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Preface

The purpose of this book is to provide the reader with a comprehensive introduction
to the applications of symmetry analysis to ordinary and partial differential equations.
The theoretical background of physics is illustrated by modern methods of computer
algebra. The presentation of the material in the book is based on Mathematica 3.0 note-
books. The entire printed version of this book is available on the accompanying CD.
The text is presented in such a way that the reader can interact with the calculations
and experiment with the models and methods. Also contained on the CD is a package
called MathLie—in honor of Sophus Lie—carrying out the calculations automatically.
The application of symmetry analysis to problems from physics, mathematics, and en-
gineering is demonstrated by many examples.

The study of symmetries of differential equations is an old subject. Thanks to Sophus
Lie we today have available to us important information on the behavior of differential
equations. Symmetries can be used to find exact solutions. Symmetries can be applied
to verify and to develop numerical schemes. They can provide conservation laws for

" differential equations. The theory presented here is based on Lie, containing improve-
ments and generalizations made by later mathematicians who rediscovered and used
Lie’s work. The presentation of Lie’s theory in connection with Mathematica is novel
and vitalizes an old theory. The extensive symbolic calculations necessary under Lie’s
theory are supported by MathLie, a package written in Mathematica.

Each chapter of the present book includes theoretical considerations and practical
applications of MathLie and Mathematica. The Mathematica examples range from
simple definitions to complete notebooks discussing specific problems. The examples
include definitions of general derivatives, derivations and solutions of determining
equations, drop formations in liquids, and the first atomic explosion.



viii

Preface

The end of a definition and a theorem in the text is indicated by O. The end of an
example is indicated by (J. On the CD, MathLie and Mathematica notations in the text
are denoted by the color dark red. Mathematica input is given in red while the output
is in blue.

I wish to express my gratitude to Peter Olver, Willy Hereman, and Mike Mezzino for
reading the manuscript. My appreciation goes to Gerda Goéler and Joachim Engelmann
for proofreading the text. I also acknowledge contributions by Gernot Haager, Gerald
LandhauBer, and Ronald Schmid.

Any suggestions and comments related to the book or to MarhLie are most appreciated.
Please send your e-mail to Gerd.Baumann @physik.uni-ulm.de or visit my home page
at http://www.physik.uni-ulm.de/math/gbaumann/bau.html.

Gerd Baumann
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Introduction

Symmetry principles play an important role in the laws of nature. They summarize
the regularities of the laws that are independent of the specific dynamics. Thus,
invariance principles provide a structure and coherence to the laws of nature, just as
the laws of nature provide a structure and coherence to the set of events. In fact, it is
hard to imagine that progress could have been made in deducing the laws of nature
without the existence of certain symmetries. The ability to represent experiments in
different places at different times is based on the invariance of the laws of nature
under space-time translations. Without regularities embodied in the laws of physics,
we would be unable to make sense of physical events; without regularities in the laws
of nature, we would be unable to discover the laws themselves. Today we realize that
symmetry principles are even more powerful—they dictate the form of the laws of
nature.

An important implication of symmetry in physics and in mathematics is the existence
of conservation laws. For every global continuous symmetry (i.e., a transformation
of a physical system that acts the same way everywhere and at all times), there exists
an associated time-independent quantity. This connection went unnoticed until 1918,
when Emmy Noether [1918] proved her famous theorem relating symmetry and
conservation laws. Thus, due to the invariance of the laws of physics under spatial
transformations, momentum is conserved; due to time-translational invariance,
energy is conserved; and due to the invariance under a change in phase of the wave
function of charged particles, electric charge is conserved. It is essential that the
symmetry be continuous; namely that it is specified by a set of parameters that can be
varied continuously, and that the symmetry transformation can be arbitrary close to
the identity transformation. The discrete symmetries of nature, such as time-reversal
invariance or mirror reflection, do not lead to new conserved quantities.
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Until the 20th century, principles of symmetry played only a small role in theoretical
physics. The Greeks and others were fascinated by the symmetries of objects and
believed that these were mirrored in the structure of nature. Even Kepler attempted to
impose his notions of symmetry on the motion of the planets. Newton’s laws of
mechanics embodied symmetry principles realized in the equivalence of inertial
frames, or Galilean invariance. These symmetries implied conservation laws. In the
19th century, this ancient situation changed dramatically beginning with Lie. His
great advance in 1873 was to put symmetry first, to regard the symmetry principle as
the primary feature of nature that constrains the allowable dynamical laws. Lie
applied his theory to different models given by differential equations. In this way, he
created the symmetry analysis of differential equations.

Thus, symmetry analysis of differential equations is an old theme in the field of
applied mathematics and physics. The subject of the present book started in the late
19th century with the work of Marius Sophus Lie. The theory in its basic form was
developed and applied by Lie during the period 1872—1899. Until now there have
been extensions of the theory and a continuous application in physics, especially in
hydrodynamics, mechanics, electrodynamics, quantum theory, statistical mechanics,
field theory, particle physics, etc. Today, symmetry analysis is one of the rare
theories which allows one to derive solutions of differential equations in a completely
algorithmic way. Among other solution procedures like the inverse scattering theory
and the Hirota technique, Lie’s theory takes an outstanding position. Although Lie’s
theory is applicable to any sort of differential equations, the other theories are
commonly useful in the solution of so-called completely integrable equations or
underlie some other restrictions. However, we will present here an overview of Lie’s
procedure and its application to some examples which are either of practical or
theoretical interest. During the last few decades, there has been a revival of interest in
Lie’s theory and significant progress has been made due to the efforts of several
mathematicians and physicists.

Lie’s theory is powerful, versatile, and fundamental to the development of systematic
procedures that lead to invariant solutions of boundary value problems. As this theory
is not based on linear operators, superposition or other requirements of linear solution
techniques, they are applicable to both linear and non-linear differential models.

A central problem in physics, mathematics, and engineering is to find solutions of a
given system of differential equations. These equations may be linear or nonlinear.
The generic case of practical problems which handle ordinary as well as partial
differential equations are nonlinear models. Let us summarize all these equations by
the notation

Al(x,ug) =0, i=1,2,...,m (1.1)
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where x is a p-dimensional vector of independent variables and uy, denotes the
derivatives up to order £ =0, 1, ... of a g-dimensional vector of dependent variables
u. The central question for such a general system of nonlinear partial or ordinary
differential equations is: Can we find a universal procedure which gives us solutions
for this system of equations? We do not try to find the general solution but simply a
solution. That this is not a trivial task has been known for a long time. In the last
century, Lie pointed out this central problem in a foreword to his lecture
Differentialgleichungen as follows:

Die ilteren Untersuchungen iiber gewohnliche Differentialgleichungen,
wie man sie in den gebriduchlichen Lehrbiichern findet, bilden kein
systematisches Ganzes. Man entwickelte specielle Integrationstheorien
z.B. fiir die homogenen Differentialgleichungen, fiir die linearen
Differentialgleichungen und andere specielle integrable Formen von
Differentialgleichungen. Es war aber den Mathematikern entgangen, daB
diese speciellen Theorien sich unter eine allgemeine Methode unterordnen
lassen. Das Fundament dieser Methoden ist der Begriff der infinitisemalen
Transformation und der damit auf das engste zusammenhingende Begriff
der eingliedrigen Gruppe.

—Auszug aus Differentialgleichungen von Sophus Lie, Leipzig 1891

The translation of these comments is:

The older examinations on ordinary differential equations as found in
standard books are not systematic. The writers developed special
integration theories for homogeneous differential equations, for linear
differential equations, and other special integrable forms of differential
equations. However, the mathematicians did not realize that these special
theories are all contained in the term infinitesimal transformations,
which is closely connected with the term of a one parametric group.

—~Quotation from Differentialgleichungen by Sophus Lie, Leipzig 1891

One of the main deficiencies of Lie’s theory is the tremendous amount of work
necessary to derive a solution of a given differential equation. This work of algebraic
manipulation increases if the differential equation depends not only on one but on
several independent variables. It increases even more if we study a system of
equations. For such general situations, it may happen that we have to handle
hundreds of equations to find a single solution. In the past, this large amount of work
was a severe barrier for using Lie’s theory. Today, we are able to overcome the
problems of algebraic manipulation of this great number of expressions. Using
computer algebra systems like Mathematica, Maple, Macsyma, or Axiom, to name the
more powerful systems, we can manage the laborious work in an up-to-date fashion.
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In this book, we prefer Mathematica to carry out the calculations. An overview of
programs written in other programming languages is given in recent articles by
Hereman [1994,1996]. Hereman shows that there exists a large number of programs
with different capabilities in different programming languages. Our choice of using
Mathematica as a programming language has been motivated by several reasons.
First, Mathematica is a language which is easy to use. Second, Mathematica allows a
direct formulation of the problem. Third, Mathematica is a very powerful high-level
programming language designed for pattern matching, which is needed in Lie’s
theory to find structures of a certain type. Finally, Mathematica allows a very simple
formulation of the theory of Lie. These four points were considered in our decision
process to choose the programming language.

To appreciate the present text, the reader should have a moderate understanding of
Mathematica. You will find the explanations for the commands used in the examples
in Appendix B.

Lie’s classical theory is a source for various generalizations. Among these
generalizations is the non-classical method of Bluman and Cole [1974], which was
the focus of some research in the last few years uncovering the connection with the
direct reduction method of Clarkson and Kruskal [1989]. A recent development in
Lie’s theory by Baikov, Gazizov, and Ibragimov [1989] is the introduction of
approximate symmetries, allowing the asymptotic solutions for a range of parameters
to be derived. Another adornment of Lie’s classical theory is the introduction of
generalized symmetries, which is extensively discussed by Olver [1986]. Generalized
symmetries are symmetries which are a generalization of contact symmetries. The
generalization of Lie’s theory releases one or more of the basic properties obeyed by
the classical theory.

The fundamentals of Lie’s theory of symmetry analysis of differential equations are
based on the invariance of the equation under a transformation of independent and
dependent variables. This transformation forms a local group of point transformations
which establishes a diffeomorphism on the space of independent and dependent
variables, mapping solutions of the equations to solutions.

The description of the fundamentals of Lie’s theory, Lie groups, and Lie algebras is
the starting point for our discussions in Chapter 2. Chapter 3 presents fundamental
aspects of derivatives and their definitions in Mathematica. Chapter 4 on ordinary
differential equations discusses the application of Lie’s integration theory in
connection with point symmetries. Chapter 5 deals with point symmetries in
connection with partial differential equations. Several examples demonstrate the
broad application of Lie’s theory. Chapter 6 extends the classical point symmetries to
non-classical symmetries. In Chapter 7, potential symmetries of partial differential
equations are examined. The recent development of approximate symmetries is
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contained in Chapter 8. The generalized symmetries of PDEs and second-order ODEs
is presented in Chapter 9. The last chapter contains a special topic of symmetry
analysis, i.e., the automatic solution of a system of overdetermined equations.

The material contained in the chapters is based on theoretical considerations
necessary to understand what is going on in the related functions of MarhLie.
MathLie is a Mathematica package supporting the calculations in the book and more.
A full version of MathLie accompanies the book on CD-ROM. A great number of
examples contained in each chapter demonstrate the broad application of Lie’s theory
in connection with MathLie. The examples are designed in such a way that the reader
can take an active part by calculating the results interactively. This opens the way to
experimentation with the calculations. Thus, the present book is not a book just for
reading but a book for experimental mathematics and physics.



Elements of Symmetry Analysis

At the beginning we will introduce some basic concepts which will be important
throughout the whole book. First, we define the general properties of a group. These
group properties are extended to Lie groups in the next step. The related Lie algebra
connected with the Lie group is then introduced. We also introduce the notion of a
vector field which is closely related to Lie algebras. We present all these highly
abstract terms in connection with Mathematica. Different examples serve to vitalize
the mathematical expressions. This chapter serves also to describe the first steps in
Mathematica and introduce its notation. The elementary representation of
mathematical expressions in Mathematica provides the connection between
mathematics and computer algebra.

2.1. Groups and Lie Groups

It is the purpose of this section to record, for later reference, some of the results from
group theory which will be needed in the text. The notation of a group is introduced
in this chapter and the most important properties of group elements are deduced.
Illustrations are given from a few very simple groups. Proofs will be minimal or
omitted.

2.1.1 Groups

Although we shall soon come to some illustrative examples, it is worth beginning
with the abstract definition of a group which is very simple and yet leads to many
important consequences.
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Definition: Group

A set G of elements {G,, G,, Gs,...} is said to form a group if a rule of composition
is defined for the elements satisfying certain conditions. The result of a
multiplication involving two elements G; and G; is called the product or composition
of the two elements and is written G; @ Gy. The conditions which such a product has
to satisfy are as follows:

(i) Closure relation:
The product G; & Gy of any two elements is itself an element in the set, i.e.,
G, ® G, = G; withG; € G
(ii) Associativity:

If three elements G;, Gi, and G, are multiplied, it does not matter which product is
carried out first, i.e.,

GG ®G) =G dG)DG; =G; & Gt &G
This equality shows that the use of brackets is not necessary.
(iii) Identity element:

One element of the set G, denoted by E and called the identity element, must have
the properties

E@G, =Gi and G,®E=G,
forall G; € G.
(iv) Inverse:

To each element G; in the set G, there corresponds another element in the set,
denoted by G;! and called the inverse, which has the properties

G;oG'=E=G'@®G;.. O

In general, it is not permissible to change the order of multiplication of group
elements; i.e., G; @ Gj is not, in general, the same element as G; ® G;. A group
which satisfies this exception, G; ® G; = G; ® G;, is called an Abelian group. Its
elements are said to commute. The axioms (i)—(iv) stated above are the main
ingredients of group theory. However, these properties are abstract entities which
need a practical realization. A convenient method of recording the multiplication,
G; ® G; = Gy, of elements of a particular group G is to build the multiplication
table in which the rows and columns are labeled by the group elements and the result
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Gy of the multiplication is entered at the intersection of the row G; and the column
G;. The definition of a group implies that every group element must appear once and
only once in each row and in each column.

Deliberately, we did not specify the number of elements in the group. In fact, the
number may be finite or it may be infinite. Correspondingly, the group is called a
finite or an infinite group. In this book, we shall encounter both groups since they
both are of importance in symmetry analysis. If we find a finite group order, we will
denote the number of elements 7 as the order of the group.

The simplest examples of group elements are natural numbers with ordinary
multiplication. We will discuss two examples.

Example 1

Let us assume we only know the two numbers 1 and -1 and the ordinary
multiplication as group operation. The identity of this group is clearly 1. The inverse
of the identity is again the identity. The inverse of —1 is -1 itself. The properties of
this group are contained in the group multiplication table tabl below. We can create
the group table in Mathematica by defining the group G as the set

G={-1, 1};
Using all combinations of the elements G; in the group table, we get
tabl = MatrixForm[Table[G[i] G[j], {i, 1, 2}, {3j, 1, 2}]]
(57
-1 1
representing the core of the multiplication table. O
Example 2

A slightly larger group of the same kind is the set of numbers
G2={-1, 1, -1, 1};

which possesses the multiplication table
tab2 = MatrixForm[Table[G2[i] G2[3], {i, 1, 4},

{3, 1, 4}1]

1 -1 1 -I
-1 1 -1 I
I - -1 1
-I I 1 -1
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Because ordinary multiplication is used in both examples, these groups must be
Abelian since it does not matter in which order the elements of the sets are used. To
demonstrate this, let us exchange the jth element by the ith element in the table above.

MatrixForm([Table [G2[j] G2[i], (i, 1, 4}, {3, 1, 4}]1]
1 -1 1 -1
-1 1 -1 I
I -1 -1 1
I I 1 -1

Comparing both group tables of G2 demonstrates that the order of the group elements
in the multiplication does not matter. O

For physical systems, rotations are of considerable importance. It is well known that
various sets of rotations form groups. The rotations were one of the favorite groups
used by Lie to demonstrate the action of his examinations. In reminiscence of this
historical note, let us examine a few examples related to that topic. The law of
multiplication in this case is defined by transition from one location to another—if a
rotation R; carries a system from position A to position B and if R, carries it from B
to C, then the product R, & R, carries it from A to C. It is obvious that this
definition of multiplication can, in general, not create an Abelian group. Of course,
rotations about a common axis are Abelian. However, rotations in
higher-dimensional spaces in general do not commute. Let us demonstrate these two
statements by simple examples.

Example 3

To illustrate the commutative and non-commutative properties of rotations, let us
define a function which carries out a two- and a three-dimensional rotation of an
object. The function Rotation[] uses the standard package Geometry Rotation™ to
represent the rotation matrices in two and three dimensions. The function Rotation(]
will take a polygon and an angle as input parameters. This function generates the
geometrical shape of the object and carries out a rotation. First, let us define the
geometrical object by a polygon

hexagon = Polygon [Table[{Cos[i], Sin[i]},
27
LAY

Our favorite object is a hexagon which can be graphically displayed by the following
lines:

{i, 0, 2,
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Show[Graphics[ {RGBColoxr([1l, 0, 0],
hexagon}], AspectRatio -» Automatic]

This object will be rotated by our function Rotation[]. In a two-dimensional space,
the function is defined in Mathematica terms by

<< "Geometry Rotations "

Clear [Rotation];
Rotation[polygon_Polygon, angle ] :=
Block|[ {points},
points = polygon /. Polygon[x__ ] - x;
Polygon|[ (Rotate2D[#1, angle]&) /@points]]

The function Rotation[] needs a polygon and the angle of rotation as input quantities.
It returns a clockwise-rotated polygon. The application of the function Rotation[] on
our hexagon gives us

Show [Graphics [ {RGBColor[0.000, 0.000, 1.000],

T
Rotation [hexagon, ?] }]. Aspectratio - Automatic]|
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The result shows that the original hexagon is rotated by an angle of n/5. Having the
function Rotation[] available, we are able to check the group properties of a group.
Let us start by testing if the two rotations commute. If we assume that the first
rotation R, rotates the hexagon through an angle —7/3 and the second R, through an
angle —n/4, we can combine the rotations either by R, @& R, or R, & R;. These two
mathematical relations are realized in Mathematica by the following lines. The result
of the two different sequences of rotations is shown in the folloWing:

Show [GraphicsArray|
{eraphics[{reBCOlor[0, 0, 1],
T T
Rotation|[Rotation[hexagon, ?] Sy 1}

AspectRatio - Automatic],
Graphics[{RGBColor([1, 0, 0],

n n
Rotation|Rotation[hexagon, - T] ’ ?] }s

AspectRatio -» Automatic] }] ]

The result of the two sequences of rotations is the same. Thus, we conclude from this
graphical experiment that these two rotations in the plane commute. The net effect of
the two rotations is a total rotation through an angle of n/12. To illustrate the
non-commutative property of rotations in higher dimensions, let us examine rotations
in R*. For example, let Rz be a rotation through an angle 7/5 about the z-axis and Ry
a rotation through 7/7 about the x-axis. The geometrical object we will rotate is again
a hexagon located in the (x, y)-plane. The polygon in Mathematica is represented in
three dimensions by

hexagon = Polygon['.l‘a.ble[{Cos [i], sin[i], 0},

{i, 0, 27, 2:}]];

with its z coordinate set equal to zero. The hexagon is displayed in three dimensions
by
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Show|[Graphics3D[ {RGBColor[1.000, 0.000, 0.000],
hexagon}], AspectRatio - Automatic]

///r i

To carry out the rotations about the three coordinate axes, we define three functions,
RotationX[], RotationY[], and RotationZ[], in Mathematica. The arguments are again
the geometrical object and the angle of rotation with respect to the denoted axis.

Clear [RotationX, RotationY, RotationZ];
RotationZ [polygon_Polygon, angle_] :=
Block[{points, matl, mat2},
points = polygon /. Polygon [x
matl = RotationMatrix2D[angle];
mat2 = IdentityMatrix[3];
mat2[1l, 1] =matl[1l, 1];
mat2[2, 1] =matlf2, 1];
mat2[1, 2] =matl1, 2];
mat2[2, 2] =matl[2, 2];
Polygon|[ (mat2 . #1&) /@points]];

] »x;

RotationX[polygon_ Polygon, angle_] :=
Block[{points, matl, mat2},

points = polygon /. Polygon[x
matl = RotationMatrix2D[angle];
mat2 = IdentityMatrix[3];
mat2[2, 2] =matl[1, 1];
mat2[2, 3] =matlf1, 2];
mat2[3, 2] =matlf[2, 1];
mat2f[3, 3] =matl2, 2];
Polygon|[ (mat2 . #1&) /@points]];

] »x;
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RotationY[polygon Polygon, angle_] :=
Block|[ {points, matl, mat2},

points = polygon /. Polygon[x
matl = RotationMatrix2D[angle];
mat2 = IdentityMatrix([3];
mat2[1, 1] = matl[1, 1];
mat2[[1, 3] =matl[1l, 2];
mat2[3, 1] =matl[2, 1];
mat2[3, 3] =matl[2, 2];
Polygon[ (mat2 . #1&) /@points]]

] »x;

The two rotations about the z- and x-axes mentioned above are graphically
represented by the following lines:

Show|[GraphicsArray|

{eraphics3p|

7 b4
RotationX [Rol:ationz [hexaqon, ?] ’ ;] v

AspectRatio -» Automatic,
ViewPoint - {1.300, -2.400, 2.000}],
Gra.phics3D[
T T
RotationZ [Rotat:l.onx [hexagon, 7] , ?] .

AspectRatio -» Automatic,
ViewPoint - {1.300, -2.400, 2.000}]}]]

The graphic shows that the two rotations applied to the same object in a different
order results in two different states of the hexagon. Thus, by a simple example, we
graphically verified that two rotations in a three-dimensional space are
non-commutative. The reader may check this result by different rotations about
different axes using different angles of rotation. O
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Another important term in group theory governing the relations between two groups
is the notion of isomorphism.

2.1.2 Isomorphism

The given definition of a group is very abstract, yet general. With respect to this
generality, it sometimes happens that two groups whose elements are defined in very
different ways may nevertheless be related so closely that they may be regarded as
the same group. This fact is expressed in the following definition.

Definition: Isomorphic groups

We say that two groups G and H are isomorphic if a one-to-one correspondence
G; < H; may be set up between the elements G; of the group G and the elements H;
of H, in such a way thatif G; @ Gx = Gj,then H; & Hy = H;. O

Closely related to the term isomorphism is the subject of homomorphism. The word
homomorphism is used for such a relationship if the one-to-one correspondence is
absent. Due to the definition of isomorphism, two isomorphic groups have the same
group multiplication table with possible re-ordering of the group elements. Thus, the
knowledge of the isomorphism of two groups helps to avoid repetitions and to draw
useful analogies between the groups.

2.1.3 Lie Groups

Lie groups are special groups which have an additional property apart from the group
properties. In addition to the basic group properties, a Lie group carries the structure
of a manifold, where a manifold is a topological space which resembles Euclidean
space locally. A differentiable manifold is a manifold for which this resemblance is
sharp enough to allow partial differentiation and, consequently, all the features of
differential calculus on the manifold. In studying Lie groups, we may, therefore,
combine calculus, algebra, and topology. The present section aims at showing the
sense in which the global study of a Lie group may be reduced to its local study. In
the next section, we shall go even further, showing that the study of the local
structure can be reduced to the study of the infinitesimal structure. Lie groups are
extremely useful in the theory of transformation and in the examination of
differential equations. The notion of a Lie group was introduced by Weyl [1928] at
the beginning of this century. Weyl used the following definition to distinguish Lie
groups from classical groups.
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Definition: Lie group

A Lie group is a group which, in addition to the group properties, carries the structure
of a differentiable manifold. More precisely, we require that a Lie group G be C~
manifold endowed with a group structure in which multiplication and the inversion
are C™ operations. O

The essential feature of a Lie group is that it satisfies the properties (i)—(iv) and
carries the structure of a smooth manifold. This means that the group elements G; can
be continuously varied. Thus, a Lie group is a group G which also carries the
structure of a manifold in such a way that both the group operation G & G —» G and
the inversion are smooth maps between manifolds. In the following, we will
demonstrate these descriptions by a few examples.

Example 1

The first simple example of a Lie group is the real line R! with ordinary addition as
the group multiplication. Let us denote this group by A. If we add two real numbers,
we get a real number as a result. We all know that we can add three real numbers in
any order to get the same result. The identity element of this group in R! is zero and
the inverse are all the negative real numbers. Thus, we can map R! x R! » R!, and
the inversion as a smooth map also exists. These properties of addition for the real
numbers are actually implemented in Mathematica and are accessible by the function
N[] converting rational numbers to real numbers. The + sign represents the
multiplication of the group A. The manifold on which all these operations are
possible are the set of real numbers R'. O

Example 2

A more sophisticated example for a Lie group is given by continuous matrix groups,
or, more generally, continuous groups of linear transformations of a vector space,
called linear Lie groups. The set of all non-singular n X n matrices form the group
known as general linear group GL(n,R). A subset of all n X n matrices with
determinant 1 form a group called the unimodular group which is denoted by
SL(n,R). The orthogonal group O(n) is the group of n X n matrices that satisfy
M @® MT = 1. A special orthogonal group SO(3) is connected with rotations.

Studying the properties of continuous matrix groups, we start with the
two-dimensional matrices

1
M, = (0 ‘1‘)
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This representation of a linear group SL(2,R) immediately shows the property
M, ® M, = Ma +b>

from which we can conclude that the group of two-dimensional matrices is
isomorphic to the group A of our first example. To support this conclusion, let us
examine the properties of the two-dimensional matrix group by using Mathematica.
First, let us define a function allowing us the representation of M,. Afterward, we
use this function to check the group axioms (i)—(iv) for this representation of a group.
Since M, depends on one continuous parameter a, we define the matrix M, by

M[a_] := {{1, a}, {0, 1}}

The matrix function MJ[] uses two nested lists to represent the two-dimensional
matrices needed. We check the axioms by using the matrix product for the group
multiplication. This type of product is denoted by a lower dot in Mathematica. In the
sequel, we use the function MatrixForm[] to represent the resulting matrices in a
two-dimensional table. Multiplying two different matrices M[a] and M[b], we find

MatrixForm[M[a] . M[b]]
( 1 a+b )
0 1

We immediately verified that axiom (i) is satisfied. The property of associativity is
checked by interchanging the multiplication order

MatrixForm[ (M[a] . M[b]) . M[c]]

(:S a+}j+C)

MatrixForm([M[a] . (M[c] .M[b])]
1 a+b+c
o 770 7)

The inverse element of the group corresponds to the inversion of the matrix. Matrices
are inverted in Mathematica with the help of the function Inverse[]. Inverse[] returns
the inverse of a square matrix. The application of this function shows us

mi = Inverse[M[a]]; mi // MatrixForm

(o 7
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which is the inverse of M, stored in the variable mi. Next, we can check axiom (iv)
by

ident =mi . M[a]; ident // MatrixForm
(5 2)
0 1
Thus, we find the identity element of the two-dimensional matrices M, as the
identity matrix in two dimensions. It is obvious from the calculations that the set

M ={M,| ae R} is a representation of addition in R!, thus the two Lie groups A
and M are isomorphic. O

Generally speaking, a representation of a group G on a vector space V is a
homomorphism from the group G into an invertible linear transformation of V.
These representations must not be matrix representations but can be defined on the
infinite dimensional vector space C”(R), which represents the space of infinitely
differentiable functions in one dimension.

Example 3

The addition in R! can also be represented by a translation in the space of C~(R)
functions. Let us assume that we can define an operator 7,, which acts on a function
defined on R! in the following way:

T, f(x) = f(x+a).

The shift a translates the argument of the function f by a step a to the left. The
definition of a shift operator T, in Mathematica looks like

T, [£.]:=f/.x>x+a

This simple definition assumes that the function f depends exclusively on x. The
sequence of instructions on the right-hand side of the definition sign ( :=) means that
the argument x of f, if any, is replaced by x + a. The properties of the group are now
checked by applying the operator 7, on functions f{x). The identity element of the
Lie group is given by a =0,

To [£[x] ]
£[x]
The inverse element is represented by a negative shift —a. We check the inverse

behavior of the transformation by applying the inverse element to a regular element
of the group. The expected result is the identity
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T.o[Ta[£[x]1]]

£(x]

The property of associativity is expressed by the iterated application of the translation
operator 7,[] for different translations a, b, and ¢ and the interchange of two
parameters

Te [Tp [Ta [£[x]]1]1]

fla+b+c+x]

Tp [T [Ta [£[x]]1]]

fla+b+c+x]

Again, we observe that the Lie group of translations in R! is isomorphic to the group
of addition A. In conclusion, we can say that the same Lie group can be represented
by different tools like addition of real numbers, matrix multiplication, and
translations of functions. These different tools for representing the behavior are
known as representations of the group. The idea of a representation of a Lie group
helps to clarify the subtle distinction between an abstract group and a variety of its
realizations. Thus, A = R!, the set of matrices M,, and the translations 7, are all
distinct but isomorphic representations of the same abstract group. O

Apart from an isomorphism which is invertible, the term homomorphism is an
important quantity in group theory. A Lie group homomorphism is a smooth map  :
G — H between two Lie groups respecting the group operations. If ® has a smooth
inverse, it determines an isomorphism between G and H, otherwise it is a
homomorphism.

Understanding the action of the group clearly, we discuss the example of a translation
a second time. This kind of symmetry is a symmetry frequently recognized in the
analysis of differential equations. To illustrate the action of such a group, we will
realize it by a graphical representation.

Example 4

For example, let us study the group properties of a parabola f(x)= x> under the
action of our function 7. Applying T, to x*, we mathematically get the expression
x* +2ax + a*. The expanded result represents the translation 7, in a more or less
mixed form containing products of a and x. However, the action of the group is much
simpler to grasp if we present it graphically. The shift a along the x-axis is clearly

shown in the figure below.
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Plot [

Evaluate[{x®, T_,[x*]}], {x, -2, 4},

PlotStyle -» {RGBColor[1.000, 0.000, 0.000],
RGBColor[0.000, 0.000, 1.000]}, AxesLabel - {"x", "f"}]

f
10

8

2 1 1 2 3 T *

The command Evaluate[] used in the function Plot[] forces Mathematica to do the
calculations first and then display the results. The shift of translation in the example
is set to a = —2. We clearly observe that the parabola is translated to the right by the
lengtha. O

Example 5

Another example frequently encountered in symmetry analysis of differential
equations is the scaling group. A scaling transformation reduces or enlarges an object
depending on the amount of the scaling factor. A scaling of a geometrical object is
carried out practically by multiplying the coordinates of the object by the scaling
factor. A function allowing this operation can be defined in Mathematica by

Clear[Scaling];
Scaling[object_Polygon, factor_] :=
points = object /. Polygon[X ] » Polygon[factor X]

This definition assumes that the geometric object is given by a polygon. Applying
this function to an object, for example, a pentagon, we can reduce or enlarge the
figure depending on the second argument of the function. Choosing the factor greater
than 1, we stretch the object; taking a factor smaller than 1, we shrink it. The
pentagon is generated by

pentagon = Polygon ['.l‘able [ {Cos[i], Sin[i]},

{8, 0. 27, Z2Y]]5
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Let us now examine how the shape of the pentagon changes when the scaling factor
is changed. An animation of this change of scaling factors helps us to recognize the
meaning of scaling. The following Mathematica code contains a Do[] loop which
allows the decrease of the scaling factor. For the animation, we choose the scaling
factor in the range from 1 to 0.1 in steps of 0.05. The action of the scaling is boosted
by changing the color of the pentagon.

Do
Show [Graphics|[{Hue[i], Scaling[pentagon, i]},
AspectRatio -» Automatic],
PlotRange -» {{-1, 1}, {-1, 1}}]1, {i, 1, .1, -.05}]

® o °
> ©®

The animation of the scaling transformation shows us the action of the group. Every
time we reduce the scaling factor, the pentagon is reduced but keeps its shape,
meaning that we create self-similar objects of the same type. This kind of symmetry
transformation satisfies all the properties stated in properties (i)—(iv) of a group. The
reader may verify this easily. O

So far we discussed the essentials of group theory including Lie groups. The
discussed topics are all relevant for the examination of differential equations. In the
following section, we will discuss a related term, the so-called Lie algebra,
representing the algebraic properties of a Lie group.
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2.2. Lie Algebras

In this section, we show how the study of a Lie group G may be greatly simplified by
considering the so-called tangent space V of G around the identity of the group. We
shall show how a multiplication may be introduced in V and that the resulting
algebraic structure—called a Lie algebra—determines the local structure of a group.
Thus, two groups will be locally isomorphic if and only if their Lie algebras are
isomorphic. The Lie algebra is a finite dimensional algebra. Therefore, the local
study of Lie groups is entirely equivalent to the study of certain finite dimensional
linear algebraic structures.

We defined a Lie group as a group connected with an analytic manifold. In this
connection, it makes sense to talk about the tangent space V to that manifold and, in
particular, the tangent space at the identity of a group. The tangent space itself is
called a Lie algebra. To be more precise, let us consider a Lie group depending on r
parameters k;, k,, ..., k.. The group under consideration is also known as a
continuous group with an infinite number of group elements. However, the properties
of the group may be deduced from a finite number r of operators, called the
infinitesimal operators. It will be convenient to use the symbol k for the set of
parameters k;, k,, ..., k,. Consider a representation 7(k) of the group G. By
convention, the parameters are chosen such that the identity element has all k, = 0,
so that

TO) =1 2.1

If all parameters k, are small, then to first order in these parameters,

Tk = 1+ ) ks ¥, 22

g=1

where the v, are some fixed linear operators, independent of the parameters k,.
These operators are called infinitesimal operators of the representation T and are
given explicitly as partial derivatives

. 70,0,...,k,...,0,0)=T(0,0, ..., k; +¢, ..., 0, 0) AT (k)
v, = lime, = e=0- (2.3)
k, ok,

These linear operators form the basis of a Lie algebra defined as follows.
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Definition: Lie algebra

Let us consider a finite dimensional vector space V over a field K of real or complex
numbers. The vector space V is called a Lie algebra over K if there is a rule of
composition (v, w) — [V, W] in V which satisfies the following axioms:

(i) Antisymmetry:
[V,w] = —[w, V] forall vy, w € V.
(ii) Linearity:
[@av + Bw,u]l =a[V,u] + B[w,u] fora, B € KandVY u, v,w € V.
(iii) Jacobi identity:
v, [w, ull + [W, [w, v]] + [, [, w]] = 0 forally, %, we V. O

The operator [, ] is the multiplication relation of the algebra and is known as Lie
product or Lie bracket. From axiom (iii) it follows that the Lie product is, in general,
non-associative. If X is the field of real numbers, then V is called a real Lie algebra;

otherwise, if K is complex, V is a complex Lie algebra. A Lie algebra is said to be
Abelian or commutative if for any ¥, w € V we have [V, w] = 0.

A subspace N of a Lie algebra V is a subalgebra, if [N, N] U N, and is an ideal if
[V, N1 U N. Clearly, an ideal is automatically a subalgebra. A maximal ideal N,
which satisfies the condition [V, N] =0, is called the center of V, and because
[N, N] =0, the center is always commutative.

Lete,, e,, ..., &, be a basis of the vector space V. Then the commutator % = [V, W],
when expressed in terms of the coordinates via v = Y7 V' &, w =X, w'g;, takes
the form

n

) D )

u = Z c’jkv’w, i=1,2, ..., n,
ik=1

n . .
where [¢;, ] = E . Cx &;. The numbers ¢, are called the structure constants, and
i=

n denotes the dimension of the Lie algebra.

Taking axioms (i) and (iii) into account, it is clear that the structure constants cj-k
satisfy the conditions

i i
Cik = ~Ckj»
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n
2 : ! m ) m ! my
(Cim Cjk + ij Cri + Cim cij ) =0.

m=1

The existence of subalgebras or ideals of a Lie algebra V is reflected in certain
definite restrictions on the structure constants. If ¢,, &,, ..., & are the basis
elements of a subalgebra, then the structure constants must satisfy the relations

cg‘=0 for i, j <k, m>k
and, if they are the basis elements of an ideal, then
¢ = 0fori < k, m>k and an arbitrary ;.

So far, we defined some basic properties of a Lie algebra. These relations are useful
when applied to physical problems. One of these problems is related to the algebra of
Pauli matrices widely used in quantum mechanics. In the following example, we
discuss the algebraic properties of the Pauli spin matrices.

Example 1

Let V be the set of all skew-Hermitian 2 x 2 matrices with vanishing trace. From
quantum mechanics, we know that V is three dimensional. We choose the basis in V
by the three matrices

L (0 =iy . (0 -1\ . _ (=0
e‘_?(—io)’ez"7(1 0)’e3‘?(0 i)' 24

These matrices are represented in Mathematica by

1
e, = ? {{0, -1}, {-I, 0}}; MatrixForm[e; ]
( O _%J
-5 o0
1
e, = ? {{0, -1}, {1, 0})}; MatrixForm|[e;]

-1
2
i)
1
e; = rY {{-I, 0}, {0, I}}; MatrixForm[e;]

[ 5]
o 5

N}
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The Lie product [V, W] of V is defined in quantum mechanics by the commutator
[v,w] = vyw-wv withv, w e V.

For our specific system of two-dimensional matrices, we replace the right-hand side
of this relation by the difference of two matrix products. The Lie bracket in
Mathematica can be expressed by

LieProduct[v_List, w_List] :=v.w-w.V

Knowing the Lie bracket, it is easy to check axioms (i) to (iii) of a Lie algebra. We
first demonstrate the antisymmetric behavior of the Lie product using the relation
[V, ul + [u, v] = 0. In Mathematica, we get

MatrixForm[LieProductle;, e;] +
LieProduct[e,, e;]]

(o o
0 O
The linearity of the Lie brackets is shown by

MatrixForm[Simplify[LieProduct[ae, +be,, e;] -
(aLieProduct[e;, e;] + bLieProduct[e,, e;])]]

(o o
0 O
The Jacobi identity is checked with

MatrixForm[LieProduct[e,, LieProduct[e,, e;]] +
LieProduct[e;, LieProduct|e;, e;]] +
LieProduct[e;, LieProductle;, e,]]]

(o o)

Carrying out some experiments with LieProduct[] by interchanging the basis
elements & in the Lie bracket, we observe that the following relation holds:

[_éiv _ék] = 2?21 egk _é[ i? k = 17 29 3v (2'5)

where €, is the totally antisymmetric tensor in R® (Levi-Civita density). The
elements of V are linear combinations of &; with real coefficients. In physics, the
matrices 0 = 2i¢ are known as Pauli matrices and satisfy the relations
[oi, k] = ZiZ?:l €, 0. Hence, V is the three-dimensional, real Lie algebra with
structure constants cj, = €. If we want to check this relation for the structure
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constants, we first have to define a representation of the Levi-Civita density in
Mathematica. The function LeviCivita[] has to satisfy the following properties:

0  if any index is equal to any other index
e ={ +1 ifi, j, k, form an even permutation of 1, 2, 3. (2.6)
-1 ifi, j, k, form an odd permutation of 1, 2,3

The sequence of instructions in Mathematica to simulate this behavior is given by

LeviCivita[i_, j_, k_] := Block[{out, list, 11},
list = {i, j, k};
11 = Union[list, {1, 2, 3}];
If[Length[1l1l] <3 || Length[11] > 3,
out =0,
out = Signature[list]];
out]

This function makes use of the Mathematica functions Union[], Length[], and
Signature[] to implement the properties of the Levi-Civita density. The first step of
the function is the collection of the numeric indices i, j, and k in a list. Then, the
condition of uniqueness is checked by using the function Union[], verifying that only
the integers 1, 2, and 3 occur. Checking the length of the result allows us to
distinguish two cases. First, are there two or three indices equal, and second, are there
indices different from the numbers 1, 2, and 3? If this happens, the function is
terminated with a return value 0. If the indices i, j, and k are contained in the set
{1, 2, 3}, then the signature of the permutation is calculated. The return value is +1
if the permutation of 1, 2, and 3 is even and -1 if the permutation is odd.

The function LeviCivita[] allows us to verify relation (2.5) connecting the structure
constants ¢}, and the e-tensor. Checking the relations with Mathematica, we need to
define two additional functions generating the right-hand side of relation (2.5) and
verifying the equality of both sides. We call these functions rhs[] and
CommutativeQ[]. We also collect the three matrices &,, &,, and &; in a common list.

eList = {e,, e,, €3}
o -3} {=5. o1}, {{o. -5} {5+ o)) ({5 o}, {o. =}}}

3
rhe[i , j_] := ZLeviCivita[i., j, k] eList[k]
k=1
CommutativeQ[i_, j_] := LieProduct[eList[i]], eList[j]] ==
rhs[i, j]



26 Elements of Symmetry Analysis

The check of the relation (2.5) between the structure constants and the e-tensor is
carried out by

Table [CommutativeQ[i, k], {i, 1, 3}, {k, 1, 3}]

{{True, True, True}, {True, True, True}, {True, True, True}}

The result shows that the relation is satisfied for all combinations of i and % in the
range i, k = 1, 2, 3. This example demonstrates that the structure of a Lie algebra can
be realized by matrices or tensors. On the other hand, in symmetry analysis Lie
algebras are represented by differential operators. These operators are the basic
elements of the vector space whose Lie product is defined by the commutator of
differential operators. O

2.2.1 Representation of a Lie Algebra

In this section, we briefly discuss the representation of an algebra. Before we discuss
the theoretical definition, let us continue with another example. In the previous
example, we became familiar with a matrix representation of a Lie algebra. The
following example shows how a Lie algebra is represented in connection with
differential operators. We will find that the two different representations are
isomorphic to each other.

Example 2

Another example for the representation of a Lie algebra are the three differential
operators generating the Lie algebra of rotations in R®. This kind of algebra is
connected with the symmetry of rotations. Assume we know the three operators

given by
R, =x3-5%——x2—aa7,
R2=x'—a—i—3—x3%,
R3=x2%—x1%

acting in R® with Cartesian coordinates x', x*, and x°. The three operators allow a
unique formula if we make use of the Levi-Civita density € :

R; :ii—é}xjaxk.
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This formula is used to define the three differential operators in Mathematica:

R[i_, £_] := Block[{variables = {x1, x2, x3}},

3 3
ZZ -LevicCivita[i, j, k] variables[[j] Ovariaviesrxs £]

k=13=1
The Lie bracket in the related vector space is defined by

[Ri, R]](/) = Ri(R; f) — R;(R; f), @7
where f is an arbitrary function. The definition in Mathematica looks quite similar:

LieBracket[i_, j_, £_] :=R[i, R[], £]] -
R[j, R[i, £]]

The right-hand side of the commutator (2.7) can be again expressed by the
Levi-Civita symbol

3

[Ri, Rl = ) € Ry (2.8)

I=1
We define the right-hand side of the commutator (2.8) as
3
rhs[i_, j_, £.] := Znevicivita[i, j, k] R[k, £]
k=1
The check of the commutation relation for arbitrary i is calculated by
Clear [CommutativeQ]

CommutativeQ[i_, j_, £ ] := Simplify[
LieBracket[i, j, £]] == Simplify[rhs[i, j, £]]

Using these definitions, we can verify that relation (2.8) holds. The use of the
function CommutativeQ[] in connection with Table[] allows us to verify this
proposition:

Table[CommutativeQ[i, j, £[x1, x2, x3]],
{i, 1, 3}, {3, 1, 3}]

{{True, True, True}, {True, True, True}, {True, True, True}}

The arbitrary function f[x1, x2, x3] in CommutativeQ[] is used as an argument for the
three operators R;. These differential operators act, for example, on the infinite
dimensional vector space C~ (R?®), thus providing an infinite dimensional
representation of the Lie algebra so(3) related to the special orthogonal group SO(3).
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The result is that the rotation operators in R® possess the same structure constants as
the Lie algebra of the Pauli matrices. Thus, we can state that the two representations
are isomorphic. The conclusion is that two different representations of a Lie algebra
may result into the same structure and especially possess the same structure
constants. So we face the problem of representation of a Lie algebra. O

Generally, a representation of a Lie algebra g on a vector space V is a mapping p
from g to a linear transformation of V such that

pl@v +Bw) = ap@®) + B pw) 2.9
and
P, W) = [p®), pW)], (2.10)

where [, ] is the Lie product of the algebra g. The dimension of the representation is
equal to the dimension of V.

In Chapter 5, we shall discuss procedures to find the differential operators that
represent the symmetries of differential equations. For example, the symmetries or
respectively the basis of the Lie algebra for the heat equation u, — u,, = 0 are given by

i;1 = axa i;2 = at’ _‘;3 = uaua (211)
Vg = x0x +218,, Vs = 210, — xud,, (2.12)
Ve = 41 x0, +4120, —(X* +21)ud, . (2.13)

The basis elements of the Lie algebra are also called vector fields. This notion will
become clear in Section 3.2 where we discuss tangent vectors. For the moment, let us
call the elements in (2.11), (2.12), and (2.13) vector fields. These operators form a
six-dimensional Lie algebra V. A convenient way to display the structure of such an
assembly of operators is to write it in tabular form. For the six-dimensional Lie
algebra {v;, V,, ..., Vg}, the commutator table for V will be the 6x6 table whose
(i, j)th entry expresses the Lie bracket [¥;, V;]. From axiom (i), it is clear that the
table is always skew-symmetric, and the diagonal elements are all zero. The structure
constants can be easily read off the commutator table. The coefficient cijk is the
coefficient of ¥; in the (j, k)th entry of the table. For the above set of operators, we
find the commutator table
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[, 1] % V2 3 Va Vs Vs

vy 0 0 0| -wn V3 -2V

Vs 0 0 0 |-2% |-2W |2V5 -4 7,

s 0 0 0 0 0 0

Va Vi 2V 0 0 -Vs -2 Vs

Vs | -vs 2% 0 Vs 0 0

Ve |2V | -2V +4v, | 0 | 27 0 0

Table 2.1
The entry (2,6), for example, is given by
[D2,V6] = ¥, V6 — V6V, = 275 — 4 ¥, 2.14)

the other entries can be calculated in a similar way. The related structure constants are

Clo = o = €35 = € =gy = =2, (2.15)

Cg =Cip = Cp =Cg =Ch =2, 2.16)

Cu =Cs =3 = -1 ¢y =cs =5 =1, 2.17)
3 = —4, and ¢}, = 4 (2.18)

with all other c’;’s being zero. O

2.2.2 Properties of Lie Algebras

This section discusses a few properties of Lie algebras useful in the classification of
the solutions of differential equations. We introduce the notion of a derived algebra,
the derivation of an algebra, the adjoint algebra, the Killing form of a Lie algebra,
and some definitions related to the solvability of a Lie algebra.

If the commutator table or the structure constants are known, it is straightforward to
calculate the so-called derived Lie algebras. These algebras are useful for classifying
the Lie algebra. The Lie algebra V" =[V, V] is called the first derived algebra of
the Lie algebra V. By construction, V" is an ideal. The higher-order derived algebras
are recursively defined by

V(n+l) - [V("), V(n)] , o n=1, 2’ 3, . (219)

The derived Lie algebras can be used to classify the original algebra. One of the
central terms in connection with derived Lie algebras is solvability. If a Lie algebra
can be classified as solvable, we know that the related differential equation can be
solved. This observation of Lie is central for the solution procedures discussed in
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Chapter 4. A Lie algebra V is called solvable if V™ = 0 for some n > 0. The simplest
examples are the commutative Lie algebras. With this remark, all one- and
two-dimensional Lie algebras are solvable. This observation will be of importance in
Section 4.4.2 where we will use this criterion to integrate second-order and
higher-order ordinary differential equations. A few examples will illustrate the term
solvability for partial differential equations.

Example 3

The six-dimensional Lie algebra of the diffusion equation with its basis Vi, ..., Vg is
not solvable because the first derived Lie algebra V) contains all operators of the
six-dimensional Lie algebra and, thus, cannot vanish (cf. Table 1). O

Example 4

An example of a solvable Lie algebra is given by the vector fields for the
Korteweg-de Vries (KdV) equation u, + uu, + uy, = 0. The basis of the Lie
algebra calculated in Chapter S reads

Y, =0y, Dy =0, V3 = x0, +310, —2ud,, (2.20)
Py =t 05 +0, . (2.21)

For this equation the commutator table is given by

[ ’ ] ?,l _‘}2 T}3 ?/4
o | 0 o | =
- 3 Ty -
\'%%) 0 0 2 -1
o v; 3V =
s |- -2 0 | W
V. | O % | -v. | O
Table 2.2

Examining this table, we recognize that the first derived Lie algebra contains only the
operators V) = {9,,%,, v,}. V) is just given by the entries in the commutator
table. The second derived Lie algebra consists only of v,, i.e., V@ = {v,}, thus, the
third step gives V® = {}. Thus, the Lie algebra of the KdV equation is solvable. In
fact, it is known that the KdV equation belongs to the equations, which are
completely integrable. So far, we manually calculated the Lie algebra and its
properties. The package MathLie offers a way to do the calculation completely
automatically.

The determination of the solvability was based on a representation of the Lie algebra
by vector fields. Vector fields in symmetry analysis are, on the other hand, based on
infinitesimal symmetries. The infinitesimal symmetry of the KdV equation is given by
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infRAV = {xi[1] - Function[{x, t, u}, k3 +k2 t + kd x],
xi[2] » Function[{x, t, u}, k1+3 k4 t],
phi[1l] -» Function[{x, t, u}, k2 -2k4u]};

where the constants k; represent the group constants connected with the vector field
given above. How these infinitesimal symmetries are calculated is the subject of
Chapter 5. For the moment, we assume that the infinitesimal symmetries are known.
This information can be used to apply the function

SolvableAlgebrasOfOrderN[infR4V, {u}, {x, t}, 4,
VectorFieldRepresentation - True]

{({v[1], v[2], V[3], V[4]}}

to the infinitesimals. The above MathLie function also needs the dependent and
independent variables and the number of elements in the algebra or subalgebra. The
option VectorFieldRepresentation—>True creates the output in the symbols of the
vector fields. For the KdV equation, we find that the largest solvable Lie algebra is
given by the total Lie algebra. We also can use this function to create all solvable
subalgebras for the KdV equation by

Map [SolvableAlgebrasOfOrderN
[infRAV, {u}, {x, t}, #
VectorFieldRepresentation -» Truel&,

{2, 3, 4}]
{({{v(1], v[3]}, {V[1], V[4]},
{vi2], V[3]}, {Vv[2], V[4]}, {V[3], V[4]}},
{{vi1], v(2], v[3]}, {V[1], V[3], V[4]}, {V([2], V[3], V[4]}},
{{vI1], v(2], V[3], V[4]}}}

The result is a list containing all subalgebras of second, third, and fourth order. The
function SolvableAlgebrasOfOrderN[] is extensively applied in connection with the
integration of ordinary differential equations. O

Another important property of a Lie algebra useful in the study of differential
equations is the derivation D or its infinitesimal automorphism. A derivation D of a
Lie algebra V is a linear mapping of V into itself, satisfying

D[y, w) = [DE), W] + [, DW)] V9, welV. (2.22)

It is evident that for two derivations D; and D, of V, the sum @ D, + 8 D, is also a
derivation. Moreover, if D, and D, are derivations, then
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D; D, (9, w]) = Di([D:(¥), W] + [V, D,(W)]) (2.23)
=[D; D, v,w] + [D, v, D, W] +[D; v, D, W] + [V, D; D, W]. (2.24)

Interchanging the indices 1 and 2 and subtracting both formulas from each other, we
get

[Dl > DZ] ([_‘;’ w]) = [[Dl > DZ] _‘;v ﬁ;] + [i;s [Dl ’ D2] W], (225)

meaning that the commutator of two derivations is again a derivation. Let V now be a
Lie algebra over the real numbers R! or the complex numbers C. Using the above
general definitions, we introduce an operation for the classification of Lie algebras.

Consider the linear map ad v of V into itself defined by
adv(w) = [v,w] with ¥, w e V. (2.26)

Using the Jacobi identity (iii) in connection with the definition of the derivation, we
can write

ad ¥([w, u]) = [ad v(W), U] + [W, ad V(W)]; (2.27)

i.e., the map ad v represents a derivation of V. Furthermore, from the Jacobi identity
and the definition of ad v, we obtain

ad[v, w] () = [adV, ad W] (@). (2.28)

Hence, the set V, = {adv| v € V} is a linear Lie algebra and a subset of the Lie
algebra of all derivations and is called the adjoint algebra. The map ® : v - adV is
the homomorphism of V onto V,. In addition, the kernel of the homomorphism ® is
the center of V.

The representation of ad v, called the adjoint representation of the Lie algebra, always
provides a matrix representation of the algebra. If {v;} is a n-dimensional basis for V,
then

adv;(adv;) = Z cf; Vi 2.29)

k=1

Therefore, the matrix A associated with the transformation adv; is given by the
structure constants

(A} = ¢} (2.30)

where (Ai)i represents the (j, k)th entry for the ith matrix. Note the transposition of
the indices j and k. So if we know the structure constants of a Lie algebra, we also
know the matrix representation of the adjoint Lie algebra.
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Example §

As an example, let us examine the rotations about the three coordinate axes X, Y,
and Z. The group of the rotation can be represented by the three matrices

Rx[a_] := {{1, 0, 0},
{0, Cos[a], -Sin[a]},
{0, Sin[a], Cos[a]}}

Ry[B_] := {{Cos[B], 0, Sin[RB]},
{0, 1, 0}, {-sin[B], 0, Cos[B]}}

Rz[y_] := {{Cos[¥y], -Sin[y], 0},
{8in[¥], Cos[¥], 0}, {0, 0, 1}}

A representation of the corresponding Lie algebra follows if we calculate the first
coefficient of a Taylor expansion around the identity, meaning that the representation
of the Lie algebra is given by the first derivatives with respect to the parameter
around the identical rotation.

e, =9,Rx[a] /. a-» 0; MatrixForm[e, ]

0 0 O
[0 0 -1
01 0

and

e; = 9,Rz[y] /. ¥ -» 0; MatrixForm[e;]

0 -1 0
1 0 0
0 0 ©

These three matrices also build the basis for the Lie algebra so(3). We will see in
Chapter 4 that the matrices €,, é,, and ¢; are the infinitesimal generators of the Lie
group. At the other hand, we know from our examinations above that the structure
constants of so(3) are given by the Levi-Civita tensor. Knowing the structure
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constants, we also know a representation of the adjoint Lie algebra. The structure
constants of so(3) are c¥ ;= ef; Applying relation (2.30), we can represent the adjoint
Lie algebra by

(A =ch =€ = _G{; 231
So the matrices

ae; = MatrixForm[Array[-LeviCivita[l, #1, #2]&,

{3, 3}1]
0 0 0
[o 0 -1]
01 0

ae, = MatrixForm[Array[-LeviCivita[2, #1, #2]&,

{3, 3}11
0 01

[ 0 0 o]
-1 0 0

and

ae; = MatrixForm[Array[-LeviCivita[3, #1, #2]&,

{3, 3}11
0 -1 0
0 0 0

are the adjoint representation of the Lie algebra so(3). In fact, these matrices are
identical with the original matrices of so(3). In the above input lines, we used as
argument of Array[] a pure function. A pure function in Mathematica is terminated
by & and allows so-called slots (#1, #2) as input channels. In the above lines, the
function LeviCivita[] with two slots and one fixed argument was used as a pure
function. O

With the definition of the adjoint algebra, we introduced the homomorphism
v — ad¥. In terms of coordinates, we have
. . n
{ad?V (ad W)}’ = [y, W] = ad¥; (ad¥;) = Z chviwk, (2.32)
k=1
i.e.,
. n
N - - i
(adv), = ad¥; (adv;) = Z v (2.33)
I=1
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Using these relations, we are able to define a scalar product in a Lie algebra by the
following relation,

(v, w) = Tr(advadw). (2.34)
This product satisfies the following properties:
(i) Symmetry
v, w) = w, ) (2.35)
(i) Bilinearity
(@v + Bw,u) = a(V, u)y + B(W, U) (2.36)
forallv, w,u € V and @, 8 € R or C. And, the relation
(iii)
(adv(w), u) + (w,adv(m)) = 0 (2.37)
or
(v, w], u) + (w, [v,u]) = 0. (2.38)
These properties are immediately derived from the properties of the trace.

The symmetric bilinear form (¥, w) on V X V is called the Killing form of the Lie
algebra. In terms of the coordinates, this expression is given by

®, ) = Tr((ad V), @dW)) = > cl v chyw"
Lk=1

=D amV' W, (2.39)

I,m=1

where the symmetric second-rank tensor

gm = ). chch (2.40)
ik=1
is called the Cartan metric tensor of the Lie algebra V. Note that for some algebras
the Killing form can be degenerate. Especially for commutative algebras we find
degeneration; i.e., det (gix) = 0.

The Killing form and the Cartan metric tensor play a fundamental role in the theory
of Lie algebras and their representations. For example, a simple criterion for the
solvability of a Lie algebra in terms of the Killing form is: if (¥, v) =0 for each
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Vv € V, then V is called a solvable Lie algebra, or if an algebra V is nilpotent, then
(V,v) =0forallv € V.

We have separated the type of solvable and nilpotent algebras from the set of all Lie
algebras by the above criteria. However, we do not know much about the terms
simple and semisimple Lie algebras. In the following, we define the class of simple
and semisimple Lie algebras, which are important in the study of the structure and
classification of Lie algebras

Definition: Semisimple Lie algebra

A Lie algebra V is semisimple if it has a non-zero commutative ideal. O

The criterion for semisimplicity is given by the following theorem:

Theorem: Cartan’s theorem

A Lie algebra V is semisimple if and only if its Killing form is non-degenerate. O

This theorem of Cartan is useful for classifying the algebras obtained in the

symmetry analysis as semisimple or not. A simple Lie algebra is defined as follows:
Definition: Simple Lie algebra

A Lie algebra V is simple if it has no ideals other than {0} and V and if
vl = [V,V] #£0. O

The discussed terms are useful for expressing some relations of differential equations
in the following sections. All are the basis for a theory which is general in its settings
and can be used in different applications of physics and mathematics.
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The symmetry analysis of differential equations is based on several differential
operators. Among these operators are the ordinary differentiation, the total
differential, the Fréchet derivative, the Euler-Lagrange derivative, and the
prolongation, to name the main operators. The basis of the symmetry analysis is the
prolongation of a differential equation. Unfortunately, the prolongation as a
differential operator is not implemented in Mathematica. This chapter will discuss
the different types of derivatives used in the calculus of symmetry analysis and will
demonstrate their application by several examples. Another subject of the present
chapter is the presentation of the theoretical background for the derivatives. One
point we will discuss is the connection of the theory with the practical
implementation of these operators in Mathematica. Application of the defined
operators to several examples will demonstrate their use. Throughout the text, we use
subscripts to denote a differentiation. The subscripted representation in Mathematica
is created by the function LieTraditionalForm[]. This MathLie function converts the
standard form of differentials in Mathematica to a traditional form frequently used in
mathematics.

3.1. Ordinary and Partial Derivatives

Ordinary and partial derivatives are widely used in calculus. As a matter of fact, this
kind of calculation is also applied in the symmetry analysis of differential equations.
Gauss, Leibniz, and Newton introduced the notion of derivatives in the 17th century
in order to have a measure for the slope of a function. Still today, we continue to use
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derivatives to measure the slope of a function at a position x. The definition of a
differential is one of the fruitful concepts mankind invented to describe nature in
mathematical terms. Newton and Leibniz introduced the calculus of differentials to
describe physical and mathematical relations by means of differential equations. The
main ingredients of differential equations are derivatives combined in a linear or
non-linear way. The definition of a derivative in terms of a limiting process is given
by the following:

Definition: Ordinary derivative

Given a smooth function f: R — R, the derivative of f is defined by the relation

a i fx+h) - f(x)
-_— =1iimm —F.

O .
dx h-0 h G

This definition is the mathematical expression of how to manage the calculation of
the slope for a known function f. The meaning of this formula is that we have to take
two neighboring points separated by a distance 4 in the x domain and calculate the
ratio of the difference of the function at these points. If we assume that the distance h
becomes smaller and smaller, we end up with a value describing the slope of the
function at the point x. Here we used the representation of the derivative in
mathematical terms. The definition of the derivative given in (3.1) is not only a
symbolic formula but also of practical relevance. In Mathematica, we can
demonstrate the practical use by just applying relation (3.1) to a specific function. Let
us assume that the function fis given by the trigonometric function

f[x_] :=8Sin[x]
Formula (3.1) in terms of Mathematica reads

£[x+h] - £[x]

Df = I.imit[ o

, h- 0]
Cos [x]

which provides us with the expected result. We certainly know that the derivative of
the sin is given by a cos. The result can be checked by a symbolic calculation using
the differentiation

o, £ [x]

Cos [x]

which gives the same result. We realize that Mathematica provides the same result by
different algorithmic procedures. However, the standard way of calculating
derivatives of functions f is the application of the operator 9, to f[x]. The pattern
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8, flx] or D[F[x], x] serves to calculate all the ordinary differentials of a function f
with one independent variable.

Another way of looking on relation (3.1) in the definition above is based on a
geometrical interpretation. Rewriting the original formula (3.1) helps us to
understand the geometrical contents. Let us first replace the limit in equation (3.1) by
another representation. The derivative defined on the left-hand side of equation (3.1)
can be represented by introducing a condition on the right-hand side. Dropping for
the moment the Limit[] and introducing a reference point x, on the x-axis, we are
able to rewrite the right-hand side. We assume that x, is a distance 4 away from our
point of interest x. The resulting value on the right-hand side of (3.1) is an
approximation of the derivative at the point xy. In Mathematica, we write

Clear|[f]

£ h] - £
Df:m—+%—-ﬂ/.h»x0-x

-f[x] + £[x0]
-x +x0

The left-hand side in equation (3.1) can be represented by the differential operator d,.
The calculation is carried out at the location x = x,. This representation of the
derivative gives us

D1f =0, £[x] /. x > x0

£ [x0]
Combining the two expressions, we get an approximate representation of a derivative
for the function fat the location x, by

df = D1f == Df

-f[x] + £[x0]

£ [x0] == -x + x0

The geometrical way of reading this equation is to consider df as a parametric
definition of the function f[x]. The parameter x, denotes a specific location in the
domain of the independent variables. An explicit representation of the function f
follows from df by solving it with respect to f[x]:

soll = Solve[df, £[x]] /. £[x] »w

({wo £[x0] +x £ [x0] -x0 £ [x0] }}

The replacement of f[x] by an auxiliary variable w is necessary to define the function
fIx] in a pure function as
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fun = £ 5 Function[{x, %0}, w] /. Flatten[soll]

f - Function|[{x, x0}, £[x0] +x £ [x0] - x0 £’ [x0]]
The result is a representation of the function f[x] defined at any location x knowing
at the same time the same function f at a point x,. In addition, we also have to know
the derivative of f at this location. The relation appears somewhat strange at the first
look. However, the geometrical content of this expression is easy to understand if we
represent it graphically. To perceive the implications of the relation, let us examine a
plot of f. Being specific in the plotting, we set the function f to the trigonometric
function sin

£[x_] :=8Sin[x]

In another step, we define a function g[x, x,], combining our results for f[x, x,].
The new function g[x, x,] allows us to represent f at any points x and x,:

Clear|[g]
glx_, %x0_] := £[x, x0] /. fun

If we plot both functions f[x] and g[x, x,] in a common coordinate frame, we get the
following picture:

Plot|
7T
Evaluate[{f[x], g[x' 1]}]1 {xl 0, ;}l

AxesLabel - {"x", "£,g"},
PlotStyle » {RGBColor[1l, 0, 0],
RGBColor [0, 0, 1]}]

f.g

0.25 0.5 0.75 1 1.25 1.5 X

From the above figure, we clearly see the geometrical meaning of g and £ In fact, g is
the representation of the tangent of the function f at a certain location x,. In the figure
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above, we chose x; = 1. The figure allows us to interpret the derivative of f as a
slope. The relation derived in df clearly displays a linear dependence in the
independent variable x. Examining the slopes of the function f[x] at other points x,
we get a set of tangents. A graphical representation of this set is given below. This
sort of plot represents an envelope of the function f[x]. The following lines of
Mathematica are necessary to create the envelope of f:

Plot [Evaluate|

T s
Table[g[x, x0], {x0, 0, 7' 7o Hl-

{x, 0, -;L}, AxesLabel » {"x", "g"},

PlotStyle - Table[RGBColor[1, 0, 0],

{x0, 0, =. —}]]

The above figure shows that the slope of the function sin[x] starts with a finite value
at x, =0 and ends up with a vanishing value at x, =7 /2. The following figure,
showing the function and the derivative of the function, represents another way to
examine the behavior of the slope.

Plot [Evaluate [

(£[x1, 0. £[x1)1, {x, 0, =},

AxesLabel » {"x", "f,f'"},
PlotStyle » {RGBColor[0, 0, 1],
RGBColozr[1, 0, 0]}]
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0.25 0.5 0.75 1 1.25 1.5 =X
The figure shows us the derived behavior of the slope in a more compact way. The
slope of sin[x] starts with the value 1 at x = 0 and finishes with O at x = 71/2.

Knowing the geometrical meaning of differentiation, we can ask for additional
properties of this operation. In the following, we will discuss some of these
properties. We only state a few of these features known by Mathematica. One of
these properties is the product rule which governs the differentiation of a product of
functions, e.g., f and g. The product rule is implemented in Mathematica and
automatically applied to products of functions:

Clear[f, g]
prule =9, (f[x] g[x]) // LieTraditionalForm
g fx + fox
The result represents the expected relation which is known from standard texts in

calculus. Another feature of derivatives is the rule for rational functions. The
differentiation of the ratio f{x]/g[x] gives

£ [x]

qgqrule = Simplify [ax ] // LieTraditionalForm

g[x]

gfx_fgx
gZ

which is the standard formula. The chain rule of Leibniz is useful in differentiating
nested functions

crule = 9, £[g[x]] // LieTraditionalForm

£y ox
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which indicates that we first differentiate the function f with respect to g followed by
a differentiation of g with respect to x. The properties stated above and more are
known by Mathematica to manage the calculation of differentials.

In symmetry analysis, we frequently have to deal with functions depending on
several independent variables. A function of a set of variables can be differentiated
with respect to one of these variables at a time. The rest of the independent variables
will stay unchanged in this calculation. The slope of a function of several variables is
not just a single function, since the independent variables may vary in different ways.
All the rates of change for a function of m variables are described by m functions,
called its partial derivatives. In the discussion above, we introduced the definition of
the derivative known as an ordinary derivative which is defined for functions
depending on a single independent variable. The more generic case is that we have
functions depending on several independent variables. The partial derivatives of a
function of several variables are its ordinary derivatives with respect to each variable
separately. We can define this as follows:

Definition: Partial derivative

Given a smooth function f: R™ — R depending on m independent variables x,,, we
define the partial derivative of f with respect to the independent variable x, by

af

0x, -
(X, ey xg Ry X)) = [ (X1, X2 s Xgs ees Xm)) (3.2
b h ‘

This formula allows us to calculate the variation of f with respect to different
coordinates x,. The partial derivative of a function is an operation known by
Mathematica. The partial derivative is accessible under the same pattern d, 0.
Although we can access partial derivatives and ordinary derivatives by the same
symbol D[], Mathematica is capable of distinguishing the different operations.
Consider, for example, a function f = f(x, x,) of two variables. If we treat x, as a
constant, f may be differentiated with respect to x;. The result is called a partial
derivative of f with respect to x, . In Mathematica, we carry out this by

Oy, £[x1, x2] // LieTraditionalForm

£x

1
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The resulting symbol for the representation of a partial derivative in Mathematica is a
superscripted expression of the function f. The superscripts denote the order of
differentiation with respect to the independent variables. In our example, we get the
first derivative with respect to x;. The derivative with respect to x, follows in the
same way by

Oy, £[%:, x;] // LieTraditionalForm

£y,

The combination of both operations allows us to calculate higher-order derivatives
Oy, .x, £[#:1, X,] // LieTraditionalForm
fxl X2

Higher-order derivatives follow by carrying out the differentiation with respect to
different variables. The calculation of higher derivatives is done for functions with
only one independent variable in a similar way. Since both operations are nearly
identical, here we will give only the definition for the case with more than one
independent variable. The one-dimensional case is included in this definition. The
kth-order derivative is defined as follows:

Definition: kth-Order derivative

Given a smooth function f: R” - R depending on m independent variables x,, we
call

=95 f(x), (3.3)

the kth-order partial derivative of f with respect to the m independent variables x. The
non-sorted multi-index J = (ji, j,, ..., ji) denotes the derivative with respect to one
of the m coordinates. The integers 1< j; <m of this k-tuple indicate which
derivatives are being taken. The order of differentiation % is equivalent to the sum of
all indices ji, which we denote by | J | = Zle Ji-O

Using this definition, we are able to calculate, for example, the second-order
derivative of the function £ The calculation of the partial derivative in Mathematica
is as simple as the application of the ordinary derivative even for higher-order
derivatives. For example, the sixth-order derivative of f is derived by

O(x1,2}, (x2,4) £[%x1, %x2] // LieTraditionalForm

fxl,xl,xZ,x2,x2,x2
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So far, we discussed simple examples of derivatives already implemented in
Mathematica. The following sections will illustrate how special types of derivatives
are implemented. We will discuss tangent vectors, vector fields, Fréchet derivatives,
prolongations of vector fields, and variational derivatives also known as Euler
derivatives. The special types of derivatives we are going to discuss are useful in
examining symmetries of differential equations.

3.2. Tangent Vector

Sometimes it is important to know how a real-valued function f: R" — R varies in
different directions. The partial derivative discussed above only measures how
much f changes in a certain direction. However, it is also possible to measure the
variation of f in other directions. Measuring the variation of f at a location x € R"
along a straight line 7 = x + txy, where x, € R™, we need the tangent vector v,. Since
we are dealing with differential operators, we define the tangent vector as an operator
acting in the space of functions. Actually, a tangent vector is a vector with a cetrain
direction and a finite length. However, in view of the application in symmetry
analysis, let us define such an operator.

Definition: Tangent vector

We assume that f: R™ — R is a smooth differentiable function. The tangent vector v,
is defined by the relation

- d -
v (f) = z(f(x + %) l=o> (3.4)

where x, € R" and ¢ is a real parameter. O

This definition is known as directional derivative in calculus. A more explicit way to
write the definition is given by

50 tim TEH1E0) = fG)

n p 3.5)
[5nd

Relation (3.5) is more convenient in comparison with the definition of an ordinary
derivative. On the other hand, equation (3.4) is more useful in the implementation of
the tangent vector in Mathematica. Although the second definition (3.5) is based on a
complicated mathematical process involving the determination of a limit, the first
expression is easier to handle symbolically. The reason is that equation (3.4) contains
basic operations like an ordinary differentiation and a substitution. Both of these
operations are easily handled by Mathematica. Since Mathematica does not know
how to calculate the tangent vector of a function, we must define an operator which
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handles this kind of calculation. Let us now examine equation (3.4) in more detail to
see how an implementation can be based on it. In the calculation of the tangent vector
for an arbitrary function f, we need to know the function f itself, the independent
variables X, and the support point X,. We use these three components as input
parameters for our function TangentVector[]. We define the function
TangentVector[] in the following way:

TangentVector[f_, x_List, x0_List] :=
Block|[{xrule, res, t},
rule = Thread[x » x + t x0] ;
res = £ /. rule;
res=0.res /. t > 0]

These few lines closely follow the definition given in equation (3.4). The lines just
state that the original argument is replaced by a new argument and that after the
replacement, a differentiation with respect to the parameter ¢ takes place. At the end
of the calculation ¢ is replaced by zero. The actual calculation is reduced to an
ordinary differentiation with respect to a parameter. All other operations are
replacements given as a transformation of the argument and as a side condition. The
definition given in Mathematica is capable of reproducing the general formula in
(3.4) at a certain point X,. As an example, we demonstrate here the calculation for a
function f depending on four independent variables:

TangentVector[£[xl, x2, x3, x4],
{x1, %2, x3, x4}, {x10, %20, %30, x%40}] //
LieTraditionalForm

x10 £, +x20 £, +x30 £,5 + x40 £,

As expected, the result of our calculation is a sum of four products. Each product
consists of a partial derivative with respect to the coordinate x, and the component
xo, of the related location. Similar to the ordinary differentiation, the function
TangentVector[] satisfies some additional properties. Some of these algebraic
features of the directional derivative are listed below. Let us assume that we have two
real numbers a and b and two independent functions f and g. Then, we can show that
the relation

TangentVector[a f[x1, x2] +bg[x1l, x2], {x1, %2}, {x10, x20}] ==
a TangentVector[£f[x1, x2], {x1, %2}, (%10, x%20}] +
b TangentVector[g[xl, x2], {x1, x2}, {x10, %20}]

True
is satisfied. This behavior of the tangent vector is known as linearity. Thus, we can

say that TangentVector[] is a linear operator. The application of TangentVector[] on
a product gives us
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TangentVector|[f [x1l, x2] g[x1, x2],
{x1, %2}, {x10, x20}]

glxl, x2] (x20 £V [x1, x2] +x10 £*? [x1, x2]) +
fx1l, x2] (x20g® Y [x1, x2] +x10g™? [x1, x2])

which is just the scalar product of the vector (f, g) with a vector containing the two
tangent vectors of f and g as elements. There is also a chain rule for the tangent
vector similar to the case of ordinary differentiation. For example, let g; and g, be
two differentiable functions depending on x; and x,. For a function F given by

£ =F[gl[xl, x2], g2[xl, x2]]

F[gl[x1l, x2], g2([x1, x2]]

we can derive the tangent vector in the form

TangentVector[f, {x1, x2}, {x10, %x20}] // LieTraditionalForm

Fg1 (x10gl  +x20gl ) +Fg (x10 g2, +x20g2_,)

which is a superposition of the vector field of g, and g, multiplied by the derivatives
of F. As we demonstrated, all these properties are immediately available without any
additional definitions. This behavior is actually based on the implementation of the
derivative in Mathematica.

The name used for our function to calculate the tangent vector of a given function is
somewhat misleading. Actually, we calculate a scalar product of the tangent vector
and a support vector X, using our function. In some calculations, however, it is
necessary to have the vector components of the tangent vector available. Such an
application, for example, is the calculation of the tangent surface on a hypersurface.

The components of the tangent vector v, become available by altering
TangentVector[] in an appropriate way. The following lines generalize the function in
such a way that the result of the calculation is a vector of differentials applied to a
function. We also assume in our definition that the support point is arbitrary and thus
can be created by the operator TangentVector[] itself:

TangentVector[f_, x_List] := Block[{rule, res, t},
x0 = Table [Unique["$aU"],
{i, 1, Length[x]}];

rule = Thread[x > x + t x0] ;
res = £ /. rule;
res=0.res/. t->0;
Table [Coefficient[res, x0[i] ],

{i, 1, Length[x0]}]]
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The application of the function TangentVector[] on a function f depending on three
independent variables gives us

Clear[£f];
TangentVector[f[x1l, x2, x3], {x1, x2, x3}] // LieTraditionalForm

{fxl ’ fx2 ’ fx3}

which is, in fact, the gradient of the scalar function f. We note that the function
TangentVector[] needs only two arguments, the function f and a list of independent
variables.

For some applications in geometry and physics, we need to calculate the tangent
surface of a given function. Recalling the definition of the tangent of a function given
at the beginning of this section, we generalize this one-dimensional definition to a
two-dimensional version. Using the vector representation of the tangent vector at a
certain point X for the two-dimensional case, we can represent the tangent surface by

fs = flxo0, y0) + (X—%0) - Vx (), (3.6)

representing the sum of the function at the support point (x;, yo) and the scalar
product of (X — %) and the tangent vector. Similar to the definition of a tangent
vector, we can implement a tangent surface by

Clear [TangentSurface];
TangentSurface[f_, x_List, x0_List] :=
Block|[ {rule, tvector, sf, surface},
rule = Thread[x -» x0];
tvector = TangentVector[£f, x];
sf =f /. rule;
surface = sf + (x - x0) . tvector]

Using the function TangentSurface[], we can determine the tangent space located at
xo of a given function f. As an example, let us consider a function % in a
two-dimensional space with coordinates x and y

h = Sin[x] Cos[y]
Cos|[y] Sin[x]
The function A[x, y] has the graphical representation

pll =

7
P10|:3D[h, {x, -7, ?}, {y, -m, n}, AxesLabel » {"x", "y", "h"}]
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We calculate the tangent surface of this function at the point (xq, yo) = (7/2, 0) by
using our function

bis
ht = 'I‘angentSurface[h, {x, ¥}, {?, 0}]

1+ (- % +x) Cos[x] Cos[y] -y Sin[x] Sin[y]
A graphical representation of this relation for the tangent surface follows with

pl2 = Plot3D[ht, {x, .5, 2}, {y, -1, 1},
ColorFunction - Hue]

Superimposing both surfaces demonstrates that the two functions have the common
point (xg, yo)=(7/2, 0).

Show[pll, pl2, PlotRange » {{-2, 2}, {-2, 2}, {-1, 1}},
ViewPoint - {3.130, -1.044, 0.751}, Boxed - False]
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In the above figure, we observe that the tangent surface is located below the surface
h. The tangent surface is plotted for a smaller interval in the x and y directions to
prevent intersections of ~ and the tangent surface. This example shows that the
one-dimensional notion of a tangent can be generalized to a two-dimensional version.
This generalization is not restricted to two dimensions but can be extended to higher
dimensions. Since the higher-dimensional cases cannot be represented easily by
graphics, we suppress a further discussion of these tangent surfaces.

This section was intended to show how a Mathematica function for a derivative can
be defined if we know an appropriate mathematical definition. We also notice that
not every mathematical definition is an efficient definition for an implementation in
Mathematica. An essential point to efficiently implement a mathematical relation in
Mathematica is a mathematical definition based on structures which are basic
elements in Mathematica. In the case of the TangentVector[] function, it was
essential that we used the pattern matching of Mathematica in the replacement rules.
The application of such simple operations allows us to write refined functions. In the
next section, we will come back to a derivative already known by Mathematica, the
total derivative.

3.3. The Total Derivative

Let us consider functions f depending on a set of independent variables x =
(x1, X35 ..., X») and a set of dependent variables uy), k=0, 1,2, ..., where u,
represents all possible derivatives of u = (u!, u?, ..., u®) with respect to the
independent variables x. We are interested in the derivative of these functions with
respect to all independent variables. If we assume that u depends on the vector x, we
must consider all derivatives of f with respect to x and u,. In other words, we obtain
the total derivative of f by differentiating f with respect to x, while treating all the u®'s
and their derivatives as functions of x.
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Definition: Total derivative

The total derivative of a function f(x, u) with respect to the independent variable
x; is given by

q
d , 0
Dif= Gt 2D g 67
1 B ]

a=1 J
where for J = (ji, j2, ..., Jj)

N (?u‘; al+1 u® -
u . = = . .
7. dx; 0x;0x; 0xj, - 0x;, 3.8)

and the sum in (3.7) runs over all J’s of order 0 < | J| < k with | J| = Zle Ji- k
is the highest order of the derivatives occurring in f. O

The Mathematica analogue of this definition is available by the function D[], which
S. Wolfram [1991] calls a partial derivative. Showing the equivalence of both
notions, let us demonstrate the action of the function D[] by considering a simple
example.

Let us examine a function f given by f = xwuu,,, where u = u(x, y) is a function of

Xy»
x and y. We apply the function D[] on this expression in two steps. First, we use x as
the variable of differentiation, and in a second step, we differentiate with respect to y:

£f=xu[x, y] O,,,u[x, v]; £ // LieTraditionalForm
U X Uy,y

D[f, x] // LieTraditionalForm

Uly,y + XUx Uy,y + UX Uy, x,y

D[f, y] // LieTraditionalForm

XUy Uyx,y tUXUy,y,y

Comparing the results obtained by Mathematica with the definition given above
demonstrates the equivalence of both notions. Higher-order total derivatives are
defined by a repeated application of the single operator (3.7) with different variables
of differentiation. If J = (j;, j2, ..., jm) is a mth-order multi-index, with 1 < j,, <p
for each m, then the jth total derivative is denoted by

D, = D; D;, - D; . (3.9)
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For example, we find the D, D, and D, D, derivatives by successively applying D,
and Dy. In Mathematica, we can realize this by

dfl1 = D[D[£, x], v]; dfl // LieTraditionalForm

2
Uy Ux,y + XUy , + XUy Uy x,y + Ulyx,y,y +XUx Ux,y,y + UXUx x,y,y

df2 = D[D[£, y], x]; df2 // LieTraditionalForm

2

Uy Ux,y + XUy o

XUy Uy, x,y + UlUx,y,y +XUx Ux,y,y T UXUx x,y,y

Subtracting both representations of the mixed derivatives from each other, we get

dfl - df2

0

It is obvious that both expressions contain the same result. This implies that we can
commute the D, and D, . In general, we can interchange the D’s in the calculation in
any order.

Another representation of derivatives instrumental in the calculation of symmetries is
the prolongation. A prolongation is not a completely new derivative; however, it
introduces a geometrical concept in the manifold, allowing a greater flexibility in the
use of coordinates.

3.4. Prolongations

In the calculation of symmetries, we frequently have to calculate the prolongation of
a given system of differential equations. Here, we first define the term prolongation
for a function. In Section 3.7, we will discuss the application of prolongations to
vector fields. This definition is extended to differential equations in an additional step
in Section 4.2.5 for ODEs and in Section 5.4.1 for PDEs.

The term prolongation actually means an extension of the space of coordinates by
their derivatives up to a certain order. As a simple example, we can extend or prolong
the space of variables u for a function #: R - R by its first derivative. In classical
mechanics, such an extension of the configuration space with coordinates u to a space
with u and u’ as coordinates is known as an extension of the configuration space to
phase space. A more specific example occurring frequently in mathematical physics
is given by a vector-valued function u = f(x) = (f; (%), ..., f»(X)) with n independent
variables x = (x;,..., x,) and m dependent variables. For such an n x m space, the
definition of the prolongation reads
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Definition: Prolongation

For a given vector-valued function f: R"” - R"™, we define the kzk prolongation of f
by

pr® f(x) := u® .0 (3.10)

This relation means that we have to determine all derivatives of u up to a certain
order k. The result of such a calculation is a set of terms containing all possible
derivatives of u up to kth order.

The calculation of the kth prolongation is in some sense equivalent to the calculation
of the first k coefficients in a Taylor expansion of f at the point x.

Let us demonstrate the calculation of the prolongation for a single function
f = f(x,y, 2). Here, n = 3 and m = 1. We are looking for the second prolongation
of f;i.e., k = 2. We use Mathematica to carry out such a calculation. If we do the
calculation by hand, we have to collect the derivatives of f with respect to the
independent variables x = (x, y, z) up to order 2

pr® f(x, 32 =

of of of &f &f Ff Ff & f Ff (3.11)

1 dx’ 8y’ 8z dxdy’ 0Oxdz’ dydz’ Ox2’ 0y*’ 072

This list of terms represents the expansion coefficients of a Taylor series of f around
xg. The first few terms can be read off from the following series expansion:

Clear[f, x, ¥y, z, x0, y0, z0];
Normal [Series[f[x, v, z], {x, %0, 1},
{¥, Y0, 1}, {z, 20, 1}]] // LieTraditionalForm

£+ (x-x0) f0 + (Y -¥0) (fyo + (x-%0) fy0,40) +
(27 ZO) (fzo + (X_XO) fxO,zO + (Y"yo) (fyo,zo + (X_Xo) fxO,yO,zO))

Using Mathematica, we do the calculation for the prolongation by applying the
function Outer[] in connection with the differentiation D[]. The aim is to reproduce
the content of equation (3.11). So we have to define a function called prolongation[]
using lists as input variables for the functions f and the independent variables x. The
third argument of prolongation[] determines the largest order k of differentiation:

prolongation[f_List, x_List, order_] :=
Block[ {aux, dresult},
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result = £;

aux = result;

Do [aux = Outer[D, aux, x];
AppendTo[result, aux], {i, 1, order}];

Sort [Union[Flatten[result]],
derivativeOrder [#1, #2]&]]

The function prolongation([] is based on the auxiliary function derivativeOrder[]. This
function determines the order of a differential expression. The result of
derivativeOrder[] influences the sorting of the derivatives in the function Sort[].
derivativeOrder[] allows us to sort the derivatives by an increasing order.

derivativeOrder[exprl , expr2_] :=
If[FreeQ[exprl, Derivative] ||
FreeQ[expr2, Derivative], True,
Plus[exprl /. _*—)[__ ] -x]<
Plus[expr2 /. _*—'[_]-=x]];

The function derivativeOrder[] checks the two arguments exprl and expr2 on
derivatives. If the expressions are free of derivatives, the function returns True. If the
expressions contain derivatives, the function only returns True if the order of the
derivatives increases. The application of prolongation[] on f[x,y,z] up to second order
gives us the coordinates of the extended space

prolongation[{f[x, v, z]}, {x, ¥, 2}, 2] // LieTraditionalForm

{f, fxl fyl le fx,xl fx,yl fx,zl fy,yl fy,zl fz,z}

From a mathematical point of view, we determined the coordinates of a jet-space of
order 2 (cf. Olver [1986]). The kth prolongation pr® (f(x)) is also known as the k-jet
of f. The related space of independent and dependent variables extended by the
derivatives is thus called jet-space. Thus, if u = f(x) is a function whose graph lies in
the space of dependent and independent variables, the kth prolongation pr® (f(x)) is
a function whose graph lies in the k-jet space.

3.5. The Fréchet Derivative

In the previous sections, we discussed differential operators available in
Mathematica. This section deals with a differential operator instrumental in the
theory of symmetry analysis. Here, we discuss a generalized derivative and its
definition in Mathematica. The derivative is called a Gateaux or Fréchet derivative.
This kind of derivative is very useful in the calculations of symmetries (Olver [1986],
Fokas [1980, 1987], Fokas and Fuchssteiner [1981], Baumann [1997]). Such a
derivative uses not only the steepest descent of a function but also puts a weight on it.
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Definition: Fréchet derivative

Let f= f(x, u,)) be a function in p independent and g dependent variables. u,,
denotes all the derivatives in this function up to order n =0, 1, 2, .... The Fréchet
derivative Dy of a function f based on w(x, u,,) is defined in such a way that

d
Drw) = Zf(u'*'ew(u)) =0 (3.12)

holds for all auxiliary functions w. We call the function f the support of the Fréchet
derivative and w the test function. O

The algorithmic content of this definition is that Ds(w) is calculated by replacing u
and all of its derivatives in f by u+ew. If we later differentiate the resulting
expression with respect to € and set € = 0, we determined the Fréchet derivative. The
result of these two steps is the Fréchet derivative of f based on the test function w.
Using the steps in a pencil calculation for one independent and one dependent
variable, equation (3.12) can be reduced to an explicit expression like

= af &
Dy = ;0 m}i—xk— 3.13)

In (3.13) uy, denotes the kth derivative of u with respect to x. The sum in (3.13) is
finite since the order of the largest derivative of the support is finite. This is the case
in all practical situations.

Let us consider as a support function f = u, u,,, + u,zc. The Fréchet derivative with a
test function w = w(x, u, ) contained in the class of support functions f is given by
applying equation (3.13) to f:

Drw) = (Uppx + 2u)Dew + uy Dy o w, (3.149)

where D, and D, ,, denote the first- and third-order total derivatives. If we choose
the test function as w = u? /2, we get from relation (3.14)

DrW) = (Uppr + 2Ux) Uy = Ux Uyy, + 2u,2( (3.15)
representing a differential expression containing only derivatives of u. The definition
of the Fréchet derivative given above for one independent and one dependent variable
is easily generalized to a vector of r support functions f =(fj, ..., f;) and q test
functions w = (wy, w,, ..., w,). Then the Fréchet derivative of such an r-tuple is
given by the relation
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filug +ewy, uy, oo u.)+ o+ fi(ug, uy, o, u, +ew,)
d fZ(ul +EW, Uy, ..., ur)+ Tt +f2(uh Upy ooy Uy +€wr)
Diw) = — . o0 - (3.16)
de :
frug +ewy, uy, oo u )+ o+ fr(ug, o, .., Uy +€w,)

Introducing the g test functions as a column vector allows us to define the gxr matrix
differential operator

d
(Df(w))#a = 2 fuCug + €W o, p=1,..,r, a=1,..,q. 3.17)

This expression is equivalent to the matrix differential operator

7]
®n),, = ; a,]:; Dy, p=1,..,rn a=1,..q. (3.18)
The sum in (3.18) extends over all multi-indices J. To define the Fréchet derivative in
Mathematica, we use relation (3.12) and its matrix version (3.16). We note again that
the ¥ and all their derivatives are replaced by u® + ew®. After the replacement of the
arguments, we differentiate with respect to € and set € = O in the next step. The result
in the general case is a matrix containing the derivatives of the support f based on the
test functions w”. The implementation of the Fréchet derivative in Mathematica is

FrechetD[support_List, dependVar_List,
independvVar_ List, testfunction List] :=
Block[{indep, frechet, deriv, €, r0, x1, x2},

r0 = Function[indep, x1 + € x2];
frechet = {}; Do[deriv = {};
Do [AppendTo [deriv, 0. (support[j] /.
dependvar[i]] » (x0 /.
{indep - independVar,
x1 - dependvVar[i]] @@independVar,
x2 » testfunction[i]] @@independvar})) /. € » 0],
{i, 1, Length[support]}];
AppendTo [frechet, deriv],
{3, 1, Length[support]}]:;
frechet]

The code of the Fréchet derivative follows closely the relation given in equation
(3.12). In FrechetD[], we first define a pure function stored in the variable r,. This
function serves as a general pattern to replace the original argument by a varied
argument. A loop extending over the number of dependent variables replaces the
independent and dependent variables. This step creates an explicit rule for the
replacement. After the replacement, a differentiation with respect to the parameter e
is performed and, at the end, € is replaced by zero. The resulting expressions are
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collected in the list frechet which is returned by the function. An example will
demonstrate the application of the function.

Example 1

Consider a set of two expressions representing a system of partial differential
equations given by

% o, (3.19)

where u and v are functions of x and ¢ This set of equations is equivalent to a
non-linear diffusion equation in v. Our aim is to calculate the Fréchet derivative of
the left-hand side of the system (3.19). Let us define a variable egsys containing the
left-hand side of the equations:

o,ul[x, t]
egsys = {3, v[x, t] -u[x, t], 8. v[x, t] - —————

}i

ulx, t]?

eqgsys // LieTraditionalForm

Ux
{—u+vx, BETER +vt}

The application of our function FrechetD[] to this expression gives us

FrechetD[eqgsys, {u, v}, {x, t}, {wl, w2}] //
MatrixForm // LieTraditionalForm

-wl w2y,

2wl u, wl,
= = w2,

The calculation of the Fréchet derivative using FrechetD[] is carried out by supplying
four arguments containing the equations: the dependent variables of the support, the
independent variables, and the test functions w; and w,. The result is a 2 X 2 matrix
containing expressions of w; and w, and their derivatives. From the result, we can
get the corresponding operators if we consider w, and w, as auxiliary functions. The
related matrix operator reads

-1 Oy
2 u, 1 . (3.20)

-—0, o
u3 u?
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In our symmetry calculations, we sometimes need also the adjoint representation of
the Fréchet derivative. In general, the adjoint representation of a differential operator
is defined via an integral expression. Assume that we know the differential operator
(3.12). We denote the adjoint operator of Dy by D7} satisfying

anDdex = anD;de. (3.21)
Equation (3.21) holds for any pair of functions W and V. If we examine definition

(3.21) in more detail, we can replace the integral operation by a plain differential
representation (cf. Olver [1986]). The corresponding expression to (3.18) is given by

af,

* — _ J
@5, —Z( 1 D’(M

In view of an algorithm in Mathematica, this means that we convert derivatives of the
test functions to derivatives of the support multiplied by some coefficients. This is
strictly the definition of an adjoint differential operator. The described procedure is
implemented in the following function AdjointFrechetD[]:

AdjointFrechetD|[support_List, dependVar_ List,
independvVar_ List, testfunction_List] :=

Block[(subrule, $testf, frechet, n, b},

subrule =b_. $testf(“*) @@independVvar :»

(1) 70590 g ete [Thread [ {indepenavar, (n}}],0] (P $testfe@@independvar)
frechet = FrechetD [support, dependVar,
independvar, testfunction];
Do[frechet = frechet /.
(subrule /. $testf » testfunction[i]),
{i, 1, Length[testfunction]}];
frechet = Transpose[frechet]]

The adjoint representation of the Fréchet derivative of the system egsys is thus given
by

AdjointFrechetD[eqgsys, {u, v}, {x, t},
{wl, w2}] // MatrixForm // LieTraditionalForm

wl,
{ -wl Y ]

-W2, -Ww2,
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3.6. The Euler Derivative

In this section, we will discuss the Euler derivative. The Euler derivative, also known
as the functional derivative, has its origin in the calculus of variations. The term
calculus of variations was first coined by Leonhard Euler in 1756. He used it to
describe a new method in mechanics which Lagrange had developed 1 year earlier.
Thus, the original application of the Euler derivative originates from mechanics. In
this context, Euler and Lagrange used this sort of derivative to write down their
famous equations, the Euler-Lagrange equations. Up to now, the main application of
this derivative in physics has been the formulation of dynamical equations. In
Chapter 9, we will show that the Euler derivative is a useful tool in connection with
Lie-Bicklund or generalized symmetries. Before we discuss the Euler derivative and
its implementation, we recall briefly the basic properties of the origin in the calculus
of variations.

3.6.1 The Problem of Variation

The calculus of variations was first used by Johann Bernoulli in July 1696, when he
presented the brachystochrone problem. The problem can be formulated as follows.
A point mass is moving frictionless in a homogenous force field along a path joining
two points. The question is which curve connects the two points for the shortest
travel. Johann Bernoulli announced the solution of the problem, but did not present
his findings in public. He preferred to first challenge his contemporaries to examine
the problem, too. This challenge was particularly aimed at his brother and teacher
Jakob Bernoulli, who was his bitter enemy. Jakob found one solution, but did not
present it to Johann. It was only upon the intervention of Leibniz, with whom Jakob
had a lifelong friendship and a scientific correspondence, that he sent it to his brother
in May 1697. The most fascinating event was that this solution was a cycloid, a curve
also discovered at this time.

As mentioned above, the main idea in the calculus of variations arose from the work
of Euler and Lagrange. Later, Hamilton contributed the term minimum principle to
the theory, and it is still in use today. The main idea of all these considerations of
Euler, Lagrange, and Hamilton is the assumption that there exists a generating
functional F. This functional is responsible for the dynamical development of the
motion. The key point in the calculus of variations is to find a function which
extremizes the functional F. The solution of this issue is to vary the function by
introducing a test function. Thus, the variation of F is actually carried out by
replacing the function u by a slightly changed new function u +ew, where € is a
small parameter and w denotes an arbitrary test function. After replacing u and all of
its higher derivatives in the functional F, we have to determine the extreme of F. The
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functional in this representation can be considered as a function of the parameter e.
The maximum or minimum of F is found if we use the standard procedure of calculus
for finding extreme values. In mathematical terms, we need to calculate the
derivative of F with respect to € under the condition that € vanishes:

dF(e)
de

0= 0. (3.23)

The basic problem of the calculus of variations is to determine a function u(x) such
that the integral

Flu] = f f(x, u, uy, ... )dx = f f(x, ugy)dx, k=1,2,... (3.24)

assumes an extreme. An extreme here is either a maximum or a minimum. In
equation (3.24), u, = du/dx denotes the partial derivative of u with respect to the
independent variables x, where x is a vector of coordinates. Let us assume first that
we have only one independent variable x. This assumption will make it easier to
represent and discuss the theory. A generalization to more independent variables will
be given below.

The expression F[u] given in equation (3.24) is called a functional defined by an
integral over a density f which depends on the independent variable x and the
unknown function u. In general, this density may also depend on derivatives of u up
to a certain order k, denoted by u,. The limits in the integral (3.24) are assumed to
be fixed. We note that fixed limits are not necessary. If they are allowed to vary, the
problem increases in such a way that not only u(x) but also x; and x, are needed to
bring F to an extreme value. The question is how to manage the functional F in
becoming an extreme. Let us assume that an extreme of F exists if a function
u = u(x) makes the functional F a minimum. Then, any neighboring function, no
matter how close it approaches u(x), must make F increase. The definition of a
neighboring or test function may be as follows. We introduce a parametric
representation of u = u(x; €) in such a way that for € =0, u = u(x; € = 0) = u(x), we
get the identity and the functional yields an extreme. We write the small perturbation
of u as

u(x;€) = u(x; 0) + ew(x), (3.25)

where w(x) is the test function which has continuous derivatives and vanishes at the
endpoints x; and x,. We note that the vanishing of w(x) at x; and x,
w(x;) = w(x;) = 0 is one of the basic assumptions of the calculus of variations.

If functions of the type given in equation (3.25) are considered as variations of u, the
functional F becomes a function of €:
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Flu;e] =f 2f(x, u(x; €), uy(x, €), ...)d x. (3.26)

The condition that the integral has a stationary value (in other words, an extreme) is
that F be independent of € in first order. This means that

oF
Se le0 = 0 (3.27)
for all functions w(x). This is a necessary condition but not a sufficient one. We will
not pursue the details of the sufficient conditions here. They were extensively
discussed by Blanchard and Briining [1992]. To demonstrate how these formulas
work in detail, let us consider the simple example of the shortest connection between
two points in an Euclidean plane.

Example 1
Let us consider the equation of a curve in a Euclidean space which yields the shortest

distance between two points in the plane. The geometrical increment of distance ds in
the (u, x)-plane is given by

ds = i +di = 1/1+(‘jbc—“)2 dx. (3.28)

The total length s of the curve between two points x; and x, is
2
s = f V1+u? dx = Flu]. (3.29)
X

We know that the shortest connection between two points in the Euclidean plane is a
straight line given by

ux)=ax+p, (3.30)

where @ and B are constants determining the slope and the intersection of the line
with the vertical coordinate axis. Now let us consider the line in the range x € [0, 2x].
To demonstrate the numerical behavior of the functional F, we choose a special test
function w(x) = sin(4 x). Using our representation of « given by equation (3.30) with
a=1 and B=0 for example, we get for the derivative of u,

uy, =1+ 4ecos(4x). 3.31)
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Inserting this representation into (3.29) we find
2n
Fle] = V1+4ecosd x) dx. (3.32)
0

This relation represents our specific functional. We are looking for the minimum of
this function to get the extreme of the functional. Considered as a function of e, this
relation cannot be solved for e. However, to get an idea of the dependence on the
parameter €, we can use Mathematica. If we define equation (3.32) as a function
depending on €, we can use the numerical capabilities of Mathematica to graphically
represent the dependence of F on e. First, let us define equation (3.32) by

F[e_] := NIntegrate [

\/1+ (L+4ecos[4x])’, {x, 0, 27}]

We then use the defined function F[] in connection with Plot[] to represent the value
of the functional for certain values of €:

Plot [Evaluate[F[e]], {€, -1, 1}, AxesLabel » {"e", "F"},
PlotStyle -» RGBColor[1l, 0, 0]]

18

The result of our calculation shows that the value of the functional is minimal for e=0
and increases for all other values of €. Thus, we demonstrated numerically that the
minimum of the functional exists. In a second plot, we demonstrate the influence of €
on the function u(x) = x for different values of €. This shows us that the value of
Flu; €] is always greater than F[u; 0], no matter which value (positive or negative) is
chosen for e.
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Plot [Evaluate [

1
{Y[x’ 0], v[x, 1], y[x, _?]} /.

¥y -» Function[{x, €}, x+€ Sin[4x]]],
{x, 0, 27},
AxesLabel -» {"x", "y"},
PlotRange - All,
PlotStyle -» {RGBColoxr [0, 0, 0.996109],
RGBColor[1.000, 0.000, 0.000],
RGBColor[0.000, 0.251, 0.251]}]

Y
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From this figure, we can conclude that the line u(x) = x is one realization of the
shortest connection between two points in the Euclidean plane. O

3.6.2 Euler’s Equation

In this section, we derive the analytical representation of the Euler derivative. The
construction of this sort of derivative is based on condition (3.27). If we carry out the
differentiation with respect to €, equation (3.26) will provide

oF I
s = ;f f(x, u, u,, ...)dx. (3.33)

1
Since the limits of the integral are fixed, the differentiation affects only the density of
the functional F. Hence,

oF _ 2(0f Ou 8f Ou, of Ouy, )
9e —L'(au de | ou, de & om. e dx. (3.34)

X, X

If we now use the representation of u = u(x; €) as given in (3.25) to introduce the/ €
dependence for the variable 4 and the derivatives u,, we get
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du ) Ouy ou, x (3.35)
- = X), = Wy, = Wyxxs - .
de e e de -

Using these relations in equation (3.34), we find

oF 2(aof of of )
- = - x xx T dx.
e f (3u w(x) + o Wy + ™ Wex + X (3.36)

X, X

1

The result so far is that the integrand contains derivatives of the density f and the test
function w. Since we do not know anything about the derivatives of w, we need to
reduce (3.36) in such a way that it only contains the test function w. The reduction
can be obtained by an integration of parts with respect to the test function. Additional
use of the conditions w(x,) = w(x,) = 0 simplifies expression (3.36) to

oF =fzw(x)(‘9_f_ i(£)+ i ( of ]x---]dx. (3.37)

de du dx \du, dx? \ du,,

The integral in equation (3.37) seems to be independent of €. However, the function
u=u(x;€e) and all derivatives of u are still functions of e. We know from the
representation of u(x; €) that this dependency disappears if we set € = 0. Before we
start this calculation, we generalize (3.37) to arbitrary orders in the derivatives:

S [ | e £ (2L
e = fw(x) Z( 1) T (8u(,,) dx, (3.38)
x n=0

where u,, = ‘;;—n" denotes the nth derivative of u with respect to x. Our aim was to
find the extreme of F. A necessary condition for the existence of an extreme is the
vanishing of the derivative % l€=0 = 0. In our calculations, we assumed that w is an
arbitrary function. Thus, the derivative of F can only vanish if the integrand vanishes
and so we end up with the result

e o) _
Z( ' ( 5u) = O (3.39)
n=0

where u and all the derivatives of u are now independent of €. This result is known as
Euler’s equation and it is a necessary condition for the functional F to allow an
extreme. The Euler equation is reduced to the well-known Euler-Lagrange equation if
we restrict the order of the derivatives to 2. Since the Euler equation is needed in the
calculation of symmetries, we define a special symbol for this operation and call it
the Euler operator.
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3.6.3 Euler Operator

The Euler operator is also known as a variational derivative in the field of dynamical
formulations or statistical mechanics. In this section, we define this operator as a
special type of derivative.

Definition: Euler operator

Let f = f(x, u, u,, ...) be the density of a functional F[u]. Then we call

oo

oF . d of
- Ser 2
ou dx" \ Ou,

n=0

the functional derivative of F and

- P
€ = -1)" D, ——
Z =D au(n)
n=0

an Euler operator. D, = :x—"" denotes the nth-order total derivative. O

The actual information of this definition is that the functional derivative ’;—Z can be

replaced by ordinary and partial derivatives if we know the density of the functional
F. Consequently, we can introduce a general derivative, the Euler operator, which is
based on known operations. The essential content of the definition above is that
knowing the density f of a functional F is sufficient to calculate the corresponding
functional derivative. The functional derivative follows just by differentiation of the
density f. An additional merit is the knowledge of the Euler equation for this
functional F. The definition from above is a result of the calculus of variations. Thus,
the Euler derivative can be calculated by an algorithmic procedure.

3.6.4 Algorithm Used in the Calculus of Variations

Our next goal is to define a Mathematica function allowing the calculation of the
Euler derivative. Before we present the function, we briefly repeat the main steps of
the calculus of variations. These steps are intimately related to the definition of the
Euler derivative and are thus the basis of the calculation. The four main steps of the
algorithm are as follows:
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1. Replacement of the dependent function u by its variation u = u + ew.

2. Differentiation of the functional density with respect to the parameter € and
replacement of € by zero after the differentiation.

3. Use the boundary conditions for the test function to eliminate the derivatives in w.

4. The coefficient of the test function w delivers the Euler equation.

These four steps define the calculation of the Euler derivative algorithmically. The
function defined in Marhematica is based on these four steps. When looking at the
definition of the Euler derivative €, we realize that we need at least three pieces of
information to carry out the calculation. First, we should know the density of the
functional F, second the dependent variable, and third the name of the independent
variable. From our discussions of the algorithm, we expect that the highest order of
differentiation should be determined by the function itself. Thus, we define the
function EulerD[] with three necessary arguments. A fourth optional argument allows
influencing the representation of the result of the function. The following lines
contain the code for EulerD[]:

(* --- Euler derivative for ---x)

(* --- one dependent and one independet variable ---%)
Clear [EulerD];

Options[EulerD] = {eXpand » False};

EulerD[density_ , depend , independ ,

options ] :=
Block[{fo, rule, fh, €, w, vy, expa.nd},
(#--- check options ---x)

{expand} = {eXpand} /. {options} /.
Options[EulerD];

(#*--- rule for the variation of u---%)

£0 = Function([x, y[x] + ew[x]];

(#*--- rule for the replacement of
derivatives of w --- «x)

rule = b_. w®) [independ] »
(-1) " Hold [0 (inaepend,n) P17

(*--- step of variation ---%)

fh = density /. depend -» £0 /.
{x - independ, y - depend};

(#--- differentiation with respect to € ---x)
fh = Expand[06.fh /. € > 0];

(*--- transformation to w ---%)

fh = fh /. rule /. w[independ] - 1;

(*---- Euler equations --- #)

If [expand, fh = ReleaseHold[fh], fh]]
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Using this function, it is straightforward to calculate the functional derivative of any
density containing one dependent and one independent variable. We demonstrate the
application of this function by discussing the famous brachistochrone problem
already mentioned in the introduction.

Example 1

Let us discuss the classical problem of the brachystochrone solved by Johann
Bernoulli in 1696. The physical content of this famous problem is the following:
Consider a particle moving in a constant force field. The particle with mass m starts
at rest from some higher point in the force field and moves to some lower point. The
question is which path is selected by the particle to finish the transit in the least
possible time. Let us reduce the problem to the point of deriving the Euler equation.
The dimensionless functional density governing the movement of the particle can be
derived from the integral ¢ = fp 1:2 1/vds where ¢ is time, ds the line element, and v

the velocity. Expressing the line element and the velocity in Cartesian coordinates,
we can express the density of the functional by

1+u? )1/2

2gx ’

S(x, u,uy) = [ (3.40)

where u describes the horizontal coordinate and x the vertical one. The application of
our function EulerD[] on this functional density

1+ (0,ul[x])?
£f= 2— ; £ // LieTraditionalForm
gx

1+ul
gx

V2

gives us

EulerD[£f, u, x, eXpand -» True] // PowerExpand // Simplify //
LieTraditionalForm

u, +ud -2 xu,,

2+/2 /g x3/2 (1+uz)*”?

a second-order ordinary differential equation for the variable u. The solution of this
equation is a cycloid and can be derived by applying Mathematica (cf. Baumann
[1996]). O
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Example 2

Another example of the application of the function EulerD[] is the derivation of the
Euler-Lagrange equation for a mechanical system with one degree of freedom. The
functional density for such a problem is generally given by the Lagrange function £

£ = 1[t, q[t], @' [t]]; £ // LieTraditionalForm

1[t, g, Q]

where g denotes the generalized coordinate of the particle and ¢ the time. The
Euler-Lagrange equation for this general Lagrangian then follows by

EulerD[£, @, t, eXpand -» False]

—Hold[8y.,; 1**V[t, q[t], ¢’ [N +1“"V[t, q[t], q'[t]

representing the left-hand side of the expression

o, d(()L]_O -
ag - @ \ag )T (341)

The disadvantage of this representation is the appearance of the function Hold[] in
the equation. However, if we are only interested in the explicit form of the equations,
we can set the option eXpand—True. Then, the result reads

EulerD[£, ¢, t, eXpand » True] == 0 // LieTraditionalForm

lg-a 1gq0 - 1eaqe ~Lgige Qe ==0

This equation is the general representation of the Euler-Lagrange equation. O

The Euler operator defined above was the result of the variation of a functional. We
demonstrated the calculation for a single dependent variable u = u(x) which was a
function of one independent variable x. The generic case in applications is more
complex. We rarely find systems with only one dependent variable. Thus, we need a
generalization of the formulation considering more than one dependent variable in
the functional F. In the following exposition, we assume that a set of g dependent
variables u® exists. The functional F for such a case is represented by

Flu',u*,u®, .. = f fex,u', . ul, )dx. (3.42)

The variation of the dependent variables is now performed by introducing a set of test
functions w”. Using this set of auxiliary functions, we can represent the variation by

u®* (x;€) = u®* (x;0) +enw* (v), =1,2,3,...,q. (3.43)
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The derivation of the Euler operator proceeds in exactly the same manner as
presented above. We skip the detailed calculations and present only the result:

aF 2 q = n af [e4
= = j: ;{; (-1)" Dy %}w (x)dx. (3.44)

Since the individual variations w® (x) are all independent of each other, the vanishing
of equation (3.23) when evaluated at e=0 requires the separate vanishing of each
expression in curly brackets. Thus, we again can define an Euler operator for each of
the g dependent variables u®.

3.6.5 Euler Operator for ¢ Dependent Variables

In this section, we extend the definition of the Euler derivative to a set of ¢ dependent

variables. Let f= f(x,u',u? ...,ul,u?,...) be the density of the functional

Flu', u?,...]. Then, we define the Euler operator €, as

= d
€, := » (-1)" D, , =12, ..., q .
,,Z"S( )" Dy aur © q (3.45)

which will give us the ath Euler equation when applied to the density f,
€, f=0 (3.46)

The only difference between this definition and the definition for the single variable
is the number of equations contained in (3.46). The occurrence of the g equations in
the theoretical formulas must now be incorporated in our Mathematica definition for
the Euler derivative EulerD[]. The theoretical definition (3.45) only alters our
Mathematica function in a way that, for several dependent variables, a set of Euler
equations results. Thus, we change our Mathematica function in such a way that all
dependent variables are taken into account in the application of the €, operator. We
realize this by including a loop scanning the input list of the dependent variables. The
code of this generalized Euler operator is

EulerD[density , depend_List,
independ_, options_ ] :=
Block[{£f0, fh, e, w, Yy, expand,

euler = {}, wtable},
{expand} = {eXpand} /. {options} /.
Options[EulerD];
wtable = Table([w[i],
{i, 1, Length[depend] }];
£0 = Function[x, y[x] +ew[x]];
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rules[i_] :=
b_. wtable[[i] -’ [independ] :»
(-1)* Hold [ (jndepend, n) b];
Do[
fh = density /. depend[j] -» £0 /.
{x » independ, y - depend[ij],
w - wtable[[j]};
fh = Expand[d,fh /. e » 0] ;
fh = fh /. rules[j] /.
wtable[[j] [independ] - 1;
AppendTo [euler, fh],
{3, 1, Length[depend]}];
If [expand,
euler = ReleaseHold[euler],
euler]]

Let us demonstrate the application of this function by two examples.
Example 1

Assume that we know the functional density of a two-dimensional oscillator system.
Let us further assume that the two coordinates of the oscillators are coupled by a
product. We expect that the two equations of motion follow by applying the Euler
derivative. The Lagrange density of the system reads

l=u[t] v[t] + (Bcult])? + (8. v[t])? - u[t]? -v[t]?;
1l // LieTraditionalForm

-u? +uv-v? +u€ +V€

The corresponding system of second-order equations follows by
EulerD[l, {u, v}, t, eXpand » True] // LieTraditionalForm
{-2u+v-2u¢,¢, u-2v-2ve,¢}

which are the left-hand sides of the Euler-Lagrange equations. O

Note that we used the same name, EulerD[], for the operators € and €, . This sort of
definition is possible in Mathematica and provides a great flexibility in the
application of a single symbol for different operations. Mathematica is able to
distinguish the two different functions by the different arguments.

Example 2

Another example for a two-dimensional Lagrangian is given by the function



The Euler Derivative 71

£f=u[t] v[t] + (8cu[t])? + (8. v[t])? +208.ult] 8, vit];
£ // LieTraditionalForm

uv+u? +2u v +v2

This density is a special model of a Dirac Lagrangian containing the derivatives with
respect to time as a binomial. The corresponding Euler-Lagrange equations read

EulerD[£f, {u, v}, t, eXpand - True] // LieTraditionalForm

{(v-2uc,¢e —2vVe,e, U-2U,¢ -2V, ¢}
representing a coupled system of second-order ordinary differential equations. O

So far, we are able to handle point systems depending on one independent variable.
However, equations occurring in real situations depend on more than one variable.
Thus, we need a generalization of our Euler derivative to more than one independent
variable. In fact, the definitions of an Euler operator can be extended from the
g+1-dimensional case to the g+ p-dimensional case. We define this operator in the
following section.

3.6.6 Euler Operator for g + p Dimensions

Here, we will discuss the general definition of an Euler operator. This sort of
operator, for example, is used to write down field equations such as Maxwell’s
equations, Schrodinger's equation, Euler's equation in hydrodynamics, and many
others.

Definition: (q,p)-Dimensional Euler operator

Let f = f(x, u,) be the density of the functional F[u] with x = (x', ¥*, ..., xP), and
w =, u?, ..., u?) the p- and g-dimensional vectors of the independent and
dependent variables. By u,, we denote all the derivatives with respect to the
independent variables. We call

)
€. = Z(—D)J F (3.47)

the general Euler operator in g dependent and p independent variables. J is a
multi-index J = (J;, ..., jx)With1 < jr <p,k =20.0

Since the functional densities f depend on a finite number of derivatives uj, the
infinite sum in (3.47) is terminated at this upper limit. Again, the Euler equations for
a given functional F[u] follow from the application of €, to F:
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€, F=0, a=1,2,.., 4. (3.48)

From a theoretical point of view, we know the general Euler operator. Our next step
is to make this operation available in Mathematica. We define the generalized Euler
operator by taking into account the different independent variables. The
corresponding definition of EulerD[] for g + p dimensions is given by

Clear [EulerxrD]

EulerD[density , depend_List,
independ_List, options___ ] :=
Block[{£0, fh, e, w, ¥, x$m, expand,

euler = {}, wtable},
{expand} = {eXpand} /. {options} /.
Options[EulexrD];
wtable = Table[w([i],
{i, 1, Length[depend]}];
£f0 = Function[x$m, y+ew];
ruleg[i_] :=
b_. wtable[i] ®—’ eeindepend :»
('1) Flusee(n) Hold [anelete [Thread [ {independ, {n}}], 0] b] ;
Do[
fh = density /. depend[j] -» £0 /.
{x$m -» independ,
y - depend[j] @@independ,
w - wtable[[j] @@independ} ;
£fh = Expand[3.£fh /. e » 0];
fh = fh /. ruleg[3j] /.
wtable[[j] @@independ -» 1;
AppendTo [euler, fh],
{j, 1, Length[depend]}];
If[Not[expand],
euler = ReleaseHold[euler],
euler] ]

We demonstrate the application of the function EulerD[] to the wave equation in 2+1
dimensions and to a system of coupled non-linear diffusion equations.

Example 1

Let us consider a functional in g = 1 and p = 3 variables and assume that the density
is quadratic in the derivatives given by

1
Flu] = Ef(uil (15 X2, X3) —1, —uf )dx dxydxs. (3.49)
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Calculating the variational derivative, we immediately find that the Euler equations
are given by the Laplace equation:

—uxl Xy +ux2,x2 + ux3,x3 = O' (350)

Using the generalized definition of EulerD[], we can reconstruct the result of our
pencil calculation. First, let us define the density by
1
£= ;’ ((axlu[xll x2, "3])2 -

(02 u[xl, %2, x3]1)% - (8,3 u[xl, x2, x3])%};
f // LieTraditionalForm

1
{? (u)zd _uszcz _uiz)}
The application of EulerD[] to f gives

wave = EulerD[f, {u}, {x1, x2, x3}];
Map[# == 0&, Flatten[wave]] // LieTraditionalForm // TableForm

—Ux1,x1 + Ux2,x2 + Ux3,x3 == 0
The resulting equation is known as the wave equation in 2+ 1 dimensions. O
Example 2

In this example, we will consider a system in two field variables (g = 2) and two
independent variables (p = 2). The physical background of this model is the diffusion
of two components in a non-linear medium. The Lagrange density of this field model
has the representation

1 =v[x, t] 6, u[x, t] + 8, u[x, t] 9, v[x, t] +u[x, t]1? v[x, t]3;
1 // LieTraditionalForm

u? v? + vu +uy Vi

The related equations of motion follow by

cnondiffu = EulerD[1l, {u, v}, {x, t}];
Map [# == 0&, cnondiffu] // LieTraditionalForm // TableForm

representing two coupled non-linear diffusion equations for the variables u and v. O
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So far, we discussed differential operators like tangent vectors, prolongations,
Fréchet derivatives, and several versions of Euler derivatives. All these differentials
are non-standard operators with special applications. One of these applications is
symmetry analysis of differential equations. In the following section, we discuss the
central usage of these differential operators. We will show that the Fréchet derivative
is the main link between differential equations and their symmetries.

3.7. Prolongation of Vector Fields

In Lie's theory, a vector field takes a central role in analyzing symmetries of
differential equations. A vector field is closely related to the term of the tangent on a
curve. The following will show the connection between the tangent of a curve and the
related vector field. We will also calculate the prolongation or extension of a vector
field which is instrumental in symmetry analysis. The calculation of the extension of
a vector field is one of the central terms in Lie's theory.

As discussed in Section 3.2, we define a tangent vector as a measure to determine the
variation of a function in all its independent variables. Closely related to the tangent
vector is a vector field. Let us assume that we have a smooth curve C on a manifold
M given in a parametric form by ® : I - M, where [ is a subinterval of R. The
local representation of the curve is thus given by the m coordinates of N by
® = (@' (1), ¥ (¢), ..., D™ (1)), where ¢ is a parameter. The tangent vector of the
curve is given by the derivative with respect to the parameter ¢ and is calculated by
4% "~ An example for this notation is the three-dimensional spiral defined by the

dt
function

z = {2cos[t], 28in[t], Vt}
{2Cos[t], 2Sin[t], Yt}
A graphical representation of this curve is created by

pll = ParametricPlot3D[Flatten[{&,
RGBColor[1, 0, 0]}1, {t, 0, 4},
AxesLabel -» {"x", "y", "z"}]
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2

The tangent vector of the curve is just calculated with the definition by differentiating
@ with respect to the parameter ¢:

tang =96, &

{-2sin[t], 2Cos[t], L }

2+t

The derived tangent vector depends on the location on the curve. In the parametric
representation, we also observe that the tangent vector is infinite in the origin and
becomes smaller and smaller if ¢ increases. If we plot the tangents on different
locations along the curve, we get a field of vectors defining the vector field v. The
function Line[] allows us to graphically represent the vector field in connection with
the curve:

vfield = Table|
{rGBCOlOX[0.000, 0.000, 1.000],

e BN [0

‘\l tang . tang

{t, 0.1, 47, .7}];

Line[{z, 2+

The vector field and the curve are shown below. We combine the plots and the
graphic primitives as follows:

Show[pll, Graphics3D[vfield],
PlotRange - All]
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We observe that the vector field ¥ of our spiral assigns a tangent vector to each point
(x,y, z). The vector field itself varies smoothly from point to point. In Cartesian
coordinates, the vector field of our spiral is given by

-y
* . (3.51)

1

2z

<
1l

This representation is based on the basis vectors of R®. In symmetry analysis of
differential equations, it is convenient to replace the Cartesian basis by a
representation using the partial differentiations with respect to the Cartesian
coordinates. The partial derivatives with respect to the coordinates can be interpreted
as placeholders for the Cartesian basis. Thus, we define a vector field as a differential
operator in local coordinates as follows.

Definition: Vector field

A vector field v on a manifold D is a tangent vector v, to each point x € M varying
smoothly from point to point. In local coordinates, a vector field has the
representation

0 0
+ e

W + g_—m 9" (3.52)

7]
s gl 2
Ve =¢ 9l + &
where the & are smooth functions of the coordinates x. O

The related Mathematica definition is thus given by
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Clear [VectorField];
VectorField[coef_ List,
vars_List] := Block [ {F, k},
Length [coef ]
F = k@e@vars; Z coef[i] Ovarspig F]
i=1

Application in a three-dimensional manifold M with coordinates (x, y, z) gives
var = {x, ¥, z};
coefficients = {vieevar, v2e@var, vieevar}

{vi[x, v, 2], v2[x, vy, 2], v3[x, v, 2]}

VectorField[coefficients, var] // LieTraditionalForm

vlike +v2k, +v3 Kk,

The differential operators are represented in our result by derivatives of an arbitrary
function k with respect to the coordinates contained in the variable var. Let us look at
this example from a more physical point of view, which was the original view of Lie.
Assume that the components of the vector field are the components of a velocity field
of a laminar fluid flow. Then, at each point (x, y, z), the vector v, describes the
velocity of the fluid particles passing through the point x. Thus, we are able to
describe the velocity field of a fluid by using the mathematical term of a vector field.

Now, let us look at our example of the spiral in a different way. Knowing that the
vector field describes the velocity field of the fluid, we may ask for the stream lines
or potential representation of the flow. From a physical point of view, the vector field
is connected with the flow if we consider the laminar behavior. To derive the
potential representation of the flow of our example, we have to consider the
components of the vector field as the defining components of the flow of the
coordinates. The defining equations read

flowEquations =

1
Thread[{aex[e], O.v[e]l, 6. z[€])} == {-¥[€], x[€], Z2rel zle] }]
{x'[e] == -y[e], Y [e] ==x[e], z'[€] == 5 Zl[el J

The right-hand sides of these flow equations are the components of the tangent vector
or the vector field. The flow has to satisfy that the vector X at ¢+ = 0 is reproduced at
the origin. The solution of these equations under the initial conditions x(0) = x,,
¥(0) = yo, 2(0) = zo gives us the flow related to the vector field



78

Derivatives

flow = Simplify|[

DSolve[
Join[flowEquations, {x[0] ==x0, y[0] ==y0, z[0] == z0}],
{x[e]l, v[e]l, z[e]}, €]]

{{zle]l > -/20% +e, x[e] > x0Cos[e] -y0 Sin[e],
y[e] > y0Cos[e] +x08in[e]}, {z[e] »/z0% + ¢,

x[€] » x0 Cos[e] -y0Sin[e], y[e] > y0Cos[e] +x0Sin[e] }}

The result shows that the flow of our vector field is given by a rotation in the
(x, y)-plane and a special translation along the z direction. This flow describes the
spiral we started from in a different representation. We must remember that
(%0, Yo, Zo) is an arbitrary position of the three-dimensional space. This initial vector
is transformed to another position if we change the parameter €. This transformation
acts like the flow in a fluid. Generalizing this example, we can define a flow of a
vector field by the following:

Definition: Flow of a vector field

If v is a vector field, we call the integral curve passing through a point X in the
manifold N the flow ®(X, ) generated by v. O

The flow of a vector field has the properties
P(O(Z, €), 0) = O(X, € + ), Xxem, (3.53)

meaning that the application of the flow on the same point X of M at different values
of € results in the flow at X at a location of the sum in € and 8. Another property the
flow has to satisfy is the representation of X at the origin of €; that is, at € = 0, we
have the identity

®,0) = X. (3.54)

Equation (3.54) describes the identity of the flow for a vanishing parameter e
reproducing the original vector X. Comparing the two properties with the features
discussed in Chapter 1 on groups, we see that the flow generated by a vector field ¥
has some characteristics in common with groups. The derivation of the flow or the
one-parameter group generated by a given vector field v is known as exponentiation
of the vector field and represented by the notation

e’ = 83, 6). (3.55)

In the following, we will denote the flow by ®(X, €). As already discussed, the flow is
a result from the solution of a system of ordinary differential equations related to the
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vector field v. The vector field v is the generator; precisely, the infinitesimal
generator of the transformation. Expanding the flow around X =0, we find the
infinitesimal representation

DX, €) = X + €£ (D) + 0€), (3.56)

where € = (¢1, &, ..., f,,) are the expansion coefficients of the vector field v. The
related determining equations of the flow also known as characteristic equations are
given by

dx; (€)
de

=¢&i(x(), i=12,..,n (3.57)

with the initial condition X (e = 0) = X. Above, we discussed the spiral as an example
in three dimensions M=R>. Several other examples will demonstrate the application
of the theoretical considerations connecting the flow and the vector field on a
manifold.

Example 1

Another example describing a one-dimensional translation in M=R is given by the
vector field v = d,. The corresponding characteristic equation for the coordinate x
reads

onedim = 0. x[e] ==1

x [e] == 1

This equation was created by applying equation (3.57) with &, = 1. The solution of
this simple first-order ODE under the initial condition x(e = 0) = x representing the
identity (3.54) is

flowOnedim = DSolve[{onedim, x[0] == %0}, x[€], €] /. ®x0 > x

{{x[e] »x+€}}

which is just a translation of the coordinate. We define the flow ® in Mathematica by
the relation

B[x_, €_] :=x+€

Using this representation of the flow, we can check the properties (3.53) and (3.54).
The combination of two translations € and J satisfy the condition

T[B[x, €], 6] == & [x, €+ 5]

True
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representing the closure relation of the group of translations. The second property
(3.54), the identity of the group, gives

[x, 0] ==x

True

Knowing the identity of the group, we are able to construct the inverse element of the
group. The inverse element of the associated group follows from the relation

= 3[InverseFunction[Z[x, €]], €]
==3[B[x, -€], €]

€ + InverseFunction(x+€] ==x

Solve|[e + InverseFunction[x + €] == x, InverseFunction[x + €]]

{{InverseFunction[x+€] > x-€}}

The found solution represents an inverse translation if we assume that € > 0. The
associativity of the underlying group follows from

T[B[2[%x, €], 6], w] ==
s[2[B[%, 5], W], €] ==
[e[2[%, 0], €], b]

True

We demonstrated for the vector field ¥ = d,, generating a translation in x, that the
corresponding flow possesses all properties of a group. The symmetry of translation
is one of those symmetries frequently encountered in symmetry analysis. O

Example 2

Another one-dimensional example in I = R also possessing the group properties is
given by the vector field V= xd,. From equation (3.57), the corresponding
characteristic equation is

scale = 9. x[e] ==x[€]
x' [e] == x[€]
This equation allows the solution

flowScale = DSolve[ {scale, x[0] == x0}, x[€], €] /. x0 » x

{{x[€] » E° x}}
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The result defines a scaling transformation of the variable x. We consider the factor
E* as a constant greater than or less than 1 depending on the sign of e. For positive €,
the original value of x is enlarged, and for negative values of €, x is reduced in its
value. We can check the two basic properties of the closure and the identity of the
group by defining the flow as

T[x_, €_] :=xExp[e]
The closure of the scaling group now reads
Z[=[x, €], 6] ==2[x, €+ 6]
True
and the identity is given by
T[x, 0] ==x

True

The two relations demonstrate that the transformation group of scaling is closed and
contains the identity transformation. O

Example 3

In this example, we will reverse our calculations. Knowing the flow, we will derive
the related vector field. A global transformation commonly encountered in physics
and mathematics is a rotation. To simplify things, let us consider the rotation of an
object in the plane. The corresponding flow of this transformation is given by

&[x_,y , €] := {xCos[e] -ySin[e], ®xSin[e] +yCos[€]}

Knowing the flow of a group, we are able to calculate the infinitesimal representation
of the flow by calculating the vector field V. According to equations (3.55) and (3.56),
the infinitesimals & of the flow define the coefficients of the vector field. For the
present example, in two dimensions the vector field has the representation

v = fl (.X, y)ax +§2 (x’ y)ay . (358)

The infinitesimals are calculated by the relation

g= L2 3.59
" de leo (3.59)

From the flow for rotations, we get the infinitesimals

§=a‘§[xl Y., E] /. €0

{-v. x}
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Thus, the vector field ¥ of plane rotations has the representation v = —yd, + xd,.
Again, we can reverse our considerations and calculate the flow starting from the
vector field. The flow or the global group transformation follow by solving the
characteristic equations, which are a system of ordinary differential equations.

rotation = {3.x[e] == —:'r[G] r Ocy[e] ==x[e]}
{x'[€] == -y[e], ¥y [€] ==x[e]}
The related flow follows by solving these equations:

flow = Simplify|[
DSolve[Join[rotation,
{x[0] ==x0, y[0] ==¥0}], {x[€], y[el}, €1] /.
{x0 > x, yO-> vy}

{{x[€] »xCos[€] -y Sin[e], y[e] »yCos[e] +xSin[e]}}

reproducing the relation with which we started. O

Example 4

As a final example, let us consider the global group action of a flow containing
rational expressions which are related to a projective group:

Differentiating this expression by using equation (3.59), we find the infinitesimals of
the flow to be

£=0.8[x,y,€]/.€-0

{-X*y, ¥*}
which gives us the vector field in the representation ¥ = —x> y 8, + y? d,. Knowing
the infinitesimals, we are able to graphically represent the vector field. A plot of the

vector field corresponding to the rational flow is given below. The package
GraphicsPlotField" is useful for the representation of vector fields.

<< "Graphics PlotField' "

PlotVectorField[&, {x, -2, 2},
{¥, -2, 2}, ColorFunction - Hue]
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So far, the discussion of flows and the related vector fields was restricted to a set of
independent coordinates. Let us now ask the question: What happens if we apply the
flow concept to a function f depending on a set of independent coordinates? Let us
assume that v is a vector field on the manifold M and f: M — R is a smooth function.
Our intention is to get a formula describing the changes of f if we apply the
transformation ® on the independent variables. To simplify things and make them
easier to read in Mathematica, we restrict our considerations to the case M= R. In
local coordinates, the vector field is thus given by v = & (x) d;. Now, let us examine
the behavior of the function f if the flow ® is applied on the independent variable x.
After the transformation of the independent variables, we calculate the derivative of
f with respect to the parameter e:

Clear[&, £]

O f[2[x, €]]

fla[x, e]] 8%V [x, €]
The result is an expression containing derivatives of f and ®. From our
considerations above, we know that the flow ® at € = 0 has to represent the identity.

We also know that the first derivative of the flow at e=0 is a representation of the
infinitesimals £. We use these conditions to define the transformation rule

rulel = {&[x_, 0] »x, 3% [x_, 0] :» £[x]}

{&[x_, 0] »x, 81 [x_, 0] = E[x])
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The second element of this list of delayed rules introduces an abbreviation for the
coefficients of the vector field £. If we again evaluate the differentiation of the
function f at € = 0 and use rulel, we find

9. £[®[x, €]] /. € » 0 /. rulel

&[x] £ [x]

This relation can be identified with the application of the vector field v on f;
i,V f(x) = &(x) 0y f(x). The presented calculation shows that the notation for a
vector field is generally useful for simplifying the representation of the infinitesimal
flow. The one-dimensional example can be generalized to higher dimensions. The
vector field V acts as a first-order partial differential operator on real functions f on
DU On the other hand, we can expand the function f containing the transformed
arguments in a Taylor series around € = 0. The result of this sort of calculation is

Series[f[Z[x, €]], {€, 0, 1}] /. rulel

f(x] +&[x] £ [x]e+0[€]?

representing the infinitesimal change of f under the flow generated by the vector
field V. We can summarize that the flow changes the function f in the following way:

f(@®(x, €) = f(x) + €V f(x) + OE), (3.60)

where Vf gives the infinitesimal change in the function f under the flow generated
by v.

So far, we discussed the meaning of a vector field in a manifold M of independent
variables. We observed that the ensemble of the tangent vectors at different positions
defines the vector field. We also introduced the vector field by replacing the
Cartesian basis with a differential basis. The examination of a function under the
action of the flow demonstrated that the transformed function is represented by the
function itself and the infinitesimal change of the function caused by the application
of the vector field on the function. Up to now, we assumed in our discussions that the
variables in the manifold are independent of each other. Let us now assume that we
have a manifold containing also some dependent variables. Here, the question arises
of how to transform the derivatives contained in such a manifold. This is closely
related to the problem of prolonging or extending a vector field.

We discussed in Section 3.4 how to extend or prolong a manifold. The procedure in a
nutshell is that we add new coordinates, representing the derivatives, to the manifold.
On the other hand, if we extend the manifold by new coordinates, we naturally have
to extend the vector field by these new coordinates. We can write such an extension
symbolically by
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PV =50, +¢" 0 +¢7 0 + -, (.61)

In expression (3.61), we divided the variables of the manifold D1 into two sets: one
known as independent variables X = (x;, X, ..., X,) and the other known as
dependent variables % = (u', u?, ..., u?). ¢ denotes the symbol of the transformed
derivatives uf=adu® /d x;. The difficulty with relation (3.61) at the moment is that we
do not know how to calculate the coefficients ¢ of the extension. However, to get a
feeling of how derivatives change under a transformation, let us go back to the basics
of calculus.

Assume that we have to examine the transformations of a curve u = f(x) in one
independent variable x and one dependent variable u(x). The transformation of this
curve is given by two rules defining the change of the original variables x and u to the
new variables X = B(x, u) and U = ®(x, u), respectively. In Mathematica, we define
this transformation by the following set of rules:

Clear|[U, X, &, &E];
transformation = {X - Function[{x, u}, E[x, u[x]]],
U - Function[{x, u}, 3[x, u[x]]]};

[

where the transforming functions E and ® are given functions of the original
variables x and u. Applying the transformation on the curve u = f(x), a new
representation U = F(X) results. The variables U and X in the new representation
depend on the variables of the old representation (x, #). Our intention is to examine
the derivative of the curve in the new coordinates. The calculation of the derivative of
U in this new coordinate system needs to take into account the changes of all the new
variables. These changes are best represented if we use the total derivative to realize
the derivative. The slope of the curve in the new coordinates is calculated at each
point (x, u) of the old coordinate system by
Dt [U[x, u]]
U= ———————;U // LieTraditionalForm
Dt [X[x, u]]
Dt [u] U, + Dt [x] U,
Dt [u] X, + Dt [x] X,

The result shows that the derivative in the new coordinate system is a function of the
old variables. If we explicitly express these dependencies by the transformations
connecting the old and the new coordinates, we get

U =U /. transformation; U’ // LieTraditionalForm

u, &, + Bx

= =
Uy &y + &y
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This is a basic result from calculus and fundamental for our further examinations.
The formula above says that a transformed derivative itself becomes a function of the
transformation in the new coordinates. The connecting link between our current
examinations and the prolongation of the vector field are the transformations E and ®
which represent the flow of the related vector field. The variable U' in our notation is
nothing else than the representation of the symbol ®'*. This symbol was introduced in
relation (3.61) for the extended vector field. The difference between the
considerations on vector fields and the representation of the extension in calculus is
that the latter does not depend on a parameter €. However, this dependence is not
essential, as we will show in a moment. We can actually assume that the
transformations Z and ® depend on e. The definition of these one-parameter
transformations reads

transformation = {X - Function|[{x, u}, E[x, u[x], €]1],
U - Function|[{x, u}, &[x, u[x], €]]};

These transformations do not change the previous result. The relations for the
extended vector field are derived if we replace the original transformations by the
e-dependent transformations. Then, the derivative in new coordinates gets the form
Dt [U[x, u]]
U = —————— /. transformation; U’ // LieTraditionalForm
Dt [X[x, u]]
u, &, + 3,

ux Sy + Sy

where € is just a parameter in this expression. This representation of the
transformation is a general transformation determined by the arbitrary functions =
and ®. Lie demonstrated that this general transformation can be replaced by a much
simpler version, the so-called infinitesimal transformation. We know from our
considerations above that the infinitesimal transformations of the manifold M are

given by

infinitesimalTransformation =
{X > Function[{x, u}, x+€ §[x, u[x]]],
U - Function[{x, u}, u[x] +e ¢[x, u[x]]1]};

Using these infinitesimal transformations of the variables, the first derivative in the
new coordinate system becomes
Dt [U[x, u]]
= ——————— /. infinitesimalTransformation;
Dt [X[x, u]]
U’ // LieTraditionalForm

7

Uy + € (Ux Gu + Ox)
1+e (ux &y + &x)




Prolongation of Vector Fields 87

Remembering the fact that in symmetry analysis, an infinitesimal representation is
based on the linear part of the parameter €, we are able to reduce this rational
expression to a simpler form by expanding U' around € =0

U’ = Expand[Series[U, {€, 0, 1}]]; U // LieTraditionalForm

Uy + (ux (_ux §u_§x) + Ux d)u +¢x) €+O[€]2

The result is that the derivative U’ is given by the old derivative u’ plus terms
characteristic of the transformation. This expression represents the infinitesimal
transformation of the first derivative depending on the derivatives of the
infinitesimals ¢ and ¢ for the independent and dependent variables. The
representation of the prolonged vector field is thus given by

prolongation = AppendTo[infinitesimalTransformation,
Uprime -» Function[{x, u}, w] /. w-> (Normal[U'] /.u[x] »u)]

{X » Function[({x, u}, x+e &[x, u(x]]],
U - Function[{x, u}, u[x] +e ¢[x, ul(x]1],
Uprime -» Function[{x, u}, v [x] +€ (w [x] 6%V [x, u] +

u [x] (-u'[x] €9 [x, u] -€PY [x, ul) + ¢ [x, ul)}

The variable prolongation contains the infinitesimal transformations for the
independent and dependent variables x and u and the first prolongation ¢' of this
manifold. Knowing the infinitesimal transformations of the variables, we are able to
write down the corresponding vector field. The once extended vector field thus
becomes

vectorField[£f_] :=§[x, u]l 6, £+ ¢[x, u] 6, £+
Coefficient [Normal[U'], €] 6, £

The application of this function on an auxiliary function f depending on the variables
(x, u, p) gives us the first extended vector field in its general form:

vectorField[£f([x, u, p]] // LieTraditionalForm

d’fu"’gfx"'fp (ux (_uxgu_éx) +ux¢u+¢x)

We changed the notation slightly by introducing the variable p for the first derivative
in u. This substitution simplifies the representation and clarifies the fact that u, is
considered as another coordinate of the manifold M. The result shows that the first
extended vector field depends in a characteristic way on the derivatives of the
dependent variables as well as on the first derivatives of the flow components £ and
¢. Recalling the steps of the calculation for deriving the first extension of the vector
field, we can go to the next order in the extension. The steps we needed in the
calculation were as follows:
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1. Replace the old differentials by the new differentials.
2. Use the infinitesimal representation of the transformations.

3. Expand the result around € = 0 up to first order.

The second extension of the vector field follows by using the same steps but
incorporates the results of the first extension. The second extension is calculated by
the formula

v =

Oy (”“_["L"ﬂ /. :i.nfinitesiml’l.‘ransfomation)
Dt [X[x,u]]

Normal[Series[ T = /.
L X[%x, u[x

infinitesimalTransformation, {e, 0, 1}] ] ;
U” // LieTraditionalForm

ux,x"’e (2 (_ux §u_§x) ux,x+¢u ux,x_
ux (§U ux,x +ux §X,U +ux <uX §u,u + §x,u) + éx,x) + ux ¢x,u +
Ux (ux ¢u,u +¢X,u) ""bx,x)

The result of the calculation contains a large number of terms. However, looking at
the first terms of the result, we observe that the second derivative, u, ,, is altered by a
sum of terms containing derivatives of the infinitesimals & and ¢. The components of
this expression are derivatives of the dependent variable and the flows & and ¢ up to
second order. The twice extended vector field thus follows by

Clear[vectorField];

vectorField[£f_] :=&§[x, u]l 0, £f+¢[x, u]l] 6, £+
Coefficient [Normal[U'], €] 6, £ +
Coefficient [U”, €] 9, £

Applied to an auxiliary function, we get the expression

vectorField[£f[x, u, P, q]] // LieTraditionalForm

¢fu+§fx+fp (ux (7ux§u’§x)+ux¢u+¢x)+fq (2 (7ux§u_§x)ux,x+
¢u Ux,x — Ux (gu Uy, x + Ux éx,u + Uy (ux gu,u + §x,u) + §x,x) +
Uy Gx,u + Ux (Ux Gu,u + Ex,u) + Bx,x)

In conclusion, the second extension of the vector field v follows from the first
extension which was created using the infinitesimals itself. If we are interested in the
third extension, we need the second and the first extension. In other words, the higher
extensions of the vector field are recursively defined. This recursive definition was
first observed by Lie and Engel [1888]. Today, the extensions are calculated by a
general formula combining all the discussed steps in a nutshell. The prolongation
formula in its modern form is given by
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q

Ao a

¥y =9+ Zd){,(x, Ugy) = (3.62)
uy

a=1 J

The second summation in this expression extends to all multi-indices

J = (jys ..., j1) with 1 £ j; <p, 1 <1< k. The kth expansion coefficients ¢ of the

prolongation are recursively given by

P P
¢ (x, ug) = D, [¢a —Zfi M?] + Zfi uj ;s (3.63)
i=1 i=1
where uf = 6u”/0x; and uj; = ou§ /3 x;. This step corresponds to the recursion

discussed above. For a detailed discussion of the recursive prolongation formula, see,
e.g., Bluman and Kumei [1989], Ibragimov [1985], and Olver [1986].

The problem of such a complicated recursive calculation of the prolongation is that
for the kth-order calculation, we always need to know the k — 1 previous results. If k
is a large number, this can be very time- and memory-consuming if done by
computer, not to mention the labor of a pencil calculation. Thus, we need a method
which simplifies the calculation and makes it efficient for a computer. Actually, there
exists a way to derive the extensions of a vector field much quicker.

The calculation of the prolongation of a vector field is simplified if we keep the
following two points in mind. First, there exists a representation of the infinitesimals
which simplifies the transformations. This representation is known as the
characteristics. Second, the differentiation process of the prolongation can be
eliminated by using the Fréchet derivative. The combination of these two tools
provides us with a procedure to overcome the recursive definition of the prolongation.

Before discussing the implementation of the prolongation in Mathematica, let us
briefly show the equivalence of both formulations. To fix terms, we call the first
procedure the recursive prolongation formula and the second, the Fréchet
prolongation. The first step to prove the equivalence of the two methods is the
introduction of the characteristics of a vector field. The characteristic function of a
general vector field is defined by (cf. Olver [1986])

p
ou”
Oy = ¢o — th W, a=1,2,...,q. (3.64)
i=1
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If we assume that the characteristics Q depend on the dependent variables and its
derivatives, we can write down a relation connecting the prolongation of a function A
with the Fréchet derivative. The function A is a member of the extended manifold and
depends on derivatives up to kth order. The vector field Vv, based on the
characteristics Q allows us the inclusion of first-order derivatives of u in the
transformation. The connection between the prolongation of vy and the Fréchet
derivative is given by

pr¥%(8) = DA(0). (3.65)
This relation follows from the definition of the prolongation of the vector field v,
pr? ¥ Z >.D; 0, ——, (3.66)
a=1 J

where, in general, Q, = Q, () depends on derivatives up to order k =0, 1, .... If,
in addition, we use the definition of the Fréchet derivative, introduced in Section 3.5,
we are able to reproduce equation (3.65).

Relations (3.63) allows us to calculate the kth expansion coefficient of the
prolongation by a total differentiation

P
gl =D;Qy + ) &1, (3.67)
i=1

Substituting this expression for the general representation of the prolongation
formula (3.62) and rearranging terms in the sums, we get

q
pr¥ v ZZDJ Qo 5o +Z§. a’i szl i ) (3.68)

a=1 J

A comparison of the terms in curly brackets with the definition of the total derivative

D f = hl ZZ u?, a . (3.69)

a=1 J

shows that we can replace the prolongation (3.62) by

P
pr® v = pr® Vo + Zé‘i D;, (3.70)

i=1
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where we used definition (3.66) to express the kth prolongation of vgy. If we now use
relation (3.65), we can express the prolongation of a vector field ¥ by the Fréchet
derivative as

P
PP = D(Q) + Zé‘l D;. (3.71)

i=1

Thus, we demonstrated the equivalence of the two methods. Both procedures are
available in the package MathLie. The advantage of relation (3.71) is that the
prolongation of a vector field v is free of any recursion. If we replace the
characteristics by their infinitesimal representations, we get a formula which contains
all the necessary information:

& D;. (3.72)

ax; -

P
i=1

pr? v = D,(Q) 0u=6-37" & a +
Relation (3.72) seems very complicated at first glance. This formula is awkward if
we do the calculation by hand. However, using a computer, (3.72) is just the
expression we need. From a computational point of view, equation (3.72) contains
simple operations. These operations are differentiation, summation, and a
substitution. Each one of these operations is carried out by a computer very
efficiently. Another advantage of calculating the prolongation of a vector field using
(3.72) is the flexibility of its application. We can also use this formula to calculate the

prolongation in connection with Lie-Bidcklund symmetries. This type of symmetries
is discussed in Chapter 9.

The implementation of the prolongation follows formula (3.72) very closely. The
following lines show how the prolongation is implemented in MathLie. The
prolongation function is based on the function FrechetD[]. For the correct work of
Prolongation([], it is thus necessary that the Fréchet derivative is also available. The
function Prolongation[] is based on the differentiation and substitutions as
represented in (3.72). The function itself needs three arguments. The first argument
represents the function on which the prolongation is applied. The second and third
arguments contain the sets of dependent and independent variables of the manifold.
All three arguments are lists. The result is a general expression of the infinitesimals
representing the kth prolongation. The order k of the prolongation is determined by
the function itself. The symbolic names for the infinitesimals &; and ¢, are also
created by the function itself.

Clear[Prolongation];
Prolongation[equations_List,
depend_List, independ_List] :=
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Block[{Depend = {}, vars, test = {},
eta = {}, subrule = {}, prol = {},
prolong, mainrule, xyzt, wxc, uvw},

Do [
AppendTo [Depend,
depend[i] @@independ],
{i, 1, Length[depend]}];
vars = Flatten[Join[independ, Depend]];
Do [AppendTo|[eta,
Length[independ]
phi[i]eevars - Z xi[j] @@vars O;,sepenaps] Depend|[i]]] ’
3=1
{i, 1, Length[depend] }] 3
Do [AppendTo[test,
Unique["w$t"]],
{i, 1, Length[Depend]}];
mainrule = wxc - Function[xyzt, uvw];
Do [AppendTo [subrule, mainrule /.
{wxc -» test[i],
uvw - eta[i],
xyzt -» independ}],
{i, 1, Length[eta]}];
prolong = FrechetD[equations,
depend, independ, test];
prolong = Expand[prolong /. subrule];
prolong = Apply[Plus, prolong, 1];
Do[
AppendTo [prol ’
Expand [prolongl[j]l +
Length [independ]
xi[i]@@vars Oinaepenari] equations] ] N
i=1
{j, 1, Length[prolong]}];
Flatten|[prol] ]

Now, we can use this function to check our interactive calculations given above. By
applying the function Prolongation[] to an arbitrary function depending on one
independent and one dependent variable and its derivative, we can check our
calculations. Since the function Prolongation[] uses the Fréchet derivative in the
calculation, it is not necessary to specify the highest order of derivatives. The
function automatically detects the order of the derivative. The application of
Prolongation[] to the simple example discussed above gives us

prolongation = Prolongation[{f[x, u[x], 8,u[x]]}, {u}, {x}]
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{u [x] phi[1]°" [x, u[x]] £°°Y [x, u[x], u [x]] -
u [x]? xi[1]99Y [x, u[x]] £%Y [x, u[x], u [x]] +
phi[1] % [x, u[x]] £ [x, u[x], u' [x]] -
w[x] xi[1]®% [x, u[x]] £0%Y [x, u[x], w [x]] +
phi[1] [x, u(x]] £"% [x, u[x], u' [x]] +
xi[1][x, u[x]] £2%% [x, ulx], v [x]]}

If we compare this result with the result obtained by the interactive calculation, we
detect a complete equivalence. The result created by Mathematica is difficult to read.
The prolongation becomes more readable if we apply the function
LieTraditionalForm[] to the result of the above calculation.

prolongation // LieTraditionalForm

{£x &+ fu d1 - £, UL (E1), — Fu Ve (E1), + Fuy W (P1), + £u, (1))

The function LieTraditionalForm[] uses the variable TraditionalLieForm containing
rules to transform dependent variables and their derivatives to a shorthand notation.
This representation uses subscripts to denote differentiations and suppresses the
arguments of the functions. The result of the transformation is shorter and contains
the information in condensed form. The representation reminds one of the traditional
mathematical notation but is not usable by Mathematica. An abbreviation for
LieTraditionalForm[] is LTF[]. This function additionally represents the argument as
equations in a table. Both functions deliver easy-to-read output but are inconsistent
with Mathematica's notation. However, we can solve this notational inconsistency for
Mathematica by storing the result of Prolongation[] into the variable prolongation
and suppressing the output. Afterward, we apply the rules TraditionalLieForm to that
variable. In this way, we gain both a consistent representation in Mathematica and a
condensed representation of the result. We will demonstrate this procedure by
calculating higher-order prolongations. We can use the function Prolongation[] in a
manner as simple as in the previous example. The result for the second extension of a
vector field reads

secondProlongation =
Prolongation[{£f[x, u[x], O, 1) ulx], 9,2 ulx]]1},
{u}, {x}]; secondProlongation // LieTraditionalForm

{£x &1 + £u &1 = £u, Wl (1), — fuy Ux (E1)y + £y Ux (62), + £u (d2), -
3 fupn Ux (§1) 4 Wox = 2 Fupye (€1) 5 U + Fupye (D2) Uy —
Furn U (1) g =2 Fugy U (E1) o n = Fup Ux (1) i *
Fux Yo (D1) uu +2 Fupr U (B1) u + Funn (D1) 5,5}

Ux, x

Applying the transformation to the variable secondProlongation delivers the
shorthand notation. Multiple differentiations of the dependent variables are denoted
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by subscripts separated by commas. However, the variable secondProlongation
contains the full Mathematica representation of the result. We can display the
Mathematica expression by

secondProlongation

{u” [x] phi[1]®" [x, u[x]] £°°%Y [x, u[x], u [x], v [x]] -
3u [x] u’ [x] xi[1] Y [x, u[x]] £9%%D [x, u[x], u [x], u” [x]] +
u' [x]% phi[1]%? [x, u[x]] £°°% [x, u[x], u [x], u" [x]] -
uw [x]® xi[1]9% [x, u[x]] £°°%Y [x, u[x], u [x], v [x]] -
20’ [x] xi[1]1% 9 [x, u[x]] £0%%Y [x, u[x], u [x], u’ [x]] +
2w [x] phi[1] ™Y [x, u[x]] £°°%%Y [x, u[x], u [x], u” [ 11 -
2w [x]? xi[1] &P [x, u[x]] £0%%Y [x, u[x], v [x], u’ [x]] +
phi[1]®% [x, u[x]] £°%%Y [x, u[x], w [x], u [x]] -

w[x] xi[1]1%9 [x, u[x]] £9°%%Y [x, u[x], v [x], w [x]] +
u [x] phi[1] Y [x, u[x]] £ [x, u[x], u' [x], u'[x]] -
wx]?xi[1] %Y [x, u[x]] £0%19 [x, u[x], W [x], w [x]]+
phi[1] % [x, u[x]] £©%*% [x, u[x], u' [x], v [x]] -

w [x] xi[1]%% [x, u[x]] £©%19 [x, u[x], v [x], u [x]] +
phi[1][x, u[x]] £°%%9 [x, u[x], u' [x], u" [x]] +
xi[1][x, u[x]] €409 [x, ulx], u [x], u” [x]]}

The application of a prolonged vector field to a differential expression is used
extensively in the symmetry analysis of differential equations. Let us demonstrate the
application of this function by two examples.

Example 1

Assume that we know that the infinitesimal flow is given by a rotation in the plane:

flows = {xi[1] » Function[{x, v}, -y[x]],
phi[1l] -» Function[{x, ¥}, x]};

We are interested in the behavior of the differential expression A = 8% y(x)/dx*
under this kind of flow. First, we will calculate the prolongation of A by using the
function Prolongation[].

prol2 = Prolongation|[ {0,z ¥[x]}, {¥}, {x}];
prol2 // LieTraditionalForm

(=2 (&), Yor =3 ¥x (1), Yew + (81), Yex = ¥ (E1) 4 -
2Y% (E1)py - Y2 (1) gy * (81) 0 r +2¥x (d1) 4y +¥2 (d1),.,)

The result is an expression containing a combination of derivatives for the
infinitesimals &; and ¢, and the dependent variables. The prolongation of the vector
field v is simplified if we insert the known representation of the flow
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prol2 /. y[x] »y /. flows // LieTraditionalForm

{3 ¥x ¥x,x}

The result is that the prolongation of y" under a rotation results into an expression
which is closely related to the original expression A. We will later show that the
result derived is a consequence of the symmetry group of the equation y" = 0. O

Example 2

Another example invariant under the given flow is given by the following example.
The differential expression A reads A = y"(1+ y? )_3/2. The corresponding

prolongation of A under the condition of the symmetry of rotation is

Simplify [Prolongat:i.on [

{Bix,2y ¥ [%] (1 + (Bx¥[x])?)
:Elows]

-3/2

oo}, ()] /. yvIx] v /.

{0}

-3/2

The result shows that the prolongation of the expression y,.(1 +y?) under an

infinitesimal rotations vanishes. O

So far, we discussed the basic tools of symmetry analysis. The following chapters
will show you how these tools are used to find the symmetries of functions and
differential equations.



Symmetries of Ordinary
Differential Equations

4.1. Introduction

Let us start with the following question. Suppose you have to solve an ordinary
differential equation of second order like

equationl =3, ,,u[x] - (x~-u[x]) O,u[x] ==0;
equationl // LieTraditionalForm

_(_u+x) Uy + Ux,x == 0

How can we proceed to find the solution of this simple-looking equation? The first
idea is to use Mathematica to solve the equation. If we apply DSolve[] to the
equation, we get the answer

solution = DSolve[equationl, u, x]
DSolve[- (x-u[x]) u [x] +u”[x] == 0, u, x]
After this dissatisfying result, you may check your knowledge as to whether the

differential equation belongs to a class you know. Or you may try to find a
transformation which will put the differential equation into a standard form. If you
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are not successful, you perhaps look up a table of standard equations or you try to
make some ansatz to find a solution. If none of your tasks solved the problem, you
have to leave it unsolved. But you may have an uneasy feeling that there is a method
you may have overlooked or of which you are unaware.

In this section, we will show you a procedure which perhaps solves your problem and
which is simple in its application when MatrhLie is used as a tool. The method we will
present is a rather ancient method invented at the end of the last century by the
Norwegian mathematician Sophus Lie. He produced a tremendous work on
symmetries which is applied not only to solve differential equations but also to fields
like quantum mechanics, function theory, perturbation theory, etc. In this chapter, we
restrict our considerations to ordinary differential equations. In Chapter 5, we will
discuss partial differential equations, too.

The story of symmetry analysis started in the middle of the 19th century when Lie
and Klein met in Berlin. Both mathematicians contributed a lot to the theory of
symmetries. Lie invented his famous work to examine symmetries in connection with
algebraic and differential equations. In his Gottinger program, Klein developed the
discrete and algebraic parts of the application of symmetries on functions. Lie
merged into the large field of differential equations which was very useful for
classifying the differential equations in a new way. The theory developed by Lie is
very laborious if done by hand. This was one of the reasons why the application of
this theory disappeared for solving practical problems. Very few people used Lie’s
procedure to examine their differential equations. One of these was Birkhoff [1950]
who in the 1950s applied the theory to hydrodynamic problems. In recent years, more
and more attention was paid to the theory of Lie as one of the rare methods to deliver
solutions, especially for non-linear differential equations. Today, Lie’s procedure is
accessible for a broad application if the computational power of computer algebra is
used. The very extended algebraic calculations today are carried out by computers. In
the past 20 years, there has been a tremendous increase of computer power and of the
development of symbolic languages, allowing the problem to be tackled in an even
simpler way. A summary of the development of symbolic programs was recently
given by Hereman [1994, 1996]. One of these symbolic languages usable for the
implementation of Lie’s procedure is Mathematica. Mathematica with its powerful
matching procedures is well fitted as a tool to carry out calculations used in Lie’s
theory.

Lie’s main idea was that the symmetry properties of a differential equation can be
used to solve the equation. How this works and how Lie’s theory is used within
MathLie will be discussed in the following sections.
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4.2. Symmetry Transformations of Functions

Before we apply Lie’s method to ordinary differential equations, we will briefly
discuss symmetries in connection with functions. This section serves to introduce the
main concepts of the theory occurring throughout the book.

4.2.1 Symmetries

One of the most remarkable discoveries of Lie in the theory of groups was the
invariance of a function under some transformations. When dealing with differential
equations, one very often tries to simplify the equation by an appropriate change of
variables. This transformation generally involves both the independent and the
dependent variables. In Mathematica, we can represent such transformations by the
following list of rules:

rulel = {x » Function[{x, u}, X[x, ul],
u - Function[{x, u}, U[x, ull}

{x > Function[{x, u}, X[x, u]], u- Function[{x, u}, U[x, ul]]}

This kind of transformation involving the original independent and dependent
variables (x,u) is usually called a point transformation, meaning that a point (x, u) of
the manifold M is transformed into another point (X, U). A point transformation
takes only into account a change of the coordinates. The point transformations
actually considered by Lie were transformations depending on at least one parameter
€. As we will see, the parameter € is the parameter of the corresponding group. Thus,
we call € the group parameter. A one-parameter transformation is thus given by

rule2 = {x -» Function[{x, u, €}, X[x, u, €]],
u - Function[{x, u, €}, U[x, u, €]]}

{x > Function[{x, u, €}, X[x, u, €]],
u - Function[{x, u, €}, U[x, u, €]]}

Such transformations have the following properties: They are invertible if the
corresponding Jacobi determinant exists, repeated application yields a transformation
of the same type, and the identity of the transformation for € = 0 exists. As we know
from Chapter 2, these three properties are the basis of a Lie group. They can be
summarized in the definition of symmetry transformations.
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Definition: Symmetry transformation

A set G of transformations given by
x - X(x, u, e,
u-U(x, u, €

is a one-parameter group if it contains the identical transformation I = 7, and
includes the inverse Te"l and the composition 7, ® T5 € G. By a suitable choice of
the group parameter €, the main group property 7. ® Tz € G can be written

T. ® Tg = Teip, 4.1

that is,
X(X(x, u, €, Ulx,u, €), B) = X(x, u, €+ ), 4.2)
U(X(x, u,€), Ux, u, €), B) = U(x, u, e+ ). (4.3)

In particular applications, the two conditions hold only for sufficiently small values
of € and . There, we arrive at what is called a local one-parameter group G or an
infinitesimal group. O

These simple properties ensure that the transformations given in rule2 form a
one-parameter group of point transformations. A simple example to show how point
transformations work can be given by considering the shift of a function.
Mathematically, a shift is defined by T, f(x) = f(x +¢€), where T, represents the
translation operator. A definition of such an operator in Mathematica reads

T[f , e _]:s=f/.x-9x+€

This definition assumes that f is a function of x and that x is replaced by x + € in the
argument of f. To demonstrate the properties stated above, we start with the
verification of the identity transformation for € = O:

T[£[x], 0]

f[x]

which demonstrates the existence of the identity transformation. The inverse
transformation can be checked by creating a translation and the corresponding
reverse by

T[T[£([x], €], -€]

£[x]
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meaning that the inverse transformation is represented by a negative shift. The
operation of translation and its inverse yield the original representation of the
function. The closure of the transformation means that the function created by the
transformation is again of the same type. This behavior can be demonstrated by the
following specific example choosing f(x) = x> — x°:

T[x® -x%, -€]

(x-€)? - (x-¢€)°

To demonstrate the action of the transformation, we will graphically represent the
results for the identity and for a shift with € = -2.

Plot [Evaluate[{T[x* - x*, 0], T[x® -x*, -2]}],
{x, -2, 4},
PlotStyle » {RGBColor[1.000, 0.000, 0.000],
RGBColor[0.000, 0.000, 1.000]}]

A\ \/\

It is obvious from the figure that a shift by -2 in the argument translates the function
by a distance of 2 to the right. Using the animation capabilities of Mathematica, we
can readily demonstrate the shifting process by a small simulation. The process of
shifting is demonstrated by the following animation where the parameter € is varied
from —1 up to 1 in steps of 1/20.

Do[Plot [Evaluate [T[? - ::i, €]].

{xl ’21 2}:
PlotRange - {-.4, .6}, PlotStyle » {Hue[€] )] ’

1
fer -1 1, )]
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The sequence of graphs shows a continuous movement of the curve along the
horizontal axis. This movement is created by the translation operator T, if we
continuously change €. Each value of € is represented by a different color in the
animation. Another property of our translation is the associativity of the
transformation which can be formulated by

T[T[T[£[x], a], B], x] == T[T[T[£[x], a]l, x], B]

True

The result True states that the exchange of two of the three parameters a, B, and y
does not alter the final result. This specialty is not contained in the basic properties of
a group. However, if a group satisfies the associativity, we call it an Abelian group.

Example 1

Another simple example of a one-parameter group is given by a rotation in the
(x, u)-plane. This sort of point transformation is represented by the rules
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rotation = {X » Function[{x, u, €}, xCos[e] -~uSin[e]],
U - Function[{x, u, €}, xSin[e] +ucCos[e]]}

{X > Function[{x, u, €}, xCos[€] -uSin[e]],
U - Function[{x, u, €}, xSin[e] +uCos[e]]}

The one-parameter group defined in rotation and its action can be visualized as
motion in an (x, u)-plane. To show the action, we take for € = O an arbitrary point
(xo, up) in the plane and follow the motion of the point when € varies. The image of
the initial point will move along some curve.

Table [Para.metricPlot [Evaluate|[
{X[x, u, €], U[x, u, €]} /. rotation/. {x-> 1, u-1}],
{e, 0, end},
AspectRatio -» Automatic, PlotRange -
{{-1.5, 1.5}, {-1.5, 1.5}}, PlotStyle » RGBColox [0, 0, 1],

1. w27, w2 ]}

AxesLabel -» {"x", "u"}], {end, N[2

20
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The animation shows that an initial point (xy, #5) moves along a circle if we change
the group parameter €. By repeating this kind of transformation for different initial
points, a picture representing the global action of the transformation in the
(x, u)-plane is gained. The following picture contains the orbits of the transformation
given in rotation for several initial points. The initial points are chosen along the
X-axis.

ParametricPlot [Evaluate [
Table[{x[x, u, e], U[x, u, e]} /. rotation /. {x-» x0, u->1},

1
{xol i, 5, ?}]]1 {e' 0, 27('},
AspectRatio -» Automatic, PlotStyle -» Table [Hue [x],

{x, 0, 1, %}], AxesLabel -» {"x", "u"}]

o

an
.

Once again, this picture shows that the given transformation will move a point along
a circle if € is varied. Each curve represents points that can be transformed into one
another by the given transformation. O

4.2.2 Infinitesimal Transformations

One of Lie's essential findings was that a transformation as given above can be
simplified. This simpler transformation is called infinitesimal transformation. The
content of this idea is that it is sufficient to represent the transformation in its lowest
approximation in €, meaning that the finite transformation can be expanded in a
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Theorem:

Taylor series around the identity transformation. In Mathematica, we have direct
access to such an expansion of the transformation by applying the function Series[] to
it. Let us again examine the general point transformation in the (x, u)-plane. We
derive the infinitesimal representation by expanding the one-parameter
transformation around € = 0 up to the first order in €:

infinitesimalTrafo =
Series[{X[x, u, €], U[x, u, €]}, {€, 0, 1}]

(X[x, u, 0] +x(%Y [x, u, 0] e+0[e]?,
Ulx, u, 0] +U®%Y [x, u, 0] e +0[e]?}

If we use the group property of the identity X(x, u, € =0) = x and U(x,u,e =0) = u,
we can simplify the expression. The calculation shows that the transformation is
represented by the identity plus some terms linear in €. The coefficients of the
parameter € are called the infinitesimals of the transformation and are usually denoted

by £ and ¢:

infinitesimalTrafo = TableForm|[
infinitesimalTrafo /. ({9.X[x, u, €] » §[x, u],
8.U[x, u, €] » ¢[x, u],
X[x, u, 0] - x,
U[x, u, 0] 2u} /.e->0)]

x+&[x, ul e +0[e]?
2

u+o¢[x, ul] e +0[€]
This result for the infinitesimal representation of a transformation was summarized
by Lie in his first theorem. The theorem considers the inverse problem of an
infinitesimal representation. It treats the situation when the infinitesimals & and ¢ are
known and asks for the global transformation.

Lie’s first theorem

There exists a parameter representation of a transformation such that the global
transformation is equivalent to the solution of the initial value problem for the system
of first-order differential equations

{0.X[e] == E[X[e], U[e]],
O.U[e] == ¢[X[e], U[e]]} // TableForm

[e] == £[X[e], U[e]]

X' [e
U [e] == ¢[X[€], U[e]]

with the initial conditions
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{X[0] ==x, U[0] ==u} // TableForm

X[0] ==x
==u

U[0] o

Using this theorem, the finite transformation represented by X and U is derived from
the initial value problem by an integration with respect to €. After the integration the
parameter € is eliminated.

Let us assume we know the infinitesimals £ and ¢. Then, we can apply Lie’s first
theorem in a straightforward way. Two examples will demonstrate the application of
this theorem.

Example 1

As a first example, let us consider a scaling transformation. The infinitesimals of this
kind of transformation are given by

§[x, u] = x;
and
¢[x, u] =-2u;
The related defining equations for the global transformations are then

defequation = {3, X[€] == §[x, u],
O, U[e] ==¢[x%, ul} /. {x->X[e], u->Ule]}

{X' [e] ==X[e], U [e] == -2U[e]}
The initial conditions for this system of equations are

initial = {X[0] ==x, U[0] ==u}

Combining these two sets of equations in a common list, we can solve the initial
value problem using standard functions of Mathematica

eqgin = Join[defequation, initial]
(X [e] == X[€e], U [€] == -2 U[e], X[0] ==x, U[0] == u}
The solution of the initial value problem follows by applying DSolve[] to eqgin

scalingtrafo = DSolve[eqin, {X, U}, €]

{({X> (E" x&), U> (E2* ug) }}
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The result is the representation of the scaling transformation for the variables x and u.
We can represent the global transformation properties by plotting the new
coordinates X and U if we change the group parameter €. The following animation
shows the action of the transformation:

Table [ParametricPlot [Evaluate|

{X[€], U[e]} /. scalingtrafo[[l] /. {x>1, u->1}],
{€e, 0, end},

AspectRatio -» Automatic, PlotRange » {{0.9, 3}, {0, 1.2}},
PlotStyle -» RGBColox[0, 0, 1],
AxesLabel - {"x", "u"}], {end, 0.1, 1, .1}]
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Lie’s first theorem can be incorporated in a Mathematica function, allowing the
determination of the global symmetry transformation. All solution steps used above
are combined in this function. The function GlobalSymmetryTransformation[] will
calculate the global symmetry transformation if the infinitesimals of the
transformation are known. The input variables for this function are the infinitesimals
¢ and ¢. For the calculation, we also need the dependent and independent variables.
The function is designed to calculate a general representation of the global
transformation for an arbitrary number of independent and dependent variables.
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Clear [GlobalSymmetyTransformation]
GlobalSymmetyTransformation[xi_List, phi_List,
depend_List, independ_List] := Block|[
{vars, Vars, infini, dvars, equations,
initial, sol},

vars = Join[depend, independ];

infini = Join[phi, xi];

Vars = ToExpression /@ToUpperCase /@ToString/@vars;

dvars = Table[Vars[[i] @@ {e}, {i, 1, Length[Vars]}];

equations = Table [0, dVars[i] == infini[i],

{i, 1, Length[Vars]}] /. Thread[vars -» dVars];

initial = Thread[dVars == vars] /. e—> 0;

equations = Join[equations, initial];

sol = DSolve[equations, Vars, e]]

The application of this function to the infinitesimals of Example 1 gives us the result:

GlobalSymmetyTransformation[{x}, {-2u},
{u}, {x}]

{{U-> (E?* u&), X- (E" x&)}}

which is identical with the result calculated above. Another example to check the
function is the symmetry of rotation. From our earlier discussions, we know the
global representation of a rotation. The infinitesimals for this kind of symmetry group
are £ = —u and ¢ = x. Applying the function GlobalSymmetryTransformation[] to
these infinitesimals, we get

GlobalSymmetyTransformation[{-u}, {x}.
{u}, {x}]

{{U> (uCos[#1] +xSin[#1]&), X > (xCos[#1] —uSin[#1]&) }}

The result found is identical with the representation discussed in Section 4.2.1. It
represents the rotation of an initial point (xy, #) around the origin.

4.2.3 Group Invariants

In this section, a criterion of invariance is formulated which is useful in the
application to ordinary and partial differential equations. A point transformation of an
ordinary differential equation is a symmetry transformation if it maps solutions of the
equation into solutions. We will show in this section that a symmetry transformation
does not change the form of the differential equation. For the moment, we will
restrict our considerations to the case in which only first-order derivatives are
present. The invariance of higher-order differential equations will be discussed in
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later sections. We know that a one-parameter group of transformations is represented
by the infinitesimal transformations or the related tangent vector field V. As the
transformation is applied to an initial point, it moves along a path in such a way that
the path maps into itself. This basic concept needs an analytical formulation. As
mentioned in the previous section, it is always possible to represent the relations in a
manifold by an algebraic expression. For the moment, we will thus restrict our
considerations to curves in the plane.

Group invariants are basic quantities of a symmetry analysis. A group invariant is
defined as follows:

Definition: Group invariant

A function F(x, u) is an invariant of the group of transformations if
F(X(x, u,€), U(x, u, €)) = F(x, u) 4.4)

identically in x and u for all values of the group parameter €. O

This definition is the basis for an invariant in symmetry analysis. It states that a
function is an invariant if it has the same representation in the original and in the new
coordinates. The definition also shows us a way to calculate the invariants F.

Curves in a plane can be represented by F(x, u) = const. As we know, this curve is
said to be invariant under a transformation if the curve remains the same in both
coordinate systems: the old and the new. The transformations are represented by the
infinitesimal transformations due to Lie given by

Clear([§&, ¢];
infini = {X > Function[{x, u, €}, x+€ §[x, ul],
U - Function[{x, u, €}, u+e ¢[x, ull}

{X > Function[{x, u, €}, x+€ §[x, ul],
U - Function[{x, u, €}, u+e¢[x, ull}

The expression of invariance is given in (4.4) and reads in terms of Mathematica,

invar = F[x, u] == F[X[x, u, €], U[x, u, €]]

F[x, u] ==F[X[x, u, €], U[x, u, €]]
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meaning that the form of the curve is the same in the old and new coordinates. The
application of our transformation delivers the invariance condition in an implicit
form:

ivarI = invar /. infini

F[x, u] ==F[x+e€ §[x, u], u+ed[x, u]]

The explicit representation of the invariance condition is obtained by a Taylor
expansion of the equation of invariance with respect to the parameter €:

Thread[Series[ivarI, {€, 0, 1}], Equal] // LieTraditionalForm

F==F+ (pF, + EFy) € +0[e]?

If we examine this expression, we observe that the invariance condition is satisfied if
all terms containing the infinitesimal parameter € vanish. However, the first term
linear in € can be represented by the vector field v. To show this relation, let us apply
the tangent vector field to F. A definition of the function TangentVector[] for more
than one independent and dependent variable follows below. So we get the
infinitesimals in a subscripted form.

TangentVector [F[x, u], {u}, {x}] // LieTraditionalForm

Fyx &1 [x, u] +Fy ¢1 [x, u]

The result is equivalent to the terms linear in €. Now, if we assume that the
application of the tangent vector field onto the curve has to vanish, we can conclude
that all higher terms in € containing multiple applications of the vector field ¥V on the
curve also have to vanish. Thus, a sufficient condition that a curve is invariant under
an infinitesimal transformation is that the application of the tangent vector field to the
curve must vanish.

Uncovering a practical realization of the group properties, let us formulate the
following theorem. It is again Lie’s first theorem in a different representation. The
theorem allows us the derivation of a group invariant. The group invariant is the
function for which we are looking. Lie himself was a great systems analyst who
based his total work on three fundamental theorems. The first of these fundamental
theorems reads:

Theorem: Group invariants

A function F(x, u) in g independent x = (x;, x;, ..., x;) and p dependent variables
u= @', u?, ..., uP) is an invariant if and only if it satisfies the partial differential

equation



110  Symmetries of Ordinary Differential Equations

ifi OF (x,u) N P 4 OF (x, u) _

@ 0, .
ax; £ ou® .5

where &; and ¢, are the infinitesimals of a point transformation. This relation is also
known as the characteristic equation of the tangent vector field

L e d £ d
V=;fia—xi—+;¢am-o

It follows that every one-parameter group of point transformations in the plane has
one independent invariant. This invariant can be taken to be the left-hand side of any
first integral J(x,u) = C. The first integral follows by integration of the
characteristic equation which are based on the tangent vector field. The determining
equation for the integral reads

¢ [x, ulx]] , ..
chareq = 9, u[x] == ————; chareq // LieTraditionalForm
%, ulx]]

ux::%

Then, any other invariant is a function of J.
Example 1

Let us consider a circle. We know that a circle is invariant under a rotation around its
center. We already know that the tangent vector field of the group of a rotation is
given by the operator

Trot [function_ ] := -ud, function + x 9, function
A circle in the coordinates x and u is represented by
circle = x* + u® - const
-const +u® + x?
The application of the operator Trot[] on the circle gives us
Trot [circle]

0

This result shows that the tangent vector field applied to a curve invariant under the
given symmetry vanishes. Thus, each circle is mapped into itself. This condition is
very useful in the determination of symmetries not only for curves but also for
differential equations. O
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Example 2

Before we consider differential equations, let us discuss the other non-trivial case
when the mapping of the vector field does not vanish. In this example, we apply a
transformation on a curve which is not mapped into itself but in another member of
the same family of curves. To examine the behavior of such a case, let us again
consider the transformations of rotations for the family of straight lines. Rays are
represented by the left-hand side of the expression

u
rays = — - const
x

u
-const + —
X

The application of the vector field Trot[] on these lines gives us

rl = Trot[rays]
u2

1w

which represents a single ray with slope 1. A second application of Trot[] on the
transformed rays results into

r2 = Trot[rl]

2 u?

2u
E
X X

which is, again, a ray with slope 1 in a more or less complicated representation. Thus,
we observe that the application of a tangent vector field on a curve can produce two
types of results. First, a transformation of the curve into itself, and second, a
transformation to a curve contained in the family of the curves. O

Example 3

In this example, we determine the invariant from the characteristic equation. Let us,
again, discuss the symmetry group of rotation. The infinitesimal representation of this
symmetry is

rot = {§ » Function[{x, u}, -u], ¢ » Function[{x, u}, x]}

{§ - Function[{x, u}, -u], ¢ » Function[{x, u}, x]}

The corresponding characteristic equation is thus

chareqr = chareq /. rot; chareqr // LieTraditionalForm

X
Uy == - —

u
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which has the solution

sol = DSolve[chareqr, u, x]
{{u- (_\/_#12 _2cC[1] &)}, {u- (\/—#12 -2c[1] &)}}

The first integral follows by solving one of these expressions with respect to the
constant C[1]:

solint = Flatten[Solve[ (u[x] /. sol[1]) ==u[x], C[1]]]

{cr11- % (-x* —u[x]?)}

The result defines a circle of radius V-2 C[1]. O

In the examples discussed, we used group invariants in a two-dimensional plane. As
stated in the theorem, the relations are also useful in higher-dimensional space. In our
discussions, we used the term tangent vector to represent an operator which is central
in the theory of symmetries. In the following section, we will examine this operator
in more detail.

4.2.4 Tangent Vector

A very useful concept closely related to the infinitesimals £ and ¢ is the concept of a
tangent vector v. The tangent vector v is also called the infinitesimal generator of the
transformation or tangent vector field or, in short, a vector field. We already
discussed the term tangent vector field in Sections 3.2 and 3.7 in connection with a
manifold M of m independent variables. Here, we will extend the definition to a
g % p-dimensional manifold of g independent and p dependent variables. The tangent
vector can be understood as a generator of the symmetry. The term generator
indicates that repeated applications of the infinitesimal transformation will generate
the finite or global transformation. This point of view for a vector field was stressed
by Lie in his older papers (cf. Engel and Heegaard [1912] Vol. V, p. 2). Lie called the
tangent vector the generator of the infinitesimal transformation. Today, this operator
is called a tangent vector of a transformation, its definition is

Definition: Tangent vector field

A vector field on a manifold N in g X p coordinates is a tangent vector v to each
point (x, #) € M varying smoothly from point to point. In local coordinates, a vector
field has the representation
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2 o P )
V= P — + e > .
v ;& - HZ:;¢ o @.6)

i
where the &; and ¢, are smooth functions of the coordinates (x, ). O

The functions & and ¢ are the infinitesimals of the related infinitesimal
transformation. The present definition extends the previous definition to a manifold
M spanned by independent and dependent variables. Some authors call the vector
field v a Lie symbol. Actually, this operator goes back to Lagrange, and, thus, as an
equivalence, deserves the name Lagrange operator (cf. Kowalewski [1931]). We
recognize that the vector field has an old tradition in mathematics. We already
mentioned that Lie, in his lectures, used this kind of operator in connection with a
hydrodynamic flow. He called the paths of the infinitesimal transformation Vv f the
stream lines of the flow. The infinitesimal generator v is used to generate such flows.

The following function implements the definition of a vector field given in (4.6). The
function TangentVector[] needs three arguments. The first argument specifies the
function to which the vector field is applied. The second and third are lists containing
the independent and dependent variables. The calculation of the vector field follows
formula (4.6) very closely:

Clear [TangentVector];
TangentVector [function_, dependent_List,
independent_List] := Block[ {vars, xi, phi},
vars = Join[independent, dependent];
xi = Table [AppPly[&:, vars],
{i, 1, Length[independent]}];
phi = Table[Apply[¢., vars],
{a, 1, Length[dependent]}];
Length [independent ]

xi[i] Oindependent [i1 function +
i=1

Length [dependent ]
phi[a] adcpona.nc [al function

| -

The result of this function is the general representation of the vector field applied to a
given function depending on the variables x and u. Let us demonstrate the application
for a 2x2 manifold. A general function f depending on the independent variables
(x, y) and on the dependent variables (u, v) has the vector field
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TangentVector[£f[x, ¥, u, v], {u, v}, {x, ¥y}1//
LieTraditionalForm

fx §1 [X, Y, u, V] + fy 52 [X, Y, 4, V] +fu ¢1 [X, Y, a, V] +
£, ¢ [x, ¥, u, V]

The infinitesimals &, &,, ¢,, and ¢, are arbitrary functions. The function
TangentVector[] allows us to calculate the general expression of the vector field for a
given function f. If we know, on the other hand, the global symmetry
transformations of the coordinates, we are able to derive the infinitesimals.
Remember that the global transformation was a result of Lie’s first theorem. If we
invert this theorem, the infinitesimals of the g X p-dimensional global transformations
(X(e), U(e)) follow by

dax;
£ = (e) . i=1,2,3,..49 4.7
de
and
au
6. = WO a=1,23, .. p. (4.8)
de

These relations are identical with the defining equations stated in the first theorem of
Lie. The side condition € = 0 in equations (4.7) and (4.8) guarantees that the initial
conditions of Lie’s theorem are satisfied. Thus, if we know the global representation
of a point transformation, we are able to write down the corresponding vector field.
How this works for specific transformations will be shown in the following.

To simplify the representation, we restrict our discussions to a two-dimensional
manifold M in x and u. This reduction of the g X p-dimensional manifold allows us to
create a graphical representation of the vector field. In the following examples, we
will show how the vector field is calculated. The infinitesimals of the vector field will
serve as components in the graphical representation. Let us start with the well-known
group of rotations.

Example 1

The global representation of the group of rotation was discussed in an earlier
example. The transformations for the coordinates x and u are defined in rotation. We
can represent the transformed coordinates by

trans = {X[x, u, €], U[x, u, €]} /. rotation

{xCos[€] —uSin[e], uCos[€] +xSin[e]}
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Using relations (4.7) and (4.8), we can derive the infinitesimals by
rotinfinitesimals = 6. trans /. € >0

{-u, x}

The first element of this list represents the infinitesimal £ and the second ¢. The result
is a list containing —u and x as components of the tangent vector in the

(x, u)-manifold. We can use this vector representation of the infinitesimal generator

to graphically represent the vector field. Two-dimensional vector fields are plotted
with a function contained in the package

<< "Graphics PlotField "

The function PlotVectorField[] allows us to plot the two-dimensional vector field

PlotVectorField[rotinfinitesimals, {x, -2,

2},
{u, -2, 2}, ColorFunction - Hue]
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As a result, we get a figure representing the vector field by vectors in the plane. We
observe that vectors of the same color are tangential to a circle, thus the name tangent
vector field. The vector field also contains information on the transformation
properties. This information is stored in the arrangement of the arrows in the
(x, u)-plane. We also gain an impression on the strength of the rotation on different

locations of the (x, u)-plane by considering the lengths of the arrows. So a graphical
representation of a vector field helps us to assess the behavior of a transformation. O
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Example 2

Another frequently encountered example for a tangent vector field is the group of
scaling. Let us assume that we know the global transformations of an inhomogeneous
scaling of the coordinates x and u. A global scaling transformation is given by

scaling = {X- Function[{x, u, €}, xE°],
U - Function[{x, u, €}, uE*€]}

{X - Function[{x, u, €}, xE°], U- Function[{x, u, €}, uE*€]}
The infinitesimals of this transformation follow by using equations (4.7) and (4.8):
scalinginf = 8. {X[x, u, €], U[x, u, €]} /. scaling /. €-» 0

{x, 2u}

Again, we get a vector of two components containing the infinitesimals & and ¢ of the
transformation. The vector field of this transformation has the graphical
representation

PlotVectorField[scalinginf, {x, -2, 2},
{u, -2, 2}, ColorFunction - Hue]

* * * » 1Y i i i i 4 i 4 4 o,
> . b 1 'l i L4 v
* 0w %y o v v -
- w w D
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P T I N LT T S . S
» » ’ r ] r ] 1 1 = %
2 o r ror T ¥ ] 1 1 4 4 4 A
» » r r r r r L v 1 1 1 1 1 4

showing us that, in both directions, the scales are changed if one moves from the
center to a point of the rim. O
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So far, we demonstrated some basic concepts of Lie’s theory. In particular, we
discussed the first theorem which deals with infinitesimal transformations. The
concept of infinitesimal transformations is the basic tool in the derivation of
symmetries of a differential equation and thus serves as a cornerstone in the solution
of the equations. The presented infinitesimal generator or vector field is an essential
part in the calculation of the infinitesimal transformations and is used to derive the
symmetries from the equations. This behavior is related to the fact that the tangent
vector is always a linear operator possibly creating a complicated form of the finite
transformations. So far, we demonstrated transformations which only involved
dependent and independent variables. However, if we examine differential equations,
we have to extend or prolong the concept of transformations to derivatives as well.

4.2.5 Prolongation of Transformations

As discussed in Section 3.4, a prolongation is an extension of a transformation from
the independent and dependent set of variables (x, ) to a space including the
derivatives of the dependent variable (x, u, u'). This extension, for example, is
necessary to examine the point symmetries of a first-order ordinary differential
equation. In this section, we present the concept of prolongation in a
three-dimensional space with coordinates (x, u, u') where u' = p = %" is the slope of
the given curve u = u(x). Knowing how the curve in the plane transforms should
enable us to calculate how u' transforms. To demonstrate the prolongation procedure,
let us recall the results known from calculus. We assume for our examinations that
the transformation of the plane into itself is given by the rules

rule5 = {X » Function[{x, u}, §[x, u[x]1],
U -» Function|[{x, u}, ¢[x, u[x]]1]}

{X - Function[{x, u}, §[x, u[x]1],

U - Function[{x, u}, ¢[x, u{x]1]}

Our interest is to examine the transformation of an arbitrary curve and its derivatives.
The functions & and ¢ representing the transformation are given functions of the
variables x and u. The curve we will examine is given by the general expression

curve = u == £[x]

u == f[x]

which has its representation in the new coordinates by
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newCurve = U == F[X]

U == F[X]

The slope of the curve in the new coordinates is calculated at each point (x, «) by the
relation
Dt [U[x, u]]

Uprime = ———— /. rule5; Uprime // LieTraditionalForm
Dt [X[x, u]]

Uy Pu + Px
Uy Su + €x

This formula expresses the derivative in new coordinates by the ratio of the total
differentials of the transformed variables. Using the result for Uprime, we can define
the first extended transformation in terms of £ and ¢ by

rule6 = {X » Function[{x, u}, §[x, u[x]]1],
U - Function[{x, u}, ¢[x, u[x]]],
U - Function[{x, u}, w] /. w -» Uprime}

{X > Function[{x, u}, £[x, u[x]11,
U - Function[({x, u}, ¢[x, u(x]]],
, . u [x] ¢V [x, u[x]] +¢* 9 [x, u[x]]
9] -aFunctlon[{X, u}, w[x] €01 [x, u[x]] + 1.0 [x, ul[x]] ]}

Evidently, U' is the slope of the transformed curve at the point (X, U). The second
extension of the transformation is calculated by using the same ideas. Using the result
contained in Uprime, we are able to calculate the ratio of the total derivative of
Uprime and X. Carrying out the calculation, we find

9, Uprime

Udprime = ————  — ; Udprime // LieTraditionalForm
Ox X[x, u[x]]

1 (_ (l.lx ¢‘-\ + ¢X) (éu ux,x +ux §x,u +ux (ux gu,u + §x,u) + ‘gx,x) +
U, Xy + Xy (U Eu + Ex)2
Pu Uy, x + Ux Px,u + Uy (Uy Pu,u + Pru) + P x )
ux §u +§x

This result allows us to prolong the transformation of the variables (x, u) up to
second-order derivatives. rule6 is extended by
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AppendTo[rule6, U’ - Function[{x, u}, w] /.
w - Udprime]; ruleé // LTF

=¢
=&

Uy $u + s

u, &y + &x

(Ux Pu + D) (Eu Us,x +Ux Excou + Uk (Ux Suu + Exu) + Exix)

(ue Eu + &x) 2
xx+ X xu+ X X uu+ X, u + X, X

o Bu Ui + U Py, ujéu(ljéf' D) + Dx, )/uxxu+xx

U
X =

v == (-

rule6 contains the extended transformation of second order. We note that the
transformation of the derivatives essentially depends on the structure of the finite
transformations £ and ¢. The derivatives of the functions & and ¢ determine the slope
in the new coordinates in a characteristic way. Going back to symmetry analysis, for
examining differential equations we need the extensions of the infinitesimal
generator represented by the vector field ¥. To derive the relations describing the
extended vector field, we consider transformations depending on the group parameter
€. The global transformation for the coordinates (x, u) read

rule?7 = {X -» Function[{x, u, €}, §[x, u[x], €]],
U - Function[{x, u, €}, ¢[x, u[x], €11}

{X - Function[{x, u, €}, §[x, u[x], €]],
U - Function[{x, u, €}, ¢[x, u[(x], €]]}

The extension formula is calculated in the same manner as in the parameter-free case
by
Dt[U[x, u, €]]

Uprime = /. rule7 /. Dt[e] » 0;
Dt [X[x, u, €]]

Uprime // LieTraditionalForm

Uy Gy + P
uy, Eu + &x

Since the group parameter € is not a component of our manifold spanned by
(x,u,u',u",..), we have to assume that the variation of the group parameter
vanishes; i.e., we set Dt[€]>0. We simply use the fact that € is a constant and thus its
derivatives are zero. The first extended transformation is thus

rule7 = {X » Function[{x, u, €}, §[x, u[x], €]],
U - Function|[{x, u, €}, ¢[x, u[x], €]],
U' -» Function[{x, u, €}, w] /. w- Uprime
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{X—>Function[{x, u, €}, £[x, u[x], €]1],
U - Function[{x, u, €}, ¢[x, u[x], €]], U —)Function[

u [x] ¢ [x, ulx], €] +¢" %% [x, u[x], €] )

bxou €} T E@T0 [x, uix], €] s €599 [x, ulx], €]

In rule7, we get the global transformation of the once extended space. The second
extension can be calculated in the same way as discussed above. Starting from a
group G of point transformations and then adding the transformation of the first
derivative, one obtains the group G;, which acts in the space of the three variables
(x, u, u"). By further adding the transformation of the higher derivatives, one obtains
the group G, acting in the space (x, u, u', ") and so on. The generalization of these
arguments results in the definition of prolonged groups.

Definition: Prolonged groups

The groups G, G,, ... G, are termed the first, second, and nth prolongations of G,
respectively. O

Actually, we are interested in the infinitesimal representation of the transformation.
This sort of transformation is given by

infini = {X » Function[{x, u, €}, x+€ §[x, u[x]]],
U - Function[{x, u, €}, u[x] +e ¢[x, u[x]1]}

{X > Function[{x, u, €}, x+€ £[x, ul(x]]],
U - Function[{x, u, €}, u[x] +e€ ¢[x, u[x]]]}

The representation of the first derivative in the new coordinates follows from

Dt[U[x, u, €]]
derivat = /. infini /. Dt[e] » 0;
Dt[X[x, u, €]]

derivat // LieTraditionalForm

Uy + € (Ux ¢u + Px)
l+e (ux o+ &x)

Since symmetry analysis in an infinitesimal representation is based on the linear
dependence of the group parameter €, we can restrict our considerations to first-order
terms in €. The infinitesimal part of the transformation follows by a Taylor expansion
in € around € = 0. The result is

infinider = Normal [Expand[Series[derivat,
{€, 0, 1}]1]; infinider // LieTraditionalForm

Uy + € (ux (_ux §u _éx) + Uy ¢u+¢x)
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The representation of the infinitesimal transformation of the slope shows that the old
derivative is changed in the new coordinates by four parts, depending on derivatives
of the infinitesimals & and ¢. The representation of the prolonged transformation is
thus given by

prolongation = {X -» Function[{x, u, €},
x+e€[x, ull,
U - Function[{x, u, €}, u[x] +e ¢[x, ull,
U’ -» Function[{x, u, €}, w] /.
w - (infinider /. u[x] » u) }; prolongation // LTF

U==u+€¢
X==x+€¢&
U ==u, +€ (Ux (-ux &u - &x) +Ux bu + )

The second prolongation of the infinitesimal transformation is derived by

9, derivat
dderivat = /. infini;
O, X[x, ulx], €]

dderivat // LieTraditionalForm

1
l+e (ux Su +&x)

(- (6 (xve (Wb +6.)) (EuWew + U Ew + W (W Euu + Exru) + E)) /

(1+€ (U & + &)+
ux,x + 6 (¢u ux,x +ux ¢x,u + ux (ux d)u,u + ¢x,u) + ¢x,x)
1 + e (uX §u + §X) )

and a Taylor expansion of the result up to first order

infinidder = Normal [Expand[Series[dderivat, {e, 0, 1}]1];
infinidder // LieTraditionalForm

Ux,x + € (2 (_ux gu - ‘ix) Uy, x + d)u Ux,x —
Uy (éu Ux,x + Ux éx,u + Ux (ux gu,u + gx,u) + é‘x,x) + Uy (Dx,u +

ux (ux ¢u,u +d)x,u> + ¢X4X)

The second-order prolongation is thus given by

AppendTo [prolongation,
U” -» Function[{x, u, €}, w] /.
w - (infinidder /. u[x] » u) ]; prolongation // LTF

U==u+€¢

X==x+€¢&

U ==uyx +€ (ux (-ux &u - &Ex) +Ux u + Px)
U == Ug,x + € (2 (~Ux Eu = Ex) U, + B Us,x —

Uy (Eu We,x +Ux Exu + Ux (U Suu + Exu) + Exx) + Uy Gy +

uX (ux ¢u,u + ¢x,u) +¢X,X)
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Now, we know the infinitesimal transformation rules allowing a change of the
coordinates, including the transformation of the first and second derivatives. It
becomes obvious from the representation of the infinitesimal transformation that only
the infinitesimals ¢ and ¢ have to be known to find an explicit representation of the
transformation. Some examples will demonstrate the calculation of the prolongations.

Example 1

As a first example, let us again consider the group of rotation whose infinitesimals
are given by

rotation = {£ -» Function[{x, u}, -u],
¢ -» Function[{x, u}, x]}

{& » Function[{x, u}, -u], ¢ > Function[{x, u}, x]}

The related infinitesimal transformations for the variables and the derivatives are
obtained in its explicit form for the group of rotation if we insert the infinitesimals
into the prolongation formulas and the transformations

infirot = {X[x, u, €], U[x, u, €],
U [x, u, €], U'[%, u, €]} /. prolongation /.
rotation; infirot // LieTraditionalForm

{x-u€e, u+xe€, Uy +€ (L+ul), W x+3 €U, Uy )

Thus, the derivatives of a function are replaced by the derivative itself plus
infinitesimal terms quadratic in the derivative of u. So far, we demonstrated the
calculation of the prolongation by directly using the formulas derived above. In
Section 3.7, we already discussed the general prolongation formula for a
q X p-dimensional manifold. The following example will recall the application of the
function Prolongation[]. Be sure that the functions Prolongation[] and FrechetD[] are
known by Mathematica for the following example. O

Example 2

The second example will serve to show how a vector field in 1x 1 dimensions is
calculated by using the function Prolongation[]. We assume that the infinitesimals of
the group are known; e.g., an inhomogeneous scaling group with

iscaling = {§; -» Function[{x, u}, x],
¢, -» Function[{x, u}, 3u]}

{€1 » Function[{x, u}, x], ¢; » Function[{x, u}, 3u]}
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The vector field for a function f depending on a second derivative is thus given by

vectorfield = Prolongation[{f[x, u[x], 9, u[x], O, xul[x]]},
{u}, {x}] /. u[x] »u /. iscaling;
vectorfield // LieTraditionalForm

{£x €1+ £u b1 — £ WS (61), — Fup W (E1), + Fuy U (D1), + £y (D), -
3 fu,('x Uy (fl)u Ux,x — 2 fu,(,x (gl)x ux,x + fux,x (d)l)u Uy, x —
fux,x 1.1)3( (gl)u,u -2 fux’x u)z( (gl)x,u - fux,x Ux (gl)x,x a
2

Fue Ui (D1) 0 +2 £ Ux (1), + Bup o (1), 5}

Ux, x

Contrary to the interactive calculation, we get the vector field as a scalar. The
coefficients of the derivatives of f contain the information on the infinitesimals and
their prolongations. The replacement of u[x] — u is necessary since we defined the
infinitesimals as functions of x and . The function Prolongation[], however, creates
the infinitesimals depending on u[x]. The prolongation procedure discussed so far is
usable to extend the space of variables to higher orders of derivatives as well. O

So far, we introduced basic concepts of symmetry analysis for functions. We
discussed the term of a point transformation, an invariant, and the meaning of the
vector field. These terms are not only useful for functions but also important in the
examination of differential equations. The following sections will discuss these
subjects in connection with ordinary differential equations.

4.3. Symmetry Transformations of Differential Equations

In this section, we collect the main tools for determining the symmetries of
differential equations. We define the notion of symmetry for a differential equation
and discuss the main properties of the symmetry group. Using these definitions, we
interactively calculate the infinitesimal symmetries of differential equations. We also
introduce the notion of canonical variables useful in deriving the solution of a
differential equation. Let us first start with the definition of a symmetry group.

4.3.1 Definition of a Symmetry Group

Let G be a group of point transformations and let G;, G,, ... be its first, second, ...
prolongation. Then, we define the symmetry of a differential equation as
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Definition: Symmetry of a differential equation

A group G of point transformations is a symmetry group of an nth-order ordinary
differential equation

du d u
A(x, ux), v dx—) =0 (4.9)
or (4.9) admits G if the nth extended manifold D" is invariant with respect to the nth
prolongation G, of the group G. O

This definition actually contains the special case for first-order ordinary differential
equations. For this special type of equation, we will discuss the application of the
definition. A first-order differential equation

A(x, u(x), u'(x)) = 0 4.10)

admits a group G if the once extended manifold M!, the surface in the space x, u, ',
is invariant with respect to the first prolongation G, of G. This means that equation
(4.10) is invariant under the coordinate transformation X = X(x, u,€) and
U = U(x, u, €). The invariance condition can be formulated as

AX,U,U") = A(x, u, u). 4.11)

This kind of relation also holds for the general case of an nth-order equation. Lie
demonstrated that the invariance condition of the differential equation has a direct
consequence for the solutions. He summarized this behavior in a theorem which is
one of the main properties of a symmetry group.

4.3.2 Main Properties of Symmetry Groups

Let us consider again the case of an nth-order ordinary differential equation. We

represent the equation in such a way that ‘2:"“ is the left hand side of the general
expression. The general equation reads

du

e S(x, u(x), ' (x), ..., ugp_1y(x)), 4.12)

with a smooth function f depending on the derivatives up to (n — 1)st order, ug,_,).
The main property of a symmetry group first proved by Lie in 1891 is the following
(cf. Scheffers and Lie [1891] p. 352, Theorem 1):
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Theorem: Symmetry transformation

A group G is a symmetry group of an nth-order ordinary differential equation if and
only if G converts any solution of the equation

d
—dx:t = f(x, u(x), u' (X), veey u(,,_l)(x)) (413)

into a solution of the same equation. O

This theorem is one of the cornerstones of Lie’s theory. It serves as the starting point
for the calculation of the symmetries.

4.3.3 Calculation of the Infinitesimal Symmetries

We already mentioned that a sufficient condition for invariance is the vanishing of
the extended tangent vector field applied to the differential equation, meaning that we
use the condition pr® #(A) as the defining equation for the infinitesimals &; and ¢,,.
This condition follows from the invariance of the differential equations A = 0 under
the transformation of independent and dependent variables. The derivation of this
invariance criterion follows from a similar calculation as presented for functions in
Section 4.2.3. The invariance condition of the tangent vector field supplies a system
of equations serving as the determining system for the infinitesimals. We will see that
this system is linear but coupled in & and ¢,. As mentioned in Section 3.7, the
invariance condition is closely related to the prolongation of the vector field.

Before discussing the application, let us describe the algorithm of constructing
infinitesimal symmetries. For first-order equations, it is known that an infinite
number of symmetries always exists (cf. Stephani [1989]). For special cases,
however, we find so-called conformal symmetries which are a subset of the possible
symmetries (cf. Olver [1986] and Hydon [1994]). Because of these difficulties, it is
more convenient to start our discussion with second-order equations:

Ax, u(x), u', u") = 0. “4.14)

Using the definition of the symmetry group in connection with the extended vector
field,

Tangent [A_] := §[x, u] 0, A+ ¢[x, u] 0, A+ 1) [%, u]l , A+
¢ (2 [, u] 954
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where p and g are abbreviations for the first and second derivatives of u. The
infinitesimal invariance criterion contained in equation (4.11) takes the form

pr ¥(A) |ao = 0. (4.15)

This expression follows by expanding (4.11) around the identity € = O and taking into
account the prolongation formulas for the derivatives. A detailed derivation of this
formula can be found by Olver [1986] or Bluman and Kumei [1989]. The general
equation (4.15) reduces for a second-order ODE to the relation

Tangent [A[x, u, P, Qq]]1==0 /. A[_] » 0 // LieTraditionalForm

Ay + D + D by [x, Ul +04 P2 [%x, u]l ==0

where ¢; and ¢, are the first and second components of the prolongation,
respectively. They are computed via the prolongation formula given in Section 3.7.
The equation derived is called the determining equation for the group admitted by the
ordinary differential equation.

If the differential equation is written in the representation of (4.12)

equat = q- £[x, u, p]

a-f[x, u, p]

we can derive the explicit form of the determining equation by applying the twice
extended vector field on this expression:

determining = Tangent [equat]; determining // LTF

_¢fu_§fx_fp¢1[xl u]+¢>2[x, u] ==0

The remaining unknowns in this result are the first and second extensions ¢, and ¢,.
We are able to extract the representation of ¢, and ¢, from the variable prolongation
calculated in the section on prolongation of transformations. Using the variables X,
U, U', and U" and searching for the coefficients of the group parameter €, we end up
with the infinitesimals £ and ¢ and the first and second extension ¢, and ¢,:

prol = Coefficient[{X([x, u, €], U[x, u, €],
U [x, u, €], U [x, u, €]} /. prolongation, €] /.
u[x] - u; prol // LTF
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£==0
¢==0
Uy (=Ux Eu = &x) +Ux Py + P ==0
2 (-ux &4 = Ex) Ux,x + Py Ux,x —
Uy (&4 U, + Ux Ex,u + Uk (Ux Suju + Exu) + Sxx) +
Ux ‘bx,u + Uy (ux ¢u,u +Op,u) + ¢x,x ==
0

For our calculations, we only need the expressions representing ¢; and ¢, given by
the third and fourth element of the list prol. In the next step, we define two rules
representing ¢, and ¢, by

rulel = {¢, » Function[{x, u}, w],
¢, -» Function[{x, u}, v]} /.
{w > prol[[3], v - prol[[4]}

{¢. » Function[{x, u}, u [x] ¢ [x, u] +
wx] (-u [x] €9V [x, u]l - €YY [x, ul) +0*? [x, ull,
¢, - Function[{x, u},

u’[x] ¢ [x, ul +2u" [x] (-u' [x] €%V [x, ul €Y [x, ul) +
wx] ¢ [x, ul +u [x] (w[x] ¢ [x, u] +o* [x, u]) -
w[x] (u [x] £V [x, u] +u [x] E&Y [x, u] +

wx] (W [x] 9 [x, ul + XY [x, u]) + £V [x, u]) +

% [x, ull}
These expressions are used in the determining equation to eliminate ¢; and ¢,:

determ = determining /. rulel; determ // LTF

_(b fu _gfx - fp (ux (_ux gu _gx) + Uy d’u +d>x) + 2 (‘ux §u _§x) Ux,x +
¢u ux,x - Ux (§u ux,x + Uy §x,u + Uy (ux éu,u + §x,u) + gx,x) +
Uy Prc,u + Uy (Ux Dyu + Dxu) + By x ==
0

The above calculations deliver an expression containing the determining equations of
the infinitesimals £ and ¢ in an implicit way. The main characteristic of the result is
the dependence on derivatives of u. However, we know that the equation equat has to
be satisfied on the manifold M. This allows us to eliminate certain derivatives by
using the equation itself. By replacing one type of derivative, we eliminate redundant
information in the expression determ. The replacement is carried out by
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determi = determ /. (Solve[equat == 0, q] /.
q - Oy, ulx]); detexrmi // LTF

-pf, - &£+
2F (Fux S - 8&x) +EPu - £y (W (U Sy - Ex) +Ux Dy + Dy) -
Ux (£&u +ux Ex,u +Ux (Ux Suyu + Exiu) +Ex,x) +
Ux Ox,u + Ux (Uyx Gu,u + Ox,u) + Ox,x ==

0

Here f[x, u, p] is a known function. On the other hand, the infinitesimals £ and ¢ are
unknown functions of x and u. Thus, the expressions containing first-order
derivatives of u are independent from each other. This independence creates a system
of determining equations in the variables x and u. An additional feature of these
equations is that we find more determining equations than unknown functions & and
¢. Thus, the system of determining equations is overdetermined. Solving this system,
we find the infinitesimal symmetries £ and ¢ of the equation.

Example 1

Let us examine the infinitesimal symmetries of the second-order equation

O, u[x]
dequ2 = G4,z u[x] + ———— - Exp[u[x]]; dequ2 // LTF
x

u,
-EY + ~xi + Uy, x == 0

We use here the function LTF[] to represent the equation in mathematcal index
notation. The highly nonlinear ordinary differential equation of second order has a
right-hand side f given by

subrule = £ - Function[{x, u, p}, Exp[u] - 2]
x

f—>Function[{x, u, p}, Exp[u] - %]

The defining equation for the infinitesimals follows by inserting the rule for f into
the expression determi and replacing the derivatives p by u'

detexl = determi /. subrule /. {p » d,u[x]}; detexl // LTF

-E" ¢ - §X‘-le +2 (Eu_._uxi) (-ux §u - &x) +
(B0 - ) gy v S (T Cum o) 2 U By vy
u, ((E*- “Tx) €a + Uk Exu + Ux (Ux Euu + Exu) + Exn) +

Uy ¢x,u + Uy (ux ¢u,u +d)x,u) +¢x,x ==
0
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The resulting expression is a third-degree polynomial in the derivatives of u'. Since
the infinitesimals £ and ¢ do not depend on the derivatives the determining equations
decompose into the following three relations. These equations follow by setting the
coefficients of the various powers of u' equal to zero

tabl = Flatten[Table[Coefficient [Expand [detexl],
(Bxul[x])'1, {4, 3, 1, -1}1]; tabl // LTF

"§u,u ==0

28, .

2o 2, +0uu==0

-f s S g 2000220

The fourth equation free of any ' is derived by the following line

AppendTo[tabl,
Expand[detexl - Plus@®@ (tabl. { (8, u[x])3,
(8xulx])?, d,u[x]1})11;

tabl = Flatten[tabl]; tabl // LTF

_§u'u==0
2 &
?—ng,u"'(bu,u ==0

3 3
——)-{T“3Eu§u+Tx_§x,x+2¢x,u ::0
-E“¢—2E“§X+E“¢u+%‘+¢>x,x ==0

These four equations are the defining equations for the infinitesimals £ and ¢. The
next step in finding the symmetries is the solution of these equations. We do this step
by step. If we integrate the first and second equation, we find the general expressions
for the solution

rule2 = {§->Punction[{x, u}, p[xl]u+al[x]],

. p[x] 2
¢ - Function|[{x, u}, (axp[x] + ] u +
x

(2 (a,a[x] 2 ) +q[x]) u+b[x]]}

{§—> Function[{x, u}, p[(x]Ju+alx]], ¢ Function[{x, u},

(Oxp[x] + B[XL]) u? + (2 (Oxa[x] - i[}:(*]) +q[x]) u+b[x]]}

where p, g, a, and b are arbitrary functions of x. Substituting this result into the
determining equations in fabl, we get a reduced set of determining equations
connecting the arbitrary functions a(x), p(x), b(x), and g(x).
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tab2 = Expand[tabl /. rule2]; tab2 // LTF

True
4p __,
x
3a S5pu 3 ay, S5up
—3E“p+—XT— = X"+2qx+3ax,x+3upx,x:=0

2 u u u
2au+pu _2aE +2aEu+2Epu_

_ u u _ @u _
bE*+E'qg-Equ e P " = e

EY p u? 2ua b R u? p
———— -2E'uay,+ —=+ =X _E'u - = 4
x * x2 Px x2
2
u 2u
—fx + Dy + —xpx'x + UG, x +2U8, % U2 Dy x.x ==

The second equation shows us that the function p(x) has to vanish identically to
satisfy the equation. Using this fact in the representation of the infinitesimals, we can
simplify the results to

rule3 = rule2 /. p » Function[x, 0]

{§ - Function[{x, u}, Function[x, 0] [x]u+a[x]], ¢ - Function[

{x, u}, (OxFunction[x, 0] [x] + Function(x, 0] [x] )uz .

X

(2 (0xatxt - 2L} g} wr b))

These expressions can be used again to simplify the set of the determining equations

tab2 = Expand[tabl /. rule3]; tab2 // LTF

True
True
iza—i}—;ai+2qx+3ax,x::0

2 2aE 2aE"
-bEY+E'g-E"qu - ;u_ ax + = LI
2E“uax+22%+b%+ u}?" + Dy x FU Qe x + 2U ay 5, x ==

0

A second glance at these equations shows us that a combination of x-dependent
auxiliary functions a, b, and g occur in connection with u-dependent coefficients.
Since the auxiliary functions do not depend on u, the determining equations
decompose into another set of equations. Let us extract the equations from the terms
containing factors like u Exp[u] and Exp[u] .
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coefl = DeleteCases [Flatten|

Table[Coefficient [
tab2, Exp[u] u'], (i, 1, 0, -1}] /. u > 0], 0]; coefl // LTF

—q+T—2ax==0

—b+q—2Ta==O

The remaining set of equations follow from the terms containing pure coefficients
in u:

AppendTo[coefl,

DeleteCases [Coefficient [
tab2 /. Exp[u] - 0, u], 0]]; coefl // Flatten // LTF

—g+
2a
_ - 2= ==0
b+q p”
2a 2 a, dyx
=t tx +Qy,x +28x,x,x ==0

The last set of equations follows from those terms which are free of u:

AppendTo[coefl, DeleteCases|
tab2 /. {Exp[u] -0, u->0}, 0]]; coefl // Flatten // LTF

~q+ 22 2a,==0
—b+Q—2—)§==O

_i_3a+ 2}(‘}‘ + B gy #2805 == 0
:3{_;3_ 3::‘" +2Qy +38,,==0

Thus, the complete set of determining equations reads

coefl = Flatten[coefl]; coefl // LTF
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2a + 2 ax +%+qx,x+2ax,x,x ==0

—T+2qx+3ax,x==0

To find the most general solution of these equations, we start by solving the last
equation of this set. This second-order equation in b has the solution

soll = Flatten[DSolve|[Last [coefl] == 0, b, x]]

{b-> (C[2] +C[1] Log[#1]&)}

As expected, the solution contains two integrating constants C[1] and C[2]. Applying
this solution to the remaining equations

coef2 = coefl /. soll; coef2 // LTF

2a
—q+T~2ax ==0
2a
CI——'X -C[2] -C[1] Log[x] == 0
2a 2 a dx
- 3 + x2x + '—)E_ +clx,x"'zax,x,x ==0
3a 3 a,
= " +2Qe+3axx==0
True

simplifies the expressions. We find determining equations for a and q. If we examine
the equations, we realize that the second equation is a purely algebraic equation
which can be solved either for a or g. We decide here to solve the equation for a:

s0l2 = Flatten[Solve[coef2[2] == 0, a[x]] /. a[x] » w]

{w—»—%x (C[2] +C[1] Log[x] -q[x]) }

For further use of this solution, we convert the result into a pure function.
sol2l = a » Function[x, w] /. sol2

a—>E‘unction[x, —%x (C[2] +C[1] Log[x] —q[x])]

The application of this solution to the determining equations simplifies the equations
to an overdetermined system in g:
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coef3 = Simplify[coef2 /. sol21]; coef3 // LTF

-g+C[1l] - xgx ==0
True

2 gy

- + 4 Qy,x +Xdx,x,x == 0

1
> (TG +3XQex) ==0

True

If we examine these equations, we observe that all three equations are connected by
the derivatives of g. Solving the first equation with respect to ¢' and substituting the
result into the rest gives us

hell = Solve[coe£f3[1] == 0, 9, q[x]]

(1] +alx]
1!

{ax1 -

coef3 = Flatten[coef3 /. hell]; coef3 // LTF

True
True

2 -C[1
———(q X_z [ ]) + 4QX,X + X dx,x,x == 0
1 7 (@a-C[1]) __
7(— % +3x%m)——0
True

a system of two coupled equations which are connected by ¢". The solution of the
second equation with respect to ¢" and the reinsertion of the result into the equations
gives

hel2 = Flatten[Solve[coef3[[4] == 0, 9,2 A[x]]]

{q" [x] > - 7 (C[13]X—ZQ[X]) }

coef3 = Flatten[Simplify[coef3 /. hel2]]; coef3 // LTF

True
True
22 @-22C[1] +3 %> Gy, x,x
== 0
3 x2
True
True

a single equation of third order in g. One solution of this remaining equation is given
by a constant g[x] = C[1]. Thus, we can define g as
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sol3 = ¢ » Function([x, C[1]]
g - Function[x, C[1]]

‘We check this solution by

coef3 /. sol3

{0, 0, 0, 0, 0}

The infinitesimals £ and ¢ are thus given by

infini = Simplify[{&[x, ul, ¢[x, ul} /.
rule3 /. soll /. sol2l /. sol3]

{—%x (-C[1] +C[2] +C[1] Log[x]), C[2] +C[1] Log[x]}

Thus, the infinitesimals depend on two arbitrary parameters C[1] and C[2]
representing the group parameters. In view of the linearity of the determining
equations, the general solution can be represented as a linear combination of two
independent solutions

nfinil = infini /. {C[1] » 1, C[2] - 0}

{—%x (-1 +Log[x]), Log[x]}

and

nfini2 = infini /. {C[1] » 0, C[2] -» 1}

This means that our original equation admits two linearly independent operators and
that we have to consider a two-dimensional vector space with the basis given
above. O

The example discussed shows that the derivation of the determining equations is very
laborious when done interactively. Therefore, it is our goal to present a procedure
which automatically delivers at least a prolongation of the equation.

We already know that the prolongation is related to an expansion of the
infinitesimals. The actual connection is a special form of a derivative known as
Fréchet derivative. The definition of a Fréchet derivative was introduced in Chapter
3. Here, we will shortly recall the definition in an appropriate form applicable on
ordinary differential equations. A Fréchet derivative is a generalization of an ordinary
derivative including a weight of the differential. The symbolic definition is
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d
Dr(Q = T P(u+€Q) le=o - (4.16)

In MathLie this definition is realized by the function FrechetD[].

The operational meaning of equation (4.16) is that the dependent variables are
replaced by their variations in the support function P. The dependent variables are
replaced by the variables and by the test function Q multiplied by e. After the
substitution a differentiation with respect to € is carried out and finally we set € = 0.
This relation defined in general for an r-dimensional support function P and for a
g-dimensional test function Q allows a very efficient implementation in Mathematica.

In Section 3.7, we discussed the connection between the prolongation and the
Fréchet derivative. This relation is given by

P
pr® 5(4) = Dy (Q) + D& Di(d) @.17)
i=1
where the test function Q is a combination of the infinitesimals & and ¢.

ou”
d Xi

p
Qa = ¢a - Z& a=1, 27 e q. (418)
i=1

The actual invariance condition for a given system of differential equations is then
given by

p

Qa:“’w—z‘il & % + ] &i Di(A)]

i=

pr® (A) a=0 = 0. (4.19)

A=0 = (DA(Q)

The algorithm for calculating the prolongation now consists of three steps. These
steps are contained in equations (4.17)—(4.19). They are verbally expressed by the
following:

1. Define the test functions Q using the infinitesimals as given in (4.18).
2. Calculate the Fréchet derivative and the complete derivative by equation (4.16).

3. Apply the side conditions (4.18) and the original equation to the result.

The three steps of the calculation for an ordinary differential equation are collected in
the function ProlongationODE[]. The function ProlongationODE[] needs the
equation, the dependent and independent variables, as input parameters. The function
is written in such a form that only one dependent and one independent variable is
allowed. The general definition of ProlongationODE(] is given in Section 3.7.
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Clear [ProlongationODE];
ProlongationODE[equations_, dependent_,
independent_] := Block|[
{vars, eta, testfunction, mainrule, prolong,
ux, x, w},
vars = Flatten[Join[

{dependent @@ {independent}}, {independent}]];
eta = ¢g@@vars - £@@vars Oingependent dependent @@ {independent};
testfunction = Unique["w$x"];
mainrule = ux -» Function[x, w];
prolong = FrechetD[{equations}, {dependent},

{independent}, {testfunction}];
prolong = prolong /. (mainrule /.
{ux - testfunction, x - independent,
w- eta});
prolong = Expand [Apply[Plus, prolong, 1] +
§@@vars O 4epenaent €quations]]

The action of the function ProlongationODE][] is demonstrated by applying it to some
examples.

Example 1

Let us consider the general ordinary differential equation
ode3 =0, u[x] - F[u[x], x]; ode3 // LTF
-F+u, ==0
The function ProlongationODE[] actually only treats the left-hand side of the

equation d,u — F(x, u) = 0. The application of the function to the equation provides
the following information:

prolode3 = ProlongationODE[ode3, u, x]; prolode3 // LTF

_¢Fu_§Fx_u;2( §u_ux §x+uxd)u+¢x ==0

The resulting expression contains derivatives of the arbitrary function F and the
infinitesimals. We notice that the derivative of the dependent variable u occurs in
different locations. We know that the first derivative of u can be expressed by the
differential equation itself. In this way, we can replace the first derivative by F:

pode3 = prolode3 /. 9, u[x] » F[u[x], x]; pode3 // LTF

_d)Fu’é‘Fx_F2 éu_F§x+F¢u+¢x ==0
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Thus, we eliminated the redundant information contained in the original differential
equation. Since the prolonged vector field must vanish according to equation (4.19),
we get conditions determining the infinitesimals. The arbitrary function F in our
example is known for a certain type of equation. Thus, the partial differential
equation for £ and ¢ has solutions & = &(x, u) and ¢ = @¢(x, u). The three steps of
deriving the prolongation can be simplified in Mathematica by

Map[# == 0&, ProlongationODE[ode3, u, x]] /.
Solve[ode3 == 0, d,u[x]] // LieTraditionalForm // TableForm

_¢Fu“§Fx_F2 §u_F§x+F¢u+¢x ==0

With this expression, we are able to derive the invariance condition for any ordinary
differential equation. A specific example may demonstrate the derivation of the
invariance condition. O

Example 2

Let us assume that we have to find the invariance properties of the equation

oded = 9, u[x] -g[u[x]] £[x];
Map [# == 0&, {oded}] // LieTraditionalForm // TableForm

-fg+u,==0

where f and g are arbitrary functions of the independent and dependent variables,
respectively. The invariance condition for this differential equation is given by

poded = ProlongationODE[ode4d, u, x] /.
Solve[ode4 == 0, 9, u[x]]; poded // Flatten // LTF

—gEE -f0g. - g L -fgE+Eghu + P ==0
A solution satisfying the invariance equation is given by

1.

infioded = {E - ll‘unction[{u, x},

£[x]
¢ -+ Function[{u, x}, 0]}

{§—> Function[{u, x}, ], ¢ - Function( {u, x}, 0]}

1
£x]
We can check this result directly by inserting the solutions into the invariance

condition

poded /. u[x] »u /. infiode4d

{{0}}
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The result demonstrates that the given solutions satisfy the invariance condition. O

A special note on the arguments of functions is appropriate here. In the above
calculations, we used the functions F, &, and ¢ depending on independent and
dependent variables. In paper and pencil calculations, we are free to interchange
these arguments because we know that these functions are the same, independent of
the order of the arguments. However, in a symbolic calculation, we cannot change
the slots of the variables, since a computer does not know how to handle the same
function with interchanged arguments. So a good rule is to fix the arguments at the
beginning of the calculation and to use the same order in all calculations.

In the above example, the infinitesimals are given. How these solutions are derived
from the invariance condition will be discussed below. We saw in the example
discussed that we can always express the invariance condition of first-order
differential equations free of any derivative. One consequence of this observation is
that a first-order differential equation actually has an infinite number of symmetries.
This behavior can be read off directly from relation pode3, where £ is connected by
¢. However, there are exceptions to this statement where only a finite number of
symmetries exist.

Example 3

The derivation of a finite number of symmetries can be best demonstrated with a
higher-order differential equation. In the examples above we restricted our
discussions to first-order differential equations. If one has to examine higher-order
differential equations, we have to extend or prolong the tangent vector field to the
order of the differential equation; e.g., to the second prolongation for second-order
differential equations. To demonstrate the calculation let us examine the following
general second-order equation

ode5 = 9,2y u[x] -F[x, u[x], O,u[x]]; ode5 // LTF
-F + Uy, x == 0
The invariance condition (4.19) for this equation stays the same. The only difference

is the higher order of differentiation which the function ProlongationODE[] detects
by itself.

pode5 = ProlongationODE[ode5, u, x] /.
Solve[ode5 == 0, 9,.;u[x]]; pode5 // Flatten // LTF

_¢Fu _§FX—3FuX §u+Fux uiéu_2F§x+Fux Uy §X+F¢u_Fux uxd)u'
Fux d)x ”ui éu,u _2u)2( éu,x - Ux éx,x +u,2; ¢u,u + 2u-x ¢u,x +¢x,x ==
0
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From this relation we have to determine £ and ¢. The equation found is an identity in
x, u and u,. As a consequence of the point symmetries the infinitesimals are
independent of u,. This condition will split the general relation into several equations
according to the different dependence of its parts on u'. We see that the same function
ProlongationODE[] is useful to calculate the invariance relation (4.19) independent
of the order of differentiation. In Section 4.4.2 on second-order differential equations
we will show how we can extract the determining equations from such a relation. For
the moment we stop at this point and discuss another useful tool called canonical
variables.

4.3.4 Canonical Variables

In his work Lie pointed out that the introduction of suitable variables will drastically
simplify the representation of a group. We discuss here the so-called canonical
variables. On the other hand, canonical variables are a very efficient tool in the
solution of ordinary differential equations. In this section we consider the
distinguished situation of having a group consisting of two independent infinitesimal
transformations.

Two infinitesimal transformations given by their vector fields v, and v, are
independent from each other if the following relations do not exist

P = ¢y, (4.20)
where c is a constant, and the Lie product delivers
[T}l ,?’2 ] =G i;l + Cy T)z (4.21)

where c¢; and ¢, are constants again. The second relation can be simplified by
assuming that the two independent transformations can be used to represent the
product in a different way. If we assume that ¢, and c, are equal to zero, we get

1,91 = 0. 4.22)

On the other hand, we can assume that the infinitesimal transformations are given by
a linear combination of the transformations by

[a; Vi +a;V,, b1V + bV, ] = 0, @.23)

where a; and b;, i =1, 2, are constants. In these cases, the group is represented by
commuting infinitesimal transformations. If, for example, c¢; # 0, we represent the
two infinitesimal transformations by
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= - Cr
Vi =Vt —W (4.24)
€y
and
= 1
V) = — V. 4.25)
(&

By using this representation, we can rewrite the above condition as

= = | ST €L [P - =
[V19V2] = —[, ]+ —z'[Vth] = — (Vi +c2 V) = V. (4.26)
c aq ¢

Thus, we can write down the following theorem

Theorem: Canonical variables

Each two-dimensional group of infinitesimal transformations v, and v, can be used to
represent the product of the two transformations in each of the following forms:

[V, 1 =0 (4.27)
or
[V, V2] = 7;. (4.28)
Each of the two results is independent from the other. O

This theorem divides the two-dimensional groups in two classes. Each of these two
classes can be divided into two subclasses.

Canonical variables now follow from the definition:

Definition: Canonical variable

Every one-parameter group of transformations reduces to the group of
translations f = ¢t + € and w = w, with the vector field

V=0 (4.29)

by a suitable change of variables ¢t = ¢(x, ) and w = w(x, ). The variables ¢ and w
are the canonical variables. O

The proof of this theorem follows from the fact that the tangent vector field in the
original variables transforms according to the formula
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V=(V1)d, + VW) oy . (4.30)

In other words, canonical variables follow from the solution of the following linear
partial differential equations. These two equations represent the invariance of the
transformation

canonicalEquations = {§[x, u] 9, t[x, u] +
¢[x, u] B, t[x, u] ==1,

E[x, u] 6, w[x, u] +¢[x, u] O,w[x, u] ==0};
canonicalEquations // LieTraditionalFoxrm // TableForm
oty +Ety==1
dwy, + Ewy, == 0

The two equations follow from the definition by applying the tangent vector ¥ to the
canonical variables ¢ and w

vt=1  dw=0. @4.31)

The relations (4.24)—(4.26) define the canonical variables and present a way how
these variables can be determined. The following examples discuss the derivation of
canonical variables. First, we carry out a manual calculation of the canonical
variables, and at the end of the section, we discuss an automatic procedure.

Example 1

To see how these concepts work in practical applications, let us examine a specific
problem. We will examine a scaling symmetry represented by the vector field

veccan = {§ -» Function[{x, u}, =],
¢ » Function|{x, u}, -u]}

{§ » Function[{x, u}, x], ¢ » Function[{x, u}, -ul}

For this example, the defining equations for the canonical variables reduce to

caneq = canonicalEquations /. veccan;
caneq // LieTraditionalForm // TableForm

—uty +xty,==1
—uwy, +Xw, == 0

These two linear partial differential equations are solved by using the function
DSolve[] capable of solving first-order partial differential equations. The solution for
t follows by
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solcl = DSolve[caneq[[1], t[x, u], {x, u}]

{{t[x, u] »Log[x] +C[1] [ux]}}
and the solution for w reads

solc2 = DSolve[caneq[[2], w[x, u], {x, u}]

{{w[x, u] >C[1][ux]}}
The result for ¢ logarithmically depends on x and allows an arbitrary function C[1]
combining the two old variables x and u by a product. The second canonical variable
w is given by an arbitrary function which also connects x and u by a product. Since

we are only interested in a special solution of the defining equations, we can simplify
the arbitrary function by

rl=C[1l][ux] > xu
C[l][ux] »ux
For the inhomogeneous equation, we are mainly interested in a special solution.

Thus, the general solution derived by the function DSolve[] reduces if we set the
arbitrary function C[1][x, u] to zero. Applying the reasoning to our solutions, we get

csol = Flatten|[{solcl /. C[1] [xu] - O,
solc2 /. rl}]

{t[x, u] »Log[x], w[x, u] »ux}
We can check the derived result by inserting the solutions into the defining equations

caneq. First, we have to transform the representation of the solutions into a pure
function

r2 = Thread[{t, w} »
(Function[{x, u}, #ll&) /@ ({t[x, u],
w[x, ul} /. csol)]

{t » Function[{x, u}, Log[x]], w- Function[{x, u}, ux]}

The application of the result on the original equations gives us a list containing True
for each equation:

Simplify[caneq /. r2]

{True, True}

This result shows that the solutions given in csol satisfy the defining equations for the
canonical variables. O
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Example 2

Another example of great interest is the group of rotations. For this kind of symmetry
group, the infinitesimals are given by

veccan = {§ » Function[{x, u}, -u],
¢ » Function|[ {x, u}, x]}

{€ » Function[{x, u}, -u], ¢ » Function[{x, u}, x]}
The equations determining the canonical variables are thus given by

caneq = canonicalEquations /. veccan;
caneq // LieTraditionalForm // TableForm

Xty -uty==1
XWy, —uw, == 0

The solution for the new independent variable ¢ follows from

solct = DSolve[caneq[[1], t[x, u], {x, u}]

{{t[x, u]—>4ArcTan[ ]+C[1][%(—u2~x2)]},

]
ﬁx
%

{t[x, u] —)ArcTan[ werel ] +C[1] [% (-u? —x2)]}}

The new dependent variable w is determined by

solcw = DSolve [caneq[2], w[x, u]l, {x, u}]

u X

{{wix, vl st [-5-- 511

Again, we are only interested in a special solution which follows from
solct = PowerExpand[solct([2] /. C[1][_] - 0]

{elx, u] » ArcTan[%] }

The solution for w is extracted with
solcw = Flatten[solcw /. C[1] [x_] - x]
u2

2
{wlx, u] - - 12—}

The complete expression of the canonical variables are thus
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r3 = Thread[{t, w} -
(Function[{x, u}, #1]&) /@ ({t[x, ul,
w[x, ul} /. {solct[1]], solcw[1]})]
. x
{t - Functlon[{x, u}, ArcTan[ E] ] B
x2

u?
w—>Function[{x, u}, - - —2—]}

The canonical variables of the rotation group are given by the ArcTan of x divided by
u and the representation of a circle. O

Example 3

Another kind of symmetry frequently encountered in problems is given by a
projective group

veccan = {§ » Function[{x, u}, xu],
¢ -» Function[{x, u}, u]}

{§ » Function[{x, u}, xu], ¢ » Function[{x, u}, ul}
The corresponding determining equations are

caneq = canonicalEquations /. veccan;
caneq // LieTraditionalForm // TableForm

ut, +uxt, ==1

uw, +uxwy, == 0

We solve these equations by using the function DSolve[] for the first and second
equations:

solct = DSolve[caneq[1l], t[x, u], {x, u}]
{{t[x, u] »Log[u] +C[1] [u-Log[x]]}}
solcw = DSolve[caneq[[2], w[x, u], {x, u}]
{{w[x, u] >C[1] [u-Log[x]]}}

We extract a special solution from these expressions by

csol = Flatten[{solct /. C[1][_] » O,
solcw /. C[1] [x_] -» x}]

{t[x, u] » Log[u], w[x, u] »>u-Log[x]}

and transform the relations to
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rd4 = Thread[{t, w} -
(Function[ {x, u}, #1]&) /@ ({t[x, u],
w[x, u]} /. csol)]

{t » Function[{x, u}, Log[u]], w- Function[{x, u}, u-Log([x]]}

The result is a representation of canonical variables for the projective group. O

The interactive steps of the calculation can be collected in a Mathematica function
CanonicalVariables[]. The function needs the dependent and independent variables of
the old coordinates. We also supply the infinitesimals for these coordinates as input
information. The last two arguments contain lists of the new variable names for the
dependent and independent variables, respectively.

The function CanonicalVariables[] calculates the general transformation using the
first-order partial differential equations defining the determining equations. The
function is designed to generalize the theory in such a way that an arbitrary number
of independent and dependent variables can be transformed. The returned result of
the function CanonicalVariables[] is a list of solutions represented in a pure function
form. The following code serves as the definition of this function.

Clear [CanonicalVariables]
CanonicalvVariables[depend List, indep_ List,
xi_List, phi_List,
ndepend_List, nindep_List] :=
Block [ {equations = {}, solutions = {},
ssol, rule, csol},
vars = Join[indep, depend];
infini = Join[xi, phi];
nvars = Join[ndepend, nindep];
newvars = Table [Unique["w$"],
{i, 1, Length[vars]}];
dnewv = Table[newvars[i]] @@vars,
{i, 1, Length[newvars]}];
rule = Thread[newvars - nvars];
Do|
AppendTo [equations,
Length [vars]
in€ini[[i] Ovareps; dnewvij] == 0],
i=1
{j, 1, Length[dnewv] - 1}];
AppendTo [equat ions,
Length [vars]
infinif[i]] Oya,epiy Last [Anewv] == 1] ;

i=1
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Do[
AppendTo [solutions,
DSolve[equations[i]], dnewv[i]], vars]],
{i, 1, Length[equations]}];
ssol = PowerExpand[Table[solutions[i] /.
Cl_1[x___] = {x}[il,
{i, 1, Length[solutions] -1}]];
AppendTo[ssol, PowerExpand[Last[solutions] /.
cl_l1[—1=-0]1;
csol = Flatten[ssol] /. rule;
Thread[nvars -
(Function[vars$, #1]&) /@ (dnewv /.
rule /. csol)] /. vars$ —» va.rs]

The application of the function CanonicalVariables[] to different symmetry groups is
demonstrated in the examples below. Let us first examine an inhomogeneous scaling
group for two variables u and x. The names of the new variables are w and ¢:

Canonicalvariables[{u}, {x}, {ax},

{bu}, {w}, {t}]

slo

Log [x] ”

], t—>Function[{x, u}, 3

{w - Function[ {x, u}, ux"

The result is a logarithmic dependence in the new independent variable ¢ and a
quotient of u and x*/%. Another example is related to the projective group. The result
becomes more readable if we apply the function LTF[]:

CanonicalVariables|[{u}, {x}, {x*u}, {1},
{w}, {t}] // LTF

== -u
u? 1
W== — + —
2 X

A further example is the inhomogeneous translation group

Canonicalvariables|[{u}, {x}, {1}, {k},
{w}, {t}] // LTF

£== X
1

-lu+kx

w 1

The symmetry of rotation is connected with the canonical variables

CanonicalVariables|[{u}, {x}, {u}, {-x},
{w}, {t}] // LTF
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t == -ArcTan|[ 1]
u2 X2
WeET T

The scaling of one of the coordinates allows the canonical variables
CanonicalVariables[{u}, {x}, {x}, {1},
{w}, {t}] // LTF

== Log [x]
=u - Log [x]

t

4

Canonicalvariables([{u}, {x}, {1}, {u}.,
{w}, {t}] // LTF

t X
w E*u

Several other examples demonstrate the capabilities of this function. The occurrence
of the Log[] in one of the infinitesimals demonstrates the flexibility of the function

CanonicalVariables[{u}, {x}, {Log[x] u}, {1},
{w}, {t}] // LTF

= -u

t
w 222— - LogIntegral [x]
An example with parameters in the infinitesimals shows that CanonicalVariables[]
can handle rational expressions:

Canonicalvariables[{u}, {x}, {kl + k2 x},
{k3 +2k2u}, {w}, {t}] // LTF

Log [kl + k2 x]
k2
-k3-2k2u
2k2 (k1+k2x)?

t =

w

An example for a higher-dimensional manifold Il is examined next:
CanonicalVariables|[{u, v}, {x, t}, {x, t},
{0, 0}, {un, vn}, {an, tn}] // LTF

tn == Log [x]
un ==u
vn == v

t
XN == —
X
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This list of examples can be extended by the reader's experiments. We demonstrated
that the knowledge of the infinitesimals allows the introduction of new variables. Lie
pointed out that these canonical variables simplify the solution of the original
equation. The advantage of canonical coordinates is that we may simplify the
solution algorithm. This algorithm consists of first finding the infinitesimals, second,
calculating the canonical variables, and third, transforming the original equation to a
simpler form. These three steps will be the subject of the next sections.

4.4. Analysis of Ordinary Differential Equations

The Lie point symmetries of an ordinary differential equation A =0 are determined
by calculating the general solution for the infinitesimals & and ¢. The procedure
follows the steps discussed in Section 4.3. The first step is to write down the
invariance condition for the equation and then solve the linear determining equations.
The steps of deriving and solving the determining equations are accessible within
MathLie and can be carried out automatically. The calculations done by hand are
very cumbersome, but using computer algebra, the work is easy to accomplish.
However, the view taken here is somewhat optimistic and cases exist which
sometimes involve peculiar results.

One of these peculiarities is the case of first-order differential equations. As we will
soon show, first-order differential equations always have an infinite number of
symmetries and are thus not very appropriate for Lie's method. However, we will
discuss a procedure which allows us to find a restricted class of point symmetries, the
so-called conformal symmetries.

4.4.1 First-Order Equations

The general representation of a first-order ordinary differential equation is given by
du
F(x, u(x), E) =0, 4.32)

where F is an arbitrary function combining the independent and dependent variables
x and u, respectively, and the derivatives in a general way. Our intention here is to
use point symmetries to solve this type of equation. We state the main result at the
beginning of this section. A first-order differential equation always has an infinite
number of symmetries. This is immediately obvious if we consider the geometrical
interpretation of the equation. As we know, the set of solutions of a first-order
differential equation is a one-parameter family of curves which look like the
ensemble in the following figure:
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A symmetry transformation is by definition a transformation mapping solutions into
solutions. As the example in the above figure shows, new solutions follow from old
solutions by successively changing the involved integration constant. Every
symmetry transformation is represented by a generator v corresponding to a vector
field leading from curves to their neighboring curves. As we know, the vector field
always exists and can be represented by the infinitesimals £ and ¢. A different choice
V' of the vector field will result in a different location on the target curve; however,
both points on the target curve are connected by a third vector field S (see the figure).
This is one of several ways to interpret a differential equation. Another view is the
following:

From a conceptual point of view, a differential equation contains two components:

(i) the skeleton of the differential equation

(ii) the solution manifold.

These two parts of a differential equation will be the subject of the following. The
term skeleton was introduced by Lie [1899] to denote the extended manifold on
which the differential equation exists. We will show you how the symmetries connect
these two parts. We start with the skeleton of a first-order ordinary differential
equation.

4.4.1.1 The Skeleton of an Ordinary Differential Equation

As mentioned, the concept of an ordinary differential equation has two components.
Let us first consider the first-order differential equation in the form

F(x, u(x), u) = 0, (4.33)

where u' = %‘ is the first-order derivative. The two components of an ordinary

differential equation are as follows:
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Definition: The Skeleton

The skeleton of a differential equation is defined as the surface
F(x,u, p) =0 (4.34)

in the space of the independent variables x, u, and p. u and p denote the sets of
dependent variables and derivatives, respectively. The corresponding differential
equation follows from the skeleton with the replacement of p by the derivatives
u(l) .O

This general definition reduced to first-order equations introduces nothing more than
an extension of the manifold NM. This extended manifold consists of the independent
and dependent variables with the third direction denoting the first derivative. The
once extended manifold is a very useful term in the discussion of first-order ordinary
differential equations. Another term we need is the class of solutions.

The class of solutions is defined in consensus with certain mathematical or physical
assumptions.

Definition: A class of solutions

A solution is a continuously differentiable function A(x) such that the curve u = h(x),

u' = % belongs to the skeleton, that is, F(x, h(x), %) = 0 identically in x for
some interval. O

The combination of both terms allows us to solve the first-order equation. The crucial
step in integrating differential equations is a simplification of the skeleton. This
simplification can be gained by a suitable change of variables x and u. To this end,
we use symmetry groups of differential equations, leaving the skeleton invariant.
Provided a symmetry group is known, a simplification of the skeleton can be carried
out by introducing canonical variables, for example. This kind of simplification is
demonstrated by the following examples.

Example 1
Let us consider the Riccati equation as a first example:
2
riccati = 9, u[x] +u[x]? - —- == 0; riccati // LTF
X

2

2

u® - — +u, ==0
%2 x
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The skeleton of this Riccati equation is defined by the algebraic equation
2

p+ui-—==0
%2

and its surface, a so-called hyperbolic paraboloid, can be displayed by defining the
skeleton as a Mathematica function:

2

£[x_, u_] :=-u® + —
xz

The corresponding surface in three dimensions is given by

pll =Plot3D[f[x, u], {x, 0.25, 2}, {u, -5, 5},

Boxed -» True, Axes - True, Mesh - False,
Ticks » None, PlotPoints - 30,

3
BoxRatios - {1, o 1},

ViewPoint » {1.975, -1.884, 2.000},
AxesLabel -» {"x", "u", "p"}]

This figure shows that the skeleton in the coordinates x, u, and p has a singularity in
the limit x —» 0. We also observe the parabolic shape of the surface for large x-values.
Thus, the surface is twisted in two directions, which obviously baffles the discovery
of the solution. Our goal is to find a transformation which reduces the twisted shape
to a simpler representation. For the Riccati equation, a one-parameter symmetry
group is provided by the following scaling transformations. Ibragimov [1994] calls
this transformation a non-homogeneous dilation.
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transformation = {x-» r Exp[-a],
u - Function[x, w[xExp[a]] Exp[a]]}

{x>E?®r, u-> Function[x, w[xExp[a]] Exp[a]]}

We can check the invariance of the Riccati equation by taking into account that the
derivatives also need to be transformed by the rule

dtrafo=v_®)[a_.x ] »a”v® [ax]

n

v_®)la_.x_]»a?v® [ax]

The rule dtrafo represents the fact that the nth derivative of a function under a scaling
is replaced by the nth derivative divided by the scaling factor a”. The application of
transformation and dtrafo to the Riccati equation gives us

triccati = riccati /. transformation /. dtrafo; triccati // LTF

2E2a

T tE W + BT, == 0

We note that the original equation riccati is reproduced up to a common factor E*¢.
In the definition of the transformation, it is essential that we use the new variables in
the representation for the original variables. x is simply replaced by the new
independent variable r multiplied by the factor E~“. The dependent variable u is
replaced by wE”®. Since w depends on the new variable r, we have to use the
representation of r in the form x E. We also have to take into account that the
derivatives need a special treatment which is contained in the rule dtrafo. Combining
all these rules in the transformation of the original equation, we end up with the
equation given in triccati. The different replacements of variables are actually the
steps necessary to carry out the transformation by hand. The application of the
transformation on the first derivative shows us that its behavior is

dxu[x] /. transformation /. dtrafo // LTF
E?2w, == 0
-2a

which in conventional notation reads w' — u'e “?. Thus, we observe that the

equation's skeleton is invariant under the inhomogeneous stretching r — xeé?,

a ' ,—2a

, Wwou'e which is obtained by extending the transformations of the
group to the first derivative u'. We can also check the invariance of the skeleton
equation by applying the extended vector field to the skeleton equation. We define
the vector field by

w = ue"

Vect[f_ ] :=x0,f-ud,£-2p3, £
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The skeleton of the Riccati equation is

skeleton = riccati /. {9, u[x] » p, u[x] »u}

2
p+u2—x—2:=0

The application of the vector field gives us
Vect /@skeleton

4
-2p-2u? *5z ==0
If we compare the two expressions, the original and the transformed, we observe that
the original equation is reproduced up to a factor —2. Thus, if the skeleton vanishes,
the application of the vector field to the skeleton also vanishes. This result shows us
that under a scaling transformation, the skeleton of the Riccati equation is invariant. O

Example 2

Another example for a first-order ordinary differential equation is

9, ulx] ulx]® u[x]?®
example2 = - + + == 0; example2 // LTF
x? x2 x

2

c

X ==0

+ 2

u u?
x2 X

X

This example is also invariant with respect to an inhomogeneous scaling
transformation. We define this sort of transformation by a transformation rule like

scalingtrafo = {x-» Exp[-a] r,

u - Function[x, w[xExp[a]] Exp[a]]};
dtrafo=v_“)[a_.x ] > a?*v® [ax];
scaling([x_] :=x /. scalingtrafo /. dtrafo

The application of the function scaling[] to the second example shows the invariance
of this equation

scaling[example2] // LTF

E‘ew?  E'?w  E'*w
r2 + r S ==0

The graphical representation of the skeleton for this equation is created by
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p1m;31:[u2 -xua®, {x, -1, 1}, {u, -2, 2},
PlotRange - All, AxesLabel - {"x", "u", "p"},
ViewPoint -» {5.287, 3.905, 3.613},

3
Mesh -» False, Ticks - None, BoxRatios - {1, ;, 1}]

This three-dimensional representation of the skeleton looks like a stingray. The

structure of this entangled surface is simplified if we apply the following canonical
transformation:

Lo
canonical = {x - Exp[t], u- Function[x, w[ g[x]]

1}

x
canonicaltransform[x_] := Simplify[PowerExpand[
X /. canonicall]]

The transformation is carried out by

canonicaltransform|[Thread[example2 Exp[4 t], Equal]] // LTF

W+wW: +wW —w, == 0

The related skeleton simplifies the surface:

Plot3D[w+w +w’, {t, -1, 1}, {w, -2, 2},

PlotRange - All, ViewPoint -» {2.460, -1.182, 2.000},
AxesLabel » {"t", "w", "w'"},

ViewPoint » {5.287, 3.905, 3.613},

PlotPoints - 30, Mesh -» False, Ticks - None,

BoxRatios - {1, %, 1}]
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which is a third-order parabola translated along the z-axis. This example shows that
the introduction of canonical coordinates radically simplifies the shape of the
skeleton and thus allows access to the solution. O

Example 3

Another example demonstrating the concept of the skeleton is given by the first-order
equation

example3 = x 0, u[x] -u[x] + u (=] == 0; example3 // LTF
\J x
-u + 2 +xu, == 0
\’ x

This type of equation is invariant with respect to the global transformation E =

X

1-ex

and @ = ﬁ; the related canonical variables are w = *- and ¢ = _x—l The equation in

canonical variables reads

cexample3 = 9. w[t] + Vw[t] == 0; cexample3 // LTF

\/v_v +w, == 0
Each skeleton of these two equations is represented in the following figure:

Show|[GraphicsArray [
x

PlotRange - All, AxesLabel » {"x", "u", "p"},

u
{PlotBD[— - ’ (xl -11 1}1 {ur ol 2}1
x
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ViewPoint » {-2.566, 1.572, 1.548}, Mesh - False,
Ticks » None, PlotPoints - 30,

3
DisplayFunction - Identity, BoxRatios - {1, ri 1}] .
Plot3p[-Vw, {t, .1, 1}, {w, 0, 2},
PlotRange - All, AxesLabel » {"t", "w", "w'"},
ViewPoint » {-2.566, 1.572, 1.548}, Mesh - False,

Ticks -» None, PlotPoints - 30,
DisplayFunction - Identity,

BoxRatios » {1, —:—, 1}1}]1.

DisplayFunction - $Displayrunct:ion]

It is obvious from this figure that the skeleton of the original equation is reduced to a
much simpler representation. The convex shape of the original skeleton reduces to a
concave surface which is invariant with respect to a translation along the t-axis. O

Upon observing that a canonical transformation simplifies the skeleton, we approach
the second component of a differential equation. The second component was
concerned with the solution of the equation. The question now is: How can we use
the information of the symmetries to find solutions of any first-order equation
possessing some symmetries? One idea to solve this problem is to use canonical
variables which allow a transformation to a simpler representation of the equation.

Returning to our first example of the Riccati equation, we know that the canonical
variables for a non-homogeneous dilation is given by
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trafol = {x - Exp[t], u- Function|[x, w[Log [x] ]

1}

w([Log[x]] ]}

{x - E*, u - Function [x, <

In Section 4.3.4, we derived this type of transformations by solving the defining
equations for ¢ and w. The solution used here is a special type of the general solution
derived in Section 4.3.4. Application of this transformation to the Riccati equation
gives us the following result:

riccatil = Simplify[Thread[
PowerExpand[riccati /. trafol] Exp[2t], Equal]];
riccatil // LTF

2-w+w? +w, == 0
The transformation straightens out the skeleton of the original Riccati equation,
taking it to a parabolic cylinder

glt_, w_] :=2 +wW-w

The right-hand side of g is independent of ¢; thus, the skeleton reduces to a
cylindrical surface centered along the ¢-axis.

pl2 =Plot3D[g‘[t, w], {t, 0.25, 2}, {w, -5, 5},
Boxed -» True, Axes - True, Mesh -» False, Ticks - None,

3
PlotPoints - 30, BoxRatios - {1, e 1},

ViewPoint -» {1.975, -1.884, 2.000},
AxesLabel - {"t", "w", "w"'}]
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The simplification of the skeleton is the reason why the Riccati equation takes the
integrable form when written in canonical variables (cf. the skeleton of the original
Riccati equation).

The stretching of the original Riccati equation is replaced by a group of
translations f = ¢ + €, w = u, and w' = u'. The calculations so far executed by hand can
be collected in a Mathematica function. The information we need for the calculation
are the original equation and the names of the dependent and independent variables.
We also need the canonical transformations which are derived by the function
CanonicalVariables[]. Finally, the function has to know the names of the new
coordinates. The representation of the original equation is carried out by the function
CanonicalRepresentation[]:

Clear [CanonicalRepresentation]
CanonicalRepresentation[equation_, depend_,
independ , canonicaltrafo_ List, newdepend ,
newindepend_] :=
Block[{patternl, trafol, eqin, ctrafo,
canonicalvariables, sol, equat},
aDt[u]
patternl=a_.u_'[x_ ] +p_.==0:2 — +D;
Dt [x]
trafol = depend@@ {independ} -» depend;
eqgin = equation /. patternl /. trafol;
ctrafo = canonicaltrafo /. Rule -» Equal;
canonicalvariables = Flatten[canonicaltrafo /.
(a_-»Db_) - {a}];
sol = Solve[ctrafo, {depend, independ}];
equat = Expand[eqgin /. sol];
equat = equat /. newdepend » newdepend @@ {newindepend} ;
equat[1] == 0]

We demonstrate the use of this function by applying it to the Riccati equation. We
know that the Riccati equation is invariant with respect to an inhomogeneous scaling
transformation. The related canonical variables are given by

ccoord = Canonicalvariables[{u}, {x}, {x}, {-u},

{w}, {t}]

{w > Function[{x, u}, ux], t » Function[{x, u}, Log[x]]}

The result is identical with the variables stated above. Using this transformation, we
can reduce the Riccati equation to

cricc = CanonicalRepresentation|riccati, u, x,
{w->xu, t »>Log[x]}, w, t]; cricc // LTF
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—2E2t _E?2tw+E?2tw? +E?tw, == 0

The resulting equation has the same structure as the manually derived one. The
common factor e’ is a non-vanishing term which can be eliminated by multiplying
with the inverse:

cricc = Simplify[Thread[cricc Exp[2t], Equal]]; cricc // LTF
-2-wW+wW? +w, == 0

This equation can be solved by quadrature or a separation of variables. We use here
the Mathematica function DSolve[] to integrate the equation.

sricc = DSolve[cricc, w, t]

2 E3#1 4 g3Cll]
{{W—’(W&)}}

The solution in the original variables follows by applying the canonical
transformation again,

solricc = Simplify([w[x, u] == (w[t] /. sricc) [[1] /.
t »t[x, u] /. ccoord]

B3¢0 4 2x3

UX == —E3ci) 4 %3

and solving the implicit solution with respect to u,

Solve[solricc, u]

E3C[1] 4 3
{{u- % (—E3C[:1 +XX3) 1}

The second of our examples discussed above allows the same scaling symmetries.
The reduced equation follows from

cex2 = CanonicalRepresentation[example2, u, x,
{w->xu, t >Log[x]}, w, t]; cex2 // LTF

E*'*w+E** W +E**w -E*"w, ==0
The common factor is eliminated by
cex2 = Simplify[Thread[cex2 Exp[4 t], Equal]]; cex2 // LTF

Wt+W W - W, ==

The solution in the canonical variable w follows by separation of variables and
integrating the left-hand side and the right-hand side:
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1
sex2 = simplify[j
w

——dlw::fldltc-c]
+ w2 +w

ArcTan [ 17*1-"’— ]

V3

+Log [w] - %Log[l+w+w2] ==c+t

Since the solution contains transcendent functions, it is hard to get an explicit
solution at this stage. The inversion of the canonical transformation does not resolve
this problem:

iex2 = sex2 /. {w->w[x, u], t > t[x, u]} /. ccoord

ArcTan [ 17*2-3& ]

NG 3

1
+Log[ux] - 7Log[1 +ux+u?x?] == c + Log[x]

However, we can resolve this problem by a graphical representation of the solution.
We create a contour plot by displaying the implicit function for a fixed parameter c:

iex2h =iex2 /.a_==b_-a-b/.c-1;

ContourPlot [iex2h, {x, .01, 2}, {u, .01, 1},
ColorFunction -» Hue, PlotPoints - 20]

1

Generally, we observe that u increases if x increases. For small values of u, there
exists a nearly linear relation between u and x.

The third example discussed above is represented in canonical variables by
cex3 = CanonicalRepresentation [example:i, u, x,

{w- %, t—»—%}, w, t]; cex3 // LTF
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Ny ==
The solution of this equation for w follows from

sex3 = DSolve[cex3, w, t]

({w- (% (#12 ~ 2 #1 C[1] +C[1]2)&) 1
Inverting the transformation and solving for u gives us the explicit solution

1
solex3 = i == (w[t] /. sex3)[[1] /. £t > - —
x x®

1 (L 2C[1]

T (s~ +C[1]2)

u
X

sol3 = Solve[solex3, u]

~1-2xC[1] -x2C[1]?
{{u-- xell-= clll py

So far, we have discussed some examples to show that canonical variables can be
used to simplify the integration process of first-order equations. The method of
canonical variables is useful not only in the integration process of first-order ordinary
differential equations but also in the integration of higher-order ordinary differential
equations. We will come back to this general procedure in Section 4.4.2.2.

Before proceeding with second-order equations, we first discuss another approach to
integrate first-order ordinary differential equations. This method uses the fact that a
first-order equation can be integrated if an integrating factor is known. The procedure
introduced by Lie in 1891 is very useful if one knows the point symmetries of the
equation in an infinitesimal representation.

4.4.1.2 Integrating Factor

The common belief in literature is that the method of an integrating factor is only
useful in connection with a first-order ordinary differential equation. For the moment,
we will take this point of view. However, in Section 4.4.2.2, we will generalize the
method of an integrating factor to higher-order equations. In Section 4.2.3, we
demonstrated by several examples that a curve is invariant under a symmetry
transformation if the tangent vector applied to the curve vanishes. Let us assume that
the curves discussed are integral curves or solutions of a first-order differential
equation. For example, the ODE is

odel = 9, u[x] == £[x, u[x]]; odel // LTF

-f+u, ==0
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where f is given by the ratio of two functions U and X

U[x, u[x]]

fx, u[x]] = i
X[x, u[x]]

If F[x,u] = const. are integral curves, we get

invarl = Dt [F[x, u]] == 0; invarl // LTF

Dt[u] F, + Dt [x] Fx == 0
Let us further assume that the differential equation is invariant under an infinitesimal
transformation represented by the vector field v. Then, we find

invar2 = TangentVector[F[x, u], {u}, {x}] == H; invar2 // LTF

-H+F, & [x, u] +F, ¢1[x, u]l ==0

We always can rescale invar2 in such a way that the right-hand side equals 1.

invar2 = invar2 /. H- 1; invar2 // LTF

-1+F, & [x, u] +F, ¢, [x, u] ==0

Thus, we derived two equations for the derivatives of the invariant curve which have
to be satisfied under the given infinitesimal transformation. We can solve these two
equations for the derivatives of F by

sol = Solve[ {invarl, invar22},
{0, F[x, u], 0,F[x, u]}] /. {Dt[u] » U[x, u]l,
Dt [x] - X[x, ul]}
Ul[x, u]
U[x, u] & [x, u] - X[x, u] ¢; [x, u] '
_ X[x, u] }}
Ulx, u] & [x, u] -X[x, u] ¢; [x, u]

{{F‘l'o’ [x, u] »

FOY [x, u] »

We understand from this result that the partial derivatives of the integral curve are
known as functions of x and u. On the other hand, the result shows that the total
differential of the integral curve F is known. The following expression represents the
total differential Dt[F]:

invar3 = Simplify[invarl /. sol /. 0 - Dt [F]]

{ Dt[x] U[x, u] - Dt[u] X[x, u]
U[X, u] §1 [X, u] —X[X, u] ¢1 [X, u]

== Dt [F]}
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Recall the definition of an integrating factor u(x, u) which is, by definition, a
function of x and u that makes Dt[x] Y — Dt[u] X the differential of the integral curve
F. This information allows us to extract from our result invar3 the integrating factor

1

Denominator[invar3[1, 1]]

1
U[x, u] & [x, u] -X[x, u] ¢, [x, u]

This result was obtained by Lie in 1874. For the derivation of integrating factors, it is
important to know the structure of the equation and the symmetries.

In 1874, Lie proved that a first-order ordinary differential equation can be solved by a
quadrature if the symmetries of the equation are known. He collected his
observations in the following theorem.

Theorem: Integrating factor

The first-order ordinary differential equation
Ux, uydx — X(x, u)du =0 4.35)

possesses a one-parameter group allowing the vector field v = £0; + ¢ 9, if and
only if the function

1

H= ¥u—9x

(4.36)
is an integrating factor with £U — ¢ X # 0. If this is the case, the original equation is
solved by a quadrature:

Udx—Xdu

fU-¢X = const. O @.37)

Relation (4.37) can be simplified if we introduce the following determinants:

dx du
da = det( X U) (4.38)
and
_ £ o _ 1
A—det(X U]_ e (4.39)
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Then, equation (4.37) reduces to the simple relation

f(%) = const. (4.40)

Equation (4.40) combines all information necessary for a solution in a nutshell. All
we need to know are the infinitesimals and the left-hand side of equation (4.35).
Integration over the manifold provides us with the solution. A few examples will
demonstrate the application of Lie’s theorem.

Example 1

As an example of these considerations, let us examine the first-order ODE

Tan([x-u]
ode2 =9, u[x] ==1+ ———; ode2 // LieTraditionalForm
x

Tan[u - x]

U, == 1 - =

The functions X[x, ] and U[x, u] are found by extracting the coefficients of the
differentials. First, we extract this part from the ODE free of any differential:
ode2h = ode2[2]

Tan[u - x]
X

1 -

Then, we generate a common denominator,

ode2h = Together [ode2h]

x - Tan[u - x]
x

and determine X[x, u] by
X[x, u] = Denominator[ode2h]
X

Ul x, u] is then given by

U[x, u] = Numerator [ode2h]

x - Tan[u - x]
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The infinitesimals of the first-order equation ode2 are

€1 [x, u] =0;

and

1

x Cos [x - u] '

é1 [%, u]

Knowing these relations, we use the definition of u to get the explicit representation
of the integrating factor

u

-Cos[u - x]

The related total differential of the integral curve reads

Expand[invar3]

{-Cos[u-x] (-xDt[u] +Dt[x] (x-Tan[u-x])) ==Dt[F]}
This equation has to be integrated on the right-hand side with respect to F, and on the
left-hand side with respect to x and u. The result is

ip=F == JCOefficient[

Expand[invar3[1l, 1]]], Dt[u]] du+
fc::effieienl: [Expand [invar3[1, 1] ], Dt[x]] dx

F==2xSin[u - x]

defining the solution of ode2 in an implicit form. To see how this solution behaves in
the variables x and u, we graphically represent this solution for three values of the
constant F. The use of the function ImplicitPlot[] creates a contour plot of the
implicit function in the (x, u)-plane:

<< "Graphics ImplicitPlot™ "
iph = Table[ip /. F-» i, {i, .1, 2, .9}]
{0.1==2x8Sin[u-x], 1. ==2x8Sin[u-x], 1.9==2xSin[u-x]}

ImplicitPlot[iph, {x, -10, 10}, {u, 0, 20},
AxesLabel -» {"x", "u"}, PlotPoints -+ 100,
PlotStyle » {RGBColor[1.000, 0.000, 0.000],

RGBColor[0.000, 0.000, 1.000],
RGBColor[0.000, 0.251, 0.000]}]
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A\

-10 -5 5 10 ¥

We clearly observe that small values for F will force the function to be located at the
vertical axis at x = 0. Larger values of F push the function away from this vertical
axis. Examination of this example demonstrates that the knowledge of the
infinitesimals is very useful in constructing solutions of first-order differential
equations. For the present equation, we only stated the existence of the infinitesimal
transformations. In Section 4.4.1.3, we will show how such infinitesimals can be
derived from the invariance condition of the differential equation. O

Let us demonstrate the application of Lie’s integrating factor theorem by another
example. We are especially interested in collecting the steps of calculation in a
Mathematica function. The basis of this function is the above theorem.

Example 2

Let us again examine the Riccati equation discussed in connection with the skeleton
of a first-order ordinary differential equation:

riccati // LTF

u? - xiz +u, ==0

Considering this equation, it is useful to determine the symmetry. Since this equation
is of a polynomial type, it is natural to assume that the symmetries of this equation
are of a scaling type. We already know that the infinitesimals are given by ¢ = x and
¢ = —u. If we represent the Riccati equation in the form
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2
ricc = Dt[u] + (u2 - —] Dt([x] == 0
xz

Dt [u] + (u2 - ;22—) Dt [x] == 0

we are able to use Lie’s theorem to determine the integrating factor in a
straightforward way:

1
u = Simplify[Together | —_— 1]
x (u? - xiz) -u
X
-2-ux+u? x?
Multiplying the equation ricc by the integrating factor p, we get
riccl = Simplify[Thread[riccmu, Equal]]

x (Dt [u] + (u? - ;22—) Dt[x])

==0
-2 -ux+u? x?

Integrating the coefficients of the total differentials with respect to the differential,
we get for Dt[u] and Dt[x] respectively

solu = J}:oefficient [Expand[riccl[[1]]], Dt [u]] du

1

?Log[—2+ux] - iLog[l+ux]

3

and

solx = jCoefficient [Expand[riccl[[1]], Dt[x]] dx

Log[x] + %Log[—z +ux] - %Log[l+ux]

Comparing the two integrals, we observe that common terms exist. Thus, the
complete solution which is equal to a constant C[1] follows:

1
isol = Expand| 7 ((solx - solu) + solu + solx) | == C[1]

Log([x] + %Log[—z +ux] - %Log[la—ux] ==C[1]

After the collection of logarithmic terms and an exponentiation, we get

iisol = Thread[Exp[isol //.a_. Log[b_] +c_. Log[d_] -»
Log[b® d°]], Equal]
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x (-2 +ux)t?

—— gCI(1]
1/3 ==E

(1 +ux)

The solution of this relation with respect to u reproduces the known result:

Solve[iisol, u]

E3C[1] 2 3
{{u- X (_Est] +XX3) 1}

All these steps to solve a first-order ordinary differential equation are completely
algorithmic. That is why we can collect them in a common function called
IntegratingFactor[]. The function IntegratingFactor[] needs as input parameters, the
equation, the dependent and independent variables, and the infinitesimals. The
following lines define this function using the steps of the calculation discussed above:

Clear[IntegratingFactor]
IntegratingFactor[equation , depend_: Symbol,
independ_: Symbol, xi_, phi_] :=
Block[{patternl, pattern2, eq, eqin, q, p,
ifactor, t1, t2, it1, it2},
If [equation/.p_.u ™) [t_]+q@ ==0:>n>1,
Return[Hold[IntegratingFactor [equation,
depend, independ, xi, phi]]]];
If [FreeQ[equation, Equal],
Return|[Hold[IntegratingFactor[equation,
depend, independ, xi, phi]]]];
trafo = depend@@ {independ} - depend;
itrafo = depend » depend@@ {independ};
patternl =p_.u_'[t_]+q ==0: -pDt[u] +gDt[t];
pattern2 =p_.u '[t_] +q_==0: {g, -p};
eqgin = equation /. trafo; eq = eqin /. patternl;
{9, P} = eqin /. pattern2;
1

ifactor = —m8 —;
xiqg-phip

eqgh = Together [eq ifactor];
num = Numerator [eqh];

den = Denominator[eqh];

€1 Coefficient [num, Dt [independ]]
B den !

Coefficient [num, Dt [depend]]

t2 =

den

itl = J-tl dindepend;
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it2 = jtz ddepend;
If [FreeQ [itl, Integrate] && FreeQ[it2, Integrate],
1
itl = Expand[? ((itl-it2) +itl+it2)],

Return[Hold[IntegratingFactor[equation,
depend, independ, xi, phi]]] ] :
Simplify[itl == C[1l] /. itrafo] ]

The following examples demonstrate the application of the function
IntegratingFactor(].

Example 3

The first equation solved by this function is a first-order equation containing a ratio
of dependent and independent variables:

x? +u[x]?

eq2 =9,u[x] - ——— == 0; eq2 // LTF
xul[x]
2 2
_u?+x s, == 0
ux

Knowing the infinitesimals £ = x and ¢ = u, the function IntegratingFactor[] is able
to calculate the implicit solution in the form

ieqg2 = IntegratingFactor[eq2, u, x, x, uj
u[x]?
2 x2

Log [x] - ==C[1]

Solving this equation with respect to u, we find that the solution is given by two
expressions containing a Log[x] in the radicand of a square root:

Solve[ieqg2, u[x]]

{{u[x] > -I+/2 Vx2 C[1] - x? Log [x] },
{u[x] S T4/2 ’\/XZC[l] - x2 Log [x] }}

Extracting —1 from the constant of integration C[1], we find the same solution as
DSolve[] does:

DSolve[eq@2, u[x], x]

{{urx] -» -2 V/x2 C[1] +x? Log[x] },
{u[x] >+/2 /%2 C[1] + %2 Log [x] }}
a
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Example 4

Another example for which an integrating factor exists but the quadrature is
impossible is given by

eqg3 = 6,u[x] -u[x] (1-u[x]®Exp[u[x]]) == 0; eq3 // LTF

—u (L-E%u?) +u, == 0

The function IntegratingFactor[] returns the original input

ieq3 = IntegratingFactor[eqg3, u, x, 1, 0]

IntegratingFactor[-u[x] (1-E"™ u[x]?) +u'[x] ==0, u, x, 1, 0]

The function IntegratingFactor[] is simple to use. If the function cannot find an
integrating factor or is unable to carry out the integrations, it returns the input line. O

The presented method of an integrating factor for first-order equations can be
generalized to higher-order equations. This generalization is further discussed in
Section 4.4.2.2 for second-order and in Section 4.4.3.1 for higher-order equations.
The method of an integrating factor was only useful in cases where we knew the
infinitesimals. At the beginning of this section, we noted that the first-order equations
have some peculiarities in determining the symmetries. The following section will
discuss how this problem can be partially solved by introducing conformal
symmetries or using heuristic ansétze for the infinitesimals.

4.4.1.3 Infinitesimals of First-Order Ordinary Differential Equations

The determination of infinitesimal transformations of first-order ordinary differential
equations is a special problem in Lie’s theory. The problem is that first-order
ordinary differential equations allow an infinite number of symmetries. This property
is an essential obstacle in the calculation of the symmetries. The central point in a
practical calculation is that the determining equations for the infinitesimals reduce to
a first-order partial differential equation. Let us demonstrate this by the general
equation of a first-order ODE:

odell = 9,ulx] - w[x, u[x]]; odell // LTF

—w+u, ==0

Applying the function DeterminingEquations[] of MathLie to this ODE, we find a
single first-order PDE for the two unknowns &, and ¢, :
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DeterminingEquations|[{odell}, {u}, {x}, {Oxu[x]}] // LTF

—P1 Wy &1 Wx —w? (1), W (1) v W (P1)y + (P1), ==0

Such an equation has no unique solution in general. Thus, the problem is that we
cannot derive an overdetermined system of determining equations allowing us to
calculate the symmetries. This is due to the elimination of the first-order derivatives
in the prolongation formula.

To solve this difficulty, several approaches are discussed in the literature. The first
and original, already discussed by Lie, is to use group classification, i.e., to find
families of ODEs that are invariant under the group generated by a particular
transformation. Most elementary methods are based on this idea. A more recent idea,
suggested by Olver [1986], is to regard the first-order equation as an inappropriate
reduction of a second-order ODE which has a solvable non-Abelian Lie algebra. This
procedure will lead to hidden symmetries of type I. Hidden symmetries are used by
Abraham-Schrauner and Guo [1993] to classify families of ODEs.

Neither of the above methods is helpful when w is given and the equation odell does
not belong to a family of ODEs having known point or hidden symmetries. A way
out of this dilemma is a restriction of the admitted symmetries. Olver [1986] and
Hydon [1994] introduced the term of a conformal symmetry. The background of this
notion is that a vector field v =Y | a; 9, generates a one-parameter group of
conformal transformations if

60‘,‘ + aa’j _ O
o T o - (4.41)
and
90 _ L 4.42
dai _
o, % (4.42)

for a certain function ¢(x). The condition for a one-parameter group thus reduces to
the Cauchy-Riemann equations

& = ¢y and &y = —¢,. 4.43)
In turn, the invariance condition simplifies to
¢x(1_w2) —fw;, —dwy = 0. 4.44)

This relation is a result of Lie’s theorem on first-order differential equations.
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Theorem: Symmetries of first-order ODEs

A first-order ODE u' = w(x, u) allows a one-parameter group £ 8, +¢ 9, if the relation

d 1 d w
- —_ =0
dx[¢~"w§]+ du(¢—w§) (4.45)
or, equivalently,
¢x+(¢u—§x>w-§uw2—f‘;—“’—¢a—“’=0 (4.46)
x du

holds for all values of x and u. O

This theorem was given by Lie (Vol. 3, XIII, Theorem 1, Engel and Heegaard
[1912]) to determine the infinitesimals of a first-order ODE.

Introducing in (4.43) the complex variables
w=¢—i& w=9¢+i¢, (4.47)
and
Z=x+iu, Z=x—1iu (4.48)

and the real functions

_ Z2+Z z2—-2 . Ton
u(z, Z) = arctan ( w(T, 57 )) withu e (— 3 —2-), (4.49)
the invariance condition reduces to
i dw
Im(E T yz) =0. (4.50)

The bars over w and z in relations (4.46)—(4.48) denote the complex conjugate values.
Subscripts in these relations indicate a differentiation with respect to the variable.

The replacement of the variables w and w by the functions

1 1
{(z)=f— dz and {(2) = f— dz @.51)
w(z)

w(z)
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and the derivatives

1 1
= — d 7)) = ——
I @ o and 7' (2) p— 4.52)

allows the representation of the infinitesimals by

Im({" (z)) Re({" (2))
= — d = ——
= ror ™M ror 4.33)
In addition to the infinitesimals, the canonical variables are defined by
(@ +@) _ (édx—£du
s = 5 = 21 4.54)
and
L _ @ -2@ _ (fdx+édu @55

2i - £ +¢?

Relations (4.45)—(4.53) are helpful to reformulate Lie’s theorem on infinitesimal
symimetries.

Theorem: Conformal symmetries

A first-order ordinary differential equation u' = w(x, u) = tan(u(x + iu, x — iu))
allows a one-parameter group of conformal transformations if

u(z,z) = F(r) + %ln({' @) - %lnf‘ ), (4.56)

where F is a real function and { an analytic complex function. O

If we know the conformal symmetries, we also know the general solution of the
equation. The solution follows either from the theorem on an integrating factor or via
canonical variables.

So far, we have discussed symmetries and solution procedures of first-order ODE:s.
The problem of first-order ODEs was the assessment of the infinitesimal
transformation. This problem dissolves if we consider ODEs of higher order. In the
following section, we discuss the solution of second-order ODEs by utilizing
symmetry methods.
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4.4.2 Second-Order Ordinary Differential Equations

Second-order ordinary differential equations are very important for applications in
physics and engineering. All equations based on Newton’s second law are
second-order -equations. Thus, mechanics, for example, is mainly based on
second-order ordinary differential equations. The integration theory of second-order
ODEs was developed by Lie during the years 1871-1874. In 1891, Lie’s theory of
integration was published by Scheffers and Lie [1891] in Vorlesungen iiber
Differentialgleichungen mit bekannten infinitesimalen Transformationen. Scheffers, a
student of Lie, assembled all of Lie’s work on ordinary differential equations in a
beginner’s book. In another series of books compiled by Lie and Engel [1888], Lie
describes the problem of integrating a differential equation as follows:

“I observed that a large number of ordinary differential equations integrated by older
integration methods are invariant under easily derivable classes of transformations.
The older integration methods are all based on the transformation properties of the
equation. In other words, I realized that the term differential invariant of a finite
continuous group is contained implicitly in every textbook on ordinary differential
equations. Discovering the connection between transformation groups and older
integration strategies I started to develop a general integration theory based on the
finite or infinitesimal transformation of the equation. In my investigations it was clear
from the beginning that the related transformations always created a group for each
case.”

We will exemplify Lie’s line of thought below. The most general form of a
second-order ODE is given by

F(x,u,u,u") =0, 4.57)

where primes denote differentiation with respect to x. For our purposes, we assume
that equation (4.57) is solvable with respect to the second-order derivative. Thus, we
consider equations in the form

u' = w(x, u, u), (4.58)
where w is a given function of x, u, and u'.

For the general equation (4.58) or (4.57), there exist several procedures to derive the
solution. Common to each method is the symmetry of the equation. In contrast to
first-order equations, the determination of symmetries is not difficult. However, the
problem here is to apply the appropriate solution procedure to a specific equation. In
the following, we discuss three methods which allow us to identify the solution of a
second-order ODE.
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4.4.2.1 Integration by Group Classification

Following the reasoning of Lie, we can solve a second-order ODE if we can classify
the group. The idea is the following: If a second-order equation admits a Lie algebra
of dimension r > 2, it can be integrated by a group-theoretic quadrature method. This
can be done in various ways, one of which is given by the following algorithm:

1. Compute the admitted Lie algebra L,. A basis of L, is the set V,, V,, ..., V,.

2. If r = 2, go to the next step;
if r > 2, then distinguish any two-dimensional subalgebra L, of L,.
If r = 1, The order of the equation may be lowered;
if r = 0, the group method is not useful.

3. Determine the type of the algebra L, obtained by the following table:

T | [V, V] =0 |V,0V,#0|V,=0,, vV, =09, u" = f (u')
II | [V1, 2] =0 |V1®V,=0|Vy=0,, Vs =0 u' = f (x)
— —— == = = : 4.59)
III | [vy, V3] =71 |V1®Vvy #0 | vy =0, VvV =x0x+ud, |u =f£f (u')
IV | [V, §5] =7, | V10V, =0 |V, =0,, Vv, =ud, u' =f(x)u

Cases I to IV of the table are identified by computing the commutator [V;, V,] of
v, and V,, and their pseudo-scalar product v, ®%,= & ¢, — ¢, &. The
subscripts of the infinitesimals &; and ¢; denote the number of the vector field ;.
If [V,, V,] is neither 0 nor v;, then choose a new basis i)", s v‘;, such that
VNN o
v, v,1=v,.

4. Bring the basis of L, into agreement with cases I-IV by going over to canonical
variables ¢, w. Rewrite the equation in canonical variables and integrate it.

5. Rewrite the solution in terms of the original variables.

The stated algorithm is based on the fact that in the complex case, any Lie algebra of
dimensionality r > 2 has a distinguished two-dimensional subalgebra. However, the
structure of a two-dimensional Lie algebra with bases ¥, and ¥, can be described in
terms of the commutator [v,,V,] =V, V, —V, v, and the pseudo-scalar product
V, ®@V= &, ¢, — ¢ &,. For more details compare the work by Scheffers and Lie
[1891], Olver [1986], and Bluman and Kumei [1989]. Let us demonstrate these five
steps by two examples.
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Example 1

The first example considers a second-order ODE. This equation was discussed by
Ibragimov [1994] in connection with Lie’s group classification. We use the same
example here to demonstrate how symbolic calculations with a computer can clarify
the solution steps. The equation reads

9, u[x] 1 .
equation = {a(x,,, ulx] - + }; equation // LTF
u[x]? u[x] x
B Uy x == 0
ux u? *

The first step of the algorithm consists in finding the Lie algebra of the equation. This
step is practically revealed by using the package MathLie. MathLie contains a
function designed to determine the infinitesimal transformations. The name of the
function is Infinitesimals[] and has a symbolic template of the form PSZ,X [A]. This
operator takes the independent and dependent variables as subscripts and the
parameters as superscripts. The equation is given as a fourth argument. The equation
above is free of any parameters. The determination of the infinitesimals is carried out
by

infi = Ps!), .., [equation]; infi // LTF

$1 ==+ u (kl+2k2x)
&1 ==x (k1 +k2x)

The result is a representation of the infinitesimals for the independent and dependent
variables. xi[/] corresponds to the independent variable x and phi[1] to the dependent
variable u. It turns out that our equation admits a two-dimensional Lie group. The
two parameters k1 and k2 are the group parameters. As discussed in Chapter 2, to
each symmetry group there exists a related Lie algebra. We can inspect the structure
of this algebra again by applying MathLie. The package provides tools to calculate
the commutator table and the structure constants. The commutator table is created by

LieCommutatorTable[infi, {u}, {x}] // TableForm

0 -VvI[2]
V2] 0

The result of this calculation shows that the corresponding algebra L, belongs to type
III of Lie's classification. This becomes obvious if we interchange the vector fields v;
and calculate the pseudo-scalar product of the infinitesimals

uxz

2

VI®V, =& ¢, -9 & = #0.
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The calculation of the pseudo-scalar product in Mathematica needs the lines
infil = {xi[1] [x, u], phi[1][x, u]} /. infi /. (k1> 1, k2 -» 0};
infi2 = {xi[1][x, u], phi[1] [x, u]} /. infi /. {k1 >0, k2 - 1};
pseudoScalarProduct = infil[[1l]] infi2[[2] - infil[[2] infi2[1]

u x?

2

In step 4 of the integration algorithm, we introduce canonical variables which have to
satisfy the conditions ¥; (#) =0 and v, (u) = 1. Solving the related characteristic
equations by conducting the function CanonicalVariables[], we end up with
transformations probably simplifying the original equation. In the following
Mathematica line, the first two arguments, {u} and {x}, denote the dependent and
independent variables, and the next two, {x} and {%} are the infinitesimals for
k1 =1 and k2 = O of the independent and dependent variables, respectively. The last
pair {w} and {t} are the new dependent and independent canonical variables,
respectively:

substitution =
Canonicalvariables [ {u}, {=x}, (=}, { ;}: {w}, {t} ] ;

substitution // LTF

t == Log [x]
wee 9
o Vx

The result belongs to the subgroup with k1 = 1 and k2 = 0. The second set of
transformations follows by the choice k1 =0 and k2 = 1:

secondtransformation =
CanonicalVariables[{u}, {x}, {x°}, {xu}, {w}, {t}];
secondtransformation // LTF

1

X

t

w

u
X

The next step in the algorithm is to use these transformations to change the
representation of the equation. For this kind of calculation, MathLie offers the
function CanonicalRepresentation[]. This function needs the input of the original
equation, the canonical transformations given by rules, and the target variables. The
first set of canonical variables descending from the subgroup with k1 =1 and k2 =0
leads to the reduced equation
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canonicall = Canonicalnepresentation[

equation[1], u, x, {w-» L, t -»Log[x]}, w, t];
V=

canonicall // LTF

2w-w? -4w, +4ww, , ==0
At this stage of the calculation, we can use the Mathematica function DSolve[] to
solve the second-order equation. We note that the achieved equation is as

complicated as the original equation and, thus, DSolve[] may fail to find a solution.
In fact, we get

soll = DSolve[canonicall, w, t]
DSolve[2w([t] -w[t]® -4w [t] +4w[t]?w [t] == 0, w, t]
However, using the second set of canonical variables, we discover the reduction

canonical2 = CanonicalRepresentation[

1
ad CAZRI K

u -
equation[1l], u, x, {w-r —, to
x

canonical2 // LTF

W,
t3 (Tslg& _wt,t) ==0
which looks much simpler. This simplification is one aim of symmetry analysis.
Exerting the Mathematica function DSolve[] to this equation, we acquire

sol2 = DSolve[canonical2, w, t]

InverseFunction::ifun : Warning: Inverse functions are
being used. Values may be lost for multivalued inverses.

2

1 + ProductLog [E-1*C[1)7 (#1-Cl2])
{{w- | = : Cl1] &|}}

As expected, the solution of the equation in canonical variables is given by a function
containing two constants of integration. The ProductLog[] function depicts the
solution for w in z = we”. The function is a generalization of a logarithm. It can be
used to represent solutions to a variety of transcendental equations.

The last step of the integration procedure by Lie is the inversion of the
transformation. This back substitution of the canonical variables is also supported by
the package MathLie. The related function is BackTrafoCanonical[]. For the inverse
canonical transformation, we need the solution in canonical variables, the set of
canonical variables themselves, the original variables, and the transformation
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between the two sets of variables. Knowing these quantities, we are able to apply the
function to the solution:

solu = BackTrafoCanonical[sol2, w, t, u, x, {u-»>wx, t-»> -1/x}]

x (1+ ProductLog [E-2*C(117 (-x-c(2]) ) ]
cri] }

{u - Function[x,

The derived solution satisfies the original equation. We can check this by inserting
the solution into the equation:

equation /. solu // FullSimplify
{0}

The result confirms the solution. Since the solution contains a special function, we
have no clear idea of the graph of this function. We can graphically represent the
solution by specifying the constants of integration. For a set of five constants C[1] at
fixed C[2], we create a table containing the different solutions:

soluC = Table[u[x] /. solu /. {C[1] » €, C[2] » 1}, {e, 1, 5}];
A LogLog plot shows that the solutions with fixed C[2] have a common slope:

<< Graphics Graphics”

LogLogPlot [Evaluate[soluC], {x, 0.001, 10}, PlotStyle »
{RGBColor[0, 0, 0.250004], RGBColoxr[0.996109, 0, 0],
RGBColor [0, 0.500008, 0], RGBColoxr[0.500008, 0, 0.250004],
RGBColor[0.700008, 0, 0]},

AxesLabel -» {"x", "u"}]
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Varying C[2] we observe only a minor change in the slope:

soluC = Table[u[x] /. solu /. {C[1] =1, C[2] » ¥}, (v, 1, 5, 1}];

LogLogPlot [Evaluate[soluC], {x, 0.001, 10}, PlotStyle -»
{RGBColor[0, 0, 0.250004], RGBColor[0.996109, 0, O],
RGBColor [0, 0.500008, 0], RGBColor[0.500008, 0, 0.250004],
RGBColor[0.700008, 0, 0]},

AxesLabel - {"x", "u"}]

X
0.2 0.5 1 2 5 10

In conclusion, we see that Lie’s algorithm of group classification is straightforward to
derive explicit solutions of a second-order ODE. All the steps needed to carry out the
calculation are supported by MathLie. Thus, it is fairly easy to construct a solution.
The next example discusses the solution procedure for a more complicated equation.

Example 2

The second example is connected with kinetics and heat transfer (cf. Ames [1968]).
Ames'- equation also occurs in certain other problems like vortex motion of
incompressible fluids, in the theory of the space charge of elasticity around a glowing
wire, and in the nebular theory for the mass distribution of gaseous interstellar
material under the influence of its own gravitational field.

We concentrate our attention on the one-dimensional representations of these
problems. The equation is discussed in cylindrical coordinates. For this special case,
the equation reduces to a second-order ordinary differential equation (Ames [1968])
given by
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Oy u[x]
ames = O, ,,u[x] + ———— + aExp[u[x]]; ames == 0 // LTF
x

u
E“O(+T"+ux,x ==0

When trying to solve this simple equation by DSolve[], we end up with the
dissatisfying result

DSolve[ames == 0, u, x]

DSolve[E“‘x] a+ 2 )[(x]

+u” [x] ==0, u, x]

Thus, Mathematica is unable to find the solution. However, we are currently
discussing a constructive procedure to derive solutions of second-order equations.
Thus, a solution should be accessible if we know the symmetry transformations. The
symmetries of the equation are calculated by the function Infinitesimals[] or the
operator £S],  [A]. The application of this operator provides

PS{3), x) [ames] // LTF

, == k2 + k1 Log [x]
& == -2 x (-k1+k2+klLog[x])

a two-dimensional symmetry group with group parameters k1 and k2. The subgroups
created by the parameters k1 and k2 are the cornerstones of the integration process.
Let us consider the subgroup related to k1 =0 and k2 = 1. This choice of the group
parameters allows to derive the canonical variables w and ¢ to be

ctransformation =

CanonicalvVariables[{u}, {x}, {-x/2}, {1}, {w}, {t}];
ctransformation // LTF

t == -2 Log [x]

w==u+ 2 Log[x]

Converting the original equation ames into the new coordinates simplifies the
representation of the equation:

canonical = CanonicalRepresentation|[
ames, u, x, {w-ou+2Log[x], t > -2Log[x]}, w, t];
canonical // LTF

E* (EYa+4w.,.) ==0
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The introduction of the canonical variables allows the elimination of the term
containing first derivatives. As a result, the original equation was simplified. Trying
again DSolve[] to disclose the solution in canonical coordinates,

csol = DSolve[canonical, w, t]
1
{{w~ [Log[a (C[l] -
2
cr1] Tanh[% (V2 #1+/c[1] -2 Ve[1] c[2])] )]&)},

{W-—).

Log[% [C[l] -

cl1] Tanh[% (-V2 #1+/c[1] +V2 JC[1] C[2])]2)]&J}}

The inversion of the canonical transformation provides the solutions in the original
variables u and x:

soll = BackTrafoCanonical[sol, w, t, u, x,
{uow-2Log[x] , t » -2 Log[x]}]

{u - Function [x, -2 Log[x] + Log[%

Tanh[% (-2 \/C[1] c[2] -2+/2 /C[1] Log[x])]“z)H,

uaFunction[x, -2 Log [x] +Log[% (C[l] -

cr1] Tanh[% (V2 A/c[1] c[2] +2+2 VC[1] Log[x])]“2)”}

(cr11 -cra]

Inserting the derived solutions into the original equation ames, we can check the
solution

ames /. soll // Simplify

0

To get an impression of the solution, we plot it for a set of constants C[1] at fixed
C[2] and a.

Plot [Evaluate[Table[u[x] /. soll[1] /.
{c[1] » i, Cc[2] »1, a>»1/100}, (i, 1, 5, 1}]],
{x%, .1, 100}, PlotStyle -» RGBColor[0.996109, 0, 0],
AxesLabel -» {"x", "u"}]



Analysis of Ordinary Differential Equations 183

20 40 60 80 100

-10

-15

This example shows that solutions of a second-order ordinary differential equation
are easy to derive if we know the symmetries of the equation.

Actually, we did not use in our calculations the complete theory of Lie discussed
above. In this second example, we only used the existence of a certain symmetry.
This symmetry is sufficient to determine the corresponding canonical variables.
Thus, a canonical transformation can be carried out independently of the
classification scheme by Lie. The canonical transformation of the equation into new
variables simplified the representation. In both examples, this simplification was the
main step toward the solution. However, in Lie’s theory, there exists a more efficient
way to detect the solvability of the equation. In turn, there is a procedure which
reduces the complete calculations to quadratures. The following section will discuss
this procedure in detail.

4.4.2.2 The Integrating Factor Method

In Section 4.4.1.2, we discussed the method of an integrating factor for a first-order
ODE. We remarked that this method has a generalization to higher-order equations.
In this section, we generalize the method to second-order equations. The main result
of this procedure is that a second-order equation can be solved by pure quadratures if
the equation possesses an appropriate number of symmetries. The solution procedure
based on integrating factors is completely algorithmic. The algorithm consists of five
steps which Lie discussed in his numerous papers (cf. Engel and Heegaard [1912]).

According to Lie, we can state the integration procedure in the following way: If a
second-order equation admits a finite symmetry of dimension r =2, it can be
integrated with a group-theoretic quadrature method by
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1. Computing the Lie algebra L,. A basis of L, is the set ¥, Va3, ..., V.. The
tangent vector fields v; follow by appropriately specifying the group constants.

2. If r=2, go to step 3;
if r > 2, distinguish any two-dimensional subalgebra L, of L,.
If r = 1, the order of the equation may be lowered;
if r = 0, the group method is not useful.

3. Calculate the Lie determinants dA; and A and determine the two first integrals by
integration. The Lie determinants are defined by

dx du du’ & ¢ ¢y
dAy =det| & ¢, ¢, [ dA, =det| dx du du (4.60)
1 v w 1 v w
and
& ¢ &,
A = det & ¢ ¢2 N 4.61)
1 v w

where &; and ¢; are the infinitesimals corresponding to the vector field ¥;, and @,
denote the first extensions of the infinitesimals ¢;. The first integrals i; related to
the Lie determinants dA; are given by

_ dA;

wi = T = ¢y, i= 1, 2. (4.62)

The constants ¢; denote the integration constants of the ODE.

4. Solve one of the two integrals with respect to the first-order derivative and
substitute the result into the remaining relation.

5. If we can solve the resulting relation from step 4 with respect to the unknown
function u, we end up with an explicit solution. Otherwise, we get the solution in
an implicit form.

These five steps are implemented in the package MathLie. The functions of MathLie
carry out the necessary calculations automatically. To show how the solution
procedure works interactively, we demonstrate the algorithm by two examples. The
functions needed for the interactive calculation are Infinitesimals[] for the
determination of the symmetries, the function SecondOrderAlgebras[] for the
extraction of the second-order subalgebras, the functions DeltaMatrix[], and the
FirstIntegral[], which are responsible for the determination of the integrals.
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Example 1

The first example considers a non-linear second-order equation in which the
nonlinearity is given by the square of the first derivative. This non-linear term is
multiplied by a real constant a:

firstExample = 9,,; u[x] - a (8,u[x])?; firstExample // LTF

—aul +u,,, ==0

The infinitesimal symmetries are derived by the function Infinitesimals[], which is
part of the package MathLie.

infi = Infinitesimals[firstExample,
u, x, {a}, SubstitutionRules - {0, u[x]}];

infi // LTF
-EU"*k6 +E'*k7+E'?klx+k8a+k2xa
¢, ==
a
-ua
1, ==k4 + (K5 +E™¥*k6) x - Ea—m -k2x%«a

The option SubstitutionRules is set to the second-order derivative u,, to help
Infinitesimals[] to find the side conditions more easily. The result is a symmetry
group with eight group parameters k;, i = 1,2,...8. The infinitesimals &; = xi[1] and
¢, = phi[l] are represented in a pure function form. The group constants ki
characterize the symmetries of the equation. We note that this eight-parameter group
is the largest group a second-order ODE can have. Lie proved that such an equation
allows a transformation reducing the original equation to the simple form y" =0.
This reduction is always possible if a second-order equation allows a symmetry
group of order eight (Scheffers and Lie [1891]). Thus, the above equation should be
solvable.

To detect that the non-linear second-order ODE is solvable, we examine the algebraic
properties of the corresponding Lie algebra. If we can find a solvable subgroup of
order two in the eight-dimensional algebra, we succeeded. This argument is based on
the fact that all second-order Lie algebras are solvable. To detect all the solvable
subgroups, we apply the function SecondOrderAlgebras|[] to the infinitesimals. This
function determines all the second-order solvable subalgebras and represents them by
a set of rules for the group constants:

secAlgebras = SecondOrderAlgebras[infi, {u}, {x}, {a}]

{{{kl>1}, {k2->1}}, {{kl1>1}, {k5->1}}, {{kl->1}, {k7->1}},
{{kl1>1}, {k8>1}}, {{k2->1}, {k5->1}}, {{k2->1}, {k6->1}},
{{k2>1}, {k8>1}}, {{k3>1}, {kd->1}}, {{k3>1}, {k5~>1}},
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{{k3>1}, {k6>51}}, {{k3>1}, {k8>1}}, {{k&>1}, {k5->1}},
{{kd>1}, {k7-51}}, {{kd>1}, {k8>1}}, {{k5->1}, {k6>1}},
{{k5->1}, {k7->1}}, {{k5->1}, {k8>1}}, {{k6->1}, {k8>1}},
{{k7->1}, (k8 >1}}}

The function SecondOrderAlgebras[] returns a list containing substitution rules for
second-order algebras. The input of the function are the infinitesimals, the dependent
and independent variables, and the parameters of the equation. This set of rules is
useful in selecting one of the possible two-dimensional solvable subalgebras which
will serve to solve the equation. For the following calculation, we select the seventh
rule to represent the set of infinitesimals by

infhelp = {{xi[1][x, u]}, {phi[1][x, u]}} /. infi /. k88 /.
secAlgebras[[7] /. {k1-0, k250, k3> 0,
kd->0, k550, k650, k750, k8 50} /.u-u[x] //
Simplify

{({{-x*a}, {x+B}}, {{0}, {B}})

Actually, we changed the subgroup by choosing the group constant k8 to be an
arbitrary constant . In addition to the infinitesimals of the subgroup, we need the Lie
matrix for the integration. The function DeltaMatrix[] serves to create this kind of
matrix, which is defined by relation (4.61).

Lie's matrix, part of the integrating factor, is calculated by the function DeltaMatrix[].
This function needs information on the independent and dependent variables on the
right-hand side w of the ODE, the order of the ODE, and the selected subgroup of the
algebra:

Amatrix = DeltaMatrix[x, u, a (d,u[x])?, 2, infhelp];
TableForm[Amatrix] // LieTraditionalForm

-x2 a x+3 1+2x0uy
0 B 0
Uy au?

The result is a 3x3 matrix containing the infinitesimals, the first prolongation of the
two subgroups, and the right-hand side of the equation. The determinant of this
matrix

Det [Amatrix] // LieTraditionalForm

-B-2xaPu, -x*o? Bu
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is a non-vanishing expression containing a second-order polynomial of first
derivatives. The coefficients of this polynomial depend on the independent variable x
and the parameters a and B. Inserting the Lie matrix into equation (4.62), we are able
to calculate the first integrals of the non-linear ODE

integrals =
Thread[FirstIntegral [x, u, Amatrix, {1, 2}] == {cl, c2}];
integrals // LieTraditionalForm // TableForm
1 1
a  xa (l+xoaug) cl
1 u Log[l +xauy] 1 _
“xa "B af fxa (lrxau) c2

The result contains two expressions for the integrals combining the variable u and its
first-order derivative in an algebraic way. These two first integrals define two
surfaces in the space (x, u, u’). The projection of the intersection of these two
surfaces onto the (x, u)-plane defines the solution for which we are looking. The
following figure represents a case with fixed values ¢; and c,.

Figure 4.1. Intersection of the two integrals for c1 = ¢2 = 1. The parameters @ and 3 take the
values @ = 1/10 and B=1. The intersecting line represents the solution of the equation if we
project the intersection to the (x, u)-plane.

Since we know two first integrals, we are able to eliminate the derivatives from the
two integrals analytically. We solve the first relation with respect to u'":
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soll = Solve[integrals[1]], u'[x]] // Simplify

-1+ Ea (-clB+ulx])

{ {u’ [x] »

xa )
Substituting this result into both integral expressions delivers

int21 = integrals /. soll[1l, 1] // PowerExpand // Simplify

1 - Eclaﬁ—au[x]

{True, == c2}

X

The resulting list contains the identity and an implicit representation of the solution.
The explicit solution follows from the second relation if we solve it with respect to u:

solution = Solve[int21[2], u[x]]

-claB+Log[x (-c2+ ) al }}

a
[od

{{u[x] - -

The constants ¢; and ¢, denote constants of integration. @ and S are the model
parameter and the introduced group parameter, respectively. The occurrence of the
group parameter § as a multiplier reminds us of the fact that the additive integration
constant c; is related to the group of translations.

The solution steps so far discussed are collected in the MathLie function
SecondOrderIntegrate[]. The application of this function to a second-order ODE is
similar to the use of DSolve[]. The function needs the equation under discussion, the
dependent and independent variables, and the parameters contained in the ODE. The
example discussed above is solved by

sol = SecondOrderIntegrate[firstExample, u, x, {a}]

_Log[-xCI[1] -CI[2]] ]}

{u - Function[x, o

where CI[I] and CI[2] are constants of integration. The solution obtained looks
different in comparison with the solution presented above. However, the extraction of
the multiplier CI[I] and a rescaling of CI[2] will create the same representation of
the solution. The same solution as found by the manual calculation is derived by the
function DSolve[]:

DSolve[firstExample == 0, u, x]

Log[#la-C[1
og = [ ]]&)}}

{{u- (C[2] -
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Again, a constant is extracted from the argument of the logarithm. This example
shows that the solution steps of Lie’s method of first integrals result in the same
solution as that of Mathematica. O

Example 2

The second example for a second-order ODE is related to the problem of a suspended
cable equation:

u, — a1 —i>)” =o. (4.63)

The problem of the suspended cable is discussed by Ames [1968]. We examine here
a generalization of the cable equation by introducing an arbitrary power v in the
second term of the ODE:

Uy —a(l —u?) =0, (4.64)

The original model follows from our model with v =1/2. The present problem is
similar to the first example we discussed. The difference is that we added a to the
square of the derivative and raised the second term to the vth power. These small
changes lead to substantial variations in the solution:

secondExample = 9, ,u[x] -a (1+ (8,u[x])?)  ==0;
secondExample // LTF
—a (1+u?) Uy, ==0

In applying Lie’s algorithm to this equation, we first calculate the point symmetries
of this equation for arbitrary v.

The infinitesimals follow by applying the MathLie function Infinitesimals[] to the
equation:

infi = Infinitesimals[secondExample,
u, x, {a, v}, SubstitutionRules - {9, ; ulx]}];

infi // LTF
¢ ==kl
; == k2

The result is a two-dimensional symmetry transformation which itself is solvable.
The symmetries represent translations in the independent and dependent variables.
The first difference in comparison to Example 1 is that the group is smaller. This
reduction of the group order has consequences with regard to the solutions.
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The two subgroups necessary for integration are derived by independently setting
each of the group parameters kI or k2 to unity. Since the symmetry group is two
dimensional, we know from Lie that the algebra is always solvable. In the worst case,
the solution may in the end be represented by an implicit representation. The
infinitesimals for the two subgroups follow from

infl =
{{xi[1] [%, ul}, {Phi[1][x%, u]}} /. infi /. {(k1>51, k2-50} /.
u->ul[x];

inf2 =

{{xi[1] [%, u]}, {Pphi[1][%x, ul})} /. infi/. (k1 >0, k2-51} /.
u->ulx];

So far, we put no restrictions on the exponent v. The following derivation of the
solution however assumes a specific value for v. We arbitrarily choose v = 3. The
related Lie matrix for this case is calculated by

Amatrix = DeltaMatrix[x, u, a (1+ (8,u[x]1)?)>, 2, {inf1, inf2}];
TableForm[Amatrix] // LieTraditionalForm

0 1 0
1 0 0
1 U, o (1+u2)’

The determinant of this matrix is given by a polynomial of sixth order in u":

Det [Amatrix] // LieTraditionalForm

—a-3au-3aul-aud

The first integrals for the generalized cable equation with v = 3 follow from

integrals =
Thread[FirstIntegral[x, u, Amatrix, {1, 2}] == {cl1, c2}];
integrals // LieTraditionalForm // TableForm
4o (1+u2)
3 ArcTan[uy] Uy 3 uy
— - 5 - 0 ==¢c2
8 a 4 (1+u2) 8a (1+u2)

Solving the first relation with respect to u' allows us to eliminate this term in the
second integral:

soll = Solve[integrals[1l], u'([x]] // Simplify
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2cl+ _TM-“ 1 _2ulx]
{w x> - ; 3

-2cl+2ulx]

, 2c1+£%1_§—-2u[x]
{wx] - \ 2cl+2ulx] I

\[—2 c1+‘/::—172.j@+2 u[x] -2 cu—\/.,l_l—*/d'z"u u(x]

cl-u[x] cl-u[x]

{u’ [x] » - \/E }, {u’ [x] - \/5 }}

The solution for u' consists of four expressions containing square roots of u. The
differences in the four solutions are the signs in front of the first and second terms.
Inserting, for example, the second solution into the second first integral, we get the
final solution in an implicit representation:

int21 = integralsf[2] /. soll[2, 1]

2 c1. Yelulx] u[x]
3 ArcTan[\/——-————~ /a ]

-2cl+2u[x]

X - —
8 a
2c1.Yelulx] 5y 2c1s MeIuDd 5 (k]
Va 3 NES
-2cl+2ufx] -2cl+2u[x]
Veiux] N2 2c1-Yelulxl 5y (k) o
2cl+ -2u(x] Ja
da (1+ —2cla+2u[x] ] 8a [l+ ~2cl+2ulx]
c2

An explicit solution of this expression is impossible since it contains transcendental
functions:

solution = Solve[int21l, u[x]]

Solve::tdep :
The equations appear to involve transcendental functions
of the variables in an essentially non-algebraic way.

2cl+ —‘/a\}ﬂ"“ “2u(x]

: 3 ArcTan[\/'—_-z_cl%'z‘W_ ]
x -

Solve -
8 a
2c1;——[—1—“”;"~2u[x] 2c1+——[—1—V°‘\;2"-2 u(x]
a a
-2cl+2u[x] 3 -2 cl+2u(x]

- ==c2,
Vel ulx] _ 2 2014 YEIUlT 51y
2cl+ I 2u[x] ] 8 o [1+ Ja

4 (l+ “2cl+2u(x]

-2cl+2ufx]

ulx] ]
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At this point, we have to accept that the solution can only be represented in an
implicit form. The solution of the original equation follows in one shot by

sol = SecondOrderIntegrate[secondExample /. v - 3, u, x, {a}]

Solve: :tdep :
The equations appear to involve transcendental functions
of the wvariables in an essentially non-algebraic way.

2CI[1] + YEOLUEL 2 y[x]
L 8xa+3ArcTan[ Va ]+
8 a -2CI[1] +2u[x]

4CI[1] + 2MCIlI-ul fc’f}ff‘r’r - 4u[x]
4aCI[1] =

\/ZCI[lj + 2VEHINEL g u(x]
4au(x] CI[1] +ulx]

2cI(1 —J—QMTT’T -2
3\/5\/'&\/CI[1]—u[x]\[ i I a ulx] ==

-CI[1] +u[x]

cI[2]

The result is an implicit representation of the solution. CI[I] and CI[2] are the
constants of integration. Trying to solve the original equation by Mathematica, we
learn that DSolve[] is not capable of resolving the relation for the first integral. A
glance at the result of DSolve[] explains the reason:

DSolve[secondExample /. v - 3, u, x]

. . 2 2
Solve::dinv : The expression (1 - I <<30>> [x]) <307 X7 @r<i>?)
involves unknowns in more than one argument, so
inverse functions cannot be used.

. 2 2

Solve::dinv : The expression (1 -I <<30>> [x]) 30> X7 (2r<<1>7)
involves unknowns in more than one argument, so
inverse functions cannot be used.

’ 2 2
Solve::dinv : The expression (1 - Iu’ [x])Y X" @r=1>7)

involves unknowns in more than one argument, so
inverse functions cannot be used.
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General::stop : Further output of Solve::dinv will
be suppressed during this calculation.

{solve[ (3 ArcTan[u [#1]] -8 a#1 +
5u [#1] + 6 ArcTan[u [#1]] uw [#1]% - 16 a#1lu [#1]2 +
3u [#1]° + 3ArcTan[u [#1]] w [#1]° -8a#1luw [#1]*) /
(8 (1+u [#1]%)7) ==c[1],
{u [#1]}]}

The above result shows that a transcendental function is given in an essential
non-algebraic way. The steps presented above demonstrate that the solution of the
generalized cable equation is solvable in an implicit form. O

The two examples demonstrate that the technique of an integrating factor can be
generalized to second-order equations. We also realize that the presented procedure is
capable of deriving solutions for cases in which Mathematica fails. In Section
4.4.3.1, we will discuss the extension of the integrating factor technique to a general
nth-order ODE. Lie called this procedure the method of generalized multipliers. In
the following section, we discuss another solution procedure helpful in solving
second-order ODEs. This method is related to canonical variables and the skeleton
introduced in Sections 4.3.4 and 4.4.1.1 for first-order ODEs. The following method
uses the canonical variables to integrate the equation.

4.4.2.2 Method of Canonical Variables

Here, we demonstrate by a single example that the term skeleton is also useful for the
case of second-order equations. The combination of canonical variables and the
method of first integrals serves to derive an explicit solution for an ODE for which
only an implicit representation of the solution is known (cf. Ibragimov [1994]). The
considerations serve to demonstrate that a proper combination of different methods
will lead to a solution of the ODE.

Example 1

Again, we use the equation from Example 1 of Section 4.4.2.1. This second-order
ODE serves to show how canonical variables simplify the skeleton and the solution
steps. The specific example we discuss is given by the equation



194  Symmetries of Ordinary Differential Equations

(O, u[x]) 1

u[x]? * xu[x]

~

firstExample = 9, ,u[x] -

firstExample // LTF

1 Uy
Tx T we PUmx =0

This second-order equation admits the symmetries

infinites = Infinitesimals|[
firstExample, u, x, SubstitutionRules - {9,,,.u[x]}];
infinites // LTF

o} ==—$—u(k1+2k2x)

&, ==x (k1 + k2 x)

representing a two-dimensional group of scaling and projections. The skeleton of this
equation exists in a four-dimensional manifold M = {x, u, u' = p, u" = g}. Since the
dimension of the manifold D is larger than three, we cannot directly represent the
skeleton as a surface. However, Mathematica with its animation capabilities offers
the opportunity to represent the fourth dimension in a sequence of figures. The
combination of these figures in an animation allows us to represent the manifold M
in a special way if one of the coordinates of Nl is smoothly changed. The resulting
sequence creates the impression of an evolution of the manifold if one moves along
the distinguished coordinate. For the above equation, we define the skeleton in the
form

P 1
skeleton[u_, x ,p_] 1= — - —
u? xu

representing the surface for " = g in an explicit form. For our animation, we select
the x-axis as the distinguished coordinate. The three-dimensional surface represents
the submanifold M, = {u, u'= p, u" =g} for certain values of x. The different
pictures are created by

Map [Plot3D[skeleton[u, #, p],
{u, 0.1, 1}, {p, -3, 3}, PlotRange » {-200, 200},
Ticks -» False, PlotPoints - 35,
Mesh - False, AxesLabel -» {"u", "p", "q"},
ViewPoint -> {0.717, -2.988, 1.417},
PlotLabel -» StringJoin["x=", ToString[#]]]&,
Table[i, {i, .01, .1, .01}]]
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x=0.02 px=0.03 px=0.04

195

On top of each picture, the specific x-value is given. This allows us to locate the
position along the x-axis. The animation shows that the manifold along the x-axis
changes rapidly for small x-values. For greater values of x, there are no dramatic
changes in . We again realize that the skeleton in the original coordinates

represents a complicated manifold.

In Section 4.4.1.1, we remarked that the method of canonical variables allows us to
simplify the skeleton. To demonstrate this behavior, let us calculate the canonical
coordinates related to subgroups kI and k2 for the above ODE. First, we carry out the

calculation for subgroup kI representing the scaling group for this equation

cckl = CanonicalVariables|[{u}, {x}, {x}, { ;},

{w}, {t}]s cckl // LTF
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The second set of canonical variables follows from the subgroup with k1 =0 and
k2 =1by

cck2 = CanonicalVariables[{u}, {x}, {x*}, {xu},
{w}, {t}]; cck2 // LTF

ct
n
"

X

g
il
1

u
X

For each set of canonical variables, there exists a representation of the original ODE.
The equation in canonical variables for k1 =1 and k2 = O reads

ceqgkl = CanonicalRepresentation[firstExample, u, x,
cckl, w, t]; ceqkl // LTF

2w-w -4w, +4 w2 we,. ==0

The second representation related to the second set of canonical variables is

ceqgk2 = CanonicalRepresentation[firstExample, u, x,
cck2, w, t]; cegk2 // LTF

Both equations are embedded in the reduced manifold M. = {w, w', w"}. This
manifold is free of the independent variable 7 and thus simplifies the representation
of the equation. The surface of the two manifolds in canonical coordinates is given in
the following figure:

2w-w -4p
Show[GraphicsArray[{Plot3D[————472——, {w, .1, 2},
{p, -3, 3}, AxesLabel -» {"w", "P", "Q"}, PlotPoints - 35,
Mesh - False, ViewPoint -> {0.717, -2.988, 1.417},

Ticks - False, DisplayFunction - Identity],
P
P10t3D[-w—a, {w, .1, 2}, {p, -3, 3},

AxesLabel » {"w", "P", "Q"}, PlotPoints - 35,
Mesh -» False, ViewPoint -> {0.717, -2.988, 1.417},
Ticks -» False, DisplayFunction - Identity] },

DisplayFunction - $DisplayFunction] ]
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w w
Figure 4.2. The two figures show the skeleton of the equation

0, 1
Oy ulx] - @ + =
ulx] x ulx]
in canonical representations. Left: skeleton of equation
2wl -wl’ —4w'[]] + 4w[t]’ w’[1] =0.

Right: skeleton of

(w’[t

) =0

The variables P and Q denote the first and second derivatives of canonical variable w,
respectively.

We observe that the two figures look very similar. However, the skeletons in their
analytical representations are different. Applying canonical coordinates to the
original equation, we impressively simplified the skeleton of the equation. The
simplification occurs by the elimination of one of the coordinates from the
manifold M.

The question arises of whether there are different solutions existing for similar
looking skeletons or whether the solutions are equal. We will examine this question
by solving the two canonical representations. First, let us solve the original equation
by DSolve[]:

DSolve[firstExample == 0, u, x]

DSolve[ xu]ix] - E[E:;]z +u” [x] ==0, u, x]

The result is disappointing. Mathematica is unable to solve the second-order
equation. Calculating the solution of the first canonical reduction with DSolve[],

soll = DSolve[cegkl, w, t]

DSolve[2w[t] —w[t]® 4w [t] +4w[t]®w [t] == 0, w, t]
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shows that again Mathematica is unable to solve the equation. The following idea
might reveal this problem. We know that a given equation admits a certain type of
symmetry. This is also true for the first canonical reduction. The symmetries of the
first canonical reduction follow by

infceqkl = Infinitesimals[cegkl, w, t]; infceqkl // LTF
¢, ==E* klw
& == 2E* k1 +k2

representing a two-dimensional symmetry group with an exponential dependence in
t. Since the subgroup with k2 # 0 only represents a translation in ¢, we restrict our
examinations to the case k1 = 1/2 and k2 = 0. The canonical variables for this
subgroup follow by

E*w
cccegkll = CanonicalvVariables [ {w}, {t}, {E}, { P },

{v}, {8}]; cccegkll // LTF
== -E°¢

s
v==E%2w

Inserting these new coordinates into the first canonical reduction, we get a second
canonical representation of the first reduction:

cegkll = CanonicalRepresentation[ceqgkl, w, t,
ccceqkll, v, 8]; ceqkll // Flatten // LTF

_4I\/g (Vs -v? Vs,s) ==0

The calculation shows that the two canonical representations of the first and second
symmetry levels are identical. Compare the second canonical reduction of the first
symmetry level with the present result:

eqh = Thread[ceqk1l[i] / (-4IVs), Equal] == 0; eqh // LTF

Ve ~V2vVg,s==0
The symmetry analysis of this equation illustrates that the equation admits a
second-order group. We know from the above discussions that a second-order group
is sufficient to solve this kind of ODE. The infinitesimals of this ODE follow by

infh = Infinitesimals[eqh, v, s8]; infh // LTF

k2 v
1 == ——

&1 ==kl+k2s

To solve the equation egh, we apply the method of first integrals in an adapted form.
First, let us determine the Lie matrix with the infinitesimals
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infl =

{{xi[1][s, v]}, {Phi[1l][s, v]}} /. infh /. (k1> 1, k2-50} /.
vov[s];

inf2 =

{{xi[1][s, v]}, {Phi[1l][8, Vv]}} /. infh /. {k1 >0, k2->1} /.
v->v[s];

Inserting the infinitesimals into the Lie matrix, we get

v [s]
Amatrix = DeltaMatrix[s, v, ., 2, {inf1, inf2}];
v[s]?
TableForm[Amatrix] // LieTraditionalForm
1 0 0
v Vs
s Z 2
\'2
1 Vs v;

whose determinant is a non-vanishing quantity

Det [Amatrix] // LieTraditionalForm
Vs 2

2v 2

One of the two first integrals follows from
integral2 = FirstIntegral[s, v, Amatrix, 2] == c2

2Log[v[s]] -2Log[l+v[s] V' [s]] ==c2

The second first integral is not accessible by an integration:

integrall = FirstIntegral[s, v, Amatrix, 1] == cl
1 ,

g 1
s [t] (——Z"V[[S’s]][[tt]] + 5V [s]E)7) +
(-5 visitel vstel v sl (e]) v (s][e]) /

v’ [s] [t] 1, __
(2v[s] ey "z Vs [£]?) de ==

cl

However, the solution of the equation egh is derived if we take the first integral as a
defining equation for v. Thus, another integration by DSolve[] gives us the solution

199
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csolex2 = DSolve[integral2, v, s]

InverseFunction::ifun : Warning: Inverse functions are
being used. Values may be lost for multivalued inverses.

{{v - (E“'Z/2 (1 + ProductI_,og[E'l*E—C2 (#1-c1]) ])&) }}

This type of solution also follows by applying the function SecondOrderIntegrate[] to
the equation in canonical variables:

SecondOrderIntegrate[eqh, v, s] ’

InverseFunction::ifun : Warning: Inverse functions are
being used. Values may be lost for multivalued inverses.

{v- Funct:ion[s, o (1 + ProductLog [E-1E T (s-cin) ) ] }

The solution of the original equation in variables x and u thus follows by inverting
the canonical transformations

csol = ((v[s] /. csolex2)[1] == v /.
{vov[t, w], s>8[t, w]} /. ccceqkll) /.
{w-ow[x, ul], t->¢t[x, ul]} /.
cckl

Ec2/2 (1 + ProductLog[E—uE-cz (-L-cr1y) ] ) __ %

The explicit solution for the original equation thus reads
sol = Solve[csol, u] // Simplify

{{o > B x 1+ Producerog [ =554 1))

where the constants ¢, and C[1] are constants of integration. This example shows that
a solution of an ODE is derived if a hybrid algorithm, combining the method of first
integrals, the method of canonical variables, and the solution procedure of
Mathematica, is applied. The solution calculated above is not accessible by DSolve[]
or one of the two other methods alone. We can check the solution by inserting the
result into the original equation:

firstExample /. (u - Function[x, w] /. (sol[[1, 1] /.u-»w)) //
Simplify

0

The resulting zero demonstrates that the derived solution satisfies the original
equation. This solution is new in the sense that the explicit representation for the
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original equation is given. The solution in an implicit representation was given by
Ibragimov [1994]. A graphical representation of our result, for fixed constants ¢, and
C[1], is shown by

Plot[u /. sol /. {c2->1, C[1] »1/2},
{x, -.20, .0510}, PlotStyle -» RGBColoxr[0.996109, 0, 0],
AxesLabel » {"x", "y"}, PlotRange - All]

-0.2 -0.15 -0.1 -0.05 0.05
-0.1

-0.2
-0.3
-0.4

-0.

The example presented in this section illustrates how the combination of different
strategies allows the derivation of a solution. In the following section, we will
generalize the presented procedures to higher-order ODEs.

4.4.3 Higher-Order Ordinary Differential Equations

Differential equations of higher order arise naturally in physics. For example,
third-order ODEs come up in fluid dynamics and fourth-order ODE:s in elasticity. For
general higher-order equations, there exist hardly any techniques for obtaining
explicit symbolic solutions. This means that higher-order ODEs are thus not well
studied in the literature. In the following, we will present a symbolic technique for
producing explicit solutions independent of the order of the equation. The method
described in the preceding sections can, without essential changes, be generalized to
the solution of differential equations of higher order.

4.4.3.1 Integrating Factor Method

The essential change in the theory of an integrating factor for higher-order ODEs is
the extension of the Lie matrix to higher prolongations. Extending the Lie matrix to
higher prolongations is the key step for generalizing the procedure of integrating
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factors. Lie called this extension the determination of the multiplier of the differential
equation.

The five steps of integration discussed for second-order equations remain the same
for higher-order equations. However, the dimension of the Lie matrix changes from a
3x 3 matrix to an (n+ 1) X(n + 1) matrix. Before we discuss the algorithm, let us
state the general settings for higher-order equations.

The most general form of an nth-order ODE is given by
F(x,u,u',u", ..., uy) =0, (4.65)

where u,, = % denotes the nth derivative of u with respect to x. In the following,
we assume that equation (4.65) can be solved with respect to the nth derivative. Thus,
the actual equation under consideration is

Upy = W(X, U, U, ..., Up_1)), (4.66)
where w is a given function of x, u, u', ..., u;,_y,.

If an nth-order equation admits a finite symmetry of dimension r = n, then the
equation can be integrated by group-theoretic quadrature methods. This, also, can be
done in various ways. For a discussion of other procedures, compare Sections 4.4.1
and 4.4.2. One of the group-theoretic algorithms is based on first integrals. The
algorithm for an nth-order ODE is summarized as follows:

1. Compute the Lie algebra L,. A basis for L, is the set v,, V,, ..., V,. The tangent
vector fields v; follow from appropriately specifying the group constants.

2. If r = n, go to the next step;
if r > n, distinguish any n-dimensional subalgebra L, of L,.
If r = n — 1, the order of the equation may be lowered;
if r = 0, the group method is not useful.

3. Calculate the Lie determinants dA; and A, and if possible, determine the n first
integrals by integration. The Lie determinants are defined by

dc du du ... du™ Y

' (n—1)
dA, = det "C? ¢.2 ‘p? AR § (4.67)

and
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(n—1)

& 61 S . B
dii = deY gx du du' ... du™" (4.68)
1 u u" - w

where i denotes the row of the Lie matrix in which infinitesimals are replaced by
differentials. The n xn Lie determinant A reads

& ¢ 8 ... o7

. (n—1)
A = det ‘_’;:2 ¢2 ¢2 2 s (4.69)

1 v u ... w

where £; and ¢; are the infinitesimals of the vector field V; and ¢',< denotes the first

and ¢E"_” the (n—1)th extension of the infinitesimals ¢;. The corresponding first
integrals ¥; are given by
dA; .
v = Nl ci, i=1,2,...,n. (4.70)

The constants ¢; denote the integration constants of the ODE.

4. Solve one of the n integrals with respect to the (n—1)th-order derivative and
substitute the result into the remaining relations. Repeat this procedure until no
derivative remains in the relations.

5. If we can solve the resulting relation with respect to the unknown function u, we
have found an explicit solution. Otherwise, our solution is implicit.

This procedure becomes very cumbersome with increasing orders of the equation if
done by hand. In principle, the procedure can be applied to any kind of linear or
non-linear ODE. How the algorithm works in particular examples is demonstrated
below.

Example 1

The first example is a third-order equation listed by Kamke [1977] as No. 7.13:

thirdOrderExample = 9, ,u[x] 9,3 ulx] - a \/1 + B2 (O, xulx] )2
Map[# == 0&, {thirdOrderExample}] // LieTraditionalForm //
TableForm

a1+ u:zc,x + Uy, x Uy, x,x == 0
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The parameters @ and B are real constants. According to Kamke, this third-order
ODE is solvable and the solution can only be represented in parametric form. We will
show here that an explicit solution of the equation is possible. First, let us check if
Mathematica can solve the third-order equation.

DSolve[thirdOrderExample == 0, u, x]
DSolve[—a AJ1+B2u”[x]? +u” [x]u® [x] ==0, u, x]

The above line shows that Mathematica is not capable of solving the equation. The
question now is: Can we derive the necessary number of symmetries in order to
integrate the equation? Deriving the symmetries is the first step in the general
algorithm. The calculation of symmetries is carried out by the MathLie function
Infinitesimals[]

infi = Infinitesimals[thirdOrderExample, u, x, {a, B},
SubstitutionRules - {93 ul[x]}]

{phi[1] -» Function[({x, u}, k2 + k3 x],
xi[1l] -» Function([{x, u}, k1]}

The result is a symmetry group of order three. The number of group constants is
equal to the order of the equation. This allows us to apply the integrating algorithm
discussed above. The specific symmetries are denoted by the group constants k1, k2,
and k3. Each of these parameters is related to a vector field v;, i = 1, 2, 3. Since the
number of vector fields is equal to the order of the equation, we can go to step 3 of
the algorithm. In the third step, we determine the Lie matrix by inserting the
prolongations of the infinitesimals and the equation itself:

infl = {{xi[1][x, ul}, {phi[1][x, u]}} /. infi /.
{k1-1, k250, k3-50} /.
u-ulx];

inf2 = {{xi[1][x, u]}, {phi[1][x, u]}} /. infi /.
{k1>50, k251, k350} /.
u->ulx];

inf3 = {{xi[1][x, u]}, {phi[1][x, u]}} /. infi /.
{k1>0, k250, k3-51} /.
u->ulx];

The Lie matrix is derived by

Amatrix = DeltaMatrix [x,

a1+B (8ynulx])?
u, ¢ 3, {infl, inf2, inf3}];
By, u[x]

TableForm[Amatrix] // LieTraditionalForm
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1 0 0 0
0 1 0 0
0 X 1 0
17832 uz
1 U, Uy o av1+p2ug
ux,x

One of the three first integrals is

integl = FirstIntegral[x, u, Amatrix, 1] == cl // Simplify;
integl // LieTraditionalForm

VIR,
BT

X -

The result depends on " and now allows us to rewrite all terms containing u" in the
Lie matrices. Next, we solve the first integral with respect to u". Since the integral
depends quadratically on u", we get two solutions:

soll = Solve[integl, 9, ,ul[x]]

{{u %) —9—\/—/3%+c12a232-2c1xa232+x2 az g2},

u’ [x] - —L+c12a262—2c1xa2[32+x201262
BZ

The first of the two solutions is used to replace u" in the Lie matrix. The reader can
easily do the calculation for the second solution by himself:

dmat = Amatrix /. soll[1]

{{l, o, o, 0}, {0, 1,0, 0}, {O, x, 1, 0},

B

—(a\/(1+[32 (—Bi2+c1"'oc2/5’2~2c1:~:012/32+x20(2 /32)))/

{1, wix], —\/~i2+c12 o2 B2 -2clxao? 32 +x2a B2,

IR I B2 -2clxa? B2 +x2 a2 32
[32

The simplified Lie matrix is used again to calculate the second first integral of the
third-order equation:

integ2 = FirstIntegral([x, u, dmat, 3] == c2 // Simplify
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[\/—/3i2+c12 a? 32 -2clxa? 32 +x2 o2 32

(-1+cl?a® B -2clxa® B* +x*a® B4) +

ap?qf(cl-x)?a2 Bt u [x]]/

(a82 (cl-x)2 a? [54) ==
c2

As expected, we find the integral depending only on first derivatives of u. Since this
integral is linear in «', it is uniquely solvable in u'

sol2 = Solve[integ2, u'[x]] // Simplify
{{ux] »c2- (\/ (—Bizmlz o B2 -2clxo? % +x% o 32)

(-1+cl? @@ B*-2clxa® Bt +x* & /34))/

(a8 (c1-%)% 0 p* ) }}

The resultant expression contains radicals of quadratic polynomials in x. Inserting
this result into the Lie matrix, we are able to eliminate the dependencies on u'. We
find

dmatl = dmat /. sol2[1, 1] // Simplify

{¢1, 0, 0, 0}, {0, 1, 0, 0}, {0, x, 1, O},

{1, c2 - [\/—BLZ+C120(2 B2 -2clxa? 32 +x2 a2 32

(-1+cl?o® p* -2clxa® B* +x* o /34)]/
(@B (c1-%) a2t |,
1 2
—\/——2+c1 oa? B2 -2clxa? B2 +x%2a2 32,

B
aV(cl-x)? a2 B¢

-7 +cl’a? B2 -2clxa? B2 +x2 oF B2

}}

The last step of integration is inserting the Lie matrices into the third first integral
depending on u and x:
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integ3 = FirstIntegral[x, u, dmatl, 2] == c3 // Simplify

[—c2x3 BB rc2aB(cl-x)2a2pst —c2x* o B/ (cl-x)2 a2 B4 +

\/—B_2+C12 a2 B2 -2clxa? B2 +x2 02 32 -

2x%a® B \/—+cl a2 B2 —2clxa? 32 +x2 a2 B2 +

cl* o B \/i-rcl a® B2 -2clxa? 32 +x2% a2 32 -

4cld®xat Bt \/—+c12a2/32—2c1xa2[32+x2 az 32 +

x* a /38\/—+c12a2/32—2clxa232+x2a232 +

2clxoa® B (cha234+c2a/32\/m+
2\/(B—2+c12a2[32—2c1xa2[52+x2az[32)—
2 x? o? p* \/(——+c12a2[32—2c1xa252+x2a2/32))+
2 o? Bt (—c2xa2 BY-c2apf’(cl-x)? a2 B4 -
2\/(/3—2+c12a2/32—2c1xa2[32+x2a2/32)+

6x2a234\/(;—3’+c12a252—2c1xa2/32+x20(262)) +

(cl-x)%a* BBu[x]]/

((cl-x)% o* B®) ==
c3

The integral contains the dependent variable u again as a linear variable. In turn, we
end up with a unique solution for the Kamke equation 7.13, which is
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solution = Solve[integ3, u[x]] // Simplify

u[x] » c3 - (cl1* * B® i+c12a2/32—2c1xa2/32+x2a2/32 -
/32

-1
4c1® xa 33\/([3—2”:12 o B2 -2clxa® B2 +x% ol /32) +

\/(—Biz+c12 B2 -2clxa® B +x?a? /32)
(-1 +x%o? B4)% - c2 a3
(x3 @ B -/ (cl-x)2 02 B4 +x? a? B4/ (cl-x)2 o Bt ) +
c12a2/34

(2\/(;3—21“:120(2 B?-2clxa B2 +x?a B?) (-1+3x% o BY) -

c2 o 3 (xa/jz 1/ (cl-x)% a2 B )) .

2clxo? pt
(—2\/(%+c12 o B*-2clxa? B2 +x?a? B2) (-1+xPa? Bt) +

c2 o 32 (xoz/i2 +4/ (cl-x)% a2 B¢ )))/

((el-x)%a* %) }}

The solution depends on three constants c/, ¢2, and c¢3, all of which are constants of
integration. The parameters a and 8 are the parameters of the original equation. To

get a feeling how the solution evolves, we plot the solution for different parameter
sets cl, c2, c3 at fixed @ and B

sl = '.l‘able[

1 1
(u[x] /. solution /. {11, c2 > S+ 3~iias1, o -2-})[[1]1,
{i, 0, 5}]s

Plot [Evaluate([sl],

{x, 5, 7}, PlotStyle » {RGBColoxr [0, 0, 0.996109],
RGBColoxr [0, 0, 0.62501], RGBColoxr[0.500008, 0, 0.500008],
RGBColor[0.500008, 0, 0.996109],

RGBColor[0.996109, 0, 0.500008],
RGBColor[0.500008, 0, 0.250004]},
AxesLabel - {"x", "u"}]
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5.5 .5 7 *
-5
-10

-15

-20

The figure represents the real valued solutions of the equation

B, ulx] By 3 ulx] — @\ 1+ B2, ulx])* =0.

The different curves represent the solutions for values of c3 € {0, 1, 2, 3, 4, 5} and
fixed values for c2 = 1/2, c1 = 1. The parameters of the equation are « = 1 and 8 =
1/2.

We note that the solution is explicitly represented by a complicated expression
containing radicals and polynomials. This result is new, as Kamke only offers a
parametric representation of the solution. The example shows that with Lie’s
procedure, we are able to arrive at a solution for higher-order ODEs. Mathematica,
by itself, is not yet able to handle this type of equation. O

Example 2

The second example for higher-order equations is a third-order equation. In this case,
the equation has no direct physical origin. It is only used for checking the integration
procedure:

Uprr + Re(ueu,, — u(x)u,,,) =0, @.71)

where Re is a positive constant. The equation has some resemblance to hydrodynamic
equations if the first term of the equation is replaced by a fourth-order derivative
Uy . x- However, the fourth-order equation does not possess the necessary number of
symmetries to start the integration process. The reader may check this. The equation
under consideration is thus

thirdorder = Oy, xu[X] + Re (O u[x] Oy, ul[x] - u[x] O, 4, ulx]);
Map [# == 0&, {thirdOrder}] // LieTraditionalForm // TableForm

Uy, x,x + Re (ux Ux, x _uux,x,x) ==0
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where Re is a real constant. The equation has a minimum of required symmetries
given by

infi = Infinitesimals[thirdOrder , u, x, {Re},
SubstitutionRules - {03, ul[x]}]

{xi[1] > Function[{x, u}, k1 +k2x],

k3 (-1 +uRe) ]}

phi[l] » Function[{x, u}, =

The calculation below shows that the functions of MathLie are not able to find all
first integrals in a single run. We need to split the integration into a few steps
considering the symmetries given by the vector fields v;. The three symmetries
related to the vector fields are given by

infl = {{xi[1]([x, ul]}, {phi[1][%x, ul}} /. infi /.
{k1>1, k250, k3-50} /.
u->ulx];

inf2 = {{xi[1][x, u]}, {phi[1l][x, ul})} /. infi /.
{kl1 >0, k251, k3-50} /.
u->ulx];

inf3 = {{xi[1][x, u]}, {phi[1][%, ul}} /. infi /.
{k1>0, k250, k351} /.
u->ulx];

The right-hand side of the third-order equation w is given by

w = (Solve[thirdOrder == 0, 9, ,,ulx]])[1, 1, 2];
w // LieTraditionalForm
Re uy Uy, x

-1 +uRe

The 4 x 4 Lie matrix follows by inserting the infinitesimals of the vector fields and w
into the function DeltaMatrix[]:

Amatrix = DeltaMatrix[x, u, w, 3, {infl, inf2, inf3}];
TableForm[Amatrix] // LieTraditionalForm

1 0 0 0

X 0 —Uy -2 Uy, x
-1 +uRe

0 — =R e Uy Uy, x

1 u, U Re uy Uy, x

-1 +uRe

The determinant of the Lie matrix is a polynomial in u, ', and u":
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Det [Amatrix] // LieTraditionalForm

2 uix
Re

2 u,z( Uy x — 2 uuf(’x +
In order to obtain first integrals for the equation, the second line of the above A
matrix is replaced by the differentials:

integl = FirstIntegral[x, u, Amatrix, 2] == cl // Simplify

% (Log[-1+Reu[x]] -Log[u”[x]]) ==cl
The remaining two integrals ¥, and Y3 are not accessible to FirstIntegral[]. The
reason for this is that the function Integrate[] of Mathematica cannot solve certain
types of integrals. However, the result so far derived is helpful to find a solution of

the equation. If we look at the first integral i,, we observe that this relation is a
second-order ODE. The solution for " clearly shows

soll = Solve[integl, 9, ,u[x]] // Simplify
{({u [x] >E2°? (-1 +Rux])}}

If we transform Rule to Equal, we get the equation
egh = (soll /. Rule - Equal)[1, 1]
u” [x] == E2° (-1 +Reu[x])

a second-order equation which is now solvable by DSolve[]:
s80l2 = DSolve[eqh, u, x] /. cl->C[3]

{{u_) (% +EECH VRe #1 c[1] +EE’C[3] VEe #1 C[Z]&)}}

Inserting this solution into the original equation, we can verify that the original
equation is satisfied,

thirdOrder /. sol2 // Simplify

{0}

meaning that the left-hand side of the equation vanishes, and, in turn, equality has
been established. Solving the original equation with Mathematica, we get

DSolve[thirdOrder == 0, u, x]

DSolve[u®® [x] +Re (W [x] u” [x] -u[x] u® [x]) == 0, u, x]
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showing us that Mathematica in the present form is not capable of handling
third-order equations.

The example demonstrates that we can even find solutions for cases where we know
fewer first integrals than the order of the equation. The procedure of integration splits
heterogeneously using different tools to solve the reduced equation. This behavior of
higher-order ODEs creates some difficulties in the automatic solution process. O

Example 3

The third example considers the fourth-order ODE No. 7.16 of Kamke [1977]. This
equation is a non-linear ODE containing second-, third-, and fourth-order derivatives.
The problem with such an equation is that no standard procedure in literature offers a
way to construct the solution given by Kamke. We will demonstrate that the
integrating factor method is very effective for the construction of the solution. The
equation No. 7.16 by Kamke reads

kamke716 =3 9,,,u[x] 9,4 ulx] -5 (Oy,x,xulx])? == 0;
kamke716 // LieTraditionalForm

2
_Sux +3ux,x Ux,x,x,x == 0

Kamke also lists the solution of the above ODE in implicit form:
Mx) +C x + ) = Cyx + Cy, 4.72)

where C,, C,, C;, and C, are real constants. The following examinations will
demonstrate that this simple solution follows from our procedure. The first step of
Lie's procedure is the determination of the infinitesimals:

infkamke = Infinitesimals[kamke716, u, x,
SubstitutionRules -+ {9y, u[x]}]

{phi[1] » Function[{x, u}, k3 +klu+kd4x],
xi[1l] » Function[({x, u}, k5 +k2u+k6x]}

The result of this calculation is a symmetry group containing six group parameters k;.
The second step consists in finding a solvable subalgebra of dimension four from
these infinitesimals. The determination of all solvable subalgebras of dimension four
is carried out with

solvable = SolvableAlgebrasOfOrderN[infkamke, {u}, {x}, 4]

{{{kl1>1}, {k2>1}, {k3>1}, {k5>1}},
{{kl->1}, {k2>1}, {k4>1}, {k6>1}},
{{kl->1}, {k2>1}, {k5-51}, {k6>1}},
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{({k1->1}, {k3 51}, (k4 >1}, {k5->1}},
{({k1->1}, {k3>1}, {kd 51}, {k6>1}},
{{k1->1}, {k3>1}, {k5->1}, {k6>1}},
({k2>1}, {k3 51}, {k5>1}, {k6>1}},
({k3 51}, {kd 51}, {k5>1}, {k6 >1}}}

From the result, we can choose one of the eight solvable algebras. The related
coefficients of the vector fields creating these subalgebras are derived by inserting
the above result and assuming the other group constants equal to zero:

vectorBasis =
Map[ ({{xi[1] [x, u]}, {phi[1][x, u]l}} /. infkamke /. # /.

{k1>0, k250,k3 50, k450, k550, k6 50, u»u[x]})&,

solvable]

x1}}, {{ulx]}, {0}}, ({0}, {1}}, {{1}, {0}}},
x]1}1}, {{ulx]}, {0}}, {{0}, {x}}, {{x}, {0}}},
{{{0}, {ulx1}}, {{ulx]}, {0}}, {{1}, {O}}, {{x}, {O0}}},
{{{0}, {ulx]}}, {{0}, {1}}., {{O0}, {x}}, ({1}, {O}}},
{{{0}, {ulx]}}, ({0}, {1}}, {{O}, {x}}, {{x}, {0}}},
{{{0}, {ulx]}}, {{0}, {1}}, {{1}, {O}}, {{x}, {0}}},
{{{ulx]1}, {0}}, {{0}., {1}}., {{1}., {O}}, {{x}, {0}}},
({0}, {13}, ({0}, {x}}, ({1}, {O}}, {{x}, {0}}}}

{({{{0}, {u
{{{0}, {u

Knowing the infinitesimals of the solvable subalgebras, we can proceed to the
integration step of the algorithm. The information from the original equation
kamke 176 about the right-hand side of the equation is extracted by

W
w // LieTraditionalForm

5u?

= Solve[kamke716, O, . ulx]]1[[1, 1, 2]];

X, X, X

3 Uy, x

The Lie matrix of the equation is then calculated for the fourth subalgebra by

Amatrix = DeltaMatrix[x, u, w, 4, vectorBasis[4]];
TableForm[Amatrix] // LieTraditionalForm

0
0
0
1

1

u
1
x
0

Uy

Uy

Uy, x

ux,x

Ux, x, x

The determinant of the A matrix is

Uy, x,x

0
0
0
5 u)zt,x,x

3 Uy, x

Det [Amatrix] // LieTraditionalForm

2
T u':2(,x,x
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Knowing that the determinant of Lie’s matrix is a non-vanishing quantity, we can
calculate the first integrals of the equation. One of these integrals is

integl = FirstIntegral[x, u, Amatrix, 1] == cl // Simplify

= (5Log[u’ [x]] -3 Log[u® [x]]) == cl

A second first integral follows by

integ2 = FirstIntegral [x, u, Amatrix, 4] == c2 // Simplify

30 [x]

Tuo [x] C- 2

X+
At this point of our calculation, we know that equation No. 7.16 by Kamke allows
two conserved quantities given by integl and integ2. The right-hand sides of these
differential expressions c/ and c2 are two real constants. The two integrals contain
derivatives of third and second order. Since we know that both expressions are
conserved, we can use one of these quantities to eliminate higher derivatives. We
decide to eliminate the third-order derivative in the first integral integl by

sl = Solve[integ2, O, ., u[x]] // Simplify

({2 1 > 550

The elimination of the third-order derivative in integl gives us

integlHelp = integl /. s1[1]

3u” [x]

1
= (5 Log[u”[x]] -3 Log[z—m

2 ”:d

representing an integral containing only second-order derivatives. The solution of this
expression with respect to the second integral delivers

82 = Solve[integlHelp, 9, ,u[x]]

) . 3'\/§ECI

v B - V8 c2® —24c22 x+24 c2x2 - 8 %3 b
cl

{v %] - R ER: )

V8c2-24c22x+24c2x? - 8%}

The two resulting expressions can be integrated twice to find the solution. However,
we apply DSolve[] to the expressions to find the solution. Before we can use
DSolve[], we need to transform the rules to equations by
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egh = 82 /. Rule -» Equal // Flatten

{u” [x] == - 34/3 E?
V8c2® -24c2? x+24c2x2 - 8x3

, 3+/3 E°L
u” [x] = }

- V8 c2® - 24c2? x+24 c2x?% - 8x3

Solving the first equation gives us

soll = DSolve[egh[[1]], u, x]

{{u-|cr1] +C[2] #1-

34/3 ESt V8 c2® - 24c2% #1 +24c2 #1° - 8 #1° &|1)
2 (-c2 + ¥1)

The second relation for u" delivers the second solution

sol2 = DSolvel[egh[[2]], u, x]

{{u-|cl1] +c[2] #1+

34/3 Et /82’ -24c2% #1 +24 c2 #1° -8 #1° &)1}
2 (-c2 + ¥1)

In conclusion, we find two solutions in an explicit representation. This has to be
expected since the solution given by Kamke contains the unknown variable u in
quadratic form. The derived solution can be inserted into the original equation to
verify that the gained results are correct. For the first solution, we find

kamke716 /. soll // Simplify

{True}

meaning that the first solution satisfies the equation. The second solution also
satisfies the equation

kamke716 /. sol2 // Simplify

{True}

At the end, we demonstrated that the integrating factor method is capable of solving a
fourth-order equation. O



Point Symmetries of Partial
Differential Equations

5.1. Introduction

The subject of this section is to discuss the basic tools of Lie’s symmetry method in
connection with partial differential equations. These tools will support the practical
calculations. We will show how the theory of Lie becomes vital again by using
computer algebra calculations.

The theory under discussion is the symmetry theory of Lie. This theory is useful for
solving partial differential equations in a systematic way. The question Lie had raised
more than 100 years ago was how to systematically solve differential equations. He
was wondering about the many methods his colleagues used in solving differential
equations. Up to the present day, this question of deriving solutions for a given
differential equation has been of topical interest for physicists and mathematicians
alike. Lie found a solution to this problem by introducing a method which allows the
examination of symmetry transformations of equations. Using this method, he was
able to find solutions not only for ordinary differential equations as discussed in
Chapter 4 but also for non-linear partial differential equations.

From these remarks, we can deduce that Lie’s method is capable of handling a large
number of equations. The application of this method depends neither on the type of
the equation nor on the number of variables involved in the equations. Lie’s method
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is a general procedure appropriate for any type of differential equation. However,
perusing the literature on Lie’s method, we observe that this method has rarely been
applied, compared with the wealth of differential equations in practical and
theoretical problems.

The reason for the widespread rejection of Lie’s method during the last hundred years
by the community of mathematicians and physicists is that his method demands a
huge number of algebraic calculations in order to extract the symmetries of a
differential equation. Even for simple equations, the algebraic amount of calculations
is large compared to other methods. If someone is genial enough to guess a solution
to solve a particular problem, he probably does not have a deeper insight into the
solution structure of the equation. However, if he or she is interested in a complete
solution of the symmetry problem, the reader is offered the ability to obtain the
information needed on an equation by using a symbolic calculation in MathLie. This
tool allows us to completely solve the symmetry problem either in a non-interactive
or an interactive way.

This chapter is organized as follows: In Section 5.2 we review Lie’s method using the
terminology of today. In Section 5.3, we introduce the invariance condition based on
Fréchet derivatives. Section 5.4 discusses some capabilities of the package MathLie
and presents some examples of how to use MathLie to find symmetries. Section 5.5
introduces the term similarity reduction. Section 5.6 is devoted to a number of
applications of MathLie.

5.2. Lie's Theory Used in MathLie

In his work, Lie pointed out that the symmetry of any differential equation is defined
as follows:

Definition: Lie symmetry

A Lie (point) symmetry is characterized by an infinitesimal transformation which
leaves the given differential equation invariant under the transformation of all
independent and dependent variables. O

The Lie symmetries of differential equations (DEQs) naturally form a group: Since
the composition of any two symmetries is also a symmetry, there is an identity
transformation; the composition of symmetries is obviously associative; and any
symmetry has an inverse. Such groups are called Lie groups and are invertible point
transformations of both the dependent and independent variables of the DEQs. The
DEQs may depend on continuous parameters. Lie pointed out that this group is of
great importance in understanding and constructing solutions of DEQs. Lie
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demonstrated that many techniques for finding solutions can be unified and extended
by considering symmetry groups. Today, we know several applications of Lie groups
in the theory of differential equations (cf. Ibragimov [1985], Bluman and Kumei
[1989], Olver [1986], Ovsiannikov [1982], Ibragimov [1994-1996], Baumann
[1987]).

To use the symmetry groups in any application, we first need to find the symmetries
of the equations. A first approach to finding point symmetries of such systems is to
make a general change of all variables and then enforce the new variables to satisfy
the same set of DEQs. This approach leads to complicated non-linear systems of
DEQs for the functions used in the transformations. Lie demonstrated that such a
procedure is unnecessary. He established an efficient method based on an
infinitesimal formulation of the problem of finding the symmetry group of a set of
DEQs, replacing these highly complicated and in most cases intractable non-linear
equations by tractable linear overdetermined systems of partial differential equations.
The solution of these so-called infinitesimal determining equations can be used to
determine symmetry transformations.

Let us consider the general case of a non-linear system of differential equations for
an arbitrary number g of unknown functions #® which may depend on p independent
variables x;. We denote these sets of variables simply by u = (u!, u?, ... , u?) and
x=(xy, X, ..., Xp), respectively. The general case is given by a system of m
non-linear differential equations

A'(x,up) =0, i=1,2,...m (5.1

of order k. The term u, is understood as the kth derivative of u with respect to x.
We note that m, k, p, and g are arbitrary, positive integers. Consider, further, a
one-parameter e-Lie group of transformations

*

x = Z(x,u,e€, 5.2)
u' = O(x, u, € 5.3)

under which (5.1) must be invariant. The star on the variables x and u# denote the new
variables. Invariance of (5.1) under the action of (5.2) and (5.3) means that any
solution u = ®(x) of (5.1) maps into some other solution v = ¥(x; €) of (5.1). Let
u=0(x) be a solution of (5.1). If we replace the dependent and independent
variables u and x by v and x* = E, respectively, equations (5.1) become

A(X,vg) =0, i=1,2,...,m. (5.4)

Then, v = ®(x") are solutions of (5.4). This implies that if (5.1) and (5.4) have a
unique solution, then

O(x") = O(x, O(x), €). 5.5)
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Hence, O satisfies the one-parameter functional equation
O(E(x, €) = B(x, O, €). (5.6)

Expanding equations (5.2) and (5.3) around the identity € = 0, we can generate the
following infinitesimal transformations:

X = x; + €&i(x, u) + OE), i=1,2,..,p (5.7

1

W= U+ edy(x,u) + OE), a=1,2,..,q (5.8)

where the functions &; and ¢, are the infinitesimals of the transformations for the
independent and dependent variables, respectively. In order to find the unknown
infinitesimals & and ¢,, we need to extend or prolong the transformation group to
include the properties of the derivatives. It is an infinitesimal approach which
considers the Lie algebra £ corresponding to the Lie group G. Generalizing the
formulas of Chapter 4, the infinitesimal transformation (5.7) and (5.8) can be put into
the form

P 9 q P
v = i};f.-(x, 0o+ ;m(x, W) Fu (5.9)
where V represents a linear combination of the vector fields generating £, which, in
turn, is based on the characteristic quantities &; and ¢, of the transformation (5.7) and
(5.8). The algorithm used in MathLie for finding the infinitesimals &; and ¢, is
described below. We emphasize that the infinitesimals in this simple form only
depend on independent and dependent variables. A prolongation of the dependencies
to derivatives extends the Lie symmetries to so-called generalized Lie symmetries,
which are discussed in Chapter 9. Transformations (5.7) and (5.8), together with the
transformations for the first, second, ... derivatives of the u,’s, are called first,
second, ... prolongations. Using these various extensions, the infinitesimal criterion
for the invariance of (5.1) under the group (5.2) and (5.3) is derivable by

prY VA 4o =0, (5.10)

where the kth prolongation of the vector field Vv is given by

q
7]
(k) = 3 J
r =V + , —_—
PPV =7+ > GLx up) o 5.11)
a=1 J
The second summation extends over all multi-indices J = (ji, ..., j;) with

1 < j, = p, 1 < | < k. The kth prolongation coefficients ¢£ are given by
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P p
¢, (x, u®) = D, [¢a - Z‘fi “‘Z] + Zfi uj (5.12)
i=1 i=1
where uf = Ou®/dx; and u}"‘i = O0uj /0x;. Thus, the system of differential

equations (5.1) is invariant under the transformation of a one-parameter group with
the infinitesimal generator (5.9) if the &'s and ¢,’s are determined from equation
(5.10).

So far, we discussed the standard procedure to derive the determining equations for
the infinitesimals &; and ¢, . This procedure is widely used in the literature (cf. Olver
[1986], Ibragimov [1985], Bluman and Kumei [1990], and Ovsiannikov [1982]).
From a calculation point of view, the procedure described above is very inefficient
and time- and memory-consuming. The main slowing-down step of the procedure is
the recursive calculation of the expansion coefficients in equation (5.11). The
following section will discuss a more efficient way to derive the determining
equations. This procedure is based on the powerful pattern-matching capability of
Mathematica and uses the Fréchet derivative to represent the invariance condition
(5.10).

5.3. Invariance Based on Fréchet Derivatives

The Fréchet derivative can be considered as a generalization of the complete
derivative. In this section, we will use this type of derivative to formulate an efficient
procedure for the calculation of the invariance condition used in the derivation of the
determining equations.

The Fréchet derivative of a support function P with respect to a test function Q was
defined in Chapter 2 by

d
Dr(O) = T P(u+€Q) le=o - (5.13)

The meaning of equation (5.13) is that in the support P, we have to replace the
dependent variables and their derivatives by a variation of the original variables. The
variation is represented by the variables themselves and by a test function weighted
by a parameter €. After the substitution, we differentiate with respect to € and then set
e=0.

This relation defined for an r-dimensional support P and for a g-dimensional test
function Q can be implemented very efficiently in Mathematica. The implementation
was given in Section 3.5.
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Let us now briefly discuss the connection between the invariance condition (5.10)
and the Fréchet derivative. To calculate the determining equations, we need the
prolongation of a vector field ¥ applied to the system of differential equations A. If
we assume that the related characteristic O depends on the dependent variables and
their derivatives, we can write down a relation which connects the prolongation of a
differential system with the Fréchet derivative of the system in an evolutionary
representation (cf. Olver [1986]). The term evolutionary representation means that we
consider infinitesimal transformations independent of the independent variables. The
connection between the prolongation and the Fréchet derivative is given by

pr? 9p(8) = DL(Q), (5.14)

where Q is now the support and we have in mind that A is the system of partial
differential equations. This relation follows from the definition of the prolongation in
evolutionary representation:

p
. d
% = 3D, DsQu e (5.15)
J

a=1 J

with Q, = Q,(u®) depending only on the derivatives of the dependent variables
k=0, 1, .... If, in addition, we use the definition of the Fréchet derivative given by
equation (5.13), we can immediately reproduce equation (5.14).

Thus, the prolongation operator is related to the Fréchet derivative. We can utilize
this relation to reformulate the invariance condition (5.10). Applying relation (5.14)
and the definition of the evolutionary vector field, we are able to replace the
invariance condition (5.10) by the relation

P
(DA(Q) + Zf, D,‘ A] i o =0. (516)

i=1
Ca=ta-20 & uf

At first glance, this expression appears to be very complicated from the calculation
point of view. Indeed, it is very cumbersome if one tries to use this formula in a
manual calculation. In fact, in a pencil calculation, we first have to replace all
dependent variables and their derivatives by the variation of the dependent variables
which must be extended up to the kth order in the derivatives. After the substitutions,
we have to differentiate the expression obtained with respect to € and afterward set
€ =0. These steps contain a lot of work if we do them by hand. However, with
Mathematica, all the steps are very easy to handle. This is possible because
Mathematica offers powerful matching procedures already implemented in its kernel
to carry out the calculations.
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The advantage of this method to calculate the prolongation of a given system of
differential equations is not only its fast calculation but also the flexibility in
choosing expressions for the characteristics in the calculation which allows an
extension to generalized symmetries.

All the steps given above to derive the determining equations are incorporated in the
package MathLie. The result of the MathLie functions is a system of linear
homogeneous partial differential equations for the infinitesimals & = &;(x, u) and
@, = ¢o(x, u), in which x and u are vectors of the independent and dependent
variables. These are the so-called determining equations for the symmetries of the
system A.

At this point of the discussion, we note that equation (5.16) looks very similar to the
invariance condition of the non-classical symmetry method. The difference is that the
second side condition Q, is not equal to zero in relation (5.16).

In summary, in this section we discussed the algorithm in mathematical terms to
calculate Lie point symmetries. The essential steps of this calculation are as follows:

1. Calculate the prolongation of the system of differential equations up to kth order
by

prPvA = 0. (5.17)

2. Use the equations themselves to eliminate redundant information of the
prolongation

prP VAl = 0. (5.18)

3. Extract the determining equations from the prolongation by setting the
coefficients of the derivatives in the dependent variables equal to zero.

4. Solve the resulting determining equations.

Steps 1 to 3 will be discussed in this section. The fourth step deals with the solution
of the determining equations to be discussed in detail in Chapter 10. We note at this
stage that the determining equations are always solvable in closed form since they
build up an overdetermined system of linear partial differential equations.

5.4. Application of the Theory

In this section, we discuss the application of the theoretical formulas discussed to
appropriately calculate Lie point symmetries. We apply the theoretical notions in
terms of MathLie functions. The main tools discussed here are the prolongation
operator and the derivation of the determining equations.
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5.4.1 Calculation of Prolongations

Calculation of the prolongation in MathLie can easily be carried out by using the
formula based on the definition of the Fréchet derivative. The theoretical concept of
the prolongation is realized in MathLie by the function Prolongation[]. The on-line
information on this function reads

Information["Prolongation”, LongForm » False]

Prolongation[equation_,
dependent_, independent_, parameters_: {}]
determines
the prolongation of an equation or a system of equations.

This function expects four different quantities as input. The first argument of the
function contains the equations A =0; the second and third arguments specify the
dependent and independent variables. The fourth slot contains the parameters of the
equation. This input quantity is optional and can be omitted if the equation contains
no parameters. The function Prolongation[] applied to an arbitrary partial differential
equation F(x, ¢, u, u;) = O allows us to calculate the prolongation for this expression.
Let us first define the equation by

equatl =F[x, t, u[x, t], o u[x, t]] ==

F(x, t, ul[x, t], u'®Y [x, £]]1 ==0

Applying the function Prolongation[] to this expression, we have to supply the
additional two arguments as well. The second and third lists contain the dependent
and independent variables. Collecting this information, we can write

prl = Prolongation[equatl, {u}, {x, t}]

{u®? [x, £]phi[1]*%Y [x, t, ulx, t]]
FOO0D 1, £, ulx, t], u®¥[x, t]] -
u®b [x, £]u®® [x, ] xi[1]%%Y [x, t, ulx, t]]
FOOOD (%, £, ulx, t], u®? [x, t]] -u®V [x, t]°
xi[2]9%Y %, t, ulx, £]] FO%%D 1%, £, ulx, t], u®Y [x, t]] +
phi[1]%*® [x, t, u[x, £]] FO%%D [x, £, u[x, t], u®V [x, t]] -
u®® [x, £] xi[1]9YY [x, t, u[x, t]]
FOO0D x, £, ulx, t], u®?P [x, £]] -u®? [x, t]
xi[2]9"9 [x, t, ulx, £]] FO%%Y [x, t, ulx, t], u'®Y [x, £]] +
phi[1][x, t, ul[x, t]]FO%*9 [x, £, ulx, t], u®¥ [x, £]] +
xi[2][x, t, u[x, £]] FO22% (x, £, u[x, t], u'®?V [x, £]] +
xi[1][x, t, u[x, £] ] FH%%% %, £, u[x, t], u®? [x, t]1}
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The infinitesimals in MathLie are by default denoted by xi[pl[x,ulx,f]] and
philgllx,ulx,t]], where xi stands for the infinitesimals of the independent variables
and phi for the dependent one. The number in square brackets denotes the first,
second, third, etc. variables in the set of independent and dependent variables,
respectively. Here, xi[1] stands for the first independent variable x and xi[2] for the
second variable ¢. In our example, only one dependent variable u is present, so the
related infinitesimal is phi[l1]. The argument of the infinitesimals contains the
independent and dependent variables with all the dependencies.

The result of the above calculation represents the first-order prolongation of the
general equation F (x, t, u, u,) = 0. Alternatively, we can use a shorthand notation
for the function Prolongation[] by the symbol (prk ) [A]. This symbol is part of a
palette accompanying MathLie. Thus, the more symbohc representation of the
prolongation is

prolong = (pr* v) (u) .t [@QUAt1]

{u®? [x, €1 phi[1] %Y [x, t, ulx, t]]
FO00 D 1y, £, ulx, t], u'%Y [x, t]] -
ul®tx, £l u®? [x, ] xi (1] [x, €, ulx, t]]
FOOOD %, £, ulx, t], u'®¥ [x, £]] -u®? [x, t]2
xi[2] %Y [x, €, ulx, £]]FOO%Y [x, £, ulx, t], u®Y [x, t]] +
phi[1] %" [x, £, ulx, t]] F%%% Y [x, t, ulx, t], u®Y [x, t]] -
ut % x, £] xi[1]19Y %, t, ulx, t]]

FOOOD 1, £, ulx, t], u®? [x, £]] -u®? [x, t]

xi[2]°%% [x, £, ulx, £t]]FOO%D %, £, ulx, t], u'®? [x, t]] +
phi[1l][x, t, u[x, £]] FO%1 9 [x, t, ulx, ], u'®¥ [x, t]] +
xi[2][x, t, u[x, £]]FO2%9 [x, £, ulx, t], u®¥ [x, £]] +
xi[1][x, t, u[x t]]F(l 0,0,0) [x, t, u[x, t], u© [x ]]}

The result created by this operator is identical to the result derived by Prolongation[].
The function behind the operator (prk ) [A] automatically detects the number of
variables involved and creates the represcntatlon of the infinitesimals. Input
quantities needed are just the independent and dependent variables and the equation.
To some, the result may look somehow strange. If one likes to have the result
represented in a more traditional form, the standard representation of this expression
can be transform by means of LieTraditionalForm[]. The result contains Greek letters
and indices for the numbering of the infinitesimals. The transformation of the
previous result is carried out by the following line:

prolong // LieTraditionalForm

{Fx ‘fl +Ft 62 +Fu ¢1 _Fut Uy (gl)t *Fut U Uy (gl)u_Fut Ue (§2)t -
Fu, Ui (&), +Fu (d1) +Fy U ($1),)
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To be more specific, let us calculate the prolongation of the Burgers equation as
another example. The Burgers equation, u, + uu, —u,, =0, is one of the standard
equations treated in non-linear physics. This equation was used by Burgers [1948] as
a mathematical model of turbulence. The Burgers equation in the field variable

U=ul[x, t];
reads
burgers = 0. U+ U0, U-0,,, U==0; LieTraditionalForm[burgers]

Ue + U Uy — Uy, x == 0

The prolongation of this equation follows with the prolongation operator or the
function Prolongation[] as

(pr* Tr‘)”(xlt} [burgers] // LieTraditionalForm

u,

{Ux 1 - ux (§1), —Uc Uk (E1)y —uul (§1), —uux (1), -ue (&), -
u? (€2), —UUe Uy (&), Ul (E2), + (d1) +Ue (B1), +uuy (¢1), +
U (1), +2ux (€2), Ux,e +2 (€2), Ux,e #+3 Uy (E1), Uy, x +
2 (€1) 5 Usoxe +Ue (€2), Usyx — (D) U + Uy (E1) o +
20l (1) y *Ux (E1) e U Ul (&2),  +2uc Uy (&), +

Ue (€2) 400 U (1) gy —2 W (D1)yy — (1), 4}

The result contains derivatives of the infinitesimals &, &,, and ¢, related to the two
independent variables and the dependent variable. We note that the numbers of the
indices of the infinitesimals are related to the occurrence of the variables in the
argument of u. Index 1 is connected to x and 2 denotes the second independent
variable ¢.

Another function more flexible in its specification of the infinitesimals is
FrechetProlong[]. This function allows us to supply expressions for infinitesimals.
The first three arguments of the function are the same as in Prolongation[]. The
difference is that, in general, we have to deliver infinitesimals in the last two
arguments in such a way that there exists an expression for each variable. The
position in the first list is directly related to the position of the independent variable
in the arguments of dependent variables. The order in the second list depends also on
the order of dependent variables in the arguments of the infinitesimals. Concerning
the names of the infinitesimals, we can arbitrarily choose them. We demonstrate this
by calculating the prolongation of the Harry-Dym equation. Originally a pure
mathematical object, the Harry-Dym equation today is discussed in connection with
physical applications (Kadanoff [1990]). It is a special feature of FrechetProlong[]
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that only the left-hand sides of the equations are needed. In case of the Harry-Dym
equation

u, - A’ Uy =0 (5.19)
the left-hand side of the equation is expected in a list:

harryDym = {8, U - AU® 8,3, U}; harryDym // LTF

Ue —ud AUy y,6 == 0

The Harry-Dym equation is a third-order non-linear partial differential equation in u.
A is a real parameter in this equation. The prolongation in the infinitesimals &, 7, and
@ follows by

pharryDym = FrechetProlong [harryDym, {u}, {x, t},
{&I[x, £, U], T[x, t, U]}, {2[x, t, U]}];
pharryDym // LieTraditionalForm

{-Ux Ec ~Ue Uy § —Ue Ty U2 Ty + 8 + U By +3 U3 ATy Uy, p Uy x +
3WAE U2, 6 A2 W x Euu + 9P AU, Wy e Speu +3U° AUy x Exx +
3u? Aui Ug ¢ Tu,u +3 u® Au, uy Uy, x Tu,u + 6u’ A u, Uyt Tx,u +
3 AUe Un,x Toou + 30 AUe Tow = 3 U AUy Uy y Buw - 3U° AUy By +
3U AUy Ty W,e +3 WP A Ty Uy e 302 AB Uy sie + 403 AUy E Uy o x +
3ud A&, Uk, x,x + w Au T, Uy, x, x -u g, Uy, x,x +U° /\ui Euu,u *
3wl aud &y + 303 A2 o xou + U Auy Exxox U AU, ui Tu,u,u +

2

3 3 3
3U” AU UL Ty,y,u + 33U AUp Uy Tyoou +U AU Ty,p,x —

U.3 Aui §u,u,u -3 1.13 )(ui §x,u,u -3 u3 Aux §x,x,u - u3 Aéx,x,x}

This representation of the prolongation contains the infinitesimals in a more
indicative form connecting the name of the independent variables with the names for
the infinitesimals in Greek. However, the direct access by subscripts is lost. We see
that the use of names for the infinitesimals is by no means restricted.

Another problem frequently encountered in the calculation of infinitesimal
transformations is the partial knowledge of the infinitesimals. We illustrate this kind
of calculation for the heat equation. The heat equation

U=ty =0 (5.20)

is a second-order partial differential equation used in the description of temperature
changes in solid and fluid media (Bluman and Kumei [1989]). The left-hand side of
the equation for the scaled temperature field  depending on the temporal and spatial
coordinate reads

heat = {8, U -9 ,,, U}; heat // LTF

Uy —Uy,x == 0
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If we know a partial representation of the infinitesimals, we can use this information
to define the infinitesimals for the function FrechetProlong[]. For the heat equation,
let us assume that the infinitesimals are given by linear functions in u. The
infinitesimals for the independent and dependent variables are thus

indepInfinitesimals = {£[x, t] U+g[x, t], h[t]}

{g[x, £t] +£[x, t]u[x, t], h(t]}

dependentInfinitesimals = {k[t] U}

{k(t]ulx, t]}

This representation of the infinitesimals contains incomplete information about the
final form and thus restricts the solution manifold for the & and ¢,. Inserting this
form for the infinitesimals in FrechetProlong[], we end up with a special
representation of the prolongation:

pheat = FrechetProlong[heat, {u}, {x, t},
indepInfinitesimals, dependentInfinitesimals];

LieTraditionalForm[pheat]

{uke +kue ~he ue —uf uy —ge ux - fu. u, +2 £, ui +uuy, £ 4 +

Uy Ix,x _kux,x + 2ufx Uy, x + 2 Ox Ux,x + 3 fux ux,x}

The result gained is an expression containing functions f, g, h, and k. If we know
these arbitrary functions, we can check the invariance of the equation directly. It is
sufficient to know a subgroup of the complete group to check the invariance. It is
well known that the heat equation is invariant with respect to translations (Bluman
and Kumei [1989]). As we know from Chapter 2, these symmetries are represented in
infinitesimal form by

indepndInfinitesimls = {k1, k2}
{k1, k2}
dependentInfinitesimals = {k3}

{k3}

The group constants k1, k2, and k3 are real constants. Inserting these infinitesimals in
our function FrechetProlong[], we find

pheats = FrechetProlong[heat, {u}, {x, t},
indepndInfinitesimls, dependentInfinitesimals]

{0}
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The result reveals that the heat equation is invariant with respect to translations. It is
now easy to manually check other types of symmetries for the heat equation. We only
have to specify the infinitesimals in the function FrechetProlong[]. Let us assume
another type of invariance to be given by a rotation of the independent variables and
a translation of the dependent variable. The check of these hypothetical infinitesimals

pheatss = FrechetProlong[heat, {u}, {x, t},
{-k1¢t, k1x}, {k2}]; pheatss // LTF

kluy, +2kluy,. ==0

shows that the heat equation is not invariant with respect to rotations in the
independent variables.

The function FrechetProlong[] can be used not only to derive the prolongation of an
equation but also to calculate the expansion coefficients of the prolongation in
general. For example, if we need the general representation of the first coefficient of
the prolongation related to variable ¢, we construct this term by

firstExtension = FrechetProlong[{0.u[x, t]}, {u}, {x, t},
{xi[1][x%, t, u[x, t]], xi[2][x, t, u[x, t]]},
{phi[1] [x, t, u[x, t]]}];

firstExtension // LieTraditionalForm

{-ue (E1)p —Ue Ux (E1), ~Ue (&2), ~uf (&), + (d1), +Ue (d1),]}

The result represents the general formula for the first extension with respect to ¢. This
sort of expression is tabulated in the book of Bluman and Cole [1974] and is now
available to any order or number of variables. The general expression of the second
prolongation with respect to x follows from

secondExtension = FrechetProlong|[ {0,z ulx, t]},
{u}, {x, t},
{xi[1][x, t, u[x, t]], xi[2][x, t, u[x, t]]},
{phi[1] [x, £, u[x, t]]1}];

secondExtension // LieTraditionalForm

{_zux (62)u Ux,t -2 (§2)xux,t _3ux (gl)uux,x -
2 (gl)xux,x - Ut (§2)uux.x + (¢1)uux,x-u)3c (‘gl)u‘u -
202 (E1), 0 ~Ue (E1)yp e W (1) 4 -20e Uy (&), -

U (§2)x,x+ui (D1)pu*2Ux (D1) o + (D1) 5}

Comparing the results with expressions given in Bluman and Cole [1974], it is
obvious that the formulas are identical. The reader may calculate, for example, the
fifth expansion coefficient related to terms u,,, ,,-
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The function FrechetProlong[] is also capable of calculating the prolongation of a
general expression containing derivatives. Let us demonstrate this behavior by
examining the general partial differential equation of second order given by the
relation

F(x, t, u, e, uy, ug,) = 0. (5.21)
The left-hand side of this general second-order equation in Mathematica reads

pde2 = {F[x, t, U, 8,U, 8. U, 8,2 U]}

{F[x, t, u[x, t], v [x, t], u®P [x, t], u® 9 [x, £]]}

The prolongation formula for this general PDE of second-order follows from

PrintDf [FrechetProlong[pde2, {u}, {x, t},
{xi[1] [%, t, u[x, t]], xi[2] [x, t, u[x, €]]},
{phi[1][x, t, u[x, t]]}] // LieTraditionalForm]

{Fe &1 +Fy &5 +Fy @1 - Fy, ux ($1), — Fu, Ue Ux (1), — Fu, u? (&1), -
Fu Uy (1), —Fu, Ue (&) —Fu, uf (£2), ~Fu, Ue Ux (£2), -
Fu, Ue (&2), +Fu. (@1), +Fu, Ue (@1), +Fu, U (&1), +Fu, (&1), -
2F,, , Ux (£2), Ux,e ~2Fy,, (£2), Ux,t =3 Fy,, Ux (1), Ux,x -
2Fy,, (€1), Ux,x = Fuy, Ue (2), Ux,x +Fu,, (61), Ux,x -
Fooo Uy (1) u —2Fu, Ul (E1) 0y = Fuey Un (€1), -
Fu,, Uc U7 (£2) 4 ~2Fu,, U Uy (£2), y —Fu, Ue (€2) 4, +
Fu,,uZ (61), ,+2Fu, U (B1), , +Fu,, (1), ,}

The result of this calculation was converted to a more readable form in index notation
by the function LieTraditionalForm[]. This function reduces the standard
Mathematica output to a shorter representation by deleting the arguments of any
derivative and using the variables of differentiation as an index. The expressions free
of any derivatives remain unchanged.

So far, we discussed some applications of the functions Prolongation[] and
FrechetProlong[], allowing us to derive the prolongation of a differential equation. As
we know from the theoretical considerations, the prolongation of a differential
equation is the basis for the derivation of determining equations. In the following
section, we will discuss a function of MathLie which is instrumental in the derivation
of determining equations.

5.4.2 Derivation of Determining Equations

Determining equations for infinitesimals are the result of invariance condition (5.10).
The package MathLie provides a function allowing us to derive determining
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equations for a given system of differential equations. The name of the function is
DeterminingEquations[]. The on-line description of the function

Information["DeterminingEquations®, LongForm - False]

DeterminingEquations[equations_List, dependvar_List,
independvar_List,substitutionTerms_List,parameters_List:
{}] calculates the determining equations for a given
system of equations. The function uses the Frechet
derivative to calculate the prolongation.

tells us that we need five input arguments. The first argument contains the left-hand
side of the equation A = 0. The second and third arguments are lists for the dependent
and independent variables. The fourth list contains terms for which the equation A =
0 is solved. The solutions with respect to these terms are used as side conditions in
the invariance relation (5.10). If the equations under examination contain parameters,
we can feed in these symbols in the last list. This list can be suppressed if no
parameters are contained in the PDE. The function DeterminingEquations[] uses the
function FrechetProlong[] to calculate the kth prolongation of the equations. After the
calculation of the prolongation, the side conditions are applied to the result of the
function FrechetProlong[]. This step reduces the redundant information in the
manifold of the equation. Upon application of the side conditions, the determining
equations are extracted as coefficients of the derivatives of the dependent variables.
Since the infinitesimals themselves are independent of derivatives, we find the
determining equations as a set of coupled PDEs.

Application of the function DeterminingEquations[] is demonstrated by the heat
equation. The determining equations of the infinitesimals for the heat equation follow
from

detheat = DeterminingEquations[heat, {u}, {x, t},
{8, U}]; detheat // LTF

(E1), ==0

(&), == 0

(¢1) 40 == 0

(£2), ==0

“(E1) e + ()2 (B1),, == 0
(¢1) ¢ - ($1) 0 == 0

2 (&), - (&), == 0

The result of this calculation detheat consists of a list containing the left-hand sides
of the seven determining equations. We transformed these expressions to a system of
equations by LTF[] adding zero to the right-hand side, and the result is displayed in a
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table. The seven equations contain the unknown functions &;, &,, and ¢;. The
function DeterminingEquations[] automatically implants these names for the
infinitesimals. The unknown functions &, &, and ¢; depend on the independent
variables x and 7 and on the dependent variable u. The symmetries of the heat
equation are determined by this set of equations.

Taking a closer look at these equations, we realize that they are linear but coupled.
However, the main observation is that they are linear. Linearity of the equations is a
general feature of the determining equations for point symmetries. This feature is of
great advantage in solving the equations. Another general property of the determining
equations is that this set of equations is always overdetermined. This means that, in
general, there exist more equations than unknown functions. This fact helps a lot in
the derivation of the solution.

In the present case of the heat equation, we find seven equations for three unknowns
&1, &, and ¢, . Another example demonstrating these two general properties again is
the general second-order partial differential equation

Clear [F]
gheat = {0, U + F[O(4,2, U] }; gheat // LTF
F+u. ==0

representing one of many generalizations of the heat equation. If we apply the
function DeterminingEquations[] to this equation, we find

detgheat = DeterminingEquations[gheat, {u}, {x, t}, {6.U}]:
detgheat // LTF

(€1),
(&2),
(f1) ,
(¢1) ¢
)
)
)

R I
T

(&
(&
(1) 1.

—(§1>x,x+2 (¢1) .
~2 (&1), + (1)
(&), - (61), =

t

I
1
o o o !

1]

x

=0

e

0

n e

o X

Looking at this system of 10 equations, we recognize the same 2 properties as in the
example for the heat equation linearity and a larger number of equations than
unknown functions. The equations are linear in the infinitesimals independent of the
form of general function F, and they are overdetermined. This general behavior does
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not change if we examine non-linear equations like the Burgers equation or the
Harry-Dym equation. The determining equations for these two models follow by

DeterminingEquations[{burgers[1]}, {u}, {x, t}, {6.U}] // LTF

(§1), ==0

(&2),==0

($1) 4 == 0

(&2), ==

¢, - (fl)t -u (fl)x +u (fz)t + (fl)x,x -2 (¢’1)x,u ==0
(¢>1)t +u (¢l)x - (¢1)x,x == 0

2 (&), - (&) ==0

which are six determining equations in the case of the Burgers equation

DeterminingEquations[harryDym, {u}, {x, t}, {8, U}, {A}] // LTF

(1), ==0

(fz)u ==

(¢1) 4,4 == 0

(&2),==0

S(E1)  + WA (&), -3U A (b)), , , == 0

(1) ~ U A (B1), o == 0
“(E1) g+ ($1), ,==0
3¢1-3u (&), +u (&), ==0

and eight determining equations for the Harry-Dym equation. Since the Harry-Dym
equation contains a parameter A, we have to tell the function DeterminingEquations[]
that A is a variable in the equation which does not depend on the independent

variables. The last argument of the function DeterminingEquations[] contains this
information.

Up to now, we discussed equations containing only a single dependent variable. The
following example examines a system of two equations. The physical background of
these equations is the flow in a polytropic gas. Following Ibragimov [1985], we can
write down the equations of motion for polytropic gas in two spatial dimensions and

one temporal dimension. In polar coordinates, the radial and angular velocity fields
are

Vr =vr[r, 6, t];
ve =ve[r, 6, t];
The depth & of the fluid above a flat bottom is given by

H=h[r, 6, t];
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The equations of motion for this fluid are given by

Ve 9, Vr
poly = {8, Vr + Vr 8, Vr + ——— +9; H,
r

Ve, Ve OgH
O, VO +Vrd, Vo + —— +

’

r r
Ve 9, H 9, (Vrrx) B, VO
0. H+Vrd.H+ +n( + ]}. poly // LTF
r r r
Vg (vr)
h, +v, (vr)r+(v,)t+—r—9-==o
Ve (Ve)
%+vr (ve)r+(v9)t+%==0
he +h, v, + Bs Vo +h Vr+rr(vr)r + (Vi)e ==0

This system consists of three equations for the dependent variables vr, v, and h. The
independent variables are the radius 7 and the angle 6. The determining equations for
the polytropic gas follow by specifying the knowledge on all the variables and the
equations in the function DeterminingEquations[]. The equations do not depend on a
parameter, so the parameter list is empty.

DeterminingEquations[poly,
{vr, v, h}, {x, 6, t}, {O.Vr, 8. V6, 6. H}, {}1//

LTF

(E1), == 0
(€2), == 0
(€3), == 0
(¢3),, == 0
(E1),, == 0
(€2),, == 0
(&), == 0
(¢3),, == 0
(€1),, == 0
(€2),, == 0
(&), ==0

-rve (€2)6 +

Ve E1 +r 2 —¥2 Ve (£2), - 1% (&2),
3)9+Vg (E3)g +hx (&), ==

TV Vo (€3), +T Ve (&) +h (&
0
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~Ve §1 +T P2 -x? Vr (§2)r—r2 (‘fz)t - I Vg (fz)e"'
TV, Vo (£3), +TVe (&3), +h (&3), +V§ (&3)g ~hrx (P2), ==
0

Vo E1 +T ¢r — 17 vy (£2), -1 (&2), -
Tve (£2)g + TV Vg (£3), +T Vg (f})t +Ve29 (‘53)9 ==
0

- (&), +Ve (&), + (¢2), ==0
r(€2), ~ Vo (&3), + (‘1’1)\,19 ==0

~hv, & +hr¢y +rv, ¢ +hrv: (&), +
hrv, (&), +hv, v (&§),+hr? (¢:1), +hr (¢;), -
hrv, (¢3), +r2 vy (¢3), +r% (¢3), +T Ve (¢3), ==
0

r¢, -rvy (€1), -T (&) ~ Ve (&1)g+hr (&), +
rvi (&), +TVr (&) +Vr Vo (&) +hr (d1), ==
0

ré; -rvy (§1), —~r (&1), - Ve (1) +hr (&), +
rvi (&), +TVe (&) +Ve Vo (&3) —hr (¢1), ==
0

ro, —rvy (&), -r (&), -
Vo (1) +TVE (&3), +TVr (&3), +Vr Vo (&3)4 ==
0

ré¢; -hr (&), +2hrv, (&), +
hr (&), +hve (&) +hr (¢1), -hr (¢3), ==
0

hvy (&), -hvy (1), +TVve ($1), +T (P1), +Ve (d1),+T (¢3), ==0

“hé& +res -hr (&) +hrve (&), +
hr (&), +2hve (&)g+hr (¢2),, -hr (¢3), ==
0

“r (€1), +20Vr (&), +T (&) +Ve (&3)g - T (1), +T (¢3), ==0

-€1-r (S2)e +
rve (§3), +1 (&), +2Vs (§3)p — T (d2),, +T (¢3),, ==
0

(&), + (¢1),, == 0

hvy (&3)g ~hxr v, (¢2), +
r? v, (P2) . +r? (P2), +T Ve (P2) g+ (F3), ==
0

“(E1) e+ Ve (§3)g+ T (1), ==0
(£1)o— Ve (&) g+ (¢2), ==0
“(&3) g+ (¢2), ==0
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The resulting 29 equations are again linear. The symmetries of polytropic gas follow
by solving this set of overdetermined equations. For polytropic gas equations, we not
only have to provide three dependent variables but also three terms in the list for the
substitutions. Compared with the examples discussed above, the typing is a little bit
tedious, but the gain of the calculation is greater than this little hazel. To simplify the
input of the information MathLie provides a template for the function
DeterminingEquations[] which looks like l)etEqi’; [A] . This operator has the same
functionality as function DeterminingEquations[] itself. In fact it derives the
determining equations using the function DeterminingEquations[]. The following
example shows the location of the input variables for the Harry-Dym equation.

detHarryDym = DetEqii;f’z;fC; [harryDym] ; detHarryDym // LTF

(§l)u ==0
(£2),==0
(¢1)“,u ==0
(fz)x ==0

(€)W A (), ~3W A (b1), ., ==0
(‘1’1)t -u 2 (¢1)x,x,x ==0

“(E)pnt (B1),,==0

3¢ -3u (&), +u (), ==0

So far, we have been able to calculate the determining equations for a given system
of partial differential equations. The question arises of how to solve these equations.
The following section will discuss an interactive procedure to construct solutions for
the determining equations. In Chapter 10, we will discuss procedures allowing the
automatic solution of the determining equations.

5.4.3 Interactive Solution of Determining Equations

In the above discussions, we found a lot of equations determining the infinitesimal
transformations of the different models. We realized that a common property of all
these systems of equations was their linearity. Since determining equations are linear,
contrary to the equations we started from (compare with the Burgers or Harry-Dym
equations), we expect that the linear equations can be solved more easily. How to
tackle this problem interactively by MathLie is the content of this section. We will
show you a way which is similar to the automatic procedure of solving equations.

Let us demonstrate the interactive solution steps for the heat equation. The seven
determining equations for the heat equation are
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detheat // LTF

(€1), == 0
(£2),==0

($1) g0 == 0

(£2),==0

“(E) + (&), -2 (1), ,==0

(1) ¢ = (1) y,x ==0
2 (€1)x— (&) ==0

Before discussing the solution of these equations, let us introduce some
simplification. During the solution steps of these equations, the variables x, ¢, and u
are taking the role of independent variables. Taking this behavior into account in our
calculations, we can remove the dependencies in u. In Mathematica, we just replace
the dependent variable by the variable itself:

detheat = detheat /. u[x, t] »u

{xi[11° %" [x, £, ul, xi[2]° %Y [x, t, u], phi[1]*%? [x, t, u],
xi[2] %% [x, £, u], -xi[1]1%" [x, t, u] -

2phi[1] (1,0,1) [X, t (2,0,0)
phif[1]© % %,
__xi[2](0,1.0) [X,

, u] +xi[1] [x, £, u],
t, u] -phi[1] %9 [x, t, u],

t, u]l +2xi[1] %% [x, t, u]}

This simplifies a little the representation of the equations but does not solve them. If
we look at the first four equations, we observe that the infinitesimals &), &,, and ¢,
are reduced to special presolutions resulting especially from single terms. For
example, the first two equations state that the infinitesimals for the independent
variables are independent of the dependent variable u. The fourth equation says that,
in addition, ¢, is independent of x. The third equation in the list detheat suggests that
the infinitesimal ¢; is linear in u. All this information can be collected in rules
allowing us to simplify the determining equations:

infinil = {xi[1] -» Function[{x, t, u}, =xi[1] [x, t]],
xi[2] » Function[{x, t, u}, xi[2][t]],
phi[l] » Function[{x, t, u}, fl[x, t]Ju+ £2[x, t]]}

{xi[1] » Function[{x, t, u}, xi[1][x, t]],
xXi[2] » Function[{x, t, u}, xi[2][t]],
phi[l] » Function([{x, t, u}, fl[x, t]u+ £2[x, t]]}

where fI and f2 are two arbitrary functions depending on x and ¢. Inserting this
primal representation of the infinitesimals into the determining equations, we end up
with the following system:
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detheatl = detheat /. infinil; detheatl // LTF

True

True

True

True

“2f1, - (&1) + (E1),,x==0
ufl, +£f2, —ufl, , -f2,,==0
2 (&), - (&), ==0

The seven equations reduce to three equations for the unknown functions &, &, f1,
and f2. Considering the last equation of this set by differentiating with respect to x,

o, Last [detheatl] // LTF
2 (E1)4,x==0
we realize that a single term remains. This term defines a partial differential equation

of second order for &, . The solution of this equation is given by a linear function in x.
Thus, we define

infini2 = {xi[1] - Function[{x, t}, gl[t] x+g2[t]]}
{xi[1] » Function[{x, t}, gl[t] x+g2[t]]}
Inserting this partial solution again into the reduced determining equations detheatl,

we can simplify the determining equations a second time. The resulting equations
read

detheat2 = detheatl /. infini2; detheat2 // LTF

True

True

True

True

-2fl, -xgl -g2, ==0

ufl, + £2, ~ufl, , -£24, 4, ==0
291 - (&), == 0

An integration of the fifth element of the list detheat2 with respect to x gives us
integ = Jdetheatz [5] dx -g3[t]; integ // LTF
-2f, -g; - ———% -xg2_==0

meaning that function fI can be expressed by
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sol = Flatten[Solve[integ == 0, f1[x, t]] /. £1[x, t] > w]
{w- % (-2g3([t] -x*gl’[t] -2xg2'[t])}

which is converted in a pure function by

infini3 = £1 » Function[{x, t}, w] /. sol

1

f1 - Function|{x, t}, 7 (-293[¢] -x*gl'[t] ~2x g2 [t]) ]

Inserting the result again in the reduced set of determining equations, we find

detheat3 = Simplify[detheat2 /. infini3]; detheat3 // LTF

True
True
True
True
True
£2, + % _f2, . - %u (293, +x (xgl

2g1-(&),==0

+292, ) ==0

t.t

Apart from xi[2], the equations contain only relations for the auxiliary functions g/,
g2, g3, and f2. Extracting the coefficients of u, u x, and u x>, we get the following set
of equations:

equat = Table[Coefficient [detheat3, u xt 1, {i, 2, 1, -1}];
equat // LieTraditionalForm

e, 0}, {0.0, 0,0, 0, -Fee 0}}

{{o, 0, 0,0,0, -

AppendTo [equat, Coefficient [detheat3 /. x> 0, ull;

AppendTo [equat, (detheat3 /. u- 0)[6]];
equat // LieTraditionalForm

{{0,0,0,0, 0, —g—linL, 0}, {0, 0, 0,0, 0, —925 £, 0},

1 3
{0, 0, 0, 0, 0, L__gz_t

5 L 0}, £2¢ - £2, 4}

hl = DeleteCases[Flatten[equat], 0]; hl // LTF

t.t =
gl ==0
t,t =
g2 ==0
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The final set of determining equations is solved step by step using the function
DSolve[]. By renaming the constants of integration, we prevent misinterpretations of
the group parameters. Function g/ follows from the first equation of the set 41 by

sl = DSolve[hl[1] ==0, g1, t] /. {C[1] » k1, C[2] - k2}

{{gl » (k1 + k2 #1&) }}

The second auxiliary function g2 is
82 = DSolve[hl[2] ==0, g2, t] /. {C[1] » k3, C[2] -» kd}

{{g2 » (k3 +k4 #1&) }}

The last of the auxiliary functions g3 reads
83 = DSolve[hl[[3] ==0 /. s1, g3, t] /. {C[1] - k5}

{{g3 > (k5 +k2 #1&) }}

Knowing the representations of functions g1, g2, and g3, we can integrate the
remaining equation of the determining system

84 = DSolve[ (Last [detheat3] /. s1) [1] == 0, xi[2], t] /.
C[1] » k6

({xi[2] > (k6 + 2 k141 + k2 #1%&) })

Knowledge of the auxiliary functions allows us to write down the solutions for the
infinitesimals:

infinitesimals = Flatten[{xi[1] [x, t, u],
xi[2] [%, £, u], phi[1l][x, t, u]} /. infinil /.
infini2 /. infini3 /.81 /.82 /.83 /. 84]

{k3+kdt+ (kl+k2t) x, k6 + 2kl t +k2t?,

%u(—Z (k5+k2t) -2kdx-k2x%) + £2[x, t]}

The result shows that the infinitesimals depend on six parameters k/—k6, which are
the group parameters of the symmetry group. In addition to these six parameters, the
infinitesimals contain the auxiliary function f2 which satisfies the heat equation. The
heat equation remains as a last condition in variable 4]. The symmetry represented
by f2 is related to an infinite dimensional group. This infinite dimensional group is
characteristic for linear partial differential equations. The subgroups determined by
one of the parameters k/—k6 are related to translations, scalings, and Galilean boosts.
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We demonstrated by the above calculation how the linear coupled system of partial
differential equations is solved by using simple integration steps. The package
MathLie offers a function to carry out all these simple steps in one shot. The name of
the related MathLie function is Infinitesimals[]. This function allows the automatic
derivation of the infinitesimal transformations. The shorthand description of the
function shows us the information needed to carry out the calculation:

Information["Infinitesimals", LongForm - False]

Infinitesimals[equations_,
dependentVariables_, independentVariables_,parameters_,
options___] The function Infinitesimals calculates the
point symmetries of a given system of equations.
The results of the calculation are not saved in a
file. They are available in a pure function representation.

The application of this function to the heat equation reads

Infinitesimals[heat, {u}, {x, t}, {}]

{{xi[1] > Function[{x, t, u}, k5-2k2t+k6x+kdtx], xi[2] >
Function[{x, t, u}, k3+t (2k6+k4t)], phi[l] —)Function[

ké4 t k4 x?
3 + k2 x - 1

{-free[1]®V [x, t] + free[1]*? [x, t]}}

{x, £, u}, u |kl-

) + free[1] [x, t]]},

The result of the function Infinitesimals[] consists of a nested list. The first part of the
list contains the infinitesimals; the second, a list of remaining equations. The
remaining equations of the second part are equations which are not solved by the
MathLie package. The function free[I] occurring in the remaining equation is also
part of the infinitesimals. This result has to be expected since the original equation is
a linear equation which has to satisfy the superposition principle reflected by the
occurrence of the auxiliary function free[1]. The first list of the result circumscribes
the infinitesimals in a pure function representation. This cast allows direct
substitution of the infinitesimals into any equation containing the infinitesimals or
their derivatives. The result found for the heat equation represents a six-dimensional
finite group which is isomorphic to the finite group derived by our manual
calculations.

Having the function Infinitesimals[] available, we are able to determine the point
symmetries of the other equations discussed above. For example, the Harry-Dym
equation allows the symmetries
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symharryDym = Infinitesimals|[
8. u[x, t] -ulx, t]% 8,  ulx, t] ==0, {u}, {x, t}, {A}]

{xi[1] > Function[{x, t, u}, k3 +x (k4 +k5x)],

xi[2] » Function[{x, t, u}, k1 +k2t],

phi[l] > Function[{x, t, u}, u (—% +k4 +2k5 x) ] }
The result shows that the Harry-Dym equation allows a five-dimensional finite group
independent of the parameter A. Group parameters k3 and kI represent the invariance
of the Harry-Dym equation with respect to translations. The scaling symmetries are
determined by the parameters k4 and k2. The remaining parameter, k5, represents a
non-standard conformal transformation.

Another example for a calculation of point symmetries is given by the
two-dimensional polytropic gas discussed above. The symmetries follow by

sympoly = Infinitesimals[poly, {vr, vo, h}, {x, 6, t}]

{xi[1] -» Function[{r, 6, t, vr, v6, h}, (k2 +k3) r],
xi[2] » Function[{r, 6, t, vr, v6, h}, -k4],

xi[3] » Function[{r, 6, t, vr, v6, h}, k1 +k2¢t],
phi[3] » Function[{xr, 6, t, vr, v6, h}, 2hk3],
phi[1l] -» Function[{r, 6, t, vr, v6, h}, k3 vr],
phi[2] - Function({r, 6, t, vr, v6, h}, k3vO]}

The resulting point symmetries are given by a four-dimensional group. The
symmetry transformations are translations in the time coordinate and the angular
direction. The related group parameters are kI and k4. In addition to the translations,
the polytropic gas enables a scaling of the radial and temporal coordinate denoted by
k2. Group parameter k3 represents a special type of scaling.

The function Infinitesimals[] can not only explicitly treat given equations but is also
capable of analyzing equations of a general form, like

U — F(x’ U, Uy, ux,x) = 07 (5.22)

where F is an arbitrary function depending on a set of independent variables x and a
set of dependent variables u. An example of such an equation for one dependent and
two independent variables is given by the general second-order equation

geneq = {0, U-F[x, U, 0, U, O, U]}

{(-F[x, u[x, t], u®?[x, £], u® %9 [x, £]] +u®? [x, t]}

The corresponding infinitesimals for this type of equation follow by
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symgeneq = Infinitesimals[geneq, {u}, {x, t}]

{phi[1] » Function[{x, t, u}, 0], xi[1l] - Function[{x, t, u}, 0],
xi[2] » Function[{x, t, u}, k1]}

representing a one-dimensional symmetry group. Parameter kI characterizes the
translations under which the general evolution equation is invariant. Let us now
specify the auxiliary function F in a more explicit form. For example, let us assume
that F is replaced by a function f independent of u and x. We further assume that the
second derivative in u with respect to x is created by a derivative of f with respect to
x. Taking into account all these assumptions, we end up with an expression for a
general nonlinear diffusion equation:

geneqge = {0, U-0, £[9,,U]}; geneqe // LTF
Ue - £y, Ux,x == 0
The symmetries of this general non-linear diffusion equation are

symgeneqe = Infinitesimals[genege, {u}, {x, t}]

{xi[l] —)Function[{x, t, u}, k2 + k42X],

xi[2] » Function[{x, t, u}, k3 +k4t],
kd u

71}

phi[1] » Function|{x, t, u}, k1 +

The four group parameters k/, k2, k3, and k4 represent the translation and scaling
symmetries of the equation. If we further assume that f is given by a power of the
derivatives u,, we get the equation

geneqge = {8, U -9, (6,U)"}; genege // LTF
U — U u;(lﬂ‘ Uy, x == 0
where u is a real parameter. The infinitesimals of this non-linear heat equation read

symgeneqe = Infinitesimals[geneqe, {u}, {x, t}, {u}]

{xi[1] -» Function[{x, t, u}, k4 + k5 x],
xi[2] » Function[{x, t, u}, k1+t (-k3 (-1 +pu) +k5 (L +u))7],
phi[l] - Function[{x, t, u}, k2 +k3u]}

The five-dimensional group contains translations and scaling symmetries. In addition
the symmetry group depends on the parameter u.

The function Infinitesimals[] is also available in a shorthand operator notation. The
related operator template is PS), [A]. As input quantities, this operator needs the
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independent and dependent variables, the equations, and the parameters. The example
of the Harry-Dym equation reduces to

P5{3), (x.+) [harryDym]

{xi[l] - Function[{x, t, u}, k3 +x (k4 +k5x)],
xi[2] » Function[{x, t, u}, k1l +k2t],

phi[1l] - Function[{x, t, u}, u (—]‘3—2+k4+2k5 x)]}

5.4.4 Data Basis of Symmetries

The package MathLie offers a few functions allowing the creation of a database for
differential equations. The database consists of different files containing information
on the specific equation. Each file stores information on the equation itself and
results gained by the application of different functions. The merits of such a database
are the consecutive collection of information on symmetries, on algebraic properties,
on transformation properties, and on solutions for the equation under consideration.
Since the information is stored on disk, it can always be retrieved from there.

The basic element of the database is a file containing information on each individual
equation. Such a file is created by the function LieEquations[]. The file contains
information on the independent and dependent variables of the equation and the
equation itself. It also contains information on possible parameters of the equation.
Also included in the file are the expressions for which the equations are solved and
applied as side conditions in the determining equations. After the solution of the
determining equations, the file contains information on the infinitesimals.
Sometimes, it is helpful to have the source or name of an equation available. This
information is contained in two different global variables called Title and Source. The
entire information needed to carry out a symmetry analysis can be created by exerting
the function LieEquations[]. An example will show us how to facilitate this function.

Example 1

Let us again discuss the heat equation. The first step in adding information to the
database is the creation of the related file. For the heat equation, we create the file
heat.dgl. The function LieEquations[] will do the necessary job:

LieEquations["heat.dgl", {O.u[x, t] -~ A0, ulx, t]},
{u}, {x, t}, {d}, {"Heat equation"},
{{"G. Baumann"}, {"Ulm 1997"}}]
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The file with the name heat.dgl is created by this function in the current directory.
The file contains the equation, which is given as second argument in a list. The third
and fourth arguments of LieEquations[] are lists containing the dependent and
independent variables. The fifth argument is a list containing the parameters of the
equation—in our example the diffusion constant d. The sixth and seventh arguments
of LieEquations[] are lists containing strings. The sixth list carries the name of the
equation, here Heat equation, and the seventh list consists of sublists specifying for
example the source of the equation. The file created by LieEquations[] contains this
information and more. We can print the contents of the file by

! | heat . dgl

Title = {"Heat eguation"}

Source = {{"G. Baumann"}, {"Ulm 1997"}}

IndepVar = {x, t}

DependVar = {u}

EqList = {Derivative([0, 1][u]([x, t] -
d*Derivative[2, 0] [u] [x, t]}

SubsList = {Derivative[0, 1][u][x, t]}

ParametersS = {d}

ListXi = {}

ListPhi = {}

The above printout shows that the file contains variables like Title, Source, IndepVar,
DependVar, EqList, SubsList, ParameterS, ListXi, and ListPhi. These variables are
global variables in MathLie and are used extensively in the package. Be sure not to
use these names in your calculations. If you set up this file, it provides you with the
information needed in symmetry calculations. For example, if you have to derive the
determining equations for the heat equation, you can use the function Lie[] of the
package MathLie. The function Lie[] delivers in its simpler applications, results
similar to those obtained by the program of Champagne et al. [1991].

The function Lie[] needs one argument and a set of options. The options of Lie[]
influence the properties of this function.

Let us calculate the determining equations for the heat equation. We start the
calculation simply by

detheat = Lie["heat.dgl"]; detheat // LTF

(fl)u ==0
(§2)u ==0
(¢1) 4,4 ==0
(§2) ==0
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~(€1) A (&1)x—28(d1),,==0
(1) — A (1), ==0
2 (&), + (&), ==0

Function Lie[] calculates the prolongation of the equation using the Fréchet
derivative. After extraction of coefficients and a simplification of these equations, the
function returns the determining equations collected in a list. This list can be used to
manipulate the equations. For example, you can manually solve them as discussed in
Section 5.4.3. As mentioned above, the behavior of the function Lie[] is controlled by
different options. One of these options is called ScreenPrint which is set to False by
default and thus suppresses all printing. If we want to see how the calculation
proceeds, we can set the option TraceSteps—True, which is another option of Lie[].
These two options are helpful in checking the calculation if one is curious about the
steps operated by Lie[]. The options also help in locating some errors that occurred
during the calculation. The silent calculation done for the heat equation then looks
like

Lie["heat.dgl", TraceSteps - True, ScreenPrint - True]

Welcome to MathLie™
for the calculation of the symmetry group
by G. Baumann, © 1992 - 1999

Loading previous calculations
of the determining equations from HEAT.DEQ
Loading data from HEAT.DGL

Title of the equations :
Heat equation

Source of the equations:
G. Baumann

Ulm 1997

Equations of motion:

Substitution No. 1

u, - duy,x

We are using all the equation(s) checking the infinitesimals
of the given system consisting of 1 equation(s) in total.
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We find 7 determining equations after simplification.
A list of the determining equations follows.
Equation No. : 1

have to treat 7 determining equations after simplification.

Results are collected in the list FinalResult.

(xi[11°°Y [x, £, ul,

xi[2] %Y [x, t, u[x, t]], phi[1]%%? [x, t, ulx, t]],

xi[2] %Y [x, t, u[x, t]], -xi[1]9Y 9 (%, t, u[x, t]] -
2dphi[1]%Y [x, t, u[x, £]] +dxi[1]? %Y [x, t, u[x, t]],

phi[1]©*% [x, t, u[x, t]] -dphi[1]1® %% [x, t, ulx, t]],

xi[2]19Y9 [x, t, ulx, £]] -2=xi[1]1%%9 [x, t, u[x, t]]}

The results of the calculation are again the determining equations. If you look at the
beginning of the calculation, you will realize that Lie[] opens a file called heat.deq
containing the determining equations. This file was created by Lie[] at the end of the
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first run for the specific equation. The file contains the complete set of determining
equations, thus keeping information on one equation in two different files. The first
file with extension .dg/ contains the essential information on the equation itself. The
second file with extension .deq is used as source of derived information for the
determining equations. Whenever you call Lie[] or derivatives of the function Lie[]
be aware that both files contain information on the same equation. O

Let us now solve the determining equations. This can be done by using the function
LieSolve[]. This function allows the solution of the determining equations by
exerting the same procedures as the function Infinitesimals[]. The difference is that
the information gained is saved in the file currently opened. In the case of the heat
equation, we get

solheat = LieSolve|["heat.dgl"]

{{xi[l] - Function[{x, t, u}, k65-2dk2t+k6x+k4tx], xi[2] >

Function[{x, t, u}, k3+t (2k6+k4t)], phi[l] - Function|

kdt k4 x?
5 +k2x- 24

{x, t, u}, u |k1- )+free[1][x, £1]},

(- free[1] %Y [x, t]

3 + free(1]1%% [x, £]}}

The result of this calculation is a list containing the infinitesimals and the remaining
equations. The remaining equations are usually not solvable by the procedures used
by LieSolve[]. If we look at the first part of this list, we realize that the infinitesimals
xi[1], xi[2], and phi[l] for the heat equation are given in a pure function
representation. This representation allows us to use the results for the infinitesimals
in further calculations. The second part of the resulting list contains the unsolved
equations, which in the present case is given by the original equation. We have to
expect that the arbitrary function free[I] must satisfy the heat equation since we
analyzed a linear partial differential equation. As noted, the function LieSolve[] saves
the derived infinitesimals in the file heat.dgl. The information on the structure of the
infinitesimals is contained in the lists ListXi and ListPhi. We can check the contents
of heat.dgl again by

! | heat . dgl

Title = {Heat equation}
Source = {{G. Baumann}, {Ulm 1997}}
IndepVar = {x, t}
DependvVar = {u}
EqList =
{Derivative[0, 1][u][x, t] - dxDerivative[2, 0] [u][x, t]}
SubsList = {Derivative[0, 1] [u][x, t]}
ParameterS = {d}
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ListXi = {}
ListPhi = {}
ListXi =
{k5 - 2*xd*k2+t + k6*xx + kdxt+x, k3 + tx (2*xk6 + kdxt)}
ListPhi = {(kl - (kd*t) /2 + k2*x - (kd*x"2) / (4+d)) *
ul[x, t] + free[1l][x, t]}
ListEquations =
{- (Derivative [0, 1] [free[l]]([x, t]/4) +
Derivative[2, 0] [free[l]][x, t]}

In addition to the two augmented lists ListXi and ListPhi, the file contains a new
variable ListEquations storing the unsolved equations. After the application of Lie[]
and LieSolve[] to the heat equation, we created an information basis on the
symmetries of the equation. The symmetries of the heat equation are presented by
constants kI to k6 and by the arbitrary function free[]. We can independently check
the gained information to verify the invariance of the heat equation. Again, we apply
function Lie[] in connection with the option Info—»True. The application of Lie[] to
heat.dgl in connection with the option Info—True gives us

Lie["heat.dgl", Info -» True] // LTF

(F1), -d (F1), , == 0

x

The function Lie[] takes the information on the infinitesimals and carries out the
calculation of a symmetry analysis. In the last step of the calculation, the
infinitesimals are inserted into the determining equations. The result shows that the
original equation must be satisfied by the arbitrary function F; = free[l]. It is
essential for this example that the check reproduces the heat equation; otherwise,
there would exist an error in the calculation. We note that for other equations the
result may be an empty list, especially if the equation is a non-linear one. We also
note that the check of the results is completely independent of the solution procedure
used by LieSolve[]. Thus, we have an independent tool allowing us to examine the
results of LieSolve[].

Example 2

Let us demonstrate the whole procedure of deriving the symmetries for another
example. Closely related to the heat equation is the so-called non-linear filtration
equation (Ibragimov [1994]). The equation of motion is given for a field u = u(x, t)
by

u —k(u)u, =0, (5.23)

where k(u,) is an arbitrary function of u,. In Mathematica’s notation, the left-hand
side of the equation reads
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filtration = {O. u[x, t] - k[0, u[x, t]] O(x,2yulx, t]};
filtration // LTF

ur —kuy,x ==0

We suppressed the right-hand side of the equation and collected the left-hand side in
a list. The file containing the information on this equation is created by

LieEquations["filtra.dgl", filtration, {u}, {x, t}, {},

{"Nonlinear Filtration Equation"},

{{"I.Sh. Akhatov, R.K. Gazizov and N.H. Ibragimov"},
{"Group classification of nonlinear filtration equations"},
{"Soviet Math. Dokl. 35, 384, 1987"},

{"The equation is listed in the CRC Handbook
of Lie Group Analysis of Differential Equations"},
{"Vol. 1, Chapter 10.3, p. 129"},
{"Ed. N.H. Ibragimov"},
{"Boca Raton 1994"}}]

The symmetries of this equation follow by

solfilt = LieSolve["filtra.dgl"]

{{Xi[l] —>Function[{x, t, u}, k2 + k4x],

xi[2] » Function{{x, t, u}, k3 +k4t],

k4u]}l

phi[l] —>Function[{x, t, u}, k1+ 3

{1}

The result is isomorphic to the result given by Ibragimov [1994] representing
translations and scaling. Since the filtration equation is a non-linear PDE, we actually
do not expect that arbitrary functions occur in the infinitesimals. However, there
exists quite a number of non-linear examples for which the symmetry group is of
infinite order and thus contains arbitrary functions. These functions are usually
restricted by one or more PDEs which are different from the original equation.

If we know the symmetries, we can use another function of MathLie, called
LieStructureForm([], to derive the algebraic properties of the related Lie algebra. We
get the structural properties of the algebra and the transformation properties by

LieStructureForm["filtra.dgl"]

We will check the infinitesimals and calculate algebraic
as well as group properties

Welcome to MathLie™
for the calculation of the symmetry group
by G. Baumann, © 1992 - 1999



250  Point Symmetries of Partial Differential Equations

R ittt +
Loading
previous calculations of the determining equations from
FILTRA.DEQ

Loading data from FILTRA.DGL
Title of the equations:
Nonlinear Filtration Equation
Source of the equations:
I.Sh. Akhatov, R.K. Gazizov and N.H. Ibragimov
Group classificatin of nonlinear filtration equations
Soviet Math. Dokl. 35, 384, 1987
The equation is listed in the CRC Handbook
of Lie Group Analysis of Differential Equations
Vol. 1, Chapter 10.3, p. 129
Ed. N.H. Ibragimov
Boca Raton 1994

Equations of motion:
Equation No. 1

U —kf[ux] uy,x ==0
Substitution No. 1
ut - k[ux] ux,x

Infinitesimals
xil = k2 + 2%
Xi2 = k3 +k4t
Phil = kl+-%—k4u[x,t]

We are using all the equation(s) checking the infinitesimals
of the given system consisting of 1 equation(s) in total.

We have to treat 0
determining equations after simplification.
Calculation of the commutator table of the Lie algebra.

Basis of the Lie algebra.

Vi == 0Oy
Vy == 6x
vy == &8¢
ud x 8
vy ==t 8, + =+ x
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Structure of the Lie algebra.

Ideal 0 : ({vi, V2, V3, V4}
Ideal 1 : {vi, Vva, V3}
Ideal 2 : ({solvable algebra}

Casimier(s) of the Lie algebra.

{1

o o0 0 -
o 0 0 -%
0 0 0 -v3
N

The commutator table is stored in list LieTable.
The nonzero structure constants are

Structure constants are contained in the list LieStructure.
Metric of the structure constants

000 0
N 000 0
g-{i3} = 000 0
o0 o0 2

Determinant of the metric
det(g) = 0

Xi(l) = k2 +
Xi(2) = k3+kdt

Phi (1) = kl+%k4u[x, t]
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Group order = 4
Number of classes = 15

{k1-50, k250, k350, kd > 1}
x[s] == {x[s], t[s], ulsl]}

t(s] == {x[s] » (B> C[3]&), t[s] » (E°C[1]&), u[s] > (E?> C[2]&)}
uls] == {{}}

x[s] == {x[s], t[s], uls]}
tls] == {x[s] » (C[3]&), t[s] » (C[1] +s&), u[s] » (C[2]&)}
ufs] == {{}}

{k1>0, k250, k3 > 1, k4> 1}
x[s] == {x[s], t[s], uls]}

t[s] ==
{x[s] » (E®*C[3]&), t[s] » (-1+ESC[1]&), u[s] » (E2C[2]&))}
ufs] == {{}}

There exist no transformations creating new solutions.
Results are collected in the list FinalResult.
The infinitesimals are contained in Result2.

{}

The function actually does not return any result for further use. However, the
function prints out the result shown on the screen. As a first result, we get the
algebraic properties based on the vector fields of the symmetry group. The
commutator table of the vector fields is followed by a number of group
transformations based on subgroups of the symmetry. The subgroup is specified by
replacement rules setting the values of the group parameters k;. Transformations for
the dependent and independent variables are given in a most general form. If the
classification of the group allows a transformation of known solutions to other
solutions of the equation, a graphical representation of this transformation is
created. O

Example 3

One of the frequently used partial differential equations in the description of
non-linear phenomena in physics is the Burgers equation. Writing down the equation
in Mathematica, let us first define the field u by
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U=u[x, t];
The left-hand side of the Burgers equation is given by
burgers = {8, U+ 2U 09, U - 0,3 U}; burgers // LTF

Ug +2UUx —Ux,x == 0

253

The physical background and the important solutions are discussed by Lighthill

[1956] and Crighton [1979].

The well-known Cole-Hopf transformation converts the Burgers equation to the
linear diffusion equation. Hence, the solution for the former can be explicitly
obtained by solving the linear problem of the diffusion equation. Our intention here is
to find the symmetries of the Burgers equation for the standard representation given

above.

Derivation of the symmetries as a part of our database system presumes that first we
have to create the information file for the Burgers equation. The representation of the

Burgers equation given above was taken from

source = { {"M.J. Ablowitz and P.A. Clarkson"},
{"Solitons,

Nonlinear Evolution Equations and Inverse Scattering"},

{"Cambridge University Press, 1991"},
{"first equation on page 34"}}

{{M.J. Ablowitz and P.A. Clarkson}, {Solitons, Nonlinear
Evolution Equations and Inverse Scattering},

{Cambridge University Press, 1991},

{first equation on page 34}}

We set the title of the equation to
title = {"Burgers eguation"}
{Burgers equation}

The file burgers.dgl is then created by

LieEquations|["burgers.dgl", burgers, {u}, {x, t}, {},
title, source]

The derivation of the determining equations is pursued by

burgersDetEquations = Lie["burgers.dgl®, Statistics - True];
burgersDetEquations // LTF
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€1), ~2u (&), +2u (&) + (E1) -2 ($1), , == 0
($1), - (d1),, == 0

52)t ==0

~ g — o

2 (&) -

Again, the result of this calculation is a system of linear coupled partial differential
equations. These equations are the basis for the determination of the symmetries.
Before we attempt to solve these equations, we discuss another representation of the
Burgers equation which follows from the above if we replace the dependent variable
u by the gradient of a field v. We define this substitution by

subst = u -» Function[{x, t}, 8, Vv[x, t]]
u - Function[{x, t}, 6,v([x, t]]

and apply this transformation to the Burgers equation
burgersx = burgers /. subst; burgersx // LTF

Vx,t + 2 vy Vx,x = Vx,x,x == 0

The result is a third-order non-linear PDE for the field v. Integrating this equation
with respect to x, we obtain a potential representation of the Burgers equation:

pburgers = jburgersx[l]] dx; pburgers // LTF
Ve + V2 -Vye,x==0
This sort of equation was examined by Olver [1986].

In the following, we will show how group properties of the potential representation
differ from the original representation of the Burgers equation. Let us again extend
our database by a new file containing the information on the potential Burgers
equation. We create a file for the potential Burgers equation by

LieEquations["burgersp.dgl”, pburgers, {v}, {x, t}, {}.
{"Burgers equation"}, {{"G. Baumann"},

{"Burgers equation in potential form"}, {"Ulm 1997"}}]

The corresponding determining equations follow by
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Lie["burgersp.dgl"] // LTF

(§1)V ==0
(&2), ==0
(£2),==0

“(E1) e +2(P1) *+ (E1) s =2 (D1),,,==0
(1) = (P1),,==0

2 (&), - (&), ==0

=2 (&), + (&) *+ (1), - (P1),,,==0

A comparison of the results shows that in both calculations, the number of equations
are the same. However, the seven equations differ in their forms. Consequently, the
structure of the symmetries is different. We can illustrate this by using the function
LieSolve[] of the package MathLie. The function LieSolve[] provides us with the
representation of the symmetries in infinitesimal form. The infinitesimals of the
Burgers equation thus follow by

iburgers = LieSolve|["burgers.dgl"]

{{xi[l] - Function[{x, t, u}, k2+kd4 t + (k3 +k5¢t) x],
xi[2] » Function[{x, t, u}, k1 +t (2k3 +k5¢t)],

phi[1] - Function|{x, t, u}, % (k4 -2 (k3+k5¢t) u+k5x) ]},

{1}

The result is a list containing the infinitesimals in a pure function representation. The
first two elements xi[1] and xi[2] of the list represent the infinitesimals for the
independent variables x and r, respectively. The third element, phi[l], is the
infinitesimal for the dependent variable. Among the five-dimensional symmetry
group are symmetries of translation and scaling. The infinitesimals for the potential
Burgers equation follow by a similar calculation from

iburgersp = LieSolve["burgersp.dgl"]

{{x1i[1] » Function[{x, t, v}, k2+2k5t+ (k3 +4k6t) x],
xi[2] - Function[{x, t, v}, k1+2t (k3+2k6¢t)], phi[l] -
Function[{x, t, v}, k4 +2k6t +k5x+k6x?+E' free[l] [x, t]l1},
{(-free[1]%Y [x, t] + free[1]*? [x, t]}}

Comparing both results, we recognize that the symmetry structure of the original
Burgers equation and the potential representation of the Burgers equation are the
same for the infinitesimals of the independent variables. The structure of the
dependent variables is completely different. In the case of the Burgers equation, we
find a finite dimensional representation of the symmetry group, whereas in the
potential representation, we get an infinite dimensional group characterized by the
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arbitrary function free[1 ][x,t]. This arbitrary function has to satisfy the heat equation
as an additional equation. The last list of the result contains this equation. The
discrete part of the symmetry group of the potential Burgers equation is also extended
by one degree to a six-dimensional symmetry group. O

In physical applications, however, the model equations often turn out to be more
complicated than the Burgers equation, involving as they do, a geometrical expansion
term, a non-linear damping term, or a more general convection term. In the
following, we will examine the influence of this change on the symmetries if the
convection term in the original equation is altered. The convective extension of the
Burgers equation is obtained by replacing u, with u? u,. This quadratic extension is
sometimes called generalized Burgers equation.

burgersc = {8, U+U? 8, U-9,,,,, U}; burgersc // LTF

U +u Uy — Uy, == 0

For a quick overview of the changes in the symmetries, we take advantage of the
interactive function Infinitesimals[]. Application of this function to the equation can
also be used to create a database if the related notebook is considered the basic part
of the data system. The advantage of this view is that the complete information on an
equation is collected in one file and that background information which is not
necessary for a symmetry analysis can also be collected in the notebook. The
determination of the symmetries for this generalized equation is carried out by

iburgersc = Infinitesimals [burgersc, {u}, {x, t}]

{xi[l] —>Function[{x, t, u}, k1 + kéx],
xi[2] » Function[{x, t, u}, k2+k3t],
phi[1] —>Function[{x, t, u}, - k?:lu ]}

The result shows that the symmetry group of the generalized Burgers equation is
reduced from a six-dimensional to a three-dimensional group containing only
translations in the independent variables and a scaling.

We recognize now that classification of the group of differential equations is an easy
task. For example, the group structure of the Burgers equation with generalized
convection term u™ u, is analyzed by

Infinitesimals[{0, U+U® 0,U- 8,2 U}, {u}, {x, t}, {m}]

k3 x
7
xi[2] » Function[{x, t, u}, k2 +k3t],

{xi[l] —>Function[{x, t, u}, k1+

k3u]}

phi[1] —aFunction[{x, t, u}, - m
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where m is an arbitrary constant. The result demonstrates that for an arbitrary m, the
symmetry group is of the same structure as for the generalized Burgers equation with
quadratic convection term. The difference between the two results is the dependence
of phi[1] on the parameter m. This result displays that the function Infinitesimals[] is
capable of handling not only the specific models of the Burgers equation but also a
model depending on an arbitrary parameter.

Concluding this section, we can state that MathLie can be used to collect information
on symmetries in different ways: first, creation of a file system containing
information essential for each equation; second, by creating notebooks that allow
detailed discussion of the equation. Both methods will be used in the remaining parts
of this book.

5.5. Similarity Reduction of Partial Differential Equations

A similarity reduction of a differential equation is closely connected with the
invariance of the equation. In Chapter 3, we discussed the group invariance of
ordinary differential equations. The invariance condition in connection with ordinary
differential equations was beneficial for the reduction of the order or the integration
of ODEs by quadratures. In this section, we will discuss the invariance condition of a
partial differential equation to reduce the equation to an ODE or to a PDE in less
independent coordinates. The first case occurs for an equation with two independent
variables, whereas a general reduction to another PDE follows in cases with more
than two independent variables. The reduction procedure generates a similarity
representation of the original equation. Since we reduce the number of independent
variables, a similarity reduction results into a representation which has some
advantages compared with the original equation.

This procedure works independent of the nature of the PDE, linear or nonlinear. It is
also independent of the order of the PDE and it does not need information on
boundary conditions. The benefit of the reduction is a simpler equation allowing an
analytic or numeric solution. Examples of similarity solutions are widely encountered
in mechanics, hydrodynamics, in the general theory of relativity, etc. However, the
solutions derived in these fields are mainly guesswork and lack an algorithmic
procedure. We are going to show here that a similarity reduction is an algorithmic
procedure delivering a large number of ansitze discussed in the literature.

The main idea behind a similarity reduction is the term invariance. The discussion of
invariance is the first step in this section. To simplify the theoretical representation,
we restrict the examination to cases with two independent variables. A generalization
to more independent variables is straightforward.
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Let us consider the general PDE in two independent variables and one dependent
variable in the form

Alx, t, u, Uy, U, Uy, ...) = 0, (5.24)

which is invariant under the one-parameter Lie group of transformations

x* = X(x,t, u; €, (5.25)
t* = T(x,t, u; €, (5.26)
w = Ux, t,ue€). (5.27)

Let us further assume that u = ©(x, t) is a solution of equation (5.24). Inserting this
solution into the transformations (5.25)—(5.27), we can write

x = X(x,t,0(x, 1); €, (5.28)
t* = T(x,t,0(x,t);€), (5.29)
u' = Ulx, t, 8(x, t); €), (5.30)

stating that " is also a solution of the transformed PDE. The use of these facts allows
us to define the invariance in the following way.

Definition: Invariance

A PDE is invariant under a one-parameter Lie group transformation if u* =
U(x, t,0(x,t);e) also satisfies the transformed PDE whenever u = ®(x, t) is a
solution of the original PDE. O

If we additionally require that we can solve this problem uniquely, we end up with
the functional equation

O(X(x,t,0(x, t);€), T(x,t,0(x,t);€) = Ux, t,0(x, t);€). (5.31)

The solution of this functional equation can be found by introducing the infinitesimal
representation of the transformations (5.28)—(5.30). We will carry out the calculation
by replacing the transformations (5.28)—(5.30) by their infinitesimal representations

Clear [T, X, U];

itrafo = {X - Function[{x, t, u, €}, x+exi[1l][x, t, ul]l,
T » Function[{x, t, u, €}, t +exi[2][%x, t, u]],
U - Function[{x, t, u, €}, u+ephi[l1l] [%x, t, ul]}

{X > Function[{x, t, u, €}, x+exi[1l][x, t, ul],
T - Function[{x, t, u, €}, t+exi[2][x, t, ul],
U - Function[{x, t, u, €}, u+ephi[l][x, t, u]]}
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Inserting the infinitesimal representation of the transformations into the functional
equation (5.31), we get the simplification

fun = 6[X[x, t, 6, €], T[x, t, 6, €]] ==U[x, t, 8, €] /. itrafo

O[x+exi[l][x, t, ], t+exi[2][x, t, ©]] ==@+ephi[l][x, t, O]

The parameter € is the group parameter of the transformation. On the left-hand side
this expression contains the solution 6 for which we are looking. Actually, the above
expressions contain 6 in a functional form, too. However, this representation depends
on the infinitesimals parameter € allowing us a Taylor expansion around the identity
€ =0. If we additionally subtract the right-hand side from the left-hand side and
extract the terms of lowest order in €, we get the result

Coefficient |
(Series[fun[[1], {e, 0, 1}] /. 6[x, t] - 8) - fun[[2], €] ==0 //
LieTraditionalForm

O, & +0, & - ==0

This first-order PDE is called the invariant surface condition. The problem we face is
the solution of this first-order partial differential equation. Actually, this is not a
problem if we use Mathematica. Mathematica offers a package integrated in the
function DSolve[] allowing the integration of first-order PDEs. This package uses the
fact that a first-order PDE is closely related to a set of ordinary differential equations.
The connection between the first-order PDE and the system of ODEs can be
demonstrated by the following reasoning.

Let us assume that an arbitrary surface in the space with coordinates x, ¢, and u is
given by

u=0(xt). (5.32)

Later, we will identify this surface as the solution surface of the first-order PDE. A
curve embedded in this surface can be described by a set of parametric coordinates.
Let s be the parameter along the curve; then the curve itself is given by the triple

(x = x(s), t =t(s), u=u(s)). (5.33)
The tangent vector to this curve is

-

R dx |
V=, — +¢ — +¢&, —, (5.34)
ds
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where ¢,, ¢;, and ¢, are the unit vectors in the directions of the coordinate axes. The
normal direction on the surface H =u—O®(x,t)=const. is determined by the
gradient divided by the magnitude of the gradient

VH 1

_‘=—=——Ax®x—_\®+—‘u. .
n VH| IVHl(e e 0, +¢,) (5.35)

The condition 71V = 0 assures that the curve (x(s), ¢(s), u(s)) is part of the surface H.
This condition, however, is nothing more than

dx dt du
0. % 0% - & 5.36
ds | 'ds T ds (5.36)

If we define a family of curves by

ﬂ = &1(x, t, u), 5.37)
ds
d_t = 62(x9 t, u)y (538)
ds
B it u, (5.39)
ds

called the characteristic differential equations, we can rewrite the surface condition
7iv = 0 in a partial differential equation of first order:

£10, + 60, = ¢, (5.40)

which is equivalent with the equation derived from the functional relation (5.31) for
®. Consequently, each one-parameter family of characteristic curves generates a
surface which defines an integral surface u — ®(x, ¢) = const. and each such integral
surface is generated by a one-parameter family of characteristic curves.

Example 1

Let us consider the first-order partial differential equation

pdel =x9,0([x, t] +t9d.0[x, t] ==6[x, t];
pdel // LieTraditionalForm

tO, +x0, == 0

corresponding to a scaling symmetry with infinitesimals & = x and & =t¢. The
first-order PDE is solved by
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sol = DSolve[pdel, ©[x, t], {x, t}]

{{erx, t1 >xcr1[£]})

where C[1][t/x] is an arbitrary function. A graphical representation of this solution
with C[1] replaced by Sin[] is given by

Plot3D[(®[x, t] /. (8ol /. C[1l] -» 8in)) [1].
{x, 0.1, 2}, {t, -2mw, 27},
AxesLabel -» {"x", "t", "8"},
PlotPoints » 40, Mesh -» False]

O

Actually, the family of solutions of the characteristic differential equations can be
represented in a parametric form by

x = x(s, 1), t=1t(s,r), u=u(s,r), (5.41)

where s is the parameter along a characteristic curve and r is the parameter
identifying a characteristic curve equal to a certain constant on a characteristic. The
essential point of these considerations is that the solution of a first-order partial
differential equation is represented by a family of surfaces u — ®(x, t) = const.

Now, if F(x, t, ®) =0 defines a surface satisfying the first-order partial differential
equation, then this surface is an invariant of the one-parameter Lie group
transformation. This is obvious from the condition

VF(x,t,0) =0, 5.42)
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where V is the vector field of the transformation given by
V=860, +860 +¢ 0. (5.43)

The result is that the vector field ¥ applied on the surface F(x, ¢, ®) delivers the
determining equation for the surface. These facts are summarized in the following
theorem.

Theorem: Invariance condition

The function F(x, ¢, ®) is an invariant of a one-parameter Lie group transformation if
the condition

VF=0 (5.44)
is satisfied. O

This condition always results into a first-order partial differential equation
independent of the number of dependent and independent variables. The equation is
solvable by applying the method of characteristics. We demonstrate the application
of the theorem by an example.

Example 2

Let us apply the theorem for a subgroup of the heat equation. The symmetry we will
examine is connected with the scaling symmetry

xi[1] [%, t, u] = x;
xi[2][%, t, u]l =2¢;
phi[l][x, t, u] =cu;
where c is an arbitrary parameter. The invariance condition (5.44) now reads
invar = xi[1] [x, t, u] O, F[x, t, u] +

xi[2] [x, t, u] 8. F[x, t, u] +
phi[l] [x, £, u] 6,F[x, t, u] == 0; invar // LTF

2tF.+cuF, +xF; ==0
The solution of this PDE follows by

solh = DSolve[invar, F[x, t, u], {x, t, u}]

{{F[x, t, u] - C[1] [XLZ’ ux’c]}}
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representing the general solution of the first-order partial differential equation. The
arbitrary function C[I] depends on two invariants given by I, = ¢/x* and
I, =u/x°. These two invariants allow the reduction of the heat equation to an
ordinary differential equation. The reduction procedure itself is based on the
following theorem:

Theorem: Invariant representation

Let the equation A =0 be invariant under a one-parameter group G and let the
infinitesimals &; and ¢,, i=1,2,...,p and a@=1,2,...,q9, be non-vanishing
functions on the solution surface H of the equation. Then, the surface H can be
represented by equations of the form

<I>I((I](-x’ u),..., Ip—l) = 09 k =192a-~~y q! (5.45)
where [, ..., I,_; define a basis of invariants of the group G. O

The use of the invariants allows us to reduce the original equation. Let us
demonstrate the reduction process by the example of the heat equation. The left-hand
side of the equation of motion reads

heat = {9, u[x, t] -9(,2;u[x, t]}; heat // LTF

Ue ~ Ux,x == 0

The two integrals obtained by integrating the characteristic equation are I; = #/x* and
I, = u/ x°. The first integral combines the independent variables in a unique variable
called the similarity variable { =t /x*>. The second invariant, I,, combines the
dependent variable and one independent variable to the similarity representation of
the solution u(x, t) = x° F({), where F({)=I,. These two relations allow us to
define the following rules:

1es={t_,§x2,u-)5'unction[{x: t}, chI[ ‘:2]]}
ru X
{t »x* ¢, u- Function|[(x, t}, x° F[_; 11}

Applying these two rules to the heat equation, we get

rheat = heat /. rules; rheat // LTF

6 CF, 482 Fe ¢
+
x2

~(-1+c) cFx 2 +x 2 Fo+4cx 2 LFe - x° [ v

==0

representing an ordinary differential equation for F depending only on ¢ The
common factor x°~? can be eliminated by division:
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rheat

rheat = Expand[ 2
5o

]; rheat // LTF
CF-c?F+F,-6CF, +4clF.-4C%F,,==0

Thus, we reduced the original PDE to an ODE by utilizing the invariants of the
group. The merit of this reduction is that the derived ODE is easier to solve than the
original PDE. Another advantage is that we can use the solution procedures discussed
in Section 4.4, allowing us to solve the reduced equation. However, in the present
case, we utilize the capabilities of DSolve[]. The solution of the ODE follows by

sheat = DSolve[rheat[1] == 0, F, §]

1 c

{{F—) Cl[1] Hypergeometrichl[%—%, %, —ﬁ] (#il)f :
. c 1 1 1 -c/2

Cl[2] Hypergeometrlchl[—g, 5 —m] (#—1) & }}

The resulting solution is a combination of special functions containing the group
parameter c¢. Since we started from a second-order ordinary differential equation, we
end up with a solution containing two constants of integration C[I] and C/[2]. The
two solutions are graphically shown in the following figure. The different curves

represent different values of the group parameter c.
Plot [Evaluate[Table[F[L] /. sheat[1, 1],

{c, -2.1, 2.1, .5}] /. {C[1] » 1, C[2] » 0}],
(£, 0.01, 2}, AxesLabel » {"C", "F"},

PlotStyle - Table[Hue[ —], {i, 1, 8}]]

i
10

[¥5]
- i

(¥}
(3]
=
g
s
o~
g

~0.5F

The second solution with C[1] = 0 and C[2] = 1 has the graph
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Plot [Evaluate[Table[F[L] /. sheat[1, 1],
{c, -2.1, 2.1, .5}] /. {C[1] » 0, C[2] » 1}],
{&, 0.01, 2}, AxesLabel » {"L", "F"},
i

PlotStyle - Table[nue[ —], {i, 1, 8}]]

10

F

J//ois 1 1.5 2 ¢

The symbolic solution for the heat equation in the original coordinates x and ¢ is
derived from the similarity solution by inverting the transformations:

t , F > Function[&, F[C] x‘:]}
x2

backrules = {5-’
{§-> x% F -» Function[C, F[C] Xc]}

The actual solution follows then by the resubstitution of the similarity representation:
solution = F[{] /. sheat /. backrules

x2 %";’ 1
{ (TJ C[1] Hypergeometrichl[

2

- ]
2' 2’ "ac!l’

x2 | /2 , c 1 e
(T) C[2] Hypergeometrlchl[—E, > Tt ]}

In conclusion, we can say that a solution of a partial differential equation in two
independent variables can be constructed by two invariants of the group. One of these
two invariants becomes the new independent variable ¢ = {(x, t), the so-called
similarity variable, and the other invariant plays the role of a dependent variable
F({). The similarity representation of the solution is given by the relation

® = H(x, t, F({)) (5.46)
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with the dependence of H on x and ¢ and the arbitrary function F({) known
explicitly. The substitution of this similarity representation into the original equation
results in an ordinary differential equation for F({). O

Now we know the fundamental steps to reduce a PDE to an ODE if the symmetries
of the PDE are given. The package MathLie offers a function called LieReduction[],
which allows us to reduce the number of independent variables by applying the above
considerations. The function LieReduction[] can be used to automatically derive the
similarity representation of the heat equation and others. The information we need to
set up the calculation are the equation, the dependent and independent variables, and
two lists for the infinitesimals. The first list of the infinitesimals carries the
information on the independent variables and the second carries the group structure
of the dependent variables. The following example shows how the reduction for the
scaling symmetry is derived for the heat equation:

redl = LieReduction[{6.u[x, t] - O,z ulx, t]}, {u},
{x, t}, {x, 2t}, {cu}]; LTF[Flatten[redl]] /. zetal » §;

t

@ =0
ux°-F, ==0
_XC

(—cF1 +C® F1— (F1), +681 (F1), —4c8i (F1) +48% (Fi)g ¢))

The output of the function is a list containing the similarity variables as equations at
the first position. The second part of the list contains the similarity representation of
the solution. The third and last part of the resulting list contains the reduction of the
original equation. Another example for the application of this function is given by the
potential Burgers equation. We already determined the symmetries of the potential
Burgers equation in Section 5.4.4. Using the results from there for the special group
with k6=1 and ki=0 for i#6, we find

redl = LieReduction[ {6, u[x, t] + (8xu[x, t])? -8, 2, ulx, tl},
{u}, {x, t}, {4tx, 4t?}, {2t +x%}];
LTF[Flatten[redl]] /. zetal » ¥,

t
= Gi==0

1 x?

T 4u—T—2Log[x] -F; ==

€3 (3-12F1lg, & +4F1] 2 -4C82Fle ) ==0
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The result of the reduction is a non-linear second-order ordinary differential equation
which we can solve by using the function DSolvel[]:

solburgersp = DSolve[redl[[3, 1] == 0, F1, zetal]

3 Log[#1]

{{F1->(c[2]+ |

—Log[—1+#1C[1]]&)}}

The final solution of the potential Burgers equation follows by using the second part
of the similarity reduction. Inserting the solution for FI into the similarity
representation, we get a representation of the solution in x and ¢ coordinates,

solution = Flatten[redl[[2] /. solburgersp]

tCl1]
—1!

2
{% (4u—xT -2Log[x]| ==C[2] + %Log[%] —Log[—1+

Solving this relation with respect to u, we end up with the explicit solution of the
potential Burgers equation in the form
solf = Simplify[Solve[solution[[1], u]]

{{u—> 1 (£+4C[2] +6Log[%] + 2 Log [x] —4Log[—l+ £Cl1] ])}}

4 t X

The solution of the chosen subgroup contains two constants of integration which
have to be chosen in such a way that the initial and boundary conditions are satisfied.

Example 3

Another example of two coupled diffusion equations demonstrates the application of
the function LieReduction[] on a system of equations. The (1+1)-dimensional version
of the equations of motion for the density « and the density v are given by

cdiffu = {8, u[x, t] - B, VIx, t],
9, v[x, t] -9, ulx, t]}; cdiffu // LTF
Up - Vx,x == 0

Ve —Ux,x == 0

The two equations allow a large symmetry group. The infinitesimals of this group
follow by applying the function Infinitesimals[]. The result reads



268

Point Symmetries of Partial Differential Equations

icdiffu = Infinitesimals[cdiffu, {u, v},
{x, £}, {}, SubstitutionRules » {0, u[x, t], 8. v[x, t]}];
icdiffu // LTF

“(F2) e + (F1)yx == 0

“(F1)e + (Fa)y,x == 0

& == k6 +k7x-2t (k3 +k5 x)
€ ==kl +2¢t (k7 -K5 t)

2

¢, == (k4+k5t)u+v[k2+k3x+ kS x )+¢1
k5 x?

¢, == (k4 +k5¢t) v+u [k2+ k3 x+ 3 +F,

The two functions free[1] and free[2] satisfy the original equations and generate the
infinite dimensional part of the group. The finite part of the group is represented by a
seven-dimensional symmetry group. From this group, we select the subgroup with k4
= k7 = ] representing a scaling symmetry of the coupled equations:

xinfi = {xi[1][x, t, u, v], %i[2][x, t, u, v]} /.
icdiffuf1] /.
{k1 >0, k250, k350, kd>1, k6§ >0, k6 >0, k7 » 1}

{x, 2t}

uinfi = {phi[1][x, t, u, v], phi[2][x, t, u, v]} /. icdifful] /.
{k1 >0, k250, k350, kd>1, k550, k60, k71,
free[l] [x, t] » 0, free[2][x, t] - 0}

{u, v}
The reduction of the coupled diffusion equations for the scaling group follows then by

rcdiffu = LieReduction[cdiffu, {u, v}, {x, t}, {x, 2t}, {u, v}];
LieTraditionalForm[rcdiffu] /. zetal » £, // TableForm

v
— ==TF,
x

(F1)g, —281 (F2)p, -48% (F2)g, o ==0 =281 (F1)g + (F2)g, -48% (F1)p ¢, ==0

The derived coupled set of ordinary differential equations in F; = F1 and F, = F1 is
not solved by Mathematica. This is obvious from
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DSolve[rcdiffu[[3], {Fl1, F2}, zetal]

DSolve[{F1l' [zetal] - 2 zetal F2' [zetal] - 4 zetal® F2” [zetal] == 0,
-2 zetal F1' [zetal] + F2' [zetal] - 4 zetal® F1” [zetal] == 0},
{Fl1, F2}, zetal]

However, this is not the end of the story. Mathematica offers an alternate way: the
numerical solution of the equation. The function NDSolve[] is capable of handling
this task. This function is beneficial in solving the reduced system of equations. In
determining a numerical solution, it is mandatory that the equations be free of any
parameters and that the initial conditions be added to the equations:

egat = rcdiffu[3]

{F1' [zetal] - 2 zetal F2' [zetal] - 4 zetal? F2” [zetal] == 0,
-2 zetal F1' [zetal] + F2’' [zetal] - 4 zetal® F1” [zetal] == 0}

For the initial conditions, we choose the following relations:

initials =
{F1[1] == .1, F2[1] == .2, F1'[1] == -.1, F2' [1] == -0.5};

setting the function values at zetal=1 and the derivatives to certain constants. These
four equations are joined with the list of equations egat:

egat = Join[eqgat, initials]

{F1’ [zetal] - 2 zetal F2' [zetal] - 4 zetal® F2” [zetal] == 0,
-2 zetal F1' [zetal] + F2' [zetal] - 4 zetal® F1” [zetal] == 0,
F1[1] == 0.1, F2[1] == 0.2, F1'[1] ==-0.1, F2'[1] == -0.5}

The complete list of equations and initial conditions is now used in the numerical
integration for zetal in the range /< zetal <50.

nsolve = NDSolve [eqat, {Fl, F2}, {zetal, 1, 50}]

{{F1 » InterpolatingFunction[{{1., 50.}}, <>],
F2 -» InterpolatingFunction[{{1l., 50.}}, <>]}}

The numerical solution is represented by an interpolating function. We can use the
representations to plot the solution:

Plot [Evaluate[{Fl[x], F2[x]} /. nsolve], {x, 1, 50},
PlotStyle -» {RGBColor[1.000, 0.000, 0.000],
RGBColor[0.000, 0.000, 1.000]},
AxesLabel -» {"5;", "F,,F;"}]
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The utilization of the numerical capabilities of Mathematica allows us to examine the
solution of the reduced equations for a limited range in zetal and for a special choice
of initial values. This numerical representation of the solution compared with an
analytic solution is far from being complete. An analytic solution, if we found one, is
valid for all initial conditions and unlimited in the range of the independent variable.
So numerical solution can only show us the behavior for a specific case of initial
conditions. O

Example 4

Another problem also handled by the function LieReduction[] is the reduction of
partial differential equations in more than two independent variables. Such a case is
given by the Karpman-Belashov equation (KB) (Karpman and Belashov [1991])

2
6 u, + u,, + 6u Upx — Uy y — HUxxx —€Uxxxx — A Uy xxxxx = 0. (547)

The KB equation contains the Zabolotskaya-Khoklov equation (ZK) with € = 0 and A
= 0, and the Kadomtsev-Petviashvili equation (KP) with 4 = 0 and A = 0. The
KB-equation is used to model two-dimensional solitons and wave packages in
weakly dispersive and dissipative media. Karpman and Belashov studied this type of
equation numerically. We will examine here the algebraic properties of the equation.
Especially, we will examine the ZK equation and the corresponding analytical
solutions. First, let us determine the symmetries of the KB equation

karp = {0y (O . u[x, ¥, t] +6u[x, ¥y, t] Oxu[x, v, t] -
UOx,zyulx, ¥, t] -€ 0,3 ulx, v, t] -
AOx,syulx, ¥, t]) -0y, 2yulx, v, t]}; karp // LTF

2
6ux+ux,t +6uux,x —Uyy — H Uy, x,x — € Ux, x,x,x _)‘uxxxxxx ==0
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The three parameters A, u, and € are real constants. The infinitesimals of the KB
equation follow by

ikarp = Infinitesimals[karp, {u}, {x, v, t}, {u, €, A}]1;
ikarp // LTF

1
¢, == KV (2 (F2)e +Y (F1) )
1
&1 ==F t5Y (F1) ¢
& ==F1
3==k1

The result of the calculation is an infinite dimensional symmetry group determined
by two arbitrary functions ¥, = free[I] and F, = free[2]. These two functions
determine the transformation of the y, x, and u coordinates. We also observe that the
group is free of any system parameter A, €, and u. The two arbitrary functions free[I]
and free[2] do not have to satisfy any other equations. Thus, we can choose them
individually. If we assume, for example, that these functions are given by two
constants free[1][t] = k2 and free[2][t] = k3, we immanently select from the
infinite dimensional group those subgroups which describe the invariance of the
equation with respect to translations in the independent variables. At the other hand,
this special subgroup creates the following reduction:

rkarp = LieReduction[karp, {u}, {x, ¥, t}, {k1, k2, k3},
{0}]; LTF[Flatten[rkarp]] /. {zetal » §,, zeta2 » §,}

~klt+k3x

B
k2x-kly

xS =0

u-F, ==0

6k1® k3% (Fy); +12k1°k2k3 (F1), (F1), +6k1' k2% (F))Z -
k1° k3 (Fy), o, +6k1 k3% Fy (F1). , -k1°k2 (F1), . +

12k1° k2 k3 Fy (F1), ., -Kk1° (F1). ., + 6kl k2* Fy (F1), +
k1% Xk3% u (F1) o, o, +3 K12 k2 k3% u (Fy)
3k1® k2% k3 u (F1), + k1 k2> 4 (F1) ) ) e, —

k12 k34 € (F1)§1,§1,§1r§1 _-4k12 k2 k33 € (Fl)€1,§1,§1,§2 -
6k1? k2° k3% € (F1) ¢, ¢, c,.c, - 4 K17 k2° k3 € (Fy)

2 4 6
kl® k2" € (F1)521§z,§2.§2 -k3” A <F1)§1:§1,§1,§1.§1,§1
6 k2 k35 A (F1)§1r§1r§1.§1,§1,§z -15 k22 k34 A (F1)§1.§1,§1'Cl.§2.52 -
3 3 4 2
20k2* k3% A (F1) ) ey oerienien.e, — 15 k2% k3% X (Fy)

6 k2° k3 A (Fy), -k2° A (Fy),

2,82

ci.cie ¥

1.82.82

€1,82.82.82

€1.,81.82.82.62.,8

1.82.82.82.,82.,82 2.82.82.82.,82.82
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The result is a non-linear partial differential equation of sixth order for the similarity
function FI. The similarity function depends on the two similarity variables zetal
and zeta2. Thus, we reduced a (2+1)-dimensional PDE to a (1+1)-dimensional PDE.
Both similarity variables zetal and zeta2 are invariants of the KP equation. The
reduced equation is again a candidate for Lie's method. For the sake of simplicity, we
choose the group constants kI, k2, and k3 in a suited way by k] =k2=1,and k3 =v.
The corresponding reduction thus simplifies to

rkarpl = LieReduction[karp, {u}, {x, y, t}, {1, 1, v},
{0}]; LTF[Flatten[rkarpl]] /. {zetal > £,, zeta2 > £,}

6V (Fi)z, +12v (F1),, (F1),, +
6 (F1)z, -V (F1), ., +6V?F; (F1)e e, = (F1) g g *
12VFy (Fi) o, ~ (F1)o, o +6F) (F1) ¢, ,c, + V> U (F1)e ere *
3v2 u (Fy) +3VL1(F1)51,§2,52+H(F1)§2,§2,§2 -
-4vie (F)eyervere, 6V € (Fi)g o
€ (Fi)gycp00,0, ~ VO A (F1)¢
6 v° A (F; “1SVEA(FL) ) ey eenenies ~
20V A (F1) o) o eriencoiey — L5 V2 A (Fp)

6V A (F1), - A (F1),

€1.81.82
4
v® e (F, )g1

4dve (Fp)

C1.01.61 82,82

€1.82.82.6C2 1.81.81,81,81.,81
)51,51@1,51,51,52

€1,81,82.82,82.82

€2.82.,82.82.82 2:82,82.82.82.,82

It is obvious that the reduction of the KB equation is a sixth-order non-linear PDE in
141 variables. Thus, the resulting equation is nearly as complicated as the original
equation. To simplify things, let us examine models which follow from the KB
equation. If we change the parameters in the KB equation in an appropriate way, we
get a simplified equation. One example is the reduction of the KB equation by

karpsl = karp /. A - 0; karpsl // LTF

2
6u; +uy, e +6UU -U,,, - U Uy, x,x — € Uy, x,x,x == 0

This kind of equation is called a reduced KB equation (rKB) in the following. The
infinitesimals of this equation are calculated by

infkarpsl = Infinitesimals[karpsl, u, {x, ¥, t}, {u, €}]1;
infkarpsl // LTF



¢, ==

Similarity Reduction of Partial Differential Equations

1

1z (2(F2) +Y (F1) )

1
&1 ::¢2+7Y(7—1)t

€ ==F1
§3 ==kl
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Again, we find a group which is determined by two arbitrary functions 7, = free[/]
and F, = free[2]. Both functions depend only on ¢ and are not restricted by any side
conditions. It is obvious that the symmetries of the model with A = 0 allow the same
transformations as the complete model.

The following reduction of the A = 0 model assumes that free[2] = 1 = free[1] and
k1 = c, with ¢ a real constant:

rkarpsl = LieReduction[karpsl, {u}, {x, y, t}, {1, 1, ¢},

{0}]; LTF[Flatten[rkarpsl]] /. {zetal > {,, zeta2 > {;}

t-cx-8; ==0

-x+y-§; ==
u-F;, ==
6c® (F1)z +12c (Fi). (F1),, +

6 (F1)g, —C (F1)¢, o, +6C7 F1 (F1)g ¢ -
(F1)¢, e, + 12CF1 (F1) = (F1)e, e, +6F1 (F1)g, ¢, +
S U (F1) g, g0 +3CH(FL)g, 0, #3CH (Fi)gy oy 0, *

4 3
HAF1) e, 0, ~C € (F1)eyocrer ~4C € (Fi)ey o) 00,0,
6c?e (Fp) ~4ce (Fi), ¢

€1.82

€1.81.82.82 2.62.6 € (F1)§2.§2.§2,§2 ==

The result is a fourth-order non-linear PDE in the similarity variables zetal, zeta2,

and F1. The reduction is as complicated as the reduction of the full KB equation.

Another simplification of the original KB equation follows if we set € and A equal to

Zero:

karps2 = karp /. {A-» 0, € » 0}; karps2 // LTF

2 —
6 U2 + Uyt +6UUx,x ~Uy,y — U Ux,x,x == 0

The resulting equation is known as the ZK equation. The symmetries of the ZK
equation are determined by

infkarps2 = Infinitesimals[karps2, u, {x, ¥, t}, {u}]l;
infkarps2 // LTF
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1
T5 (-6k2u+2 (%), +y (F1), )
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1
5 (k2x+27; +y (F1),)

3k2y

z +T1

I

==kl+k2t

For this model, we again find an infinite symmetry group depending on two arbitrary
functions. Contrary to the models examined above, the discrete part of the symmetry
group increases by one group parameter. The reduction of this model for a scaling
group with k2 = 1, kI =0, and the arbitrary functions set equal to zero follows by

rkarps2l = Lieneduction[karpsz, {u}, {x, ¥, t}, {-2—:

{- ;}] // PowerExpand;

LTF[Flatten[rkarps2l]] /. {zetal > {,, zeta2 - .}

ux-F; ==

174 (48 T tY4 P, + 144 TtV/4 F2 24 T £1/4 (F1)g, +

432 1tY4 g, (Fi)o, +672ItY4F (F1)e, +

192 T €Y & (Fi)g, +267TtY4 &y (F1),, +
468 I tY* F, L, (F1)e, +288ItY40, 5, (F1)g, (Fi)e,

108 Tt &% (Fy)2 -16ItYV4¢8, (Fy) +

[SREST

384Tt g2 (Fy) +192 I tY4F, £2 (Fy)

€1.81 1,81

+540TtY4ug, &, (Fy) +

121eY% 55 (Fu) e

C1.82

288ItY'F; &1 8 (Fu), -81ItY (Fy) +

1.82 C2.82

189 I t¥4 g2 (F1)¢, e, +108 T Y4 Fy 5% (F1) +

C2.82
BATE UL (Fi)gy g, +144TEYUET G, (Fy)

108 T4 €y €F (Fu)y, g, +27 TEY4 U8 (Fy)

€1.61.¢

£2.82.,82 )

3y

4 t}l

4

+

representing a third-order non-linear PDE. Another reduction follows for translations
as symmetry transformations:

rkarps22 = LieReduction[karps2, {u}, {x, y, t}, {1, 1, c},

{0}]; LTF[Flatten[rkarps22]] /. {zetal » £,, zeta2 » &,}
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t-cx-8,==0
-Xx+y-8,==0
u-F, ==

6c? (F1)z, +12¢ (F1)g (Fi)g, +
6 (F1)Z, —C (F1)p o +6C*F1 (Fi)p o~ (Fi)g o, +
12CFy (Fi)g oy ~(F1)e, e, +6F1 (F1)g, ¢ + S U(F1) g oo, *
3 U (F) gy g *3CH (Fi)g gy0, *H (Fi)gy 0p,0, ==
0

We use this similarity representation to apply Lie's procedure again. The symmetries
of the reduction follow by
irkarps22 = Infinitesimals[rkarps22[3, 1], F1, {zetal, zeta2},
{c. u}, SubstitutionRules - {O(;eta1,3) F1[Zzetal, zeta2]}];
irkarps22 // LTF
(1-4c+24c?F1) k3

¢ =

-6+12c
(-1+2c) k1l -ck3 (zetal + 4 c zetal - c zeta2)
E == 1
-1+2c
£, == (-1+2c)k2+k3 ((-1+2c) zetal + (1 -6c) czeta2)
27" -1+2c

The result is a finite symmetry group of order three, allowing us a further reduction.
Before we execute this step, we rename the variables to simplify the equations:

eqv = {rkarps22[3, 1, 1]} /. {F1 - H, zetal -» §1, zeta2 -» [2};
eqv // LTF
6 c?HZ +12CcHe Hep + 6HZ, - CHpp o +
6 Cc?HHey,e1 ~Her, o + L2CHHey,ep —Hep, e + 6 HHep o2 +
©® UHe e1,e1 +3C° UHer p1,00 +3CUHet 2,020 + HHez, 02,02 ==
0
For the non-linear third-order PDE in the second similarity representation, we select
the subgroup of translations to carry out another reduction. The infinitesimals for this
case are given by
infl = {xi[1] [zetal, zeta2, F1], xi[2] [zetal, zeta2, F1]} /.

irkarps22 /. {kl1-»1, k2->v, k3 50} /.
{F1 - H, zetal - {1, zeta2 - §2}

{1, v}

inf2 = {phi[1l] [zetal, zeta2, Fl1l]} /. irkarps22 /.
{kl1-1, k2-»>v, k350} /.
{F1 - H, zetal » {1, zeta2 - {2}

{0}
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The corresponding reduction follows from

rkarps221 = LieReduction[eqv, {H}, {£1, £2}, infl, inf2];
LTF[Flatten[rkarps221]] /. {zetal » §}
-C-vCl1+82==0
H-F; ==0
6 (F1);-12cv (Fy); +6c?v? (F1); -
(F1)e,c +V (F1)o o —CV? (F1).  +6F1 (F1), . -
12CcVF; (F1)p +6C® VP F1 (F1)p o +M (F1)e oo~
3cvu (Fp)
0

ceet3SEVEU(FL)p —C VU (FL), o ==

The result is a third-order non-linear ODE which allows a two-dimensional discrete
symmetry group depending on group parameters ¢ and v of the preceding reductions:

irkarps22l1 = Infinitesimals|[rkarps221(3, 1], F1, {zetal},
{c, u, v}, SubstitutionRules - {O(zeta1,3) Fl[zetal]}];
irkarps221 // LTF

6 == k2 (-1+v-cvE+6FL (-1+cv)?)
! 6 (-1+cv)?
&, ==kl - k2 zetal

The result indicates that the third-order ODE is at least reducible to a second-order
ODE which, in fact, is possible by an integration with respect to zetal:

firstIntegral = Jrhm5221[3, 1, 1] dzetal == cl1;
LTF[firstIntegral] /. zetal » §;

—cl+ (-1l+v-cv?+6F, -12cVF, +6c?>v?F,) (F1) g,

~(-1+cv) U (F1)g o ==0

The resulting second-order ODE is solved by

soll = DSolve[firstIntegral, F1l, zetal]
{{F1-> (((1-v+cv?) AiryBi[(13-2cv’ +? vi +12cl #1-2v
(L+12c (l+cl#l)) +v? (1+2c+12c? (1+c1#l)))/
(3% (c1 (-1+cv)%)*?)] -
233 (el (-1+cv)?)"’ AiryBiPrime|

(13-2cv:+c? v +12cl#1-2v (L +12c (1+cl#1)) +
v (1+2c+12c¢? (1+cl#l)))/

(4373 (el (-1+cv)?)*)] +
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(AiryAi[
(13-2cv+c?vi+12cl#1-2v (1+12c (L+cl#1)) +
v (1+2c+12c® (L+cl#1)))/
(4377 (el (-1+cv)?)™?)] -vairyai]
(13-2cv?+c? v +12cl#1-2v (1 +12c (L+cl#1)) +
Vi (1+2c+12c® (1+cl#1)))/
(4 3273 (c1 (—l+cv)2)2/3)] +cv? AiryAi[
(13-2cv? +c®vP +12cl#1-2v (1+12c (L +cl#1)) +
v (1+2c+12c® (1+cl#1)))/
(432 (c1 (-1+cv)®)*)] -
233 (cl (-1+cv)?)"’ AiryAiPrime|
(13-2cv¥+c?vi+12cl#1-2v (1+12c (1L+cl#1)) +
v (l+2c+12c? (1+cl#1)))/
(437 (c1 (-1+cv)3)*7?)])
ci1)/
(6 (-1+cv)? (AiryBi|
(13-2cv? +c? v  +12cl#1-2v (1 +12c (1 +cl#1)) +
v (1+2c+12c? (1+cl#l)))/
(4327 (c1 (-1+cv)?)*) ] +Airyai]
(13-2cvP +c?vi+12cl#1-2v (1 +12c (1 +cl#1)) +
v (l+2c+12c® (1+cl#l)))/
(43°7 (c1 (-1+cv)?)"")]

cr11))s)}}
The result is a complicated expression containing special functions of the Airy type.
However, the solution simplifies if we set the integration constant ¢/ equal to zero.

firstIntegral = firstIntegral /. cl-0;
LTF[firstIntegral] /. zetal » §;

(-1+v-cv?+6F; -12cvF +6c’v®Fy) (F1),, - (-1+ecv)’yu (Fi)¢ o
== 0

The solution now reads

s0l2 = DSolve[firstIntegral, Fl, zetal]

1 1 v 1
{{Fl_)(? ( (1-cv)? T T-cv T (1-cv)? (\/(-1+2V—v2—2cv2+

2cvi-c?vi-12C[2] +24cvC[2] -12c? v? C[2])
Tan [
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%(—(3#1\/(—l+2v—v2—2cv2+2cv3—czv4—
12c[2] +24cvC[2] -12c* v c[2])) /
((-ev)’ W+ 7o

(C[l] Vi(-1+2v-vP-2cvi+2cv? —c?vt -
12C[2] +24cvC[2] -

12C2V2C[2]))J]))&)}}

containing only the Tan[] function. At this stage of the calculation, we derived a
solution for a special subgroup of all the possible symmetries of the original
equation. This special function will help us to represent the solution in the original
variables. To get the representation of the solution in x, y, ¢, and u, we have to invert
all the similarity transformations carried out above:
sol = u- Function[{x, y, t}, $r] /. $r >
(Fl1[t-cx, -x+Yy] /. (F1 - Function[{zetal, zeta2}, $w] /.
$wo (((H==F1[-vE1l+22] /. soll) /.
{H-> F1, 1 - zetal, 2 » zeta2}) /.
{Equalfa_, b_]} ->b)))

u - Function|[{x, v, t}, ((1-v+cv?)
I-\iryBi[(13—2cv3+c2 vt +12cl (-x-v (t-cx) +y) -
2v(1+12c (1+cl (-x-v (t-cx)+y))) +
v (1+2c+12c¢? (1+cl (-x-v (t-cx) +y))))/
(432 (c1 (-1+cv)?)*7)] -

2313 (el (-1+cwv) )’

AiryBiPrime[(l3—2cv3 +c? vt +12cl (-x-v(t-cx) +y) -
2v(1+12c (1+cl (-x-v (t-cx) +y))) +
vZ (l+2c+12c? (1+cl (-x-v (E-cx) +y))))/
(4322 (el (-1+cv)®)* )] +
(AiryAi[(l3—2cv3+c2v4+l2cl (-x-v (t-cx) +y) -
2v(l+12c (1+cl (-x-v (t-cx) +y))) +
v (1+2c+12c® (1+cl (-x-v (t-cx) +y))))/
(4327 (el (-1+cv)?)*?)] -
vAiryAi[(13—2cv3+c2v4+12cl (-x-v(t-cx) +y) -
2v(l+12c (l+cl (-x-v (t-cx) +y))) +
v (1+2c+12c® (1+cl (-x-v (t-cx) +y))))/
(4322 (el (-1+ecv)H) ™) ] +
cviAiryAi[(13-2cvP+c?vi+12cl (-x-Vv (t-cX) +y) -
2v (1+12c (1+cl (-x-v (t-cx) +y))) +
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vZ (1+2c+12c® (L+cl (-x-v (t-cx) +Yy))))/
(43* (cl (-1+cwv)?)’?)] 23" (cl (-1+cv)?)
AiryAiPrime[(l3—2cv3+c2v4+12c1(—x—v(t—cx)+y)—
2v (l+12c (l+cl (-x-v (E-cx) +y))) +
Vi (1+2c+12¢% (l+cl (-x-v (t-cx) +y)))) /
(3% (el (-1+cv)?)?)])
cr1) /
(6 (-1+cv)?
(AiryBi[(13-2cv? +c?vi+12¢cl (-x-Vv (t-cX) +y) -
2v (1+12c (l+cl (-x-v (t-cx) +y))) +
Vi (1+2c+12c” (1+cl (-x-v (£-cXx) +y))))/
(4327 (el (-1+cn)®)*?) ] +
AiryAi[(13—2cv3+c2v4+12cl (-x-v (t-cx) +y) -
2v(l+12c (l+cl (-x-v (t-cx) +y))) +
v (1+2c+12¢? (1+cl (-x-v (E-cx) +y))))/
(43%2 (el (-1+cv)®)*?)]
cr11))]

1/3

The second type of solution allowed by the reduced KB equation was derived for
cl = 0. In original variables, this solution reads

sols = u - Function[{x, v, t}, $r] /. $r -~
(Fl[t-cx, -x+y] /. (F1 > Function[{zetal, zeta2}, $w] /.
$wo (((H==Fl[-vEl+22] /. sol2) /.
{H->F1, 1 - zetal, £2 » zeta2}) /.
{Equal[a_, b_]} ->Db)))

u—>Function[{x, y., t},

1 1 v 1

6 ( (1-cv)? T-cv (1 cv)?
2cv?-c? vt -12C[2] +24cvC[2] -12c? v C[2])

(\/(—1+2v—v2—2cv2+

1 1
Tan{? [_—(]_-——CV—)BIT (3 (-x-v (t-cXx) +vy)

V(-1+2v-vP-2cvi+2cv -2 vt -
12c[2] +24cvC[2] -12c* v2 C[2])) +
1
(1-cv)?

(cl1]V(-1+2v-v? -2cv?+2cv’ -c? v* -12C[2] +

24ch[2]—12c2v20[2]>)]]))]

We can inspect the ZK equation by this solution:
karp /. {A-»0, €e>0} /. sols // Simplify

{0}
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The result is that the given solution satisfies the ZK equation. To get an impression
on how the complicated symbolic solutions behave in the x, y, ¢ space, let us plot the
solutions for different times over the (x, y)-plane. We choose the parameters for both
plots as

parameters = {c+2, v-»>1, C[1] -0, C[2] -1, u>2, cl->1};
The two functions are created by

pl = u[x, y, t] /. sol /. parameters;
for the general case withcl =1

pls = u[x, y, t] /. sols /. parameters

—36'— (2+4Tanh[t-x-Y])

The two special solutions serve to create an animation for —2 <7 < 2 in steps of
6t =1/4. The general solution looks like a bunch of crests moving from the left to
the right:

Do[Plot3D[Evaluate([pl /. t » t],
{%, -2n, 2xn}, {y, -n, 7}, AxesLabel » {"x", "y", "u"},
PlotRange » {{-2 n, 27}, {-m, 7}, {-100, 100}},
PlotPoints -» 60, Mesh -» False],
{t, -2, 2, .25}]
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In the animation of these pictures, we observe that a train of waves moves from the
left to the right. The simpler solution of the ZK equation is given by a Tanhl[]
function representing a propagating step from the left to the right:

Do[Plot3D[pls /. t > T,
{x, -2 n, 27}, {¥, -7, 7}, AxesLabel » {"x", "y", "u"},
PlotRange - All, PlotPoints -» 40, Mesh -» False],
{tl '21 21 025}]

The animation shows that the step is stable and does not disperse. The solution is a
soliton which propagates in a firm form. O

This section was concerned with the reduction of the original equations (PDEs) either
to an ODE or to a PDE with less independent variables. We demonstrated that the
reductions are instrumental to find symbolic solutions. Even if we fail to write down
an analytic solution, we can utilize the numerical capabilities of Mathematica to
solve the reduction. For PDEs in more than two independent variables, we can apply
the functions of MathLie several times to find the reductions and even the solutions.
The following sections will demonstrate the application of the functions of MathLie
to physical problems.
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5.6. Working Examples

This section contains some working examples to show the application of the package
MathLie. We discuss the necessary steps for solving some physical and mathematical
problems. The first example deals with the diffusion equation applied to the problem
of thermal oscillations on a surface. A second example discusses the application of
MathLie in the derivation of symmetries for a model describing a single flux line in a
superconductor. Several applications from hydrodynamics demonstrate the
engineering challenge of the symmetry method. The first atomic explosion serves to
demonstrate the extraordinary success of symmetry analysis for estimating unknown
quantities from a movie. The formation of droplets is an example currently under
discussion in industrial applications.

5.6.1 The Diffusion Equation

The diffusion equation is one of the extensively discussed examples in symmetry
analysis. Since the beginning of the theory, this equation was used to demonstrate the
usefulness of the symmetry method to derive solutions. Lie himself used the diffusion
equation as an example to illustrate the capabilities of the method. In his work, the
diffusion equation is one of the equations comprehensively discussed. The diffusion
equation is used by many other authors to introduce the method and show how the
symmetry method can be extended in different ways. The diffusion equation here is
chosen as a reminiscence to the tremendous work of Lie. The example of the
diffusion equation illustrates how MathLie can be exerted to derive the symmetries of
this equation. We also will show how the gained information can be employed to
solve a particular problem. The problem we discuss is a boundary value problem
concerned with the seasonal oscillations of the temperature on the surface of the earth.

5.6.2 The Earthworm’s New Year Problem

This problem is concerned with the propagation of damped temperature waves into
the earth due to annual temperature variation. This example is discussed extensively
by Bluman and Cole [1974]. Imagine a worm has to decide when he has to celebrate
New Year. The only indicator of seasonal changes he has is the variation of
temperature. Let us assume that the worm will celebrate New Year when he measures
the lowest temperature in the year. The propagation of the seasonal temperature wave
the worm must follow is described by a diffusion process. The measured quantity is
the temperature denoted by the variable

U=ulx, t];



Working Examples 283

The field u measures the temperature variation toward the center of the earth
(x >0)at a certain time (¢ > 0). The diffusion process of heat is governed by the
equation

diffusion = {8; U - O(,,, U}; diffusion // LTF

Uy —Uyx,x == 0

A sketch of the physical situation we have in mind is given in the following figure:

The constant temperatures 7; and 75 describe the temperature on the surface and in
the interior of the earth at a certain depth. The seasonal changes of the temperature
near the surface are assumed to be T, cos(2 zt) and are due to radiation changes of the
sun. So, besides the diffusion equation, the solution of the problem has to satisfy
additionally boundary conditions. In deriving the solution of this boundary value
problem, we have to solve the diffusion equation for the given boundary conditions
on the surface and in the center. Examining the symmetries of the diffusion equation
allows us to decide how the general equation is transformed and what types of
transformation are allowed to find the solution. We use the functions LieEquations[]
and LieSolve[] of the package MathLie to create another example in our data basis.
We start with the creation of the information file and carry out the symmetry analysis
by applying the function LieSolve[]. After the derivation of the symmetries, we will
consider the boundary values and check the invariance of these conditions under the
symmetry transformations. In a last step, we will reduce the partial differential
equation to an ordinary differential equation. The solution of this ODE will provide
us with the information the worm needs to decide when the turn of the year happens.
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5.6.2.1 Symmetry Analysis

The first step in an automatic symmetry analysis is the collection of all the
information available on the equation. The package MathLie offers the function
LieEquations[] to collect this information. If you solve a differential equation with
pencil and paper, you need to know the equation itself. You also have to know the
names of the dependent variables and the independent variables. Sometimes, the
equation contains some parameters which you can also save by using the function
LieEquations[]. If you assemble a greater number of equations in a database, it is
good practice to supply the files with information on the problem and on the sources
from which the equation comes. In MathLie, all this information is stored in a single
file whose name is used by LieEquation[] as first argument. The information we need
to handle in the example for the earthworm’s New Year problem is given below:

LieEquations["diffuw.dgl", diffusion, {u}, {x, t}, {},
{"The earthworm's New Year problem"},
{{"G.W. Bluman and J.D. Cole"},
{"Similarity Methods for Differential Equations"},
{"Springer, New York, 1974"}, {"pp. 233"}}]

After the completion of these lines, the function LieEquations[] created a file

containing the information necessary for the symmetry analysis. The content of the
file diffuw.dgl looks like

! 1 diffuw.dgl

Title = {The earthworm's New Year problem}

Source = {{G.W. Bluman and J.D. Cole},
{Similarity Methods for Differential Equations},
{Springer, New York, 1974}, {pp. 233}}

IndepVar = {x, t}

DependVar = {u}

EqlList =
{Derivative[0, 1] [u][x, t] - Derivative[2, 0] ([u][x, t]}

SubsList = {Derivative[0, 1] [u][x, t]}

ParameterS = {}

ListXi = {}

ListPhi = {}

The symmetries of the diffusion equation are calculated by applying the function
LieSolve[] to the collected information. The function LieSolve[] exerts the invariance
condition based on the prolongation formalism. The prolongation of the equation is
calculated by using the Fréchet derivative. Knowing the prolongation of the equation,
the coefficients of the derivatives of u are extracted. The redundant information
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contained in these equations is eliminated in the next step by inserting the diffusion
equation itself into the prolongation. After the extraction of the coefficients of the
derivatives, a system of determining equations for the infinitesimals results. The
determining equations are linear but coupled. In the next step, a general canonical
representation of these equations is calculated by LieSolve[]. The last calculation step
of LieSolve[] solves the general canonical form. The result of this sequence of steps
is an explicit representation of the infinitesimals for the diffusion equation:

LieSolve["diffuw.dgl"] // LTF

—(F1) e + (F1)y x ==0
€ ==k5-2k2t +k6x+kdtx
€, ==k3+t (2k6+Kk4t)

k4 t k4 x?

¢ ==u |kl- ——+k2x- —

+F1

The result is an infinite dimensional Lie group containing a six-dimensional discrete
subgroup. The group parameters are denoted by k/—k6. The discrete symmetries
serve to construct similarity solutions.

5.6.2.2. Similarity Solution

Knowing the infinitesimals of the diffusion equation, we are ready to solve the
boundary value problem for the earthworm’s problem. The additional condition that
the symmetries have to satisfy are confined in the side conditions on the surface and
in the center of the earth. These boundary conditions are

bl=v[0, t] ==T, Exp[I 2 t]

v([0, t] == E2I"t T,

b2 = v[e, t] == 0

v[e, t] == 0
Using this complex-valued representation for the temperature, u = Re(v), we can
check the invariance of the boundary conditions by using the infinitesimals. The
invariance of x = 0 implies that

(ListXi[[1] /. x> 0) ==

k5-2k2¢t ==

From this relation, it follows that the group constants k5 and k2 have to vanish. We
collect these results in a list of rules:

rule = {k5 » 0, k2 » 0}

{k5 >0, k2 >0}
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The invariance of the first boundary condition bl, on the other hand, yields the

relation
kd t
equtl = k1 - ==I2xw (ListXif[2] /. x> 0)
X1 - kit —=2Tn(k3+t (2k6+k4t))

which has the general solutions

res = Reduce[CoefficientList[equtl /.1l _==r_-1l-r, t]
== {0, 0, 0}, {kl1, k3, k4, k6}]

kl==2Tk3m&&kd ==0&&k6==0
We transform the equations to rules and add it to the list of rules for the group
constants:

AppendTo[rule, ToRules|[res]]; rule = Flatten[rule]

{k6§ >0, k250, k1 527Tk3xw, kd >0, k6 >0}
The general representation of the infinitesimals for the diffusion equation thus
reduces to

Infinitesimals = {ListXi, ListPhi} /. rule /.
{free[_][__1 -0, u[__] -»u}

{{0, k3}, {2 T k3 mu}}
The reduction of the original equation follows by applying the function

LieReduction[] in the subgroup of the diffusion equation:

LTF[Flatten[LieReduction[diffusion, {u}, {x, t},
Infinitesimals[[1]], Infinitesimals[[2]]]]] /. zetal » &,

x-8 ==
E2I7t y_F, ==
IE2T"® (2nF +1I (Fi)g ,e,) ==0

The similarity variable is zefal = x and the solution has the similarity form

SimilaritySolution = u - Function[{x, t},
Exp[I2xnt] F1[x]]

u - Function[{x, t}, Exp[I2nt] F1[x]]

Substituting the similarity solution into the diffusion equation gives us
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diffusion /. SimilaritySolution
Exp[I2nt]

equat2 = zxpand[ ] [1] == 0;

equat2 // LTF

2I7F; - (F1),,==0
This second-order equation also contained in the result of LieReduction[] is solved
by applying the function DSolve[]:

res2 = Simplify[DSolve[equat2, F1, x]]

{{Fl N (E(71-1) Vro#1 Cl1] + E(1+D Vro#1 C[2]&) }}
Examining the behavior for x — o, we find that the second constant of integration
C[2] has to vanish to satisfy the second boundary condition b2

hl = Factor [Expand [Simplify|[
TrigToExp [ComplexExpand[Fl([x] /. res2]]]] /.
{c[2] » 0}]

{E(—1~I) Vrox o (1] }
Comparing the result with the first boundary condition, we observe that the real part
of C[1]is given by T5:

h2 = (hl/.C[1] » T,) [1]

g(-1-D Vrox T,
The complete solution is thus given by

SimSol = SimilaritySolution /. F1[x] -» h2

u- Function[{x, t}, Exp[I2nt] (E“l‘l) V% Tz) ]

After a rearrangement of terms in the exponent,

sol =u[x, t] /. SimSol /.
c_. Exp[a_. Complex[d , e_] +b_. Complex[f_, g ]] -»
cExp[(ad+bf) + (ae+bg) I]

E-\/Er_ x+I (2 me-Vr x) T,

Re[sol]

Re[EA\/; x+I (Znt—\/; x) TZ]

we can extract the real part of the solution by
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solution = Re[ExpToTrig[sol]] // Simplify
Re| (Cosh[ (1+1)

((-1-1 7t +x (cosn[ 209V ] , ginn[ 09U 1))] - sinn|

(1+1) ((-1-1) meex (cOsh[Lng[l’]_] + sinn[ o3l 1))1)
T, |

The derived solution describes the temperature variation near the surface of the earth.
The solution indicates that the spatial and temporal coordinates are coupled. If now
t =T is the New Year of a person on the surface, then an earthworm will celebrate
New Year at time ¢ =T+ V 1/2n x;, where x; is the depth of the earthworm. The
solution in the time and spatial coordinate with unique 7', looks like

Plot3D[solution /. T, » 1, {x, 0, 2}, {t, 0, 1},
PlotRange - All, PlotPoints - 30,

AxesLabel -» {"x", "t", "u"},

ViewPoint —» {-2.468, -2.587, 1.256}]

~

O.Z‘m\\

0.2~ | _~
0

t

A contour plot of the temperature variation illustrates that the worm in a depth of
about 1.5 meters cannot feel any changes in the temperature. Worms which are
between the surface and the 1.5-meter limit are able to realize the temperature
changes during the year. However, the contour plot shows also that a worm located at
a certain depth will measure a certain value of the temperature some time later than
an observer on the surface. This delay is larger for worms living in a deeper region.

ContourPlot[solution/. T, -1, {x, 0, 2}, {t, 0, 1},
PlotRange - All,
PlotPoints » 30, AxesLabel -» {"x", "t"},
ColorFunction -» Hue, Axes - True]
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This example demonstrates that the package MathLie is not only helpful in finding
the symmetries of a PDE but also can facilitate the solution of boundary value
problems.

5.6.3 Single Flux Line in Superconductors

In another example, let us examine an equation published by Tang et al. [1994].
These authors discuss the dynamics and noise spectra of a driven single flux line in
superconductors. The authors examine the low-temperature dynamics of a single flux
line in a bulk type-II superconductor, driven by the Lorentz force acting near the
sample surface, both near and above the depinning threshold. The equation of motion
they derive without considering the random fluctuations is given by

ka(xlz}u[x, t]
1+ (0,ulx, t])?

tang = {0, u[x, t] - }s tang // LTF

Kuy x

1+uz ==0

Uy —

where u is the shape function of the flux line and k is a constant. As Tang et al. note
the equation of motion in its two-dimensional representation is a valid approximation
when the driving force is very large (j > j.) and the string moves with a high
velocity. The authors discuss only the steady-state solution of the non-linear problem.
We will demonstrate that the symmetries of the equation are the cornerstone for the
solution of the non-steady equation. We will add this example to our database of
equations. The input parameters needed to create the data file containing the
information for Lie[] is given by the independent variables
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independentVariables = {x, t}

{x, t}

and the dependent variables

dependentVariables = {u}

{u}
The parameters of the equations are collected in the list

parameters = {k}

{k}

The parameter k combines the critical field H,., the Ginzburg-Landau parameter and
the damping coefficient of the Bardeen-Stephen model. The physical interpretation of
these parameters is discussed, for example, in the book by Tinkham [1975]. We
choose the title of the equation to be

title = {"Single Flux Line in Superconductors"}

{Single Flux Line in Superconductors}

The source of the equation, contained in a nested list, is given by

source = { {"C. Tang, S. Feng and L. Golubovic"},
{"Dynamics and Noise Spectra of a
Driven SingleFlux Line in Superconductors"},
{"Phys. Rev. Lett. 72, 1264-1267, (1994)"},
{"equation 7"}}

{{C. Tang, S. Feng and L. Golubovic},
{Dynamics and Noise Spectra of a

Driven SingleFlux Line in Superconductors},
(Phys. Rev. Lett. 72, 1264-1267, (1994)},
{equation 7}}

All the information available on the equation is now stored in the file czang.dgl. The
function LieEquation[] is designed to do it for us. Be sure that you do not use .deq as
an extension of your file names. The extension .deq is reserved for a file containing
the information on the determining equation for the infinitesimals. This file is
automatically created by the functions Lie[], LieSolve[], and LieStructureForm(].
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LieEquations["ctang.dgl", tang,
dependentVariables, independentVariables,
parameters, title, source]

After the completion of this line, we added another example to our database of
differential equations. The next step is the determination of the symmetries.

5.6.3.1 Symmetries

Using the information collected in the file ctang.dgl in the calculation for the
infinitesimals, we start the symmetry analysis with

LieSolve["ctang.dgl"] // LTF
&, ==k1+2k5¢t

¢, == k2 +k5u+k3x
& ==kd-k3u+k5x

The application of LieSolve[] results in a list of infinitesimals representing a finite
five-dimensional point group. Curiously, the result is that the infinitesimal &
depends on the variable u. Such a dependence is quite unusual, although it is
possible. All the examples discussed so far do not show this kind of symmetry (cf.
the Burgers and heat equation). The symmetry of the subgroup related to this special
kind of transformation allows a rotation in the (x, u)-plane. This rotation keeps the
equation unchanged.

The function LieSolve[] produces, in addition to the infinitesimals, additional
information not displayed on the screen. These results, like the determining equations
of the equation, the original equations themselves, the substitutions, etc. are collected
during the calculation in a separate global variable called FinalResult. The reason
why we introduced a global variable FinalResult is the necessity of having all
information on the calculation available. A printout of the information contained in
FinalResult for our calculation of Tang’s problem can be obtained by calling

FinalResult // Flatten // LieTraditionalForm // TableForm

kuy, x
Ye T Tv w2
X Uy, x
Ye 7 T2
(€2) 4
(€2)
-3 (E1) e vk (E1)yu 2k (E1)y 0~ 4k (D),
“2 (&) +k(E1) otk (S1) -2k (d1),
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6 (1) +k (1) +5k (E1) e~ 10K (61)

“3(E1)  +2Kk (E1) 0 +k (E1)x -2k (01),,

“(E) e vk (E)pp -2k (&),

“6 (1), +5k (&) 0 +k () -2k (61),4

6 (¢1), +10Kk (£1), -5k (1), ~k (61), 4

($1) ¢ -k (b)), .

“3(P1) -4k (&) y 2Kk (01) o +k (01),

6 (1), +2k (E1),, % ($1), . -5k (d1),,

22 (61), -2k (E1) 0y +k (01) 40+ K (1)
)

=3 (P1) 2k (&1)y,u vk (D1)y,, + 2Kk (H1),

(P1) e +2Kk (&1),y K (D1)y
6 (€1), -5 (&) +4 (d1),
8 (1) -5 (&) +2 (1),
4 (&), -5 (&), +6 (¢1),

=2 (&1), + (&2),

2 (1), -5 (&), +8 (d1),
(1), + (D1) 4

(fl)qu ((Dl)x

(fl)u" (¢1)x

-(&2) +2 (1),

-(&1), +tk (51)u,u
LieStructure

Metric

SymmGroup

The last four elements of the list FinalResult are empty or contain symbolic names
which carry no information at this stage of the calculation. Another global variable of
MathlLie is called Result2, containing the information on the infinitesimals:

Result2

{{xi[2] » Function[{x, t, u}, k1+2k5¢t],
phi[l] -» Function[{x, t, u}, k2 +k5u+ k3 x],
xi[1l] » Function[{x, t, u}, k4 -k3u+k5x]},
{1}

The global variable Result2 contains the infinitesimals and the remaining equations
of the determining equations not solved by the function PDESolve[]. The function
PDESolve[] is the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>