is a non-linear PDE, we actually 
do not expect that arbitrary functions occur in the infinitesimals. However, there 
exists quite a number of non-linear examples for which the symmetry group is of 
infinite order and thus contains arbitrary functions. These functions are usually 
restricted by one or more PDEs which are different from the original equation, 

If we know the symmetries, we can use another function of MathLie, called 

LieStructureForm[], to derive the algebraic properties of the related Lie algebra. We 
get the structural properties of the algebra and the transformation properties by 

LieStructureFo~[nfiltra.dgln] 

We will check the infinitesima1s and calculate algebraic 

as well as group properties 

+--------------------------------------------+ 

Welcome to MathLie™ 

for the calculation of the symmetry group 

by G. Baumann, © 1992 - 1999 
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+--------------------------------------------+ 

Loading 
previous calculations of the determining equations from 

FILTRA.DEQ 

Loading data from FILTRA.DGL 
Title of the equations: 

Nonlinear Filtration Equation 
Source of the equations: 

I.Sh. Akhatov, R.K. Gazizov and N.H. Ibragimov 
Group classificatin of nonlinear filtration equations 
Soviet Math. Dokl. 35, 384, 1987 
The equation is listed in the CRC Handbook 

of Lie Group Analysis of Differential Equations 
Vol. 1, Chapter 10.3, p. 129 
Ed. N.H. Ibragimov 
Boca Raton 1994 

Equations of motion: 

Equation No. 1 

Ut - klux] Ux,x == 0 

Substitution No. 1 
Ut -7 k [ux ] ux,x 

Infinitesimals : 

xi1 k2 + k4 x 
2 

xi2 k3 + k4 t 

Phil = k1 + ~ k4 u[x, t] 

We are using all the equation(s) checking the infinitesimals 
of the given system consisting of 1 equation(s) in total. 

We have to treat 0 
determining equations after simplification. 

Calculation of the commutator table of the Lie algebra. 

Basis of the Lie algebra. 

Vi == au 
V2 == ax 
V3 == at 



Structure of the Lie algebra. 

Ideal 0 

Ideal 1 

Ideal 2 

{V1' V2' V3' V.} 

{V1' V2' V3} 
{solvable algebra} 

Casimier(s) of the Lie algebra. 

{} 

Commutator table of the Lie algebra. 

0 0 0 -~ 2 
0 0 0 -~ 2 
0 0 0 -V3 
~ ~ V3 0 2 2 
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The commutator table is stored in list LieTable. 

The nonzero structure constants are 

C1,4,1 
1 
2 

C2,4,2 
1 

-2 
C3,4,3 -1 

C4, 1, 1 
1 
2" 

C.,2,2 
1 
2 

C.,3,3 = 1 

Structure constants are contained in the list LieStructure. 
Metric of the structure constants 

0 0 0 0 

0 0 0 0 
g_{ij} 

0 0 0 0 

0 0 0 3 
2" 

Determinant of the metric 
det(g) = 0 

Calculate the symmetry groups of the transformations 

Xi (1) k2 + k4 x 
2 

Xi(2) k3 + k4 t 

Phi (1) 
1 

tj = k1 + 2 k4u[x, 
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Group order = 4 
Number of classes = 15 

The subgroups and the related transformations read 

{k1 --> 0, k2 --> 0, k3 --> 0, k4 --> I} 
x[s) {x[s), t [s), u [s)} 

t[s) == {x[s) --> (Es / 2 C[3)&), t[s) --> (ES C[l)&), u[s] --> (Es / 2 C[2]&)} 

u[s]=={{}} 

{kl --> 0, k2 --> 0, k3 --> 1, k4 --> O} 

x[s] {x[s], t[s], u[s]} 

t[s) == {x[s]--> (C[3]&), t[s]--> (C[l] +s&), u[s] --> (C[2]&)} 

u[s] == {{}} 

{kl --> 0, k2 --> 0, k3 --> 1, k4 --> I} 
x[s] == {x[s], t[s], u[s]} 

t [s] == 
{x[s]--> (Es / 2 C[3]&), t[s] --> (-l+ESC[l]&), u[s] --> (ES/2 C[2]&)} 

u[s] == {{}} 

To save space the rest of the output was deleted. 

There exist no transformations creating new solutions. 

Results are collected in the list FinalResult. 

The infinitesimals are contained in Result2. 

{} 

The function actually does not return any result for further use. However, the 
function prints out the result shown on the screen. As a first result, we get the 
algebraic properties based on the vector fields of the symmetry group. The 
commutator table of the vector fields is followed by a number of group 
transformations based on subgroups of the symmetry. The subgroup is specified by 
replacement rules setting the values of the group parameters ki • Transformations for 
the dependent and independent variables are given in a most general form. If the 
classification of the group allows a transformation of known solutions to other 
solutions of the equation, a graphical representation of this transformation is 
created. D 

Example 3 

One of the frequently used partial differential equations in the description of 
non-linear phenomena in physics is the Burgers equation. Writing down the equation 
in Mathematica, let us first define the field u by 
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U = u [x, t]; 

The left-hand side of the Burgers equation is given by 

burgers = {Ot U + 2 U iJx U - iJ{x,2) U}; burgers II LTF 

u t + 2 u U x - ux,x == 0 

The physical background and the important solutions are discussed by Lighthill 
[1956] and Crighton [1979]. 

The well-known Cole-Hopf transformation converts the Burgers equation to the 
linear diffusion equation. Hence, the solution for the former can be explicitly 
obtained by solving the linear problem of the diffusion equation, Our intention here is 
to find the symmetries of the Burgers equation for the standard representation given 
above, 

Derivation of the symmetries as a part of our database system presumes that fIrst we 
have to create the information fIle for the Burgers equation, The representation of the 
Burgers equation given above was taken from 

source = {{"M.J. Ablowitz and P.A. Clarksonn}, 

{"Solitons, 

Nonlinear Evolution Equations and J:nverse Scattering"}, 
{RCambridge University Press, 1991n}, 

{Rfirst equation on page 34n}} 

{{M.J. Ablowitz and P.A. Clarkson}, {Solitons, Nonlinear 

Evolution Equations and Inverse Scattering}, 
{Cambridge University Press, 1991}, 

{first equation on page 34}} 

We set the title of the equation to 

title = {RBurgers equationn} 

{Burgers equation} 

The file burgers.dgl is then created by 

LieEquations[nburgers.dgl R, burgers, {u}, {x, t}, {}, 

title, source] 

The derivation of the determining equations is pursued by 

burgersDetEquations = Lie [nburgers.dgl n , Statistics -+ True]; 

burgersDetEquations II LTF 
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(£ilu == 0 

(£2)U==0 

(cPl)u,U==O 

(£2)X==0 

2cPl- (£l)t -2u (£1)X+ 2u (£2)t + (£1)X,x- 2 (cPl)X,U ==0 

(cPil t +2u (¢il x - (¢dx,x == 0 

2 (£il x - (£2)t == 0 

Again, the result of this calculation is a system of linear coupled partial differential 
equations. These equations are the basis for the determination of the symmetries, 
Before we attempt to solve these equations, we discuss another representation of the 
Burgers equation which follows from the above if we replace the dependent variable 
u by the gradient of a field v. We define this substitution by 

subst = u -+ Function [{x. t}. ax v [x. t]] 

u-?Function[{x, t}, oxv[x, tll 

and apply this transformation to the Burgers equation 

burgersx = burgers I . subst; burgersx II I.TI' 

The result is a third-order non-linear PDE for the field v. Integrating this equation 
with respect to x, we obtain a potential representation of the Burgers equation: 

pburgers = J burgersx[lD d1x; pburgers II I.TF 

V t + v~ - Vx,x == 0 

This sort of equation was examined by Olver [1986]. 

In the following, we will show how group properties of the potential representation 
differ from the original representation of the Burgers equation. Let us again extend 
our database by a new file containing the information on the potential Burgers 
equation. We create a file for the potential Burgers equation by 

I.ieBquations[nburgersp.dgl R• pburgers. {v}. {x. t}. O. 
{RBurgers equationAl. {{RG. Baumannn }. 

{nBurgers equation in potentia1 formR}. {nUlm 1997 n}}] 

The corresponding determining equations follow by 
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(~dv == 0 

(~2)V==O 

(~2)x==O 

- (~dt + 2 (¢il x + (~dx,x -2 (¢dx,v == 0 

(¢d t - (¢dx,x == 0 

2 (~dx - (~2)t == 0 

-2 (~')x + (~2)t + (¢d v - (¢')v,v == 0 

Application of the Theory 255 

A comparison of the results shows that in both calculations, the number of equations 
are the same. However, the seven equations differ in their forms. Consequently, the 
structure of the symmetries is different. We can illustrate this by using the function 

LieSolve[] of the package MathLie. The function LieSolve[] provides us with the 
representation of the symmetries in infinitesimal form. The infinitesimals of the 
Burgers equation thus follow by 

iburgers = Liesol ve [ "burgers. dgl" ] 

{{xi[1]-->Function[(x, t, ul, k2+k4t+ (k3+k5t) x], 

xi [2] --> Function [ {x, t, u}, k1 + t (2 k3 + k5 t)], 

phi[1]-->Function[{x, t, u}, ~ (k4-2 (k3+k5t) u+k5x)]}, 

{}} 

The result is a list containing the infinitesimals in a pure function representation. The 
first two elements xi[l] and xi[2] of the list represent the infinitesimals for the 
independent variables x and t, respectively. The third element, phi[l], is the 
infinitesimal for the dependent variable. Among the five-dimensional symmetry 
group are symmetries of translation and scaling. The infinitesimals for the potential 
Burgers equation follow by a similar calculation from 

iburgersp = LieSolve["burgersp.dgl"] 

{{xi [1] --> Function [ {x, t, v}, k2 + 2 k5 t + (k3 + 4 k6 t) x], 

xi[2]-->Function[{x, t, v}, k1+2t (k3+2k6t)], phi[1]--> 

Function[{x, t, v}, k4+2k6t+k5x+k6x2 +Ev free[1] [x, t]]}, 
{-free[1] (0,1) [x, t] + free[1] (2,0) [x, t]}} 

Comparing both results, we recognize that the symmetry structure of the original 
Burgers equation and the potential representation of the Burgers equation are the 
same for the infinitesimals of the independent variables. The structure of the 
dependent variables is completely different. In the case of the Burgers equation, we 
find a finite dimensional representation of the symmetry group, whereas in the 
potential representation, we get an infinite dimensional group characterized by the 
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arbitrary functionjree[l][x,tj. This arbitrary function has to satisfy the heat equation 
as an additional equation. The last list of the result contains this equation. The 
discrete part of the symmetry group of the potential Burgers equation is also extended 
by one degree to a six-dimensional symmetry group. 0 

In physical applications, however, the model equations often tum out to be more 
complicated than the Burgers equation, involving as they do, a geometrical expansion 
term, a non-linear damping term, or a more general convection term. In the 
following, we will examine the influence of this change on the symmetries if the 
convection term in the original equation is altered. The convective extension of the 
Burgers equation is obtained by replacing Ux with u2 Ux ' This quadratic extension is 
sometimes called generalized Burgers equation. 

burgerse = {at U + u2 ax U - O{x.2) U}; burgerse II LTF 

For a quick overview of the changes in the symmetries, we take advantage of the 
interactive function Infinitesimals[]. Application of this function to the equation can 
also be used to create a database if the related notebook is considered the basic part 
of the data system. The advantage of this view is that the complete information on an 
equation is collected in one file and that background information which is not 
necessary for a symmetry analysis can also be collected in the notebook. The 
determination of the symmetries for this generalized equation is carried out by 

iburgerse = J:nfinitesimals [burgerse, {u}, {x, t}] 

{ . [1 J . [ { } k1 + k32 xl, Xl ~Functlon x, t, u , 

xi [2J ~ Function [ {x, t, u}, k2 + k3 tJ, 

phi [lJ ~ Function [ {x, t, u}, - k~ u l} 

The result shows that the symmetry group of the generalized Burgers equation is 
reduced from a six-dimensional to a three-dimensional group containing only 
translations in the independent variables and a scaling. 

We recognize now that classification of the group of differential equations is an easy 
task. For example, the group structure of the Burgers equation with generalized 
convection term urn Ux is analyzed by 

J:nfinitesimals [{at U + U'" ax U - O{x,2) U}, {u}, {x, t}, {m}] 

{xi[lJ ~Function[{x, t, u}, k1+ k~xl, 
xi[2J ~Function[{x, t, u}, k2+k3tJ, 

. . [ k3 u l} phl [lJ ~ Functlon {x, t, u}, - 2m 
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where m is an arbitrary constant. The result demonstrates that for an arbitrary m, the 
symmetry group is of the same structure as for the generalized Burgers equation with 
quadratic convection term. The difference between the two results is the dependence 
of phill J on the parameter m. This result displays that the function Infinitesimals[] is 
capable of handling not only the specific models of the Burgers equation but also a 
model depending on an arbitrary parameter. 

Concluding this section, we can state that MathLie can be used to collect information 
on symmetries in different ways: first, creation of a file system containing 
information essential for each equation; second, by creating notebooks that allow 
detailed discussion of the equation. Both methods will be used in the remaining parts 
of this book. 

5.5. Similarity Reduction of Partial Differential Equations 

A similarity reduction of a differential equation is closely connected with the 
invariance of the equation. In Chapter 3, we discussed the group invariance of 
ordinary differential equations. The invariance condition in connection with ordinary 
differential equations was beneficial for the reduction of the order or the integration 
of ODEs by quadratures. In this section, we will discuss the invariance condition of a 
partial differential equation to reduce the equation to an ODE or to a PDE in less 
independent coordinates. The first case occurs for an equation with two independent 
variables, whereas a general reduction to another PDE follows in cases with more 
than two independent variables. The reduction procedure generates a similarity 
representation of the original equation. Since we reduce the number of independent 
variables, a similarity reduction results into a representation which has some 
advantages compared with the original equation. 

This procedure works independent of the nature of the PDE, linear or nonlinear. It is 
also independent of the order of the PDE and it does not need information on 
boundary conditions. The benefit of the reduction is a simpler equation allowing an 
analytic or numeric solution. Examples of similarity solutions are widely encountered 
in mechanics, hydrodynamics, in the general theory of relativity, etc. However, the 
solutions derived in these fields are mainly guesswork and lack an algorithmic 
procedure. We are going to show here that a similarity reduction is an algorithmic 
procedure delivering a large number of ansiitze discussed in the literature. 

The main idea behind a similarity reduction is the term invariance. The discussion of 
invariance is the first step in this section. To simplify the theoretical representation, 
we restrict the examination to cases with two independent variables. A generalization 
to more independent variables is straightforward. 
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Let us consider the general PDE in two independent variables and one dependent 
variable in the fonn 

~(x,t,u,ux,Ut,ux.x' ... ) = 0, 

which is invariant under the one-parameter Lie group of transfonnations 

x* = X(X,t,U;E), 

t* = T(x, t, u; E), 

u* = Vex, t, u; E). 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

Let us further assume that u = 8(x, t) is a solution of equation (5.24). Inserting this 
solution into the transfonnations (5.25)-(5.27), we can write 

x* = X(x, t, 8(x, t); E), 

t* = T(x, t, 8(x, t); E), 

u* = U(x, t, 8(x, t); E), 

(5.28) 

(5.29) 

(5.30) 

stating that u* is also a solution of the transfonned PDE. The use of these facts allows 
us to define the invariance in the following way. 

Definition: Invariance 

A PDE is invariant under a one-parameter Lie group transfonnation if u* = 
U(x, t, 8(x, t); E) also satisfies the transfonned PDE whenever u = 0(x, t) is a 
solution of the original PDE. 0 

If we additionally require that we can solve this problem uniquely, we end up with 
the functional equation 

0(X(x, t, 0(x, t); E), T(x, t, 8(x, t); E» = U(x, t, 0(x, t); E). (5.31) 

The solution of this functional equation can be found by introducing the infinitesimal 
representation of the transformations (5.28)-(5.30). We will carry out the calculation 
by replacing the transfonnations (5.28)-(5.30) by their infinitesimal representations 

Clear[T, X, U]; 

itrafo = {X -+ Function [ {x, t, u, e}, x + e xi [1] [x, t, u]], 

T-+Function[{x, t, u, e}, t+exi[2] [x, t, u]], 

U-+Function[{x, t, u, e}, u+ephi[l] [x, t, u]]} 

{X ~ Function [{x, t, u, E}, X + E xi [1] [x, t, u]] , 

T~Function[{x, t, u, E}, t+Exi[2][x, t, u]], 

U~Function[{x, t, u, E}, u+Ephi[l] [x, t, u]]} 
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Inserting the infinitesimal representation of the transformations into the functional 
equation (5.31), we get the simplification 

fun=e[X[x, t, e, e], '1'[x, t, e, ell ==U[x, t, e, e] /. itrafo 

e[x+Exi[l] [x, t, eJ, t+Exi[2l [x, t, ell ==e+Ephi[l] [x, t, el 

The parameter E is the group parameter of the transformation. On the left-hand side 
this expression contains the solution () for which we are looking. Actually, the above 
expressions contain e in a functional form, too. However, this representation depends 
on the infinitesimals parameter E allowing us a Taylor expansion around the identity 
E = O. If we additionally subtract the right-hand side from the left-hand side and 
extract the terms of lowest order in E, we get the result 

Coefficient [ 

(Serie. [fun[l:D, {e, 0, 1}] /. e [x, t] .... e) - fun[2:D, e] == 0 / / 
Lie'1'raditioD&lro~ 

This first-order PDE is called the invariant surface condition. The problem we face is 
the solution of this first-order partial differential equation. Actually, this is not a 
problem if we use Mathematica. Mathematica offers a package integrated in the 
function DSolve[] allowing the integration of first-order PDEs. This package uses the 
fact that a first-order PDE is closely related to a set of ordinary differential equations. 
The connection between the first-order PDE and the system of ODEs can be 
demonstrated by the following reasoning. 

Let us assume that an arbitrary surface in the space with coordinates x, t, and u is 
given by 

u = ®(x, t). (5.32) 

Later, we will identify this surface as the solution surface of the first-order PDE. A 
curve embedded in this surface can be described by a set of parametric coordinates. 
Let s be the parameter along the curve; then the curve itself is given by the triple 

(x = xes), t = t(s), u = u(s». (5.33) 

The tangent vector to this curve is 

~ ~dx ~dt ~du 
v = ex - + et - + eu -, 

ds ds ds 
(5.34) 
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where ex, et, and eu are the unit vectors in the directions of the coordinate axes. The 
normal direction on the surface H = u - 8(x, t) = const. is determined by the 
gradient divided by the magnitude of the gradient 

(5.35) 

The condition nv = 0 assures that the curve (x(s), t(s), u(s» is part of the surface H. 
This condition, however, is nothing more than 

dx dt du 
8 x - + 8 t - = 

ds ds ds 

If we define a family of curves by 

dx - = ~,(x, t, u), 
ds 

dt 
- = g2(X, t, u), 
ds 

du 
= ifJ, (x, t, u), 

ds 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

called the characteristic differential equations, we can rewrite the surface condition 
n v = 0 in a partial differential equation of first order: 

(5.40) 

which is equivalent with the equation derived from the functional relation (5.31) for 
8. Consequently, each one-parameter family of characteristic curves generates a 
surface which defines an integral surface u - 8(x, t) = const. and each such integral 
surface is generated by a one-parameter family of characteristic curves. 

Example 1 

Let us consider the first-order partial differential equation 

pdel=x(Jx9[x, t] +tBt 9[x, t] ==9[x, t]; 

pdel / / LieTraditionalForm 

corresponding to a scaling symmetry with infinitesimals g, = x and ~2 = t. The 
first-order PDE is solved by 
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sol = DSolve[pde1, e[x, t], {x, t}] 

{{e[x, t]--->xC[l] [~l}} 

where C[ 1][ t/xJ is an arbitrary function. A graphical representation of this solution 
with C[ 1] replaced by Sin[] is given by 

Plot3D[ (e [x, t] /. (sol /. C [1] -+ Sin» [1D, 

{x, 0.1, 2}, {t, -27f, 27f}, 

AxesLabel -+ {nxn, nt n , ne n }, 

PlotPoints-+ 40, Mesh -+ False] 

El 

2 o 

Actually, the family of solutions of the characteristic differential equations can be 
represented in a parametric form by 

x = xes, r), t = t(s, r), u = u(s, r), (5.41) 

where s is the parameter along a characteristic curve and r is the parameter 
identifying a characteristic curve equal to a certain constant on a characteristic. The 
essential point of these considerations is that the solution of a first-order partial 
differential equation is represented by a family of surfaces u - 0(x, t) = const. 

Now, if F(x, t, 0) = 0 defines a surface satisfying the first-order partial differential 
equation, then this surface is an invariant of the one-parameter Lie group 
transformation. This is obvious from the condition 

V F(x, t, 0) = 0, (5.42) 
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where v is the vector field of the transformation given by 

(5.43) 

The result is that the vector field v applied on the surface F(x, t, ®) delivers the 
determining equation for the surface. These facts are summarized in the following 
theorem. 

Theorem: Invariance condition 

The function F(x, t, ®) is an invariant of a one-parameter Lie group transformation if 
the condition 

vF = 0 (5.44) 

is satisfied. 0 

This condition always results into a first-order partial differential equation 
independent of the number of dependent and independent variables. The equation is 
solvable by applying the method of characteristics. We demonstrate the application 
of the theorem by an example. 

Example 2 

Let us apply the theorem for a subgroup of the heat equation. The symmetry we will 
examine is connected with the scaling symmetry 

xi [1] [x, t, u] = x; 
xi[2] [x, t, u] = 2t; 

phi [1] [x, t, u] = c u; 

where c is an arbitrary parameter. The invariance condition (5.44) now reads 

invar = xi [1] [x, t, u] CJx F[x, t, u] + 

xi [2] [x, t, u] CJt F[x, t, u] + 

phi [1] [x, t, u] CJul'[x, t, u] == 0; invar II L'l'1' 

2 t F t + C u Fu + x Fx == 0 

The solution of this PDE follows by 

801h=DSolve[invar, F[x, t, u], {x, t, u}] 

{{F[X, t, u] -7 e[l] [~ , ux-c ]}} 
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representing the general solution of the first-order partial differential equation. The 
arbitrary function C[ 1] depends on two invariants given by II = t I:x? and 
12 = u I r. These two invariants allow the reduction of the heat equation to an 
ordinary differential equation. The reduction procedure itself is based on the 
following theorem: 

Theorem: Invariant representation 

Let the equation !l = 0 be invariant under a one-parameter group G and let the 
infinitesimals gi and ¢la' i = 1,2, ... , p and a = 1,2, ... , q, be non-vanishing 
functions on the solution surface H of the equation. Then, the surface H can be 
represented by equations of the form 

k =1,2, ... ,q, (5.45) 

where II' ... , I p_1 define a basis of invariants of the group G. 0 

The use of the invariants allows us to reduce the original equation. Let us 
demonstrate the reduction process by the example of the heat equation. The left-hand 
side of the equation of motion reads 

heat = {at u[x, t] - B{",3} u[x, t]}; heat II LTI!' 

Ut-Ux,x==O 

The two integrals obtained by integrating the characteristic equation are II = tl:x? and 
12 = ul r. The first integral combines the independent variables in a unique variable 
called the similarity variable {= t I x2 • The second invariant, 12 , combines the 
dependent variable and one independent variable to the similarity representation of 
the solution u(x, t) = r F({), where F({) = 12 , These two relations allow us to 
define the following rules: 

t 
rule. = {t ... , x 3 , u ... Function [ {x, t}, XC F[-]]} 

r 

{t -+ x2 r, U -+ Function [{x, t}, XC F [ :2 ll} 

Applying these two rules to the heat equation, we get 

rheat = heat I. rules, rbeat II LTI!' 

== 0 

representing an ordinary differential equation for F depending only on {. The 
common factor r-2 can be eliminated by division: 
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rheat 
rheat = Expand [ ---] ; rheat I I LTF 

X"-~ 

Thus, we reduced the original PDE to an ODE by utilizing the invariants of the 
group. The merit of this reduction is that the derived ODE is easier to solve than the 
original PDE. Another advantage is that we can use the solution procedures discussed 
in Section 4.4, allowing us to solve the reduced equation. However, in the present 
case, we utilize the capabilities of DSolve[]. The solution of the ODE follows by 

sheat = DSolve[rheat[11 == 0, F, ~] 

( Ie 3 1 ( #11 ) } - .r + {{F --> C [1 ] Hypergeometric1F1 ["2 - "2' "2' - 4 #1 ] 

. ell 1 - c / 2 1 
C[2] HYPerg eometnc1F1 [-"2' 2' - 4#1] (#1) &}} 

The resulting solution is a combination of special functions containing the group 
parameter c. Since we started from a second-order ordinary differential equation, we 
end up with a solution containing two constants of integration C[ 1] and C[2]. The 
two solutions are graphically shown in the following figure. The different curves 
represent different values of the group parameter c. 

Plot[Bvaluate[Table[F[~] I. sheat[l, 11, 

{e, -2.1, 2.1, .S}] I. {C[l] -+ 1, C[2] -+ O}], 

{~, 0.01, 2}, Axe.Label-+ {"~n, "F"}, 
i 

PlotStyle -+ Table [sue [-], {i, 1, 8}]) 
10 

2.5 

2 

1.5 

F 

o.~~~~""'~iii~~~ 
0.5 1 1.5 2 

- 0 . 5 

The second solution with C[l] = 0 and C[2] = 1 has the graph 
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Plot[zvaluate['l'able[F[:] /. sheat[l, lB, 
{c, -2.1, 2.1, .S}] /. {C[l] -+0, C[2] -+1}], 

{:, 0.01, 2}, AxesLabel-+ {n:_, -Fn}, 

i 
PlotStyle -+ 'l'able [aue [ -], {i, 1, 8}]] 

10 

F 

The symbolic solution for the heat equation in the original coordinates x and t is 
derived from the similarity solution by inverting the transformations: 

t 
backrule. = {: -+ -, F -+ I!'unction [:, F [:] XC] } 

X2 

{h'~ :2 ' F~Function[h', F[h'] XC]} 

The actual solution follows then by the resubstitution of the similarity representation: 

solution = F [:] /. sheat / • backrules 

q x: r}-j- C[l] HYPergeornetriclFl[ ~ - ~, ~, - :~ 1 + 

( 2) -c/2 1 2 
~ C [2] HypergeornetriclFl [ - ~ , 2' - : t l} 

In conclusion, we can say that a solution of a partial differential equation in two 
independent variables can be constructed by two invariants of the group. One of these 
two invariants becomes the new independent variable {== {(x, t), the so-called 
similarity variable, and the other invariant plays the role of a dependent variable 
F(O. The similarity representation of the solution is given by the relation 

e == H(x, t, F(O) (5.46) 
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with the dependence of H on x and t and the arbitrary function F({) known 
explicitly. The substitution of this similarity representation into the original equation 
results in an ordinary differential equation for F({). 0 

Now we know the fundamental steps to reduce a PDE to an ODE if the symmetries 
of the PDE are given. The package MathLie offers a function called LieReduction[], 
which allows us to reduce the number of independent variables by applying the above 
considerations. The function LieReduction[] can be used to automatically derive the 
similarity representation of the heat equation and others. The infonnation we need to 
set up the calculation are the equation, the dependent and independent variables, and 
two lists for the infinitesimals. The first list of the infinitesimals carries the 
infonnation on the independent variables and the second carries the group structure 
of the dependent variables. The following example shows how the reduction for the 
scaling symmetry is derived for the heat equation: 

redl=LieReduction[{otu[x, t] -O{K.2}U[X, t]}, {u}, 

{x, t}, {x, 2 t}, {c u}] ; LTJ' [J'latten [redl]] /. zetal -+ '1 
t 

X2 - Si == 0 

ux~c -Fi == 0 

(-CFi +c2 F i - (Fd b1 +6si (Fd b1 -4CSi (Fd b1 +4sf (Fd b1 . b1 ) 

== 0 

The output of the function is a list containing the similarity variables as equations at 
the first position. The second part of the list contains the similarity representation of 
the solution. The third and last part of the resulting list contains the reduction of the 
original equation. Another example for the application of this function is given by the 
potential Burgers equation. We already determined the symmetries of the potential 
Burgers equation in Section 5.4.4. Using the results from there for the special group 
with k6=1 and ki=O for i#6, we find 

redl = LieReduction[{otu[x, t] + COxu[x, t])2 -O{x.2}U[X, t]}, 

{u}, {x, t}, {4tx, 4t2}, {2t+X2}]; 

LTJ'[J'latten[redl]] /. zetal-+ '1 
~ - Si == 0 x 

! (4 u - ~ - 2 Log [x] )- Fi == 0 

sf (3 -12 F1bl Si + 4 F1~, sf - 4 sf F1b1J1 ) == 0 
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The result of the reduction is a non-linear second-order ordinary differential equation 
which we can solve by using the function DSolve[]: 

solburgersp = DSolve[redl[3, 1] == 0, Fl, zetal] 

{{F1~ (C[2] + 3LO~[#l] -LOg[-l+#lC[l]]&)}} 

The final solution of the potential Burgers equation follows by using the second part 
of the similarity reduction. Inserting the solution for F 1 into the similarity 
representation, we get a representation of the solution in x and t coordinates, 

solution = Flatten[redl[2] /. solburgersp] 

{! (4 u - x: _ 2 Log [x] ) = = c [2] + ~ Log [ ~ 1 - Log [ -1 + t C; 1] l} 

Solving this relation with respect to u, we end up with the explicit solution of the 
potential Burgers equation in the form 

solf = Si~lify[Solve[solution[l], u]] 

The solution of the chosen subgroup contains two constants of integration which 
have to be chosen in such a way that the initial and boundary conditions are satisfied. 

Example 3 

Another example of two coupled diffusion equations demonstrates the application of 
the function LieReductionD on a system of equations. The (1+ I)-dimensional version 
of the equations of motion for the density u and the density v are given by 

cdiffu = {at u [x, t] - ax,x v [x, t], 

at v[x, t] - ax,x u[x, t]}; cdiffu / / LTF 

U t - Vx,x == 0 
V t - Ux,x == 0 

The two equations allow a large symmetry group. The infinitesimals of this group 
follow by applying the function Infinitesimals[]. The result reads 
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icdiffu = l:nfinitesimals [cdiffu, {u, v}, 
{x, t}, {}, Substi tutionRules -+ {at u [x, t], at v [x, t]}]; 

icdiffu / / LTF 

- ('T2 ) t + ('T, )x,x == 0 

- ('T')t + ('T2 )x,x == 0 

~, == k6 + k7 x - 2 t (k3 + k5 x) 

~2 == kl + 2 t (k7 - k5 t) 

( k5 x 2 ) (k4 + k5 t) u + v k2 + k3 x + -2--

( k5 x 2 ) (k4 + k5 t) v + U k2 + k3 x + -2--

The two functions freef 1] andfreef2] satisfy the original equations and generate the 
infinite dimensional part of the group. The finite part of the group is represented by a 
seven-dimensional symmetry group. From this group, we select the subgroup with k4 

= k7 = 1 representing a scaling symmetry of the coupled equations: 

xinfi = {xi [1] [x, t, u, v], xi [2] [x, t, u, v]} /. 
icdiffu[l] /. 

{k1 -+ 0, k2 -+ 0, k3 -+ 0, k4 -+ 1, kS -+ 0, k6 -+ 0, k7 -+ 1} 

{x, 2 t} 

uinfi = {phi [1] [x, t, u, v], phi [2] [x, t, u, v]} /. icdiffu[l] /. 
{k1-+0,k2-+0, k3-+0,k4-+1, kS-+0,k6-+0,k7-+1, 

free [1] [x, t] -+ 0, free[2] [x, t] -+ O} 

{u, v} 

The reduction of the coupled diffusion equations for the scaling group follows then by 

rcdiffu = LieReduction[cdiffu, {u, v}, {x, t}, {x, 2 t}, {u, v}]; 

LieTraditionall"orm[rcdiffu] /. zeta1 -+ ~1 / / TableForm 

~ ==Sl 
x 2 

U 
- == F, 
X 

The derived coupled set of ordinary differential equations in F) = Fl and F2 = Fl is 
not solved by Mathematica. This is obvious from 
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DSo1ve [rcdiffu[3D, {1'1, 1'2}, zetal] 

DSol ve [ {Fl' [zetal) - 2 zeta1 F2' [zetal) - 4 zeta12 F2" [zeta1) == 0, 

-2 zeta1 F1' [zeta1) + F2' [zeta1) - 4 zeta12 F1" [zeta1) == O}, 

{F1, F2}, zeta1) 

However, this is not the end of the story. Mathematica offers an alternate way: the 
numerical solution of the equation. The function NDSolve[] is capable of handling 
this task. This function is beneficial in solving the reduced system of equations. In 
determining a numerical solution, it is mandatory that the equations be free of any 
parameters and that the initial conditions be added to the equations: 

eqat = rcdiffu[3D 

{F1' [zeta1) - 2 zeta1 F2' [zeta1) - 4 zeta12 F2" [zeta1) == 0, 

-2 zeta1 F1' [zeta1) + F2' [zeta1) - 4 zeta1 2 F1" [zeta1) == O} 

For the initial conditions, we choose the following relations: 

initials = 

{1'1[1] == .1,1'2[1] == .2, 1'1'[1] == -.1,1'2'[1] == -0.5}; 

setting the function values at zeta1=1 and the derivatives to certain constants. These 
four equations are joined with the list of equations eqat: 

eqat = Join [eqat, initials] 

{F1' [zeta1) - 2 zeta1 F2' [zeta1] - 4 zeta1 2 F2" [zeta1) == 0, 

-2 zeta1 F1' [zeta1] + F2' [zeta1) - 4 zeta1 2 F1" [zeta1) == 0, 

F1[l) == 0.1, F2 [1] == 0.2, F1' [1) == -0.1, F2' [1) == -0.5} 

The complete list of equations and initial conditions is now used in the numerical 
integration for zeta1 in the range 15 zetal550. 

nso1ve=HDSo1ve[eqat, {l!'1, 1'2}, {zetal, 1, 50}] 

{{F1 -7 InterpolatingFunction [{ {1., 50.}}, <», 

F2 -7 InterpolatingFunction [{ {1., 50.}}, <»}} 

The numerical solution is represented by an interpolating function. We can use the 
representations to plot the solution: 

Plot [Bva1uate [{l!'l[x], l!'2 [x]} /. nso1ve], {x, 1, 50}, 

P1otSty1e -+ {RGBCo1or[1.000, 0.000, 0.000], 

RGBCo1or[0.000, 0.000, 1.000]}, 

AxesLabe1-+ {-'1-' -1'1,1'2 n }] 
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-1 

-2 

-3 

-4 

-5 

-6 

The utilization of the numerical capabilities of Mathematica allows us to examine the 
solution of the reduced equations for a limited range in zeta] and for a special choice 
of initial values. This numerical representation of the solution compared with an 
analytic solution is far from being complete. An analytic solution, if we found one, is 
valid for all initial conditions and unlimited in the range of the independent variable. 
So numerical solution can only show us the behavior for a specific case of initial 
conditions. 0 

Example 4 

Another problem also handled by the function LieReduction[] is the reduction of 
partial differential equations in more than two independent variables. Such a case is 
given by the Karpman-Belashov equation (KB) (Karpman and Belashov [1991]) 

6 u; + Ux,t + 6 U ux,x - Uy,y - J1. ux,x,x - E ux,x,x,x - A ux,x,x,x,x,x = O. (5.47) 

The KB equation contains the Zabolotskaya-Khoklov equation (ZK) with E = 0 and A 
= 0, and the Kadomtsev-Petviashvili equation (KP) with J1. = 0 and A = O. The 
KB-equation is used to model two-dimensional solitons and wave packages in 
weakly dispersive and dissipative media, Karpman and Belashov studied this type of 
equation numerically. We will examine here the algebraic properties of the equation. 
Especially, we will examine the ZK equation and the corresponding analytical 
solutions. First, let us determine the symmetries of the KB equation 

ka:rp = {ax (at U [x, y, t] + 6 U [x, y, t] ax u [x, y, t] -

'" a{X o2) u[x, y, t] - e a{Xo3} u[x, y, t] -

Aa{xo5}U[X, y, t]) -a{Yo2}U[X, y, t]}; ka:rp II LorI' 

6 u~ + Ux,t + 6 u ux,x - Uy,y - J.1 ux,x,x - E ux,x,x,x - A ux,x,x,x,x,x == 0 
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The three parameters '\, p, and E are real constants. The infinitesimals of the KB 
equation follow by 

ikarp = :Infiniteai_la[karp, {u}, {x, y, t}, {Il, e, A}]; 

ikarp / / L'l'1' 

1 
cPl == 12 (2 (1""2)t +y (:1"I)t.t) 

1 
~1 == 1""2 + "2 y (1""1) t 

~2 == 1""1 

~3 == k1 

The result of the calculation is an infinite dimensional symmetry group determined 
by two arbitrary functions 'F] = free[1] and 'F2 = free[2]. These two functions 
determine the transformation of the y, x, and u coordinates. We also observe that the 
group is free of any system parameter '\, E, and p. The two arbitrary functions free[l] 

and free[2] do not have to satisfy any other equations. Thus, we can choose them 
individually. If we assume, for example, that these functions are given by two 
constants free[l][t] = k2 and free[2][t] = kJ, we immanently select from the 
infinite dimensional group those subgroups which describe the invariance of the 
equation with respect to translations in the independent variables. At the other hand, 
this special subgroup creates the following reduction: 

rkarp = LieReduc:tion[karp, {u}, {x, y, t}, {kl, k2, k3}, 

{O}]; LTI' [I'latten[rkarp]] /. {zetal ... ~1I zeta2 ... ~2} 

_ - k1 t + k3 x _ b'1 = = 0 
k1 

_ k2 x - k1 Y _ b'2 == 0 
k1 

u - Fl == 0 

6 k14 k3 2 (Fd~, + 12 k14 k2 k3 (FIl., (FIl'2 + 6 k14 k22 (Fd~2 -

k1 5 k3 (Fd., .• , +6k14 k3 2 Fl (F1 )., .• , _k1 5 k2 (F1 )""2 + 

12k14 k2k3F1 (F1)""2 _k16 (Fl )'2"2 +6k1 4 k2 2 F l (F1 )'2 .• , + 

k1 3 k3 3 J..l (F1 )!;, .• , .• , +3k13 k2k3 2 J..l (F1 )., .• , .• , + 

o 

3k13 k22 k3J..l (F1 )"""'2 + k1 3 k2 3 J..l (FIl., .• ,.'2-

k12 k3 4 € (FIl., .• , .• , .• , -4k12 k2k3 3 € (FIl","""'2-

6 k12 k22 k3 2 € (F I )., .!;, .• , .• , - 4 k12 k2 3 k3 € (F1 )., .• , .• , .• 2 -

k12 k24 € (Fd.2 •• 2 .!;2 .• , _k3 6 A (Fd., .• , .• , .• , .• ,.!;, -

6 k2 k3 5 A (F1 ) - 15 k22 k3 4 A (F1 ) -
~.~.~.~.~.~ ~.~.~.~.~.~ 

20k2 3 k3 3 A (F1 )"""""2""'2 -15k24 k3 2 A (F1 )!:, .• ,.!:2.'2.!:, .• ,-

6 k2 5 k3 A (F1 ) - k2 6 A (F1 ) == 
~.~.~.~.~.~ ~,~.~.~.~.~ 
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The result is a non-linear partial differential equation of sixth order for the similarity 
function Fl. The similarity function depends on the two similarity variables zeta1 
and zeta2. Thus, we reduced a (2+1)-dimensional PDE to a (l+l)-dimensional PDE. 
Both similarity variables zeta1 and zeta2 are invariants of the KP equation. The 
reduced equation is again a candidate for Lie's method. For the sake of simplicity, we 
choose the group constants k1, k2, and k3 in a suited way by k1 = k2 = 1, and k3 = v. 
The corresponding reduction thus simplifies to 

rkarp1 = LieReduction[karp, {u}, {x, y, t}, {1, 1, v}, 

{O}]; LTF[Flatten[rkarp1]] /. {zeta1-+~" zeta2-+~2} 

t-vx-Si==O 

-x + y - S2 == 0 

U - Fi == 0 

6v2 (Fd~, + 12v (Fd s1 (Fd s2 + 

o 

6 (Fi)~2 -v (Fi )Sl,Sl + 6v2 Fi (F i )Sl,Sl - (Fi )Sl,S2 + 

12vFi (F i )Sl,S2 - (F i )S2,!:2 + 6Fi (Fi )S2,S2 +V3 f-i (Fi )Sl,b1,(1 + 

3 v 2 f-i (Fi )b1,Sl,!:2 + 3 Vf-i (Fi )!:1,S2,S2 +f-i (F i )S2,!:2,b2 -

V 4 6 (F i )Sl,C,Sl,Sl - 4vJ 6 (F i )Sl,!:1,!:1,!:2 - 6v2 6 (Fi )!:1,",!:2,!:2 

4V6 (Fd!:1,S2'S2'S2 -6 (Fd;2,S2,b2,S2 _v6 A (Fd b1 ,b1'!:1'(1,b1,b1 -

6 v 5 A (Fd Sl,Sl,Sl,b',",S2 -15 v 4 A (Fd Sl,Sl,b1,b1,(2,!:2 -

20v3 A (F i l s1 ,Sl,Sl,S2,!:2,S2 -15v2 A (F i l b1 ,b],t:2,b2,S2,C2-

6VA (Fi l s1 ,r2,b2,C2,C2,C2 -A (Fi l b2 ,b2,b2,b2,(2,(2 == 

It is obvious that the reduction of the KB equation is a sixth-order non-linear PDE in 
1 + 1 variables. Thus, the resulting equation is nearly as complicated as the original 
equation. To simplify things, let us examine models which follow from the KB 
equation. If we change the parameters in the KB equation in an appropriate way, we 
get a simplified equation. One example is the reduction of the KB equation by 

karps1 = karp / • .A -+ 0; karps1 / / LTF 

6 u; + Ux,t + 6 u ux,x - Uy,y - jJ. ux,x,x - E ux,x,x,x == 0 

This kind of equation is called a reduced KB equation (rKB) in the following. The 
infinitesimals of this equation are calculated by 

infkarps1 = J:nfinitesimals[karps1, u, {x, y, t}, {il, e}]; 

infkarps 1 / / LTF 
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1 
';1 == 'T2 + 2 Y ('T1 ) t 

';2 == 'T1 

';3 == k1 

Again, we find a group which is detennined by two arbitrary functions 'Tl = free[l] 

and 'T2 = free[2]. Both functions depend only on t and are not restricted by any side 
conditions. It is obvious that the symmetries of the model with A = 0 allow the same 
transformations as the complete model. 

The following reduction of the A = 0 model assumes that free[2] 

k1 = c, with c a real constant: 
1 = free[1] and 

rkarps1 = LieReduction[karps1, {u}, {x, y, t}, {1, 1, c}, 

{O}]; LTF[Flatten[rkarps1]] /. {zeta1-+~l< zeta2-+'2} 

t - c x - Sl == 0 

-x + y - S2 == 0 

U - F1 == 0 

6 c 2 (Fd ~, + 12 C (Fd" (Fd (2 + 

o 

6 (Fd~2 -c (Fd",r, +6c2 F1 (FtlSl'!:l-

(F1 )Sl,b2 + 12 cF i (F1)Sl,S' - (F1 )S2,(2 + 6F1 (F i )i:2,i:2 + 

c 3 jJ. (F1)Sl,bl,bl +3c 2 jJ. (F1 )S1,Sl,'2 +3cjJ. (F1 )",'2,'2 + 

jJ. (Fd b2 ,S2,'2 _c 4 E (Ftl"""S"S' -4c3 E (Ftl",S',S','2-

6c2 E (Fd",s"s2,s2 -4CE (Fd sl ,S2,b2,S2 -E (F i )S2,S2,'2,'2 

The result is a fourth-order non-linear PDE in the similarity variables zeta1, zeta2, 
and F 1. The reduction is as complicated as the reduction of the full KB equation. 

Another simplification of the original KB equation follows if we set E and A equal to 
zero: 

karps2 = karp /. {A. -+ 0, e -+ O}; karps2 / / LTF 

6 u~ + Ux,t + 6 U ux,x - Uy,y - jJ. ux,x,x == 0 

The resulting equation is known as the ZK equation. The symmetries of the ZK 
equation are determined by 

infkarps2 = l:nfinitesimals[karps2, u, {x, y, t}, {jJ}]; 

infkarps2 / / LTF 
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1 
12 (-6k2u+2 (1""2)t +y (1""l)t,t) 

~1 
1 2 (k2 x + 2 1""2 + Y (1""d t) 

3 k2 Y 
--4- +1""1 

~3 == k1 + k2 t 

For this model, we again find an infinite symmetry group depending on two arbitrary 
functions. Contrary to the models examined above, the discrete part of the symmetry 
group increases by one group parameter. The reduction of this model for a scaling 
group with k2 = 1, kl = 0, and the arbitrary functions set equal to zero follows by 

x 3y 
rkarps21= LieReauetion[karps2, {u}, {x, y, t}, {-, --, t}, 

2 4 
u 

{ - - }] / / PowerExpana; 
2 

LTI'[l'latten[rkarps21l1 /. {zeta1-+ ~1I zeta2 -+ ~2} 

~ - Sl == 0 
x 2 

Y 
X 3J2 - S2 == 0 

UX-F1 == 0 

si J4 (48 I t1J4 J-1 F1 + 144 I t1J4 F~ - 24 I t l/4 (F1 ) 1:1 + 

o 

432 I t l/4 J-1 Sl (F1 ) 1:1 + 672 I t l/4 F1 Sl (F1 ) 1:1 + 

192 I t 1!4 sf (F1 ) ~, + 267 I t l/4 J-1 S2 (F1 ) 1:2 + 

468 I t 1!4 F1 S2 (F1 ) (;2 + 288 I t1/4 Sl S2 (F1 ) 1:1 (F1 ) (;2 + 

108 I t l/4 S~ (F1 ) ~2 -16 I t l/4 Sl (F1 ) 1:,,(;, + 

384 I t l/4 J-1 S~ (F1 ) 1:1 ,1:, + 192 I t l/4 F1 S~ (F1 ) 1:1 ,1:: -

12 I t1J4 S2 (F1 ) 1:,,1:2 + 540 I t l/4 J-1 Sl S2 (F1 ) 1:1 ,1:2 + 

288 I t l/4 F1 Sl S2 (Fd 1:1 ,1:2 - 8 I t l/4 (Fd 1:2 ,1:2 + 

189 I t l/4 J-1 S~ (F1 ) 1:2,1:, + 108 I t l/4 F1 S~ (F1 ) 1:, ,1:2 + 

64 I t 1J4 J-1 S~ (F1 ) 1:,,1;, ,1:, + 144 I t 1/ 4 J-1 S~ S2 (F1 ) 1:1 ,1:, ,I:, + 

108 I t l/4 J-1 Sl S~ (F1 ) 1:1 ,1:,,1:2 + 27 I t l/4 J-1 S~ (Fd 1:2 ,1:2 ,1:,) == 

representing a third-order non-linear PDE. Another reduction follows for translations 
as symmetry transformations: 

rkarps22 = LieReauetion[karps2, {u}, {x, y, t}, {1, 1, e}, 

{O}l; LTI'[I'1.atten[rkarps22l 1 /. {zeta1-+ ~1' zeta2 -+ ~2} 
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t-ex-S1==O 

-x + y - S2 == 0 

U - F1 == 0 

6e2 (F1)~, +12e (F1)(;1 (F1 )(;2 + 

o 

6 (Fd~2 -e (Fds1,bl +6e2 F1 (Fd(;l,bl - (Fd b1 ,(;2 + 

12 eF1 (F1 )bl,b2 - (F1 ) (;2,(;2 + 6 F1 (F1 )b2,b2 + e 3 /.1 (F1)!:1,!:1,(;1 + 

3 e 2 /.1 (F1 )!:1,Sl,S2 +3 e/.1 (F1 )!:1,S2,S2 +/.1 (F1 )!:2,!:2,!:2 == 

We use this similarity representation to apply Lie's procedure again, The symmetries 
of the reduction follow by 

irkarps22 = J:nfinitesimals[rkarps22[3, 1]1, Fl, {zetal, zeta2}, 

{c, ~}, SubstitutionRules -+ {O(zeta1,3} Fl [zetal, zeta2]}]; 

irkarps22 I I loTF 

~1 

(1-4e+24c2 F1) k3 
- 6 + 12 c 

(-1 + 2 e) k1 - c k3 (zeta1 + 4 c zeta1 - e zeta2) 
-1 + 2 c 

(-1+2e) k2+k3 «-1+2e) zeta1+ (1-6c) czeta2) 

The result is a finite symmetry group of order three, allowing us a further reduction. 
Before we execute this step, we rename the variables to simplify the equations: 

eqv = {rkarps22 [3, 1, 1]1} I. {Fl -+ H, zetal -+ ,1, zeta2 -+ '2}; 

eqv I I loTF 

6 e 2 H~l + 12 e HI:1 HI:2 + 6 H~2 - C H!:l,!:1 + 

o 

6 e 2 H Hr:1, p - Hp , (;2 + 12 e H H£:l, 1:2 - H1:2, S2 + 6 H H£'2, s2 + 

e 3 /.1 Ho , p, 0 + 3 c 2 /.1 H£'l, h1, 1:2 + 3 c /.1 H(;l, (;2, (;2 + /.1 H(;2, (;2, (;2 

For the non-linear third-order PDE in the second similarity representation, we select 
the subgroup of translations to carry out another reduction. The infinitesimals for this 
case are given by 

infl = {xi [1] [zetal, zeta2, Fl], xi [2] [zetal, zeta2, Fl]} I. 
irkarps22 I. {kl -+ 1, k2 -+ v, k3 -+ O} I. 

{Fl -+ H, zetal -+ ~1, zeta2 -+ '2} 

{1, v} 

inf2 = {phi [1] [zetal, zeta2, Fl]} I. irkarps22 I. 
{kl-+ 1, k2 -+ v, k3 -+ O} I. 

{Fl -+ H, zetal -+ ~1, zeta2 -+ '2} 

{O} 
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The corresponding reduction follows from 

rkarps221 = LieReduetion[eqv, {H}, {rl, r2}, infl, inf2]; 

L'l'P[Platten[rkarps221]] /. {zetal-+ '} 

-~ - v ~1 + ~2 == 0 

H - F1 == 0 

6 (Fd ~ - 12 e v (Fd ~ + 6 e 2 v 2 (F1 ) ~ -

o 

(F1 ) !:,!: + v (F1 ) !:,!: - e v2 (F1 ) !:,!: + 6 F1 (F1 ) !:,!: -

12 e v F1 (Fd !:,b + 6 e 2 v2 F1 (F1 ) !:,!: + J1 (Fd !:,!:,!: -

3 e v J1 (F1 ) !:,!:,b + 3 e 2 v 2 J1 (F1 ) !:,!:,!: - e 3 v 3 J1 (F1 ) !:.!:.!: == 

The result is a third-order non-linear ODE which allows a two-dimensional discrete 
symmetry group depending on group parameters c and v of the preceding reductions: 

irkarps221 = J:nfinitesimals [rkarps221[3, 1], Pl, {zetal}, 

{e, Il, v}, SuhstitutioDRules -+ {a{zatal,3) Pl [zetal] }]; 

irkarps221 / / L'l'P 

k2 (-1+v-ev2 +6F1 (-1+ev)2) 

6 (-1+cv)2 

';1 == k1 - k2 zeta1 

The result indicates that the third-order ODE is at least reducible to a second-order 
ODE which, in fact, is possible by an integration with respect to zeta] : 

firstJ:ntegral = J rka:rps221 [3, 1, 1] dzetal == el; 

L'l'P [firstJ:ntegral] /. zetal -+ '1 
-c1+ (-1+v-ev2+6Fl-12evF1+6c2v2F1) (F1 )!:, 

- (-1+ev)3 J1 (Fd!:',b' == 0 

The resulting second-order ODE is solved by 

soll = DSolve [firstJ:ntegral, Pl, zetal] 

{ {F1 ~ ( ( (1 - v + e v 2 ) AiryBi [ (13 - 2 e v 3 + e2 v 4 + 12 e1 U - 2 v 

(1+12e (1+e1U)) +V2 (1+2e+12e2 (1+e1#1)))/ 

(43 2/3 (e1 (_1+ev)2)2/3)]_ 

231/ 3 (e1 (-1 +CV)2)1/3 AirYBiPrime[ 

(13 - 2 e v 3 + c 2 v 4 + 12 c1 #1 - 2 v (1 + 12 c (1 + c1 #1) ) + 

~ (1+2e+12e2 (1+e1#1)))/ 

(43 2/3 (e1 (_1+cv)2)2/3)] + 
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(AirYAi[ 

(13 -2cv3 +C2 V4 +12cl#1-2v (1+12c (l+cl#l)) + 

~ (1+2c+12c2 (l+cl#l)))/ 

(432/3 (cl (-1+cv)2)2/3)]-vAirYAi[ 

(13 - 2 c v 3 + c 2 v 4 + 12 cl #1 - 2 v (1 + 12 c (1 + cl #1)) + 

v 2 (1+2c+12c2 (l+Cl#l)))/ 

(43 2/3 (cl (_1+CV)2)2/3)] +cv2 AiryAi[ 

(13 - 2 c v 3 + c 2 v 4 + 12 cl #1 - 2 v (1 + 12 c (1 + cl #1)) + 

v 2 (1+2c+12c2 (l+cl#1)))/ 

(432/3 (cl (_1+cv)2)2/3)]_ 

2 3 1/3 (cl (-1 + c v) 2 ) 113 AiryAiPrirne [ 

(13 -2cv3 +c2 v 4 +12cl#1-2v (1+12c (l+cl#l)) + 

v 2 (1+2c+12c2 (l+cl#l)))/ 

(43 213 (cl (_1+CV)2)213)]) 

C [11) / 
(6 (-1+cv)2 (AiryBi[ 

(13 - 2 c v 3 + c 2 v 4 + 12 cl #1 - 2 v (1 + 12 c (1 + cl #1) ) + 

v 2 (1+2c+12c2 (l+cl#l)))/ 

(43213 (cl (_1+cv)2)2/3)] + AiryAi [ 

(13-2cv3 +c2 v4+12cl#1-2v (1+12c (1+c1#1)) + 

v 2 (1+2c+12c2 (l+cl#l)))/ 

(4 32/3 (cl (-1 + c v) 2) 2/3) ] 

C[l1))&)}} 

The result is a complicated expression containing special functions of the Airy type. 
However, the solution simplifies if we set the integration constant c1 equal to zero. 

first:Integra1 = first:Integra1 /. cl -+ 0; 

LTP[first:Integra1] /. zetal-+ '1 
(-1 + v - C v 2 + 6 F1 - 12 c v F1 + 6 c 2 v 2 F1 ) (F1 )", - (-1 + c v) 3 J1 (F1)", ,", 

== 0 

The solution now reads 

so12 = DSo1ve[first:Integra1, 1'1, zetal] 

{{Fl--7(~( 1 __ v __ + 1 (.y(-1+2v-v2-2c~+ 
6 (1-cv)2 1-cv (1-cv)2 

2cv3 -c2 v 4 -12C[2] +24cvC[2]-12c2 v 2 C[2]) 

Tan [ 
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~ (- (3 #1 Y (-1 + 2 v - V- - 2 c V- + 2 C v 3 - c 2 v 4 -

12C[2] +24cvC[2]-12c2 v 2 C[2]))/ 

1 
«1-cv)3J1)+ 2 

(1- cv) 

(C [1] Y (-1 + 2 v - v 2 - 2 C v 2 + 2 C v 3 - c 2 v 4 -

12C[2] +24cvC[2]-

12 c 2 v 2 C [ 2] ) ) ) ] ) ) & ) } } 

containing only the Tan[] function. At this stage of the calculation, we derived a 
solution for a special subgroup of all the possible symmetries of the original 
equation. This special function will help us to represent the solution in the original 
variables. To get the representation of the solution in x, y, t, and u, we have to invert 
all the similarity transformations carried out above: 

Bol = u -+ I'uDction[{x, y, t}, $r] I. $r-+ 

(Pl[t-cx, -x+y] I. (Pl-+l'uDction[{zetal, zeta2}, $w] I. 
$w-+ «(H==Pl[-v,1+,21 I. Boll) I. 

{H -+ Pl, '1 .... zetal, ,2 -+ zeta2}) I. 
{Equal [a_. b_1} -> b») 

u~Function[{x, y, t}, (1-v+cv2) 

AiryBi [ (13 - 2 c v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2v (1+12c (1+c1 (-x-v (t-cx) +y))) + 

v 2 (1+2c+12c2 (1+c1 (-x-v (t-cx) +y))))/ 

(43 2/3 (c1 (_1+cv)2)2/3)]_ 

23 1/3 (c1 (_1+cv)2)113 

AiryBiPrime [ (13 - 2 c v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2v (1+12c (1+c1 (-x-v (t-cx) +y))) + 

V- (1 + 2 c + 12 c 2 (1 + c1 (-x - v (t - c x) + y) )) ) / 

(43 213 (c1 (_1+CV)2)213)] + 

(AirYAi[(13-2cv3 +c2 v 4 +12c1 (-x-v(t-cx) +y)-

2v (1+12c (1+c1 (-x-v (t-cx) +y))) + 

v 2 (1+2c+12c2 (1+c1 (-x-v (t-cx) +y))))/ 

(43 213 (c1 (_1+CV)2)2/3)]_ 

v AiryAi [ (13 - 2 C v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2v (1+12c (1+c1 (-x-v (t-cx) +y))) + 

V- (1+2c+12c2 (1+c1 (-x-v (t-cx) +y))))/ 

(43 2/3 (c1 (_1+CV)2)213)] + 

c v 2 AiryAi [ (13 - 2 c v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2v (1+12c (1+c1 (-x-v (t-cx) +y))) + 
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v 2 (1+2c+12c2 (1+c1 (-x-v(t-cx) +y))))/ 

(432/3 (c1 (_1+CV)2)2/3)]_23 1/3 (c1 (_1+CV)2)1/3 

AiryAiPrime [ (13 - 2 c v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2v (1+12c (1+c1 (-x-v (t-cx) +y))) + 

v 2 (1+2c+12c2 (1+c1 (-x-v (t-cx) +y))))/ 

(43 2/ 3 (c1 (_1+cv)2)2/3)]) 

C[l]) / 

(6 (-1+cv)2 

(AiryBi [ (13 - 2 c v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2v (1+12c (1+c1 (-x-v (t-cx) +y))) + 

v2 (1+2c+12c2 (1+c1 (-x-v (t-cx) +y))))/ 

(43 2/3 (c1 (_1+cv)2)2/3)] + 

AiryAi [ (13 - 2 c v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2 v (1 + 12 c (1 + c1 (-x - v (t - c x) + y) )) + 

v 2 (1+2c+12c2 (1+c1 (-x-v (t-cx) +y))))/ 

(43 2/3 (c1 (_1+Cv)2)2/3)] 

C [1]))] 

The second type of solution allowed by the reduced KB equation was derived for 
c1 == O. In original variables, this solution reads 

Bo1s = u .... l'unction[ {x, y, t}, $r] I. $r-+ 

(1'1[t-cx, -x+y] I. (1'1-+J'uDction[{zeta1, zeta2}, $w] I. 
$w-+ «(B==1'1[-v'1+'2] I. so12) I. 

{H .... 1'1, ,1 -+ zeta1, ,2 -+ zeta2}) I. 
{Equal [a_, b_]} -> b) ) ) 

U-7FUnction[{x, y, t}, 

~( 1 ___ v_+ 1 (...J(-1+2V-v2 -2CV2 + 
6 (1-cv)2 1-cv (1-cv)2 

2 C v 3 - c 2 v 4 - 12 C [2] + 24 c v C [2] - 12 c 2 v2 C [2] ) 

Tan[~ (- 1 (3 (-x-v (t-cx) +y) 
6 (1-cv)3~ 

...J ( -1 + 2 v - v 2 - 2 C v 2 + 2 c ~ - c 2 v 4 -

12 C[2] + 24 c vC[2] - 12 c 2 v 2 C[2])) + 

1 

(1 - c v) 2 

(c [1] ...J (-1 + 2 v - v2 - 2 C v 2 + 2 C v 3 - c 2 v 4 - 12 C [2] + 

24 c v C [2] - 12 c 2 v 2 C [2]) ) ) 1 )) ] 

We can inspect the ZK equation by this solution: 

karp I. {A .... 0, e -+ O} I. sols I I S1D\plify 

{O} 
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The result is that the given solution satisfies the ZK equation. To get an impression 
on how the complicated symbolic solutions behave in the x, y, t space, let us plot the 
solutions for different times over the (x, y)-plane. We choose the parameters for both 
plots as 

paramet.rs = {c .... 2, v .... 1, C[l] .... 0, C[2] .... 1, j.l .... 2, cl .... l}; 

The two functions are created by 

pl = u [x, y, t] /. sol I. paramet.rs; 

for the general case with c1 = 1 

pls = u [x, y, t] /. sols I. parameters 

1 6"" (2 + 4Tanh[t-x-yJl 

The two special solutions serve to create an animation for - 2 s t s 2 in steps of 
at = 1 /4. The general solution looks like a bunch of crests moving from the left to 
the right: 

Do [Plot3D [Evaluate [pl I. t .... t:] , 

{x, -27r, 27r}, {y, -7r, 7r}, Ax.sLabel .... {"x., "y., nun}, 

PlotRang ..... {{-27r, 27r}, {-7r, 7r}, {-100, lOO}}, 

PlotPoints .... 60, M.sh -+ ralse] , 

{t:, -2, 2, .25}] 
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In the animation of these pictures, we observe that a train of waves moves from the 
left to the right. The simpler solution of the ZK equation is given by a Tanh[] 
function representing a propagating step from the left to the right: 

Do [Plot3D[pls /. t -+ t:, 

{x, -21f, 21f}, {y, -1f, 1f}, AxesLabel-+ {nx", Ny", "u-}, 

PlotRange -+ All, PlotPoints -+ 40, Mesh -+ False], 

{t:, -2, 2, .25}] 

The animation shows that the step is stable and does not disperse. The solution is a 
soliton which propagates in a firm form. D 

This section was concerned with the reduction of the original equations (PDEs) either 
to an ODE or to a PDE with less independent variables. We demonstrated that the 
reductions are instrumental to find symbolic solutions. Even if we fail to write down 
an analytic solution, we can utilize the numerical capabilities of Mathematica to 
solve the reduction. For PDEs in more than two independent variables, we can apply 
the functions of MathLie several times to find the reductions and even the solutions. 
The following sections will demonstrate the application of the functions of Math Lie 
to physical problems. 
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5.6. Working Examples 

This section contains some working examples to show the application of the package 
MathLie. We discuss the necessary steps for solving some physical and mathematical 
problems. The first example deals with the diffusion equation applied to the problem 
of thermal oscillations on a surface. A second example discusses the application of 
MathLie in the derivation of symmetries for a model describing a single flux line in a 
superconductor. Several applications from hydrodynamics demonstrate the 
engineering challenge of the symmetry method. The fIrst atomic explosion serves to 
demonstrate the extraordinary success of symmetry analysis for estimating unknown 
quantities from a movie. The formation of droplets is an example currently under 
discussion in industrial applications. 

5.6.1 The Diffusion Equation 

The diffusion equation is one of the extensively discussed examples in symmetry 
analysis. Since the beginning of the theory. this equation was used to demonstrate the 
usefulness of the symmetry method to derive solutions. Lie himself used the diffusion 
equation as an example to illustrate the capabilities of the method. In his work. the 
diffusion equation is one of the equations comprehensively discussed. The diffusion 
equation is used by many other authors to introduce the method and show how the 
symmetry method can be extended in different ways. The diffusion equation here is 
chosen as a reminiscence to the tremendous work of Lie. The example of the 
diffusion equation illustrates how MathLie can be exerted to derive the symmetries of 
this equation. We also will show how the gained information can be employed to 
solve a particular problem. The problem we discuss is a boundary value problem 
concerned with the seasonal oscillations of the temperature on the surface of the earth. 

5.6.2 The Earthworm's New Year Problem 

This problem is concerned with the propagation of damped temperature waves into 
the earth due to annual temperature variation. This example is discussed extensively 
by Bluman and Cole [1974]. Imagine a worm has to decide when he has to celebrate 
New Year. The only indicator of seasonal changes he has is the variation of 
temperature. Let us assume that the worm will celebrate New Year when he measures 
the lowest temperature in the year. The propagation of the seasonal temperature wave 
the worm must follow is described by a diffusion process. The measured quantity is 
the temperature denoted by the variable 

t1 = u [x, t]; 
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The field u measures the temperature vanatlOn toward the center of the earth 
(x > 0) at a certain time (t > 0). The diffusion process of heat is governed by the 
equation 

diffusion = {Ot U - 0lx , 2) U}; diffusion II LTF 

Ut - u x,x == 0 

A sketch of the physical situation we have in mind is given in the following figure: 

T2 Cos [2 iT tj 

The constant temperatures TJ and T3 describe the temperature on the surface and in 
the interior of the earth at a certain depth, The seasonal changes of the temperature 
near the surface are assumed to be T2 cos(2 m) and are due to radiation changes of the 
sun. So, besides the diffusion equation, the solution of the problem has to satisfy 
additionally boundary conditions. In deriving the solution of this boundary value 
problem, we have to solve the diffusion equation for the given boundary conditions 
on the surface and in the center. Examining the symmetries of the diffusion equation 
allows us to decide how the general equation is transformed and what types of 
transformation are allowed to find the solution. We use the functions LieEquations[] 

and LieSolve[] of the package MathLie to create another example in our data basis. 
We start with the creation of the information file and carry out the symmetry analysis 
by applying the function LieSolve[]. After the derivation of the symmetries, we will 
consider the boundary values and check the invariance of these conditions under the 
symmetry transformations. In a last step, we will reduce the partial differential 
equation to an ordinary differential equation. The solution of this ODE will provide 
us with the information the worm needs to decide when the turn of the year happens. 
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5.6.2.1 Symmetry Analysis 

The first step in an automatic symmetry analysis is the collection of all the 
infonnation available on the equation. The package MathLie offers the function 
LieEquations[] to collect this infonnation. If you solve a differential equation with 
pencil and paper, you need to know the equation itself. You also have to know the 
names of the dependent variables and the independent variables. Sometimes, the 
equation contains some parameters which you can also save by using the function 

LieEquations[]. If you assemble a greater number of equations in a database, it is 
good practice to supply the files with infonnation on the problem and on the sources 
from which the equation comes. In MathLie, all this infonnation is stored in a single 
file whose name is used by LieEquation[] as first argument. The infonnation we need 
to handle in the example for the earthwonn's New Year problem is given below: 

LieZquatioDs ["diffuw. dgl", diffusion, {u}, {x, t}, {}, 
{"The earthwo~ls Hew Year problem"}, 
{{"G.W. Bluman and J.D. Cole"}, 
{"SiDdlarity Methods for Differential Zquations n }, 

{"Springer, Hew York, 197'''}, {"pp. 233"}}] 

After the completion of these lines, the function LieEquations[] created a file 
containing the infonnation necessary for the symmetry analysis. The content of the 
file diffuw.dgllooks like 

! ! diffuw • dgl 

Title = {The earthworm's New Year problem} 

Source = {{G.w. Bluman and J.D. Cole}, 

{Similarity Methods for Differential Equations}, 

{Springer, New York, 1974}, {pp. 233}} 

IndepVar = {x, t} 

DependVar = {u} 

EqList = 
{Derivative [0, 1] [u] [x, t] - Derivative [2, 0] [u] [x, t]} 

SubsList = {Derivative [0, 1] [u] [x, t]} 

ParameterS = {} 
ListXi = {} 
ListPhi = {} 

The symmetries of the diffusion equation are calculated by applying the function 
LieSolve[] to the collected information. The function LieSolve[] exerts the invariance 
condition based on the prolongation fonnalism. The prolongation of the equation is 
calculated by using the Frechet derivative. Knowing the prolongation of the equation, 
the coefficients of the derivatives of u are extracted. The redundant infonnation 
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contained in these equations is eliminated in the next step by inserting the diffusion 
equation itself into the prolongation. After the extraction of the coefficients of the 
derivatives, a system of determining equations for the infinitesimals results. The 
determining equations are linear but coupled. In the next step, a general canonical 
representation of these equations is calculated by LieSolve[]. The last calculation step 

of LieSolve[] solves the general canonical form. The result of this sequence of steps 
is an explicit representation of the infinitesimals for the diffusion equation: 

LieSolve["diffuw.dgl"] II L'1'F 

- (7'"'1) t + (7'"'1) x,x == 0 

~1 == k5 - 2 k2 t + kG x + k4 t x 
~2 ==k3+t (2kG+k4t) 

( k4 t k4 x 2 ) <Pi == u kl - -2- + k2 x - -4- + 7'"'1 

The result is an infinite dimensional Lie group containing a six-dimensional discrete 
subgroup. The group parameters are denoted by kl-k6. The discrete symmetries 
serve to construct similarity solutions. 

5.6.2.2. Similarity Solution 

Knowing the infinitesimals of the diffusion equation, we are ready to solve the 
boundary value problem for the earthworm's problem. The additional condition that 
the symmetries have to satisfy are confined in the side conditions on the surface and 
in the center of the earth. These boundary conditions are 

bl=v[O, t] =='1'2 Bxp[I271"t] 

v[O, tj == E2IlTt T2 

b2 = v[oo, t] == 0 

v[oo, tj == 0 

Using this complex-valued representation for the temperature, u:: Re(v), we can 
check the invariance of the boundary conditions by using the infinitesimals. The 
invariance of x :: 0 implies that 

(ListXi[ll1 I. x -+ 0) == 0 

k5 - 2 k2 t == 0 

From this relation, it follows that the group constants k5 and k2 have to vanish. We 
collect these results in a list of rules: 

rule = {kS -+ 0, k2 -+ O} 

{k5 -+ 0, k2 -+ O} 
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The invariance of the first boundary condition bl, on the other hand, yields the 
relation 

k4t 
equtl = kl - -- == J: 2 7T (Listxi[2:D /. x -+ 0) 

2 

k4 t 
kl- -2- == 2 I IT (k3 + t (2 k6 + k4 t)) 

which has the general solutions 

res = Reauce [CoefficientList [equtl /. 1_ == r_ -+ 1 - r. t] 

== {O. o. O}. {kl. k3. k4. k6}] 

kl == 2 I k3 IT && k4 == 0 && k6 == 0 

We transfonn the equations to rules and add it to the list of rules for the group 
constants: 

Appena'l'o[rule. 'l'oRules[re.]]; rule = rlatten[rule] 

{k5 ~ O. k2 ~ O. kl ~ 2 I k3 IT. k4 ~ O. k6 ~ O} 

The general representation of the infinitesimals for the diffusion equation thus 
reduces to 

J:nfinite.i-.l. = {ListXi. ListPhi} /. rule / • 

{free[_] [_] -+ o. u[_] -+u} 

{ { O. k3}. {2 I k3 IT u} } 

The reduction of the original equation follows by applying the function 

LieReduction[) in the subgroup of the diffusion equation: 

L'l'r [rlatten [LieReauction [aiffu8ion. {u}. {x. t}. 

J:nfinitesi-.ls[l:D. J:nfinites!-.ls[2:D]]] /. zetal-+ '1 
x - S1 == 0 

E-2IlTt U-Fl == 0 

IE2IlTt (2lTF1+I (Fll!:l'!:l) ==0 

The similarity variable is zetal = x and the solution has the similarity fonn 

SimilaritySolution = u -+ runction [,{x. t}. 

BJq) [J: 2 7T t] r1 [x] ] 

U ~ Function [{x. t}. Exp [I 2 IT t] Fl [x]] 

Substituting the similarity solution into the diffusion equation gives us 
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[ diffusion I. Simi1aritySo1ution ] 
equat2 = Expand [1]1 == 0; 

Exp[J: 2 11" t] 

equat2 II LTF 

This second-order equation also contained in the result of LieReduction[] is solved 
by applying the function DSolve[]: 

res2 = sim;p1ify [DSo1ve [equat2, Fl, x]] 

{{Fl ~ (E(-l-II -..[;r #1 C[l] + E(l+II v;; #1 C[2]&)}} 

Examining the behavior for x --+ 00, we find that the second constant of integration 
C[2] has to vanish to satisfy the second boundary condition b2 

h1 = Factor [Expand [Simplify [ 

Trig'l'oZXp[ComplexExpand[P1 [x] I. res2]]]] I. 
{C[2] -+ O}] 

{E(-l-II vii x C [1]} 

Comparing the result with the first boundary condition, we observe that the real part 
of C[ 1] is given by T2 : 

h2 = (hl/. C[l] -+ T2) [1]1 

The complete solution is thus given by 

SimBol = SimilaritySo1ution I. l!'1 [x] -+ h2 

U~Function[{x, t}, Exp[I2rrt] (E(-1-IIV;;xT2 )] 

After a rearrangement of terms in the exponent, 

801 = u[x, t] I. SimBol/. 

c_. Bxp[a_. Complex[d_, e_] + b_. Complex [f_, ~L]] -+ 

c Zxp[ (ad +b f) + (ae + bg) J:] 

ae[aol] 

we can extract the real part of the solution by 
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solution = Re [Exp'1'o'l'rig[sol]] II Simplify 

Re[ (COSh[ (1 + I) 

((-1- I) l[ t + x (COSh[ LOg2[l[] 1 + Sinh[ LO~[l[] l)) 1 - Sinh[ 

(1 + I) ((-1- I) l[ t + x (COSh[ LO~[l[] 1 + Sinh[ LO~[l[ ] l)) l) 

The derived solution describes the temperature variation near the surface of the earth. 
The solution indicates that the spatial and temporal coordinates are coupled. If now 
t = T is the New Year of a person on the surface, then an earthworm will celebrate 
New Year at time t = T + ...[1j2; Xl, where Xl is the depth of the earthworm. The 
solution in the time and spatial coordinate with unique T2 looks like 

Plot3D[Solution/.'l'l-+l, {x, 0, 2}, {t, 0, l}, 

PlotRange -+ All, PlotPoints -+ 30, 

AxesLabel-+ {"x", "t", "un}, 

ViewPoint -+ {-2.468, -2.587, 1.256}] 

1 

0.5 

~~o:10 
u 

-0 .5 

t 

o 
A contour plot of the temperature variation illustrates that the worm in a depth of 
about 1.5 meters cannot feel any changes in the temperature. Worms which are 
between the surface and the 1.5-meter limit are able to realize the temperature 
changes during the year. However, the contour plot shows also that a worm located at 
a certain depth will measure a certain value of the temperature some time later than 
an observer on the surface. This delay is larger for worms living in a deeper region. 

ContourPlot[solution/. 'l'l -+ 1, {x, 0, 2}, {t, 0, l}, 

PlotRange -+ All, 

PlotPoints -+ 30, AxesLabel -+ {nx", "t"}, 

Colorl'unction -+ Rue, Axes -+ 'l'rue] 
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t 

1. 5 2 x 

This example demonstrates that the package MathLie is not only helpful in finding 
the symmetries of a PDE but also can facilitate the solution of boundary value 
problems. 

5.6.3 Single Flux Line in Superconductors 

In another example, let us examine an equation published by Tang et al. [1994]. 
These authors discuss the dynamics and noise spectra of a driven single flux line in 
superconductors. The authors examine the low-temperature dynamics of a single flux 
line in a bulk type-II superconductor, driven by the Lorentz force acting near the 
sample surface, both near and above the depinning threshold. The equation of motion 
they derive without considering the random fluctuations is given by 

k "(x,2) U [x, t] } 
tang = {"t u [x, t] - ; tang / / LTF 

1 + ("x u [x, t]) 2 

where u is the shape function of the flux line and k is a constant. As Tang et al. note 
the equation of motion in its two-dimensional representation is a valid approximation 
when the driving force is very large (j» jc) and the string moves with a high 
velocity. The authors discuss only the steady-state solution of the non-linear problem. 
We will demonstrate that the symmetries of the equation are the cornerstone for the 
solution of the non-steady equation. We will add this example to our database of 
equations. The input parameters needed to create the data file containing the 
information for Lie[] is given by the independent variables 
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independentVarlables = {x, t} 

{x, t} 

and the dependent variables 

dependentVariable. = {u} 

{u} 

The parameters of the equations are collected in the list 

parameters = {k} 

{k} 

The parameter k combines the critical field He, the Ginzburg-Landau parameter and 
the damping coefficient of the Bardeen-Stephen model. The physical interpretation of 
these parameters is discussed, for example, in the book by Tinkham [1975]. We 
choose the title of the equation to be 

title = {nSingle rlux Line in Superconductors n } 

{Single Flux Line in Superconductors} 

The source of the equation, contained in a nested list, is given by 

source = {{ -c. Tang, S. reng and L. Golubovic n} , 

{-Qynamdcs and Noi.e Spectra of a 

Driven Singlerlux Line in Superconductors H }, 

{"PhyS. Rev. Lett. 72, 1264-1267, (1994) "}, 

pequation 7"}} 

{{C. Tang, S. Feng and L. Golubovic}, 
{Dynamics and Noise Spectra of a 

Driven SingleFlux Line in Superconductors}, 
{Phys. Rev. Lett. 72, 1264-1267, (1994) L 
{equation 7}} 

All the information available on the equation is now stored in the file ctang.dgl. The 

function LieEquation[] is designed to do it for us. Be sure that you do not use .deq as 

an extension of your file names. The extension .deq is reserved for a file containing 
the information on the determining equation for the infinitesimals. This file is 
automatically created by the functions Lie[], LieSolve[], and LieStructureForm[]. 



LieZquations [nctang .dgl n. tang. 

dependentVariables. independentVariables. 

parameters. title. source] 
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After the completion of this line, we added another example to our database of 
differential equations. The next step is the determination of the symmetries. 

5.6.3.1 Symmetries 

Using the infonnation collected in the file ctang.dgl in the calculation for the 
infinitesimals, we start the symmetry analysis with 

LieSolve [nctang.dgl n] / / LTF 

';2 = = kl + 2 k5 t 
1>1 = = k2 + k5 u + k3 x 

';1 == k4 - k3 u + k5 x 

The application of LieSolve[] results in a list of infinitesimals representing a finite 
five-dimensional point group. Curiously, the result is that the infinitesimal gl 
depends on the variable u. Such a dependence is quite unusual, although it is 
possible. All the examples discussed so far do not show this kind of symmetry (cf. 
the Burgers and heat equation). The symmetry of the subgroup related to this special 
kind of transfonnation allows a rotation in the (x, u)-plane. This rotation keeps the 
equation unchanged. 

The function LieSolve[] produces, in addition to the infinitesimals, additional 
infonnation not displayed on the screen. These results, like the determining equations 
of the equation, the original equations themselves, the substitutions, etc. are collected 
during the calculation in a separate global variable called FinalResult. The reason 

why we introduced a global variable FinalResult is the necessity of having all 

infonnation on the calculation available. A printout of the infonnation contained in 
FinalResult for our calculation of Tang's problem can be obtained by calling 

J!'inalResult / / Flatten / / LieTraditionalJ!'orm / / TableJ!'orm 

kux x 
Ut - 1 + ~2 

x 

U .... kux,x 
t 1 + u~ 

(';2 ) u 

(';2 ) x 

-3 (';d t + k (';d U,u + 2 k (';d X,x - 4 k (1)d X,u 

-2 (';l)t +k (';du,u +k (';dx,x -2k (1)d x,u 
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-6 (';1)t + k (';du,u + 5 k (';dx,x -10 k (cPdx,u 

- 3 (';1) t + 2 k (.; d u, u + k (.; d x, x - 2 k (¢d x, u 

- (';1)t + k (';1)x,x - 2 k (¢dx,u 

-6 (';d t + 5 k (';d U,u + k (';d X,x - 2 k (cPd X,u 

6 (¢1) t + 10 k (';1) X,u - 5 k (¢1) U,u - k (¢1) x,x 

(¢d t - k (¢d X,x 

-3 (¢d t -4k (';dx,u +2k (¢du,u +k (¢dx,x 

6 (¢1) t + 2 k (';1) X,u - k (cP1) U,u - 5 k «h) X,x 

- 2 (¢1) t - 2 k (';1) X,u + k (¢1 ) U,u + k (¢1) X,x 

-3 (¢d t -2k (';dx,u +k (¢du,u +2k (cPdx,x 

(cPd t +2k (';dx,u -k (¢du,u 

6 (';d x -5 (';2)t +4 (¢d u 

8 (';d x - 5 (';2)t + 2 (¢d u 

4 (';d x - 5 (';2)t + 6 (¢d u 

-2 (';d x + (';2)t 

2 (';d x - 5 (';2)t+ 8 (¢d u 

(';du+(¢d x 

(';d u + (¢d x 

(';du+(¢d x 

-(';2)t +2 (¢d u 

- (';d t + k (';d U,u 

LieStructure 

Metric 

SyrnrnGroup 

The last four elements of the list FinalResult are empty or contain symbolic names 
which carry no information at this stage of the calculation, Another global variable of 
MathLie is called Result2, containing the information on the infinitesimals: 

Result2 

{{xi [2] ~Function[{x, t, u}, k1+2k5tJ, 

phi[l] ~Function[{x, t, u}, k2 +k5u+k3xJ, 

xi[l] ~Function[{x, t, u}, k4-k3u+k5x]}, 

{}} 

The global variable Result2 contains the infinitesimals and the remaining equations 
of the determining equations not solved by the function PDESolve[]. The function 
PDESolve[] is the solver of the package MathLie. For the current equation, all 

determining equations are solved. Thus, the last element of Result2 is empty. The 
results for the infinitesimals are given by substitution rules usable in other 
calculations. For example, an application of this kind of calculation is the reduction 
of the equation. 



Working Examples 293 

We select the subgroup of interest by setting a subgroup of the group constants to a 
numeric value and others to a symbolic value. The infinitesimals are thus reduced by 

infil = {{xi[l] [x, t, u[x, t]], xi[2] [x, t, u[x, t]]}, 

{phi [1] [x, t, u[x, t]]}} I. Result2[1] I. 
{kl-+ v, k2 -+ 1, k3 .... 0, k4 -+ 1, kS .... 0, u[ __ ] .... u} 

{{1, v}, {1}} 

This special extraction of a subgroup is related to a moving wave solution. Tang's 
equation is thus invariant with respect to translations: 

rtang = LieReduction[tang, {u}, {x, t}, infil[l], infil[2]]; 

LTF [Flatten [rtang]] I. {zetal .... ~,} 

t - v x - Sl == 0 

u - x - Fl == 0 

2 F1" - 2 V F1~, + v 2 F121 - k v 2 F1b1 . b1 == 0 

The reduced equation is solved by 

mwtang= DSolve[rtang[3, 1] == 0, Fl, zetal] 

{SOlve[21k (-kv2 ArCTan[1-VF1'[#l JJ + 

2kLOg[Fl'[# lJ 'S'- (2-2vF1'[#lJ +V2F1'[#lJ2)~4-l-2#1l 
C [lJ, 

{F1' [#1J } l} 

The result is an implicit representation of the solution entangling the similarity 
function F 1 in trigonometric and logarithmic relations. 

Another reduction of the equation follows by the choice k3 = c: 

infil = {{xi[l] [x, t, u[x, t]], xi[2] [x, t, u[x, t]]}, 

{phi [1] [x, t, u[x, t]]}} I. 
Result2[1] I. {kl .... 0, k2 .... 0, k3 .... c, k4 -+ 0, kS -+ 0, 

u[ __ ] -+u} 

{{-cu, a}, {cx}} 

The related reduction is 
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rltang=LieReduction[tang, {u}, {x, t}, infil[l], infil[2]]; 

LTr [r1atten [rltang]] I. zetal -+ '1 
t - rl == 0 

u 2 x 2 

-2 - 2 - Fl == 0 

-k + Fl" == 0 

Solving the reduced equation, we get the explicit representation for the similarity 
solution by 

sltang = DSo1ve[rltang[3, 1] == 0, rl, zetal] 

{{Fl~ (e[l] +k#l&)}} 

Inserting this solution into the similarity representation, we end up with an implicit 
representation of the solution for the field u: 

so11 = r1atten[rltang[2] I. sltang] 

This result illustrates that the circles in the (x, u)-plane are dependent on the time t. 
The radius of the circle depends on the actual time and on the signs of the constants 

C[1] and k. If both constants are negative the radius of the circle increases to infinity 
if time t increases. If C[1] is negative and k> 0, we get an upper limit for 
t = 1C[1] I/k for which the radius is real. However, if we set C[1] > 0, there exist no 
real radii in the (x, u)-plane. We demonstrate this behavior for k = -3/2 and 
C[1] = 1/2 for which a lower limit in t exists. The following animation shows the 
increase of the radius - k t - C[ 1] by increasing the time t above the threshold of 
t ;:: 1/4: 

« Graphics' Z:aq;)licitP10t' 

Do [ZmpliciU10t [ 

u 2 x 2 1 
-+-==-kt-C[l] I. {t-+ti, k-+-l.5, C[l] -+-}, 

2 2 2 

{x, -2, 2}, P10tRange-+ {{-2, 2}, {-2, 2}}, 

P1otPoints -+ 35, P1otSty1e -+ Hue [ti], P10tLabe1-+ 

." t="<>'l'oString[ti], AxesLabe1-+ {"x", "u"J], 

{ti, 1.5, 0.251, - .OS}] 
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t=1.15 u t=1. 05 u t=0.95 
2 2 

2x -2 2x -2 2x 

-2 

t=0.85 t=0.75 u t=0.65 
2 

2x -2 2x -2 - 2x 

-2 -2 

t=0.55 u t=0.45 u t=0.35 
2 2 

1 1 
\ 

2 x -2 -1\" 1 2x -2 -1 1 2x 

-1 -1 

-2 -2 

The solution of this quadratic equation in x and u yields the final representation of 
the solution of Tang's equation to be 

solll = Solve [soll[I], u] 

{ { u ~ - V - 2 k t - x 2 - 2 C[ 1 J }, {u --> V - 2 k t - X2 - 2 C [ 1 J } } 

containing the parameter k of the original equation and one constant of integration 

C[l]. The graphical representation of the second solution for parameters k = -2 and 
C[l] = 1/2 gives us the impression that the solution has a smooth behavior: 

1 
ContourPlot [u /. so111[2] /. {k ~ -2, C [1] ~ - }, 

2 

{x, 0, 2}, {t, 2, 4}, ColorFunctioD~Hue, Axes~'l'rue, 

AxesLabel ~ {·x·, nt·}] 
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t 

5.6.4 The Korteweg-de Vries Equation and Its Generalizations 

The aim of this section is the detennination of the point symmetries for different 
generalizations of the Korteweg-de Vries equation (gKdV). We first examine the 
original equation of Korteweg and de Vries (KdV). The generalizations of the KdV 
are based on additional terms, larger sets of independent coordinates, and changes in 
the non-linearity. The models examined are all taken from literature and describe 
different physical problems. At the end of this section, we collect the results in a table 
containing the equation and the symmetries 

The Korteweg-de Vries equation is one of the prominent equations in non-linear 
physics which describes a highly regular behavior. The KdV equation originally 
derived by Korteweg and de Vries [1895] is used to describe shallow water waves in 
a narrow channel. The equation was originally designed to describe the experimental 
observations of John Scott Russell [1844] that a heap of water travels along the 
Edinburgh to Glasgow channel without change of form and with a constant velocity. 

Today, the KdV equation is encountered in different physical systems such as in 
plasmas, in elastic strings, in lattice vibrations of a crystal at low temperatures, and in 
the description of a rotating liquid in a pipe. All these applications start from a more 
or less general physical model and end up in the KdV equation by considering a 
specific limit of the physical problem. In this sense, the KdV equation is universal. 
The universality is contained in the behavior that the dispersion of linear waves is 
counterbalanced by the non-linearity. The interaction of dispersion and non-linearity 
stabilizes the solution of the equation and results in the outstanding behavior of 
regUlarity. This kind of solution is called a soliton by Zabusky and Kruskal [1965]. A 
soliton is a special kind of localized wave. More generally, a soliton is a solution of a 
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non-linear equation or system which represents a wave of permanent shape, is 
localized, decaying or becoming constant at infinity, and may interact strongly with 
other solitons so that after the interaction, it retains its form (cf. Drazin [1983]). 

The KdV equation is a non-linear PDE which reads in its standard form 

Ut + 6uux + ux,x,x = O. (5.48) 

The field u = u(x, t) describes the deviation from the mean water depth in the 
shallow water channel application. Our intention here is to show that the KdV 
equation not only allows solitons but also other kinds of solutions. To derive these 
types of solutions, we first need to know the infinitesimal transformation of the KdV 
equation. In Mathematica, the KdV equation is given by 

ltdV = 0tu[x, t] + 6u[x, t] oxu[x, t] +ox .... xu[x, t] == 0; 

ltdV / / LT!' 

U t + 6 U U x + u x •x •x == 0 

The infinitesimals of the KdV follow by 

J:nfinitesi_lsltdV = J:nfinitesi_ls [ltdV, u, {x, t}]; 

J:nfinitesi_lsKdV / / LT!' 

k2 
<Pl == 6 - 2 k4 U 

.; 1 = = k3 + k2 t + k4 x 

';2 == kl + 3 k4 t 

The result is a four-dimensional finite group containing translation and scaling 
transformations. 

The second model we examine is the cylindrical KdV equation. This kind of equation 
was discussed by Calogero and Degasperis [1978] in connection with the spectral 
transform method. The cylindrical form of the KdV equation reads 

1 
Ut + 6 U Ux + Ux x,x + - U = O. , 2t 

The Infinitesimals for this equation follows from 

infCylibdicylltdV = 
J:nfinitesi_ls[otu[x, t] + 6u[x, t] oxu[x, t] + 

1 
ax x xU[x, t] + -u[x, t] == 0, u, {x, t}]; • . 2 t 

infCylibdicylltdV / / LTF 

(5.49) 
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4 k3 - 16 k1 Vt u - 24 k2 t u + k2 x 

24 Vt 
';1 == k4 + 2 k3 Vt + ~ (2 k1 + 3 k2 Vt) x 

';2 == (k1 + k2 Vt) t 

We find a four-dimensional finite symmetry group containing translations, scaling, 
and two special symmetry transformations. 

Another KdV equation closely related to the cylindrical KdV equation is the 
spherical KdV equation given by 

U t + 6 U Ux + ux,x.x + - U 
t 

The infinitesimals of this equation are 

infsphericalXdV = 

0, 

J:nfinitesimals [Ot u [x, tl + 6 u [x, t] Ox u [x, tl + 

1 
ox,x,xu[x, t] + -u[x, t] == 0, u, {x, t}]; 

t 

infsphericalXdV II LTF 

¢1 = = k3 - 2 k2 u 
6t 

';1 ==k1+k4+k2x+k3Log[t] 

';2 == 3 k2 t 

(5.50) 

The symmetry group is a three-dimensional finite group. Compared with the 
cylindrical KdV in which the symmetries changed drastically, there is no longer a 
rational exponent of t present but logarithmic dependencies in t. 

Another kind of generalization of the KdV was given by Ko and Kuehl [1978] in 
their discussion of ion acoustic solitons in a non-uniform plasma. The two authors 
assumed that the coefficients of the non-linear and dispersive term depend on time. 
The KdV for such a slowly varying medium is given by 

Ut + a(r) u Ux + {J(r) ux,x.x = ° and a, {J > 0, (5.51) 

where the coefficients a and {J are arbitrary positive functions of a slow time variable 
r = E t. The infinitesimals for equation (5.51) are given by 

infVaryingXdV = J:nfinitesimals[ 

0tu[x, tl +a[etl u[x, tl oxu[x, t] +f;l[et] ox,x,xu[x, tl ==0, 
u, {x, t}, {e}l; 

infVaryingXdV II. TraditionalLiel'orm I. 
{Rule -+ Equal, HoldPattern[l'unction[x_, Y-ll -+ y} II Sort II 

Tablel'orm 
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~1 ==k2+k1f>X[DSolve'tE] dDSolve't 

~2 == 0 

CP1 == kl 

The infinitesirnals of equation (5.51) show that a discrete group of dimension two 
exists. Surprisingly, this symmetry group depends on an integral over the coefficient 
of the non-linearity J: a(€t') dt' and not onf3. A similar equation extended by linear 

derivatives was discussed by Chan and Li [1994] in connection with the non-standard 
dynamics of solitons (oscillating or standing). The equation discussed by Chan and Li 
in connection with the inverse scattering theory is given by 

(5.52) 

where leo, k" and h are continuous functions of t. Equation (5.52) reduces to the 
modified KdV equation when leo = 1 and k, = h = O. The symmetries of equation 
(5.52) are 

infNonPro,pagatingKdV = Xnfinitesimals[ 

Cltu[x, t] +kO[t] (6u[x, t]2 Clxu[x, t] +Clx,x,,.u[x, t]) -

h[t] (xClxu[x, t] +u[x, t]) +k1[t] Clxu[x, t] == 0, u, {x, t}]; 

infNonPro,pagatingKdv II LTI' 

3 h ko r 2 + k1 (r1 (ko ) t - 2 ko (r1 ) t) + 3 ko (-r1 (k1) t + (r2 ) t) == 0 

-r1 (ko)~ +ko ((ko)t (rd t +r1 (ka)t,t) +k~ (3ht r 1 +3h (rd t + (rdt,t) == 0 

~ __ r x (r1 (ka ) t + ko (r1 ) t ) 
"'1 -- 2 + 3 ko 

~2 == r 1 

" __ u (r1 (ko ) t + ko (r1 ) t) 
'+'1 -- - 3 ko 

The infinitesimals of Chan's equation define an infinite dimensional symmetry 
group. The symmetries are defmed by the two arbitrary functions freef 1] andfreef2] 

and the coefficients ko, k" and h. One of the arbitrary functions, freef 1], occurs in 
the infinitesimals, whereas the other is contained in the remaining determining 
equations. Equation (5.52) demonstrates that MathLie is capable of handling 
equations with general analytic coefficients. 

A related model to Chan's was discussed by Fung and Au [1982] to bridge the 
solutions and vacuum states of the KdV equation and the equation 

Ut - 6u2 Ux + ux,x,x + 6AUx = 0 (5.53) 

with A a real parameter. Equation (5.53), despite of the sign in the non-linearity, 
follows from Chan's model by setting h = 0, leo = I, and k, = 6A. This A-dependent 
model allows the infinitesimals 
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infAXdV = l:nfinitesimals[Btu[x, t]-6u[x, t]2 Bxu[x, t] + 

Bx,x,xu[x, t] +6ABx u[x, t] ==0, u, {x, t}, {A}]; 

infAXdV II LTF 

¢1 == -k3 U 

~1 == k2 + k3 (x + 12 t A) 

~2 == k1 + 3 k3 t 

We realize that the restrictions on the Chan equation (5.52) lead to a 
three-dimensional symmetry group allowing translations and scalings. 

In connection with traveling wave solutions, Yang [1994] examined the generalized 
KdVequation 

u t + 13 uO! Ux + ux,x,x = 0, (5.54) 

where a and 13 are real numbers. This equation reduces to the original KdV equation 
and the modified KdV equation for 13 = 6 and a = 1, 2, respectively. Other 
combinations of a and 13 are known and discussed in connection with ion acoustic 
waves in cold-ion and multi-component plasma (cf. Yang [1994]). The infinitesimals 
of this gKdV equation are 

infGKdV = l:nfinitesimals[ 

Btu[x, t] +J3u[x, t]QBxu[x, t] +Bx,x.xu[x, t] ==0, 

u, {x, t}, {a, J3}]; 

infGKdV II LTF 

2 k3 u 
30: 

'" == k1 + k3 x 
"1 3 

~2 == k2 + k3 t 

a set of transformations depending on three group parameters and on the exponent a. 
We also observe that the symmetry group does not depend on the non-linearity factor 
{3. 

Discussing weakly non-linear, long-wavelength waves propagating on the surface of 
an incompressible, inviscid, irrotational fluid, the following perturbed KdV equation 
arises: 

U t + 6 UUx + ux,x,x + E (-au2 Ux + f3uux.x + YUx ux,x + 8ux,x,x,x,x) = o. (5.55) 

Here, a, 13, y, 8, and E are constant parameters. E is the amplitude-to-depth ratio and is 
assumed to be much smaller than unity; IE I « 1. This kind of KdV equation was 
examined by Alexeyev [1994] in connection with Backlund transformations and by 
Porsezian and Lakshmanan [1993] in connection with higher-order integrable 
models. The infinitesimals of this higher-order PDE follow from 
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infPKdV = 
:Infinit.simals[atu[x, t] +6u[x, t] B"u[x, t] +ax, .. ,xu[x, t] + 

e (-au[x, t]2 a"u[x, t] + ~u[x, t] Bx,xu[x, t] + 

¥axu[x, t] Bx,xu[x, t] +6B(x,5)u[x, t]) == 0, 

u, {x, t}, {a, ~, ¥, 6, e}]; 

infPKdV II LTF 

<Pl == 0 
~l == kl 

~2 == k2 

This equation allows only a two-dimensional finite symmetry group representing 
translations in the independent variables. 

A model extending the KdV equation by an additional dispersive term of second 
order is discussed by Parkes [1994]. This so-called Korteweg-deVries-Burgers 
(KdVB) equation reads 

Ut + UUx + J1 u x•x•x - v ux,x = 0, 

where J1 and v are real constants. The infinitesimals of (5.56) are 

infKdVB = :Infinit.si_ls[Btu[x, t] +u[x, t] axu[x, t] + 

IA ax,x,x u [x, t] - v ax,x u [x, t] == 0, u, {x, t}, {lA, v}]; 

infKdVB II LTF 

<Pl == k3 
~l == k2 + k3 t 
~2 == kl 

(5.56) 

The resulting symmetries of the KdVB equation form a three-dimensional group 
independent of the model parameters. In connection with two-dimensional spatial 
solitons, Parkes [1994] and Ma [1993] discussed a two-dimensional KdVB equation 
of the form 

(Ut + U Ux + J1 u x•x•x - v ux.x)x + 0' u y•y = O. (5.57) 

The infinitesimals of this (2 + I)-dimensional equation follow by 

inf2KdVB = :Infinitesimals[ 

Bx (at u [x, y, t] + u [x, y, t] ax u [x, y, t] + IA ax,x,x u [x, y, t]) + 

aay,yu[x, y, t] == 0, 

u, {x, y, t}, {lA, v, a}]; 

inf2KdVB II LTr 
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<P1 -- _ 4 u a Cr 1) t - 6 a ('1"3) t - 2 x a ('1"1) t.t + 3 y ('1"2) t.t + y2 ('1"1) t t.t 
-- 6 a 

". __ 6 a '1"3 + 2 x a (1"1) t - y (3 (1"2) t + y (1"1) t t) 
"1 -- 6 a 

2 
~2 == 1"2 + 3 Y (1"1) t 

~3 == 1"1 

By adding an independent variable to the field u, the symmetry group of the 
one-dimensional (lD)-KdVB equation makes a transition to an infinite dimensional 
symmetry group. The two arbitrary functions free[l] = 'F[ and free[2] = 'Fi are not 
restricted by any equation. We note that the symmetry group depends on the 
parameter (T. 

A last example demonstrates the application to a complex field. In this case, the KdV 
equation finds its application in the asymptotic investigation of electrostatic waves of 
a magnetized plasma. This problem of elastostatic waves is discussed by Mohammad 
and Can [1995]. The complex-valued KdV equation is given by 

W, + a « I W 1)2 w)x + f3 wx.x,x = 0, (5.58) 

where w is the complex field amplitude w = u + iv, and a and f3 are real parameters. 
The representation in real field variables u and v is given by 

u, + a (u 3 )x + f3 ux.x.x + «a(uv2 »x = 0, 

v, +a(v3 )x + f3vx,x.x + «a(vu2 »x = o. 
The infinitesimals of this system of equations are 

infCKdV = :tnfinitesimals[{otu[x, t] +aox (u[x, t]3) + 

/3o",x,xu[x, t] +aox (u[x, t] v[x, t]2) == 0, 

Otv[x, t] +ao" (v[x, t]3) + 

/3o",,,,xv[x, t] +aox (v[x, t] u[x, t]2) == O}, 

{u,v}, {x,t}, {a,/3}]; 

infCKdV / / LTF 

<P1 == - k4 U + kl v 
3 

1 
<P2 == 3 (-3 kl u - k4 v) 

~1 == k2 + k4 x 
3 

~2 == k3 + k4 t 

(5.59) 

(5.60) 

The symmetry group is a four-dimensional discrete group containing translations, a 
rotation, and a scaling transformation. 

All the calculations carried out above are collected in the following table containing 
the equation, the symmetries, and the dimension of the symmetry group. 



KdV type equation 

Ut +UUx +Ux,x,x == 0 

2Ut + Ut + 6 u U x + ux,x,x == 0 

f + Ut + 6 u U x + ux,x,x == 0 

Ut + U a. U x + {3 ux,x,x == 0 

Ut + k1 Ux - h (u + x u x ) + 

ko (6u2 Ux +UX,X,X) == 0 

Ut - 6 u 2 U x + 6 A U x + ux,x,x == 0 

lit +ua /3ux +ux,x,x == 0 

Ut + 6 u U x + U X , x, x + 

E (_u2 aux +u(3ux ,x + 

y U x ux,x + 6 ux,x,x,x,x) == 0 

Ut + U U x - v U x , x + 

f-1 Ux,x,x == a 

u~ +ux,t +uux,x + 

a Uy,y + J..i. ux,x,x,x == 0 

Ut + 3 u 2 a Ux + a (v2 Ux + 2 U v v x ) + 

(3 ux,x,x == 0 

Vt + 3 v 2 a Vx + a (2 U v Ux + u 2 v x ) + 

(3 vx,x,x == 0 
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Infinitesimals 

ch == k62 - 2 k4 U 

';1 == k3 + k2 t + k4 x 
';2 == k1 + 3 k4 t 

"'1 4 k3-16 k1..rt u-24 k2 t u+k2 x 
"II -- 24 "It 

~1 ==k4+2k3Vc +t (2k1+3k2Vc) x 

~2 == (k1 + k2 Vc) t 

¢1 = = ~! - 2 k2 U 

,;, == k1 + k4 + k2 x + k3 Log [t] 

';2 == 3 k2 t 

';1 ==k2+k1g a[Et'] dlt' 

';2 == 0 

cP1 == k1 

3 h ko 'T2 + k1 (1"1 (ko ) t - 2 ko (1"1) t ) + 3 ko (­

'T1 (k1 )t + (1"2)t) == 0 

-'T1 (ko)~ +ko «ko)t (1"llt +1"1 (ko)t,t) +k~ (3ht 1"1 + 

3 h (1",) t + (1"1) t, t) == 0 

';, =='T2 + x(r, (kO)t+kO (rll t ) 
3 kO 

';2 == 'T1 
<lh ___ U (1"1 (ko)t +ko Crl)t) 

3 ko 

¢1 == -k3 U 

';1 == k2 + k3 (x + 12 t A) 

';2 == k1 + 3 k3 t 

cP1 ___ 2;~U 

';1 == k1 + k;X 

';2 == k2 + k3 t 

¢, == 0 

,;, == k1 

';2 == k2 

cP1 == k3 

';1 == k2 + k3 t 

';2 == k1 

cP1 ___ 4 u a (1"1) t -6 a (1'3) t -2 x a (1"'1) t t +3 y (1"2 ) t t +y2 (1"1) t t t 

60 

c; 1 = = 6 a 1"3 +2 x a ('1'"1) t -~ ~3 (1""2 ) t +Y (r1 ) t t) 

';2 == 1"2 + t y (1",) t 

';3==1"1 

cP1 == - k; u + k1 V 
¢2 == + (-3k1u-k4v) 

';1 == k2 + k~X 

';2 == k3 + k4 t 

Table 5.1 

Dim 

4 

4 

3 

2 

3 

3 

2 

3 

4 
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We note that the symmetries of the examined KdV-type equations can be quite 
different in their form. The order of the symmetry groups range from two to infinity 
and the symmetries are far from being always polynomial. The collection of these 
symmetry groups also illustrate that the access to symmetries is very simple and that 
a large number of models can be examined within a short period. This is the real 
power of computer algebra in connection with symmetry analysis that the 
information is available in split seconds and that variations of the equation can be 
checked very quickly. 

5.6.5 Stokes' Solution of the Creeping Flow 

Let us consider the creeping motion of a fluid stream of speed U around a solid 
sphere of radius a. The physical situation is shown in the following figure. 

118 

~ 

~ Ur 

U ~ 

---. 
~ 

~ 

~ 

Coordinate system 

It is convenient to use spherical coordinates (r, ()). We choose the origin of () in such a 
way that () = 0 defines the direction of U. The velocity components U r and Uo are 
related to the Stokes stream function '¥ in spherical coordinates by the relations 

08i1![.r,9]], StreamFunction = {ur .... l'unction[ {r, 9}, 
rl S1n [9] 

Or iI![r, 9] 
uth .... l'unction[ {r, 9}, - ]} 

r Sin[9] 

{ . [ Oe (j! [r, a] 1 
ur ~ Funct~on {r, e), r2 Sin [a] , 

. [ Or (j! [ r, a] l} 
uth~Funct~on {r, 6), - rSin[a] 

In the case of creep flows, the motion has a Reynolds number much less than unity. 
A consequence of this fact is that we can neglect acceleration terms in the momentum 
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equation. The momentum equation for the stream function is derived by applying the 
Laplacian in spherical coordinates: 

Applying this operator twice to the stream function 'P, we find the governing equation 

Momentum = Operator [Operator [ill [r, e]]]; Momentum II L'l'1' 

_ 6 Cot [e] !lie + 4 Cot [e] !lir,e + 6 !lie,e _ Cot [e] !lir,r,e _ 4 !lir,e,e 
r 4 r 3 r 4 r 2 r 3 

o 

( Csc [e]2 !lie _ Cot [e] !lie . e + !Ii + !lie,e,e ) 
Cot [e] r 2 r 2 r,r,e r 2 

!Ii + !lir,r,e,e + 2- (_ 2 Cot [e] Csc [e]2 !lie + 
r,r,r,r r2 r2 r2 

2 Csc [e]2 !lie,e 

r 2 

Cot [e] !lie,e,e 
r2 

!Ii !lie,e,e,e ) 
+ r,r,e,e + r 2 

The resulting equation is a fourth-order linear partial differential equation in spherical 
coordinates. The equation, although linear, contains a lot of analytic coefficients. 
This linear equation is an example to test the reliability of MathLie. Extending our 
database by creating another file called stokes.dgl containing the information on this 
equation helps us to derive the symmetries of the equation: 

LieEquations["stokes.dgl", {lIoIIDentum}, {III}, {r, e}, {}, 
{"Creeping flow for an immersed sphere H }, 

{{"G.G. Stokes"}, 
{"Trans. Camb. Phil. Soc. 9, 8-106, (18S1)")}, 

SUbstitutionRules .... {B(r,,) ill [r, 9]}] 

The Lie point symmetries of the momentum equation are derived by 

LieSol ve [ • stokes. dgl"] II L'l'1' 

-3 Cot [e] (2 + Csc [e]2) CT' )e + 

o 

4rCot[e] (9'"llr,e + (6+cot[e]2 +2csc[e]2) (9'"d e ,e-

2 r2 Cot [e] (9'",) r,r,e - 4 r (9'",) r,e,e - 2 Cot [e] (9'",) e.e.e + 

r 4 (9'",) r,r,r,r + 2 r2 (9'",) r,r,e,e + (9'",) e,e,e,e == 

~2 == 0 
~, == k2 r 

(/), == kl!li + 9'", 



306 Point Symmetries of Partial Differential Equations 

The analysis shows that Stokes' model of creeping flow owns an infinite symmetry as 
expected for linear equations. The continuous part of the symmetry group is 
determined by the arbitrary function 'Fi = free[l][r, 0]. The function 'Fi has to 
satisfy the original linear fourth-order PDE. The two constants k1 and k2 are the 
determining elements of the finite group representing a scaling symmetry of the 
momentum equation. Knowing that the momentum equation allows only a scaling 
symmetry, we can use this information to reduce the PDE to an ODE. The 
application of the function LieReduction[] delivers for the scaling group k1 =1 and 
k2=a an ordinary differential equation of fourth order. Unfortunately, this ODE is not 
solvable by DSolve[]. 

rmoment = LieReduction[{Momentum}, {!I!}, {r, e}, {r, OJ, {a!l!}]; 

LTI'[l'latten[rmoment]] /. zeta1-+ ~1 

e-S'l == 0 
r~a ill - Fl == 0 

r a (- 6 a F 1 + 11 a 2 F 1 - 6 a 3 F 1 + 

o 

a 4 Fl - 6 Cot [S'l] (F1 ) S1 + 6 a Cot [S'l] (F1 ) S1 -

2 a 2 Cot [S'd (Fd Sl - 3 Cot [S'd Csc [S'1]2 (F1 ) 1:1 + 6 (Fd Sl.Sl -

6a (Fds1,Sl +20:2 (Fd",Sl +Cot[S'1]2 (Fd!:l,!,'l + 

2Csc[S'd 2 (Fd(1.b1 -2Cot[S'd (Fde,Sl,!:l + (Fds1,Sl,Sl,!,'1) == 

A closer look at the above result reveals that the stream function 'I' can be represented 
by a product of a radial component and a function containing the angular part: 

stream = II! -+ Function [{r, e}, r a g [e] ] 

ill --. Function [{r, e}, rO g [ell 

We replaced FI in the similarity solution by g. Inserting this result into the original 
equation, we get 

Momentum /. stream 
mom1 = Expand [ ] ; mom1 / / LTF 

r-4 +a: 

-6 g a + 11 g a 2 - 6 g 0:3 + g 0:4 - 6 Cot [e] ge + 60: Cot [e] gEl -

o 

20:2 Cot[e] ge - 3 Cot[e] Csc[e]2 ge + 6 ge,e - 6 age,e + 2 a 2 ge,e + 

Cot [e]2 ge,e + 2 Csc [e]2 ge,e - 2 Cot [e] ge,e,e + ge,e,e,e == 

which is an equation in rand O. The remaining equation for g is a linear ODE of 
fourth order. This type of equation is equivalent with the equation gained by 
LieReduction[]. Since we already noted that the equation is not solved by DSoIve[], 
we try an ansatz for the angular part g( 0) by 



sub = go ... Function [8, Sin[8]2] 

g-+Function[e, Sin[e]2] 
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which reduces the determining equation for g to a polynomial in a of fourth order: 

pol = Simplify [_1 I. sub] 

pol 
poll = ---­

Sin[8]2 

The solutions for the exponent a are found by solving this fourth-order polynomial 

exponents = Solve [poll == 0, a] 

{{a-+-l}, {a-+l}, {a-+2}, {a-+4}} 

This list is the basis for a combination of the radial components 

radialpart = rex I. exponents 

{ 1 2 4 } r' r, r I r 

Since the four solutions for a are independent of each other, a linear combination of 
the radial parts provides 

f=PlusOO(Table[c[i], {i, 1, 4}) radialpart) 

~ + r c [2] + r2 c [3] + r 4 c [ 4] 
r 

The final representation for the stream function is thus 

StreamF = f Sin[8]2 

(C~l] +rc[2] +r2 c[3] +r4 C[4]) Sin[e]2 

Up to now, we did not consider any boundary conditions for the problem. As one 
boundary condition, we have to assume that the derivatives of the stream function 
with respect to r and (J vanish at the surface of the sphere. This results in 

surfl = (ar StreamF I. r ... a) == 0 
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surf2 = (D" Stream!' /. r -+ a) == 0 

2 (C[al ] +ac[2) +a2 c[3) +a4 C[4)) Cos[e) Sin[e) == 0 

These two non-slip conditions for the surface are sufficient to determine two of the 
four integration constants e[i]: 

ieonstants = Solve[{surfl, surf2}, {e[l], e[2], e[3], e[4]}] 

Solve: :svars : 

Equations may not give solutions for all "solve" variables. 

The representation of the stream function reduces thus to 

Stream!' = Simplify [StreamF /. ieonstants] [1] 

1 2 
2r ((a-r) 

(3 a 3 C [4) + 6 a 2 r C [4) + 2 r (c [3] + r2 C [4) ) + a (c [3] + 4 r2 c [ 4] ) ) 

Sin[e)2) 

containing two arbitrary constants e[3] and c[4]. If we consider the stream function 
for large values of r, we observe that the dominant changes result from the r4 and ? 
terms in the solution: 

Series [Stream!', {r, , 2}] 

c[4] Sin[e]2 

(+) 4 

If we assume that the radial and angular components of the velocity are finite for 
large r, we have to set c[4] = a and c[3] = UI2. 

U 
Stream!' = StreamF /. {c [4] -+ 0, e [3] -+ - } 

2 

(a - r) 2 (a + 2 r) U Sin [ e] 2 

4r 

The stream function 'P is thus defined by 

1 22 (a 3r 2r2) !I! [r_, 8_, a_, u_] := - Sin[8] a U - - -- +--
4 r a a 2 
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This representation in spherical coordinates can be used to display the stream 
function in a Cartesian coordinate system. To this end, we have to transform the 
coordinates by 

coordTrafo = {r -+ .y X2 + y2 , e -+ ArcTan [x, y]} 

{r .... -JX2 + y 2 , e .... ArcTan [x, y ]} 

To suppress the singularities at x=O and y=O, we introduce the condition 

ps = l:f [x == 0 tete y == 0, 0, !Ii [r, e, 1, 1] / . coordTrafo] 

If [x==O&&y==O, 0 , \I![r, e, 1,1 ] / . coordTrafo ] 

The representation of the stream function in x and y is thus given by 

Show[{ContourPlot[ps, {x, -3, 3}, {y, -3, 3}, 

PlotPoints -+ 25, 

Colorrunction -+ Hue, AxesLabel -+ {nxn, nyn}, Axes -+ True, 

Contours -+ 25, Disp1ayFunction -+ l:dentity], 

Graphics [Disk[ {O, O}, 1]]}, AspectRatio -+ Automatic, 

DisplayFunction -+ $DisplayFunction] 

y 

x 

- 2 

-3 
-3 

The black disk in the center of the picture represents the sphere. The different 
shadings outline the different strengths of the stream function around the disk. 

The velocity components follow immediately by using the definitions 
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Oeil![r, e, a, U] 

r 2 Sin[e] 

"r ill [r, e, a, U] 
uth [r_, e_, a_, U_] : = - -------­

r Sin [e] 

A representation of the radial component of the velocity in Cartesian coordinates 
follow by 

ul = ur[r, e, 1, 1] I. coord'l'rafo 

( ~ - 3 Vx2 + y 2 + 2 (x 2 + y 2)) Cos [ArcTan [x, y ] ] 
vx2 +y2 

2 (X2 + y2 ) 

The graphical representation in a contour plot shows the orthogonal orientation of the 
velocity field U r to the stream function: 

Show [ 
{ContourPlot[:If[x==O&:&:y==O, 0, ul], {x, -3, 3}, {y, -3, 3}, 

PlotPoints -+ 25, Colorl'unction-+ Hue, AxesLabel-+ {"X", lIyll}, 

Axes -+ 'l'rue, Contours -+ 25, Displayl'unction -+ :Identity], 

Graphics[Disk[{O, O}, 1.1]]}, AspectRatio-+Automatic, 

Displayl'unction -+ $Displayl'unction] 

y 

x 

The related representation of the angular part of the velocity field is given by 

u2 = uth[r, e, 1, 1] I. coord'l'rafo 

( -3 -~ + 4 VX2 + y 2 ) Sin [ArcTan [x, y ] ] 
x +y 

4 VX2 + y 2 
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The graphical illustration of the angular component Uo is 

Show [ 
{ContourPlot[J:f[x==O&:&:y==O, 0, u2], {x, -3, 3}, {y, -3, 3}, 

PlotPoints -+ 35, Color!'unction-+ Bue, AxesLabel-+ {"x", "y"}, 

Axes -+ True, Contours -+ 25, Display!'unction -+ J:dentity] , 

Graphics [Disk[ {O, O}, 1 . 1]]}, AspectRatio -+ Automatic, 

Display!'uDction -+ $Display!'unction] 

y 

I-----IH X 

In this section, we presented the derivation of Stokes' classical solution of the 
creeping flow around a sphere. Contrary to Stokes, we did not guess the solution by 
an ingenious ansatz. The solution in our calculation followed directly from the 
symmetry analysis of the problem. This example illustrates the strength of this 
method by a straightforward calculation. 

5.6.6 Two-Dimensional Boundary Layer Flows: Group Classification 

In this section, we examine the problem of an incompressible boundary layer flow 
over a flat plate. We will not solve the physical problem but discuss the symmetries 
of several related models. The models differ from each other in the behavior of the 
vertical velocity component above the boundary. We demonstrate that the models are 
the result of group classification of the general equation. We show that the symmetry 
of the different models is closely connected with the symmetry of the general model. 
In addition, we illustrate that MathLie is capable of extracting these models from a 
symmetry calculation. The physical arrangement of the flow is given in the following 
figure. The flow above a plate is governed by the mainstream velocity W. The 
coordinates are denoted by x and y and the velocity components in the two directions 
are u and v, respectively. 
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w 
~ 

y v ... 

t ~ L ... u 

... D I 

The general two-dimensional, steady, laminar incompressible boundary layer 
equations follow from the Navier-Stokes equations if we neglect buoyancy. The 
resulting equations are the continuity equation and the momentum equation for 
steady flow (Lamb [1945]): 

u x + Vy = 0, 

u ux + v uy - W(x) Wx - Tf Ux.x = o. 

(5.61) 

(5.62) 

Here, W = W(x) is a known function describing the mainstream flow velocity in the 
x direction and Tf is the kinematic viscosity. The boundary conditions to be satisfied 
are 

U(x, y = 0) = vex, y = 0) = 0 (5.63) 

and 

U(x,oo) = W(x). (5.64) 

If we denote by 

u = u [x, y] ; v = v [x, y]; 

the velocity fields in x and y directions, we can write the left-hand side of the two 
equations in Mathematica by 

bound = {axu+ayv, ua"u+vByU-W[x] BxW[x] -T/B(y.2)U}; 

bound II L'1'J' 

U x + Vy == 0 

U U x + v U y - W Wx - T) Uy,y == 0 

The equations bound constitute a system of equations in two dependent variables U 

and v. This is a system of partial differential equations of parabolic type. The 
equations are today known as Prandtel's boundary layer equations. If we now define a 
stream function by 



stre_ = {u ... Function [{x, y}, ay III [x, y]], 

v ... FuDction [{x, y}, -ax ill [x, y]]} 

{u --+ Function [{x, y}, Oy iii [x, y]] , 

v --+ Function [{x, y}, -ax iii [x, y]] } 
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we can reduce the two equations of motion to a single equation given by 

boundl = bound / •• tre_; boundl / / L'l'1' 

True 
-WWx + iliy ilix,y - ilix iliy,y - YJ iliy,y,y == 0 

representing a non-linear partial differential equation for the stream function 'P of 
third order. In the following, we will analyze this equation to derive explicit solutions 
for different mainstream velocities W. Utilizing the functions of MathLie, we are able 
to determine the symmetries by 

symbound = :Infinitesimals [{boundl[2B}, {III}, {x, y}, {I1}]; 

symbound / / L'l'1' 

<Pl == kl 

~l == 0 
~2 == 'Tl 

The result shows that the equation for the stream function with arbitrary mainstream 
velocity allows only a translation with respect to the stream function. In the 
following, we will examine the influence of the mainstream function on the 
symmetries. 

5.6.6.1 The Blasius Solution 

If we assume that the mainstream velocity is a constant W(x) = w as in the problem 
discussed by Blasius [1908], the symmetry analysis results in the representation of 
infinitesimals: 

main.tre_ = w ... i'uDction [x, w]; 

symbound = 
:Infinitesimal. [{boundl[2J} /. mainstre_, {iii}, {x, y}, {I1, w}] ; 

symbound / / L'l'1' 

<Pl == kl + k2 iii 
~l == k3 + k4 x 
~2 == (-k2 +k4) y+'Tl 
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The similarity reduction for this model follows by using the function LieReductionD. 
Let us first examine the reduction of the four-dimensional group with respect to 
translations. This subgroup is selected by the group constants k3, kl, and the arbitrary 

function freel1] which we set equal to a constant. The related infinitesimals are thus 
given by 

infil = {{xi [1] [x, y, Ill], xi [2] [x, y, ill]}, 

{phi [1] [x, y, Ill]}} /. aymbouDd /. 

{kl ... 1, k2 ... 0, k3 ... 1, k4 ... 0, free[l] [x] ... c:} 

{{I, c}, {I}} 

The reduction of the equation follows for this subgroup to 

redl = Lieaeduc:tion [ 

{bouDdl[2:O} /. _inatre_, {Ill}, {x, y}, infil[l:O, infi1[2D]; 

L'l'F [Flatten [redl]] /. zetal ... tl 

-c x + Y - Sl == 0 

-x + Y! - Fl == 0 

-FI"", - 17 FI" ," ," == 0 

The related similarity solution is obtained if we integrate the third-order ordinary 
differential equation 

sredl = DSolve[redl[3, 1:0 == 0, 1'1, zetal] 

{{F1~ (C[I] +E-'o' C[3] +C[2] #l&)}} 

and insert the result into the representation of the solution 

aaredl = Solve [Flatt_ [redl[2:O /. aredl], Ill] 

{{Y!~x+C[l] + (-cx+y) C[2] +E--c;+y C[3l}} 

The stream function '¥ is determined by three integration constants C[i], i = 1,2,3. 
The solution was derived under the condition that the problem allows the invariance 
of translation in the independent and dependent variables. The corresponding 
components of the velocity fields follow by 

rule = Ill ... runc:tion [{x, y}, w] /. (ssredl /. III ... w) ; 

velocities = {u[x, y], v[x, y]} /. stre_ /. rule 
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-c x+y -cx+y 
E--ry- C [3] c E--ry- C [3] 

{C[2]- 17 ,-l+cC[2]- 17 } 

where c is the group parameter and C[2] and C[3] are constants of integration. 

Another subgroup of the Blasius model for the steady two-dimensional flow for a flat 
plate is the scaling invariance. This kind of invariance is selected from the total group 
if we set the group parameters k2 and k4 equal to a constant value. We get the 
infinitesimals from 

infil = {{xi [1] [x, y, !II], xi [2] [x, y, !II] }, 

{phi [1] [x, y, !II]}} I. symbouDd I. 
{kl .... 0, k2 .... c, k3 ... 0, k4 ... 1, free [1] [x] .... O} 

{{x, (l-c) y}, {cYi}} 

The second reduction of the equation follows by 

red2 = 
S~lify[PowerZXpan4[Li.R.duction[{bouDdl[2]} I.mainstr ... , 

{!II}, {x, y}, infi1[l], infi1[2]]]]; 

L'l'J' [Flatten [red2]] /. zetal ... '1 
Solve: :tdep : 

The equations appear to involve transcendental functions 

of the variables in an essentially non-algebraic way. 

X-i.e y -!;;i == 0 

X- e Yi - Fi == 0 
4c 4c 

y--=c s;=C ((-1+2c) (Fd~, -CF i (Fdr"r, -17 (Fd r" r,,1:,) ==0 

If we try to solve this type of equation by DSolve[], we get the result 

DSolve[red2[3], 1'1, zetal] 

[ { 
4c 4c ,2 

DSolve y--=c zeta1 -==- ((-1 + 2 c) F1 [zeta1] -

cFl[zeta1] Fl"[zetal]-lJFl(3) [zeta1]) == OJ, 

Fl, 

zeta1] 

However, we can use Lie's methods to examine the symmetries of this ordinary 
differential equation. The symmetries of this equation are given by 
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'c 'c 
red2eq = Thread[red2[3, 1] /y-= zetal-=, Equal]; 

iblasius = :Infinitesimals [red2eq, Fl, zetal, {c, 17}]; 

iblasius / / LTF 

¢1 -F1 k2 

~1 k1 + k2 zeta1 

demonstrating that the Blasius equation allows a two-dimensional symmetry group 
containing a translation with respect to the independent variable zetal and a scaling 
in the independent and dependent variables. Since the Blasius equation is a 
third-order ODE but the symmetry group is of dimension two, we know from 
Chapter 4 that at least a reduction of the order is possible. At this point, the solution 
procedure ends since the number of symmetries is smaller than the degree of the 
ODE. 

5.6.6.2 Falkner-Skan Solution 

For the same geometrical situation, Falkner and Skan [1931] proposed that the 
mainstream velocity W(x) is a power law function of the horizontal coordinate. We 
define this relation as 

mainstream = W -+ Function [x, k x!"] 

W -'> Function [x, k x"' J 

where k and m are real constants. The symmetries of the stream function qt are 
determined for this case by 

symbound = :Infinitesi_ls [ 

{boundl[2]} /. mainstream, {iii}, {x, y}, {ry, k, m}]; 

symbound / / LTF 

¢1 == k1 + k2 <l! 

~1 
2 k2 x 
l+m 

~2 
k2 (-1 + m) y 

+ 1'1 l+m 

For the Falkner-Skan model, we find a two-dimensional discrete symmetry group 
and, in addition, an infinite dimensional group represented by free[l] = 'f'i. 
Compared with the case when W is arbitrary, the group is enlarged by an additional 
degree of freedom. With respect to the Blasius group, the dimension is reduced by 
two components. The main symmetries consist of a translation and a scaling. Let us 
first discuss the translation symmetry. The related infinitesimals follow by setting kl 
andfree[ 1] to constants: 



infi1 = {{xi [1] [x, y, ill], xi [2] [x, y, III]}, 

{phi [1] [x, y, III]}} I. symbound I. 
{k1-+ 1, k2 -+ 0, free[l] [x] -+ c} 

{{O, c}. {l}} 

The reduction of the stream function equation follows by 

red1 = 
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Simplify[PowerExpaDd[Lieaeduction[{b0un41[2D} I. mainstream, 

{III}, {x, y}, infi1[lD, infi1[2D]]]; 

L'l'J'[I'latten[red1]] I. zeta1-+ '1 
x - Sl == 0 

- Y... + ~ - Fl == ° 
C 

_k2 msim == 0 

The result is somehow surprising since it does not contain any reduction of the 
original equation. If we examine the equation for the stream function, we observe that 
all terms contain derivatives with respect to the coordinate y which single out the 
similarity solution. Only the additive term containing the mainstream velocity W 

remains in the reduction. The result shows us that under the symmetry of translations, 
only a solution depending linearly on the vertical coordinate y exists. 

The other type of symmetry contained in the Falkner-Skan case represents a scaling. 
The reduction for the scaling symmetry is given by 

infi1 = {{xi [1] [x, y, III], xi [2] [x, y, III]}, 

{phi [1] [x, y, III]}} I. symbound I. 
{k1-+ 0, k2 -+ c, free[l] [x] -+ O} 

where we set the group parameters k2 equal to a constant c. The reduction of the 
equation for the stream function follows by 

red2 = 
Simplify[PowerZXpand[Lieaeduction[{bound1[2D} I. mainstream, 

{III}, {x, y}, infi1[lD, infi1[2D]]]; 

L'l'I'[I'latten[red2]] I. zeta1-+ '1 
Solve: :tdep : 

The equations appear to involve transcendental functions 

of the variables in an essentially non-algebraic way. 
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xi- (-l+m) Y - Sl == 0 

xi- (-l-m) iJ! - F, == 0 

_y-_~~m s;M'm (-2m (F1)~, + (l+m) F, (F ' )!:l,!:l +2 (k2 m+1') 

(Fd!:l,!:l,!:l)) == 0 

Again, DSolve[] is unable to find a solution. The type of the resulting equation is the 
same as the equation in the Blasius model. The same arguments apply here. The 
number of symmetries of the equation is not sufficient for an integration. This is one 
reason why the Falkner-Skan equation is an unsolved problem. We will not examine 
the numerical solution of this equation which actually was carried out by Falkner and 
Skan [1931] in their paper. However our interest is concerned with other possibilities 
to model the mainstream velocity. There is another case which enlarges the number 
of symmetries of the steady two-dimensional flow. 

5.6.6.3 Exponential Mainstream Velocity 

Another way to choose the mainstream velocity is to assume an exponential increase 
in the horizontal direction. The function of this type is given by 

mainstream = W -+ Function [x, k Exp [a x] ] 

W~Function[x, kExp[ax]] 

The infinitesimals for this sort of the mainstream velocity are 

symbound = I:nfinitesimals [ 

{boundl[2D}/.mainstream, {iii}, {x,y}, {v,k,a}]; 

symbound / / LTF 

rP1 == kl - k2 iJ! 

2 k2 
~, 

a 
~2 == k2 Y + 'T, 

The result contains a two-dimensional finite symmetry group representing a 
translation and some sort of scaling. The undetermined function free[I][x] = 'Fj 
extends the finite group to an infinite one. Again, the symmetry group is extended if 
we compare it with the general case in which the mainstream velocity is an arbitrary 
function. The reductions for the scaling symmetry follow by 

infi1 = {{xi [1] [x, y, iii], xi [2] [x, y, iii]}, 

{phi [1] [x, y, iii]}} /. symbound /. 

{k1 -+ 0, k2 -+ c, free[l] [x] -+ O} 
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red2 = 
Simpllfy[PowerExpaD4[LieReduction[{bouDdl[2]} I.mainstr.am, 

{III}, {x, y}, lnfi1[l], infil[2]]]]; 

LTP[Platten[red2]] /. zetal""'l 

Solve: : tdep : 

The equations appear to involve transcendental functions 
of the variables in an essentially non-algebraic way. 

E¥- Y - ~l == 0 

E-¥- \Ii - Fl == 0 

-~f (2 ak2 - 2 a (Fil~l +aF1 (Fils1,Sl + 21') (Fils1,Sl,Sl) == 0 

The reduced equation is again of the Falkner-Skan type. Thus, both types of the 
mainstream velocity result into the same type of equation. 

5.6.6.4 Group Classification 

The general topic behind the calculations carried out above is the problem of group 
classification of a partial differential equation. The question is formulated as follows. 
Assume we have a system of equations containing a certain arbitrariness, expressed 
in the dependence of the equations on certain parameters or functions. These 
equations admit a certain group G. If we now change the arbitrariness to a specific 
form, we may observe that the group G is enlarged. This behavior of enlargement of a 
group was the result of our previous discussion. The question now is: Can we find the 
specific forms for the mainstream velocity W discussed in the previous sections by 
using the functions of MathLie? The problem of group classification is closely 
connected with the common factors occurring in the determining equations. These 
common factors are eliminated by the functions of MathLie. The information 
removed from the determining equations is not lost but collected in a global variable 
called EliminatedFactors. This list collects all factors removed by the functions Lie[], 

LieSolve[], Infmitesimals[], DeterminingEquations[], and PDESolve[]. If we need to 

solve the classification problem, we have to examine the list EliminatedFactors. 

The following considerations will illustrate the special cases for the mainstream 
velocity discussed above. All models discussed so far follow from a group 
classification and can be calculated from the eliminated common factors. We start the 
determination of the general classification problem by calling the function 

Infinitesimals[] : 
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symbound = J:nfinitesimals [{boundl[2D}, {iii}, {x, y}, {v}]; 

symbound / / LTF 

cP1 == kl 

~l == 0 
~2 ==:Fl 

The factors which were cancelled in the derivation of the determining equations can 
be inspected just by reading the variable EliminatedFactors: 

elFactor = EliminatedFactors; elFactor / / LieTraditionalForm 

{ 1 1 4 3 Wx Wx,x 
-, ':3' - W wx , 3 W + 3 Wx ' W (W~ + WWx,x) 

WW~,x WWx,x,x 
W; + WWx,x I 4 (W~ +WWX,X) , 

w! Wx Wx,x 
W (W~ + WWx,x) + 4 (W~ + WWx,x) 

WW~,x 3 WWx,x,x 

Wx (W~ +WWx,x) + 4 (W~ +WWx,x) , 

(W~ + WWx,x) (-4 W! + WW~ Wx,x - 4 w2 W~,x + 3 W2 Wx Wx,x,x) 

27 WW~ W~,x 

(W~ + WWx,x) (-4 W! + WW~ Wx,x - 4 W2 w~,x + 3 w2 Wx Wx,x,x) + 

15 WW! Wx,x,x 

(W~+WWx,x) (-4W!+WW~Wx,x-4WW~,x+3WWxWx,x,x) 

(W~ + WWx,x) (-4 W~ + WW~ Wx,x - 4 W2 W~,x + 3 W2 Wx Wx,x,x) 

(W~+WWx,x) (-4W~+WW~Wx,x-4W2W~,x+3W2WxWx,x,x) + 

3 w2 w~ Wx,x,x,x + 

(W~ + WWx,x) (-4 W! + WW~ Wx,x - 4 W2 W~,x + 3 W2 Wx Wx,x,x) 

In addition to three numerical factors, the list contains six relations which determine 
the mainstream velocity W by a differential equation. In the following calculations, 
we will show that all models for W discussed so far are contained in these equations. 
Let us start with the first equation which is extracted from position four of the list 

elFactor. Applying DSolve[] to this equation, we get 



Working Examples 321 

eql = ell'actor[4D == 0; eqlll LTI' 

-3 WWx == 0 

DSolve[eql. W. xl 

{{W~ (C[l]&)}} 

The result shows that any constant is sufficient to satisfy this equation. The constant 
case for the mainstream velocity is the model discussed by Blasius [1908]. The fifth 
equation from the list of common factors gives us 

eq2 = ell'actor[SD == 0; eq2 II LTI' 

Wx + Wx,x == 0 
3 W 3 Wx 

DSolve[eq2. W. xl 

{{W~ (-v'E3C[2] (2 #1-2C[1]) &)}, {W~ (v'E3C[2] (2#1-2C[1]) &)}} 

This solution is a special case of the Falkner-Skan model with m = 1/2. Thus, the 
eliminated prefactors contain at least the special case of W(x) = k x 1/2 • The sixth 
equation of our list contains a very complicated non-linear third-order ordinary 
differential equation which we use in the form 

eq3 = Rumerator [Together [elPactor(6) 1 ] I eq3 II L'l'P 

If we try to solve this equation by using DSolve[], we end up with 

DSolve[eq3 == o. w. xl 

DSolve[ 
W' [X]4 -W[x] W' [X]2 W" [x] +W[X]2 W" [X]2 _W[X]2 W' [x] w(3) [x] == 0, 

W, x] 

However, the equation is solved by an exponential fwiction 

eq3 I • W -+ I'uDcticm [x. k Bxp [a xl 1 

o 

This result shows that the exponential model discussed earlier is also consistent with 
the determining equations for the mainstream velocity. The seventh equation of our 
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list elFactor is connected with the equation eq2. We can show this by just integrating 
the equation with respect to x: 

eq4 = Numerator ['l'ogether [ell'actor [7] ] ]; eq4 II L'l'1' 

-3 Wx Wx,x - WWx,x,x == 0 

feq4dX 

-W' [X]2 - W [x] W" [x] 

Thus, no more information is gained by considering this equation. The eighth 
equation is a third-order ODE which cannot be treated by DSolve[]. The solution of 
this third-order ODE is again a special case of the Falkner-Skan type with m = -1 /2: 

eqS = Numerator ['l'ogether [ell'actor [8] ] ]; eqS II L'l'1' 

-4 W! + WW~ Wx,x - 4 W2 W~,x + 3 W2 Wx Wx,x,x == 0 

Simplify [eqS I . W ... l'unction [x, k x!"] ] 

The last relation is a fourth-order ODE not solvable by DSolve[]. A particular 
solution of this equation is, however, given by the Falkner-Skan relation for the 
mainstream velocity . We can check this by 

eq6 = Numerator ['l'ogether[ell'actor[9]] ] ; eq6 II L'l'1' 

-3 (3 W~ Wx,x - 9 WW~ W~,x + 6 W2 Wx W~,x + 

o 

5 W W! Wx,x,x - 6 W2 w; wx,x wx,x,x + w3 w;,x Wx,x,x -

2 w3 Wx w~,x,x + W2 w; wx,x,x,x + w3 Wx Wx,x wx,x,x,x) 

Simplify [eq6 I. W ... !'unction [x, k X"] ] 

o 

Thus, we demonstrated that the group classification problem for the steady 
two-dimensional flow is solved by three types of mainstream velocities: (i) 
W(x) = const., (ii) W(x) = k X", and (iii) W(x) = k eQX. Special cases also 
contained in the classification of type (ii) are the cases with m = 1/2 and m = -1/2. 
The maximal group order of four occurs for the type (i), all other types possess a 
lower group order. 
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5.6.7 The Plane Jet 

The plane jet is an example for Prandtl's boundary layer equations. We consider the 
steady two-dimensional motion of an incompressible viscous fluid due to a jet issuing 
from a long narrow orifice. We use Cartesian coordinates in the plane of motion. The 
origin of our coordinate system is located in the orifice and the x-axis lies in the 
plane of symmetry of the jet. The velocities in the x and y directions are denoted by u 
and v, respectively. If we assume that the Prandtl boundary layer equations give a 
sufficiently good approximation and that the pressure is a constant, then the equations 
of the stationary problem read 

Ux + Vy = 0, 

UUx + vU y = 1]u y,y. 

In Mathematica notation, we find 

jet = {u[x, y] axu[x, y] +v[x, y] ayu[x, y] ==7Ja{y,2}U[X, y], 

axu[x, y] + ayv[x, y] == O}i 

jet I I LTF 

UUx +VUy -I7Uy,y == 0 

ux+vy==O 

(5.65) 

(5.66) 

where 1] is the kinematic viscosity. The equations of motion are accompanied with the 
boundary conditions 

bound = {ayu[x, y] == 0, v[x, y] == O} I. y -+ 0 

{U(O,l) [x, OJ == 0, v[x, OJ == O} 

and the asymptotic behavior 

asympt = {u[x,y]->O Ii y->Xnfinity} 

An additional relation for the total x-component of the fluid momentum must be 
satisfied 

M = 2 P f u [x, y] 2 clly == constanti 

This sort of model was first discussed by Schlichting in 1933. We will use this model 
to discuss the analytic solution by means of a symmetry analysis. First, we transform 
Prandtl's boundary layer equations to a single equation by introducing the stream 
function representation: 
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stream = {u ... Function [{x, y}, ay!li [x, y]], 

v ... Function [{x, y}, -ax !Ii [x, y] ] } 

{u -7 Function [{x, y}, Oy \I! [x, y]] , 

v -7 Function [{x, y}, -ax \I! [x, yJ] } 

Applying this transfonnation to the jet equations, we find 

sjet = jet /. stream; sjet / / LTF 

\l!y \l!x,y - \l!x \l!y,y - 17 \l!y,y,y == 0 

True == 0 

The original two equations reduce to a single equation for the stream function II' 
which is a non-linear partial differential equation of third order: 

jet = sjet[l] 

_\I!(O,2) [x, y] \I!(l,O) [x, yJ + \I!(O,1) [x, y] \I!(1,1) [x, y] == 17 \I!(O,3) [x, y] 

We detennine the symmetries of this equation by applying the function 

Infinitesimals[] 

syrom = Infinitesimal.s [jet, iii, {x, y}, {ry}]; syrom / / LTF 

<P1 == kI + k2 \I! 

~1==k3+k4x 

~2 == (-k2 +k4) y+'T1 

The result is a four-parameter group allowing translations and scalings as 
symmetries. Let us first discuss the translation symmetries and afterward use the 
scaling symmetry in our calculations. The related reduction of the original PDE 
follows by selecting the subgroups with k3=1,jree[1][xj=c, and kl=l. 

infil = 

{{xi[l] [x, y, iii], xi[2] [x, y, iii]}, {phi [1] [x, y, iii]}} /. syarm/. 

{kl ... 1, k2 ... 0, k3 ... 1, k4 ... 0, free[l] [x] ... c} 

{{I, c}, {I}} 

The reduction follows by 

redl = LieReduction [jet, {iii}, {x, y}, infil[l], infil[2]]; 

LTP [Fl.atten [redl]] /. zeta1 ... '1 
-CX+y-S1 == 0 
-x + \I! - Fl == 0 

-FI s1 ,s1 - 17 FI" ," ,f1 == 0 
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The solution of the reduced equation follows by 

ssol = DSolve[redl[3], Fl, zetal] 

{{Fl--7 (E-'" rl C[l] +C[2] +C[3] #1&)}} 

where #1 represents the variable zetal. The similarity solution in the original 
variables x and y is 

sol = Flatten [Solve [Flatten [redl[2] /. ssol], ill]] 

{Y!--7X+E--C;>Y 17 2 C[1] +C[2] + (-cx+y) C[3]} 

This solution contains three constants of integration C[i], i = 1, 2, 3. The constants 
must be chosen in such a way that the boundary conditions are satisfied. The first 
boundary condition requires 

Simplify[o(y,2} (ill /. sol) /. Y -+ 0] == 0 

E c"x C [1] = = 0 

which can only be satisfied by 

rule = {C [1] -+ O} 

{C[l] --70} 

The second boundary condition requires 

Simplify[o(X,l} (iii /. sol) /. y -+ 0] == 0/. rule 

1-cC[3]==O 

which allows a special choice C[3]=1/c 

1 
AppendTo [rule, C [3] -+ -] 

c 

1 
{C[l] --7 D, C[3] --7 c} 

Using the asymptotic behavior of u results in 

Simplify[o(y,l} (ill /. sol) /. rule] 

1 
c 
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The result shows that the requirement that u ~ 0 for y ~ 00 can only be satisfied if we 
set c ~ 00. In conclusion, the symmetry of translation is not compatible with the 
boundary conditions. 

The second type of symmetry under which the third-order PDE is invariant is given 
by a scaling. The related subgroup is extracted by setting k2=c and k4=1: 

infil = 
{{xi[l] [x, y, !Il], xi[2] [x, y, !Il]}, {phi [1] [x, y, !Il]}} /. s~/. 

{kl-+ 0, k2 -+ c, k3 -+ 0, k4 -+ 1, free[l] [x] -+ O} 

{{x, (1 - c) y}, {c g:;}} 

The similarity reduction for the scaling group follows by 

red2 = LieReduction[jet, {iii}, {x, y}, infil[lD, infil[2D]; 

LT!'[!'latten[red2]] /. zetal-+ ~, 

Solve: : tdep : 

The equations appear to involve transcendental functions 

of the variables in an essentially non-algebraic way. 

x- 1 +c y - Sl == 0 

x- c g:; - Fl == 0 
4 4 c 

y-~ sF (- (F1 ) ~, + 2 C (F1 ) ~, - c Fl (F1 ) '" ,b1 - I'] (F1 ) b1 ,~, ,b1 ) 

== 0 

The left-hand side of the equation is without any common coefficients 

/ 
4.c 4c 

eq2 = red2[3, 1, lD (y-= zetal=); LTF[eq2] /. zetal-+~, 

This third-order ODE is not solved by DSolve[]. However, a first integration with 
respect to zetal shows us that the equation is integrable if we choose a special value 
for c. If we set c ~ 1/3, we get a second-order ODE which is equal to a first constant 
of integration: 

- ~ F1'[zeta1]2 - ~ Fl[zeta1] Fl"[zeta1]-I']F1(3) [zeta1] 
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intl = f(eq 2 I. c ~ ~) dlzetal == Kl 

1 ]' "1] 1 -3F1[zeta1 F1 [zeta1]-17F1 [zeta ==K 

Taking the boundary conditions into account, we realize that Kl = O. This follows 
since Fl' (0) = 0 and Fl" (0) = O. Thus, the result simplifies and we can integrate the 
relation a second time: 

int2 = f intl[l] dlzetal == -K2 

1 - 6 F1 [zeta1]2 - 17 F1' [zeta1] == -K2 

Now using DSolve[] to integrate the first-order ordinary differential equation, we get 
the solution 

sols = I'latten[DSolve[int2, 1'1, zetal]] 

The corresponding similarity representation follows by 

1 
ssol = Solve [red2 [2] I. sols I. c ~ -, iii] 

3 

{{ill -> -[6 -fK2 x"/3 Tanh [ i (-f6X2~ y - 6 -f6 -fK2 e[l]) l}} 

This solution contains three parameters 1], K2, and C[l]. 1] is the kinematic viscosity 
which we set to unity in the following. The integration constant K2 changes the 
amplitude as well as the argument of the Tanh[] function. C[l] determines the 
location of the orifice which we set to the origin. The following contour plot of the 
stream function gives us a representation of the stream lines in the (x, y)-plane: 

sol = (iii I. ssol/. {K2 ~ 1, TJ -+ 1, C[l] ~ O}) [1]; 

ContourPlot[sol, {x, .01, 3}, {y, -3, 3}, PlotPoints ~ 50, 

Contours ~ 20, ColorFunction ~ Hue, AxesLabel ~ {"x", "yn}, 

Axes ~ True] 
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y 

The representation of the stream lines shows that the jet fans out and that the velocity 
decreases for larger values of x. This behavior is obvious in a graphical 
representation of the velocity for the two components 

u = Oy sol 

sech [~l2 
x 1 /3 

and 

v = -ox sol 

2ySech[ ~l2 ffTanh[~l 
3 X4 /3 x 2 /3 

which both follow as derivatives from the stream function . We represent the two 
solutions by a contour plot. The velocity in the x direction is 

ContourPlot[u, {x, .01, 3}, {y, -3, 3}, PlotPoints .... 50, 

Contours .... 20, Colorl"unction .... Hue, AxesLabel .... {nxn, nyn}, 

Axes .... True] 
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y 

3 x 

The v-component of the velocity looks like 

ContourPlot[v, {x, .01, 3}, {y, -3, 3}, PlotPoints -+ 50, 

Contours -+ 20, Colorl!'unction -+ HUe, AxesLllbel -+ {ftxft, nyn}, 

Axe. -+ True] 

y 
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5.6.8 Drop Formation 

In this section we discuss the fonnation of drops by an axisymmetric model. A 
typical example of drop fonnation is shown in the pictures below. 

The figure of a single drop was taken from Eggers [1997]. Such a picture is observed 
if a drop hits a fluid surface. Drop fonnation is a common phenomenon in our daily 
world. Everybody knows the kinetics of rain drops if they hit the surface of a pond. 
An animation available in the notebook version of this book for a falling milk drop 
demonstrates the dynamic behind drop fonnation. Another animation showing the 
fonnation of a water drop illustrates that not only the drop itself is created but also 
secondary droplets. The pictures are taken from Perigrin et al. The laws behind this 
interaction has been the topic of research for the last 300 years. The interest in drop 
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formation is still growing because of its potential industrial application in 
technologies like ink jet printers, chemical mixing processes, fuel injection in 
engines, etc. The formation of a drop is mainly governed by two non-linear equations 
derived from the three-dimensional Navier-Stokes equation. 

We assume that the Navier-Stokes equation is a reasonable model to describe the 
drop formation. The Navier-Stokes equation for an axisymmetric column of fluid 
with kinematic viscosity T/, density p, and surface tension 'Y are given in cylindrical 
coordinates by 

Ut + UUr + VVr = -~ + T/(Urr + uzz +!!.!:... - -;-), p , , r r (5.67) 

pz ( Vr ) Vt+uvr+vvz=--+T/vrr+vzz +- -g, 
P "r 

(5,68) 

where U is the velocity in the radial direction, v is the velocity along the axis, and p is 
the pressure. The equations are given by Landau and Lifshitz [1987] in the volume on 
fluid mechanics. The continuity equation in cylindrical coordinates reads 

U 
Ur + Vz + - = O. 

r 
(5.69) 

In addition to these three equations, we have to satisfy boundary conditions 
controlling the free surface of the fluid: 

~ ~ ( 1 nlTn = -y - + 
RJ 

(5.70) 

and 

VlTt = O. (5.71) 

Here, IT is the stress tensor, n the outward normal, and R J and R2 are the principal 
radii of curvature (cf. figure below), The equation of motion for the height of the 
fluid neck h = h(z, t) is 

(5.72) 

In all the equations, subscripts refer to a partial differentiation with respect to the 
independent variables t, r, and z. The formula for the mean curvature (1/ R J + 

1/ R2 ) /2 of a body of revolution is known from differential geometry (cf. Gray 
[1993]), The geometrical relations are shown in the following figure: 
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z 

The mean curvature which is responsible for the capillary pressure is given by the 
relation (Garcia and Castellanos [1994]) 

(5.73) 

where E is a small parameter. The model equations (5.67)-(5.69) simplify 
considerably by expanding the velocity fields and the pressure into a power series in 
the radial direction. This expansion additionally allows the reduction from a 
two-dimesnional to a one-dimensional model. Keeping only the lowest-order radial 
dependence, we end up with the equations 

pz (1J(h2 vz )) z 
v,+vvz = P +3 h2 -g, (5.74) 

(5.75) 

where the pressure is given by (5.73) with E = 1. The detailed calculation of the 
approximation can be found in the paper by Eggers [1993]. Our interest here is the 
derivation of a solution for the velocity field v and the height of the fluid neck h in 
terms of similarity solutions. We first examine the model equations by Eggers with 
the complete pressure expression. Equations (5.74) and (5.75) are the starting point 
for our symmetry analysis. We first define the variables and the pressure by 

V=v[z, t]; H=h[z, t]; 

p = y ( 1 1/2 

H(1+(OzH)2) 

P / / LieTraditionalForm 
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( 1 hz, z 
)' hVl+h~ - (l+h~)3/2 

The equations of motion for the liquid jet are given by 

P B. (H2 B. V) 
eggers = {Bt V + V B. V + B. - - 3 TI + 1/1, 

P H2 

H a. V} 
Bt H + V B. H + --- / / Together / / Numerator; 

2 

eggers / / LTF 

-)' h z - 2 )' h; - )' h~ + h 2 P I/! VI + h~ + 2 h 2 P I/! h~ VI + h~ + 

h 2 P I/! h~ VI + h~ + h 2 P VI + h~ V t + 2 h 2 ph; VI + h~ V t + 

o 

h 2 p h~ vl-:;:-h1 V t + h2 V P VI + h~ V z - 6 h T] p h z VI + h~ V z + 

2 h 2 V P h; ~hI V z - 12 h T] ph; VI + h~ V z + 

h 2 V P h~ V 1 + h~ v z - 6 h T] P h~ VI + h~ v z - h )' h z hz, z - h )' h; hz, z + 

3 h 2 )' hz h~, z - 3 h 2 T] P VI + h~ v z ,z - 6 h 2 T] P h~ VI + h~ v z ,z -

3 h 2 T] p h! VI + h~ v z ,z - h 2 )' hz, z ,z - h 2 )' h~ hz, z, z 

2 h t + 2 v hz + h v z = = 0 

where p, y, .", and I/J denote the constant density, the surface tension, the kinematic 
viscosity, and the acceleration due to gravity, respectively. The infinitesimals of the 
equation follows by applying Infinitesimals[] to the equations: 

infiEggers = :Infinitesimals [eggers, {v, h}, {z, t}, 

{p, Y, TI, I/I}, SubstitutionRules-+ {a{ •• J) H, Bt H}]; 

infiEggers / / LTF 

¢, == k3 

¢2 == 0 

';, = = k2 + k3 t 

';2 == kl 

The result of the calculation is a finite three-dimensional point group. The 
symmetries of the group are translations in x and t, and a special subgroup denoted 
by k3 allowing a translation in v and a transformation of x connected with t. These 
symmetries do not allow a scaling solution of the original equations. The scaling 
solutions are today used to discuss the pinch of the drop. However, we can find such 
solutions by changing the representation of the pressure. 

The following calculations are based on the capillary pressure given by Garcia and 
Castellanos [1994] 
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P1 = ¥ ( ____________ 1 __________ _ 

(1+6H) (1+6 (a. H)2)"2 

P111 LieTraditionalForm 

6 a •. z H ) 

Following the considerations by Garcia and Castellanos, we assume first that the 
parameter E is a small quantity. This property recommends a Taylor expansion of the 
pressure around E = O. So we get an approximation of the capillary pressure for small 
E'S up to first order. To identify any correspondence of the following calculations 
with those carried out above, we set E = I in the expansion: 

p1 = (Series[P1, {6, 0, l}l II Normal) 1.6-+1 

,+, (-h[Z, t]- ~ h(l,O) [z, tl 2 _h(2,O) [z, tl) 

The pressure in this approximation is given mainly by a constant altered by 
geometrical terms linear in h, quadratic in the gradient of the height of the fluid neck 
h, and linear in the second derivative of h. Inserting this result into the equations of 
motion (5.74) and (5.75), we find the reduced set 

{ p1 a. (H2 a. V) 
model1 = at v+va. v+a. --371 +1/1, 

p H2 

Ha. v 
at H + V a. H + -----} I I Together I I Numerator; 

2 

model1 I I LTF 

h p Ij; - h ,hz + h p V t + h v p v z - 6 r; p hz v z - h ,hz hz, z - 3 h r; p v z , z 

- h ,hz,z,z == 0 

2 h t + 2 v hz + h v z = = 0 

which are much simpler than the original model. Surprisingly, the infinitesimals of 
this reduced model are the same as in the original model: 

inf1 =J:nfinitesimals[lIIOdel1, {v, h}, {z, t}, 

{p, ¥, 71, I/I}, SubstitutionRules-+ {a{ •• 3} H, at H}l; 

inf1 I I LTF 

¢1 == k3 

¢2 == 0 

~1 == k2 + k3 t 

~2 == kl 
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Thus, we observe that the change of the pressure for small values of E does not affect 
the symmetries of the original model. This is also true for higher-order 
approximations in E of p. The calculation is left as an exercise for the reader. 

Another expression for the capillary pressure follows if we assume that the parameter 
E is large. This limit can be achieved by replacing E with 1IA in formula (5.73). In 
Mathematica, we substitute 1IA for E and expand the resulting pressure formula 
around A = 0: 

Pl = ¥ ( 1 
(l+l/AH) (l+l/A (B, H)2)'/2 

1 I A B", H ) 

Plil LieTraditionalForm 

( h2) 3/2 
A 1+ T 

The Taylor expansion of the pressure in the limit E ~ 00 follows by 

p3 = (Series[Pl, {A, 0, l}] II Normal) I. A-+l; 

p3 I I LieTraditionalForm 

In this approximation, the pressure is given by a pure geometric term determined 
only by derivatives. This kind of approximation is similar to the Saffman-Taylor 
[1958] approximation and is also known as lubrication approximation. The equations 
of motion (5.74) and (5.75) in connection with the lubrication approximation are thus 
given by 

model 2 

p3 B, (H2 B, V) H B, V 
{Bt v + V B, V + B, - - 3 TJ + !/I, Bt B + V B, H + ---} I I 

P H2 2 

Together I I Numerator I I PowerExpand; 

mode12 I I LTF 

h p I/! h! + h p h~ v t + h v p h~ V z - 6 T7 P h; V z + 3 h ¥ h~,z - 3 h T) p h! vz,z 

- h ¥ h z hz, z, z = = 0 

2 h t + 2 v h z + h V z == 0 

The corresponding infinitesimals for this kind of model follows by 

inf3 = :Infinitesimals [mode12, {v, h}, {z, t}, 

{p, ¥, TJ, !/I}, SubstitutionRules-+ {B{"J) H, Bt H}]; 

inf3 I I LTF 
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rt>1 == k4 + 2 k5 (v + 3 t 1/1) 
31/1 

hk5 
--1/1-

2 k5 Z 
£1 == k2 + k3 + k4 t + k5 t2 -~ 

£2 == kl _ 4 k5 t 
3 1/1 

We clearly observe that the structure of the symmetries changed. The number of 
group parameters increased. The additional symmetries now allow a scaling solution 
of the equations. We also observe that the constant of gravity I/t determines the 
symmetry properties of the scaling transformation. The related group parameter of 
the scaling group is k5. 

Another method of approximating the capillary pressure taken from Eggers is the 
assumption that the spatial derivatives in p are small compared with the horizontal 
elongation h itself. This assumption can be realized in Mathematica by the following 
replacement: 

p4 = P /. Derivative [--1 [h1 [ __ ] -+ 0 

h[z, tj 

The two equations of motion simplify to 

p4 az (H2 az V) 
simplifiedEggers = {at V + v az v + az - - 3 77 + I/!, 

P H2 

H az v} at H + V az H + --- / / Together / / Nwnera tor; 
2 

simplifiedEggers / / LTP' 

h 2 P tJ; - y hz + h 2 P V t + h 2 V P V z - 6 h 17 P hz V z - 3 h 2 17 P v z , z = = 0 

2 h t + 2 v hz + h V z = = 0 

The symmetries of this set of equations follow by 

inf4 = l:nfinitesimals [simplifiedEggers, {v, h}, 

{z, t}, {p, ¥, 77, I/!}, SubstitutionRules-+ {atv, at H}l; 

inf4 / / LTF 

== k4 + 2 k5 (v + 3 t 1/1) 
rt>1 3 1/1 

4 h k5 
-~ 

2 k5 Z 
£1 == k2 + k3 + k4 t + k5 t 2 -~ 

£2 == kl _ 4 k5 t 
31/1 
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The result is again a five-dimensional finite group containing translations kl, la, kJ, 
and k4, and a scaling symmetry given by k5. The scaling symmetry depends on the 
gravity acceleration 1/1. This set of symmetries is isomorphic to the infinitesimals inf3. 
The difference between the two models however is the pressure in the equations. Let 
us first examine the solution of the equations connected with the symmetry of 
translation. A subgroup of translations is given by the infinitesimals 

infi1 = {{xi [1] [z. t, v, h], xi [2] [z, t, v, h]}, 

{phi [1] [z. t. v, h], phi [2] [z. t, v, h] }} /. inf4 /. 

{k1 ... 1, k2 ... c. k3 ... 0, k' ... 0, kS ... O} 

{{c, l}, {O, O}} 

The corresponding similarity reduction of the original equations follows with 

red1 = Lieaeduction[simp1ifiedEggers, 

{v. h}, {z, t}, infi1[[1]], infi1[[2]]]; 

LTP[Platten[redl]] I. zetal ... '1 
_-ct+z_S1==0 

c 
v - Fl == 0 
h - F2 == 0 

c 2 P 1/1 F~ + c 2 P F~ (F1 ) " - c P Fl F~ (F1 ) &, + 

cy (F2 )!:'1 -617PF2 (Fd" (F2 )" -317PF~ (Fd"", 

o 
-F2 (F1 ) " + 2 C (F2 )" - 2 Fl (F2 )" == 0 

The similarity solution of the equations including gravity is given by a moving wave 
solution. Examining the second equation of the reduction, we realize that a special 
solution of this equation is a constant. Inserting this kind of solution into the reduced 
equations, we get 

rode = red1[3] /. PI ... I'unction[zeta1, 0] 

{c2 pI/1F2[zetalj2 +cyF2'[zetalj ==0, True} 

The two equations simplify to a single first-order ODE which allows the solution 

.1 = DSolve [rode [Ill , P2, zeta1] / / Platten 

A special set of solutions is thus 
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h 
3 
2 
1 

-3 -2 -
-1 
-2 
-3 

h 
3 
2 
1 

3 2 1 
-1 
-2 
-3 

h 
3 
2 
1 

-3 -2 -1 
-1 
-2 
-3 

AppendTo[sl, 1'1-+ l'unetion[zetal, e]]; sl 

{F2 --> (C#lPJ-C[ll &), Fl-->Function[zetal, cl} 

It is obvious from the formula above that the fluid neck becomes infinite if 
~ = C[1] / (cpt{l). In the original variables, the solution reads 

soll = redl[2] /. sl / / Simplify 

{v==c, h+ -ctP!/r+:P!/r+C[ll ==o} 

where C[l] is a constant of integration. If we insert for the parameters y, c, p, t{I, and 
C[l] numeric values, we are able to plot the solution. The following animation shows 
the movement of the singularity of h along the z-axis while the time is changed from 
o to 2.5 in steps of 0.1. 

Do[Plot[-
y 

/. 
-etpl/l+zpl/l+C[l] 

{y-+l, e-+2, p-+l, 1/f-+9.81, C[1]-+10, t-+ti}, 

{z, - 3, 5}, PlotStyle -+ RGBColor [0, 0, 1], 

PlotRange -+ {{ - 3, 5}, {- 3, 3}}, AxesLabel -+ {R Z II , IIbR}], 

{ti, 0, 2.5, .1}] 

h h 
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2 
1 

z z z 
1 2 3 4 5 2 3 4 5 -3 -2 -1 2 3 4 5 
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h h 
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1 1 
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h h 
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2 2 
1 1 

z z z 
1 2 4 5 -3 -2 -1 1 2 3 5 -3 -2 -1 1 2 3 

-1 -1 
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-3 -3 
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This sequence of pictures shows us that under a translation invariance of equations 
(5.74) and (5.75), a singularity of the height h of the fluid neck moves from the left to 
the right. It is essential that the singularity in h exist from the beginning to the end. 
The structure of the solution is not changed during the evolution in time. If we look at 
the analytic expression of the solution, we realize that gravity seems to be an 
essential component to create the singularity. To study the influence of the gravity 
constant I/t on the solution, let us examine the simplified equations of motion without 
gravity. The reduced equations of motion are 

modelWithoutGravity = simplifiedBggers I. 1/1-+ 0; 
modelWithoutGravity I I LorI' 

-y h z + h 2 P V t + h 2 V P V z - 6 h 17 P h z V z - 3 h 2 17 P v z, z == 0 

2 h t + 2 v hz + h V z == 0 

The infinitesimals of this simplified model follow from 

inf5 = :Infinitesimals [modelWithoutGravity, {v, h} I 

{ZI t}, {P, ¥, 77}, SubstitutionRules-+ {BtV, Bt H}]; 

inf5 II LorI' 

cPl == k2 - k4 v 

cP2 == 2 h k4 
{;l == k3 + k2 t + k4 Z 

{;2 == kl + 2 k4 t 

The four-dimensional symmetry transformation contains a scaling symmetry, 
translations in z and t, and a special symmetry related to k2. Let us first examine the 
moving wave solution corresponding to the translational invariance, The related 
infinitesimals of the symmetry group are 

infi2 = {{xi [1] [ZI t, V, h] I xi [2] [ZI t, V, h] } I 

{phi [1] [ZI t, V, h] I phi [2] [ZI t, V, h] }} I. inf5 I. 
{kl -+ 1, k2 -+ 0 , k3 -+ Cl , k' -+ O} 

{{c, l}, {O, O}} 

The reduction of the equations of motion without gravity follows from 

red2 = LieReduCltion[modelWithoutGravitYI 

{VI h}, {ZI t}, infi2[[1]], in£12[[2]]]; 

(red2 I I Flatten I I LTF) I. zetal -+ &1 

_ -c t + z _ rl == 0 
c 

v - Fl == 0 
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h - F2 == 0 

C2 PF~ (F i )Sl -CpF i F~ (F i )Sl + 

C Y (F 2 ) Sl - 6 1) P F 2 (F 1 ) b1 (F 2 ) Sl - 3 1) P F~ (F 1 ) Sl ,Sl 

o 
-F2 (F, ) '" + 2 C (F2 ) '" - 2 F, (F2 ) Sl == 0 

We again realize that the second equation is solved with FI = c, meaning that the 
velocity field v is a constant. Inserting this solution into similarity reduction, we find 

red3 = red2[3] /. F1 ... Function [zeta1, c]; 

(red3 / / LieTraditiona11!'orm) /. zeta1 ... ~1 

{cyF2 s1 == 0, True} 

The remaining first-order ODE is solved by 

81 = DSolve[red3[1], F2, zeta1] 

{ {F2 -7 (C [ 1] &) } } 

Thus, the height of the fluid neck remains a constant during the evolution. The 
mathematical result in physical terms means that a column of fluid of height h 
moving with a constant velocity a without any influence of gravity remains in the 
same initial state forever. Thus, the shape of the fluid column does not change. In 
conclusion, the singularity of h in the previous model is, in fact, generated by gravity. 
The examination of the other symmetry reductions are left as exercises for the reader. 

5.6.9 The Rayleigh Particle 

The Rayleigh particle is similar to the Brownian particle. The difference between the 
two species is that the Brownian particle has a constant velocity, whereas the 
Rayleigh particle is characterized by the macroscopic law for the velocity V in the 
form of the damping law 

V = -yV. (5.76) 

We assume that V is not too large. The Fokker-Planck (FP) equation related to the 
Rayleigh particle is discussed by Van Kampen [1981]. The equation of motion for 
the probability density P reads 

Clear[P, V]; 

rayleigh = atP[V, t] _"( (av (VP[V, t]) + kTa{V.2~p[V' t] ) == 0; 

rayleigh / / LT!' 

( k T P ) Pt - Y P + V Pv + M V,v == 0 
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This linear equation for the probability density P depending on the velocity V and 
time t describes a damped particle of mass M at a temperature T. The constants y and 
k are the damping parameter and the Boltzmann constant, respectively. The 
independent variables in the equation can be scaled in such a way that the equation is 
free of any parameters [T = yt and v = V (m/(kD)1/2]. The scaled equation is given 
by 

rayleigh = o.P[v, 1:]- (ov (vP[v, 1:]) + O(v.2} P[v, 1:]) == 0; 

rayleigh / / LTF 

-P - v Pv + P" - Pv,v == 0 

This type of equation was examined by Cicogna and Vitali [1990]. We reproduce 
their results to demonstrate that the structure of the infinitesimals can be quite 
different from a polynomial and that MathLie is capable of finding these symmetries 
automatically. The infinitesimals read 

infirayl = l:nfinitesimals [rayleigh, {P}, {v, 1:}]; infirayl / / LTF 

'TI +v ('Td v - (rd" + ('Tdv,v == 0 

~I == E-" kl + E" k2 + ~ E- 2 " (k3 +E4 c k5) v 
2 

~2 == - ~ E- 2 " k3 + ~ E2 " k5 + k6 
2 2 

<PI == ~P (_E-2"k3+2k4-2E"k2v-E2"k5v2) +'Tl 
2 

The symmetry group is given by a six-dimensional discrete group and an infinite 
dimensional group determined by the function freer 1] satisfying the original 
Fokker-Planck equation. The structure of the infinitesimals illustrates that MathLie is 
capable of deriving non-polynomial results. 

The infinitesimals can be used to derive solutions of the FP equation. A simple 
solution is derived for the subgroup kl = 1 and k2 = 1; the other constants are set to 
zero. The infinitesimals for this subgroup reduce to 

inf1 = {{xi [1] [v, 1:, P], xi [2] [v, 1:, P]}, 

{phi [1] [v, 1:, P]}} /. infirayl[l] /. 

{k1-+ 1, k2 -+ 1, k3 -+ 0, k4 -+ 0, kS -+ 0, k6 -+ 0, free[l] [ __ ] -+ O} 

{{E-"+E". O}, {-E"Pv}} 

The corresponding similarity reduction of the FP equation follows from 

red1 = LieReduction[rayleigh, {P}, {v, 1:}, inf1[1], inf1[2]]; 

LTF [Flatten [red1]] /. zeta1 -+ ~1 
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£2 t v2 

E~ P - F 1 == 0 
£2 ~1 v2 

E~ ( - Fl + ( F d" + E2s1 ( F d s1 ) == 0 

We realize that the similarity variable is given by the temporal variable T. The 
resulting fIrst-order ODE containing analytic coefficients is solved by DSolve[]: 

8o~r1 = DSo~ve [-F1 [zeta1] + F1' [zeta1] + Zl zeta1 F1' [zeta1] == 0, 

F1, zeta1] 

The solution of the FP equation in original coordinates results by inverting the 
similarity representation derived above: 

.o~1 = So~ve [red1[2, 1D /. so~r1, P] / / Simp~ify 

A picture for a fIxed value of the constant of integration C[l] is shown below. The 
figure demonstrates that the probability density P has a single maximum in the 
velocity domain. The amplitude of the probability density increases with increasing 
time. 

P~ot3D[P /. so~1[1D /. C[1] -+ 1, {v, -3, 3}, {t:, -2, 2}, 

Axe8Labe~ -+ {"v", ".:", ·P"}] 

p 
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A second solution with similar properties develops from the subgroup 
kl = k2 = k4 = 1. The corresponding infinitesimals are 

infl = «xi [1] [v, t:, P] , xi [2] [v, t:, P]}, 

(phi [1] [v, t:, P]}} I. infiray1[1] I. 
(kl-+ 1, k2 -+ 1, k3 -+ 0, k4 -+ 1, k5 -+ 0, k6 -+ 0, free [1] [ __ ] -+ O} 

{ {E~" + E", O}, {~ P (2 - 2 E" v) } } 

The similarity reduction of the FP equation is gained with 

red2 = LieReduction[ray1eigh, (P}, (v, t:}, infl[l], infl[2]] 1 

LT.,[.,latten[red2]] I. zetal-+ '1 
El: v E21: v 2 

E-~+~ P-F1 == a 
-Fl - 2 E2 i:1 Fl + (F1 ) i:1 + 2 E2 i:1 (F1 ) i:1 + E4 i:1 (F1 ) i:1 == 0 

Again the similarity variable is T. The similarity representation of the solution 
combines an unknown function Fl with an exponential depending on the velocity v 
and time T. The related fIrst-order ODE which Fl has to satisfy determines the 
similarity solution: 

.01r2 = DSo1ve[red2[3, 1], .,1, zetal] 

This solution reads, in original variables, 

8012 = Solve [red2[2, 1] I. 801r2, P] /I Sim,p1ify 

e[l] }} 

The plot of the solution shows that, contrary to the previous group, a small difference 
exists. The difference occurs for larger positive velocities and negative times T. In 
this region, the probability density has a non-vanishing value. 

P10t3D[P I • • 012[1] I. C[l] -+ 1, (v, -3, 5}, {t:, -2, 2}, 

Axe.Labe1-+ ("v", "t:", "Pft}, P10tPoint. -+ 25] 
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p 

A quite different solution of the FP equation follows if we set k5 = k6 = 1. The rest of 
the group parameters are set to zero. The similarity variable for this subgroup is a 
combination of the velocity v and the time i. The infinitesimals are 

infl = {{xi [1] [v, "C, P], xi [2] [v, "C, P]}, 

{phi [1] [v, "C, P]}} / . infirayl[l] /. 

{k1 .... 0, k2 .... 0, k3 -+ 0, k4 -+ 0, k5 -+ 1, k6 -+ 1, free[l] [ __ ] -+ O} 

{ { 1 2 , E2 ' } { 1 2 , 2 } } 2 E v ,1+-2- ' - 2 E P v 

The similarity reduction of the original equations displays that the similarity solution 
for P is given by a function Fl which now has to satisfy a second-order equation: 

red3 = LieReduction [rayleigh, {P}, {v, "C}, inf1[1], inf1[2]] ; 

LTl" [Flatten [red3]] /. zeta1 .... '1 
Solve: : tdep : 

The equations appear to involve transcendental functions 
of the v ariables in an essentially non-algebraic way . 

v' 
E -'- P - F l == 0 

- hl (2 Fl" + 2 Fl" hi + hi Fl" ." ) == 0 
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The second-order ODE is identified by DSolve[] as 

80l.r3 = DSol.ve[red3[3, lD, Fl, zetal] 

{ { F1 -> (c [ 2 1 - ~ -..fir c [ 1] Er fi [ #11 1 &) }} 

The result contains the special function Erfi[] which gives the imaginary error 
function erfi(z). In original variables, the result reads 

80l.3 = Sol.ve[red3[2, lD I . 80l.r3, P] II Simpl.ify 

The plot of this function demonstrates that the probability density is localized along a 
fixed axis parallel to the time axis. However, there are small variations in the velocity 
direction. 

Pl.ot3D[P/ . 80l.3[lD I. {C[l] -+1, C[2] -+1/2}, {v, - 3, 5}, 

{t:, -2, 2}, Axe8Label. -+ {"v", "t:", "P"}, Pl.otPoint8 -+ 25] 

Another non-trivial similarity reduction for the FP equation follows from the 
subgroup k3 = 1. The infinitesimals for this subgroup read 
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infl = {{xi [1] [v, 1:, P], xi [2] [v, 1:, P]}, 

{phi [1] [v, 1:, P]}} I. infirayl[lD /. 

{kl-+ 0, k2 -+ 0, k3 -+ 1, k4 -+ 0, k5 -+ 0, k6 -+ 0, free [1] [ __ ] -+ O} 

The reduced FP equation represents a second-order ODE. The similarity variable 
zeta} combines the time T and the logarithm of the velocity v: 

red4 = LieReduction[rayleigh, {P}, {v, 1:}, infl[lD, infl[2D]; 

LTI'[l'latten[red4]] /. zetal-+ ~1 

Solve: : tdep : 
The equations appear to involve transcendental functions 

of the variables in an essentially non-algebraic way. 

L + Log [v] - Sl == 0 
PV-Fl == 0 

_E 3 c (2Fl-3 (Fd b1 + (Fdb1,bl) ==0 

The solution of the second-order ODE is a combination of two exponentials 

solr4 = DSol ve [red4 [3 I lD I 1'1, zetal] 

In the original coordinates, the solution is linear in v and increases exponentially in 
time: 

so14 = Solve [red4[2, lD I. solr4, P] II Simplify 

{ {P -4 E C (C [1] + E C v C [2 J ) } } 

The solutions derived from different subgroups of the FP equation demonstrate that it 
is straightforward to uncover solutions with MathLie for a (1 + I)-dimensional PDE. 

5.6.10 Molecular Beam Epitaxy 

Before discussing a detailed analysis of the growth equations of molecular beam 
epitaxy (MBE), let us describe the main relevant microscopic processes taking place 
on a crystal interface. The morphology of the interface is determined by the interplay 
among deposition, desorption, and surface diffusion. The term deposition means the 
sticking of an atom on the surface if it arrives from vapor. Crystals grow by atomic 
deposition. Desorption is the reverse effect, competing with deposition. Under 
desorption, we understand that atoms deposited on the surface leave the interface. 
When an atom is deposited on a surface, it forms bonds that must be broken before 
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desorption can occur. If only some of the bonds are broken, the atom gains the ability 
to move on the surface. From a microscopic point of view, surface diffusion is an 
activated process. The discrete positions of the atom are detennined by the crystal 
lattice. For an atom on the surface to diffuse to the next lattice position, it must 
overcome the lattice potential existing between two neighboring positions. This 
excess energy required for diffusion is the microscopic origin of the lattice potential. 

The physical mechanism that governs MBE is the surface diffusion of the deposited 
particles. For the moment, we assume that desorption is negligible. So we consider 
the scenario of atoms deposited on a surface, whereupon they diffuse. The goal is to 
find an equation for the fonn 

at a(x, t) = F(a, x, t) (5.77) 

that describes the variation in the interface amplitude a(x, t). Diffusion processes are 
directly connected with a macroscopic current. The local changes in the surface 
height are the result of the currents along the surface. Since we neglect desorption, 
the total number of atoms remains unchanged during the diffusion process and the 
current must obey a continuity equation: 

ata(x,t) = -div(7(x,t»). (5.78) 

On the other hand, the surface current is driven by the difference in the local 
chemical potential 7 - grad(Jl(x, t)). As we already mentioned, the diffusion is an 
activated process. The motion of an atom depends on the number of bonds that must 
be broken. The more neighbors an atom has, the lower the mobility. A measure of 
mobility is the local radius of curvature T. A simple assumption is that the chemical 
potential is proportional to -1/ T, which, in tum, is proportional to div(grad(a(x, t))). 
Hence, Jl- -ila(x, t), where il denotes the Laplacian. Combining the arguments 
given, we end up with the equation 

ata(x, t) + K V4 a(x, t) = O. (5.79) 

In MBE experiments, we have, on the other side, a flux ¢ = ¢(x, t) of atoms 
bombarding the surface. The flux is defined as the number of particles arriving on the 
unit surface in a unit time. At large length scales, the beam is homogeneous with an 
average intensity ¢. Thus, the growth equation incorporating surface diffusion and 
deposition has the form 

(5.80) 

The growth equation incorporating statistical fluctuations in the flux was originally 
introduced independently by Wolf and Villain [1990] and Das Sarma and 
Tamborenea [1991]. Since we are only interested in the detenninistic behavior of the 
model, we suppress the noise in the equations. If we now include the process of 
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desorption, we can write down a linear model for MBE. Let us assume with Villain 
that the desorption-dominated growth of the surface is governed by the difference 
between the average chemical potential in the vapor J1 and the local chemical 
potential on the surface J.l(x, t). Thus, the temporal change in the amplitude a is given 
by - f3(J.l(x, t) - JI). The complete deterministic model including deposition, 
desorption, and surface diffusion now reads 

(5.81) 

Apart from the beam flux ifJ, we incorporated an additional flux f3p. Both terms can be 
abbreviated by <I> = ifJ + f3 71: 

(5.82) 

This equation contains all physically relevant linear terms describing the growth of 
interfaces by MBE. The competition between the diffusion and desorption processes 
will determine the growth of the surface. The parameters K, a, and <I> are assumed to 
be real and positive. 

Another aspect to be considered in MBE is the influence of non-linearity. 
Non-linearity comes into play if we consider large domains in space. For such cases, 
the small gradients in a are not negligible. The corresponding terms of second- and 
third-order non-linearity are incorporated in the growth equation, which now reads 

ata(x, t) + K V4 a(x, t) = 
a V2a(x,t) + <I> +yV2(Va(x,t»2+ AV.(Va(x,t))3, 

(5.83) 

where we kept terms up to the fourth order in ax. To gain some insight into the 
dynamic of this model, let us first examine the symmetries of the one-dimensional 
version. For this case, equation (5.83) reduces to a (1+ I)-dimensional expression. 
The related equation for the amplitude 

A = a [x, t]; 

reads in Mathematica 

nMBE = 
atA+ Ka(x.4)A -aa(x.2)A - ya(x.2) (ax A)2 -A.ax (ax A)3 -!Ii == 0; 

nMBE / / LTI' 
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where K, a, y, <1>, and A are real constants. The symmetries for this general non-linear 
model follow by 

inKBE = l:nfinitesimals[nKBE, a, {x, t}, {K, a, .A, ¥, ~}]; 

inKBE / / LTF 

rih == k1 

';, == k2 

';2 == k3 

representing a three-dimensional group containing only translations. The reduction of 
this O+l)-dimensional model to an ODE follows by 

red1 = LieReduetion[nMBE, {a}, {x, t}, {1, e}, {1}]; 

LTF [Flatten [red1] 1 /. zeta1 -+ ~1 

t - c x - Sl == 0 

a - x - F, == 0 

-g? + F1!:1 - c 2 a F1!:1 ,i:1 - 3 c 2 .it F1i:1 ,!:, + 

6 c 3 .it F1" F1 c1 ,!:1 - 3 c 4 .itF1~, F1!:1,s1 - 2 c 4 ,F1~,,!:1 + 

2 c 3 ,F1s1 ,s1,s1 - 2 c 4 ,F1s1 F1s1 ,b1,i:1 + c 4 KF1i:l,bl,bl,!:1 

o 

describing a moving wave solution governed by a non-linear fourth-order ODE. This 
reduced equation can be integrated once: 

Clear[H] ; 

intMBE = J (red1[3, 1, 1]) dlzeta1 == C [1] /. {F1 -+ H, zeta1 -+ ~}; 

intMBE / / LTF 

H - S g? - C [1] - c 2 (a + 3 .it) Hi: + 3 c 3 .it H~ - c 4 .it H~ - 2 c 3 , (-1 + C Hs ) 

Hcs + c 4 K Hb,b,' == 0 

The symmetries of the resulting third-order ODE are 

infinirMBE = l:nfinitesimals [intMBE, H, ~, 

{a, K, ¥,.A,~, e, C[l]}, SubstitutionRules-+ {a{l:.3}H[~]}]; 

infinirMBE / / LTF 

cp, == k1 g? 

';, == k1 

The result shows that the reduced equation following from the general model is not 
solvable by Lie's method, 
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In the following, we will discuss two limiting models, including surface diffusion in 
connection with non-linearity and desorption with non-linearity. Both models include 
a tenn describing deposition. 

5.6.10.1 Suiface Diffusion with Nonlinearity 

If we choose in the general model (5.83) a = 0 and A = 0, we get a model including 
only surface diffusion and quadratic non-linearity in the gradient of a. The equation 
of motion reduces to 

m811B1!: = nIIBB /. {a ... 0, .A ... O}; m811B1!: / / L'l'r 

-111 + at - Y (2 a~,x + 2 ax ax,x,x) + K ax,x,x,x == 0 

The symmetry group of this special model 

m8infi = I:nfinitesi_ls [m811B1!:, a, {x, t}, {x, ¥, II}]; 

m8infi / / L'l'r 

</!1 == k1 + k4 t 111 
k4 X 

~1 == k2 + -4-

~2 == k3 + k4 t 

contains translations and a scaling. Let us examine the scaling group 

infi = {{xi [1] [x, t, a], xi [2] [x, t, a]}, 

{phi [1] [x, t, a]}} /. m8inH /. 

{kl ... 0, k2 ... 0, k3 ... 0, k4 ... 1} 

{{~,t},{t1l1}} 

This kind of infinitesimals reduce the original equation to a fourth-order ODE: 

redl = LieReduction[mBlIBB, {a}, {x, t}, infi[lJ1, infi[2J1] I 

L'l'r[rlatten[redl]] /. zetal ... '1 
t 

X4 - r1 == 0 

a - t 111 - F1 == 0 

F1!:1 + 840 K F1!:1 r 1 - 1760 Y F1~, rf + 3120 K rf F1!:1,!:1 -

o 

3200 Y F1" ri F1,1", - 512 Y ri F1~, ,!:, + 1920 K ri F1" ," ," -

512 Y F1C1 rf F1C1 ," ,1:, + 256 K ri F1c1 ,!:, ,1:, ,1:, 

Interestingly, the resulting ODE does not contain the flux tenn 4>. This tenn is 
completely separated in the similarity representation of the solution by 
a = 4> t + F) (t / x4 ). The unknown function F) has to satisfy the fourth-order ODE, 
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which cannot be solved symbolically. However, we can derive a numerical solution if 
we add four initial conditions to the ODE: 

neq = Join[redl[3D, 

{Fl[l] ==1, Fl' [l] ==0, Fl"[l] ==3/2, Fl(3) [1] ==-10}] /. 

{y -+ 1}; 

The numerical solution for a fixed value of y and nine different values of K follows by 
applying NDSolve[] to the equations 

nsol = 

Table[NDSolve[neq/. K-+i, Fl, {zetal, 1, lS}], {i, .2,1, .1}]; 

These solutions are plotted below. 

color = Table[RGBColor[i, 0.1, 0.3], {i, .2,1, .1}]; 

Plot [Evaluate [Fl ['I /. nsol], {" 1, 6}, PlotStyle -+ color, 

AxesLabel-+ {",n, "Fl "}] 

If we, on the other hand, fix the value of K and vary y, we can examine the influence 
of y on the solution 

neq = Join[redl[3], 

(Fl[l] == 1, Fl' [1] == 0, Fl" [1] == 3/2, Fl(3) [1] == -10}] /. 

{K -+ 1}; 

nsol = 

Table[NDSolve[neq/. y-+i, Fl, {zetal, 1, lS}], {i, 1, 5, 1}]; 

The resulting solutions are shown in the following plot: 

Plot [Evaluate [Fl ['I /. nsol], {" 1, 6}, Plot Style -+ color, 

AxesLabel-+ {",., "F l "}] 
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6 

We realize that the influence of the non-linear terms represented by y increases if y 

increases. The given solutions are by no means complete. We only get a caricature of 
the solution manifold by a numerical solution. However, for some practical 
applications, this solution may be sufficient to solve a specific problem. 

5.6.10.2 Desorption with Non-linearity 

The general model of MBE reduces to a model containing only effects of desorption 
and deposition if we set the constants K and y equal to zero: 

1113MB!: = nMB!: I. {K'" 0, y ... oJ; 1113MB!: II LTF 

The equation of motion is a non-linear second-order PDE with a constant flux ~ 
responsible for deposition. The equation of motion is connected with a non-linear 
diffusion equation including convective effects of the material in addition to the 
diffusive effects. The symmetries of this equation follow by 

m3infi = :Infinitesimals [1113MB!:, a, {x, t}, {a, A, ~}]; 

1113infi II LTF 

$1 == k3 + k4 (a + t iii) 
iii 

k4 x 
';1 == kl + -ili-

';2 == k2 + 2 k4 t 
iii 

describing a four-dimensional finite group with scaling and translation symmetries. 
We observe that the constant flux ~ is connected with the scaling symmetry. We will 
examine the solutions for the non-linear deposition model for this symmetry. The 
infinitesimals for the scaling subgroup read 



infi = {{xi [1] [x, t, a], xi [2] [x, t, a]}, 

{phi [1] [x, t, a]}} /. m3infi / • 

{kl~O, k2~0, k3~0, k4~1} 

The corresponding reduction follows from 
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redl = LieReduction[m3MBE, {a}, {x, t}, infi[lD, infi[2D]; 

LTP [Platten [redl]] /. zeta1 ~ '1 
~ - Sl == 0 
x 2 

-a + t iI? 
~-x~~ - F, == 0 

(F, ) Sl - 2 cx Sl (F, ) Sl - 6 A Fi Sl (F, ) Sl + 24 A F, si (F, ) ~, -

24ASi (Fd~, -4cxsf (Fdc,Sl -12AFi si (Fd s1 ,Sl + 

48 A F 1 si (F 1) Sl (F 1 ) Sl , Sl - 48 A sf (F 1 ) ~, (F 1 ) Sl ,1:, = = 
o 

In the similarity reduction, the flux <I> is separated from the similarity function F J • 

This function has to satisfy a non-linear second-order ODE which is not symbolically 
solvable by DSolve[]. The examination of the symmetry reveals that this equation 
does not allow any point symmetry and thus Lie's integration strategy terminates: 

I:nfinitesimals [redl[3D, 1'1, zetal, 

{.A, a}, SubstitutionRules -+ {l'{ •• tal,2} 1'1 [zeta1] }] / / 

LTP 

<P1 == 0 
';, == 0 

The only way to study the equation is a numerical integration. Adding initial 
conditions to the second-order ODE and fixing the parameters, 

neq = Join[redl[3D, {Pl[l] ==1,1'1'[1] ==1/2}] /. {.A-+l}; 

allows us the numerical integration. We first fixed A describing the non-linear 
influence in the equation and changed a over a large range: 

nsol = Table[NDSolve[neq /. a-+i, 1'1, {zetal, 1, 15}], 

{i, 1, 50, 10}]; 

The resulting solutions for different a and identical initial conditions are plotted 
below. 

plot [Evaluate [1'1 ['] /. nsol] , 

{" 1, 15}, PlotStyle-+ Table[Hue[i], {i, 0, .5, .1}], 

AxesLabel -+ {n '", "F1 n}] 
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We observe that the solution shows an increasing behavior in {. By increasing the 
dispersive strength a in the ODE, the solutions decrease in their values and tend to a 
limiting curve. The other behavior studied under identical initial conditions is the 
variation of the non-linear strength A at a fixed value of a. The equations plus initial 
conditions are created by 

n.q = Join[r.d1[3D, {P1[l] ==1, P1' [l] ==lt2}] t. {a-+1}; 

The variation of A in the integration process delivers the solutions 

n80l = Tabl.[NDSolv.[n.q t. A .... i, Pl, {z.tal, 1, IS}], 

{i, 1, SO, 10}]; 

which are plotted over {by 

Plot [Evaluat. [Pl ['] t. n80l] , 

{" 1, 1S}, PlotStyl ..... Tabl.[Hu.[i], {i, 0, .S, .1}], 

Ax •• Label -+ { .. ,n, "P1 n}] 
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We observe again the same behavior as in the case of the a variation. However, the 
decrease in the solution is much smaller by changing the strength of the non-linearity. 

5.6.11 The First Atomic Explosion 

In March 1950, Sir Geoffrey Taylor [1950] published two papers which examined the 
first atomic explosion in 1945 in New Mexico. The author concludes that a similarity 
analysis of the experiment is in excellent agreement with the theory and can be used 
to calculate the energy release during the explosion. The information on the total 
release of energy was a well guarded secret of the U.S. government in these days. 
The paper by Taylor was therefore classified when the theoretical investigations were 
made. However, the publication 5 years later resolved this secret and made the results 
on energy release public contrary to the intention of the U.S. government. The results 
on the energy release caused much embarrassment in American government circles. 
The flaw of the government was that motion pictures recorded by Mack [1947] 
became unclassified while the energy release was considered top secret. These 
pictures contained not only the explosion but also a time record which allowed an 
estimation of the physical quantities. 

How such an estimation can be carried out is the subject of the present example. 
First, let us recall the sequence of pictures which were used by Sir Geoffrey Taylor to 
carry out the calculations. We took these pictures from the work of Taylor [1950]. 
They demonstrate the evolution of the blast in the first 2 ms. The animation 
capabilities of Mathematica empower us to follow the explosion at the desk. 
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The main observation we make is that the thermal wave expands from a point to a 
spherical object. The motion of the gas was assumed spherically symmetric. This 
simplifying assumption received excellent confirmation in the first atomic test. 

The picture 15 ms after the explosion looks like a very large mushroom. This 
photograph of the fire ball of the atomic explosion in New Mexico confirms the 
spherical symmetry of the gas motion in an excellent way. 

c:roUII(' 

1114 1 trl . 

The development of the gas after 127 ms is still nearly spherical. However, the region 
near the ground is more disturbed. 
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The pictures above were taken from G.I. Taylor and originally recorded by Mack in 
1945. Sir Geoffrey Taylor used in his theoretical considerations three basic equations 
of motion describing the evolution of the pressure p, the density p, and the radial 
velocity u. The three equations are the equation of continuity, the Euler equation for 
the velocity, and the equation of state for a polytropic medium. The third equation 
expresses the fact that the entropy is constant along the path of a particle which 
generally is not the case, as Courant and Friederichs [1948] remark. According to the 
spherical symmetry of the problem Taylor used only the radial component of these 
quantities. The three equations of motion for the density p, the velocity field u, and 
the pressure pare 

Pt + U Pr + P (ur + 2:) = 0, 
Po Pr 

Ut + U Ur + -- = 0, 
P 

(p p-Y)t + U (p P-Y)r = O. 

In Mathematica we first define the three variables by 

U=u[r, t); Rh=p[r, t); P=p[r, t); 

The left-hand side of the three equations of motion are then collected in a list: 

taylor = {at Rh + U a .. Rh + Rh (a .. u + 2rU), 

pO a .. p 
atu+uo .. u+ , Ot (PRh-l') +UO .. (PRh-l')}; 

Rh 
taylor II L'1!'B' 

p ( 2r U + u r ) + U P r + Pt == 0 

pO Pr + U U + U == 0 
P r t 

p-y Pt + U (p-y Pr - P ¥ p-l-Y Pr) - P ¥ p-l-Y Pt == 0 

(5.84) 

(5.85) 

(5.86) 

The equations contain two parameters, y and Po, describing the ratio of the specific 
heats and the pressure of the undisturbed atmosphere. A symmetry analysis of these 
equations gives us the result 

itaylor = J:nfinit •• imal.[taylor, {p, u, p}, {r, t}, {pO, ¥}, 

Suh.titutioDltul ...... {atp[r, t), atu[r, t), atp[r, t]}); 

itaylor II L'l'1' 

4h == (2 k2 - 2 k3 - k4) p 

4>2 == (-k2 +k3) U 
4>3 == -k4 P 

~l == k3 r 

~2 == kl + k2 t 
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The three equations permit a four-dimensional discrete symmetry group. The main 
symmetry is a scaling symmetry for all variables. In addition, there is a symmetry of 
translation in time. For the moment, we concentrate on the scaling symmetry with 
infinitesimals for the independent and dependent variables: 

infl = {{xi [1] [r, t, p, u, p], 

xi [2] [r, t, p, u, p]}, {phi [1] [r, t, p, u, p], 

phi [2] [r, t, p, u, p], phi [3] [r, t, p, u, p]}} /. itaylor /. 

{kl .... 0, k2 .... 1, k3 ... a, k4 ... o} 

{{ra, t}, {(2-c-2a) p, u (-l+a), -cp}} 

The group parameters are chosen in such a way that we can find the parameters a and 
c in accordance with the measurements carried out by Taylor. The reduction of the 
equations of motion follows by 

rtaylor = LieReduotion[taylor, 

{p, u, p}, {r, t}, infl[lD, infl[2D] II PowerExpand; 

L'l'F [Flatten [rtaylor]] /. zetal ... '1 
Solve: : tdep : 

The equations appear to involve transcendental functions 
of the variables in an essentially non-algebraic way. 

2-c-2 a 
r--a- p - Fl == 0 

-1+0: 
r--a-u-F2 ==O 

p rei" - F3 == 0 

o 

o 

o 
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Thus, the original equations reduce to a coupled system of first-order ODEs. This set 
of equations contains the new variable zetal = r- 11a t, where tl is a constant. This 
constant is determined by the radial coordinate r and the time t. To determine the 
exponent a in our analysis, we use the measurements of Taylor for the radius rl of 
the explosion front. Since (I = t r- 11a is a constant, we can determine the exponent a 

in a double logarithmic plot of the radius r 1 versus time log(r 1) = 
(log(t) -log«(I» / a. The slope in the log-log plot is directly related to lIa. The data 
we need for this kind of analysis are tabulated in Taylor's paper and are reproduced 
here. The first figure of the data set denotes time in seconds and the second the radius 
in meters: 

tay10rData = {{0.110-3 , 11.1}, 

{0.24 10-3 , 19.9}, {0.3810-3 , 25.4}, {0.52 10-3 , 28.8}, 

{0.6610-3 , 31.9}, {0.80 10-3 , 34.2}, {0.94 10-3 , 36.3}, 

{1.0810-3 , 38.9}, {1.2210-3 , 41.0}, {1.3610-3 , 42.8}, 

{1.50 10-3 , 44.4}, {1.6510-3 , 46.0}, {1.7910-3 , 46.9}, 

{1.93 10-3 , 48.7}, {3.2610-3 , 59.0}, {3.531O-3 , 61.1}, 

{3.80 10-3 , 62.9}, {4.0710-3 , 64.3}, {4.34 10-3 , 65.6}, 

{4.6110-3 , 67.3}, {15.0 10-3 , 106.5}, {25.0 10-3 , 130.0}, 

{34.0 10-3 , U5.0}, {53.0 10-3 , 175.0}, {62.0 10-3 , 185.0}}; 

« Graphics'Graphics' 

The double logarithmic plot demonstrates the linear relation between the fire-ball 
radius and the time elapsed since the ignition. 

p11 = LogLogListP1ot [tay1orData, GriaLines ... Automatic, 

rrame ... ra1se, Prolog ... {pointSize [0.02] }, 

P1otSty1e ... RGBCo1or[1, 0, 0], AxesLabe1 ... {Ot", "rf"}] 
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The scaling exponent a can be estimated by fitting a linear relation on the logarithmic 
data: 

logData = Take [ Log [10, taylorData], {1, Length [taylorData] }] ; 

The fit of the logData follows by 

fu = Fit [logData, {l, t}, t] 

2.77674 + 0.405823 t 

The result is a relation connecting time t with the radius rf in a logarithmic 
representation. The slope of the straight line is given by f3 = 0.405 = 1/ a. The 
exponent a thus takes approximately the value a = 5/2 within an error of 1.4%. 

Combining both the measurement and the fit in a common picture shows the 
excellent agreement between experiment and theory: 

Show[pll, Plot[fu, {t, -4, -1}, 

PlotStyle -+ RGBColor[O, 0, 1], DisplayFunction -+ Identity], 

DisplayFunction -+ $DisplayFunction] 
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The plot shows that the scaling relation fl = t r- 2/5 is satisfied over a range of about 
three decades in time. 

The exponent a was calculated by Taylor by different reasonings. He used a 
dimensional analysis of the problem and ended up with the value a = 5/2 for the 
scaling exponent. The idea behind a dimensional analysis is that a physical quantity 
is expressed by other physical quantities which mainly govern the process. The 



362 Point Symmetries of Partial Differential Equations 

atomic explosion is mainly determined by the total energy E released at ignition, the 
density of the surrounding air Po, and the time 1. The dimensions of the governing 
quantities in the length, mass, and time (LMT) system are [E] = ML2 r-2 , [1] = T, 
and Po = ML-3 • The dimension of the radius rJ expressed by these quantities is 

[rf ] = [E]I/' [1]2/' [Por'/'. Since E and Po are constants, we find log(rJ) = 

+ (log(t) -log( K;o )1/2). Comparing this result with the formula derived from the 

similarity analysis, we can identify {= (K Po / E)1/2. This relation also suggests that 

(5.87) 

is a constant in time. Assuming that the density Po = 1.25 kg/m3and that K, 
depending on the pressure, is near unity, we can estimate the energy from Taylor's 
data. The following plot shows an overview of the energy calculated by (5.87) for all 
data points: 

LogLogListPlot [Map [ ((#[1]), #[lr2 #[2])5 * 1.25}) &:, taylorData], 

GridLin.s .... Automatic, 

I'rame .... Pals., Prolog .... {PointSize [0.02] } , 

PlotStyle .... RGBColor [ 1, 0, 0], AxesLabel.... {n tn, n En} , 

PlotRange"" {{0.0001, 0.062}, {2.0*1013 , 1.0*1014 }}] 

E 
1.x1014 .. It ..... jI 

• 1-. .. 
• • e '. 7.x1013 

5. X 1013 

3. X 1013 

0.00050.001 0.0050.01 

• 

t 
0.05 

Despite the first point, the energy values oscillate around a mean energy value of 
about 

« st.tistics' oescriptiveStatistics' 

.... n[Map[ (#[lr2 #[2])5 * 1.25)&:, taylorD.t.]] 

8.28254 X 1013 



Working Examples 363 

The value calculated in joules corresponds to a T.N.T. equivalent of about 19,488 
tons. The other infonnation contained in Taylor's model is the dynamic behavior of 
the density p, the velocity u, and the pressure p. Inserting the value of a into the 
similarity reduction, we find the governing equations for these quantities: 

L'l'F [(rtaylor / / Flatten) /. {a -+ 5/2} / / Sim;plify] /. zeta1 -+ '1 
t 

r 2/S - rl == 0 

2 (3+c) 
r-s- p - Fl == 0 

u 
r 3/S - F2 == 0 

p r2 ciS - F3 == 0 

t((-5+2F2rll (Fd., + F l ((-7+2c)F2+2rl (F2 ).,)) ==0 

2 rl 

e /2 (c pO F3 - -} Fl (3 F~ + 5 (F2 )., - 2 F2 rl (F2 ).,) + pO rl (F3 ).,) 

r~/2 

== 0 

t),F3 (-t+F2rd (Fd" + tFl ((c (-1+)') +3)') F2 F 3 + (t - F 2 rd 

rl 

== 0 

The set of equations contain common factors which are eliminated in the following 
representation of the first-order coupled ODEs: 

eq = {( (5 - 2 zeta1 1'2 [zeta1]) 1'1' [zeta1] + 

1'1 [zeta1] «7 - 2 c) 1'2 [zeta1] - 2 zeta1 1'2' [zeta1]» == 0, 

1'1 [zeta1] 

(-31'2 [zeta1j2 - 51'2' [zeta1] + 2 zeta1 1'2 [zeta1] 1'2' [zeta1]) + 

2 pO (c 1'3 [zeta1] + zeta1 1'3' [zeta1]) == 0, 

'I (-5 + 2 zeta1:1'2 [zeta1]) 1'3 [zeta1] 1'1' [zeta1] + 

F1[zeta1] (5F3'[zeta1] +2F2[zeta1] (-cF3[zeta1] + 

3'11'3 [zeta1] + c 'I 1'3 [zeta1] - zeta1 1'3' [zeta1]» == 
OJ; 

This set of equations contains parameters describing the pressure of air Po, the ratio 
of the specific heats 'Y, and a group parameter c. Inserting numerical values for these 
three quantities allows us to integrate the ODEs numerically: 

eq1 = eq /. {c -+ 1, '1-+ 1, pO -+ 1}; 

For a numerical integration, we need initial conditions for the density p, the velocity 
field u, and the pressure p: 
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eq2 = Join[eql. {Fl[O] == 1.25. F2[0] == 1. F3[0] == 1}]; 

The integration for~) in the range 0 ::::;~) ::::; 10 delivers the solution by an interpolated 
function: 

nsol = NDSolve[eq2. {Fl. F2. F3}. {zetal. O. 10}] 

{{F1 -7 InterpolatingFunction [{ {O., 10.}}, <> 1 , 
F2 -7 InterpolatingFunction [ { {O., 10.}}, <> 1 , 
F3 -7 InterpolatingFunction [ { {O., 10.}}, <> 1 } } 

The functions are represented by Plot[] for the three variables F), F2 , and F3: 

Plot [!:valuate [{Fl [r] • F2 [r]. F3 [r] } / • nsol] • 

{r. o. 10}. PlotStyle -+ {RGBColor[O. O. 0.996109]. 

RGBColor[0.996109. O. 0]. RGBColor[O. 0.500008. OJ}. 

PlotRange -+ All. AxesLabel -+ {n r1 n. "F1 .F2 .F3 n}] 

1.2 

2 4 6 8 

The plot shows that all three quantities decay in ~). This behavior is expected since 
the total amount of energy is released into free space. In conclusion, we not only 
estimated the released thermal energy of the explosion but have also the spatial and 
temporal decay of the physical quantities available. 



6 

Non-classical Symmetries of Partial 
Differential Equations 

6.1. Introduction 

The non-classical method of symmetry analysis is an extension of Lie's classical 
method. This non-classical method was compiled by Bluman and Cole [1969] in 
connection with the analysis of the heat equation. This method allows us to derive 
another type of solutions which are different from solutions derived from Lie's 
procedure. The method extends the classical approach to find solutions for linear and 
non-linear PDEs. This chapter contains the theoretical background of the method and 
demonstrates the application to different problems. 

Based on a side condition, Bluman and Cole [1969] introduced the non-classical 
method. They discussed the diffusion equation as an example. The result of their 
considerations was that completely different solutions for the heat equation occur. A 
group-theoretical explanation of this result was given by Olver [1986] and Levi and 
Winternitz [1989]. The non-classical method was extended to weak symmetries and 
side conditions by Olver and Rosenau [1986]. The difference between weak 
symmetries and symmetries is defined as follows. 
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Definition: Symmetry of a PDE 

A symmetry group G of.l = 0 is a local transfonnation with the following properties: 

1. The elements of G transform solutions of .l = 0 into new solutions of this 
equation. 

2. The solutions of .l = 0 invariant under G follow from a system of PDEs 
containing a reduced set of independent variables. 0 

The above definition rephrases the invariance conditions of Chapter 5 in different 
words. A weak symmetry, on the other hand, is a symmetry which satisfies the 
second condition of the definition but does not satisfy the first one. Thus, a weak 
symmetry transfonnation does not allow that new solutions of .l = 0 follow from 
known solutions. The second condition expand the class of solutions for a PDE. In 
the following, we will show that this freedom of a symmetry definition is capable to 
deliver a new kind of solution. 

6.2. Mathematical Background of the Non-classical Method 

In this section, we are looking for solutions of the general equation 

(6.1) 

under a side condition. Contrary to the classical method of Lie, we are seeking 
solutions under the condition that the invariant surface condition vanishes. As we 
know, the solution for the function u invariant under a point transfonnation is based 
on the characteristic equations 

dx 1 

~1 
= 

dxn du 1 du2 dum 
--=--=--= ... =--
~n CPl cpz CPm 

(6.2) 

Equivalently, relation (6.2) can be fonnulated in connection with the vector field v by 
using the infinitesimals as 

n 

~~iUr-CPa = 0, a=l, ... , m. 
i=1 

(6.3) 

This equation (6.3) is abbreviated with Qa(x, U(I») = 0 by Olver [1986]. A solution 
of.l = 0 invariant under the transfonnation given by v satisfies the system of PDEs 

(6.4) 
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Qa (x, u(1)) = O. (6.5) 

So far, we recalled the properties of the classical method by Lie. The non-classical 
method of Bluman and Cole now considers condition (6.5) as an additional side 
condition for the solution of the original equation l:!. = O. 

In a non-classical symmetry analysis of l:!. = 0, we are not only interested in the 
symmetries of the PDE but also in the symmetries of the PDE extended by the 
characteristic equation (6.5). The solutions of the non-classical method will generate 
a weak symmetry in the sense discussed in Section 6.1. At the other hand, it is 
certain that the vector fields of the non-classical method do not need to form a Lie 
algebra. Hence, there can be a wider class of similarity solutions than in the classical 
case. 

An essential observation by Bluman and Cole [1969] is that an invariant solution u(x) 

of l:!. = 0 does not only solve the PDE itself but also the invariant surface condition or 
characteristic equation: 

Qa = 0, a = 1 ..... q. (6.6) 

Thus. the invariance condition of the classical method is extended by this additional 
condition: 

pr(k) 11 l:!. 1.1=0 = O. 
Qa=O 

(6.7) 

pr(l) 11 Qa 1.1=0 = O. 
Q.=O 

(6.8) 

Equation (6.8) does not establish any additional restriction in the derivation of the 
determining equation since it is satisfied identically. The main difference compared 
with Lie's method is that not only one side condition occurs but also the 
characteristics must vanish. This second side condition has the consequence that the 
derivatives of u are strongly coupled. The tight coupling of the derivatives results 
into a non-linear system of determining equations for the infinitesimals. This fact is 
the main difference between the classical and non-classical method. However. the 
non-linearity in the detennining equations is a real problem in connection with 
symbolic calculations. 

The above theoretical considerations can be cast into a more suitable formulation for 
computer calculation. The following discussion shows how the prolongation 
formulation can be rewritten in terms of the Frechet formalism. We know from above 
that the non-classical method applies the classical Lie method to the extended system 
of equations 



368 Non-classical Symmetries of Partial Differential Equations 

Q", =0, 

(6.9) 

(6.10) 

i = 1, 2, ... , m and a = 1,2, ... , m. The invariance condition expressed by the 
Frechet derivative reads 

(6.11) 

Equation (6.11) is quite similar to the invariance condition for point symmetries. The 
difference is that in the present case the characteristics have to vanish. The added 
surface condition can be annotated as a side condition or as a conditional equation 
that introduces new dependencies for the derivatives of u. These relations have to be 
taken into consideration during the calculations. The side condition Q" = 0 
introduces a relation representing a strong connection between the derivatives of the 
dependent variables. This relationship has to be considered in the elimination of 
derivatives in the prolongation formula. Equation (6.11) contains all the necessary 
steps to calculate the determining equations in a nutshell. Let us summarize the 
algorithm in the following steps: 

1. Calculate the prolongation of the equation ~ = 0 as discussed for classical point 
symmetries. 

2. Apply the side conditions to the prolongation formula. 

3. Extract the determining equations as discussed for the classical method. 

These three steps are the essentials of the non-classical method. Contrary to the 
classical method, we have as side conditions not only the equations ~ = 0 but also the 
condition of the vanishing characteristics and the differential consequences of this 
relation. The main difficulty of this algorithm is contained in the second step. Since 
the characteristic equation is satisfied identically, we can apply this side condition 
either to the original equation itself or to the prolongation. Both procedures are 
discussed in the literature. The method by Levi and Wintemitz [1989] prefers the 
elimination of the side conditions after the calculation of the prolongation. Clarkson 
and Mansfield [1994] eliminate the terms of the characteristics before the 
prolongation is calculated. The algorithm implemented in MathLie follow the 
considerations of Clarkson and Mansfield. 

The kind of problems occurring during a non-classical calculation are demonstrated 
by the following example. Let us consider the characteristic equation in 2+ 1 
dimensions. The characteristic equation for this case reads 

Ux 51(X,t,U) + Ut52(X,t,U) - ¢>(x,t,u) =0. (6.12) 
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Let us assume that we are looking for a substitution replacing the Ut term. The 
resulting expression from (6.12) is given by 

(6.13) 

We replaced the ratios of ¢ / g2 and g1 jg2 simply by ¢J and g1, respectively. This 
substitution corresponds to a formal coordinate transformation assuming that g2 = 1. 
The derived substitution rules from (6.13) are up to second order given by 

(6.14) 

(6.15) 

(6.16) 

The last of these relations (6.16) contains terms of Ut and Ux,t which have to be 
replaced by the first two rules (6.14) and (6.15), respectively. Thus, relation (6.16) is 
only expressible if the preceding substitutions were calculated first. If not, relation 
(6.16) contains redundant information which affects the invariant condition (6.11). 
Thus, one has to keep the following suggestions in mind if one solves the side 
conditions Qa = O. 

1. The derivatives for which the side condition Q" = 0 is solved should occur in the 
original equation in a simple form. This guarantees that the original equation 
stays simple after the substitution of the side conditions and thus saves a lot of 
computing time. 

2. If we have more than one dependent variable, we should solve the characteristic 
equation with respect to a derivative occurring in all side conditions. This allows 
the introduction of the relation gi = 1 for a specific independent variable Xi. 

The substitutions derived in the above example indicate that the determining 
equations are non-linear functions in the infinitesimals. This change from a linear 
system of determining equations in the case of the classical method to a system of 
non-linear determining equations for the non-classical method bears very 
complicated problems. The problem of solving the non-linear determining equations 
is currently not disclosed. Thus, we cannot automatically find solutions for the 
infinitesimals in all cases with MathLie. At the moment, we use an interactive and a 
pseudo-automatic method to derive the solutions from the determining equations. The 
following examples will demonstrate how we can find non-classical symmetries by 
applying the functions of MathLie. 
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6.3. Applications of the Non-classical Method 

The non-classical method has been applied to various PDEs. New classes of solutions 
which cannot be obtained by the classical method have been found for the heat 
equation by BIuman and Cole [1969], the Boussinesq equation by Levi and 
Winternitz [1989], the Burgers equation by Pucci [1992], and the Fitzhugh Nagumo 
equation by Nucci and Clarkson [1992]. We will demonstrate in this section how the 
functions of MathLie can be exerted to derive the determining equations. In addition, 
we will solve the determining equations interactively and automatically. 

6.3.1 The Heat Equation 

Let us start with the well-studied heat equation by BIuman and Cole [1969]. The 
scaled heat equation in (1 + 1) dimensions reads 

Ut - ux,x = 0, (6.17) 

where U is the field describing the variation of a scaled temperature in a pipe, for 
example. The heat equation is one of the rare examples which allows the study of 
different solution procedures. In Section 5.6.1, we examined the heat equation with 
the classical method of Lie. The result was a six-dimensional discrete symmetry 
group in connection with an infinite dimensional group. Here, we will examine the 
heat equation again by using the non-classical method. The determining equations are 
derived with the help of Lie[] in connection with two options of the function. The 
equation of motion in Mathematica is created by 

t1 = u[x, t]; 

diffus = {at 0' - ax •x t1 }; diffus II LTP 

U t - Ux,x == 0 

We first extend our database by a file containing the information on the equation. The 
left-hand side of the heat equation (6.17) is stored to the file ncdiffu.dgl by applying 
LieEquations[] : 

LieZquations[-ncdiffu.dgl-, diffus, {u}, {x, t}, 0, 
{-Heat equation-}, {{-G. Baumann-}, {-0'1m 1997-}}] 

The file ncdiffu.dgl contains all the necessary information to start the analysis. 

The information in the file is contained in global variables. The variable Title, for 

example, contains a headline describing the purpose of the equation. The variable 
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Source carries, in sublists, information on the origin of the equation. The remaining 

variables such as IndepVar, DependVar, EqList, SubsList, ParameterS, ListXi, and 

ListPhi contain information on the independent and dependent variables, the equation 
of motion, the terms for which the side condition in the classical method is solved, a 
list of parameters, and two lists for the infinitesimals, respectively. All information 
contained in the file is necessary for the function Lie[] to carry out a symmetry 

analysis. The non-classical symmetry method is initiated by using Lie[] in connection 

with the option NonclassicaISymmetries-+True. The option NonclassicaICases-+{t} 

of Lie[] selects those terms of the characteristic equations which contain a derivative 
with respect to the specified variable, here t, meaning that all higher derivatives 
containing a partial derivative with respect to t are used to match and eliminate the 
terms in the original equation. We start the non-classical symmetry analysis for the 
heat equation by 

Lie ["Dcdiffu.dgl" , NODclassical~tries -+ True, 

NODclassicalCases -+ {t}] II LTF 

(~2lu==O 

(~llu,u == 0 

(~2lu,u==O 

(~2lx==O 

(~2lx,u==O 

<1>1 (~2lu+~1 (~2lx+£2 (~2lx,x==O 

-~~ (~llt+2~2<1>l (~llu-2~1~2 (~llx+~1~2 (~2lt+ 

~1 <1>1 (~2 lu + ~i (~2lx + ~~ (~llx,x - 2 ~~ (<I>ll x ,u == 

o 

-2 ~2 <1>1 (~llx + ~2 <1>1 (~2lt + 

<l>i (~2lu+~l<1>l (~2)x-~~ (<I>llt+~~ (<I>ll x,x== 

o 

2 ~1 (~llu - 2 ~2 (~llx,u + ~2 (<I>ll u,u == 0 

The result is a non-linear coupled system of nine partial differential equations 
determining the non-classical symmetries of the heat equation. Our task is to solve 
the determining equations. IT we have information on the structure of the 
infinitesimals, we can incorporate this information into the database file ncdiffu.dgl. 
The extension of the file will simplify the determining equations in the solution 
procedure. Let us first store the following relations into ncdiffu.dgl: 

ListXi = {xi[1] [x, t, u[x, t]], 1}; 

Liatpbi = {pbi[1] [x, t, u[x, t]]}; 

Save["ncdiffu.clgl n , ListXi, ListPbi]; 
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Save[] appends the two relations on the infinitesimals to the file ncdiffu.dgl. The 
gathered information can now be used to simplify the determining equations by 
starting the analysis a second time. Since we provided the database file with new 
information, we can activate this information by setting the option 

NonclassicalInfo-+True 

Li. ["ncdiffu.dgl", Moncla •• icalSymmetrie .... 'l'rue, 

MonelassicalCa.es ... {t}, Monelassical:Info ... 'l'rue] II 
L'l'F 

(~I)U.U == 0 

2 ~1 (~du - 2 (~dx,u + (cf>du,u == 0 

-2 cf>1 (~d x - (cf>d t + (<t>dx,x == 0 

-(~I)t +2<t>1 (~I)u -2~1 (~I)x+ (~I)x,x-2 (<t>I)x,u ==0 

We end up with four non-linear determining equations. We realize that the number of 
equations is reduced by five. Although the equations are still non-linear, we have a 
good chance to solve them. First, we observe that not all equations are coupled. Thus, 
the strategy is to extract those equations which are simple and linear. Solving this 
subset of equations will provide us with more information on the infinitesimals. This 
information is essential to solve the remaining non-linear determining equations. The 
first equation of the determining equations states that xi[l] allows a solution which is 
independent of the dependent variable u. Thus, we can use this information to extend 
our file ncdiffu.dgl with 

Clear [A] 

ListXi = {A[x, t], 1}; 

ListPhi = {phi [1] [x, t, u[x, t]]}; 

Save ["ncdiffu.dgl", ListXi, ListPhi]; 

Running the function Lie[] again and using the new information in the file, we get 

Lie [ "ncdiffu. dgl", Moncla •• icalSymmetrie .... 'l'rue, 

MonelassicalCases ... {t}, Moncla •• ical:Info ... 'l'rue] II 
L'l'F 

(<t>I)u,u == 0 

-At -2AAx +Ax,x -2 (cf>I)x,u == 0 

-2 Ax <t>1 - (<t>d t + (<t>dx,x == 0 

The resulting three equations are again simplified and determine the infinitesimals. A 
glance at these equations shows that we get a mixed system of linear and non-linear 
determining equations. The linear equation tfJu,u = 0 serves to gain additional 
information on the structure of the infinitesimals. This equation allows us to 
represent tfJ as a linear function in u. Thus, we set the infinitesimals to 
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ListXi = {A[x, t], 1}; 

as before, and ~ as 

ListPhi = {B[x, t] + C[x, t] u[x, t]}; 

where B[x,tj and C[x,tj are arbitrary functions. Saving this result, 

Save [nncdiffu.dgl n, ListXi, ListPhi]; 

and starting the calculation again by 

ncdiffu = Lie["ncdiffu.dgl n , NonclassicalSymmetries -> True, 

NonclassicalCases -> {t}, 

Nonclassicall:nfo -> True]; ncdiffu / / LTF 

-At - 2 A Ax - 2 Cx + Ax,x == 0 

- 2 B Ax - B t + Bx , x = = 0 

-2 C [x, tj Ax - C t + Cx,x == 0 

reveals a system of three coupled non-linear equations for the unknown functions A, 
B, and C. This system of equations determines the infinitesimals of the non-classical 
group. At this stage, we clearly face the problem that starting with a linear PDE, we 
end up with a non-linear one. This system of non-linear PDEs is difficult to solve. 
However, in our analysis, we only need special solutions of this equation to find new 
solutions of the heat equation. We already know a method to analyze such non-linear 
equations. Applying Lie's point symmetry procedure in the usual way, we get the 
symmetries of these equations. The symmetries of the three coupled PDEs read 

incdiffu = :Infinitesimals [ncdiffu, {A, B, C}, {x, t}]; 

incdiffu / / LTF 

PDESolve: :nsf : Use option Standard->True. 

This may lead to further solutions in case of 

linear Systems 

- CTl ) t + (r1 ) X,x == 0 

';1 == kl _ 2 kS t + k~ x _ 2 k~ t x 

2 k7 t 2 

';2 == k2 + k3 t - S 

1 
<Pi == 10 (-SAk3-20kS+4Ak7t-4k7x) 

<P2 == B (k4 + k6 + k7 t + kS x + k~;2 ) + C r 1 - A (r1 ) x - (r1 ) X,x 

1 
<P3 5 (- S C k3 + SA kS + k7 + 4 C k7 t + A k7 x) 
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The result is that the three coupled PDEs for the non-classical symmetries posses a 
seven-dimensional discrete symmetry group. In addition, there exist an infinite 
dimensional group given by the functionJree[1]. This arbitrary function has to satisfy 
the heat equation. The symmetries of the non-classical determining equations exhibit 
a similar structure as the point symmetries of the heat equation. The symmetries can 
now be used to find special solutions for the functions A, B, and C. First, we select 
the subgroup with kl = 1: 

infi = {{xi [1] [x, t, A, B, e], 
xi[2] [x, t, A, B, e]}, {phi [1] [x, t, A, B, e], 

phi [2] [x, t, A, B, e], phi [3] [x, t, A, B, e]}} I. incdiffu[l]J I. 
{kl -> 0, k2 -> 1, k3 -> 0, k4 -> 0, kS -> 0, k6 -> 0, k7 -> 0, 

free L] -+ l'unction [{x, t}, O]} 

{{O, 1}, {O, 0, O}} 

The corresponding reduction of the non-classical determining equations follow with 
this representation of the infinitesimals by 

red = 
LieReduction [ncdiffu, {A, B, e}, {x, t}, infi [1]J, infi[2]J]; 

red II Flatten II L'l'1' I. zetal -+ '1 
x - zeta1 == 0 

A-Fl == 0 

B - F2 == 0 

C - F3 == 0 

- 2 F 3 zetal - 2 F 1 (F 1 ) zetal + (F 1 ) zetal, zetal = = 0 

- 2 F2 F1zetal + (F2 ) zetal, zetal == 0 

-2 F3 F1zetal + (F3) zetal,zetal == 0 

The similarity representation of the non-linear determining equations is given by 
three coupled non-linear ODEs. To simplify things, let us assume that the functions 
F2 and F3 are given by the trivial solutions 

redh = 
red[3]J I. {1'3 -+ l'unction[zetal, 0], 1'2 -+ l'unction[zetal, O]} 

{-2 F1 [zeta1] F1' [zeta1] + F1" [zeta1] == 0, True, True} 

The substitution of F2 = 0 and F3 = 0 into the reduced equations simplifies the 
system to a single equation. This equation is solved by DSolve[] 

8011 = DS01ve [redh[l]J, 1'1, zetal] 

{ {F1 ~ (-V'CT2T Tan [#1 -v'CT2T + c [1] -v'CT2T ] &) } } 
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The solution simplifies further if we specify the constants of integration in a certain 
way: 

so12 = (Fl [zetal] I. sol1) I. {C [1] -+ 0, C [2] -+ a 2 } I I Sill\Plify 

{ -Jai Tan [ zetal -Jail } 

The final solution for the unknown functions A, B, and C of the non-classical 
determining equations is thus given by 

rsol = Solve[red[2D I. soll 10 
{F3 -+ Function [zetal, 01, F2 -+ Function [zetal, O]} 10 

{C[l] -+ 0, C[2] -+a2 } II Sill\Plify, 

{A, B, C}] 

We can check that this special solution satisfies the determining equations by 
rewriting the above results in a pure function form: 

infired = {A-+Function[{x, t},.y;2 'l'an[x.y;2]], 

B-+Function[{x, t}, 0], C-+Function[{x, t}, Ol}; 

infired / I L'l'F 

A == -Jai Tan [x -Jail 
B == 0 

C == 0 

Inserting this representation of the solution into the non-linear determining equations, 
we find that the equations are identically satisfied: 

ncdiffu 10 infired I I Sill\Plify 

{O, 0, O} 

The non-classical infinitesimals for the heat equation are thus given by 

infdifus = {ListXi, ListPhi} 10 infired 

representing a special transformation under which the heat equation is invariant. The 
reduction of the heat equation with these infinitesimals follows: 

rdiffus = 
LieReduction[diffus, {u}, {x, t}, infdifus[lD, infdifus[2Dl; 

rdiffus 1/ Flatten 1/ LTF 10 zetal -+ ~1 
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Solve: : tdep : 
The equations appear to involve transcendental functions 

of the variables in an essentially non-algebraic way. 

1 -ta2 + Log[Sin [xa] ] --0 -zeta - a 2 --

u - Fl == 0 

( E2 t ,, ' E2 zetal " , ) ( 2 F 1 F 1 ) _- _- 0 - a zetal + zeta l, zeta! 

The similarity representation of the heat equation is an expression combining 
trigonometric and logarithmic functions . The unknown function FI of this reduction 
is determined by a second-order ODE. This ODE is solved by DSolve[]: 

srdiffu8 = DSolve[ (a~ 1'1' [zetal] + 1'1" [zetal]) == 0, 1'1, zetal] 

The result is an exponential solution containing two constants of integration C[l] and 
C[2]. In original variables, the solution reads 

sol = Solve [(rdiffus[2D /. srdiffus) / / SiD\Plify, u] / / platten 

{u~C [ 2] - E- t
'" C[122Sin [xa] } 

If we specify the parameters a, C[l], and C[2] in an appropriate way, we can 
graphically represent the solution by 

Plot3D[Bvaluate[u/.sol /. {a-ol/2, C[l] -+1, C[2] -+2}], 

{x, -371:, 3 7I:}, {t, 0, 6}, AxesLabel -0 {"x", "t", nun}, 

PlotPoints -+ 25] 

u 



Applications o/the Non-classical Method 377 

The example of the heat equation demonstrates how the basic functions of MathLie 
can be used to find non-classical solutions. The above discussion is based on the 
combination of batch mode calculations and interactive calculations in MathLie. The 
following calculation will show how non-classical symmetries can be derived by 
pseudo-automatic calculations in MathLie. 

6.3.2 The Boussinesq Equation 

The Boussinesq [1872] equation 

Ut,t + U ux,x + u~ + ux,x,x,x = 0 (6,18) 

is one of the equations frequently examined in connection with solution procedures 
for non-linear models, The equation arises in several physical applications ranging 
from surface waves of rectangular canals to applications in plasma physics. The point 
symmetries of the Boussinesq equation were examined by Nishitani and Tajiri [1982] 
and Rosenau and Schwarzmeier [1986]. The discussion of the non-classical 
symmetries by Levi and Wintemitz [1989] revealed that the symmetries of the direct 
method by Clarkson and Kruskal [1989], Clarkson [1989] follow from a non-classical 
analysis. We use this equation here to demonstrate the pseudo-automatic calculation 
of non-classical symmetries. 

The Boussinesq equation in Mathematica notation reads: 

boussinesq = Ot u [x, t 1 + 

u[x, tl ox,xu[x, tl + (oxu[x, t])2 + o{x"Ju[x, tl == 0; 

boussinesq II LTF 

lit + u~ + U Ux,x + Ux,x,x,x == 0 

The point symmetries of the Boussinesq equation are 

liePointSymmetries = I:nfinitesimals [boussinesq, u, {x, t} 1 ; 
liePointSymmetries II LTF 

¢1 == -2 k3 u 

~1 == k2 + k3 x 

~2 == kl + 4 k3 t 

This finite dimensional group of order three contains translations and scaling 
transformations as symmetries. The non-classical symmetries follow by applying the 
function NonClassicalPointSymmetries[]. This function assumes by default that the 

option NonclassicalCases is set to the last variable of the independent variables. 
Typically, this variable is the time t. If you prefer to use another variable, for 
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example, x, you have to specify this change in the option NonclassicaICases~{x}. 
The nonlinear detennining equations follow from 

nedeter = 

NonClassiealPointSymmetries[boussinesq, {u}, {x, t}]; 

nedeter / / L'l'F 

(~du == 0 

(~2 ) u == 0 

(~du,u==O 

(~2)u,u==o 

(~l)u,u,u == 0 

(~2)u,u,u == 0 

(~l) U,U,U,u == 0 

(~2) U,U,U,u == 0 

(~2)x==O 

(~2)x,u == 0 

(~2) X,U,u == 0 

(~2) X,U,U,u == 0 

(~2)x,x==o 

(~2) X,X,u == 0 

(~2) X,X,U,u == 0 

(~2) X,X,x == 0 

(~2) X,X,X,u == 0 

<Pl +2u (~11x -4 (~I)x,x,x +6 (<Pl)x,x,u == 0 

-3 (~l) X,X,U,u + 2 (<Pl) X,U,U,u == 0 

-3 (~l)x,x,u+2 (<Pl)x,u,u==O 

-3 (~d X,x + 2 (<Pd X,u == 0 

-4 (~dx,u,u,u + (<Pilu,u,u,u == 0 

-4 (~dx,u,u + (<Pilu,u,u == 0 

-4 (~llx,u + (<Pilu,u == 0 

-4 (~d X,u + (<pil U,u == 0 

<Pl (~2) u + ~ 1 (~2) x - ~ 2 (~2) x, x, x, x = = 0 

- ~~ (~d t + 4 ~ 2 <Pl (~ d u - 4 ~ 1 ~ 2 (~11 x + 

~l ~2 (~2) t + ~l <PI (~2) u + ~f (~2) x + 2 ~~ (<Pl) x -

u ~~ (~ilx,x + 2 u ~~ (<I>ilx,u - ~~ (~11x,x,x,x + 4 ~~ (<Pilx,x,x,u == 

o 
-4 ~2 <Pl (~ilx + ~2 <Pl (~2)t + <Pi (~2)u + 

~l <Pl (~2)x -~~ (<Pdt -u~~ (<Pilx,x -~~ (<Pilx,x,x,x == 

o 
-4~l (';11 u + 2 ';2 (';l)x+';2 (<pl)u-2u~2 (';I)x,u+ 

U~2 (<Pilu,u -4~2 (~ilx,x,x,u +6~2 (<Pilx,x,u,u == 

o 
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The result is a system of 29 coupled non-linear determining equations for the 
infinitesimals gl, g2, and <PI' Only the last four equations are non-linear. The first 25 
equations are linear. We can use these linear equations to find a partial solution of the 
determining equations. Before we apply a function to the total set of equations, let us 
rewrite the infinitesimals in such a way that g2 = 1. Defining a general substitution 
for xi[2], we find 

nedeterh = DeleteCases [ «nedeter I. u [x. t] -+ u) /. 

xi[2] -+Punetion[{x. t. u}. 1]) I. u-+u[x. tj. 0]; 

nedeterh I I L'l'F 

(~1 1 u == 0 

(~du,u==O 

(~du,u,u == 0 

(~1 1 U,U,U,u == 0 

</;1 + 2 u (~dx - 4 (~dx,x,x + 6 (</;dx,x,u == 0 

-3 (~dx,x,u,u + 2 (</;dx,u,u,u == 0 

-3 (~d X,X,u + 2 (</;d X,U,u == 0 

-3 (~d X,x + 2 (</;d X,u == 0 

-4 (~dx,u,u,u + ((hlu,u,u,u == 0 

-4 (~dx,u,u + (ct>du,u,u == 0 

-4 (~dx,u + (ct>du,u == 0 

-4 (~d X,u + (ct>d U,u == 0 

-(~dt+4ct>1 (~du-4~1 (~dx+2(ct>dx-

o 
-4 </;1 (~d x - (ct>d t - u (ct>d X,x - (ct>d X,X,X,x == 0 

- 4 ~ 1 (~1 1 u + 2 (~d x + (ct>d u -

2 U (~1 1 X,u + u (ct>1 1 U,u - 4 (~1 1 X,X,X,u + 6 (ct>1 1 X,X,U,u == 

o 

Applying now the general-purpose solver PDESolve[] of MathLie to the system of 

coupled non-linear equations, we can automatically derive solutions. The function 

PDESolve[] responds with a question concerning the solution branches of the 
non-linear determining equations, This interruption of the calculation is terminated 
by providing the number of the condition printed by the function: 

partsol = PDBSolve [nedeter. {u}. {x. t}]; partsol / I L'l'F 

There exists no unique solution of the equations. 

Please choose one of the following results 
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1, {free[3] [t] --.O} 

2,{free[1](2,0) [x, t]--.O} 

There exists no unique solution of the equations. 

Please choose one of the following results 

1, {free [3] [t] --. O} 

2, {free[l] (3,0) [x, t] --.O} 

-2 'T1 ('T2 ) ~ - 'T5 ('T1 ) t,t + 'T2 (2 ('T1 ) t ('T2 ) t + 'T1 ('T2 ) t,t) == 0 

~1 -- 'T 1 ('T) x'T1 ('T2 ) t 
'0 -- 2 + 4 x 1 t 4 'T2 

~2 == 'T1 

<P1 == ~ U (- ('Td t + 'T1 ~2) t ) 

We select the second case for each inquiry of PDESolve[]. The result for these 
choices is a representation of the non-classical infinitesimals depending on two 
arbitrary functions 'Fi = free[i], i = 1,2. We know that for ~2 the relation ~2 = 1 was 
assumed in the above calculation. Thus, we can setfree[l] = 1. 

ppsol = part sol I. free[l] ~Function[t, 1]; 

ppsol I I Flatten I I LTF 

<P1 == u ~i2) t 

~ = = 'T2 _ X ('T2 ) t 
'01 4 'T2 

~2 == 1 

-2 ('T2)~ +'T2 ('T2 )t,t == 0 

The infinitesimals reduce to a simpler form contaInIng only one undetermined 
function 'F2 = free[2]. This function has to satisfy the last determining equation, 
which is a second-order non-linear ODE. The partial results so far derived can be 
used in another calculation with PDESolve[]: 

isol = PDESolve [ppsol, {u} I {XI t}]; isol I I LTF 

4 - k1 x 
4 k1 k2 - 4 k1 t 

~2 == 1 
u 

2 k2 - 2 t 

The final result of the calculation is a system of infinitesimals contaInIng two 
parameters kl and k2. These two parameters determine the transformation properties 
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of the non-classical infinitesimal transformation. The above representation of the 
infinitesimals is represented in a more convenient way by the following 
transformations: 

ncinfi = isol I. u[x, t] -+ U I. Rule[a_[n_] [h __ ], b_] -+ 

Rule[a[n], Function[$v, $w] I. {$v-+ {h}, $w-+b}] II Flatten; 

ncinfi I I LTF 

u 
2k2-2t 

4 - k1 x 
';1 4 k1 k2 - 4 k1 t 

After the rearrangements of the representation, we know the infinitesimals in a 
standard form which is helpful in the following calculations. Our aim is to derive 
solutions for the Boussinesq equation. To uncover the reduction of the Boussinesq 
equation, we rllst select a sub-class of the infinitesimal transformations with kl = 1 
and k2 = c with c a real constant: 

infi = {{xi [1] [x, t, u], xi [2] [x, t, u]}, 

{phi [1] [x, t, u]}} I. ncinfi I. 
{k1 -+ 1, k2 -+ c} 

Inserting the equation and the infinitesimals into LieReduction[] provides us with a 
reduction of the Boussinesq equation: 

red = LieReduction[boussinesq, {u}, {x, t}, infi[1], infi[2]]; 

(red I I Flatten I I LTF) I. zeta1 -+ ~, 

_ c + t _ S -- 0 
(-4 + x) 4 1 --

U (_4+X)2 -F1 == 0 

(1+2904s1 ) (F1 )" + 

o 

2 (5Ff +2Fl (30+l3s1 (Fd s1 +4s1 (Fd!;l,Sl) + 

8 sf ((F1 ) ~, + 351 (F1 ) Sl ,!;, + 

8s1 (19 (F1 )r1,Sl,Sl +2S1 (F1 )!;1,!;1,Sl,b1))) 

The resulting reduction consists of a similarity representation of the original variable 
u containing an unknown function Fl. This function has to satisfy a fourth-order 
ODE, which is easier to read if we rename the variables 
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eqr = red[3. 1] /. {1'1 -+ H. zeta1 -+ r}; eqr / / LTI' 

120 H + 10 H2 + H, + 2904 s H, + 52 H S H, + 16 S2 H~ + 

5616 S2 He, + 16 H S2 H", + 2432 S3 H"", + 256 s· H""", == 

o 

Surprisingly we can find a first integral of this complicated equation by integrating 
the left-hand side with respect to (. 

eqhh = f (eqr[1]) dlr == K 

(1+120s) H[s] +lOsH[s]2 + 

16 S2 (87 + H[s]) H' [s] + 1408 S3 H" [SJ + 256 S4 H(3) [s] 

K 

where K is the constant of integration. Now, the question is: Can we solve this 
third-order equation by Lie's methods? We know from Section 4.4.3 that a solution 
follows by quadratures if the equation possesses at least n symmetries, where n is the 
largest order of derivatives. The first step in integrating the third-order ODE is the 
examination of the symmetries: 

ihh = J:nfinitesimals[eqhh. H. r. {K}]; ihh //LTI' 

cPl == 0 

{;1 == 0 

The result is that the third-order ODE resulting from the Boussinesq equation does 
not allow any symmetry. Thus, the integration procedure by Lie fails. However, we 
are able to represent a solution by a numerical integration. The validity of the 
solution will be restricted by initial conditions and the finite interval for the similarity 
variable (. An example for a numerical integration is given below. 

nboussinesq = Map [NDSolve [{ eqhh /. K -+ I. H [0.1] == O. 

H' [0.1] == 2. H" [0.1] == 1}. H. {r. 0.1. 15}]&. 

{1. 2. 3. 4. 5}] 

{ { {H -7 InterpolatingFunction [ { {0.1, 15. }}, <>] } } , 

{ {H -7 InterpolatingFunction [ { {O . 1, 15. } } , <> 1 } }, 

{ {H -7 InterpolatingFunction [ {{ 0.1, 15. } } , <>] } }, 

{{H -7 InterpolatingFunction[ {{O .1, 15. } } , <> 1 } } , 
{ {H -7 InterpolatingFunction [ { {0.1, 15. } }, <>1 }}} 

The calculation is carried out by changing the constant K in steps of I from 1 to 5. 
The initial conditions are fixed for each integration. The result of the numerical 
solution is used to graphically represent the different solutions: 
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Plot [Zvaluate[H[t] I. nboussinesq], 
{t, .1, 6}, AxesLabel ... {ntn, nHD}, PlotStyle ... 

{RGBColor[l, 0, 0], RGBColor[0.996109, 0.996109, 0], 
RGBColor[0.996109, 0.500008, 0], RGBColor[O, 0.500008, 0], 

RGBColor[O, 0, 1]}] 

H 

0.35 

0.3 

0.25 

0.15 

The numerical solution is connected with the similarity solution via the similarity 
transformation. We can now at least numerically represent the non-classical 
similarity solution for the Boussinesq equation. The example demonstrates that 
the functions of MathLie support a pseudo-automatic procedure for the 
non-classical method. The interactions are reduced to a minimal number of steps. 
We also demonstrated that MathLie is capable of solving non-linear determining 
equations with a decision support provided by the user. The functions 

NonClassicalPointSymmetries[] and PDESolve[] reduce the solution steps and the 
interaction to a convenient number. 

6.3.3 The Fokker-Planck Equation 

The Fokker-Planck (FP) equation is a general equation to describe statistical 
phenomena in condensed matter physics, quantum optics, chemical physics, and 
fluctuations in many other physical problems. For a detailed discussion of the 
Fokker-Planck equation, we refer to the book by Risken [1984]. In this section, we 
restrict our considerations to the (1 + 1 )-dimensional version of the FP equation 

Ut = (a(x) u)x + (b(x) u)x,x' (6.19) 

where a(x) denotes the drift and b(x) the diffusion coefficient. Both coefficients are 
functions of the spatial variable x. Subscripts in equation (6.19) denote partial 
derivatives with respect to time t and x. Let us assume that we have a system with 
constant diffusion b(x) = 1 and a linear drift term a(x) = x. Such a situation is 
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possible for a Brownian particle in a liquid (Cicogna and Vitali [1990]). Under these 
conditions, equation (6.19) reduces to 

fokkerPlanck = "tu[x, t] - x"xu[x, t] -"x.xu[x, t] == 0; 

fokkerPlanck / / LTI' 

Ut -XUx -Ux,x == 0 

The point symmetries of this equation are 

ifokkerPlanck = I:nfinitesimals [fokkerPlanck, u, {x, t}]; 

ifokkerPlanck / / L'l'1' 

- (9"1) t + x (9"1) x + (9"1) X,x == 0 

~1==E-tkl+Etk2+ ~ E-2t (-E4t k3+k5)x 

~2 == - ~ E2 t k3 - ~ E-2 t k5 + k6 
2 2 

The result is a six-dimensional finite group extended by an infinite group given by 
free[l]. The arbitrary function free[l] satisfies the FP equation. The structure of the 
group has some resemblance to the group of the heat equation. However, the detailed 
structure is completely different. 

The next step of our examination is the determination of the non-classical 
symmetries. To derive the non-classical determining equations for the FP equation, 
we apply the operator rfPS'{"x [.!l] to the equation 

ncfokkerPlanck = nPsl!).{x.t) [fokkerPlanck]; 

ncfokkerPlanck 1/ LTI' 

(~2)U==O 

(~l)u,u == 0 

(~2)u,u==O 

(~2)x == 0 

(~2)x.u == 0 

ct>1 (~2) u + ~1 (~2) x + ~2 (';2) X,x == 0 

-~1~~-~~ (~1)t+2~2<t>1 (~du-2~1~2 (,;dx-X~~ (~dx+ 

~1~2 (~2)t+~1ct>1 (~2)u+~f (';2)x+~~ (~1)x,x-2~~ (ct>dx,u== 
o 

-2 ~2 ct>1 (~dx +~2 ct>1 (~2)t +ct>f (~2)u + 

~1ct>1 (~2)x-~~ (ct>dt+x~~ (<t>dx+';~ (ct>dx,x== 

o 
2 ~1 (~du + 2 X~2 (~du - 2 ~2 (~llx,u + ~2 (4)d u•u == 0 
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Again, we assume that g2 = 1 thus we can simplify the non-classical detennining 
equations by 

deteql'P = DeleteCases [(ncfokkerPlanck I. u [x, t] ... u) I. 
xi[2] ... l'uD.ction[{x, t, u}, 1], 0] I. u ... u[x, t]; 

deteql'P II L'l'1!' 

(~llu,u==O 

-~l - (~llt + 2 cPl (~l)u -x (~llx - 2 ~l (~llx + (~dx,x - 2 (cPdx,u == 0 

-2 cPl (~dx - (cPd t +x (cPd x + (cPdx,x == 0 

2 x (~du + 2 ~l (~l)u - 2 (~dx,u + (cPl )u,u == 0 

If we apply PDESolve[] to the derived equations, the solution of the non-classical 
determining equations follow. This function originally designed for linear PDEs is 
capable of solving some kind of non-linear equations if some hints are supplied to the 
function. In the present case, PDESolve[] detects a situation in which either a 
function free[2] or free[6] can be set equal to zero. The function asks the user to 
decide which of these possibilities it should take. The following calculation is carried 
out under the second possibility: 

inf1 = PDBSolve [deteqI!'P, {u}, {x, t}]; inf1 II LTI!' 

There exists no unique solution of the equations. 

Please choose one of the following results 

1, {free [2] [x, t] ~ O} 

2, {free [6] [x, t] ~ O} 

~l == r 1 

cPl == r 2 + U r3 

-r1 - (r1 ) t - X (r1 ) x - 2 r 1 (r1 ) x - 2 (r3 ) x + (rd X,x == 0 

-2 r 2 (r1)x - (r2 ) t +x (r2 )x + (r2 )x,x == 0 

-2 r3 (r1 ) x - (r3 ) t + X (r3 ) x + (r3 ) X,x == 0 

The result of the calculation is a general representation of the infinitesimals 
depending on three arbitrary functions'Fi = free[i], i=l, 2, 3 which have to satisfy 
three nonlinear coupled PDEs. These PDEs again allow some symmetries. In the 
following, we determine the point symmetries of the non-classical non-linear 
determining equations. We gain a simpler representation by renaming the arbitrary 
functions free[i] by 

inf1h = inf1[2] I. {free[l] ... g, free[2] ... h, free[3] ... f}; 

inf1h II LTI!' 
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-g - 2 fx - gt - 2 g gx - X gx + gx,x == 0 

-2 h gx - h t + x hx + hx,x == 0 

-ft + x fx - 2 f gx + fx,x == 0 

For this set of equations, we detennine the infinitesimals by 

inf1hh = Xnfinitesimals [inf1h, {g, h, f}, {x, t}]; inf1hh / / LTF 

PDESolve: :nsf : Use option Standard->True. 

This may lead to further solutions in case of linear Systems 

- CT1 ) t + x (r1 ) x + (r1 ) X,x == 0 

';1 == E- t kl + Et k2 + ~ E-2t (k3 + E4t k4) x 

';2 == - ~ E- 2 t k3 + ~ E2 t k4 + k5 
2 2 

<P1 

- ~ E- 2 t (2 Et kl _ 2 E3 t k2 + g k3 + E4 t g k4 + 2 k3 x - 2 E4 t k4 x) 
2 

1h == _E- 2 t h k3 - ~ E2 t h k4 + h k6 - Et 
2 

fr1 - (g+x) (r1)x - (r1 )x,x 

h k2 x - ~ E2 t h k4 x 2 + 
2 

<P3 == _E- 2t (f (k3 +E4t k4) +E3t g (k2 +Et k4x) + 

E3 t (Et k4 + k2 x + Et k4 x 2 ) ) 

The infinitesimals represent a six-dimensional finite group and an infinite one given 
by the arbitrary function free[ll. Surprisingly, this function must satisfy the original 
equation with which we started. Now you see another reason why we changed the 
names of the three arbitrary functions in the non-classical analysis preventing 
mismatches of the two calculations. Knowing the point symmetries of the 
non-classical determining equations, we can reduce the equations by applying 

LieReduction[]; 

infi = {{xi [1] [x, t, g, h, f], xi [2] [x, t, g, h, f]}, 

{phi [1] [x, t, g, h, f], phi [2] [x, t, g, h, f], 

phi [3] [x, t, g, h, f]}} I. inflhh[lD I. 
{k1 .... 1, k2 .... 0, k3 -+ 0, k4 .... 0, 

kS .... 1, k6 .... 0, free[ __ ] .... Function[{x, t}, OJ} II 

Expand 

For the sub-group kl = k5 = 1, the reduction is gained by 

red1 = LieReduction[inf1h, {g, h, f}, {x, t}, infi[lD, infi[2D]; 

(red1 /. zeta1 .... '1) / I Flatten / I LTF 
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Solve: : tdep : 
The equations appear to involve transcendental functions 

of the variables in an essentially non-algebraic way. 

E- t + X - &1 == 0 

g + x - F1 == 0 

h - F2 == 0 

f - F3 == 0 

F1 - 2 F3" - 2 F1 (F1 )., + &1 (F1 )., + (F1 )., .• , == 0 

2 F2 - 2 F2 Fl., + &1 (F2 )., + (F2 )., .• , == 0 

2 F3 - 2 F3 Fl., + &1 (F3 )., + (F3 )., .• , == 0 

We fmd a coupled non-linear system of ODEs for the similarity functions FI, F2, 
and F3. A special solution follows by choosing F2 = F3 = 0: 

redl[3] 10 {1'2 -+ I'Imction[zetal, 0], 1'3 -+ l'unction[zetal, O]} 10 

zetal -+ '1 I I L'l'1' 

F1 - 2 F1 (F1 )., + &1 (F1 )., + (F1 )., .• , == 0 

True 
True 

The remaining ODE for FI is solved by means of DSolve[]: 

psol = DSolve [1'1 [zetal] + zetall'l' [zetal] -
21'1 [zetal] 1'1' [zetal] + 1'1" [zetal] == 0, 1'1, 

zetal] 

{{Fl -+ [ -2 E~ ...fil.2 + 2 #1 2 C [1] +...[2Tr #1 2 Erfi [.£fl----l &I}} 
#1 (2 C[1] +...[2Tr Erfi [ 1~~ ]) 

The solution for FI contains the special function Erfi[]. The inversion of the used 

transformations provides the solution for the unknown functions free[11, free [21 , and 

free[31 of the non-classical symmetries: 

solg = 
{free[l] -+l'I1I1ction[{x, t}, g], free[2] -+l'I1I1ction[{x, t}, h], 

free[3] -+ I!'unction[{x, t}, f]} 10 
Solve[(redl[2] 10 psol 10 {1'2-+l!'unction[zetal, 0], 

1'3 -+ I'I1I1ction[zetal, O]}) I I Flatten, 
{g, h, f}] 



388 Non-classical Symmetries of Partial Differential Equations 

{{free[l]-,>Function[{x, t}, -x+ (_2E+IE-t+XI2 -/(E-t +X)2 + 

2 (E- t +x)2 C [1]+-.j2Tf (E-t+X)2Erfi[.y(E~X)2 l)/ 

((Et+X) (2C[1]+-.j2TfErfi[.y(E~X)21))l' 
free [2] -'> Function [{x, t}, 0], 

free[3] -,>Function[{x, t}, OJ}} 

The check of the initial determining equations reveals that, in fact, the given 
functions satisfy the detennining equations: 

infl [2D I. solg I I Simplify 

{{a, 0, a}} 

Finally, the non-classical symmetry transformations for the FP equation under the 
condition that the non-linear determining equations allow point symmetries are given 
by 

ncinfi = Append[infl[lD I. solg I. e[l] -+ kl I. u[x, t] -+ U I. 
Rule [a_[n_] [h_], b_] -+ 

Rule[a[n], Function[$v, $w] I. {$v-+ {h}, $w-+b}] II 

Flatten, 

xi [2] -+ Function [{x, t, u}, 1]]; 

ncinfi I I LTF 

r:th == ° 

At this stage of the calculation, we find a very special representation of the 
non-classical symmetries. The next step in the calculation should be the reduction of 
the FP equation. A glance at the above result reveals that this last step is very difficult 
because the infinitesimals contain special functions with very complicated 
arguments. Since the infinitesimals are part of a first-order PDE, we face the problem 
of solving these equations to find the invariants. Currently, neither Mathematica nor 
MathLie can solve this kind of equations. However, the result derived via a mixed 
application of Lie's classical and non-classical method demonstrates that a simple 
equation allows a very complicated structure of symmetries. 



Applications o/the Non-classical Method 389 

However, solutions of the FP equation are derivable if we make an ansatz for the 
non-classical infinitesimals of the form 

inf2 = inf1 /. {free[l] -+Function[{x, t}, free [1] [xl], 

free [2] -+Function[{x, t}, 0], free[3] -+Function[{x, t}, OJ}; 

inf2 / / LTF 

~i == 'Ti 

<Pi == 0 

-'Ti - X ('Ti ) x - 2 'Ti ('Ti ) x + ('Ti ) X,x == 0 

True 
True 

assuming that the arbitrary functions free[2] and free [3] are vanishing constants, The 
substitution into the non-linear determining equations of the FP equation reveals that 
only one equation for the function free[1] remains. So that the non-classical 
infinitesimals are determined by 

inf3 = {Append[inf2[lD, xi[2] [x, t, u[x, tl] -+ 1], 

DeleteCases[inf2[2D,0]}; 

inf3 / / LTF 

~i -- 'Ti 

<Pi -- 0 

~2 -- 1 

Since the unknown function free[1] is a function of x only, we can again apply 

PDESolve[] to solve the determining equation for free[l]: 

inf40 = PDESolve [inf3, {u}, {x, t}]; inf40 / / LTF 

-2 ~ + kl -Y27r x Erfi [ vg 1 
~i 

2 ~ (E-"~- kl + x) - kl-Y27r x 2 Erfi [1; 1 
<Pi == 0 

~2 == 1 

The result is an explicit representation of the non-classical symmetries for the FP 
equation depending on a single parameter kl. This parameter is responsible for the 
transformation properties. Because PDESolve[] returns the infinitesimals in a special 
representation, we need to transform the infinitesimals into a pure function. 
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ncifokkerPlanck = inf4 /. u [x, t] -+ U /. Rule [a_ [n_] [h __ ], b_] -+ 

Rule [a [n], Function [$v, $w] /. {$v -+ {h}, $w -+ b}] II Flatten; 

ncifokkerPlanck / / LTI' 

-2 -,/xi + kl -{2JT x Erfi [ 1,~- 1 
~l 

2 -,/xi (K;'- kl + x) - kl-j2"ir x 2 Erfi [~;,.; 1 
~2 == 1 

In the following, we will restrict our considerations to a sub-class of transformations 
for which kl = O. The non-classical infinitesimals reduce to the simple form 

infi = {{xi[l] [x, t, u], xi[2] [x, t, u]}, 

{phi [1] [x, t, u]}} /. ncifokkerPlanck /. 

kl -+ 0 

{{-~, l}, {a}} 

For this sub-class of infinitesimal transformation, we reduce the original FP equation 
by 

red 
LieReduction[fokkerPlanck, {u}, {x, t}, infi[l:D, infi[2:D]; 

red /. zetal -+ '1 / / I'latten / / LTI' 

1 2 2 (2 t + x ) - Sl == 0 

U-Fl == 0 

_x2 (Fl b1 + Flb1 ,b1 ) == 0 

The resulting second-order ODE is solved by DSolve[]: 

rsol = DSolve[red[3, l:D, 1'1, zetal] 

{{Fl~ (-E-uC[l] +C[2]&)}} 

The solution is a decaying exponential function in the similarity variable 
S 1 = (2 t + x 2 ) / 2. The solution for the original variable u follows by 

sol = Solve [red[2:D /. rsol, u] / / I'latten 

1 2 } {u~ -EY (-2t-x) C[l] +C[2] 
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representing a Gaussian in the spatial variable multiplied by an exponential decrease 
in time. The constants C[l] and C[2] are constants of integration and can be used to 
implement initial conditions. For a fixed value of C[1] and C[2], we plot the 
non-classical solution for the FP equation: 

Plot3D[Bvaluate[u/. sol /. {C[l] -+-1, C[2] -+l}], {x, -3, 3}, 

{t, 0, 3}, AxesLabel-+ {"x", "t", ·u"}, PlotPoints -+ 25, 

PlotRange -+All, ViewPoint -> {-1.253, -2.896, 1.221}, 

Mesh -+ False] 

3 t 

x 

We clearly observe that the solution represents a decaying solution in time. The 
initial shape of a Gaussian in x decreases in time but does not change its shape. The 
examination of the FP equation demonstrated that the non-classical method can be 
combined with the classical method. The results for the non-classical symmetries of 
the FP equation are, however, too complicated for MathLie to carry out the final 
stage of the solution procedure. 

Up to now, we discussed local symmetries of a given equation. In the following 
chapter, we will describe the derivation of non-local symmetries. We will show that 
the Frechet derivative is a useful tool for determining this type of symmetry. 



7 

Potential Symmetries of Partial 
Differential Equations 

7.1. Introduction 

The last two chapters discussed point symmetries and non-classical symmetries. 
These types of symmetry are local symmetries because the coordinates are involved 
in the local transformations in a direct way. This chapter discusses a completely 
different type of symmetry. We not only consider the original PDEs Ll ::: 0 but also 
derived systems of PDEs whose solutions are solutions of the original equations. The 
new associated system of PDEs is treated by the methods discussed in the previous 
sections. The result of this treatment are symmetries not only depending on the local 
variables of the original equation but also on variables of the affiliated system of 
PDEs. Thus, we get a new type of symmetry depending on an extended set of 
variables. Such symmetries are generally called non-local symmetries. A special type 
of non-local symmetry is a potential symmetry. Our interest in this chapter are 
potential symmetries of PDEs. 

The following sections discuss how the associated PDEs are derivable in a systematic 
way. For this reason, we need to introduce some new terminology. The new terms 
have the advantage that a generalization to other kinds of symmetry are possible. 
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7.2. Basics of Potential Symmetries 

In Chapter 6, we distinguished weak and strong symmetries. If we have a strong 
symmetry, solutions of the equation D. = 0 are transformed into solutions of this 
equation, and a reduction of the original PDEs are possible. In case of weak 
symmetries, only a reduction is possible. Based on strong symmetries, we can 
generalize the meaning of a symmetry. 

Definition: Topological symmetry 

A symmetry of a system of PDEs D. = 0 is a transformation which transforms 
solutions of D. = 0 into other solutions of D. = O. 0 

The symmetry of the PDE given above is of a topological nature because it is 
completely free of any coordinates. We see that a symmetry primarily is not 
connected to a system of coordinates. However, if we need to carry out practical 
calculations, we have to consider the coordinates of the problem. 

The classical symmetries of a PDE are point transformations which guarantee the 
invariance of the solution space. These kinds of symmetry are point symmetries as 
we know them. Point symmetries are created by infinitesimal transformations 

x; = Xi + E5i(X, u) + O(~), i = 1, 2, ... , p, 

u,a = ua + E I,ba(x, u) + O(~), a = 1,2, ... , q. 

(7.1) 

(7.2) 

The vector field of the infinitesimal transformation is not uniquely defined. Contrary 
to Chapter 5, we can represent the vector field by 

q 

11 = L I]a(x, u, U(l) au" (7.3) 
a=1 

The infinitesimal components I] of the vector field 11 are given by 

p 

I]a = I,ba(X, u) - L 5i(X, u) ur , a = I, 2, ... , q, (7.4) 
i=1 

which are equivalent to the characteristics Qa introduced in Chapter 6 in connection 
with non-classical symmetries. Based on the characteristics, the kth prolongation of 
the vector field simplifies to 
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q 

pr(k)v = v + LL(DJ 1]a)8u; • (7.5) 
a=1 J 

We call a transformation local if the characteristics 1]a depend on derivatives of the 
dependent variables. The invariance condition from which solutions for the 
characteristics follow is given by 

(7.6) 

where D denotes the Frechet derivative. Relation (7.6) is nothing more than the 
invariance condition discussed in Chapter 5 for point symmetries. We note that this 
type of invariance condition does not change if the characteristics depend on higher 
derivatives. This situation occurs if we consider generalized symmetries. In Chapter 
9, we will discuss this type of symmetry. The Frechet derivative, on the other hand, is 
the basic tool for the systematic calculation of potential symmetries. How we access 
the potential symmetry will be discussed next. 

7.3. Calculation of Potential Symmetries 

When describing non-local symmetries, it is convenient to introduce new variables 
v(x) by additional equations which are connected with the original equations in the 
variables u(x). One condition on the new system of PDEs is that the original system 
must be derivable from the new. In other words, if (u(x), v(x» satisfy the extended 
equations, u(x) also has to be a solution of the original system, 

(7.7) 

An auxiliary system with new variables can be introduced if at least one PDE, say 
!:J..m = 0, of the system !:J.. = 0 can be written as a conservation law (cf. BIuman and 
Kumei [1989]). 

Suppose one PDE of the system !:J.. = 0, without loss of generality !:J..m = 0, can be 
expressed as a conservation law 

n 

L Di I(x, U(k-l) = O. (7.8) 
i=l 

Then, the system !:J.. = 0 can be written in the form 

v = 1,2, ... , m -1, (7.9) 

n 

L Di f(x, U(k-l) = O. (7.10) 
i=1 
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Relation (7.10) allows us to introduce n - 1 new variables v = (Vi, v2 , ••• , vn- I ). 

These n - 1 variables have to satisfy n - 1 equations. In connection with the 
remalmng equations (7.9), they built up a new system of equations 
'I'(x, U(k) , V(I») = 0, which is the potential system. Explicitly, we find 

(7.11) 

/(x, U(k-I») = (_1)1-1 {v~ +v~-I}, 
1+1 1-1 

1<I<n, (7.12) 

v = 1, 2, ... , m - 1. (7.13) 

The original system a is closely connected to the potential system '1', meaning that 
some properties of a are still contained in '1'. One of these properties is that if (u, v) 
are solutions of 'I' then u is also a unique solution of a. On the other hand if u is a 
solution of a then there exists a v so that (u, v) is also a solution of '1'. However, v in 
this case is not unique. These properties of the solutions are also present in the 
symmetries of both systems. A symmetry of 'I' is connected with a symmetry of a 
and vice versa. The symmetries, however, have different meanings for the two 
systems. For example, a point symmetry of 'I' may be a non-local symmetry of a. 
This kind of symmetry is called potential symmetry. 

Definition: Potential symmetry 

Let us assume that 'I' is a potential system of a. A point symmetry of 'I' given by 

m P 

v'!' = L: {IPa(x, u, v) - L: 5i(X, u, v) un 8ua 

a=1 i=1 

n-l ( n ) 
+ ~ Xp(X, u, v) - tt 5i(X, u, v) vf 8,!' 

(7.14) 

with 5;, IPa, and Xp the infinitesimals of x, u, and v, respectively, is a potential 
symmetry of a, if the infinitesimals 5; and IPa depend on the new variables vP and are 
not reducible to a point symmetry of a. 0 

This definition introduces a potential symmetry as a point symmetry of an auxiliary 
system, the potential system. We already know how point symmetries of a PDE are 
determined. In Chapter 5, we discussed the procedure for different examples. Thus, 
we face the problem of finding the potential system for which we can calculate the 
point symmetries. 

The main problem in determining potential symmetries is to find useful potential 
systems '1'. To express one PDE of the system (7.7), a; = L7=1 D; I in a conserved 
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fonn is not the only possibility to rewrite a system of PDEs. Additionally, a number 
of PDEs of the system (7.7) can be multiplied by integrating factors to become 
conserved quantities, as Bluman [1993] remarks. There exists a set of integrating 
multipliers 

(7.15) 

which allows the representation 

m n 

L:>.V(x, u(p))~v(x, U(k)) = ~ Di lex, U(k)). (7.16) 
V=! i=! 

In replacing the PDE ~v by relation (7.16), we must be cautious. The resulting new 
system 'I' may gain a solution which is not a solution of the original system ~. 
However, every solution of ~ is a solution of '1', but each solution of the system 

~v = 0 v = 1, ... , f.l - 1, f.l + 1, ... , m, (7.17) 

(7.18) 

satisfies the potential system '1'. So there may exist solutions of 'I' which do not solve 
the original system. In fact, we have to exclude such solutions to prevent trouble in 
the calculation. So let us define the following: 

Definition: Equivalence of conserved representations 

A set of integrating factors {AV} creates an equivalent conserved representation of ~ if 
for a single f.l, 1 S; f.l S; m, the systems ~ and 'I' allow a common space of solutions. 
Potential symmetries exist only for equivalent conserved representations. 0 

Experience shows that integrating multipliers A depending on derivatives do not 
create equivalent conserved representations. Thus, we restrict our considerations to 
multipliers depending only on the independent and dependent variables 

(7.19) 

The last step in our theoretical considerations is the detennination of the integrating 
multipliers. So we need a formula allowing us the systematic determination of the 
,lv's. If we apply the invariance criterion (7.6) to the potential system (7.11)-(7.13) in 
connection with relation (7.16), we end up with the condition 
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D~ (A) Ill=o = 0, (7.20) 

where D* denotes the adjoint Frechet derivative. The solutions for the A's follow by 
calculating the invariance condition with the adjoint Frechet derivative and replacing 
the characteristics 1] in (7.6) by the integrating multipliers. Since MathLie is able to 
treat such a system of equations, we have a tool providing the solutions. 

The solutions of (7.20) may be either a finite set of solutions or a continuous set, 
meaning that for the finite set, a finite number of solutions exists, whereas in the 
continuous case, arbitrary functions occur in the integrating multipliers A. Both cases 
are useful in classifying the point symmetries of the related potential system '1'. 

The theory so far discussed can again be applied to a derived potential system '1'. This 
recursive application of the procedure delivers a tree of the potential system if the 
integrating multipliers are chosen in an appropriate way. 

Thus, we are able to construct new solutions by means of the potential symmetries. 
These new solutions are quite different from the solutions derived from point 
symmetries because the non-local properties of the equation are the key for this 
construction. Solution (u, v) of the potential system allows us to find solutions of the 
original system a. These solutions are new solutions, different from the solutions 
derived via the classical or non-classical method of Lie. Completely new solutions 
may be expected if we analyze the potential system by means of the non-classical 
method. 

We use the procedure of integrating factors extensively in our package MathLie to 
derive the potential systems. The algorithmic procedure to derive potential 
symmetries is summarized in the following four steps: 

1. Determine the integrating multipliers from relation (7.20). 

2. Extract these integrating multipliers which allow an equivalent conservation law. 

3. Create for each integrating factor from step 3 the potential representation '1'. 

4. Examine the potential system either with the classical or the non-classical method. 

These four steps are the basis of the following examples demonstrating the automatic 
determination of potential symmetries. The calculations are supported by the function 

PotentialSymmetries[], which is part of MathLie. The function PotentialSymmetries[] 
allows us to derive the possible potential systems and calculate the point symmetries 
of these systems. 
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7.4. Applications of Potential Symmetries 

In the following sections, we apply the theory to several examples. The discussed 
theory allows us to derive new solutions for a scalar POE as well as for systems of 
POEs. The program MathLie calculates automatically all potential systems and 
determines the corresponding point symmetries of the potential system. The 
application of the non-classical method to potential systems is novel. As we will see, 
there are a lot of problems when non-classical symmetries are used to find solutions. 

Let us demonstrate some of the possible calculations carried out by MathLie in 
connection with potential symmetries. The following examples demonstrate the 
application of the function PotentialSymmetries[]. 

7.4.1 A Non-linear Reaction Diffusion Equation 

The first example demonstrated how the potential systems are derived by MathLie. 
We examine a non-linear reaction diffusion equation of the type 

reaktionDiffusion = at U[XI tj + ax,x ( 1 + f3 X2) == 0; 
U[XI tj 

reaktionDiffusion / / LTl" 

2 (3 + Ut + 2u~~ - u~;,x == 0 

where f3 is a real constant. Our primary interest is to detect a potential representation 
of the equation. The function PotentialSymmetries[] in connection with the option 

PotentialSystemsOnly-+True allows us to derive these systems. The function needs 
the equation, the dependent and independent variables, and the parameters as input 
quantities. 

pSyst8mOfReaktionDiffusion 

PotentialSymmetries[reaktionDiffusion, 

u , {x, t} I {f3} I potentialSyst_sOnly -+ True j ; 

pSyst8mOfReaktionDiffusion II LieTraditionall"orm 

{{{~ +x2 (3+ViO t • -Vs-ViOx • -u- (Vs)J. 

1 
{u. Va. ViO}, {x. t}}. {{ux +x(3+Vll t • 

V9 } } --;{2-Viix • -ux-(V9 )x' {u.V9.Vii}, {x. t}. 

E-Il v, E-~v, 

{ {- u x (3 + V12 t • - X2 (32 - V12x• -u x - (V9 ) x}. {u. V9 • V12}. 

{x.t}}. 
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{ { 1 V9 E-~V9 E-,BVg 

U X + x [3 + V14 t , - X2 - V14x , - u x [3 + V13 t , - X2 [32 - V13 x }, 

{ u, V 9, V13, V14}, { x , t}}} 

The result is a nested list containing four lists. Each of these sub-lists contains 
information on a specific potential system. Added to each potential system are lists 
containing the dependent and independent variables of the system. We observe that 
three of the potential systems are formulated for three dependent variables and that 
one of the potential systems contains four dependent variables. This behavior 
indicates that the fourth potential system is a second-stage potential system derived 
from a precursor. We learn that not only the original equation is checked on a 
possible potential representation but also all potential systems derived from the 
original one. 

7.4.2 Cylindrical Korteweg-de Vries Equation 

The second example examines the symmetries of the potential systems for the 
cylindrical KdV equation. The cylindrical KdV (cKdV) equation is given by 

cKdV = 
u[x, t] 

Otu[x, t] + +u[x, t] oxu[x, t] +ox,x,xu[x, t] ==0; 
2t 

cKdV / / LTF 

u 
2t + U t + U U x + Ux,x,x == 0 

The potential systems of the cKdV equation are calculated by 

pcKdV = PotentialSymmetries [cKdV , u, {x, t}, 

PotentialSyst_sOnly -+ True, OrderReduce -+ False]; pcKdV / / 

TableForm [LieTraditionalForm [#] , TableSpacing -> {1, 1}] & 

- ~ . Ft u 2 + V14 t - It u 2 'Ie 'Ie X,x 

--{t U - V14x 

t u 3 t u 2 
--3- + T +V15 t - tuux,x 

t u 2 
--2- -V15x 

1 iJ~ -{tu 1 ; __ t 3/2 u 3 + _ "t u 2 x- ___ x + _ t 3 ;2 u 2 
3 4 2 2 x 

( 3/2 -It x 1 + V16 t - t u - -2- ux,x 

-~ t 3/2 u 2 + ~·Ft ux-V16 2 2 "c x 

u 
V14 

u 
V15 

u 
V16 

x 
t 

x 
t 

x 
t 
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The result is a set of three potential systems of first stage. For this equation 

PotentialSymmetries[] does not find derived potential systems of higher order. We 
used the option OrderReduce-+False for the above calculation to find all reductions 

of the original equation. The function PotentialSymmetries[] assumes by default that 
the auxiliary system is reduced in order and thus only returns a special class of 
potential systems. However, we can control this behavior by the option OrderReduce 
and can choose the suitable method. 

The next step is the solution of the potential systems to find the related potential 
symmetries. Let us start with the first potential system. We calculate the infinitesimal 
transformations of this system by selecting the first argument of pcKdV and feed 

them into the function Infinitesimals[]: 

infpcKdV = 
J:nfinitesimals [pcKdV[l, 1D, pCKdV[l, 2D, pcKdV[l, 3D]; 

infpcKdV / / LTF 

- k3 - 4 kl Vt u + 8 k4 t u - 2 k4 x 

Vt 
¢2 == k2 + kl Vl + x (k3 + k4 x) 

~1 == k5 - 2 k3 Vt + 2 (kl - 2 k4 Vt ) x 

~2 == 6 kl t - 8 k4 t 3 / 2 

The result represents a five-dimensional finite symmetry group which is similar to 
the point symmetries of the cKdV equation. The difference exists in the dimension of 
the group and in the number of elements. The point symmetry of the cKdV equation 
consists of three expressions and the potential symmetries of four. Recalling the 
definition of a potential symmetry, we have to check the dependence of the 
infinitesimals for the original equation on variables introduced in the derivation of 
the potential system. If we examine the infinitesimals xi[ 1], xi[2 J, and phil 1] on the 
dependence of variables starting with capital letter V, we quickly realize that these 
infinitesimals are independent of the new potential variables. In conclusion, the first 
potential system of the cKdV equation does not contribute to potential symmetries. In 
order to check all possibilities for the above potential system, we carry out the 
calculation by 

allJ:nfPcKdv = 
Map[:tnfinitesimals[#[lD, #[2D, #[3D]&:, pcKdV]; allJ:nfPcKdV /. 

{Rule -+ Equal, HoldPattern[Function[x_, y_]] -+ y} /. 

TraditionalLieForm / / Platten / / 

TablePorm 
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- k3 - 4 kl -vt u + S k4 t u - 2 k4 x 

-vt 

~ 1 = = k5 - 2 k3 -vt + 2 (kl - 2 k4 -vt ) x 

~2 == 6 kl t - S k4 t 3/2 

cP2 == k2 + kl VI + x (k3 + k4 x) 

cPl == -2 k3 u 

cP2 == kl 

~l == k2 + k3 x 

~2 == 3 k3 t 

cPl == 0 

~l == 0 

~2 == 0 

cP2 == kl 

Checking the dependencies of the infinitesimals on the potential variables, we realize 
that none of the infinitesimals satisfies the criterion for potential symmetries. 
However, the function PotentialSymmetries[] makes it easy to verify the definition 
and to decide whether a given equation allows potential symmetries or not. 
Experience with this function tells us that potential symmetries are rare symmetries 
but occur in connection with some equations. The above two-step calculation can be 
done in one step by suppressing the option PotentiaISystemsOnly~True: 

PotentialSymmetries [cKdV, u, {x, t}, OrderReduce .... Palse] 

{{{-~ -vtu[x, t]2+ V17 10 ,1) [x, t]--vtu l2.0)[x, t], 

- -vt u [x, t] - V17 11, 0) [x, t]}, 

{u, V17}, {x, t}, {phi[l] ~Function[ 

{ 17} -k3 - 4 kl -vt u + S k4 t u - 2 k4 x 1 
x, t, u, V , -vt ' xi [ 1] ~ 

Function [ {x, t, u, V17}, k5 - 2 k3 -vt + 2 (kI- 2 k4 -vt) x], 

xi[2] ~Function[{x, t, u, V17}, 6klt-Sk4t3/2 ], 

phi [2] ~ Function [{x, t, u, V17}, k2 + kI V17 + x (k3 + k4 x) ] } }, 

112 {{ - 3" t u [x, t]3 +VISIO,l) [x, t] + "2 t Ull,O) [x, t] -

tu[x, t] u I2 ,O) [x, t], -~ tu[x, t]2 _VlS I1 ,O) [x, t]}, 

{u, VIS}, {x, t}, {phi[l] ~Function[{x, t, u, VIS}, -2k3u], 

phi [2] ~ Function [ {x, t, u, VIS}, kl], 

xi[l] ~Function[{x, t, u, VIS}, k2+k3x], 

xi[2] ~Function[{x, t, u, VIS}, 3k3t]}}, 
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{{! -{t xu[x, t]2_ 

~ t 3/2 U[X, t]3 +V19(O,1) [x, t] - ~ Vt U(l,O) [x, t] + 

~ t 3/2 U(l,O) [x, t]2 _ (_ ~ x +t3/2 U[X, t]) U(2,O) [x, t], 

1 _~ 1 2 -yt xu[x, t] - 2 t 3/2 u[x, t]2 _V19(1,O) [x, t]}, 

{u, V19}, {x, t}, {phi [1] ~ Function [ 

19 } _ 2 (- 6 k2 + k4 Vt u + 36 k3 t u - 9 k3 x) 1 
{x, t, u, V , _ ~ , 

3yt 

[ k4x.~ 1 xi [1] ~ Function {x, t, u, V19}, -3- + 4 -y t (2 k2 + 3 k3 x) , 

xi [2] ~ Function [ {x, t, u, V19}, (k4 + 24 k3 -{t) t], 

phi [2] ~ Function [{x, t, u, V19}, 

k4 V19 1 kl + k5 + 3 k3 t + --2-- + k2 x 2 + k3 x 3 }}} 

The resulting list now contains the infonnation on the potential systems extended by 
the infinitesimals. The outcome is the same as before. No potential symmetries are 
present. 

7.4.3 The Burgers Equation 

Another example which allows potential symmetries is the Burgers equation: 

Burgers = CJtu[x, t] +u[x, t] CJxu[x, t] + yCJx,xU[X' t] == 0; 

Burgers / / LTF 

u t + U U x + y U x , x = = 0 

where 'Y is a real constant and measures the strength of second-order dispersion 
effects, The potential system and the potential symmetries are calculated with 

pBurgers = PotentialSymmetries [Burgers, u, {x, t}, {y}, 

OrderReduce -+ False] 

1 {{{-2u[x, t]2 +V24(O,1) [x, t]_YU(l,O) [x, t], 

-u[x, t] _V24(1,O) [x, t]}, {u, V24}, {x, t}, 

{{xi[l] ~Function[{x, t, u, V24}, k3-k6t+ ~ (k2-4k7t) xl, 

xi[2] ~Function[{x, t, u, V24}, kl+t (k2-2k7t)], 

phi [2] ~ Function [ {x, t, u, V24}, 

V24 1 k4+k5+k6x+k7x2-2k7ty+2E7Yyfree[1][x, t] , 
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k2 u 
phi [1] -7 Function [ {x, t, u, V24}. -k6 - -2- + 2 k7 t U - 2 k7 x + 

E~ U free [1] [x, t] - 2 E~ ¥ free [1] 11,0) [x, t]]}, 

f [1] 10,1) [ ] 
{ree ¥ x, t +free[l] 12,0) [x, t]}}}} 

For the potential system of the Burgers equation, we find a seven-dimensional finite 
group and an infinite group. The infinite part of the group was derived by 
Vinogradov and Krasil'shchik [1984]. In addition, the auxiliary function free[l] of 
this continuous group has to satisfy the diffusion equation. 
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Approximate Symmetries of Partial 
Differential Equations 

8.1. Introduction 

The theory of approximate symmetries was developed by Baikov, Gazizov, and 
Ibragimov [1989] in the 1980s. The idea behind this development was the extension 
of Lie's theory to situations in which a small perturbation of the original equation is 
encountered. For such cases, the question arises of how the point symmetries or the 
group of the equations are altered if a small perturbation is added to the original 
equation. This question initiated the development of a group analysis method that is 
stable under small perturbations of the differential equation. The present chapter 
discusses the method of approximate symmetries. The method is based on the 
concept of an approximate group of transformations. Approximate symmetries are 
useful for partial differential equations depending on a small parameter E. This 
parameter is usually used in the standard theories to examine the differential equation 
in some limit. On the other hand, this parameter is also useful in the examination of 
Lie point symmetries. 

The basics of the theory were recently developed by Baikov et al. [1991]. These 
authors showed that the main part of Lie's theory can be used in an approximate 
calculus taking into account the smallness of the critical parameter in the theory. The 
new theory maintains the essential features of the standard Lie theory. This chapter 
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provides a concise introduction to the theory of approximate transfonnation groups 
and regular approximate symmetries of differential equations with a small parameter. 

8.2. Approximations 

Discussing approximate symmetries, we first have to define the tenn approximation. 
The following tenns are used to fix the notation. We assume that x = 
(Xl, X2, ••• , XN) are the independent coordinates of functions which are analytic in 
their arguments. Let us also assume that E is a small parameter on which our 
functions additionally depend. We will denote the involved infinitesimal small 
functions of order EP+1 by Op(x, E), where p s 0 is a positive constant. This condition 
is expressed by Op (x, E) = O(EP). An alternate representation ofthis condition is 

(8.1) 

Using this notation, we can state what we mean by an approximation. 

Definition: Approximation 

Let f and g be analytic functions in x. We define an approximation of order p, 

f ~ g, by the relation 

(8.2) 

for some fixed value of p s o. 0 

This definition is the basis of all the calculations we will carry out in the following 
sections. 

8.3. One-Parameter Approximation Group 

Following the discussion of Baikov et al. [1991], we define a one-parameter 
approximation group for a set of vector functions fi (x, E), i = 0, ... , p, with 

coordinates J! (x, E), j = 1, ... , N. The one-parameter family G of approximate 
transfonnations is thus 

p 

x*j ~ I:O; J!(x, E), j = 1, ... , N, (8.3) 
;=0 
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where x = (x" X2, ..• , XN) E IRN are the old coordinates and x· = (xi, xi, ... , xiv) 
are the new coordinates, and E and 6 are the group parameter and the perturbation 
parameter, respectively. This transfonnation satisfies the following conditions: 

I(x, E = 0, li) - x, (8.4) 

the approximate identity element. Furthennore, it is assumed that the transfonnation 

x· = I(x, E, 6) (8.5) 

is defined for any value of E of a small neighborhood of E = 0 and that this 
neighborhood allows the relation I(x, E, 6) - x at E = O. 

The set G of transfonnation is called a local one-parameter approximate 
transformation group if 

l(f(x, E, 6), y, 6) - F(x, E + y, 6) (8.6) 

for all transfonnations x = I. 

Example 1 

Let us consider an example with N = 1. The following two functions are equal in a 
first-order approximation. The functions f and g depend on the independent variable 
x and on the two parameters E and 6. E denotes the group parameter and 6 the small 
perturbation parameter. 

f [x_, 6_, 05_] : = x + 6 (1 + 05 x + 0526) 

g[x_, 6_,05_] :=X+6 (l+c5x) (1+ 6205) 

The difference between the two functions is given by 

f[X,6,c5]-g[X,6,o5]//Bxpand 

which is a function proportional to the square of the small approximation parameter 
6. Thus, in first-order approximation, the two functions are equal. The two functions 
f and g satisfy, in addition, the relation 

f[g[x,6,o5],.,o5] - f[X,6+.,c5] //BxpaDd 
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which is the approximate association relation of the related group. The difference is a 
quadratic function of the group parameters E and </> and at least of order two in the 
small perturbation 8. This example demonstrates the general behavior of an 
approximate group in first-order approximation. The essential point is that the above 
relations are satisfied up to the order of approximation; i.e., the approximation order 
(here, first-order) does not occur in the relations. Note that only higher orders in the 
perturbation parameter are present. 

To determine the group properties of an approximate group transformation, we use 
similar tools as in the case of Lie point groups. The applied mathematical objects in 
Lie's theory are the group generator, Lie's equation, infinitesimal transformations, 
etc. In the following, we will discuss these objects for approximate groups. 

8.4. Approximate Group Generator 

In close analogy to Lie point groups, we introduce the main tool of symmetry 
analysis at this point. The group generator or vector field of an approximate group is 
given by a first-order differential operator of the form 

P a 
v = L: gi(X, 8) ax 

i=) l 

(8.7) 

such that 

(8.8) 

where the components of the vector field «(l, gl, ... , e) are given by the expansion 
coefficients of the transfonnation 

eV = a It (x, E, 8) I 
~, aE <=0 v = 0, 1, ... , p; i = 1,2, ... , N. (8.9) 

Thus, an approximate vector field is given by 

(8.10) 

The main difference between an ordinary vector field v of Lie point symmetries and 
an approximate vector field is an expansion of the coefficients of the vector field with 
respect to the perturbation parameter 8. These coefficients follow from a Taylor 
expansion of the transfonnation I with respect to the group parameter E and with 
respect to the perturbation parameter 8. 
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8.5. The Determining Equations and an Algorithm of Calculation 

The purpose of this section is to discuss the connection between the classical Lie 
theory and the theory of approximate group analysis. We sketch the main steps of the 
algorithm for calculating approximate symmetries. A detailed presentation and proofs 
of the statements are contained in the work of Baikov et al. [1989]. 

Let G be an approximate group of transformations given by equation (8.3). Let us 
further assume that the order of approximation is p ;:: q. The approximate equation 
may be given by 

(8.11) 

Relation (8.11) is said to be an approximate invariant with respect to G if 

/1(f(x, 8, e), e) = o(e") (8.12) 

whenever x = (XI, ... , XN) satisfies equation (8.11). 

Assume the approximate vector field v is given by equation (8.7). Then, equation 
(8.11) is approximately invariant under the approximate group G if and only if 

(8.13) 

This relation is called the determining equation for approximate symmetries. 
Comparing this expression with Lie's theory, we realize that the original condition of 
invariance is altered in such a way that the exact vanishing is dropped. In relation 
(8.13), only an approximate vanishing is needed to derive the determining equations 
for the infinitesimals. If the determining equation (8.13) is satisfied, we say that 
equation (8.12) admits the approximate operator v. 

To demonstrate the relations discussed so far, let us consider the simple case with 
q = p = 1. Relations (8.11) and (8.7) simplify to 

and 

~ ~O ~I 0 a I a 
v = v + e v == ~i (x) - + ~i (x) --, 

aXj aXj 

respectively. The determining equation (8.13) then reduces to the relation 

pr(k)(vO + evl ) (110 (x) + e/1l(x»IAo(X)+fAl(X)~O =o(e). 

(8.14) 

(8.15) 

(8.16) 
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This relation contains an algorithm for the calculation of first-order approximate 
symmetries. The algorithm is based on a theorem stated in Baikov et al. [1989]. 

Theorem: First-order approximations 

In the first-order approximation, the determining equations for approximate 
symmetries follow from the system of relations 

(8.17) 

and 

(8.18) 

The auxiliary factor A(X) is determined from (8.17) and afterward substituted into 
(8.18), where (8.18) itself must hold for the solution x of the unperturbed equation 
~(x)=O.O 

The above theorem provides an algorithm for the calculation of first-order 
approximate symmetries. The algorithm consists of the following four steps: 

1. Find the exact symmetries generated by vO of the unperturbed equation. This step 
is equivalent to the classical theory of Lie. In equations, we have 

(k) ~O 
pr v ao(x)l~o=o =0. (8.19) 

2. If we know the symmetries in the zero approximation vO, we can use them to 
calculate the auxiliary function A(X) if the perturbation £6. 1 (x) is given. The 
deficiency A = H follows by 

1 (k) ~O 
H "'=! - pr v (ao(x) + E a1 (x)) lao +e~1 =0 • 

E 
(8.20) 

3. The symmetries of the first-order approximation then follow from the relation 

(k) ~1 I pr v (ao(x)) ~o=o + H = O. (8.21) 

4. Check the consistency of the approximation at the end. 

We remark that in the approximate group analysis of differential equations, the 
prolongation formulas are the same as in the classical Lie algorithm. Thus, it is 
straightforward to use the functions of MathLie to derive approximate symmetries. 
The package MathLie offers the function ApproximateSymmetries[] to carry out the 
calculations in a single step. The following examples will demonstrate the application 
of the function. 
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8.6. Examples 

The following two examples are taken from Baikov et al. [1989]. They serve to 
illustrate the calculation of approximate symmetries in connection with computer 
algebra. Our results are identical with those published by Baikov and co-workers. 

8.6.1 Isentropic Liquid 

Let us consider the problem of a liquid in a pipe (Baikov et al. [1989]). The system of 
equations of motion for the fluid density p and the velocity field v in a 
one-dimensional space is given by 

Pt + (pv)x = 0 (8.22) 

and 

P Vt + P V Vx + px - E P V = 0, (8.23) 

where p is the pressure of the liquid and E is the hydraulic-friction coefficient. In 
Lagrange coordinates t and q = f P d x, the system becomes 

eqOfMotioD = {at ( 1 ) _ aqv[q. t] == O. 
p [q. t] 

at v[q. t] + aqp[q. t] - e v[q. t] == oJ; 
eqOfMotion / / LTI' 

-Vq - p~ == 0 
p 

-v E + P q + Vt == 0 

hence, for 

rulel = p-+l'WlctiOD[{q. t}. l/u[q. t]]; 

we obtain the equations 

eqatioD = eqOfMoticm /. rulel; eqatioD / / LTI' 

U t - Vq == 0 

-v E + P q + Vt == 0 

Differentiating the first equation with respect to t and the second with respect to q, 

and replacing the spatial derivative of v by the temporal derivative of u, we end up 
with the relation 



eczuatioD = «at eqation[l, lD + a,. eqation[2, lD) I. 
Solve [eqation[lD, V(1.0) [q, t]] ) [lD == 0; 

eczuatioD II LTl!' 

-eut +Pq,q +Ut,t == 0 

If we now represent the pressure by the expression 

u [q, t] a+1 

ru1e2 = p ... FuDctioD [ {q, t}, ] ; 
0'+1 

with 0'" a constant, we can represent the equation as 
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eczuation = eczuatioD I. ru1e2 II Simplify; eczuatioD II LTl!' 

U-l+"ou~-eUt +u"uq,q+Ut,t ==0 

This equation depends on two parameters 0'" and E denoting the isentropic exponent 
and the perturbation parameter, respectively. In the following, we consider the 
hydraulic-friction coefficient E as a small quantity. Thus, we can discuss the 
symmetries of the equation under the condition that E creates a disturbance of the 
original fluid equations. The approximate symmetries of the equation follow by 
applying the function ApproximateSymmetries[] to the derived equation: 

iDfiDite.ima1. = 
A,pproximate~trieB [eczuation, {u}, {q, t}, {a, &}, &]; 

iDfiDite.ima1. II LTF 

4> = = 4 k4 U + k4 U 0 + E (_ k4 t U 0 + 
1 4+0 4+0 4+0 

( k8 q 0 ) 
~1 == k2 + k3 q + e k5 + k7 q + --2-

U (2 k3 t + k8 (4 + 0) ) 
4+0 

( k4 a ) ( t 2 0 (-2 k3 + k4 0) ) 
~2==kl+t k3--2 - +e k6+k7t+ 4(4+0) 

The result is a finite eight-dimensional symmetry group depending on the small 
parameter E and the parameter 0'". It was essential in the above calculation that both 
parameters 0'" and E are given in the parameters list. The last argument of the function 
ApproxirnateSymmetries[] contains only the name of the perturbation parameter E. In 
this way, we are able to select one of the parameters as a small quantity. The 
coefficients of the eight different vector fields are accessible by 

ca.e. = {{xi[l] [q, t, u], xi[2] [q, t, u]}, 

{phi [1] [q, t, u] }} I. iDfinite.ima1. I. 
(Map[(Thread[{kl, k2, k3, k4, kS, k6, k7, kS} ... I=])&:, 

PermutatioD. [(I, 0, 0, 0, 0, 0, 0, O}]]) II 
Simplify 
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{ { { 2 t(24 E+~) }, {24t+U~E }}, {{O, I}, {O}}, {{I, A}, {O}}, q, t - -=-----c--,-----u-,-- u 

{{ to'(-8+(-2+tE)O')} {U(4+O'-tEO')}} {{ 
0, 4 (4+0') , 4+0' ,E, a}, {O}}, 

{{O, E}, {O}}, {{qE, tE}, {O}}, {{q~O', o}, {UE}}} 

We select one sublist from the above list to reduce the original equation and find a 
similarity representation. Let us examine, for example, the fourth subgroup which 
contains the approximation parameter E. The reduction follows by 

redl = LieReduction[equation, 

{u}, {c;[, t}, cases[4, 1], cases[4, 2]] //Simplify; 

redl /. zetal .... '1 / / Flatten / / LTF 

q -.1::', == 0 

t 2/ o U (- 8 - 2 0'+ tEa) 2/0 - F, == 0 

(- 8 - 2 0'+ tEa) 2/0 

o 

(4 (64 + 64 0'-4 (-5 + 2 e E2) 0'2 + (2 - 2 t 2 E2 + t 3 E 3 ) 0'3) Fi + 

O'3F~ (F1)~, +0'2 Fi+a (Fd s1 . s1 ) == 

The result shows that the similarity variable (I = q and the similarity representation 
is given by u = t-2/CT (-8 - 2 (T + t E (T)-2/(T FI (q). This expression depends on E in a 
certain power of E. Since our approximation order in E is one, we have to expand the 
similarity solution in E to first order. The expansion is carried out by 

vl = 
Series [u /. Solve [redl[2], u], {E, 0, 1}] / / Normal / / Simplify 

t-2/ 0 (_8_20')-2/0 (4+tE+O') Fl[q] 
{ 4 + a } 

rule3 = u .... Function@@ { {<;I, t}, vl [1] } 

. [{ } t- 2Jo (_8_20')-2/0 (4+tE+O') Fl[q] 1 
u .... Functlon q, t , 4 + a 

On the other hand, the arbitrary function Fl has to satisfy a second-order ODE. 
Examining this equation, we realize that the second-order ODE contains coefficients 
depending on t. However, this dependence will directly lead to inconsistent results. 
Since we are looking for solutions linear in E, we have to eliminate the 
time-dependent terms. The coefficients containing t contribute terms in E of the order 
two or higher. A consistent similarity reduction is only possible if we eliminate those 
terms by choosing E = O. The second-order ODE reduces thus to 

redh = redl[3] /. E -+ 0; redh /. zetal .... '1 / / LTF 



(-8 - 2 0)2/" (4 (64 + 64 0+ 20 0 2 + 203 ) Fi + 0 3 F~ (Fd~, 

+ 0 2 Fi+" (F1 ),l.,,) == 0 
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free of E and t. The solution of this approximation equation follows by 

8011 = DSo1ve [redh, 1'1, zetal] 

{ {F1 ~ (InverseFunction [ 

C[2] - (#1- 1 - 0 (C[l] - 256 #1 2+0 -1280#12+0 -16 0 2 #12+")) / 

(80 (4 + 0)2 ..J (:2 (#1-2" 
(C[1]-256#1 2+o -1280#12+o -1602 #12+0 ))))_ 

( (-2 - 0) C [1] Hypergeometric2F1 [ _21_ 0' ~, 1 + _21_ 0 ' 

_ (-256-1280-1602) #1 2+"] #1-1+-}(-2-0)-0+~ 
C[l] 

..JC [1] - 256 #12+0 - 128 0 #1 2+0 -1602 #12+0 

11 (-256-1280-1602 ) #12+0 )/ 
-V + C[l] 

(8 0 (2 + 0) (4 + 0) 2 ..J ( ~ 
(#1- 20 (C[1]-256#1 2+0 -1280#12+0 -1602 #1 2+0 ))) 

..JC[l] + (-256-1280-1602 ) #12+0 )&] [ 

#1]&)}, 

{F1 ~ (InverseFunction [ 

C[2] + (#1-1 -" (C[l] - 256 #12+0 -1280#12+0 -1602 #1 2+0 )) / 

(80 (4 + 0) 2 ..J ( :2 

(#1-20 (C[1]-256#1 2+o -1280#12+0-1602 #12+")))) + 

( (-2 - 0) C [1] Hypergeometric2F1 [ _21_ 0 ' 

1 1 (-256-1280-1602 ) #1 2+" 
2,1+- 2 - 0 ,- C[l] ] 

#1-1+j- (-2-o)-cr+¥ 
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~c [1] - 256 #12+0 - 128 0 #1 2+0 -1602 #1 2+0 

01 + (-256-128C~~]1602) #12+0 ]/(80(2+0) (4+0)2 

~ (* (#1- 20 (C[l] - 256 #1 2 +0 -128 0 #12 +0 -16 0 2 #12+0))) 

~C[l] + (-256-1280-1602 ) #1 2 +O )&J[ 

#1]&]}} 

The results are two solutions for function Fl. Both representations contain special 
functions of the hypergeometric type 2 Fl depending on the isentropic exponent (T. 

The representation of the solution in the original variables q and t follows by 
substituting the results into the approximated similarity solution. We choose here the 
first solution for the representation: 

solution = u[q, t] /. rule3 /. soll[l] 

_1_ [t -2 fo (_ 8 _ 2 0) -2/0 (4 + t E + 0) InverseFunction [ 
4+0 

C [2] - (# 1 -1-0 (C [1] - 256 #1 2 +0 - 128 0 #1 2 +0 - 16 0 2 #1 2 +0 ) ) / 

(80 (4 + 0) 2 ~ ( ~2 
(#1- 20 (C [1] _ 256 #1 2+0 _ 128 0 #1 2 + 0 - 16 0 2 #1 2+ 0 )) )) -

[ 
. [1 1 1 

(-2 - 0) C [1] Hypergeometrlc2F1 -2 _ 0' :2' 1 + -2 _ 0 ' 

_ (-256 -1280-16 ( 2 ) #1 2 +0 J #1-1+-t (-2-0)-0+~ 
C [1] 

~C [1] - 256 #1 2+0 -1280 #1 2 +0 - 16 0 2 #1 2 +0 

(1 (-256-1280-1602 ) #1 2+0 ]1 
'V + C[l] 

(80 (2 + 0) (4 +0)2 

~ (* (#1-20 (C[l] - 256 #12+0 -128 0#1 2 + 0 -16 0 2 #1 2+0 ))) 

~C[l] + (-256-1280-1602 ) #1 2 + 0 )&J [ 
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C[l] and C[2] are constants of integration and InverseFunction[] represents the 
inverse of the function! 

The original equation of the isentropic fluid in Lagrange coordinates can be 
examined either for specific values of the isentropic parameter (T or for different 
models for the pressure. Let us discuss two cases for a specific value of (T. The 
change of pressure in the model is left to the reader as an exercise. The following 
calculation of the approximate symmetries assume that (T = -4/3: 

infinitesi_ls = Approxi_te~tries [equation I. a .... -4/3, 
{u}, {q, t}, {e}, e, SUbstitutionltules .... {"t.t u[q, t]}]; 

infinite.i_l. II L'l'1!' 

(p! == 3 k4 u _ 3 k6 u _ 3 k7 q u 
2 2 

+ (_ 3 k2 u + 3 kg u _ 3 k3 q u + 3 k4 t u ) E 
224 

~l == k5 + q (k6 + k7 q) + (kiO + q (k2 + k3 q) ) E 

( k4 t 2 ) ~2 == ki + k4 t + k8 + k9 t + -4- E 

The result of the calculation is a lO-dimensional finite symmetry group in the 
first-order approximation. The coefficients of the generating vector fields are 

ca.e.2 = {{xi [1] [q, t, u], xi [2] [q, t, u] }, 

{phi [1] [q, t, u]}} I. infinitesi_ls I. 
(1Iap[(Threaa[{kl, k2, k3, k4, k5, k6, k7, k8, kg, kl0} .... I])&:, 

Permutation. [{1, 0, 0, 0, 0, 0, 0, 0, 0, O}]]) 

{{{O, i}. {OJ}, {{qE, O}. {_ 3~E }}, 

2 {{ t 2 E} {3 u 3 t U E }} {{ q E, O}. {- 3 qUE} }. 0, t + -4-' -2- + 4 ' 

{{i, O}. {OJ}' Hq, o}. {_32U}}, {{q2, O}. {-3qu}}. 

{{O, E}. {OJ}, {{D, tel, {3~E }}, {{E, OJ, {O}}} 

A specific reduction for the third vector field with V3 = E q a q - 3 E q U au follows by 

red2 = LieReduction[equ.atioD I. a .... -4/3, 
{u}, {q, t}, ca •• 82[3, 1], case.2[3, 2]] /I Simplify; 

rea2 I. zetal .... '1 II Platten II L'l'P 

t - Sl == 0 

q3 U - Fl == 0 

-E Fi" + Fi". " == D 
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The similarity representation is given by the similarity solution u = F[ (t) / q3 with 
similarity variable ~[ = t . The auxiliary function F[ has to satisfy a second-order 
ODE. We realize that the similarity solution does not depend on E. However, E occurs 
in the determining equation of Fl' The solution of the equation for F[ is given by 

solh = DSolve[red2[3) , Fl, zetal] 

This function actually does not depend linearly on E and, thus, it does not fit into the 
approximation scheme of a first-order approximation. However, it is a solution of the 
reduced equation. The representation of this expression in Lagrange coordinates reads 

solution2 = Flatten[Solve[red2[2) /. solh, u]] 

{ Et E C [1] + E C [2 ) } 
U ~ q 3 E 

A graphical representation of the solution for specific values of the parameters is 
given as follows: 

Plot3D[Evaluate[u /. solution2 /. {C[l] -+1, C[2] -+2, e-+ .l}], 

{q, 1, 2}, {t, 0, 20}, AxesLabel-+ {"q", "t", "un}, 

Mesh -+ False, PlotPoints -+ 35] 

Another case discussed by Baikov et aI. [1989] is the isentropic motion with (T = -4. 
The equation of motion for this case reads 

eq = equation /. C1 -+ -41 eq / / LTF 

4 u 2 U 
- --q- - E u t + ~ + u == 0 U S u 4 t,t 



The first-order approximate symmetries of this equation follows by 

infinitesimals = appraximateSy.mmetries[eq, {u}, 

{q, t}, {e}, e, SubstitutioDRules ~ {Bx.xu[q, t]}]; 

infinitesimals II LTF 

k4u 1 
<lh == - -2- + 2 (-k2 + k6 + 2 k7 t) u e 

~1 == k3 + k4 q + (kB + k2 q) e 

~2 == kl + (k5 + t (k6 + k7 t)) e 
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representing an eight-dimensional finite symmetry group. Again, we can use the 
infinitesimals to derive analytic solutions for the isentropic model. The generating 
vector fields of the subgroups read 

Map [ (l'old[Plus, 0, Map[l'old[NonCommutativeMultiply, 1, #]A, 

Transpose[{Flatten[#], {IIBQ;", DBtn, nBun}}]] I. 

_**O**_~ 0] I. 
1 ** a_ **b_ ~ a **b) A, 

{{xi [1] [q, t, u], xi [2] [q, t, u]}, 

{phi [1] [q, t, u] }} I. infinitesimals I. 
(Map[(Thread[{kl, k2, k3, k', kS, k6, k7, kS} ~#])A, 

Permutations[{l, 0,0,0,0,0,0, O}]])] II 
Tablel'orm 

1 ** Ot 

(qe) **Oq + (- U2E) **ou 

1 ** Oq 

q * * Oq + (- t) * * Ou 

e ** Ot 

(t e) * * Ot + U2E * * Ou 

(t2 e) **Ot + (tue) **ou 

e ** Oq 

Here, we used the function NonCommutativeMultiply[] (**) to keep the ordering of 
the operators in the representation of the vector fields. The coefficients of these 
differential equations are 

case.3 = {{xi [1] [q, t, u], xi [2] [q, t, u]}, 

{phi [1] [q, t, u]}} I. infinitesimals I. 
(Map[(Thread[{kl, k2, k3, k', kS, k6, k7, kS} ~#])'" 

Permutations [{1, 0, 0, 0, 0, 0, 0, O}]]) 
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{{{O, l}, {OJ}, {{qE, o}, {_U2E}}, {{l, o}, {OJ}' 

{{q, OJ, {-~}}, {{O,E}, {OJ}, HO, tEL {U2E}}, 

{{O, eEL {tuell, {{E, OJ, {OJ}} 

One of the possible reductions can be calculated by combining two sub-groups. For 
the present calculation. we combine the third and seventh sub-group: 

red3 = Lieaeduetion[ecz, {u}. {cz. t}. eases3[7, lD +eases3[3. lD. 

eases3 [7. 2D + eases3 [3. 2D] / / simplifYI 

red3 /. zetal -+ C1 / / Platten / / LTP 

1 t + q E - Si == 0 

- ~ - Fi == 0 
t 

t 3 E F~ + 4 E2 (Fd ~, - E2 Fi (Fd 1:1 ,1:, - Fi (t2 E (Fd 1:1 + (Fd 1:1 ,1:, ) 

== 0 

Solving for the unknown field u, we find an explicit similarity representation of the 
solution: 

u 1 
SOlve[-- == Pl[ - +cze]. u] 

t t 

{ {u ~ - t Fl [ ~ + q E ]} } 

The resulting similarity representation is given by u = -t F J (1 / t + q E), where F J 

has to satisfy a second-order ODE depending on t and E. We eliminate this 
dependence by choosing E = 0 in the determining equation of F J' The solution of the 
resulting equation follows with 

solh = DSolve[red2[3D /. e -+ 0, Fl. zetal] 

{{Fl~ (C[l] +C[2] #l&)}} 

representing a linear function in zetal. The solution in Lagrange coordinates t and q 
reads 

solution3 = solve [I'latten [red3 [2D /. solh]. u] / / Platten 

{u~-tC[l] -C[2] -qtEC(2]} 
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This solution depends linearly on E and thus is consistent with the approximation 
order of the procedure. The choice of numerical values for the integration constants 
C[l], C[2] and the approximation parameter E allows us to outline this solution in a 
contour plot. 

ContourPlot[ 

Evaluate[u!. solution3!. {C[l] -+1, C[2] -+-1, E-+ .9}], 

{q, -3, 3}, {t, 0, 20}, AxesLabel-+ {"qU, "tR}, 

Colorl"unction -+ Hue, Axes -+ True] 

t 

8.6.2 Perturbed Korteweg-de Vries Equation 

One of the frequently discussed equations in soliton theory is the Korteweg-de Vries 
equation (KdV) 

Ut + U Ux + ux,x,x = o. (8.24) 

The KdV equation is one of the rare equations which is solvable and possesses an 
infinite number of integrals of motion. The equation fIrst derived by Korteweg and de 
Vries in 1895 describes shallow water waves in narrow channels. Korteweg and de 
Vries showed that periodic solutions, which they called cnoidal waves, could be 
found in closed form and without further approximation. Our interest here is the 
approximation aspect of the fluid dynamics. It is well known that the KdV equation is 
an approximated equation in a certain limit incorporating the effects of dispersion 
and surface tension which stabilizes a wave. If now we incorporate terms in the 
equation which are actually present in nature but are dropped in equation (8.24), we 
may gain information on the influence of such terms. For example, let us extend the 
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KdV equation by a dispersive teno Uxx that Burgers [1948] used in his turbulent 
theory. In the following, we examine the equation 

MVepailen = at u [x, t] + 

u[x, t] axu[x, t] + a(x.3}U[X, t] +6a(X.2}U[X, t] == 0; 

MVepailon II L'l'1' 

lit + U U x + E Ux,x + Ux,x.x == 0 

where e is a small parameter measuring the influence of second-order dispersion. For 
short we call this equation the KdV -e equation. The approximate symmetries of this 
equation follow by 

MVinfiniteaimala = ApproximateSy.mmetries[MVepailon, 

{u}, {x, t}, {6}, 6, SubstitutioDRulea-+ {atu[x, t]}]; 

MVinfinitesimala II L'l'1' 

4>1 == k2 + (k5 - 2 k7 u) E 

~1 == k3 + k2 t + (kG + k5 t + k7 x) E 

~2 == kl + (k4 + 3 k7 t) E 

representing a seven-dimensional approximate symmetry group. The generating 
vector fields for this model read 

Map [ (l'old[Plus, 0, JIap[l'old[ISI'ODC~tativeMu.ltiply, 1, I]&:, 

'!'ranspose [{Platten[#], {"ax", "at", -au -}}]] I. 

_**0**_-+0] I. 

1 ** a_ ** b_ -+ a ** b) &:, 
{{xi [1] [x, t, u], xi [2] [x, t, u] }, 

{phi [1] [x, t, u]}} I. MVinfinitesimals I. 
(Map [ ('1'hread[ {k1, k2, k3, k .. , k5, k6, k7} -+ #] ) &:, 

Permutations [{1, 0, 0, 0, 0, 0, O}]])] II 
Tablel'orm 

1 * * au + t * * Ox 

1 ** Ox 

E * * au + (t E) * * Ox 

The coefficients of these vector fields are given by 



casesKdV= {{xi[l] [x, t, u], xi[2] [x, t, u]}, 

{phi [1] [x, t, u]}} /. KdVinfinitesimals /. 

(Map [ (Thread [{kl, k2, k3, k4, kS, k6, k7} -+ #] ) &:, 

Permutations [{1, 0, 0, 0, 0, 0, O}]]) 
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{{{O, l}, {O}}, {{t, A}, {l}}, {{l, A}, {O}}, {{O, E}, {O}}, 

{{tE, A}, {E}}, {{E, A}, {O}}, {{XE, 3tE}, {-2UE}}} 

The group of seven vector fields contains symmetries like translations and scalings 
depending on the perturbation parameter E. Let us choose a linear combination of 
three subgroups to reduce the original KdV -E equation. The following line creates the 
similarity reduction in connection with the first, third, and fifth sub-groups. 

redKdV = LieReduction[KdVepsilon, {u}, {x, t}, casesKdV[l, 1] + 

c casesKdV[3, 1] + casesKdV[S, 1], casesKdV[l, 2] + 

c casesKdV[3, 2] + casesKdV[S, 2]] // Si~lify; 

redRdV /. zetal -+ '1 // Flatten // LTF 

t 2 E 
-c t + x - -2- - Sl == 0 

-c+u-tE-F,==O 

E+F, (F ' )Sl +E (F' )Sl,Sl + (F' )Sl,Sl,Sl ==0 

The result is a similarity representation of the solution depending linearly on E. The 
similarity variable 4"1 = x - ct - Et2 /2 also depends linearly on E. The determining 
equation of the similarity function FI also shows a linear dependence on E. All these 
linear dependencies on E will result into a non-linear dependence on E of the solution. 
Thus, let us examine the determining equation without the E terms. The reduced 
KdV -E equation is integrated by two quadratures to the form 

bl = :Integrate [azetal 1'1 [zetal] 

( :Integrate [redKdV[3, 1, 1] /. e -+ 0 // Expand, zetal]), 

zetal] 

Fl[zetal]3 1 
6 + 2 Fl' [zetal] 2 

This result can be treated in two different ways. First, let us assume that the 
expression equals a constant K. For this case, we find by DSolve[] 

easel = DSolve [bl == K, 1'1, zetal] 

Solve: :tdep : 

The equations appear to involve transcendental functions 

of the variables in an essentially non-algebraic way. 
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Solve: : tdep : 
The equations appear to involve transcendental functions 

of the variables in an essentially non-algebraic way. 

Solve: : tdep : 
The equations appear to involve transcendental functions 

of the variables in an essentially non-algebraic way. 

General: : stop: "Further output of \! \ (Solve: : " tdep 
\) will be suppressed during this calculation. 

{Solve[C[1]- 1 (2121/3 37/12 
Y-F1 3 +6K 

U, 

Fl] , 

(-1) 5/6 (-1 + F1 
6"/3 K"/3 

~ (1)516 IF1 

11 . . [ . [ 6 VJ Kl/J E lptlcF ArcSln 3"/ 4 

1 
Solve [c [1] + --;===;r=~ 

Y_F1 3 +6K 

) 5/6 ( F1 (-1) -1 + 6 ' / 3 K"!3 

#1, 

Fl] } 

that the solution is given by elliptic functions. Since Solve[] is unable to invert the 
expression, we only get the solution in an implicit form. The second case we can 
examine is when K = O. In this case, the solution is given by 

case2 = DSolve [bl == 0, 1"1, zetal] 

The similarity representation of the solution follows from this relation by 

sol = Solve [redKdV[2D /. case2 [lD, u] 



Examples 423 

12 
{{U-7C+tE- t 2E 2}} 

(-ct+x--2 --C[1]) 

Since the solution should depend linearly on E, we have to expand the result up to 
fIrst order in E around E = 0: 

solution Series[u /. sol, {e, 0, l}] 

( 12 ) ( 12 t 2 
) 2 c- 2 + t- 3 E+O[E] 

{(-ct+X-C[l]) (-ct+x-C[1]) } 

This expression gives us an approximate solution of the KdV-E equation. We can 
check relation (8.11) by inserting the above solution into the original equation. In the 
fIrst step, we convert the solution into a pure function representation: 

srule = u -+ Apply [Function, {{x, t}, solution[l] / / Normal}] 

U-7 

( 12 t 2 ) 12 1 Function [{x, t}, c + E t - - 2 
(-ct+x-C[1])3 (-ct+x-C[1]) 

Inserting the solution into the original equation demonstrates that the equation is 
satisfied in first-order approximation: 

KdVepsilon /. srule 1/ Simplify 

(1 
432t4E 

E + 7 + 
(ct-x+C[1]) 

144 t 2 E 72 36 t 3 E 

(ct-X+C[1])5 
---------~,+ --------------, 
(ct-X+C[1J)4 (ct-x+C[1])4 

o 

The two examples presented are a small representation of the huge amount of 
equations depending on a small perturbation parameter. We note that the derivation 
of an approximate solution is not unique. As the reader has noticed in the solution 
step, there is a great flexibility in choosing the stage of approximation. However, at 
the end of the calculation, we have to satisfy relation (8.11) defIning the order of 
approximation. 



9 

Generalized Symmetries 

9.1. Introduction 

The previous sections discussed the classical method, the non-classical method, and 
some extensions of Lie's theory. We demonstrated the classification and solution of 
some types of ordinary as well as partial differential equations. Although very 
general, these methods mainly consider the geometric aspects of the transformations 
related to the equations. Essentially, we discussed invariance under point 
transformations and demonstrated that some kind of contact transformations are 
related to point transformations in case of first-order partial differential equations. 
However, it turns out that much wider classes of transformations leave differential 
equations invariant, including those considered by Lie. 

Emmi Noether [1918] and Felix Klein [1918] demonstrated that a system of 
differential equations derivable from a variational principle allows a much greater set 
of transformations under which a given system of differential equations is invariant. 
They significantly extended the application of symmetry group methods by including 
derivatives of the dependent variables in the transformations. Moreover, they were 
able to offer a regular procedure to construct the related conservation laws which are 
based on the investigation of the invariance properties of the variational integral 
under the action of transformation groups. With the publication of her theorem, 
Emmi Noether demonstrated that Lie point symmetries cannot provide the total 
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number of symmetries for a given system of differential equations. Consequently, the 
required integrals of motion and the solutions are not available for many systems. 

In recent years, the symmetry methods have become more attractive, especially in the 
field of non-linear dynamics. In this chapter, we will consider a generalized method 
of Lie's classical theory to determine the symmetries for non-linear PDEs and ODEs. 
We will demonstrate that the method is applicable to a large number of different 
models. Let us first outline the mathematical theory to generate a firm basis on which 
MathLie is grounded. 

9.2. Elements of Generalized Symmetries 

The setting of our program MathLie is an entirely general one. Its algorithm is well 
known and described, for example. in the books by Olver [1986] or BIuman and 
Kumei [1989]. We consider the general case of a non-linear system of differential 
equations for an arbitrary number q of unknown functions ua which may depend on 
p independent variables Xi' We denote these sets of variables simply by 
u = (u l , u2 , ••. , uq ) and X = (Xl, X2, ..• , x p ), respectively. The most general case is 

given by a system of m non-linear differential equations 

i = 1,2, ... , m, (9.1) 

of order k. The term uCk) is understood as the kth derivative of u with respect to x. We 
note that m, k, p, and q are arbitrary, positive integers. 

In order to find the properties of (9.1) different from point symmetries, non-classical 
symmetries, or potential symmetries, it is suitable to apply a transformation of the 
independent and dependent variables as well as the derivatives. This kind of 
transformation determines the attributes of the corresponding group G. 

First, let us consider transformations of (9.1) depending on a single parameter E 

which are given by 

u· = <I>(x, uCk); E) 

(9.2) 

(9.3) 

with k = 0, 1, 2 ... denoting the order of the derivatives. The functions 8 and <I> are 
assumed to be differentiable with respect to the dependent and independent variables. 
The identity transformation of the coordinates in (9.2) and (9.3) is given by E = O. In 
analogy to Lie's theory, the transformations (9.2)-(9.3) are generated by the vector 
field 
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(9.4) 

The infinitesimals gi and tPa are derived from equations (9.2) and (9.3) by 
differentiating the transformations with respect to the group parameter E. Considering 
these expressions for E = 0, we get 

(9.5) 

(9.6) 

The infinitesimal transformations corresponding to (9.2) and (9.3) are then given by 

(9.7) 

(9.8) 

with E being the group parameter, a small quantity. This representation is a straight 
generalization of Lie's classical procedure. On the other hand, it is beneficial to 
introduce coordinates in which the infinitesimal transformations become the simple 
representation 

X~ = Xi, i = 1,2, ... , p, (9.9) 

(9.10) 

meaning that the complete transformations are represented by a transformation of the 
dependent variables. The corresponding representation of the vector field vQ is then 

(9.11) 

where Qa = Qa(x, U(k)) is the characteristic of the vector field vQ. The characteristics 
Qa are related to the infinitesimals by 

p 

Qa = tPa - Lgi uf, a = 1, 2, ... , q. (9.12) 
i=1 
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It is obvious from these relations that point symmetries are a subset of generalized 
symmetries. Restricting the dependencies of the infinitesimals on the variables x and 
u, we are back in the classical theory of Lie. The determination of the characteristics 
follow by a similar algorithm as used in the determination of point symmetries. The 
determining equations for the characteristics Qa are consequences of the relation 

(9.13) 

where pr v Q denotes the prolongation of the vector field v Q. The general expression 
of the prolongation reads 

(9.14) 

with D J the total derivative depending on the multi-index J. The invariance 
condition (9.13) is based on the fact that the equation a = 0 and their differential 
consequences vanish on the solution manifold. From equation (9.13), we get a system 
of linear coupled PDEs for the characteristics Qa if we extract the coefficients of the 
derivatives in u up to a certain order. We note that this order can be infinite. 
However, in practical calculations, we restrict the order of derivatives in Qa to a 
finite number. Equation (9.13) contains all the information to derive the generalized 
symmetries in a nutshell. The following section discusses the procedure of how 
equation (9.13) is algorithmically accessible. 

9.3. Algorithm for Calculation of Generalized Symmetries 

The procedure to calculate the generalized symmetries proceeds in the same way as 
for the classical symmetries. The following steps are based on (9.13): 

1. Calculate the prolongation of the system of differential equations up to kth order 
by 

prvQ a = 0, (9.15) 

where k specifies the order of differentiation in the characteristics. 

2. Use the equations and their differential consequences to eliminate redundant 
information of the prolongation 

(9.16) 
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3. Extract the determining equations from the prolongation. The determining 
equations follow as coefficients of the derivatives in u, i.e., ux, ux,x' etc. The 
order of derivatives used in the extraction should be greater than k. 

4. Solve the resulting linear determining equations. 

A selected number of examples will demonstrate the application of the algorithm. 
The four steps are realized in the function Baecklund[]. This function fosters the 
determination of the generalized symmetries. The symmetries are represented by the 
characteristics Qi which are labeled in MathLie by QC[z1. Since the characteristics 
depend, in general, on derivatives of an infinite order, we need to restrict this order to 
a finite number. At the moment, this number must be specified by the user. The 
function Baecklund[] assumes by default that the largest order of derivatives is one. 

Thus, Baecklund[] determines so-called contact transformations by default. By 

increasing the order of derivatives n > 1 in the characteristics, we can force 

Baecklund[] to determine generalized symmetries of order n. The following examples 

illustrate the application of Baecklund[] to examples like the diffusion equation, the 
potential Burgers equation, the generalized KdV equation, and a coupled system of 
wave equations. 

9.4. Examples 

This section is concerned with application of Baecklund[] to PDEs. The examples 
display the capabilities and the flexibility incorporated in the function. 

9.4.1 Diffusion Equation 

Let us start with the diffusion equation. The four steps of the algorithm are carried 
out by the function Baecldund[] automatically. We first demonstrate the simplest 
case of application. The standard case occurs when the equation is free of any 
parameter. Then, only the equation, the dependent variables, and independent 
variables are supplied to the function Baecklund[]. In addition to these three input 

quantities, the side condition of equation (9.13) is needed, meaning that Baecklund[] 
must know a term for which the equation of motion is solvable. This term must be 
provided as the fourth argument. The fifth argument is not necessary for first-order 
generalized symmetries. The generalized symmetries of first-order for the diffusion 
equation thus follow by 

generalSymm = BaecklUDd[ 
Btu[x. t] -Bx.xu[x. t] ==0. lul, {x. t}. {Btu[x. t]}]; 

gener.1S~ II LTP 
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( k3 X) QC [1] [t, x, U, u t ' u x ] = = U kl + -2 - + (k2 + k3 t) U x + 'Tl 

- ('T1 ) t + ('T1 ) X,x == 0 

The result of the calculation is the representation of the characteristic QC[l] 
depending on the independent and the dependent variables and on first-order 
derivatives. Thus, Baecklund[] calculates generalized symmetries of first order by 
default. The result also shows that the fIrst-order generalized symmetries consist of 
an infinite and a finite part of transfonnations. The infinite part must satisfy the 
original equation. This behavior is expected for a linear equation. Generalized 
symmetries different from contact transfonnations follow by increasing the order n. 
The order of the largest derivative in the characteristics is specified by the fifth 
argument of Baecklund[]. For example, if we are interested in second-order 
generalized symmetries, we initiate the calculation by 

generalSymm = aaeckluDd[ 

"tu[x, t] -"x."u[x, t] ==0, {u}, {x, t}, {"tu[x, t]}, 2]; 

generalSymm II L'l'F 

QC[l] [t, x, U, Ut, Ut,t, UX, Ux,t, ux,xl == 
1 4 U (4 kl - 4 k7 + 2 k6 t + 2 k3 x + k6 x 2 ) + 

(k2 + k~X +t (k3+k6X)) U x +'Tl + (k4+t (kS+k6t)) ux,x 

- ('T1 ) t + ('T1 ) X,x == 0 

Now, the characteristic Q, depends on the second-order derivative of u. The group 
parameters ki denote the six different characteristics under which the diffusion 
equation is invariant. The invariance can be checked by Baecklund[] if we provide 
additional infonnation to the function. The additional infonnation is carried by the 
option CharExpression-.?{list}, where list contains the infonnation on the 
characteristics. Let us check the invariance of the diffusion equation with the 
second-order characteristics derived above. For the following calculation. we fIrst 
need to extract the characteristics from the result generalSymm: 

char = QC[l] [t, x, u[x, t], U(O.l) [x, t], U(O.2) [x, t], 

U(l.O) [x, t], U(l.l) [x, t], U(2.0) [x, t]] I. generalSymm[lD; 

char II Lie'l'radi tioDall'orm 

1 4 U (4 kl - 4 k7 + 2 k6 t + 2 k3 x + k6 x 2 ) + 

( kS x ) k2 + -2- + t (k3 + k6 x) U x + 'Tl + (k4 + t (kS + k6 t) ) ux,x 
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The expression char is inserted into the option given as the seventh argument of 

Baecklund[]. The sixth argument contains the parameters of the equation if any. The 
check of the equation is carried out by 

generalS~ = Baecklund[at u[x, t] -ax,xu[x, t] == 0, {u}, 

{x, t}, {at u [x, t]}, 2, {}, CharExpression -+ {char}] ; 

generalS~ / / L'l'l!' 

We find that the arbitrary function free[l] = 'Pi has to satisfy the diffusion equation 
itself. The result tells us that the finite transformation properties in char are 
generalized symmetries of the diffusion equation. If the transformation group consists 
only of a finite group, the result would be an empty list. At this stage of our 
examinations, we are able to derive the generalized symmetries for a certain order of 
derivatives and we can check a given symmetry group to be a generalized symmetry 
of a specific equation. 

9.4.2 Potential Burgers Equation 

Another example frequently discussed in non-linear dynamics is the Burgers 
equation. Let us examine the potential form of this equation. In a previous section, 
we examined the prolongation formula of the Burgers equation. Here, we calculate 
the generalized symmetries. The potential Burgers equation in scaled variables read 

2 
Ut - Ux + p ux•x = O. (9.17) 

Subscripts in (9.17) denote differentiations. P is a real constant measuring the 
dispersion strength. The generalized symmetries of first-order for the potential 
Burgers equation follow by 

generalS~urgers 

Baecklund[at u[x, t] - (axu[x, t])2 + J3ax,xu[x, t] == 0, 

{u}, {x, t}, {at u[x, t]}, 1, {J3}]; 

generalS~urgers / / L'l'l!' 

QC [1] [t, x, U, U t , u x ] = = C [1] + k1 U x + Eu /13 {3 'Tl 

('Td t + ('Td == 0 
{3 x,x 

Since equation (9.17) contains the parameter P, we must tell Baecklund[] that P has a 
special meaning in the calculation. Because the parameters are supplied as the sixth 
argument, we also need to specify the order of derivatives on which the 
characteristics depend. This number is given in the fifth argument of Baecklund[]. 
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The resulting characteristic depends on two parameters kl and C[l], and an auxiliary 
functionfree[l] which must satisfy the diffusion equation. 

9.4.3 Generalized Korteweg-de Vries Equations 

The Korteweg-de Vries equation (KdV) is a standard equation with a broad range of 
applications. In this example, we examine the generalized symmetries of the 
KdV-Burgers equation (KdVB) for different geometries. The equation containing the 
plane, cylindrical, and spherical coordinates of the KdVB equation is 

j U m 
Ut + "2 t + y U Ux - J1 u x•x + /3 ux,x,x = O. (9.18) 

j determines the geometry in which the equation resides (j = 0 plane geometry, j = 1 
cylindrical geometry, and j = 2 spherical geometry). m, y, J1, and /3 are constants. For 
J1 = 0, the KdV equation follows, and for /3 = 0, equation (9.18) reduces to the 
Burgers equation. The power m distinguishes between the standard and the 
generalized potential form of the equation. y measures the strength of non-linearity. 
Let us first examine the generalized symmetries for m = 1, j = 1, and arbitrary y, J1, 

and /3. Applying the function Baecklund[] to this subordinate equation, we find 

generalKdVSymm = 
j u[x, t] 

Baecklund[Cltu[x, t] + - + yu[x, t]'"Clxu[x, t]-
2 t 

/A Clx • x u [x, t] + (3 Clx • x • x U [x, t] == 0 /. {j -+ 1, m -+ 1}, 

{u}, {x, t}, {CIt u[x, t]}, 1, {y, /A, (3}]; 

genera1KdVSymm / / Flatten / / LTF 

kl ~ r:: 
QC[lJ [t. x. U, Ut, uxJ == -~ + (k2 + 2 kl -yt) U x 

-y t y 

The generalized symmetry in first-order representation consists of two symmetries: a 
constant term and a term describing a translation in x. The reader may check the 
KdVB equation for other choices of parameters and higher-order representations of 
the characteristics. Other third-order-equations of KdV -type include 

1 3 (U /3 -u ) 0 Ut + ux,x,x - "8 Ux + Ux a e + e + y = , (9.19) 

where a, /3, and y are real constants. Equation (9.19) was discussed by Calogero and 
Degasperis [1981] and Fokas [1980] in connection with exactly solvable equations. 
The generalized symmetries of this equation follow by 

genera1KdvSymm = 
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Bxu[x, t] (aZXp[u[x, t]] +/3Bxp[-u[x, t]] +y) == 0, 

{u}, {x, t}, {Btu[x, tj}, 1, {a, /3, y}]; 

generalKdV~ / / Lor .. 

QC[l] [t, x, U, Ut, u x ] ==klux 

Again, we find, in lowest order approximation of the characteristic, a single 
expression representing a translation. Another kind of KdV equation demonstrating 
the application of Baecklund[] to a system of equations is the Hirota and Satsuma 
[1981] (HS) equation, which is discussed in connection with soliton solutions. The 
model equations are 

U, + ux,x,x + 6uux - 6vvx = 0, 

v, - 2 vx,x,x - 6 u Vx = o. 

The generalized symmetries of this system follow by 

generalKdVSymm = Baecklund[{Btu[x, t] + Bx.x.xu[x, t] + 

6u[x, t] Bxu[x, tj + 2v[x, t] Bxv[x, t] == 0, 

Btv[x, t] - 2 Bx.x.xv[x, t] -6u[x, t] Bxv[x, t] == O}, 

{u, v}, {x, t}, {Btu[x, tj, Btv[x, tj}, 2]; 

generalKdVSymm / / Lor .. 

QC[l] [t, x, u, V, u t , v t , u t , t 1 Vt,t I u x , v x , Ux,t, Vx,t I 

ux,x I vx,x] == kl U X 

QC[2] [t, x, u, V. u t , V t , u t , t 1 Vt,t I u x , v x , Ux,t I Vx,t I 

ux,x 1 vx,x] == kl Vx 

(9.20) 

(9.21) 

Surprisingly, the HS system has only a one-parameter finite symmetry group 
depending on first-order derivatives. This happens even though we examined 
characteristics depending on second-order derivatives. 

9.4.4 Coupled System of Wave Equations 

Another example to demonstrate the capabilities of Baecklund[] is the application to 

a coupled system of simple wave equations. This example serves to demonstrate that 

Baecklund[] is capable of finding symmetries of systems of equations. We 
generalized the example given by Olver [1986] to a system of two equations. The two 
fields u and v are coupled to each other via the gradients. The generalized symmetries 
for the system of equations 

u, - vUx = 0, 

v, - u Vx = 0 

(9.22) 

(9.23) 
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follow by 

generalSymmWave = Baecklund[{Btu[x, t] - v[x, t] "xu[x, t] == 0, 

"tv[x, t] -u[x, t] Bxv[x, t]}, 

{u, v}, {x, t}, {Btu[x, t], Btv[x, t]}]; 

generalSymmWave / / Flatten / / L'l'F 

QC[l] [t, x, u, V, Ut' v t ' U,,' v"l == 

-k4 - kl U - k2 u 2 - k3 u" - k4 tux + kl x U x + k2 v x U x + 

U x 'T, + U x 'T2 + V U x 'T3 - U x 'T4 - V U x 'T5 - U ('T5 ) t 

QC [ 2] [t, x, U, v, U t ' V t, U,,' v x] = = - k4 - kl v - k2 v 2 - k3 v x -

k4 t Vx + kl x Vx + k2 U x Vx + Vx 'T, + Vx 'T2 + U Vx 'T3 - Vx 'T4 -

U Vx 'T5 + U Vx ('T, ) v - V Vx ('T, ) v - U Vx ('T.) v + V v" ('T4 ) v - v ('T5 ) t 

- k3 + k5 - k4 t + k6 t - 'T4 - V'T5 + t'T6 + 'T7 == 0 
t 

We realize that the characteristics depend on seven auxiliary functions freeli}. These 
functions are connected by one algebraic and one differential expression. The 
dependence in this algebraic form could not be resolved by the function PDESolve[]. 
However, we find information on the generalized symmetries in a straightforward 
way. 

So far, we discussed the application of generalized symmetries to PDEs. The 
following section will demonstrate the application of generalized symmetries in 
connection with ODEs. 

9.5. Second-Order ODEs and the Euler-Lagrange Equation 

A great number of problems in physics can be described by second-order ordinary 
differential equations 

(9.24) 

where qj = qj(t) are a set of dependent variables. Dots denote derivatives with 
respect to time t. The ~k' S are given functions of the dependent and independent 
variables. For example, we can think of these expressions as Newton's or Lagrange's 
equations. 

Let us assume that (9.24) can be derived from a generating functional S. The action S 
and the calculus of variations are the two keys of Hamilton's principle and allow us 
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to derive the equations of motion (9.24). The variation of an individual path qj in the 
action 

(9.25) 

provides us with the equations of motion. We already know from the discussion in 
Section 3.6.1 that the calculus of variations applied to (9.25) is equivalent with the 
Euler derivative. The resulting equations (9.24) are known as the Euler-Lagrange 
equations 

oS 
€k('C) = !l.k = - = 0, k = I, 2, ... , N. 

8qk 
(9.26) 

The symbol -!- = ~~ (-It dd: (-{j {j ) denotes the variational derivative and 
uqk ~n=O t qk;(n) 

the Euler derivative is labeled by €k. At this stage of the discussion, we know the 
equations of motion and certainly the physical interpretation. However, it is unknown 
to us under which conditions solutions of (9.24) can be found. The following section 
will outline how solutions of a second-order system of ODEs can be calculated by 
examining generalized symmetries of (9.24). 

9.5.1 Generalized Symmetries and Second-Order ODEs 

It is known that Lie's original procedure pr(2) v !l. I~=o = 0 does not deliver all 
possible symmetries of a second-order ODE. For example, Abraham-Shrauner and 
Guol [1993] and Olver [1986] discuss so-called hidden symmetries in connection 
with ordinary differential equations. At the tum of the century, Emmy Noether 
[1918] examined ODEs in connection with generalized point transformations. In turn, 
we have to use a generalized method to uncover the "hidden" symmetries. A 
generalization of the point transformations can be gained if the infinitesimals g and 
¢a do not depend only on the dependent and independent variables but also on 
derivatives of the qj's. In the case of second-order ODEs, the space of coordinates 
needs to be extended by the first derivatives. All higher derivatives can be eliminated 
by the differential equations themselves or differential consequences of the equations. 
For a shorthand notation to denote the extended dependencies including derivatives, 
we use square brackets [q] = (t, qi, (1) in the infinitesimals g = g[q] and ¢i = ¢M]. 

The corresponding generalized vector field for such transformations can formally be 
given by 

N 

V = g[q]8t + L¢M]8q, (9.27) 
i=! 
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In a second step, we can introduce the characteristics for second-order ODEs by 
Qi [q] = ¢>i[q] - ';[q] q. The corresponding vector field has the representation 

N 

L Qi[q] aqi (9.28) 
i=l 

The symmetries contained in (9.4) and (9.28) are essentially the same. The only 
difference is that (9.28) considers transformations of the dependent variables and 
derivatives in the extended form while (9.4) additionally takes into account a 
transformation of the independent variables. The main advantage of the evolutionary 
representation is its simplicity in the representation of the prolongation 

N 

prVQ =~~ (9.29) 

i=l J=O 

The assumption in the calculation of the related symmetries of (9.1) is the same as in 
the case of point symmetries. Thus, the computation of the generalized symmetries 
proceeds in essentially the same way as the computation of Lie point symmetries. 
Since we consider the variables and derivatives as independent up to a fixed order, 
we not only take equations (9.1) into account but also consider the derivatives of 
(9.1) as concerns the invariance condition. The invariance condition remains nearly 
the same and reads 

prvQt::..kld1A =0 withJ=0,1,2, ... andk=I,2, .... 
---;1-=0 (9.30) 

Contrary to point symmetries, differential equations can be used to eliminate higher 
derivatives and also the differential consequences of equations (9.1). Equation (9.30) 
provides the determining equations for the characteristics Qi. Although linear, it is 
very tricky to solve this system of equations, as it yields a large overdetermined 
system of equations. With some skill, solutions of (9.30) can be found by an ad hoc 
ansatz for the Qi'S; for example, by assuming that Qi has a special form (polynomial 
or power form) in the arguments. By this method, equation (9.30) will split into 
several equations that mayor may not have a non-zero solution. 

In Baecklund[], we use an ansatz of polynomial form in the coordinates qi and 
momenta qi' This ansatz is exclusively used for second-order ODEs. If we can solve 
the resulting system of linear equations in the coefficients introduced by the ansatz, 
we will have determined the characteristics up to some power. This information can, 
in tum, be used to construct conservation laws and invariant solutions. 
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9.5.2 Conservation Laws 

With equation (9.26), we assume that the system of equations (9.1) is derivable by a 
variation of the path qi. In close analogy to the question of invariance of (9.1), we 
can ask for the invariance of the action itself. This means that we have to assume 

(9.31) 

Two questions arise at this point: 

1. Are the group elements g E G of (9.31) derivable from infinitesimal conditions? 

2. How are the symmetries of the Euler-Lagrange equations related to these 
variational symmetries? 

It is obvious that local transformations preserving the invariance of a functional 
transform one solution of the variational problem into another. This must be the case 
if relation (9.31) is correct. Thus, we can use Lie's procedure applied to the 
Euler-Lagrange equations corresponding to (9.26), taking into account that not all 
symmetries of equations (9.1) are symmetries of (9.26). To uncover the variational 
symmetries, we can use the methods discussed so far but, in addition, need to check 
the relation 

prVQt1k + DQt1k = 0, k = 1,2, ... , N, (9.32) 

where DQ denotes the adjoint Frechet derivative of the characteristic Q. The 

evolutionary vector field vQ with its characteristic Q is a variational symmetry if 

equation (9.32) holds for all t and qi. We now have a criterion singling out these 
symmetries from the generalized symmetries which are also variational symmetries. 
Noether's theorem establishes the connection between the variational symmetries 
with their characteristics Qi and the conserved quantities. The case of one 
independent variable can be summarized in the formula 

(9.33) 

which is a special case of the more general divergence formula given by Olver 
[1986]. The essential points in determining integrals of motion for a given 
Euler-Lagrange system are, first, to find the characteristics Qi for the variational 
symmetries, and, second, to integrate equation (9.33). These two steps among others 
are implemented in MathLie. To show how the outlined analysis can be used in 
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practical applications, we will give some examples demonstrating the application of 

Baecklund[]. However, we first collect the essential steps of the algorithm to 
calculate integrals for second-order equations. 

9.6. Algorithm for Conservation Laws of Second-Order ODEs 

The algorithm uses the notation by Olver [1986]. The work of Olver is instrumental 
in a direct implementation. Using the earlier notations, the algorithm involves the 
following steps: 

1. Applying the prolongation operator prvQ to each equation .li(X, U(k») and 
requiring that equation (9.30) be satisfied. 

2. Consider equation (9.30) as an algebraic system where derivatives become the 
new variables. Provided this system of algebraic equations can be solved by 
Solve[], we can gain m solutions wf3 with f3 = I, 2, ... , m which contain the 
equations .l = o. The variables wf3 and derivatives of these relations are used as 
side conditions in equation (9.30). 

3. Extract the determining equations for the characteristics Qo: by equating the 
coefficients of all functionally independent expressions in the derivatives uj to 
zero. 

4. Simplifying the total number of equations by using the first-order derivatives and 
homogeneous higher-order derivatives for the characteristics. This step is 
repeated until the number of determining equations reaches a stable value. 

5. If the determining equations are known, it may be possible to solve these 
equations by using an ansatz of polynomials for the characteristics. We note that 
this step will not provide the most general solution of ordinary differential 
equations, if such one exists, but delivers at least a sub-class of solutions. 

This procedure works expediently as long as the variables wf3 are obtainable by 

Solve[] from the equations of motion (9.1) and if Solve[] can find a solution from the 
linear equations for the constants used in the ansatz of the characteristics. The manual 
procedure, feeding back some information on the characteristics gained by partly 
solving the determining equations, is completely independent of the automatic 
solution procedure. If one is convinced that the ansatz used in Baecklund[] does not 
provide the most general solution, one can use a manual and iterative procedure to 
find the solutions of the determining equations. 
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9.7. Examples for Second-Order ODEs 

In this section, we will deal with the application of the generalized symmetry method 
previously introduced. We discuss the Henon-Heiles model, a quartic anharmonic 
oscillator, and the problem of two ions in a Paul trap. 

9.7.1 The Henan-Heiles Model 

The Henon-Heiles model for gravitating stars in a cylindrical galaxy is described by a 
set of two coupled non-linear second-order ODEs. The model in its original form 
with fixed parameters was used by Henon and Heiles [1964] to examine the regular 
and chaotic motion of a star in a galaxy. Here, we are interested in the regular motion 
of the Henon-Heiles system. The two equations of motion are 

(9.34) 

(9.35) 

where A, B, C, and D are model parameters. In the original equations of Henon and 
Heiles, these parameters were fixed to a certain value. For these values, Henon and 
Heiles found chaotic behavior of the model if the total energy of the system is 
increased. Our interest here is to find those parameter combinations for which 
equations (9.34) and (9.35) possess symbolic solutions. It is known that the two 
equations of motion follow from the Lagrangian 

(9.36) 

Applying the Euler derivative to the density of the Lagrangian, we can write down 
the equations of motion (9.34) and (9.35) by 

HenoDHeiles = 

'1'hread[S~"1,"2} [( ~ «CJt ql[t])2 + (CJt q2[t])2) - : ql[t]2_ 

~ q2 [t] 2 _ D ql [t ] 2 q2 [t] + ..:.. q2 [t] 3 )] = = {O, O}]; 
2 3 

HenonHeiles / / LTJ!' 

- A ql - 2 D ql q2 - (ql 1 t, t = = 0 

-Dq~ -Bq2 +Cq~ - ( q2l t,t == 0 

Given an arbitrary choice of the parameters A, B, C, and D, chaotic evolution occurs 
for the coordinates ql and q2' The non-chaotic or regular cases occur if the motion of 
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the star is controlled at least by two integrals of motion. These two integrals fix the 
path of the system in the two-dimensional phase space. The special combinations of 
the parameters for which integrals of motion exists were derived with a Painleve test 
by Bountis et al. [1982]. Here, we use Baecldund[] to find the special parameter 
combinations under which integrals of motion exist. To find the integrals of motion, 
we apply the theory presented above. The integrals of motion are accessible by 

HH:Integrals = Baecklund [B.nonKeiles, {q1, q2}, 

{t}, {Ot,tq1[t], Ot,tq2[t]}, 1, {A, B, C, D}, AnsatzPoly-+ {1, 1}]; 

HH:Integrals / / LieTraditionall"orm / / Tablel"orm 

A-4A 
B-4A 
C-40 
D-40 
A-4A 
B-44A 
C-40 
D-40 
A-4A 
B-4B 
C-4C 
D-40 
A-4A 
B-4A 
C-40 
D-40 
A-4A 
B-44A 
C-40 
D-40 
A-4A 
B-4B 
C-4C 
D-40 
A-4A 
B-4A 
C-4-6D 
D-4D 
A-4A 
B-4A 
C -4 -D 
D-4D 
A-4A 
B-4B 
C-4C 
D-4D 
A-4A 
B-4B 
C-4-6D 
D-4D 

1 A 2 2 ~ 2 3 1 ( )2 1 ( )2 - "2 % - D ql q2 - 2 - D q2 -"2 ql t -"2 q2 t 

lA 2 D 2 Bq~ 2D 3 1 ( )2 1 2 - "2 ql - ql % - 2 - % -"2 ql t - "2 (q2) t 
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-2q2 (q1)t +q1 (q2)t 

q1 (q1) t 

-2q2 (q1)t +q1 (q2)t 

q1 (q1) t -

(3A (q2)t) / (20) 

- 2 q2 (q1) t + % (q2) t 

q1 (q1) t + 

((-4A+B) (q2)t) / (20) 

A~A 

B~B 

C ~-¥­
O~O 

A~A 

B~A 

C ~-O 
O~O 

A~A 

B~4A 

C~O 
O~O 

A~A 

B~A 

C ~ -6 0 
O~O 

_ ~ A q2 _ 0 q2 q2 _ B qj _ ~ _ ~ ( ) 2 1 ( ) 2 2 1 1 2 15 2 q1 t -"2 q2 t 

1 4 (3A' 40' ql) ql 3 A q 3 
-T O q1+ 40 + 2+ 

+ q2 (A qf + 2 (q1) ~) - q1 (q1) t (q2) t + 3 A d ~ ) ; 

1 D 4 1-4AB'B',40'qj)qj + (4A-B) q32 + - T q1 - 40 

+ q2 (2 A qf - B qi + 2 (%) ~) - % (q1) t (q2) t + 

(4A-B) (q2l: 

40 

The result is a list containing several sub-lists. The sub-lists gather the infonnation on 
the symmetries, the parameter combinations, and the related integral of motion. For 
example, the ninth element of the result 

HHI:ntegrals[9D / / LieTraditionalForm 

{ { (q1 ) t' (q2) t }, {A ~ A, B ~ B, C ~ C, D ~ D} , 

1 2 2 B q~ C q~ 1 2 1 2 } 
- 2 A q, - D q1 q2 - -2 - + -3 - - 2 (q1) t - 2 (q2) t 

states that the characteristics are given by the pair (ql'[t], q2'[t]) and that all 
parameters are arbitrary. The related integral of motion is just the total energy of the 
system. Thus we find that for arbitrary parameter combinations, energy is a 
conserved quantity. The total energy is one of the two needed integrals to fix a path 
of the particle. Another integral of motion is given as the seventh element in 

HHI:ntegrals[7D / / LieTraditionalForm 

{ { (qd t' (q2) t}, {A ~ A, B ~ A, C ~ - 6 0, D ~ o}, 

1 2 2 A q~ 3 1 2 1 2 } 
-2 A %-D%q2--2-- 2D q,-2 (q1)t-2 (q2)t 

Here, the characteristics are the same as before. However, the special combination of 
parameters (A and D arbitrary, B = A, and C = -6 D) allows a second integral of 
motion in addition to the total energy. These two conserved quantities completely fix 
the motion of the star and the galaxy. 

In the above calculations, the option AnsatzPoly~{l,l} of Baecklund[] was used. 

This option affects Baecklund[] in two ways. First, it creates a polynomial ansatz for 
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the characteristics, and second, it detennines the coefficients of this polynomial in 
such a way that integrals of motion exist. The two values in the list specify the 
polynomial degree in the coordinates and in the first derivatives, respectively. If you 
are convinced that the characteristics depend on the third order of the coordinates and 
on third order in the derivatives, you can call Baecklund[] by 

= Baeeklund[HenOnHeiles, {q1, q2}, 

{t}, {c3t • t q1 [t], c3t . t q2 [t] }, 1, {A, B, C, D}, AnsatzPoly-+ {3, 3}) ; 

HHJ:ntegrals II LieTraditionall"orm II TableForm 

A .... 0 
0 B .... O c q~ _ ~ (q2 ) ~ (q2) t C .... C 3 2 

D .... O 

A .... 0 
0 B .... B -+ B q~ 1 (q2) ~ (q2) t C .... O -2 

D .... O 
A .... 0 

0 B .... B -+ B q~ + C q5 _ J:.... (q2 ) ~ (q2) t C .... C 3 2 
D .... O 

A .... A 
0 B .... T 

- 118 A q~ 1 (q2 ) ~ (q2) t C .... O -2 

D .... O 

A .... A 
0 B .... t -t Aq~ 1 (q2) ~ (q2 ) t C .... O -2 

D .... O 

A .... A 
0 B .... A -+ Aq~ 1 (q2 ) ~ (q2 ) t C .... O -2 

D .... O 

A .... A 
0 B .... A -+ Aq~ + ~_..L (q2 ) ~ (q2) t C .... C 3 2 

D .... O 

A .... A 
0 B .... 4A 

-2 A q~ - + (q2) ~ (q2 ) t C .... O 
D .... O 

A .... A 
0 B .... 9A -t Aq~ --'-- (q2) ~ (q2) t C .... O 2 

D .... O 

A .... A 
0 B .... B -+ Bq~ --'-- (q2) ~ (q2) t C .... O 2 

D .... O 

A .... A 
0 B .... B -+ B q~ +~_l (q2 ) ~ (q2) t C .... C 3 2 

D .... O 
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o 
+Aq~ (q2)t + (Ch)~ 

o 
+Aq~ (q2)t + (q2)~ 

o 
Aq~ (Ch)t + (q2)~ 

o 
4Aq~ (q2)t + (~)~ 

o 
9Aq~ (Ch)t+(q2)~ 

o 
Bq~ (~)t + (q2)~ 

o 
Bq~ (~)t + (q2)~ 

o 
-tcq~ (q2)t + (q2)~ 

o 
(Aq~ - 2C3q~) (q2)t + 

(~)~ 
o 
(B q~ - 2 C3 q~ ) (q2) t + 

(~)~ 
o 
(Bq~ - 2C3Qj) (Ch)t + 

(~)~ 

A--'>A 
B--,> t 
C--,>O 
0--'>0 
A--'>A 
B--,> t 
C--,>O 
0--,>0 
A--'>A 
B--'>A 
C--,>O 
0--,>0 
A--,>A 
B--,>4A 
C--,>O 
0--'>0 
A--'>A 
B--,>9A 
C--,>O 
0--'>0 
A--,>O 
B--,>B 
C--,>O 
0--,>0 
A--'>A 
B--'>B 
C--,>O 
0--,>0 
A--,>O 
B--,>O 
C--,>C 
0--'>0 
A--'>A 
B--,>A 
C--'>C 
0--,>0 

A--,>O 
B--'>B 
C--,>C 
0--,>0 

A--,>A 
B--'>B 
C--,>C 
0--,>0 

A--,>O 
B--,>O 
C--,>C 
0--,>0 
A--,>O 
B--'>B 
C--,>O 
0--'>0 
A--,>O 
B--'>B 
C--'>C 
0--,>0 

1 B2 4 1 -2 ( ) 2 1 4 -"4 q2 - "2 B Y.2 Ch t - "4 (q2) t 

-+ A2 q~ + + A C q~ - + C2 q~ -

+~ (3A-2Cq2) (~)~ - + (q2)! 

-+ B2 q~ + + B C q~ - + C2 q~ -

+~ (3B-2Cq2) (q2)~ - + (q2)! 

-+ B2 q~ + + B C q~ - + C2 q~ -

+~ (3B-2C~) (Ch)~ - + (q2)! 
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A-tA 
(qd t B-t t 

--}- Aqf - -}- (qd~ 
0 C-tO 

D-tO 

A-tA 
(QJ.) t B -t t --}-Aqf--}-(qd~ 
0 C-tO 

D-tO 

A-tA 
(qd t B-tA 

--}-Aqf - -}- (qd~ 
0 C-tO 

D-tO 

A-tA 
(q1) t B-tA 

--}- Aqf - -}- (qd~ 
0 C-tC 

D-tO 

A-tA 
(q1) t B-t4A --}-Aqf--}-(qd~ 
0 C-tO 

D-tO 

A-tA 
(q1) t B-t9A 

--}-Aqf - + (qd~ 
0 C-tO 

D-tO 

A-tA 
(q1) t B-tB 

--}- Aqf - + (qd~ 
0 C-tO 

D-tO 

A-tA 
(qd t B-tB 

- -}- A qf - -}- (qd ~ 
0 C-tC 

D-tO 

A-tO 
(qd t B-tO -Dct, q _ 16Dq~ _-'-- ( )2 
(q2) t C-t-16D 

1 (~)~ 1 2 32 q1 t -"2 

D-tD 

A-tO 
(qd t B-tO 

-D qf ~ - 2 D <t. - -}- (qd ~ - + (~) ~ 
(Q2) t C-t-6D 

D-tD 

A-tA 
(qd t B-tA _ -'-- A qf - D q2 q2 _ Aq~ + c ql _-'--
(q2) t C-tC 2 1 2 3 2 (qd~ -

D-tD + (q2) ~ 
A-tA 

(qd t B-tA _-'--Aq2_Dct,Q2 Aq~ 2Dcrl 1 
(Q2) t C -t -6 D 2 1 1 - 2 - -"2 (qd~ -

D-tD + (~)! 
A-tA 

(q1) t B-tA _ -'-- Act, - D q2 q _ Aq~ D ql 1 
(Q2) t C -t -D 2 1 1 2 2 - 3 -"2 (qd~ -

D-tD + (q2)~ 
A-tA 

(q1) t B -t 16 A - -}- A qf - D qf q2 - 8 A crl _ 16 D ql --'--
(Q2) t C -t -16 D 3 2 (qd~ -

D-tD + (~)~ 
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Aq1 (qllt + (qll! 
o 

Aq1 (qll t + (qll! 
0 

Aq1 (qllt + (qd! 
0 

Aq1 (q1) t + (qd! 
0 

Aq1 (q1) t + (qd ~ 
0 

Aq1 (qd t + (qd~ 
0 

Aq1 (qd t + (qd~ 
0 

A-7A 
B-7B 
C-7C 
D-7D 

A-7A 
B-7B 
C-7-16D 
D-7D 

A-7A 
B-7B 
C -7 -6 D 
D-7D 

A-7A 
B-7B 
C -7 -D 
D-7D 

A-70 
B-70 
C-7C 
D-70 
A-70 
B-7B 
C-70 
D-70 
A-70 
B-7B 
C-7C 
D-70 
A-7A 
B -7 t 
C-70 
D-70 
A-7A 
B -7 t 
C-70 
D-70 
A-7A 
B-7A 
C-70 
D-70 
A-7A 
B-7A 
C-7C 
D-70 
A-7A 
B-74A 
C-70 
D-70 
A-7A 
B-79A 
C-70 
D-70 
A-7A 
B-7B 
C-70 
D-70 

1 A q2 D q2 t"T_ _ B crl + c q~ _.l. (q1) 2t _ -"2 1- 1""-' 2 3 2 

t (q2)~ 

1 A q2 D q2 q _ B ,,~ _ 16 D q~ _.l. (qd 2t _ -"2 1- 1 2 2 3 2 

t (q2)~ 

1 2 4 1 A-2 ( )2 _.l. ( )4 - T A q1 -"2 '41 q1.t 4 q1 t 



A qf (q1) t + (qd ~ 
o 

(q2) t 

(q1) t 

(~~ -2q2) (qd t + 

q1 (q2)t 
q1 (q1)t 

( 4 :~B -2 q2) (q1) t + 

q1 (~) t 

ql (q1)t 

-2q2 (q1)t +q1 (q2)t 

q1 (q1)t 

2 D qf q2 (qd t + (%) ~ -

t D qi (q2) t 

-tDqi (qd t 

(Aqf +2Dqf q2) (qd t + 

(qd ~ - t D qi (q2) t 

-tDqi (qd t 

(Aq~+2Dq~q2+ 

A q~ + 2 °3 qj ) (q1) t + 

(q1)! + (- t D qi -

A q1 q2 - D ql q~ ) 

(q2) t 

(-tDqi -Aq1 q2-

Dq1 q~) (qd t + 

(A qi + 2 D qf q2 + 
3 

A q~ + 203
q 2 ) 

(q2) t + 

(~)~ 

A-'>A 
B-,>B 
C-'>C 
D-,>O 

A-'>A 
B-'>A 
C -'> -D 
D-'>D 

A-,>A 
B-'>A 
C-'>-6D 
D-'>D 

A-'>A 
B-,>B 
C-,>-6D 
D-'>D 

A-,>O 
B-,>O 
C-'>-6D 
D-'>D 

A-,>O 
B-,>O 
C-,>-16D 
D-,>D 

A-,>A 
B -'> 16 A 
C-,>-16D 
D-'>D 
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_ 3 A2 ql _ D qf _ D q2 q2 _ 3 A (q, I ~ 
4D 4 1 2 40 + 

q2 (-A q~ + (ql) ~) - ql (q1) t (q2) t 

A(4A-Blqj _ Dqf _Dq2q2_ (4A-BI(qli~ + 
4D 4 1 2 4D 

q2 (-A qi + (qd ~) - q1 (qd t (~) t 

+s- D2 qf + t D2 qt q~ - D qf q2 (q1) ~ -

+ (qd! + tDqi (qd t (q2)t 

-+ A2 qt + 

118 D2 qf + t D2 qt q~ - -T A qf (qd ~ -

+ (qd! + t D qi q2 (A qi - 3 (qd ~) + 

tDqi (qd t (q2)t 

-+ A2 qt + 118 D2 qf + 112 (-3 A2 - 2 D2 q~) qi -

tAD q~ - -} D2 q~ - -T A q~ (q1) ~ -

+ (qd: + t D q~ (-A qi - (qd ~) -

tDqf q2 (2Aq~ +3 (qd~) + 

{-q~ (-4D2 qt -3A (qd~) + 

tql (Dq~+3Aq2+3Dq~) (qd t (q2)t+ 

{- (-3Aqi-6Dqf~-3Aq~-2Dq~) (q2)~­

+ (q2)! 

We realize that the structure of the characteristics change and a large number of new 
integrals occur. These integrals represent the solution of the equation in implicit form. 
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9.7.2 Two-Dimensional Quartic Oscillators 

When two or more optical waves copropagate inside a fiber, they can interact with 
each other through the fiber non-linearity. In general, such an interaction can 
generate new waves under appropriate conditions through a variety of non-linear 
phenomena such as stimulated Raman and Brillouin scattering. The same 
non-linearity also provides a coupling between the incident waves through a 
phenomenon referred to as cross-phase modulation. Cross-phase modulation is 
always accompanied by self-phase modulation and occurs because the effective 
refractive index of a wave depends not only on the intensity of that wave but also on 
the intensity of the copropagating wave. 

In this subsection, we will consider the coupling of two polarized waves with 
different frequencies. We assume that we have a polarization-preserving fiber so that 
the two waves maintain their polarization during propagation. This model, consisting 
of two coupled non-linear SchrOdinger equations, can be reduced to a Hamiltonian 
system (cf. Baumann [1991]). The reduced model shows regular solutions for some 
parameter values. On the other hand, the Hamiltonian system can show chaos for an 
arbitrary choice of parameter values. The equations of motion follow from the 
Hamiltonian 

(9.37) 

where Pi denotes the momenta and qi the coordinates of the reduced equations. The 
a/s and C's are real constants. The equivalent formulation in Lagrange's dynamic 
starts from the Lagrangian 

(9.38) 

Applying the Euler derivative to this Lagrangian, we find the equations of motion as 

quarticOscillators = 

Thread [B~\11'\12} [ (~ ((at ql [t] ) 2 + (at q2 [t] ) 2 -

~ (alql[t]2 +a2q2[t]2) -rlql[t]' -r2 q 2[t]') -

ql[t]2 q2 [t]2)] == 

{O,O}]; 

quarticOscillators / / LTI!' 
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cx1 q1 3 2 
- --2- - 2 r1 q1 - 2 % % - (q1) t,t == 0 

cx2 q2 2 3 
- --2- - 2 % q2 - 2 r2 % - (q2) t,t == 0 

These coupled second-order equations represent a similarity reduction of two coupled 
non-linear Schrodinger equations, The question now is under what circumstances is 
the given system of equations solvable? The answer is given by Baecklund[], which 
delivers 

QOXntegrals = Baecklund[quarticOscillators, {q1, q2}, {t}, 

{c3t ,tq1[t], c3t ,t q2 [t]}, 1, {a1, a2, r1, r2}, AnsatzPoly-+ {4, 3}]; 

QOXntegrals / / LieTraditionall'orm / / TablePorm 

(q1 ) t 
(q2) t 

(q1) t 

(q2 ) t 

(q1) t 

(q2) t 

(q1) t 

(q2 ) t 

(q1) t 

(q2 ) t 

(q1) t 

(q2 ) t 

(q1) t 

(q2) t 

(q1) t 

(q,) t 

cx1 -> 0 
cx2 -> 0 
r1-> t 
r2 -> T 
cx1 -> 0 
cx2 -> 0 

rl-> + 
r2 -> + 
cx1 -> 0 
cx2 -> 0 

rl -> + 
r2 -> T 
cx1 -> 0 
cx2 -> 0 
r1 -> 1 
r2 -> 1 

cx1 -> 0 
cx2 -> 0 
rl -> T 
r2 -> t 
cx1 -> 0 
cx2 -> 0 
r1-> T 
r2 -> + 
a1 -> a1 
a2 -> °4" 

rl-> + 
r2 -> + 
cx1 -> a1 
a2 -> °4" 
r1-> + 
r2 -> T 

_3L_q2q2_-'!L_Jc.( )2 1 ( )2 2 1 2 2 2 q1 t -"2 q2 t 

- tal qf - -¥- + -ft- (-a1 - 16 qf) q~ - -¥- -
+ (qd ~ - + (q2) ~ 

- t cx1 qf - -¥- + 116 (-cx1 - 16 qf) q~ -

~ 1 ( )2 1 ( )2 3 -"2 q1 t -"2 q2 t 
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al ~ a1 
(q1) t a2 ~ ~1 
(q2) t r1 ~ 1 

r2 ~ 1 

a1 ~ a1 

(q1) t a2 ~ ""41 

(q2 ) t r1 ~ t 
r2 ~ t 
a1 ~ a1 

(q1 ) t a2 ~ ""41 

(q2 ) t r1 ~ t 
r2 ~-}-

a1 ~ a1 
(q1 ) t a2 ~ a1 

(q2 ) t r1 ~-}-
r2 ~-'--

3 

a1 ~ a1 
(q1 ) t a2 ~ a1 

(q2) t r1 ~ -'--
3 

r2 ~ t 
a1 ~ a1 

(q1) t a2 ~ a1 
(~)t r1 ~ 1 

r2 ~ 1 

a1 ~ a1 
(%)t a2 ~ a1 

(q2) t r1 ~ ~ 
3 

r2 ~-}-

a1 ~ a1 
(q1 ) t a2 ~ 4 a1 

(q2 ) t r1~ t 
r2 ~ ~ 

3 

a1 ~ a1 
(q1) t a2 ~ 4 a1 

(q2) t r1 ~-}-

r2 ~-}-

a1 ~ a1 
(q1) t a2 ~ 4 a1 

(q2) t r1~ + 
r2 ~ t 
a1 ~ a1 

(q1 ) t a2 ~ 4 a1 
(q2 ) t r1 ~ 1 

r2 ~ 1 

a1 ~ al 
(q1) t a2 ~ 4 a1 

(q2) t r1 ~ t 
r2 ~ + 

-+ a1 qf - .!f- + 1"6 (-a1 - 16 qf) q~ -

~ 1 2 1 2 12 - 2 (q1) t - 2 (q2) t 

-+ a1 qf - .!f- + 116 (-al-16 qfl q~ -

.sJ--+ (q1)~-+ (q2)~ 

-+ a1 qf - -'4- + -} (-a1 - 4 qf) q~ - .sJ- -
+ (qd ~ - + (q2) ~ 

-+ a1 qf - -'4- + -} (-a1 - 4 qf) q~ - 4 ;l -
+ (qd ~ - + (q2) ~ 

-+ a1 qf - + + + (-a1 - 4 qn q3 

+ (qd ~ - + (q2) ~ 

4 -+ a1 qf - ~ + + (-a1 - 4 qf) q~ - .sJ- -
+ (qd ~ - 1- (q2) ~ 

1 2 4 4 
-"4 a1 % - :!.f- + (-a1 - qi) q~ -~ 6 

1- (qd ~ - 1- (q2) ~ 



(ql) t 

(q2) t 

(q1) t 

(q2) t 

(ql) t 

(q2) t 

(q1) t 

(q2) t 

(ql) t 

(q2) t 

(q2) t 

(q1) t 

al -> al 
a2 -> a2 
rl-> t 
r2 -> r2 

al -> al 
a2 -> a2 

rl-> + 
r2 -> ~ 

3 

al -> al 
a2 -> a2 
rl-> ~ 

3 

r2 -> t 
al -> al 
a2 -> a2 

rl -> + 
r2 -> r2 

al -> al 
a2 -> a2 
rl -> 1 
r2 -> 1 

al -> al 
a2 -> a2 
rl -> 1 
r2 -> r2 

al -> al 
a2 -> a2 

rl-> t 
r2 -> + 
al -> al 
a2 -> a2 
rl-> ~ 

3 
r2 -> r2 

al -> al 
a2 -> a2 
rl -> rl 
r2 -> t 
al -> al 
a2 -> a2 
rl -> rl 
r2 -> r2 

al -> 0 
a2 -> 0 
rl-> + 
r2 -> + 
al -> al 
a2 -> al 

rl -> + 
r2 -> + 
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4 - +- al q~ - * + +- (-a2 - 4 qi) q~ - r22q~ -

+ (qd ~ - + (q2) ~ 

- +- al q~ - -¥- + + (-a2 - 4 qf) q~ - -¥- -
+ (qd ~ - + (q2) ~ 

- +- al qf - -¥- + 1- (-a2 - 4 qi) q~ - 4 i~ 
+ (qd ~ - + (q2) ~ 

- +- al qf - -¥- + + (-a2 - 4 qi) q~ - r22q~ -

+ (qd ~ - + (q2) ~ 

1 1....2 q4 1 4 
- 4" a '-11 - T + 4" (-a2 - 4 qf) q~ - + -
+ (qd ~ - + (q2) ~ 

- +- al qi - -¥- + +- (-a2 - 4 qi) q~ - r22qj -

+ (qd ~ - + (q2) ~ 

- +- al qi - if- + +- (-a2 - 4 qf) q~ - -¥- -
+ (qd~ - t (q2)~ 

- +- al qi - if- + +- (-a2 - 4 qf) q~ - r22qj -

+ (qd~ - t (q2)~ 

- +- al qi - r12qf + +- (- a2 - 4 qi) q~ - -& -
+ (qd~ - t (q2)~ 

_ -'- al q2 _ n qf 1 
4 1 2 + 4"" 
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q2(q2)t 

q2 (qtlt-

2ql (q2)t 

q2 (q2)t 

q2 (ql)t-

2 ql (q2) t 

-2q2 (ql)t + 

ql (~) t 
ql (%)t 

-2q2(ql)t+ 

q1 (q2)t 
q1 (q1)t 

-q~ (qtl t + 

q1q2 (~)t 

ql q2 (ql) t -

q~ (q2)t 

-~ (qtlt + 

q1 q2 (q2)t 

q1 q2 (q1) t -

q~ (q2)t 

(_ 3 ~1 _ q~ ) 

(qtlt + 

q1q2(q2)t 

q1 q2 (ql) t -

q~ (q2)t 

( 3 ~1 _ q~ ) 

(qtlt + 

q1 q2 (q2)t 

ql q2 (ql) t -

qf (q2)t 

(t (a1 - (2) -

q~ ) 

(qtl t + 

ql q2 (~)t 

q1 q2 (q1) t -

~ (~)t 

a1 --? 0 
a2 --? 0 

r1 --? + 
r2 --? t 

a1 --? a1 
a2 --? CX4l 

r1--? + 
r2 --? t 

a1 --? 0 
a2 --? 0 
r1--? t 

r2 --? + 
a1 --? a1 
a2 --? 4 a1 

rl--?t 

r2 --? + 
a1 --? 0 
a2 --? 0 
r1 --? 1 
r2 --? 1 

a1 --? a1 
a2 --? a1 
r1 --? 1 
r2 --? 1 

a1--? a1 
a2 --? 4 a1 
r1 --? 1 
r2 --? 1 

a1 --? a1 
a2 --? CX41 

r1 --? 1 
r2 --? 1 

a1 --? a1 
a2 --? a2 
r1 --? 1 
r2 --? 1 

- 214 q1 (3 a1 + 16 q~) q~ - 1- q1 q~ -

q2 (qtlt (q2)t +q1 (q2)~ 

-t q~ <t, + 1- q2 (- qf + 3 (q1) ~) -

q1 (%) t (~) t 

- t q~ q~ + t q2 (- 3 a1 q~ - 2 qi + 6 (qtl ~) -

q1 (qtlt (q2)t 

t a12 q~ + 3 a~ qf + 1- a1 (qtl ~ + 

+ q~ (3 a1 qi + 2 (q1) ~) - q1 q2 (ql) t (q2) t ~ 

tq~ (~)~ 

_ ~ a12 q2 _ 3 (Xl qf _ 
32 1 16 

-A- a1 (qtl! + 116 q~ (- 3 a1 qf + 8 (ql)! ) -

q1 q2 (q1) t (q2) t + t q~ (q2) ~ 

-+ a1 (a1 - (2) q~ + 

+ (-a1+a2) qi + + (-a1 +(2) (qtl~ + 

+ q~ (-a1 qf + a2 q~ + 2 (ql)!) -

q1 q2 (qtlt (q2)t + tqi (q2)~ 



(++<Iiqn 

(qd t + 

+ (qd ~ -

t qi q2 (q2)t 

-t qi q2 (qd t + 

t qf (q2)t 
2 (a14q J + 

4 + +qf qn 

(ql) t + 

+ (qd ~ -

tqiq2 (q2)t 

-+ qi q2 (qd t + 

tqi (q2)t 

t q~ (qd t -

t ql q~ (q2)t 

-+ ql q~ (qd t + 

(<Iiq~++) 
(q2) t + 

+ (q2) ~ 

t qi (qd t -

t ql q~ (q2)t 

-+ ql q~ (qd t + 

( 01 q~ + 
16 

q~ q~ + -"t-) 
(~) t + 

+ (q2)~ 
( + + qi q~ + -"t- ) 

(qd t + 

+ (qd ~ + 

(-tqiq2-

tqlq~) 

(q2) t 

(-tqiq2-

tql qn 

(qd t + (+ + 

qiq~++) 
(~)t + 

+ (~)~ 

0:1 -> 0 
0:2 -> 0 

r1-> + 
r2 -> + 

0:1 -> 0:1 
0:2 -> 40:1 
r1-> t 
r2 -> + 

0:1 -> 0 
0:2 -> 0 

r1-> + 
r2 -> + 

0:1 -> 0:1 
0:2 -> <x} 

rl-> + 
r2 -> + 

0:1 -> 0 
0:2 -> 0 

r1-> + 
r2 -> + 
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_.sL_~ 4 4_~ 4( )2 72 18 ql q2 12 ql ql t -

t (ql): - ""8 qi q~ (qi + 9 (ql) ~) + 

tqiq2 (ql)t (q2)t - 1"2 qi (q2)~ 

_ ~ 0:12 q4 _ <xl qf _.SL _ ~ q4 q4 _ 
32 1 24 72 18 1 2 

2"4 qi (3 0:1 + 2 qi) (ql) ~ - t (ql)! -

3"6 qi q~ (3 0:1 qf + 2 qi + 18 (ql) ~) + 

t qi q2 (ql) t (q2) t - ""2 qi (q2) ~ 

_~ 2 6_.5!L ~ 4( 24 3( )2) 18 ql q2 72 + 36 q2 - ql - ql t + 

+ ql q~ (qd t (q2) t -

1~ q~ (6 qi + q~) (q2) ~ - t (q2)! 

1 (_30:1_16q2)q6_.5!L+_"_ (q4 28'8 1 2 72 4608 2 

(-90:1 2 -960:1qf -256qi -384 (qd~)) + 

+ql q~ (ql)t (~)t-

9"6 q~ (3 0:1 + 48 qf + 8 q~) (q2) ~ - t (q2)! 

_.sL_~ 2 6_.5!L 1 4( )2 72 18 ql q2 72 - 12 ql ql t-

t (ql)! + 3"6 q~ (-11 qi - 3 (ql) ~) -

1"8 qi q~ (qi + 9 (ql) ~) + 

+ q2 (qi +q1 q~) (qd t (q2)t + 

""2 (-qi - 6 qi q~ - q~) (~) ~ - t (~)! 
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(a\q1 + 

..<!L + a1 <i, + 
6 4 

qi q~ + sf-) 

(q1)t + 

+ (qd~ + 

(- + a1 q1 q2 -

i- qi q2 -

i-q1 qn 

(q2 ) t 

(- + a1 q1 q2 -

i-qiq2-

i- q1 q~) 

(qd t + 

(a14qt + 

a1 ~ a1 
a2 ~ a1 
r1 ~ i­
r2 ~ i-

_--'-a1 2 q4 _ a1ql _ -'!.l+ --'- (-3al-4q12 ) q26-
32 1 24 72 72 

-% - 214 qi (3 a1 + 2 qi) (qd ~ - t (qd: + 

2~8 qi (-9a1 2 -36a1qi -88qi -24 (qd~) + 

7; q~ 

~ + cr.l q~ + 
6 4 

(- 9 a1 qf - 4 q~ - 9 a1 (qd ~ - 36 qi (qd ~) + 

1"2 % q2 (3 a1 + 4 qi + 4 q~) (%) t (q2) t + 

qiq~+sf-) 
214 (- 3 a1 qi - 2 qi -

3 a1 q~ - 12 qi q~ - 2 qi) (q2) ~ -

+ (q2) ~ 

The result is a list containing 47 possible cases for finding integrals of motion. 
Scanning through the sub-lists, we realize that not only is the coupled system 
considered by Baecklund[] but also a decoupling of the equations is taken into 
account. 

9.7.3 Two Ions in a Trap 

Today, ion trapping is a fundamental experimental tool. Basic properties and 
elementary constants of physics are derivable from such experiments (cf. Wineland et 
al. [1983]). A standard trap for such experiments is, for example, a Paul trap (Paul 
and Steinwedel [1953]) in which ions are confined by a high-frequency if field in 
connection with a static electric field. A Paul trap is completely free of any magnetic 
fields. To uncover the physical properties of a single ion, it is necessary to trap one or 
at most a small number of ions; otherwise, one gets a statistical mean of the observed 
property. In a typical trap experiment, two ions or a single ion are confined. Here, we 
shall consider the case in which two ions are stored in the trap. For two particles in 
the trap, we can describe the motion with Newton's equation. A schematic 
illustration of a trap follows: 
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Figure 9.1 

A Paul trap is designed by three hyperbolas of revolution, which are the electrodes. 
The inside diameter of the ring is 2 ro and the axial separation of the end caps is 2 Zo. 
The electrostatic potential 

(9.39) 

where ? = x2 + i is created by the shape of the trap if the ring electrode is held at 
the dc potential Uo with respect to the two end caps. This static part of the total 
potential confines ions along the z-axis. In the x and y direction, the motion is 
unbounded. The confinement in both of these directions is achieved by 
superimposing the static potential (9.39) by an Jfpotential 

",rf __ Vo cos(Ot) (2 2 2) 
'I' , 2 r - z . 

ro+ 2 ZO 
(9.40) 

In the case of two ions in the trap, an additional force influences the motion of the 
particles. This interacting force is due to the Coulomb repulsion of the ions. In the 
case of two identical particles, the Coulomb force is repulsive between particle 1 and 
particle 2. The force is given by 

(9.41) 
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where Xl.2 denotes the position of particle 1 and 2, respectively, both carrying the 
charge q. In addition to these main forces, there are two other kinds of forces coming 
from the emission of photons and from the cooling process of the ions. These two 
forces, compared with the other three forces, are of minor importance in connection 
with the classical motion of the ions. So we neglect them in our further 
considerations. The classical equations of motion for two ions in a Paul trap now read 

~T ~C 

m Xi = Fi + Fij with i, j = I, 2 and j =I:- i. (9.42) 

~T 

In equation (9.42), Fi denotes the linear trap force 

~T UO + Vo cos(nt) ~ ~ 
Fi = -2q 2 2 (Xi- 3 Zi ez), i=I,2, 

ro+ 2 qj 
(9.43) 

where n is the external driving frequency. It is obvious that the equations of motion 
depend on time t . We can eliminate this time dependency by the averaging method of 
Landau and Lifshitz [1981]. Before we carry out this procedure, we introduce relative 
and center-of-mass coordinates by x = Xl - X2 and X = Xl + X2, respectively. The 
introduction of cylindrical coordinates (p, {) simplifies the equations of motion in the 
relative coordinates to 

(9.44) 

(9.45) 

where the dots denote differentiation with respect to time t. The constants wP ' w(, 

and lz denote the secular frequencies in radial and axial directions and the angular 
momentum directed along the z-axis. The secular frequencies wp and w( are 
dimensionless quantities containing the ac and dc voltage, the mass m of the ions, the 
external driving frequency n, and the geometrical properties of the trap. For a 
detailed description of the derivation of these two equations, compare Baumann and 
Nonnenmacher [1992]. A further scaling of the dimensionless time T by one of the 
secular frequencies (T' = wp T) and introducing the ratios v = lz / wp and A = w( / wp 

gives us 

p + P = (9.46) 

(9.47) 



Ql,2 

1 Sc 
Pc 

2 Sc 
Pc 

3 Sc 
Pc 
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These two equations describe the relative ion motion in a Paul trap in the secular 
approximation. The two equations are derivable from the Lagrangian 

LPaul 

[ ~ 
LPaul / / LieTradi t ionalForm 

y2 1 1 1 
--- + - (_S2),2 _p2) - + -2 (s~ +P~) 

2p2 2 ~ 

describing in classical terms a particle with two degrees of freedom in an anharmonic 
potential. The equations of motion follow by applying the Euler derivative to the 
Lagrangian: 

PaulTrapEquations = Thread[B{r.p) [LPaul] == {O, O}]; 

PaulTrapEquations / / LTF 

-SA2 + S -s --0 
(S2+p2)3/2 c,c--

y' P P - P == 0 
""""{)'- + (S2+p 2 )3/2 L,c 

This system of equations is the starting point of our examination in connection with 
generalized symmetries. To detect the cases under which this second-order system of 
equation is analytically solvable, we have to reveal the parameter combinations v and 
A for which Noether's theorem is satisfied. We determine the integrals of motion by 
applying the above theory to the equations of motion, The function Baecldund[] 
serves as the main tool to derive the integrals of motion: 

PaulJ:ntegrals = Baecklund[PaulTrapEquations, {~, p}, {1:}, 

{o<.<p[1:], o<.t~[1:]}, 1, {v, .A}, AnsatzPoly-+ {2, l}]; 

paulJ:ntegrals / / 

TableForm[LieTraditionalForm[#]], TableHeadings -> 
{Automatic, {"Ql.2 n , "Parameters", nJ:ntegral n }}, 

TableSpacing -> {l, l}] &: 

Parameters 
y-+y 

A -+-2 
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4 

5 

6 

7 

8 

Generalized Symmetries 

h< y~y 

p< A~2 

h< y~y 

p< A~A 

pp< y~y 

p h< - 2 h P< A ~-2 
P P< y~y 

P h< - 2 h P< A~2 

_p2 h< + h P P< y~y 

h P h< - h2 P< A~l 

The result contains eight cases for which Baecldund[] found integrals. The 
assumption of the calculation was that the characteristics are polynomials in the 
dependent variables and their derivatives. 

Among the obtained integrals are the total energy of the Paul trap, the angular 
momentum and its generalization, and integrals which are related to the Runge-Lenz 
vector. In all cases for which generalized symmetries are known, we find that the two 
ions are confined to a two-dimensional surface in phase space. These two integrals 
are the total energy plus a second constant of motion. The existence of two integrals 
in a phase space with two dimensions of freedom is sufficient to determine a regular 
motion and are thus integrable (cf. Tabor [1989]). 

The integrability of the equation of motion is, in fact, closely related to the ratios of 
the two secular frequencies wp and W z • We find that integrals exist for equal 
frequencies (;t = ± 1) and that the axial frequency is twice as large as the radial 
frequency (;t = ±2), independent of the value of v. We note that the case with A = ±2 
is related to the Runge-Lenz vector known from Kepler's problem in classical 
mechanics. 

So far, we illustrated the application of Baecklund[] for different types of differential 
equations. We demonstrated that the function is capable of finding the generalized 
symmetries of PDEs. In the case of second-order ODEs the generalized symmetries 
are beneficial, in connection with Noether's theorem, for constructing solutions at 
least in implicit form. The existence of a sufficient number of integrals of motion 
excludes the occurrence of chaotic motion. 
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Solution of Coupled Linear Partial 
Differential Equations 

10.1. Introduction 

In this chapter, we discuss the main steps for solving systems of coupled linear partial 
differential equations (PDEs). Such linear PDEs are the result of the invariance 
conditions discussed in Chapter 5 on point symmetries, in Chapter 7 on potential 
symmetries, in Chapter 8 on approximate symmetries, and in Chapter 9 on 
generalized symmetries. Especially for these types· of symmetries, the following 
procedures are very successful. The main topic here is the automatic derivation of 
solutions. This self-governed method is the basis for an efficient calculation of 
symmetries by computer algebra programs. 

The ideas behind this automatic procedure goes back to works of Riquier [1910] and 
Janet [1920]. Their basic ideas for solving differential equations are extended by a 
few heuristics. The incorporation of heuristics into solution procedures simplifies the 
task, as Kamke [1977] and Schwarz [1992] remark. However, the use of heuristic 
solution steps by itself are not sufficient to succeed. The combination of a regular 
procedure and heuristics establish a method which is successful for a very large 
number of linear PDEs. Our experience is that the combination of a differential 
Groebner technique with heuristic steps is very successful in solving linear PDEs. 
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The central steps for finding solutions of a linear overdetermined system of PDEs 
consists of the following: 

1. The decoupling of the equations by a completion algorithm. 

2. The integration of simple equations. 

3. The simplification of the equations. 

These three steps are essential in the solution procedure. Since the PDEs are, in 
general, coupled in a non-trivial form, it is recommended to disconnect the equations. 
This disjoining of differential equations results into a general canonical form. The 
term general canonical form was introduced by Janet and Riquier at the beginning of 
the 20th century. These authors developed a procedure to create an equivalent and 
simplified representation of a given system of PDEs. Thus, our discussion is not only 
restricted to heuristic solution steps for PDEs but also includes a step of 
standardization. 

To keep the integration procedure for PDEs as simple as possible, we first calculate 
the general canonical form to find a simpler representation of the equations. The first 
section of this chapter discusses the theory of the general canonical algorithm due to 
Janet and Riquier. The second section describes the heuristic integration steps to 
solve the simplified equations. 

10.2. General Canonical Fonn of PDEs 

In this section, we will describe a method originally given by Riquier and Janet 
which they called forme canonique generaie (general canonical form) and later 
discussed by Thomas [1929, 1934] in the investigation of coupled differential 
equations. The present implementation in Mathematica uses a Groebner basis 
algorithm originally designed to solve polynomial equations of higher order 
(Buchberger [1985]) adapted and generalized for differential equations. The aim of 
our Groebner algorithm for differential equations is to transform a given system of 
equations to an equivalent decoupled representation. Before we describe our 
procedure to derive a general canonical form, let us define what we understand by a 
canonical form. 

Definition: Canonical form 

A general canonical form of a system of partial differential equations is a simplified 
form of a system in such a representation that all Schwarzian integrability conditions 
are satisfied. It is essential that the solution manifold under such a transformation is 
conserved. 0 
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This verbal definition states the essential property of a general canonical form 
simplifying the original equations but does not clarify how such a representation of 
equations can be calculated. 

In practical applications, it is necessary to have a constructive definition available. 
However, the above definition does not explain how a general canonical form may be 
calculated and thus gives room for several algorithms. In fact, there exist several 
more or less different procedures in the literature approaching the definition of a 
general canonical form (cf. Schwarz [1985], Reid [1993], Mansfield [1992], 
Carra-Ferro [1993]). 

In the following, we will discuss five steps which are sufficient to calculate a general 
canonical form. One of these basic steps uses the knowledge that all equations 
involved can be solved for a certain derivative which is called the leading derivative, 
meaning that a leading derivative can be identified which may depend on other 
independent derivatives. We further assume that the derivatives are unique. 
Uniqueness of the derivatives suggests that independent derivatives cannot be 
represented by other derivatives in the system. Again, we realize that derivatives are 
the basic tools of our calculations. 

After these preliminaries, let us state the five sufficient properties of a general 
canonical form: 

1. All equations are solved in such a way that the leading derivatives occur only on 
the left-hand side of the equations. 

2. In a canonical representation of equations, it is impossible that the same 
derivatives occur on the left-hand side and on the right-hand side of the equation. 

3. All derivatives of the left-hand side of the equations are disjunct. 

4. There exists no derivative which is a non-trivial derivative of any derivative 
occurring on the left-hand side of the equations. 

5. All the Schwarzian integrability conditions are satisfied. 

The condition that a leading derivative exists will require that we have an appropriate 
measure for detecting it as a leading derivative. An appropriate tool for this decision 
is the order of a differential expression. All of the remaining four steps are based on 
the ordering idea of derivatives. There are many ordering schemes suited; all have 
various advantages for different purposes. For example, a lexicographic ordering 
yields elimination ideals, while a total degree ordering is used to obtain the 
integrability conditions. The total degree ordering is useful in getting the initial data 
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for convergent formal power series solutions. In general, the ordering scheme used, 
denoted here by ordO, can be chosen arbitrarily. However, the essential point is that 
we are consistent in its application. Following Janet, this means that an arbitrary 
differential operator a has to satisfy the following: 

(i) ord(a u) > ord(u), 

(ii) ord(ul ) > ord(u2 ) --+ ord(a ul ) > ord(a u2 ). 

These two rules summarize the idea that the order of a differential equation is always 
greater than the order of an ordinary function and that the lexicographic ordering has 
a direct consequence on the ordering of derivatives. In our algorithm, we realized 
these concept by an ordering scheme which satisfies the following properties: 

(a) Total ordering of the derivatives 

ord (un > ord (u~ ) if#J>#K 

where # J denotes the number of J. 

(b) Lexicographic ordering of the derivatives 

ord (ax ua ) > ord (ax , , ua ) if i > j. 

(c) Lexicographic ordering of function names 

ord (ua ) > ord (uP) if a >/3. 

We note that the ordering scheme used has an influence on the representation of the 
equations. However, it does not change the solution manifold of the equations. 
Calculating the general canonical form of a given system of equations, we only 
operate on equivalence relations. This guarantees that the solution manifold is not 
changed. 

The first step in calculating a general canonical form is thus the solution of the 
equations with respect to the highest derivative. The solution is used to eliminate all 
occurrences of the highest derivatives in the remaining equations. Thus, the 
procedure is based on identifying an equation containing the highest derivative. The 
remaining equations can then be treated by the above ordering scheme. It is also 
crucial to insert the solution for the highest derivatives into the remaining equations. 
If we carry out the steps accurately, we can satisfy conditions 1, 2, and 3 of the 
canonical algorithm. 
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If we have solved all equations for the highest derivatives, we next implicitly 
substitute the derivatives; i.e., we replace all non-trivial derivatives by the derivatives 
of the corresponding terms. At this point, it may happen that not all derivatives of the 
left-hand side are different from each other. If this happens, we have to go back to the 
first step of our algorithm and repeat the calculation again. The whole procedure is 
repeated as long a conditions 1 to 4 are satisfied. 

If we can satisfy the first four steps of the general canonical form algorithm, we can 
proceed to calculate the integrability conditions for the complete system. The 
integrability conditions serve to terminate the algorithm. If we cannot find new 
integrability conditions, we say that the original system of PDEs is, in general, a 
canonical form. 

The explicit calculation of the integrability conditions works in the following way. 
We differentiate two of the equations containing different derivatives of the same 
function on the left-hand side. If we do the differentiation on both sides in an 
appropriate way, we create two identical expressions on the left-hand side. 
Subtraction of the two equations results in a new integrability condition. If we find 
such a relation, we start again with step 1 of the general canonical algorithm. The last 
step to find the integrability condition can be mathematically formulated as 

(10.1) 

(10.2) 

where L = max(J, K) and 

o = u~ - u~ = GL- J - HL - K • (10.3) 

Using this procedure, we are able to simplify all types of partial differential 
equations, both linear and non-linear. In practical situations, especially for non-linear 
PDEs, there is a little restriction for the termination of the algorithm. This restriction 
is connected with the unique solution of the non-linear equation. For example, we all 
know, as does Mathematica, that the general solution of a quadratic polynomial 
consists of two solutions. Thus, the program has to know what branch of solution it 
should take next. In a general case, we have to deal with more complicated solution 
branches than just a bifurcation. So, if we are unable to uniquely handle the set of 
solutions for non-linear equations in the highest derivative, we cannot derive a 
general canonical form of the original equations.Thus, the algorithm for calculating 
the general canonical form bifurcates to an interactive version if a set of solutions for 
the highest derivatives exists. So, the occurrence of more than one solution will force 
us to examine different representations of the canonical form. 
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10.2.1 Application of the General Canonical Fonn Algorithm 

The following examples demonstrate the application of the general canonical form 
algorithm. As a fIrst step, we recall how the original Groebner basis algorithm for 
polynomials works and how this algorithm can be used to solve PDEs. Groebner 
bases appear in many modern algebraic algorithms and applications. In Mathematica, 
the function GroebnerBasis[] takes a set of polynomials and reduces this set to a 
canonical form from which many properties can be deduced. An important feature is 
that the set of polynomials obtained always has exactly the same collection of 
common roots as the original set. Thus, a Groebner basis is useful if one is interested 
in the solution of a system of polynomials. The solutions, if they exist, are the 
invariants of the representations. Groebner bases were first introduced in the 
mid-1960s by Hironaka (who called them "standard bases") and, independently, later 
by Buchberger in his Ph.D. thesis. The name Groebner bases was coined by 
Buchberger to honor his thesis adviser W. Groebner. The Groebner basis 
representation has the merit that it is much easier to solve than the original set of 
polynomials. We can demonstrate this behavior by the following example: 

polyl = x' y + y + 4 

4 + y + x 2 y 

poly2 = xy' + 1 

The Groebner basis of this set of polynomials is determined in Mathematica by 

gpoly = GroebnerBasis [{polyl, poly2}, {x, y} 1 

The result shows that the second-order set of polynomials can be represented by a 
fourth-order polynomial in y and a linear relation in x. The solution of these two 
polynomials are 

Solve[Thread[gpoly== {O, O}], {x, y}] lIN 

{{X-4-2.23012, Y-4-0.669632L {x-4-0.0629971, Y-4-3.98419}, 

{x -4 1.14656 - 2 .409 I, Y -4 0 . 32691 - 0 . 51764 I} , 

{x -4 1.14656 + 2.409 I, Y -4 0 . 32691 + 0 . 51764 I} } 
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According to the fourth order of the first polynomial, we find two real distinct 
solutions and two solutions which are complex conjugate to each other. The direct 
solution of the coupled system delivers the same result: 

SoJ.ve[{poJ.yl == 0, poJ.y2 == O}, {x, y}] II iii" 

{{X-7-2.23012, Y-7-0.669632}, {X-7-0.0629971, Y-7-3.98419}, 

{X-71.14656-2.409I, Y-70.32691-0.51764I}, 

{x -7 1. 14656 + 2 .409 I, Y -7 0.32691 + 0 . 51764 I} } 

Another example, which at first glance, is very similar to the example examined 
above starts from the two polynomials 

poJ.yl = x A 2 y + y +, 

poJ.y2 = xyA2 

The Groebner basis of the polynomials is given by 

gbasis = GroebnerBasis [{polyl, poJ.y2}, {x, y}] 

{4+y,x} 

The solution of these polynomials follow by solving the basis 

SoJ.ve[Thread[gbasis == {O, O}], {x, y}] 

{{X-70, y-7-4}} 

The direct solution of the set of equations yields 

Solve [{polyl == 0, poJ.y2 == O}, {x, y}] 

{ {y -7 - 4, X -7 O} } 

the same result. To understand what goes on behind the function GroebnerBasis[], we 
repeat the calculation for the last example a second time by hand. 

The Groebner basis technique to solve sets of polynomials works manually as 
follows. The present equation polyl and poly2 are decoupled by multiplying the 
polynomials with appropriate variables and adding the result to another polynomial. 
The starting equations are 
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2 x 2 y + y + 4 = 0, 

xl =0. 

(lOA) 

(l0.5) 

Our aim is to separate both equations. We first mUltiply the first equation by the 
factor -y and the second by the factor 2 x. After the multiplication, we add the results 
and find 

2 i y + y + 4 = 0, 

xl = 0, 

l + 4 Y = 0 -----t i = -4 y; 

(10.6) 

(l0.7) 

(10.8) 

substituting the result of (l0.8) into equation (l0.7) and eliminating the factor 4 by 
division, we get 

2 x2 Y + y + 4 = 0, 

xy = 0, 

l + 4y = O. 

(l0.9) 

(10.10) 

(10.11) 

If we use equation (l0.1O) in equation (l0.9), we obtain a relation which allows us to 
detennine the solution for y: 

y + 4 = 0 -----t y = -4, 

xy = 0, 

l + 4y = O. 

(10.12) 

(10.13) 

(10.14) 

The result from equation (10.12) can be used in the remaining two equations, (10.13) 
and (10.14), satisfying the third equation identically and delivering the second 
solution for x = O. Thus, we get the complete solution of the original set of 
polynomials to be 

y = -4, 

x = O. 

(10.15) 

(10.16) 

We easily can check that this is the complete solution. Using equation (10.13), we 
observe that either x or y has to vanish. Setting, in a first attempt, y = 0, we observe a 
contradiction in the first equation, i.e., 4 = O. The other choice, x = 0, will result in 
the same result derived by the manipulations of the equations. The method of 
manipulating the set of polynomials is identical to the algorithm used in the 
calculation of the Groebner basis. A detailed description of the Groebner algorithmic 
procedure is given by Buchberger [1985]. 
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Our aim is to use the Groebner basis technique to solve partial differential equations 
transformed to a canonical form. The fIrst step for handling this problem is to 
decouple the system of partial differential equations. Using the Buchberger algorithm 
to solve this problem, we need a scheme to translate the operations from a differential 
representation to a polynomial representation. The rule to convert differential terms 
to polynomials goes as follows: Use the differentiation order and the variable to 
represent the related polynomial. Reading this transformation in reverse, we are able 
to transform a polynomial into a differential equation. To demonstrate this 
transformation, let us consider the example of polynomials examined in the previous 
example. We also have to introduce a function F depending on the two independent 
variables x and y. The differential analogue of equations (1004) and (10.5) read 

2 axxy F(x, y) + a y F(x, y) + 4 F(x, y) = 0, 

axyy F(x, y) = O. 

(10.17) 

(10.18) 

The question now is: How can we benefIt from the Buchberger method of solving 
polynomials in simplifying this formally equivalent system of PDEs? 

The answer of this question is that we have to use the same algorithm as for 
polynomials but now with the interpretation of our transformation rule that the 
variables x and yare replaced by partial derivatives. Using this interpretation, we are 
able to decouple the above system of PDEs. The following calculation will 
demonstrate this. First we apply to equation (10.17) the partial derivative with respect 
to y (ay )' In a second step, we apply the operator -2ax to equation (10.18). Adding 
the results, we fInd three relations 

2 axxy F(x, y) + By F(x, y) + 4 F(x, y) = 0, 

Bxyy F(x, y) = 0, 

Byy F(x, y) + 4 By F(x, y) = o. 

The last equation provides 

--+ Byy F(x, y) = -4By F(x, y). 

Substituting the result (10.22) into equation (10.20) the PDEs become 

2 axxy F(x, y) + By F(x, y) + 4 F(x, y) = 0, 

Bxy F(x, y) = 0, 

a yy F(x, y) + 4 By F(x, y) = o. 

(10.19) 

(10.20) 

(10.21) 

(10.22) 

(10.23) 

(10.24) 

(10.25) 
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Using relation (10.24) of this system, we are able to write (10.23) as 

By F(x, y) + 4 F(x, y) = 0 ~ By F(x, y) = -4 F(x, y), 

Bxy F(x, y) = 0, 

Byy F(x, y) + 4 By F(x, y) = O. 

(10.26) 

(10.27) 

(10.28) 

The result from relation (10.26) can be used to satisfy equation (10.28). Substituting 
expression (10.26) into equation (10.27), we automatically decouple the 
differentiations. At the end, we get a decoupled system of POEs which is equivalent 
to the original system (10.17) and (10.18): 

By F(x, y) = -4 F(x, y), 

Bx F(x, y) = o. 

The solution of this simplified system of equations is 

F(y) = Fa e-4 y . 

(10.29) 

(10.30) 

(10.31) 

It is a simple task to verify that the original equations are also satisfied by this 
solution. Thus, we conclude that the canonical representation of the POEs allows us 
to derive the solution by a simple integration. In fact, the solution also satisfies the 
original equation. All these steps carried out so far by hand can be handled by 
Mathematica. To show how this calculation works, we will first define the 
transformation of polynomials in two variables to a differential representation. The 
transformation rule given is a very simple version of transformations for the products 
of two variables and for the variables itself. If the polynomial contains numeric 
factors, they will be transformed to the dependent function. We note that the given 
rules are only usable for handling our special problem but are not designed to allow 
general transformations. The simple transformation to a differential representation 
has the form 

toDifferentia18 = {x"n_o y"DLo -> Derivative[n. m] [1'] [x. y]. 

y -> Derivative [0. 1] [1'] [x. y]. 

x -> Derivative [1. 0] [1'] [x. y]. 

a_I; HumberQ[a] -> al'[x. y]} 

{xn_. y"'-' ~ F(n.m) [x, y] , y ~ F(O,l) [x, y], x ~ F(l.O) [x, y], 

a_ /; NumberQ [a] ~ a F [x, y] } 

The application of this transformation rule to the two polynomials poly1 and poly2 
gives us the representation of the linear second-order POEs: 



General Canonical Form of PDEs 467 

pdel = polyl I. toDifferentials 

4 F [x, y] + F(O,l) [x, y] + F(2,1) [x, y] 

pde2 = poly2 I. toDifferentials 

F(1,2) [x, y] 

The more interesting case in connection with our aim to solve PDEs is the case 
considering the inverse transformation from a differential representation to a 
polynomial one. A simple version for this reduction to a polynomial can be defined 
as follows: 

backToPolynomials = {b_. Derivative[DI.....-..-] [1'] [x_] :> 
bApply[Times, {x}" {ill}], 

1'[_] -> 1} 

{b_. F(m_) [x __ ] :-->bTimes@@{x}(m}, F[ __ ] --71} 

We note that the given transformation rule is sufficient to handle one dependent 
variable only. The application of our transformation gives us 

poll = pdel I. backToPolyuomials 

po12 = pde2 I. backToPolYUOllLials 

These two polynomials are just the polynomials from which we started. We know 
that the Groebner basis algorithm allows us a simplified representation of this set by 

gbas = GroebnerBasis [{poll, po12}, {x, y}] 

{4+y,x} 

Applying the transformation rule to a differential representation, we find a linear 
first-order system for the function F: 

pdegbasis = gbas I. toDifferentials 

{4 F[x, y] + F(O,l) [x, y], F(l,O) [x, y]} 

Now, using the capabilities of Mathematica to solve this system of first-order partial 
differential equations, we end up with the solution. Rewriting the PDEs in a standard 
form, we can use them in the function DSolve[]: 
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pd.s = 'l'hread[pdegbasis == {O, O}]; 

pd.s / / Li.'l'radi tiouall'o:r:m / / 'l'abl.l'o:r:m 

4 F + Fy == 0 

Fx == 0 

The solution of the fIrst equation shows that the y coordinate decays exponentially, 
while the x coordinate is included in an arbitrary function denoted by C[l][x]: 

sl = DSolve [pdes [ [1]], I' [x, y], {x, y}] 

{{F[x, y] --+ E- 4 y C[l] [xl}} 

The solution of the second equation shows us that F is just a function of y: 

s2 = DSolve [pd •• [ [2] ], I' [x, y], {x, y}] 

{{F[x, y] --+C[l] [y]}} 

Thus, the complete solution of this problem is given by sl if we set the arbitrary 
function C[1][x] equal to a constant C[1]: 

sol = .1 /. C[l] [x] -> C[l] 

{{F[x, y]--+E-4Y C[1]}} 

Knowing the solution, we are able to check whether the original equations pdel and 
pde2 are satisfIed. To make this check as simple as possible, we convert the solution 
of F to a pure function: 

solution = F -> Function [{x, y}, F [x, y]] /. sol [ [1, 1]] 

F--+Function[{x, y}, E- 4 YC[1]] 

Having this representation of the solution available, it is easy to verify that the 
original PDEs are satisfIed. The only thing that remains is to replace the dependent 
variable F by the solution: 

{pd.l, pde2} /. solution 

{O, O} 

Both checks show that the derived solution, in fact, solves the original equations. 

As discussed above in the interactive calculation, a general canonical form follows 
from the application of a differential Groebner basis algorithm. The package MathLie 
contains a function GeneralCanonicalForm[] supporting this kind of calculation. The 
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function contains a generalization of the simple steps presented in the above 
discussion. To demonstrate the automatic calculation of the general canonical form as 
an example, let us recall the manipulations done by hand. All the following steps are 

implemented in the function GeneralCanonicalForm[], allowing the derivation of a 

canonical representation. 

First, let us repeat the ordering for two functions gl = gl (x, y) and g2 = g2(x, y). The 
ordering is defined by 

The ordering used gives the highest derivative the highest priority in the calculation. 
To see the consequences of the ordering, let us consider the simple system 

o (10.33) 

o (10.34) 

where gl = gl (x, y) and e = g2 (x, y) are functions of the independent variables x 

and y, respectively. Applying the general canonical form algorithm, we first have to 
solve the equations with respect to the leading derivative which results to 

(10.35) 

Substituting this result into the second equation gives us 

o = (g;)2 + 2g2 (_g~ + g2) _ (e)2, (10.36) 

o = (g; _g2)2. (10.37) 

The result of these manipulations is that g~ = e. Going back to our second equation 

of the original system and solving this equation with respect to the leading derivative 
g;, we find 

1 2 
I 2 (g)y ~2 ~2 

~xl -- ~ ~ ~ 0 
~. "2 ~ - 2 g2 ="2 - "2 = . (10.38) 

To derive this result, we used the relation g~ = e. At this stage of our calculation, we 

know two relations connecting gl and g2 by 

(10.39) 

(10040) 
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Since these two equations are represented by two differential equations with unique 
derivatives on the left-hand side, we do not need to use an implicit substitution step. 
Thus, we can skip step 3 and go to step 4 of the algorithm and calculate the 
integrability condition by 

&1 &1 2 o = ~xy - ~xy = 5x . (10.41) 

Since the Schwarzian integrability conditions are necessary conditions for deriving 
the general canonical form, we have to assume that the resulting relation for 52 is an 
additional equation determining the solutions for 51 and e. Thus, we have to add 
relation (10.41) to equations (10.39) and (10.40). The complete general canonical 
form thus reads 

5~ = 0, (10.42) 

0, (10.43) 

and 

(10.44) 

To check the function GeneralCanonicalForm[], we examine the same equations as 
above. The function GeneralCanonicalFonn[] calculates the related general canonical 

form for equations expressed in the dependent variables xi[/l and phi[i]. The field 
functions xi[i] and phi[i] can depend on any number of independent variables. The 
function GeneralCanonicalFonn[] possesses two options allowing us to control the 

printing on the screen. With the option TraceStep~True, gives information on the 

steps carried out by the function. The option WamingSS~True we get information on 
factors eliminated during the calculation. The on-line help text informs us about the 
capabilities of the function: 

?GeneralC&DonicalPo~ 

GeneralCanonicalForm[equations_Listj calculates the 
general canonical form for a given list of coupled 
partial differential equations. 

Our example above needs the following input: 

GeneralCanonicalPozm[{ax xi[l] [x, y] + a y xi[l] [x, y] -

xi [2] [x, y], 

(ayxi [1] [x, y]) 2 + 2 xi [2] [x, y] ax xi [1] [x, y] -

xi [2] [x, y] 2}, 'l'raceStep -> 'l'rue] II 
'l'ablePozm[Lie'l'raditionalPorm[JIap[1 == O&:, I]]]&: 
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C-l explicit substitutions of leading derivatives 

C-2 implicit substitutions of leading derivatives 

C-3 determining minimal integrability conditions 

C-l explicit 

C-2 implicit 

-?2 + (?d y == 0 

(?d x == 0 

(?2)x==O 

substitutions 

substitutions 

of leading derivatives 

of leading derivatives 

The derived canonical system is the same as above and contains all the solutions of 
the original equations. We can show the equivalence of the solution manifold by 
solving the general canonical form representation. The use of the solution in the 
original equations shows us the equivalence of both representations. The first and last 
equations of the canonical form imply that 

(10.45) 

and 

(10.46) 

This result shows that the dependent functions are only functions of y. Knowing this 
fact, we are able to satisfy both original equations if we take into account the second 
relation of our canonical representation of the equations. 

10.3. Solution of Linear PDEs 

In this section, we discuss heuristic procedures to integrate simple differential 
equations. The term simple equations means that we are interested in equations 
containing, for example, only one element so-called monomials, or ordinary 
differential equations, and exact PDEs. Applying one of the integration steps 
successfully to such equations, we will find an explicit solution or at least some 
functional dependencies of the solution. Consequently, we can use this information to 
transform or simplify some or all of the equations. We will discuss heuristic 
procedures like the integration of monomials, the solution of ODEs and 
pseudo-ODEs, the determination of integrating factors for exact PDEs, and the 
derivation of a potential representation for some types of PDE. Solving equations is 
intriguingly connected with the simplification of the intermediate results. Thus, we 
will also discuss different steps of simplification. 
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10.3.1 Integration of Monomials 

The simplest type of equation which may appear in a system of POEs is a monomial 
with the general representation 

(10.47) 

where i], ... in are integers denoting the order of differentiation with respect to the 
independent variables x I, ... , Xn • Using the terminology of Riquier and Janet, we call 
this type of equation a monomial. Integrating the monomial with respect to the 
independent variable Xk, we obtain the general solution 

n ik-l 

f(x] , ... , xn) = 2::: L Cjk(XI, ••• , Xk-I' Xk+I, ••• , xn) x~ 
k=] j=O 

(10.48) 

with Cjk arbitrary functions of the independent variables Xi. Note that the functions 
C jk do not depend on Xk. This result is useful if we try to simplify the remaining 
equations of our system. 

The simple integration of a monomial with respect to a variable Xk is a common 
method used in pencil calculations and is widely discussed in the standard texts like 
Kamke [1977] or Ince [1956]. In the following sections, we will describe other 
procedures which are also effective in pencil as well as in computer-based 
calculations. 

Let us consider a simple example to illustrate the integration step discussed. Assume 
f = f(x, y) is a sufficiently smooth function which satisfies the POE 

8x f(x, y) = o. (10.49) 

The solution of this equation follows by a partial integration with respect to the 
independent variable x. In the integration step, we have to assume that y is 
independent of x, which is trivial if we consider X and y as independent variables. 
Assuming this, we can write down the solution for f as 

f(x, y) = g(y) x + h(y), (10.50) 

where g(y) and h(y) are arbitrary functions in y. These two functions are especially 
independent of x. Integrating the POE (10.49), we introduced two arbitrary functions 
depending only on the variables of the intersection of the independent variables and 
the variable with respect the differentiation is carried out. This set-theoretic 
interpretation is crucial when implementing this step in Mathematica. 
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10.3.2 Integrating ODEs and Pseudo-ODEs 

Ordinary differential equations (ODEs) have a distinguished role in mathematics. We 
know that for certain types of ODEs, there exists at least particular solutions. Since 
Mathematica has implemented a large number of procedures solving ordinary 
differential equations, we will use them for our purposes. Knowing a solution of an 
ODE will help us to solve partial differential equations. Commonly, differential 
equations with one independent variable are called ODEs. However, dealing with 
PDEs, we can generalize the term ODE to pseudo-ODE. A pseudo-ODE is defined 
by the following type of relation: 

(10.51) 

This kind of equation is called a pseudo-ODE because there only occur derivatives of 
the field F with respect to one independent variable Xi' So the changes of the 
function F are restricted on the single coordinate Xi. The other independent variables, 
Xb act as parameters or pseudo-constants. Under this condition, it is obvious that 
(10.51) behaves like an ODE. So we can treat equation (10.51) as an pseudo-ODE. 
With this interpretation, we are able to solve (10.51) by taking into account that the 
integration constants are functions of the independent variables except Xi' The notion 
of a pseudo-ODE allows us to solve special types of PDEs occurring frequently in the 
determining systems in symmetry analysis. 

This procedure allows us to determine the explicit dependence of the function F on 
the single variable Xi. Knowing this kind of solution, we are able to simplify some of 
the remaining equations in the system of determining equations. 

10.3.3 Integrating Exact PDEs 

From the theory of ordinary differential equations, we know that a distinguished type 
of equation is an exact ODE. This type of ODE allows us to write down the solution 
if we know an integrating factor of the equation. In Chapter 4, we discussed the 
generalization of the term-integrating factor. However, this factor follows from a 
complete algorithmic procedure using only the ODE itself. The idea is to use the 
results for ordinary differential equations again to solve some types of partial 
differential equation. 

In case of PDEs, we call a differential equation 11 = 0 exact if we are able to write the 
differential expression 11 as a total derivative of an integral I with respect to a single 
variable Xi. Consequently, we have 
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dI 
(l0.52) 

Integrating this relation automatically, we need a function calculating the integral I 
of the right-hand side. If we know the integral I, we can replace the equation A = 0 
by the relation I = const. It is important to note that we do not lose any information 
by this replacement. However, using a procedure originally designed for ODEs, we 
have to take into account that the integration constants are again not constants in the 
original sense but depend on all independent variables occurring in A except Xi. 

10.3.4 Potential Representation 

Closely related to the integration of exact PDEs is the procedure to find a potential 
representation of the original equations, as Wolf [1991] remarks. Let us discuss the 
procedure by considering an equation of the form 

(l0.53) 

where /1 and 12 are functions of XI and X2. Relation (l0.53) can be integrated by 
introducing a potential V = V(XI, X2) satisfying the properties 

(l0.54) 

The connection between the potential representation with V and the concept of an 
exact PDE can be shown if we take into account that the left-hand side of our first 
equation is exact with respect to XI and the right-hand side is exact with respect to 
X2. This observation is the basis of the algorithmic calculation. Thus, we can use the 
following six steps to check the existence of a potential representation. As the input 
quantity, we use the differential expression A. 

1. Integrate A with respect to XI and call the exact part of this result II . 

2. Calculate the residue R by R = A - aXl II. 

3. If R = 0, then A is exact and the procedure terminates. 

Otherwise: 

4. Determine 12 as the exact part of R with respect to X2. 

5. Again, calculate the residue R = R - aX2 12 . 

6. If R "* 0, then no potential exists. This also terminates the procedure. 

The result of these steps are that II = aX2 V and 12 = -aXl V. 
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This algorithm perfonns two steps. First, it checks whether a potential can be 
introduced, and second, if it is possible to introduce a potential the necessary 
conditions to represent the potential are calculated. 

10.4. Simplification of Equations 

This section discusses three procedures allowing the simplification of the 
determining equations in connection with the integration steps discussed so far. 

10.4.1 Direct Separation 

We already know that the integration of monomials results into a pseudo-polynomial 
representation of the solution. This pseudo-polynomial has the special property that 
the expansion coefficients possess a dependence on a reduced set of independent 
variables. The explicit occurrence of some of the independent variables in the 
representation of the solution can be used to simplify the determining equations by a 
direct separation of variables. Inserting the solution into the determining equations 
allows us to separate some parts of the determining equations from each other. 
Comparing the coefficients of the resulting polynomials allows us to derive a new, 
simplified set of determining equations. These equations are actually simpler than 
those from which we originally started. Suppose some parts of the determining 
equations are of a polynomial type in the variable Xi. We can perfonn a separation by 
setting the coefficients of the various powers of Xi equal to zero. Let us demonstrate 
this procedure by the following example where Xi = z. Consider the equation: 

(10.55) 

This PDE can be considered as a polynomial in z with variable coefficients. The 
extraction of the different coefficients of powers of z results in a new system of 
determining equations given by 

8 y f(x, y) = 0, 

8x f(x,y)+8x g(x) = 0, 

8x g(x)+y8;g(x) = o. 

(10.56) 

(10.57) 

(10.58) 

The last equation (10.58) of this system can again be considered as a polynomial in y. 

The application of the same rules result into an additional separation of the equation. 
Thus, we can maintain, in a second step, the last equation in two equations. The 
resulting equations are 
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a y I(x, y) = 0, 

ax I(x, y) + ax g (x) = 0, 

a;g(x) = o. 

(10.59) 

(10.60) 

(10.61) 

(10.62) 

From this set of four equations it follows by applying the integration of monomials 
that the solution can be represented by 

g(x) = k, and I(x, y) = k2' (10.63) 

where k, and k2 are constants of integration. This solution satisfies not only the final 
four equations but also the original equation from which we started. At this point, it is 
obvious that we can reduce the integration process of a partial differential equation to 
a simple chain of steps involving the integration of monomials. 

10.4.2 Indirect Separation 

An essential requirement of a direct separation was the existence of terms containing 
one independent variable in polynomial form. Generally, we cannot assume that such 
case will occur. In the following we will discuss a more general situation in which 
the independent variable only occurs in the argument of a function. If the other 
involved functions do not depend on the same variable, it is possible to separate parts 
of the equation. The separation is possible if we cross-differentiate the expressions. 
This procedure allows an indirect separation of terms. Cross-differentiating splits up 
the equation into independent parts. The separated parts depend only on a reduced set 
of independent variables. 

To demonstrate the method, let us examine the solutions of the first-order partial 
differential equation 

I(x, y) + ax g(x) = o. (10.64) 

Differentiating this PDE with respect to the independent variable y, we find that I 
has to satisfy the equation 

a y I(x, y) = o. (10.65) 

Since the term containing g does not depend on y, it simply vanishes. The 
differentiation of the equation with respect to the conjugate variable to x allows a 
separation. The original equation reduces to a single determining equation containing 
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only f. However, the equation for f can be integrated with respect to y. The result 
reads 

f(x, y) = h(x) . (10.66) 

This results shows thatfdoes not depend on y but only on x. Inserting the result into 
the original equation (10.64), we get 

h(x) + ax g(x) = O. (10.67) 

This equation is an inhomogeneous ordinary differential equation of first order in g. 

An integration with respect to x yields the solution 

g(x) = - JX h(z) dz . (10.68) 

The result of the indirect separation is a relation connecting f with g by an arbitrary 
function h = h(x). If we know the function h, we also know g and f. 

Although we derived simpler equations from an indirect separation, this method will 
not contain as much information as the direct separation, meaning that we cannot 
replace the original equations by the separated ones. However, we are able to use 
parts of the equation or the separated equation itself in other equations. This again 
will simplify the original equations but does not replace them. 

10.4.3 Reducing the Number of Dependent Variables 

The fact is that if we can uniquely solve an equation of the determining equations 
with respect to an unknown function, this allows us to use this function as a 
substitute. The substitution of this function permits an elimination of all occurrences 
of this function in the rest of the system. If such a situation occurs, we can reduce the 
number of unknown functions in the system by one. The elimination of unknown 
functions by using infonnation from the equations involved is an important method 
of simplifying systems of PDEs. Because the number of unknown functions increases 
by each integration of monomials, one can imagine that after a few steps, we have a 
huge number of unknown functions in the determining equations. Thus, it is 
necessary to counterbalance the increase of unknown functions by an elimination 
procedure. Since not all unknown functions are useful in the elimination of 
dependencies, the unknown function has to satisfy several conditions. The following 
list contains the main properties an unknown function has to satisfy for an 
elimination. 
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1. The function with respect to which the equation under consideration is solved 
must depend on all variables which occur in the remaining set of equations. 

2. The equation must be uniquely solvable with respect to the unknown function. 

3. The equation solved does not contain derivatives of the unknown function. 

The last condition is very important, because if the unknown function occurs in a 
derivative, we cannot replace the unknown function itself in any expression of the 
whole system of determining equations. 

To demonstrate the elimination of unknown functions, let us consider the example 

f(x, y) + ax g (x, y) + hex) = O. (10.69) 

This equation is only solvable with respect to f(x, y). Neither g nor h satisfy the three 
conditions from above. If we accidentally solve this equation [e.g., with respect to 
hex)], we lose the information that f(x, y) + ax g(x, y) depends on y. On the other 
hand, if we solve the equation with respect to ax g(x, y), we cannot replace all 
expressions containing g(x, y) which occasionally may occur in other equations (not 
shown here). 

All methods so far discussed for simplifying and integrating partial differential 
equations are implemented in our MathLie function PDESolve[]. To solve a given 
system of the determining equations completely, it is necessary to repeat the 
discussed methods several times in different orders as long as no further 
simplifications are possible. To show how the function PDESolve[] can be used, let 
us examine the determining equations of the Korteweg-de Vries equation. These 
equations follow by 

detEquationsKdV = DeterminingZquations[ 

{Btu[x, tj +u[x, tj Bxu[x, t] + Bx,x,xu[x, tj}, 

{u}, {x, t}, {Btu[x, t]}j; 

detEquationsKdV II LTI' 

(';d u == 0 

(';2)u == 0 

(h)u,u==O 

(';2)x == 0 



cJ>1 - (~dt -u (~dx +u (~2)t - (~dx,x,x +3 (cJ>dx,x.u == 0 

(cJ>d t +u (cJ>d x + (cJ>dx,x.x == 0 

- (~dx,x + (cJ>dx,u == 0 

-3 (~dx + (~2)t == 0 
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These eight equations are linear but coupled. Before we use the function PDESolve[], 
let us look at the shorthand description of the function: 

? PDBSolve 

PDESolve[list of equations,dependent vars., indep. 

vars., Options] 

The related option of the function PDESolve[] are 

Options [PDBSolve] 

{Standard -4 False, WarningSS -4 False, TraceStep -4 True} 

The application of this function to the determining equations of the Korteweg-de 
Vries equation gives us the result 

infinitesimalsKdV = PDBSolve [detBquationsKdV, {u} I {x, t}]; 

infinitesimalsKdV / / L'l'F 

~1 == kl + k2 t + k4 x 
3 

~2 == k3 + k4 t 

cJ>1 = = k2 _ 2 k4 u 
3 

remembering that the KdV equation allows a four-dimensional symmetry group. 

10.5. Example 

The algorithm to solve partial differential equations is designed to treat coupled 
systems of determining equations. Such determining equations occur frequently in 
symmetry analysis. The following example demonstrates the capabilities of the 
function PDESolve[] in connection with a non-standard equation. The example 
originates from quantum gravity theory and demonstrates the flexibility of the 
algorithm in connection with special functions. 
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10.5.1 Liouville-Type Equation of Quantum Gravity Theory 

The first example is related to an equation occurring in quantum gravity theory 
describing the evolution of the Killing vector. Boyer and Finley [1989] showed that 
the Killing vector of a rotational symmetric space can be described by an equation of 
the form 

ax,x u(x, y, z) + ay,y u(x, y, z) + az,z eu(x,y,zl = o. (10.70) 

This equation is of some importance in quantum gravity theory, dealing with a 
special form of general relativity theory including quantum effects. The solution of 
the Killing equation determines a Riemann metric which admits only vectors which 
are invariant under rotations. A first solution of equation (10.70) was given by Drew 
et al. [1989], 

Applying Lie's symmetry method to this equation will give us a system of 16 
determining equations: 

detEqsLiouville = DetermdningEquations[ 
{ax,x u[x, y, z] + ay,yu[x, y, z] + a z ,. Exp[u[x, y, z]]}, 

{u}, {x, y, z}, {ax,x u[x, y, z]}]; 

detEqsLiouville II LTI' 

(,;ll u == 0 

(';2l u==0 

(';3l u ==0 

(tI>ll u,u == 0 

(,;!l z == 0 

(';2)z==0 

(';3)y==0 

(';3)x==0 

- (';2 ) x, x - (';2) y, y + 2 (tI>l) y, u = = 0 

- (,;!lx,x - (,;!ly,y + 2 (tI>dx,u == 0 

(hlx,x + (tI>dy,y +Eu (tI>dz,z == 0 

(,;ll y + (';2 lx == 0 

tl>1 +2 (,;ll x -2 (';3)z + (tI>!lu == 0 

tl>l +2 (,;ll x -2 (';3)z == 0 

-(,;ll x + (';2)y ==0 

2 (tI>ll z - (';3)z,z +2 (tI>dz,u == 0 
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Using the notation of Mathematica, we denote the derivative with respect to the kth 
argument by a superscript at the kth position. The solution of these equations follow 
within a few seconds by applying the function PDESolve[] to these equations. The 
result of this calculation is 

infiniLiouvill. = 

1 

2 

3 

4 

PDBSolve [detB~sLiouville, {u}, {x, y, z}] I infiniLiouville / / 

TableForm[LieTr.ditionalForm[#], TableRe.dings-+ 

{{ "infinitesimals", ·det-e~.tions"}, Automatic}, 

TableDirections -> {Row, Column}] 80 

infinitesimals det-equations 

£1 ~ - (9'"'2)y (9'"'2) X,X + (9'"'2) Y,Y 

£2 ~ - (9'"'2)x 9'"'3 + (9'"'2) X,X + (9'"'2 )y,y 

£3 ~ kl + k2 z 9'"', + (9'"'2) X,X + (9'"'2 )y,y 

cP1 ~ 2 (k2 + (9'"'2) X,y) -9'"'1 + (9'"'2) X,X,y + (9'"'2) y,y,y 

The result of the calculation is a combination of a discrete and a continuous group. 
The unknown function'F2 = free[2] of the continuous part has to satisfy the 
two-dimensional Laplace equation 

(10.71) 

The point here is that this result is different from the result given by Drew et al. The 
difference is not a marginal one. However, since a different result was derived by our 
program, we had to check the results of Drew et al. with another program. We 
substituted the result of Drew et al. into our determining equations and discovered 
that their result do not solve our determining equations. On the other hand, our result 
is a solution of the detennining equations derived by the function Infinitesimals[]. 
We also examined the validity of our determining equations by using a different 
computer algebra program. Using the Maple program by Reid [1991], we could 
check that our derived determining equations are correct and that our solution solves 
the equations obtained from Reid's program. 

The solution given by Drew et al. did not satisfy the determining equations derived 
by Reid's program in general. Only for the special case with 

jree[2][x, y] = const. (10.72) 
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could the equations be satisfied. This choice of the unknown function was the main 
case discussed by Drew et at. All these various checks proved that our result is 
correct. Furthermore, we could show that there is no transformation which maps both 
solutions into each other. The result given by Drew et al. has a completely different 
structure of the infinitesimals 51,52' and ifJ1, but the expression for 53 is identical in 
both results. 



11 

Appendix 

A. Marius Sophus Lie: A Mathematician's Life 

Born: Nordfjordeide, Norway, 17 December 1842 
Died: Christiania (Oslo), Norway, 18 February 1899. 

Sophus Lie: Derived from a painting by Erik Werenskiold (Engel and Heegaard Vol. 2 [1912]). 
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Marius Sophus Lie, a Norwegian mathematician who made significant contributions 
to the theories of algebraic invariants and differential equations, was the youngest of 
six children of a Lutheran pastor, Johann Herman Lie. His mother came from a 
well-known Trondheim family. Lie first attended school in Moss (Kristianiaford); 
then, from 1857 to 1859, he attended Nissen's Private Latin School in Christiania. Lie 
mastered the classes without any difficulties. He studied at Christiania University 
from 1859 to 1865, mainly mathematics and sciences. During his studies at 
Christiania, he had no preference for mathematics. Although mathematics was taught 
by Bjerknes and Sylow, Lie was not very impressed. After his examination in 1865, 
he gave private lessons, became somewhat interested in astronomy, and tried to learn 
mechanics; but he could not decide what to do. Lie himself said that the road to 
mathematics for him was long and difficult. The situation changed when, in 1868, he 
hit upon Poncelet's and PlUcker's writings. Later, he called himself a student of 
PlUcker, although he had never met him. Plucker's momentous idea to create new 
geometries by choosing figures other than points-in fact, straight lines-as elements 
of space pervaded all of Lie's work. 

Lie's first publication brought him a scholarship for studying abroad. In 1869, Lie 
went to Berlin, where he met Felix Klein, with whom he later cooperated in 
publishing several papers. He spent the winter of 1869-1870 in Berlin where he met 
Kummer and WeierstraB. In the summer of 1870, Lie and, later, Klein traveled to 
Paris via G6ttingen to meet Darboux and Jordan. Jordan acquainted Lie and Klein 
with the notion of a group introduced into algebra by Galois in 1832. In 1870, Lie 
discovered contact transformations. Using these transformations, a one-to-one 
correspondence could be established between lines and spheres in a way that tangent 
spheres correspond to intersecting lines. He also became familiar with Monge's 
theory of differential equations. At the outbreak of the Franco-Prussian war in July of 
1870, Klein left Paris; Lie, a Norwegian, stayed. In August, he decided to hike to 
Italy, but on his way he was arrested as a German spy near Fontainebleau. His 
mathematical notes were suspected to be military secrets in code-a letter from Klein 
seemed suspicious. After being locked in prison for a month, he was freed through 
Darboux's intervention. Just before the Germans blockaded Paris, he escaped to Italy. 
From there, he returned to Germany, where he again met Klein in Dusseldorf. 

In 1871, he became an assistant tutor at the University of Cristiania (Oslo). In the 
same year, he submitted for his doctor's degree a memoir in which he advanced the 
theory of tangential transformations. During the period 1871-1872, he developed the 
integration theory of partial differential equations, now found in many textbooks, 
although rarely under his name. Appointed extraordinary professor on 1 July 1872, 
he began his researches on continuous transformation groups in 1873. In 1874, Lie 
married Anna Birch from Tvedestrand. They had two daughters and a son. The 
marriage was very happy, and Lie was very fond of his family. In 1873, Lie turned 
from the invariants of contact transformations to the principles of the theory of 
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transformation groups. Together with Sylow, he assumed the editorship of Niels 
Abel's work. 

Lie was quite isolated in Christiania at that time. He had no students who were 
interested in his research. He was disappointed that his works did not receive more 
attention abroad. Except for Klein, Mayer, and later, Picard, nobody paid attention to 
his work. Lie's results on the integration theory of partial differential equations were 
found by Adolph Mayer at that time, with whom he had conducted a lively 
correspondence. In a letter to Mayer he writes, "If I only knew how to get the 
mathematicians interested in transformation groups and their applications to 
differential equations. I am certain, absolutely certain in my case, that in the future 
these theories will be recognized as fundamental. I want to form thus an impression 
now, since for one thing, I could then achieve ten times as much." His main interest 
turned to transformation groups, his most celebrated creation; although in 1876, he 
returned to differential geometry. In the same year, he joined G.O. Sars and Worm 
Muller in founding the Archiv for mathematik og naturvidenskab. 

In 1884, Klein and Mayer induced Engel, who had just received his Ph.D., to visit 
Lie in order to learn about transformation groups and to help him write a 
comprehensive book on the subject. Engel stayed 9 months with Lie. Thanks to 
Engel's activity, the work was accomplished, its three parts being published between 
1888 and 1893. Engel and Lie developed a warm and lifelong friendship. Engel 
helped Lie by giving his rather intuitive geometrical ideas a more precise 
mathematical form. Lie often felt it a burden to prepare his ideas for publication. 
After 9 years of collaboration with Engel, Lie published Theorie der 
Transformationsgruppen, 3 vols. (1893). This work contains the results of his 
investigations of the general theory of finite continuous groups of transformations. It 
was followed by Geometrie der Beruhrungstransformationen (1896). 

In 1886, he succeeded Klein on the chair of mathematics at the University of Leipzig, 
with Engel as his assistant. At Leipzig, he found interested students, among them 
Scheffers, Zorawski, and Kowalewski. With Scheffers, Lie published textbooks on 
transformation groups and on differential equations, and a fragmentary geometry of 
contact transformations. Afterward, his student Kowalewski, wrote many books 
about Lie's work. At this time, it was quite unusual for young French mathematicians 
to go to Germany for studying. But the Ecole Normale Superieure in Paris sent some 
of their best students to Lie; and he was very proud of this. Lie did not plan to stay in 
Leipzig forever; he had in mind a period of 6 to 8 years. So he did not resign from his 
professorship in Christiania, but was granted an extraordinary leave of absence. Life 
in Leipzig was not that easy for Lie. His teaching duties were much heavier than at 
home, the language caused him some problems, and he became tired of supervising 
weak and dependent graduate students. As time passed, he also ran into trouble with 
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some of his colleagues. In the last years of his life, Lie turned to foundations of 
geometry, which at that time meant the Helmholtz space problem. 

In 1898, he returned to Cristiania to accept a special chair of mathematics created for 
him, but his health was already broken. Lie, who was described as on open-hearted 
man of gigantic stature and excellent physical health, was struck by what was then 
called neurasthenia. This was the result of his rushing work and the overload of 
mental action. Treatment in a mental hospital led to his recovery, and in 1890, he 
could resume his work. His character, however, had changed greatly. He became 
increasingly sensitive, irascible, suspicious, and misanthropic, despite the many 
tokens of recognition that were heaped upon him. He died of pernicious anemia in 
February 1899. His papers were edited, with excellent annotations, by Engel and 
Heegaard. 

An analysis of Lie's work is given in the Bibliotheca Mathematica (1900). His 
collected works are contained in Gesammelte Abhandlungen, 7 vo1s (1922-37). Two 
other standard works are his Differentialgleichungen (1891) and Vorlesungen aber 
continuierliche Gruppen (1893). 

In 1890, Lie himself wrote on his work in a letter to his friend Motzfe1dt, " ... my life' 
s work will stand through all times and, in the years to come, be more and more 
appreciated-no doubt about it." It seems he was absolutely right! 
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B. List of Key Symbols Used in Mathematica 

This section summarizes some key symbols used in Mathematica. The compiled list 
contains the main shortcuts for symbols used in the text. 

Abbreviation 

= 

/; 

:> or :-t 

x_ 

/. 
#or #1 
(#)& 

** 

Function description 

assignment 

used in equations 

equality testing 

function definition 
lhs := rhs assigns rhs to be the delayed 
value of lhs . 
conditional (provided that) 

rule assignment 

delayed rule assignment 

pattern matching to free variable x 

sequence of symbols named x 

sequence of zero or more expressions 
named x 

under the rule ReplaceAll 

slot in a pure function 

pure function definition 

non-commutative multiply 
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C. Installing M athLie 

The following instructions serve to install MathLie a program based on the fonner 
program Lie by G. Baumann [1992]. 

C.l Windows 95 

C.l.l Manual Installation 

1. Create the directory "AddOns\Applications\MathLie" at that location where your 
Mathematica files are located. You'll get the location by 

$TopDirectory 

C:\PROGRAMME\WOLFRAM RESEARCH\MATHEMATICA\3.0\ 

2. Copy all the files and directories on CD in the directory MathLie into the directory 
"AddOns\Applications\ MathLie." 

3. Go to the Help menu and select "Rebuild Help Index." 

4. MathLie uses the global variable $MathLiePath to locate different files. Set this 
variable to the path where you have located the files. 

$MathLiePath = $TopDirectory<>n/AddOns/Applications/MathLie/ n 

C:\PROGRAMME\WOLFRAM RESEARCH\MATHEMATICA\3.0/AddOns/ 

Applications/MathLie/ 

5. Add to the variable $Path in the init.m file the location of MathLie. 
AppendTo[$Path,$MathLiePath"] 

AppendTo[$Path, $MathLiePath] 

You are now ready to use MathLie and view the Help information. 

C.l.2 Automatic Installation 

The following lines install the package and the documentation of MathLie. The files 
are located in the AddOns application directories. 

Clear [l:nstall] 
:Install [] : = Block [{locationl, source}, 

locationl = $TopDirectory<> n /AddOns/Applications/MathLie n ; 

source = :Input[ 
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-Where is the CD located? Use a string as input value; 
eg. d:/MathLie .R]; 

CreateDirectory[locatianl]; 
CopyDirectory [source, locationl]; 
Print[RZnstallation successfully 

tez:minated-]]; 
Znstall[] 

Installation successfully terminated 

Go to the Help menu and select "Rebuild Help Index." 

MathLie uses the global variable $MathLiePath to locate different files. Set this 
variable to the path where you have located the files. 

$MathLiePath = 
$To,pDirectory<>n/AddOns/Applications/MathLie/ n ; 

Add to the variable $Path in the file init.m the location of MathLie. 
AppendTo[$Path,$TopDirectory<>"IAddOns/ApplicationsIMathLie"] 

AppendTo[$Path, $MathLiePath] 

You are now ready to use MathLie and view the Help information. 

C.2 Mac 

C.2.] Manual Installation 

1. Create the directory "AddOns\Applications\MathLie" at that location where your 
Mathematica files are located. You'll get the location by 

$To,pDirectory 

C:\PROGRAMME\WOLFRAM RESEARCH\MATHEMATICA\3.0\ 

2. Copy all the files and directories on disk/CD in the directory MathLie into the 
directory "AddOns\Applications\ MathLie." 

3. Go to the Help menu and select "Rebuild Help Index." 

4. MathLie uses the global variable $MathLiePath to locate different files. Set this 
variable to the path where you have located the files. 
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$HathLiePath = $TopDirectory<>n/AddOns/Applications/HathLie/ D 

C:\PROGRAMME\WOLFRAM RESEARCH\MATHEMATICA\3.0/AddOns/ 

Applications/MathLie/ 

5. Add to the variable $Path in the init.m file the location of MathLie. 
AppendTo[$Path,$MathLiePath "] 

AppendTo[$Path, $HathLiePath] 

You are now ready to use MathLie and view the Help information. 

C.2.2 Automatic Installation 

The following lines install the package and the documentation of MathLie. The files 
are located in the AddOns application directories. 

Clear [l:nstall] 
Install [] : = Block [{locationl, source}, 

locationl = $TopDirectory<> n /AddOns/Applications/HathLie"; 

source = Input[ 

DWhere is the CD located? Use a string as input value; 

ego d:/HathLie .n]; 

CreateDirectory[locationl]; 

CopyDirectory[source,licationl]; 

Print["Installation successfully 

terminated"] ] ; 
Install [] 

Installation successfully terminated 

Go to the Help menu and select "Rebuild Help Index." 

MathLie uses the global variable $MathLiePath to locate different files. Set this 
variable to the path where you have located the files. 

$HathLiePath = 
$TopDirectory<>n/AddOns/Applications/HathLie/ D; 

Add to the variable $Path in the file init.m the location of MathLie. 
AppendTo[$Path,$TopDirectory<>"1 AddOnsl Applications/MathLie"] 

AppendTo [$path, $HathLiePath] 

You are now ready to use MathLie and view the Help information. 
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C.3 UNIX 

C.3.] Manual Installation 

1. Create the directory "MathLie" in your $HOME/.Mathematical3.0/AddOnsl 
Applications directory. You'll get the location of your home directory by 

$HomeDirectory 

/users / departl / gbaurnann 

2. Copy all the files and directories on CD in the directory MathLie into the directory 
"MathLie." 

3. Go to the Help menu and select "Rebuild Help Index." 

4. MathLie uses the global variable $MathLiePath to locate different files. Set this 
variable to the path where you have located the files. 

$MathLiePath = $HomeDirectory<>n/MatLie/ n 

/users/departl/gbaurnann/MathLie/ 

5. Add to the variable SPath in the init.m file the location of MathLie. 
AppendTo[$Path,$MathLiePath "] 

AppendTo [$Path, $MathLiePath] 

You are now ready to use MathLie and view the Help information. 

C.3.2 Automatic Installation 

The following lines install the package and the documentation of MathLie. The files 
are located in the AddOns application directories. 

Clear [:Install] 

:tn.tall [] : = Block [{location1, source}, 

location1 = $HomeDirectory<> 

n/.Mathematica/3.0/AddOns/Applications/MathLie n ; 

source = :tnput [ 

nWhere is the CD located? Use a string as input value; 

ego d:/MathLie .n]; 

CreateDirectory[location1]; 

CopyDirectory[source, location1]; 

Print[n:tnstallation successfully 

terminatedn]] ; 

:tnstall [] 
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Installation successfully terminated 

Go to the Help menu and select "Rebuild Help Index." 

MathLie uses the global variable $MathLiePath to locate different files. Set this 
variable to the path where you have located the files. 

$MathLiePath = $HameDirectory<> 
n/.Mathematica/3.0/AddOns/Applications/MathLie n ; 

Add to the variable $Path in the file init.m the location of MathLie. 
AppendTo[$Path,$HomeDirectory<>"/.Mathematica/3.0/AddOns/Applications/ 
MathLie"] 

AppendTo[$Path, $MathLiePath] 

You are now ready to use MathLie and view the Help information. 
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