

Symmetry Analysis of
Differential Equations

with Mathematica®

Gerd Baumann

Symmetry Analysis of
Differential Equations

with Mathematica®

Springer Science+Business Media, LLC

Gerd Baumann
Department of Mathematical Physics
University of Ulm
UlmD-89069
Germany

Library of Congress Cataloging-in-Publication Data
Baumann, Gerd.

Symmetry anatysis of differential equations with Mathematica 1
Gerd Baumann.

p. cm.
Includes bibliographical references and indexes.

Additional material to this book can be downloaded from http://extras.springer.com.

ISBN 978-1-4612-7418-6 ISBN 978-1-4612-2110-4 (eBook)
DOI 10.1007/978-1-4612-2110-4

l. Differential equations-Numerical solutions--Computer programs.
2. Symmetry (Physics) 3. Mathematica (Computer program language)
I. Title
QA37l.B36 1998
515'.35-dc21 98-26975

Printed on acid-free paper.

© 2000 Springer Science+Business Media New York

Originally published by Springer-Verlag New York, Inc.

Softcover reprint of the hardcover lst edition 2000

TELOS®, The Electronic Library of Science, is an imprint of Springer-Verlag New York, Inc.

This Work consists of a printed book and a CD-ROM packaged with the book, both of which are protected
by federal copyright law and international treaty. The book may not be translated or copied in whole or in
part without the written permission of the publisher (Springer Science+Business Media, LLC), except for
brief excerpts in connection with reviews or scholarly analysis. For copyright information regarding the CD­
ROM, please consult the printed information packaged with the
CD-ROM in the back ofthis publication, and which is also stored as a "readme" file on the CD-ROM. Use of
the printed version of this Work in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known, or hereafter developed,
other than those uses expressly granted in the CD-ROM copyright notice and disclaimer information, is
forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this pubtication, even if the former
are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks
and Merchandise Marks Act, may accordingly be used freely by anyone. Where those designations appear
in the book and Springer-Verlag was aware of a trademark claim, the designations follow the capitalization
style used by the manufacturer.

Production managed by Steven Pisano; manufacturing supervised by Jacqui Ashri.
Typeset by Integre Technical Publishing Co., Inc., Albuquerque, NM.

9 8 7 6 5 4 3 2 1

Dedicated to my beloved one and only

Preface

The purpose of this book is to provide the reader with a comprehensive introduction
to the applications of symmetry analysis to ordinary and partial differential equations.
The theoretical background of physics is illustrated by modem methods of computer
algebra. The presentation of the material in the book is based on Mathematica 3.0 note­
books. The entire printed version of this book is available on the accompanying CD.
The text is presented in such a way that the reader can interact with the calculations
and experiment with the models and methods. Also contained on the CD is a package
called MathLie-in honor of Sophus Lie---carrying out the calculations automatically.
The application of symmetry analysis to problems from physics, mathematics, and en­
gineering is demonstrated by many examples.

The study of symmetries of differential equations is an old subject. Thanks to Sophus
Lie we today have available to us important information on the behavior of differential
equations. Symmetries can be used to find exact solutions. Symmetries can be applied
to verify and to develop numerical schemes. They can provide conservation laws for
differential equations. The theory presented here is based on Lie, containing improve­
ments and generalizations made by later mathematicians who rediscovered and used
Lie's work. The presentation of Lie's theory in connection with Mathematica is novel
and vitalizes an old theory. The extensive symbolic calculations necessary under Lie's
theory are supported by MathLie, a package written in Mathematica.

Each chapter of the present book includes theoretical considerations and practical
applications of MathLie and Mathematica. The Mathematica examples range from
simple definitions to complete notebooks discussing specific problems. The examples
include definitions of general derivatives, derivations and solutions of determining
equations, drop formations in liquids, and the first atomic explosion.

viii Preface

The end of a definition and a theorem in the text is indicated by O. The end of an
example is indicated by D. On the CD, MathLie and Mathematica notations in the text
are denoted by the color dark red. Mathematica input is given in red while the output
is in blue.

I wish to express my gratitude to Peter Olver, Willy Hereman, and Mike Mezzino for
reading the manuscript. My appreciation goes to Gerda GOler and Joachim Engelmann
for proofreading the text. I also acknowledge contributions by Gemot Haager, Gerald
LandhiiuBer, and Ronald Schmid.

Any suggestions and comments related to the book or to MathLie are most appreciated.
Please send your e-mail to Gerd.Baumann@physik.uni-ulm.de or visit my home page
at http://www.physik.uni-ulm.de/mathlgbaumannlbau.html.

Gerd Baumann

Contents

Chapter 1

Chapter 2

Chapter 3

Preface

Introduction

Elements of Symmetry Analysis
2.1 Groups and Lie Groups 6

2.1.1 Groups 6
2.1.2 Isomorphism 14
2.1.3 Lie Groups 14

2.2 Lie Algebras 21
2.2.1 Representation of a Lie Algebra 26
2.2.2 Properties of Lie Algebras 29

Derivatives
3.1 Ordinary and Partial Derivatives 37
3.2 Tangent Vector 45
3.3 The Total Derivative 50
3.4 Prolongations 52
3.5 The Frechet Derivative 54
3.6 The Euler Derivative 59

3.6.1 The Problem of Variation 59
3.6.2 Euler's Equation 63
3.6.3 Euler Operator 65
3.6.4 Algorithm Used in the Calculus of Variations
3.6.5 Euler Operator for q Dependent Variables

65
69

vii

1

6

37

x Contents

Chapter 4

Chapter 5

3.6.6 Euler Operator for q + p Dimensions 71
3.7 Prolongation of Vector Fields 74

Symmetries of Ordinary Differential Equations
4.1 Introduction 96
4.2 Symmetry Transformations of Functions 98

4.2.1 Symmetries 98
4.2.2 Infinitesimal Transformations 103
4.2.3 Group Invariants 107
4.2.4 Tangent Vector 112
4.2.5 Prolongation of Transformations 117

4.3 Symmetry Transformations of Differential Equations 123
4.3.1 Definition of a Symmetry Group 123
4.3.2 Main Properties of Symmetry Groups 124
4.3.3 Calculation of the Infinitesimal Symmetries 125
4.3.4 Canonical Variables 139

4.4 Analysis of Ordinary Differential Equations 148
4.4.1 First-Order Equations 148
4.4.2 Second-Order Ordinary Differential Equations 174
4.4.3 Higher-Order Ordinary Differential Equations 201

Point Symmetries of Partial Differential Equations
5.1 Introduction 216
5.2 Lie's Theory Used in MathLie 217
5.3 Invariance Based on Frechet Derivatives 220
5.4 Application of the Theory 222

5.4.1 Calculation of Prolongations 223
5.4.2 Derivation of Determining Equations 229
5.4.3 Interactive Solution of Determining Equations
5.4.4 Data Basis of Symmetries 243

5.5 Similarity Reduction of Partial Differential Equations
5.6 Working Examples 282

5.6.1 The Diffusion Equation 282
5.6.2 The Earthworm's New Year Problem 282
5.6.3 Single Flux Line in Superconductors 289

235

257

5.6.4 The Korteweg-de Vries Equation and its Generalizations
5.6.5 Stokes' Solution of the Creeping Flow 304
5.6.6 Two-Dimensional Boundary-Layer Flows: Group

Classification 311
5.6.7 The Plane Jet 323
5.6.8 Drop Formation 330
5.6.9 The Rayleigh Particle 340

346 5.6.10 Molecular Beam Epitaxy
5.6.11 The First Atomic Explosion 355

96

216

296

Chapter 6

Chapter 7

ChapterS

Chapter 9

Contents xi

Non-Classical Symmetries of Partial Differential Equations
6.1 Introduction 365
6.2 Mathematical Background of the Non-classical Method 366
6.3 Applications of the Non-classical Method 370

6.3.1 The Heat Equation 370
6.3.2 The Boussinesq Equation 377
6.3.3 The Fokker-Planck Equation 383

Potential Symmetries of Partial Differential Equations
7.1 Introduction 392
7.2 Basics of Potential Symmetries 393
7.3 Calculation of Potential Symmetries 394
7.4 Applications of Potential Symmetries 398

7.4.1 A Non-linear Reaction Diffusion Equation
7.4.2 Cylindrical Korteweg-de Vries Equation
7.4.3 The Burgers Equation 402

398
399

Approximate Symmetries of Partial Differential Equations
8.1 Introduction 404
8.2 Approximations 405
8.3 One-Parameter Approximation Group 405
8.4 Approximate Group Generator 407
8.5 The Determining Equations and an Algorithm of Calculation 408
8.6 Examples 410

8.6.1 Isentropic Liquid 410
8.6.2 Perturbed Korteweg-de Vies Equation 419

Generalized Symmetries
9.1 Introduction 424
9.2 Elements of Generalized Symmetries 425
9.3 Algorithm for Calculation of Generalized Symmetries 427
9.4 Examples 428

9.4.1 Diffusion Equation 428
9.4.2 Potential Burgers Equation 430
9.4.3 Generalized Korteweg-de Vries Equations 431
9.4.4 Coupled System of Wave Equations 432

9.5 Second-Order ODEs and the Euler-Lagrange Equation 433
9.5.1 Generalized Symmetries and Second-Order ODEs 434
9.5.2 Conservation Laws 436

9.6 Algorithm for Conservation Laws of Second-Order ODEs 437
9.7 Examples for Second-Order ODEs 438

9.7.1 The Henon-Heiles Model 438
9.7.2 Two-Dimensional Quartic Oscillators 446
9.7.3 Two Ions in a Trap 452

365

392

404

424

xii Contents

Chapter 10 Solution of Coupled Linear Partial Differential Equations 457
10.1 Introduction 457
10.2 General Canonical Fonn ofPDEs 458

10.2.1 Application of the General Canonical Fonn Algorithm 462
10.3 Solution of Linear PDEs 471

10.3.1 Integration of Monomials 472
10.3.2 Integrating ODEs and Pseudo-ODEs 473
10.3.3 Integrating Exact PDEs 473
10.3.4 Potential Representation 474

10.4 Simplification of Equations 475
10.4.1 Direct Separation 475
10.4.2 Indirect Separation 476
10.4.3 Reducing the Number of Dependent Variables 477

10.5 Example 479
10.5.1 Liouville-Type Equation of Quantum Gravity Theory 480

Chapter 11 Appendix 483
A Marius Sophus Lie: A Mathematician's Life 483
B List of Key Symbols Used in Mathematica 487
C Installing MathLie 488

References 493

Index for MathLie and Mathematica Functions 503

Subject Index 505

1

Introduction

Symmetry principles play an important role in the laws of nature. They summarize
the regularities of the laws that are independent of the specific dynamics. Thus,
invariance principles provide a structure and coherence to the laws of nature, just as
the laws of nature provide a structure and coherence to the set of events. In fact, it is
hard to imagine that progress could have been made in deducing the laws of nature
without the existence of certain symmetries. The ability to represent experiments in
different places at different times is based on the invariance of the laws of nature
under space-time translations. Without regularities embodied in the laws of physics,
we would be unable to make sense of physical events; without regularities in the laws
of nature, we would be unable to discover the laws themselves. Today we realize that
symmetry principles are even more powerful-they dictate the form of the laws of
nature.

An important implication of symmetry in physics and in mathematics is the existence
of conservation laws. For every global continuous symmetry (i.e., a transformation
of a physical system that acts the same way everywhere and at all times), there exists
an associated time-independent quantity. This connection went unnoticed until 1918,
when Emmy Noether [1918] proved her famous theorem relating symmetry and
conservation laws. Thus, due to the invariance of the laws of physics under spatial
transformations, momentum is conserved; due to time-translational invariance,
energy is conserved; and due to the invariance under a change in phase of the wave
function of charged particles, electric charge is conserved. It is essential that the
symmetry be continuous; namely that it is specified by a set of parameters that can be
varied continuously, and that the symmetry transformation can be arbitrary close to
the identity transformation. The discrete symmetries of nature, such as time-reversal
invariance or mirror reflection, do not lead to new conserved quantities.

2 Introduction

Until the 20th century, principles of symmetry played only a small role in theoretical
physics. The Greeks and others were fascinated by the symmetries of objects and
believed that these were mirrored in the structure of nature. Even Kepler attempted to
impose his notions of symmetry on the motion of the planets. Newton's laws of
mechanics embodied symmetry principles realized in the equivalence of inertial
frames, or Galilean invariance. These symmetries implied conservation laws. In the
19th century, this ancient situation changed dramatically beginning with Lie. His
great advance in 1873 was to put symmetry first, to regard the symmetry principle as
the primary feature of nature that constrains the allowable dynamical laws. Lie
applied his theory to different models given by differential equations. In this way, he
created the symmetry analysis of differential equations.

Thus, symmetry analysis of differential equations is an old theme in the field of
applied mathematics and physics. The subject of the present book started in the late
19th century with the work of Marius Sophus Lie. The theory in its basic form was
developed and applied by Lie during the period 1872-1899. Until now there have
been extensions of the theory and a continuous application in physics, especially in
hydrodynamics, mechanics, electrodynamics, quantum theory, statistical mechanics,
field theory, particle physics, etc. Today, symmetry analysis is one of the rare
theories which allows one to derive solutions of differential equations in a completely
algorithmic way. Among other solution procedures like the inverse scattering theory
and the Hirota technique, Lie's theory takes an outstanding position. Although Lie's
theory is applicable to any sort of differential equations, the other theories are
commonly useful in the solution of so-called completely integrable equations or
underlie some other restrictions. However, we will present here an overview of Lie's
procedure and its application to some examples which are either of practical or
theoretical interest. During the last few decades, there has been a revival of interest in
Lie's theory and significant progress has been made due to the efforts of several
mathematicians and physicists.

Lie's theory is powerful, versatile, and fundamental to the development of systematic
procedures that lead to invariant solutions of boundary value problems. As this theory
is not based on linear operators, superposition or other requirements of linear solution
techniques, they are applicable to both linear and non-linear differential models.

A central problem in physics, mathematics, and engineering is to find solutions of a
given system of differential equations. These equations may be linear or nonlinear.
The generic case of practical problems which handle ordinary as well as partial
differential equations are nonlinear models. Let us summarize all these equations by
the notation

i = 1,2, ... , m (1.1)

Introduction 3

where x is a p-dimensional vector of independent variables and U(k) denotes the
derivatives up to order k = 0, 1, ... of a q-dimensional vector of dependent variables
u. The central question for such a general system of nonlinear partial or ordinary
differential equations is: Can we find a universal procedure which gives us solutions
for this system of equations? We do not try to find the general solution but simply a
solution. That this is not a trivial task has been known for a long time. In the last
century, Lie pointed out this central problem in a foreword to his lecture
Differentialgleichungen as follows:

Die alteren Untersuchungen iiber gewohnliche Differentialgleichungen,
wie man sie in den gebrauchlichen Lehrbiichem findet, bilden kein
systematisches Ganzes. Man entwickelte specielle Integrationstheorien
z.B. fur die homogenen Differentialgleichungen, fur die linearen
Differentialgleichungen und andere specielle integrable Formen von
Differentialgleichungen. Es war aber den Mathematikem entgangen, daB
diese speciellen Theorien sich unter eine allgemeine Methode unterordnen
lassen. Das Fundament dieser Methoden ist der Begriff der infinitisemalen
Transformation und der darnit auf das engste zusarnmenhlingende Begriff
der eingliedrigen Gruppe.

-Auszug aus Differentialgleichungen von Sophus Lie, Leipzig 1891

The translation of these comments is:

The older examinations on ordinary differential equations as found in
standard books are not systematic. The writers developed special
integration theories for homogeneous differential equations, for linear
differential equations, and other special integrable forms of differential
equations. However, the mathematicians did not realize that these special
theories are all contained in the term infinitesimal transformations,
which is closely connected with the term of a one parametric group.

-Quotation from Differentialgleichungen by Sophus Lie, Leipzig 1891

One of the main deficiencies of Lie's theory is the tremendous amount of work
necessary to derive a solution of a given differential equation. This work of algebraic
manipulation increases if the differential equation depends not only on one but on
several independent variables. It increases even more if we study a system of
equations. For such general situations, it may happen that we have to handle
hundreds of equations to find a single solution. In the past, this large amount of work
was a severe barrier for using Lie's theory. Today, we are able to overcome the
problems of algebraic manipulation of this great number of expressions. Using
computer algebra systems like Mathematica, Maple, Macsyma, or Axiom, to name the
more powerful systems, we can manage the laborious work in an up-to-date fashion.

4 Introduction

In this book, we prefer Mathematica to carry out the calculations. An overview of
programs written in other programming languages is given in recent articles by
Hereman [1994,1996]. Hereman shows that there exists a large number of programs
with different capabilities in different programming languages. Our choice of using
Mathematica as a programming language has been motivated by several reasons.
First, Mathematica is a language which is easy to use. Second, Mathematica allows a
direct formulation of the problem. Third, Mathematica is a very powerful high-level
programming language designed for pattern matching, which is needed in Lie's
theory to find structures of a certain type. Finally, Mathematica allows a very simple
formulation of the theory of Lie. These four points were considered in our decision
process to choose the programming language.

To appreciate the present text, the reader should have a moderate understanding of
Mathematica. You will find the explanations for the commands used in the examples
in Appendix B.

Lie's classical theory is a source for various generalizations. Among these
generalizations is the non-classical method of BIuman and Cole [1974], which was
the focus of some research in the last few years uncovering the connection with the
direct reduction method of Clarkson and Kruskal [1989]. A recent development in
Lie's theory by Baikov, Gazizov, and Ibragimov [1989] is the introduction of
approximate symmetries, allowing the asymptotic solutions for a range of parameters
to be derived. Another adornment of Lie's classical theory is the introduction of
generalized symmetries, which is extensively discussed by Olver [1986]. Generalized
symmetries are symmetries which are a generalization of contact symmetries. The
generalization of Lie's theory releases one or more of the basic properties obeyed by
the classical theory.

The fundamentals of Lie's theory of symmetry analysis of differential equations are
based on the invariance of the equation under a transformation of independent and
dependent variables. This transformation forms a local group of point transformations
which establishes a diffeomorphism on the space of independent and dependent
variables, mapping solutions of the equations to solutions.

The description of the fundamentals of Lie's theory, Lie groups, and Lie algebras is
the starting point for our discussions in Chapter 2. Chapter 3 presents fundamental
aspects of derivatives and their definitions in Mathematica. Chapter 4 on ordinary
differential equations discusses the application of Lie's integration theory in
connection with point symmetries. Chapter 5 deals with point symmetries in
connection with partial differential equations. Several examples demonstrate the
broad application of Lie's theory. Chapter 6 extends the classical point symmetries to
non-classical symmetries. In Chapter 7, potential symmetries of partial differential
equations are examined. The recent development of approximate symmetries is

Introduction 5

contained in Chapter 8. The generalized symmetries of PDEs and second-order ODEs
is presented in Chapter 9. The last chapter contains a special topic of symmetry
analysis, i.e., the automatic solution of a system of overdetermined equations.

The material contained in the chapters is based on theoretical considerations
necessary to understand what is going on in the related functions of MathLie.
MathLie is a Mathematica package supporting the calculations in the book and more.
A full version of MathLie accompanies the book on CD-ROM. A great number of
examples contained in each chapter demonstrate the broad application of Lie's theory
in connection with MathLie. The examples are designed in such a way that the reader
can take an active part by calculating the results interactively. This opens the way to
experimentation with the calculations. Thus, the present book is not a book just for
reading but a book for experimental mathematics and physics.

2

Elements of Symmetry Analysis

At the beginning we will introduce some basic concepts which will be important
throughout the whole book. First, we define the general properties of a group. These
group properties are extended to Lie groups in the next step. The related Lie algebra
connected with the Lie group is then introduced. We also introduce the notion of a
vector field which is closely related to Lie algebras. We present all these highly
abstract terms in connection with Mathematica. Different examples serve to vitalize
the mathematical expressions. This chapter serves also to describe the first steps in
Mathematica and introduce its notation. The elementary representation of
mathematical expressions in Mathematica provides the connection between
mathematics and computer algebra.

2.1. Groups and Lie Groups
It is the purpose of this section to record, for later reference, some of the results from
group theory which will be needed in the text. The notation of a group is introduced
in this chapter and the most important properties of group elements are deduced.
Illustrations are given from a few very simple groups. Proofs will be minimal or
omitted.

2.1.1 Groups

Although we shall soon come to some illustrative examples, it is worth beginning
with the abstract definition of a group which is very simple and yet leads to many
important consequences.

Groups and Lie Groups 7

Definition: Group

A set G of elements {G I , G2 , G3 , •.. } is said to form a group if a rule of composition
is defined for the elements satisfying certain conditions. The result of a
multiplication involving two elements Gi and Gk is called the product or composition
of the two elements and is written Gi E9 Gk • The conditions which such a product has
to satisfy are as follows:

(i) Closure relation:

The product Gi E9 Gk of any two elements is itself an element in the set, i.e.,

(ii) Associativity:

If three elements G i , Gk, and G j are multiplied, it does not matter which product is
carried out first, i.e.,

This equality shows that the use of brackets is not necessary.

(iii) Identity element:

One element of the set G, denoted by E and called the identity element, must have
the properties

Gi and Gi E9 E = Gi

for all G i E G.

(iv) Inverse:

To each element G i in the set G, there corresponds another element in the set,
denoted by a-; I and called the inverse, which has the properties

Gi E9 Gil = E = Gil E9 G i . 0

In general, it is not permissible to change the order of multiplication of group
elements; i.e., G i E9 G j is not, in general, the same element as G j E9 Gi . A group
which satisfies this exception, Gi E9 G j = G j E9 G i , is called an Abelian group. Its
elements are said to commute. The axioms (i)-(iv) stated above are the main
ingredients of group theory. However, these properties are abstract entities which
need a practical realization. A convenient method of recording the multiplication,
Gi E9 G j = Gk, of elements of a particular group G is to build the multiplication
table in which the rows and columns are labeled by the group elements and the result

8 Elements of Symmetry Analysis

Gk of the multiplication is entered at the intersection of the row G i and the column
G j • The definition of a group implies that every group element must appear once and
only once in each row and in each column.

Deliberately, we did not specify the number of elements in the group. In fact, the
number may be finite or it may be infinite. Correspondingly, the group is called a
finite or an infinite group. In this book, we shall encounter both groups since they
both are of importance in symmetry analysis. If we find a finite group order, we will
denote the number of elements n as the order of the group.

The simplest examples of group elements are natural numbers with ordinary
multiplication. We will discuss two examples.

Example 1

Let us assume we only know the two numbers 1 and -1 and the ordinary
multiplication as group operation. The identity of this group is clearly 1. The inverse
of the identity is again the identity. The inverse of -1 is -1 itself. The properties of
this group are contained in the group mUltiplication table tab] below. We can create
the group table in Mathematica by defining the group G as the set

G = {-1, 1};

Using all combinations of the elements Gi in the group table, we get

tab1 = MatrixPorm[Table[G[i] G[j], {i, 1, 2}, {j, 1, 2}]]

representing the core of the multiplication table. D

Example 2

A slightly larger group of the same kind is the set of numbers

G2 = {-1, 1, -x, X} 1

which possesses the multiplication table

tab2 = MatrixPorm[Table[G2[i] G2[j], {i, 1, 4},

{j, 1, 4}]]

1 -1 I -I

-1 1 -I I

I -I -1 1
-I I 1 -1

Groups and Lie Groups 9

Because ordinary multiplication is used in both examples, these groups must be
Abelian since it does not matter in which order the elements of the sets are used. To
demonstrate this, let us exchange the jth element by the ith element in the table above.

IlatrixForm[Table [G2[j] G2[i]. {i. 1. 4}. {j. 1. 4}]]

1 -1 I -I

-1 1 -I I

I -I -1 1
-I I 1 -1

Comparing both group tables of G2 demonstrates that the order of the group elements
in the multiplication does not matter. D

For physical systems, rotations are of considerable importance. It is well known that
various sets of rotations form groups. The rotations were one of the favorite groups
used by Lie to demonstrate the action of his examinations. In reminiscence of this
historical note, let us examine a few examples related to that topic. The law of
multiplication in this case is defined by transition from one location to another-if a
rotation R] carries a system from position A to position B and if R2 carries it from B
to C, then the product R] $ R2 carries it from A to C. It is obvious that this
definition of multiplication can, in general, not create an Abelian group. Of course,
rotations about a common axis are Abelian. However, rotations in
higher-dimensional spaces in general do not commute. Let us demonstrate these two
statements by simple examples.

Example 3

To illustrate the commutative and non-commutative properties of rotations, let us
define a function which carries out a two- and a three-dimensional rotation of an
object. The function Rotation[] uses the standard package Geometry'Rotation' to

represent the rotation matrices in two and three dimensions. The function Rotation[]
will take a polygon and an angle as input parameters. This function generates the
geometrical shape of the object and carries out a rotation. First, let us define the
geometrical object by a polygon

hexagon = polygon [Table [{Cos [i). Sin [i) } •

27f
{i. O. 27f. -}]];

6

Our favorite object is a hexagon which can be graphically displayed by the following
lines:

10 Elements of Symmetry Analysis

Show[Graphics[{RGBColor[l, 0, 0],

hexagon}], AspectRatio Automatic]

This object will be rotated by our function Rotation[] . In a two-dimensional space,
the function is defined in Mathematica terms by

« -Geometry'Rotations'"

Clear[Rotation];
Rotation [polygon_Polygon, angle_] : =

Block [{point 8} ,

points = polygon / . Polygon [x __] x;

Polygon [(Rotate2D[il, angle]&) /Opoints]]

The function Rotation[] needs a polygon and the angle of rotation as input quantities.

It returns a clockwise-rotated polygon. The application of the function Rotation[] on
our hexagon gives us

Show[Graphics[{RGBColor[O.OOO, 0.000, 1.000],
Jf

Rotation [hexagon, -]}], AspectRatio Automatic]
5

Groups and Lie Groups II

The result shows that the original hexagon is rotated by an angle of rr/5. Having the
function Rotation[] available, we are able to check the group properties of a group.
Let us start by testing if the two rotations commute. If we assume that the first
rotation Rl rotates the hexagon through an angle -rr/3 and the second R2 through an
angle -rr/4, we can combine the rotations either by R 1 61 R2 or R2 61 R 1 . These two
mathematical relations are realized in Mathematica by the following lines. The result
of the two different sequences of rotations is shown in the following:

Show [GraphicsArray[

{Graphics [{RGBColor [0, 0, 1],
7f 7f

Rotation[Rotation[hexagon, -], - -]},
3 4

AapectRatio -+ Automatic] ,

Graphica[{RGBCOlOr[l, 0, 0],
7f 7f

Rotation[Rotation[hexagOn, --], -]},
4 3

AspectRatio -+ Automatic] }]]

The result of the two sequences of rotations is the same. Thus, we conclude from this
graphical experiment that these two rotations in the plane commute. The net effect of
the two rotations is a total rotation through an angle of rr1l2. To illustrate the
non-commutative property of rotations in higher dimensions, let us examine rotations
in 1R3. For example, let Rz be a rotation through an angle rr/5 about the z-axis and Rx
a rotation through rr!7 about the x-axis. The geometrical object we will rotate is again
a hexagon located in the (x, y)-plane. The polygon in Mathematica is represented in
three dimensions by

hexagon = Polygon ['1'able [{Cos [i], Sin [i], O},

27f
{i, 0, 27f, 7}]];

with its z coordinate set equal to zero. The hexagon is displayed in three dimensions
by

12 Elements of Symmetry Analysis

Show[Graphics3D[{RGBColor[1.000, 0.000, 0.000],
hexagon}], AspectRatio ~ Automatic]

To carry out the rotations about the three coordinate axes, we define three functions,

RotationX[], RotationY[], and RotationZ[], in Mathematica. The arguments are again
the geometrical object and the angle of rotation with respect to the denoted axis.

Clear [RotationX, RotationY, RotationZ];

RotationZ [polygon_Polygon, angle_] : =
Block [{points, _t1, _t2},

points = polygon / . Polygon [x __] ~ x;

_t1 = RotationMatrix2D[angle];

_t2 = :Identitytlatrix[3];
_t2[1, 1] = _t1[1, 1];

_t2[2, 1] = _t1[2, 1];
_t2 [1, 2] = _t1 [1, 2];

_t2[2, 2] =_t1[2, 2];

Polygon [(_t2. 11&) /@points]];

RotationX [polygon_Polygon, angle_] : =
Block[{points, _t1, _t2},

points = polygon / . Polygon [x __] ~ x;

_t1 = RotationMatrix2D[angle];

_t2 = :Identitytlatrix[3];
_t2[2, 2] = _t1[1, 1];

_t2[2, 3] =_t1[1, 2];

_t2[3, 2] = _t1[2, 1];
_t2[3, 3] = _t1[2, 2];

Polygon [(_t2 . 11&) /@points]];

RotationY [polygon_Polygon, ang18_] : =
Block [{points, _t1, _t2},
points = polygon / . Polygon [x __] x;

_t1 = RotatioDMatrix2D[angle];
_t2 = l:dentityMatrix[3];
_t2[1, lD =_tl[l, lD;

_t2 [1, 3D = _t1 [1, 2D;
_t2[3, lD = _tl[2, lD;
_t2[3, 3D =_t1[2, 2D;
Polygon [<_t2 .11&) /@points]]

Groups and Lie Groups 13

The two rotations about the z- and x-axes mentioned above are graphically
represented by the following lines:

Show [GraphicsArray [

{Graphics3D[
1f 1f

Rotationx[RotationZ[h8XagOn, --], --],
5 7

AspectRatio Aut~tic,

ViewPoint {1.300, -2.400, 2.000}],

Graphics3D[
1f 1f

RotationZ[Rotationx[hexagon, --], --],
7 5

AapectRatio Aut~tic,

ViewPoint {1 . 300, -2.400, 2 . 000}]}]]

The graphic shows that the two rotations applied to the same object in a different
order results in two different states of the hexagon. Thus, by a simple example, we
graphically verified that two rotations in a three-dimensional space are
non-commutative. The reader may check this result by different rotations about
different axes using different angles of rotation. 0

14 Elements of Symmetry Analysis

Another important term in group theory governing the relations between two groups
is the notion of isomorphism.

2.1.2 Isomorphism

The given definition of a group is very abstract, yet general. With respect to this
generality, it sometimes happens that two groups whose elements are defined in very
different ways may nevertheless be related so closely that they may be regarded as
the same group. This fact is expressed in the following definition.

Definition: Isomorphic groups

We say that two groups G and H are isomorphic if a one-to-one correspondence
Gi +-+ Hi may be set up between the elements Gi of the group G and the elements Hi

of H, in such a way that if Gi EB Gk = Gj , then Hi E9 Hk = H j • 0

Closely related to the term isomorphism is the subject of homomorphism. The word
homomorphism is used for such a relationship if the one-to-one correspondence is
absent. Due to the definition of isomorphism, two isomorphic groups have the same
group multiplication table with possible re-ordering of the group elements. Thus, the
knowledge of the isomorphism of two groups helps to avoid repetitions and to draw
useful analogies between the groups.

2.1.3 Lie Groups

Lie groups are special groups which have an additional property apart from the group
properties. In addition to the basic group properties, a Lie group carries the structure
of a manifold, where a manifold is a topological space which resembles Euclidean
space locally. A differentiable manifold is a manifold for which this resemblance is
sharp enough to allow partial differentiation and, consequently, all the features of
differential calculus on the manifold. In studying Lie groups, we may, therefore,
combine calculus, algebra, and topology. The present section aims at showing the
sense in which the global study of a Lie group may be reduced to its local study. In
the next section, we shall go even further, showing that the study of the local
structure can be reduced to the study of the infinitesimal structure. Lie groups are
extremely useful in the theory of transformation and in the examination of
differential equations. The notion of a Lie group was introduced by Weyl [1928] at
the beginning of this century. Weyl used the following definition to distinguish Lie
groups from classical groups.

Groups and Lie Groups 15

Definition: Lie group

A Lie group is a group which, in addition to the group properties, carries the structure
of a differentiable manifold. More precisely, we require that a Lie group G be C'"
manifold endowed with a group structure in which multiplication and the inversion
are C'" operations. 0

The essential feature of a Lie group is that it satisfies the properties (i)-(iv) and
carries the structure of a smooth manifold. This means that the group elements G i can
be continuously varied. Thus, a Lie group is a group G which also carries the
structure of a manifold in such a way that both the group operation G E9 G -+ G and
the inversion are smooth maps between manifolds. In the following, we will
demonstrate these descriptions by a few examples.

Example 1

The first simple example of a Lie group is the real line IR I with ordinary addition as
the group multiplication. Let us denote this group by IA. If we add two real numbers,
we get a real number as a result. We all know that we can add three real numbers in
any order to get the same result. The identity element of this group in IR I is zero and
the inverse are all the negative real numbers. Thus, we can map IR I X IR I -+ IR I , and
the inversion as a smooth map also exists. These properties of addition for the real
numbers are actually implemented in Mathematica and are accessible by the function
N[] converting rational numbers to real numbers. The + sign represents the
multiplication of the group IA. The manifold on which all these operations are
possible are the set of real numbers IR I . 0

Example 2

A more sophisticated example for a Lie group is given by continuous matrix groups,
or, more generally, continuous groups of linear transformations of a vector space,
called linear Lie groups. The set of all non-singular n x n matrices form the group
known as general linear group GL(n,fR). A subset of all n x n matrices with
determinant 1 form a group called the unimodular group which is denoted by
SL(n,fR). The orthogonal group O(n) is the group of n x n matrices that satisfy
M E9 MT = 1. A special orthogonal group SO(3) is connected with rotations.

Studying the properties of continuous matrix groups, we start with the
two-dimensional matrices

16 Elements of Symmetry Analysis

This representation of a linear group SL(2,1R) immediately shows the property

from which we can conclude that the group of two-dimensional matrices is
isomorphic to the group IA of our first example. To support this conclusion, let us
examine the properties of the two-dimensional matrix group by using Mathematica.
First, let us define a function allowing us the representation of Ma. Afterward, we
use this function to check the group axioms (i)-(iv) for this representation of a group.
Since Ma depends on one continuous parameter a, we define the matrix Ma by

M[a_] := {{l, a}, {O, 1}}

The matrix function M[] uses two nested lists to represent the two-dimensional
matrices needed. We check the axioms by using the matrix product for the group
multiplication. This type of product is denoted by a lower dot in Mathematica. In the
sequel, we use the function MatrixForm[] to represent the resulting matrices in a

two-dimensional table. Multiplying two different matrices M[a] and M[b], we find

MatrixForm[M[a] • M[b]]

We immediately verified that axiom (i) is satisfied. The property of associativity is
checked by interchanging the multiplication order

MatrixForm[(M[a] • M[b]) • M[c]]

MatrixForm[M[a] • (M[c] • M[b])]

The inverse element of the group corresponds to the inversion of the matrix. Matrices
are inverted in Mathematica with the help of the function Inverse[]. Inverse[] returns
the inverse of a square matrix. The application of this function shows us

mi = Zuverse [M[a]] ; mi II Matrixl'orm

Groups and Lie Groups 17

which is the inverse of Ma stored in the variable mi. Next, we can check axiom (iv)
by

ident = mi. M[a]; ident / / MatrixForm

Thus, we find the identity element of the two-dimensional matrices Ma as the
identity matrix in two dimensions. It is obvious from the calculations that the set
m = { Ma I a E IR} is a representation of addition in IR 1, thus the two Lie groups IA
and m are isomorphic. 0

Generally speaking, a representation of a group G on a vector space V is a
homomorphism from the group G into an invertible linear transformation of V.
These representations must not be matrix representations but can be defined on the
infinite dimensional vector space c~ (IR), which represents the space of infinitely
differentiable functions in one dimension.

Example 3

The addition in IR 1 can also be represented by a translation in the space of C~ (IR)
functions. Let us assume that we can define an operator Ta, which acts on a function
defined on IR 1 in the following way:

Ta f(x) = f(x + a).

The shift a translates the argument of the function f by a step a to the left. The
definition of a shift operator Ta in Mathematica looks like

This simple definition assumes that the function f depends exclusively on x. The
sequence of instructions on the right-hand side of the definition sign (:=) means that
the argument x of f, if any, is replaced by x + a. The properties of the group are now
checked by applying the operator Ta on functions j(x). The identity element of the
Lie group is given by a = 0,

To [£ [x]]

f[x]

The inverse element is represented by a negative shift -a. We check the inverse
behavior of the transformation by applying the inverse element to a regular element
of the group. The expected result is the identity

18 Elements of Symmetry Analysis

T_a [Ta [£[x]]]

f[x]

The property of associativity is expressed by the iterated application of the translation

operator Ta [] for different translations a, b, and c and the interchange of two
parameters

Te [Tb [Ta [£[x]]]]

f[a+b+c+x]

Tb [Te [Ta [£[x]]]]

f[a+b+c+x]

Again, we observe that the Lie group of translations in IR 1 is isomorphic to the group
of addition IA. In conclusion, we can say that the same Lie group can be represented
by different tools like addition of real numbers, matrix multiplication, and
translations of functions. These different tools for representing the behavior are
known as representations of the group. The idea of a representation of a Lie group
helps to clarify the subtle distinction between an abstract group and a variety of its
realizations. Thus, IA = 1R1, the set of matrices Ma , and the translations Ta are all
distinct but isomorphic representations of the same abstract group. 0

Apart from an isomorphism which is invertible, the term homomorphism is an
important quantity in group theory. A Lie group homomorphism is a smooth map <I> :

G ~ H between two Lie groups respecting the group operations. If <I> has a smooth
inverse, it determines an isomorphism between G and H, otherwise it is a
homomorphism.

Understanding the action of the group clearly, we discuss the example of a translation
a second time. This kind of symmetry is a symmetry frequently recognized in the
analysis of differential equations. To illustrate the action of such a group, we will
realize it by a graphical representation.

Example 4

For example, let us study the group properties of a parabola f(x) = x 2 under the
action of our function Ta. Applying Ta to r, we mathematically get the expression
r + 2 ax + a2 • The expanded result represents the translation Ta in a more or less
mixed form containing products of a and x. However, the action of the group is much
simpler to grasp if we present it graphically. The shift a along the x-axis is clearly
shown in the figure below.

Groups and Lie Groups 19

P~ot[

Eva~uate [{~, '1'_2 [~]}], {x, -2, 4},

P~otSty~e -+ {RGBColor[1.000, 0.000, 0.000],

RGBCo~or [0.000, 0.000, 1.000]}, AxesLabe~ -+ {·x", Of"}]

f

10

8

6

2

-2 -1 3 4 x

The command Evaluate[] used in the function Plot[] forces Mathematica to do the
calculations first and then display the results. The shift of translation in the example
is set to a = - 2. We clearly observe that the parabola is translated to the right by the
length a. 0

Example 5

Another example frequently encountered in symmetry analysis of differential
equations is the scaling group. A scaling transformation reduces or enlarges an object
depending on the amount of the scaling factor. A scaling of a geometrical object is
carried out practically by multiplying the coordinates of the object by the scaling
factor. A function allowing this operation can be defined in Mathematica by

Clear[Sca~ing];

Sca~ing[object_Po~ygon, factor_] :=

points = object /. po~ygon[x __] -+ Po~ygon[factorX]

This definition assumes that the geometric object is given by a polygon. Applying
this function to an object, for example, a pentagon, we can reduce or enlarge the
figure depending on the second argument of the function. Choosing the factor greater
than 1, we stretch the object; taking a factor smaller than 1, we shrink: it. The
pentagon is generated by

pentagon = Po~ygon ['l'ab~e [{Cos [i], Sin [i] } ,

271"
{i, 0, 271", 5}]];

20 Elements of Symmetry Analysis

Let us now examine how the shape of the pentagon changes when the scaling factor
is changed. An animation of this change of scaling factors helps us to recognize the
meaning of scaling. The following Mathematica code contains a Do[] loop which
allows the decrease of the scaling factor. For the animation, we choose the scaling
factor in the range from 1 to 0.1 in steps of 0.05. The action of the scaling is boosted
by changing the color of the pentagon.

Do[

Show[Graphics[{Hue[i], ScaIing[pentagon, ill,

AspectRatio Automatic] ,

PIotRange {{-I, 1}, {-1, 1}}], {i, 1, .1, -.OS}]

• • •

The animation of the scaling transformation shows us the action of the group. Every
time we reduce the scaling factor, the pentagon is reduced but keeps its shape,
meaning that we create self-similar objects of the same type. This kind of symmetry
transformation satisfies all the properties stated in properties (i)-(iv) of a group. The
reader may verify this easily. D

So far we discussed the essentials of group theory including Lie groups. The
discussed topics are all relevant for the examination of differential equations. In the
following section, we will discuss a related term, the so-called Lie algebra,
representing the algebraic properties of a Lie group.

Lie Algebras 21

2.2. Lie Algebras

In this section, we show how the study of a Lie group G may be greatly simplified by
considering the so-called tangent space V of G around the identity of the group. We
shall show how a multiplication may be introduced in V and that the resulting
algebraic structure---called a Lie algebra-determines the local structure of a group.
Thus, two groups will be locally isomorphic if and only if their Lie algebras are
isomorphic. The Lie algebra is a finite dimensional algebra. Therefore, the local
study of Lie groups is entirely equivalent to the study of certain finite dimensional
linear algebraic structures.

We defined a Lie group as a group connected with an analytic manifold. In this
connection, it makes sense to talk about the tangent space V to that manifold and, in
particular, the tangent space at the identity of a group. The tangent space itself is
called a Lie algebra. To be more precise, let us consider a Lie group depending on r
parameters klo k2' ... , kr • The group under consideration is also known as a
continuous group with an infinite number of group elements. However, the properties
of the group may be deduced from a finite number r of operators, called the
infinitesimal operators. It will be convenient to use the symbol k for the set of
parameters klo k2 , ••• , kr • Consider a representation T(k) of the group G. By
convention, the parameters are chosen such that the identity element has all kq = 0,
so that

T(O) = 1 (2.1)

If all parameters kq are small, then to first order in these parameters,

r

T(k) = 1 + .L: kq Vq , (2.2)
q=!

where the Vq are some fixed linear operators, independent of the parameters kq.

These operators are called infinitesimal operators of the representation T and are
given explicitly as partial derivatives

T(O, 0, ... , kq, ... , 0, 0)- T(O, 0, ... , kq +e, ... ,0,0) 8T(k) I
v q = lim.-->o kq = --ar;- <=0' (2.3)

These linear operators form the basis of a Lie algebra defined as follows.

22 Elements of Symmetry Analysis

Definition: Lie algebra

Let us consider a finite dimensional vector space V over a field K of real or complex
numbers. The vector space V is called a Lie algebra over K if there is a rule of
composition (ii, w) -+ [ii, w] in V which satisfies the following axioms:

(i) Antisymmetry:

[ii, w] = - [w, ii] for all ii, w E V.

(ii) Linearity:

[aii + {3w, U] = a [ii, It] + {3[w, U] for a, {3 E KandV /1, ii, WE V.

(iii) Jacobi identity:

[ii, [w, /1]] + [w, [/1, ii]] + [/1, [ii, w]] = 0 for all ii, /1, w E V. 0

The operator [,] is the multiplication relation of the algebra and is known as Lie
product or Lie bracket. From axiom (iii) it follows that the Lie product is, in general,
non-associative. If K is the field of real numbers, then V is called a real Lie algebra;
otherwise, if K is complex, V is a complex Lie algebra. A Lie algebra is said to be
Abelian or commutative if for any ii, w E V we have [ii, w] = O.

A subspace N of a Lie algebra V is a subalgebra, if [N, N] U N, and is an ideal if
[V, N] U N. Clearly, an ideal is automatically a subalgebra. A maximal ideal N,
which satisfies the condition [V, N] = 0, is called the center of V, and because
[N, N] = 0, the center is always commutative.

Let el, e2, ... , en be a basis of the vector space V. Then the commutator /1 = [ii, w],
when expressed in terms of the coordinates via ii = 2:7=1 Vi ei, w = 2:~1 Wi ei, takes
the form

i,k=1

i j k
Cjk V W, i = 1,2, ... , n,

where [ej, ek] = L:~=I C~k ej. The numbers C~k are called the structure constants, and

n denotes the dimension of the Lie algebra.

Taking axioms (i) and (iii) into account, it is clear that the structure constants C~k

satisfy the conditions

Lie Algebras 23

n

2: (c~m cJ1 + c~m cZ; + cim cij) o.
m=l

The existence of subalgebras or ideals of a Lie algebra V is reflected in certain
definite restrictions on the structure constants. If e), e2, ... , ek are the basis
elements of a subalgebra, then the structure constants must satisfy the relations

cij = 0 for i, j s k, m > k

and, if they are the basis elements of an ideal, then

cij = 0 for i s k, m > k and an arbitrary j.

So far, we defined some basic properties of a Lie algebra. These relations are useful
when applied to physical problems. One of these problems is related to the algebra of
Pauli matrices widely used in quantum mechanics. In the following example, we
discuss the algebraic properties of the Pauli spin matrices.

Example 1

Let V be the set of all skew-Hermitian 2 x 2 matrices with vanishing trace. From
quantum mechanics, we know that V is three dimensional. We choose the basis in V
by the three matrices

~el =..!..(O. -i) ~ 1 (0 -1) ~
2 -I 0 ' e2 ="2 1 0 ,e3 =

These matrices are represented in Mathematica by

1
e1 = - {{O, -I}, {-I, O}}; MatrixForm[ed

2

1
82 = - {{O, -l}, {l, O}}; MatrixForm[e21

2

1
e3 = - {{-I, O}, {O, I}}; MatrixForm[e31

2

..!..(-i 0).
2 0 i (2.4)

24 Elements of Symmetry Analysis

The Lie product [v, w] of V is defined in quantum mechanics by the commutator

[v, w] = vw -wv with v, WE V.

For our specific system of two-dimensional matrices, we replace the right-hand side
of this relation by the difference of two matrix products. The Lie bracket in
Mathematica can be expressed by

LieProduct[v_List, w_List] :=v.w-w.v

Knowing the Lie bracket, it is easy to check axioms (i) to (iii) of a Lie algebra. We
first demonstrate the antisymrnetric behavior of the Lie product using the relation
[v, u] + [u, v] = O. In Mathematica, we get

MatrixForm [LieProduct [el' e2] +

LieProduct[e2' e 1]]

The linearity of the Lie brackets is shown by

MatrixForm [Simplify [LieProduct [a el + b e2, e3] -

(a LieProduct [el' e3] + b LieProduct [e2 , e3])]]

The Jacobi identity is checked with

MatrixForm[LieProduct [e1 , LieProduct [e2 , e 3]] +

LieProduct [e2, LieProduct [e3, el]] +

LieProduct [e3' LieProduct [el' e2]]]

Carrying out some experiments with LieProduct[] by interchanging the basis
elements ek in the Lie bracket, we observe that the following relation holds:

(2.5)

where Elk is the totally antisyrnrnetric tensor in 1R3 (Levi-Civita density). The
elements of V are linear combinations of ej with real coefficients. In physics, the
matrices (Tk = 2 i ek are known as Pauli matrices and satisfy the relations
[(Tj, (Tk] = 2 i 2:7= 1 Elk (Tt. Hence, V is the three-dimensional, real Lie algebra with
structure constants elk Elk. If we want to check this relation for the structure

Lie Algebras 25

constants, we fIrst have to define a representation of the Levi-Civita density in
Mathematica. The function LeviCivita[] has to satisfy the following properties:

if any index is equal to any other index

if i, j, k, form an even permutation of 1,2, 3.
if i, j, k, form an odd permutation of 1, 2, 3

The sequence of instructions in Mathematica to simulate this behavior is given by

LeviCivita[i_, j_, k_] := Block[{out, list, ll},

list = {i, j, k};

11 = union [list, {l, 2, 3}];

:If [Length[ll] < 3 II Length[ll] > 3,

out = 0,

out = Signature [list]] ;

out]

(2.6)

This function makes use of the Mathematica functions Union[], Length[], and

Signature[] to implement the properties of the Levi-Civita density. The first step of
the function is the collection of the numeric indices i, j, and k in a list. Then, the
condition of uniqueness is checked by using the function Union[], verifying that only
the integers 1, 2, and 3 occur. Checking the length of the result allows us to
distinguish two cases. First, are there two or three indices equal, and second, are there
indices different from the numbers 1, 2, and 3? If this happens, the function is
terminated with a return value O. If the indices i, j, and k are contained in the set
{ 1, 2, 3}, then the signature of the permutation is calculated. The return value is + 1
if the permutation of 1, 2, and 3 is even and -1 if the permutation is odd.

The function LeviCivita[] allows us to verify relation (2.5) connecting the structure
constants dk and the E-tensor. Checking the relations with Mathematica, we need to
defIne two additional functions generating the right-hand side of relation (2.5) and
verifying the equality of both sides. We call these functions rhs[] and

CommutativeQ[]. We also collect the three matrices e[, e2, and e3 in a common list.

3

rhs[i_, j_] := L:LeviCivita[i, j, k] eList[kD
k=1

commutativeQ[i_, j_] := LieProduct[eList[iD, eList[jD]

rhs [i, j]

26 Elements of Symmetry Analysis

The check of the relation (2.5) between the structure constants and the E-tensor is
carried out by

'l'able[CODIIIIUtativeQ[i. k]. {i. 1. 3}. {k. 1. 3}]

{{True, True, True}, {True, True, True}, {True, True, True}}

The result shows that the relation is satisfied for all combinations of i and k in the
range i, k = 1,2,3. This example demonstrates that the structure of a Lie algebra can
be realized by matrices or tensors. On the other hand, in symmetry analysis Lie
algebras are represented by differential operators. These operators are the basic
elements of the vector space whose Lie product is defined by the commutator of
differential operators. 0

2.2.1 Representation of a Lie Algebra

In this section, we briefly discuss the representation of an algebra. Before we discuss
the theoretical definition, let us continue with another example. In the previous
example, we became familiar with a matrix representation of a Lie algebra. The
following example shows how a Lie algebra is represented in connection with
differential operators. We will find that the two different representations are
isomorphic to each other.

Example 2

Another example for the representation of a Lie algebra are the three differential
operators generating the Lie algebra of rotations in IR 3 • This kind of algebra is
connected with the symmetry of rotations. Assume we know the three operators
given by

a a
RI = x3 -- - x2

ax2 ax3 '

I a 3 a
R2 = X -- - x --,

ax3 axl

2 a I a
R3 = X -- - x

axl ax2

acting in IR 3 with Cartesian coordinates xl, r, and x 3 • The three operators allow a
unique formula if we make use of the Levi-Civita density elk:

3 3

Ri = L L -et xl ax' .
k=1 j=1

Lie Algebras 27

This formula is used to define the three differential operators in Mathematica:

R [i_, £_] I = Block [{variables = {xl ,x2, x3}},

3 3

L:L:-LeviCivita[i, j, k] variables[j]J Ovariahla8[1I:] £]
11:=1 :1=1

The Lie bracket in the related vector space is defined by

(2.7)

where f is an arbitrary function. The definition in Mathematica looks quite similar:

LieBracket [i_, j_, f_] := R[i, R[j, £]] -

R[j, R[i, £]]

The right-hand side of the commutator (2.7) can be again expressed by the
Levi-Civita symbol

3

[Rj,Rd = L~kRI.
1=)

We define the right-hand side of the commutator (2.8) as

3

rhs[i_, j_, f_] := L:LeviCivita[i, j, k] R[k, £]
11:=1

The check of the commutation relation for arbitrary i is calculated by

Clear [CommutativeQ]

CommutativeQ[i_, j_, f_] := Simpli£y[

LieBracket[i, j, £]] ==Simpli£y[rhs[i, j, £]]

(2.8)

Using these definitions, we can verify that relation (2.8) holds. The use of the
function CommutativeQ[] in connection with Table[] allows us to verify this
proposition:

Table[CommutativeQ[i, j, £[xl, x2, x3]],

{i, 1, 3}, {j, 1, 3}]

{ {True, True, True}, {True, True, True}, { True, True, True}}

The arbitrary function f[xl, x2, x3] in CommutativeQ[] is used as an argument for the
three operators R j. These differential operators act, for example, on the infinite
dimensional vector space C'" (IR 3), thus providing an infinite dimensional
representation of the Lie algebra so(3) related to the special orthogonal group 80(3).

28 Elements of Symmetry Analysis

The result is that the rotation operators in IR 3 possess the same structure constants as
the Lie algebra of the Pauli matrices. Thus, we can state that the two representations
are isomorphic. The conclusion is that two different representations of a Lie algebra
may result into the same structure and especially possess the same structure
constants. So we face the problem of representation of a Lie algebra. 0

Generally, a representation of a Lie algebra 9 on a vector space V is a mapping p
from .9 to a linear transformation of V such that

p(av + pw) = a p(v) + P pew) (2.9)

and

p([V, wD = [p (v), pew)], (2.10)

where [,] is the Lie product of the algebra 9. The dimension of the representation is
equal to the dimension of V.

In Chapter 5, we shall discuss procedures to find the differential operators that
represent the symmetries of differential equations. For example, the symmetries or
respectively the basis of the Lie algebra for the heat equation Ut - Uxx = 0 are given by

(2.11)

(2.12)

(2.13)

The basis elements of the Lie algebra are also called vector fields. This notion will
become clear in Section 3.2 where we discuss tangent vectors. For the moment, let us
call the elements in (2.11), (2.12), and (2.13) vector fields. These operators form a
six-dimensional Lie algebra V. A convenient way to display the structure of such an
assembly of operators is to write it in tabular form. For the six-dimensional Lie
algebra {VI' V2, ... , V6}, the commutator table for V will be the 6x6 table whose
(i, i)th entry expresses the Lie bracket [Vi, Vj]. From axiom (i), it is clear that the
table is always skew-symmetric, and the diagonal elements are all zero. The structure
constants can be easily read off the commutator table. The coefficient C~k is the

coefficient of Vi in the (j. k)th entry of the table. For the above set of operators, we
find the commutator table

Lie Algebras 29

[,] Vi V2 V3 V4 Vs V6

Vi 0 0 0 -Vi V3 -2 Vs
~

0 0 0 -2 V2 -2 Vi 2 V3 - 4 V4 V2

V3 0 0 0 0 0 0
~

2 V2 0 0
~

-2 V6 V4 Vi -VS
~

2 Vi Vs -V3 0 Vs 0 0
~

2 Vs -2 V3 + 4 V4 0 2 V6 0 0 V6

Table 2.1

The entry (2,6), for example. is given by

(2.14)

the other entries can be calculated in a similar way. The related structure constants are

C~6 = C~4 = c~5 = c~6 = c~2 = -2,

C~l = C~2 = C~2 = c~ = c~6 = 2,

C~5 = C~l = -1. C!l = C~5 = C~5

with all other C~k ' s being zero. 0

2.2.2 Properties of Lie Algebras

1,

(2.15)

(2.16)

(2.17)

(2.18)

This section discusses a few properties of Lie algebras useful in the classification of
the solutions of differential equations. We introduce the notion of a derived algebra,
the derivation of an algebra, the adjoint algebra, the Killing fonn of a Lie algebra,
and some definitions related to the solvability of a Lie algebra.

If the commutator table or the structure constants are known, it is straightforward to
calculate the so-called derived Lie algebras. These algebras are useful for classifying
the Lie algebra. The Lie algebra V(l) = [V, V] is called the first derived algebra of
the Lie algebra V. By construction, VO) is an ideal. The higher-order derived algebras
are recursively defined by

v(n+l) = [yin), v(n)], n = 1, 2, 3, (2.19)

The derived Lie algebras can be used to classify the original algebra. One of the
central tenns in connection with derived Lie algebras is solvability. If a Lie algebra
can be classified as solvable, we know that the related differential equation can be
solved. This observation of Lie is central for the solution procedures discussed in

30 Elements of Symmetry Analysis

Chapter 4. A Lie algebra V is called solvable if yin) = 0 for some n > O. The simplest
examples are the commutative Lie algebras. With this remark, all one- and
two-dimensional Lie algebras are solvable. This observation will be of importance in
Section 4.4.2 where we will use this criterion to integrate second-order and
higher-order ordinary differential equations. A few examples will illustrate the term
solvability for partial differential equations.

Example 3

The six-dimensional Lie algebra of the diffusion equation with its basis VI, ... , V6 is
not solvable because the fITst derived Lie algebra V(l) contains all operators of the
six-dimensional Lie algebra and, thus, cannot vanish (cf. Table 1). 0

Example 4

An example of a solvable Lie algebra is given by the vector fields for the
Korteweg-de Vries (KdV) equation Ut + U Ux + Uxxx = O. The basis of the Lie
algebra calculated in Chapter 5 reads

For this equation the commutator table is given by

[,] Vl V2 V3

Vl a a iL
2

V2 a a 3 V:2
-2-

V3 V1 _ 3 v, a -2 2

V4 a Vl -V4

Table 2.2

V4

a

-Vl

V4
a

(2.20)

(2.21)

Examining this table, we recognize that the first derived Lie algebra contains only the
operators V(I) = {VI' V2, V4}. V(I) is just given by the entries in the commutator
table. The second derived Lie algebra consists only of VI, i.e., V(2) = {VI}, thus, the
third step gives V(3) = {} . Thus, the Lie algebra of the KdV equation is solvable. In
fact, it is known that the KdV equation belongs to the equations, which are
completely integrable. So far, we manually calculated the Lie algebra and its
properties. The package MathLie offers a way to do the calculation completely
automatically.

The determination of the solvability was based on a representation of the Lie algebra
by vector fields. Vector fields in symmetry analysis are, on the other hand, based on
infinitesimal symmetries. The infinitesimal symmetry of the KdV equation is given by

Lie Algebras 31

infKdV = {xi [1] -+ Function [{x, t, u}, k3 + k2 t + k4 x] ,

xi[2] runction[{x, t, u}, k1+3k4t],

phi [1] l'unction[{x, t, u}, k2 - 2 k4 u] };

where the constants ki represent the group constants connected with the vector field
given above. How these infinitesimal symmetries are calculated is the subject of
Chapter 5. For the moment, we assume that the infinitesimal symmetries are known.
This information can be used to apply the function

SolvableAlgebrasOfOrcierH[infKdV, {u}, {x, t}, 4,

Vectorl'ieldRepresentation True]

{{V[l], V[2], V[3], V[4]}}

to the infinitesimals. The above MathLie function also needs the dependent and
independent variables and the number of elements in the algebra or subalgebra. The
option VectorFieldRepresentation ~ True creates the output in the symbols of the
vector fields. For the KdV equation, we find that the largest solvable Lie algebra is
given by the total Lie algebra. We also can use this function to create all solvable
subalgebras for the KdV equation by

Map [SolvableAlgebrasOfOrderH

[infKdV, {u}, {x, t}, #

Vectorl'ieldRepresentation True] &:,

{2, 3, 4}]

{{ {V[l], V[3]}, {V[l], V[4]},

{V[2J, V[3]}, {V[2J, V[4]}, {V[3], V[4]}},

{{V[l], V[2], V[3]}, {V[l], V[3], V[4]}, {V[2], V[3], V[4]}},

{ {V [1] , V [2] , V [3], V [4] } } }

The result is a list containing all subalgebras of second, third, and fourth order. The
function SolvableAlgebrasOfOrderN[] is extensively applied in connection with the
integration of ordinary differential equations. 0

Another important property of a Lie algebra useful in the study of differential
equations is the derivation V or its infinitesimal automorphism. A derivation V of a
Lie algebra V is a linear mapping of V into itself, satisfying

V([v, w]) = [DO'), w] + [v, V(w)] V v, W E V. (2.22)

It is evident that for two derivations VI and V 2 of V, the sum a VI + f3 V 2 is also a
derivation. Moreover, if VI and V 2 are derivations, then

32 Elements of Symmetry Analysis

D 1 D2 ([V, iii]) = DJ ([D2 (v), iii] + [V, D2 (iii)])

= [D1 D2 V, iii] + [D2 11, DJ iii] +[DJ v, D2 iii] + [v, DJ D2 iii].

(2.23)

(2.24)

Interchanging the indices 1 and 2 and subtracting both formulas from each other, we
get

[D1 , D2] ([11, iii]) = [[DJ, D2] v, iii] + [11, [D1 , D2] iii], (2.25)

meaning that the commutator of two derivations is again a derivation. Let V now be a
Lie algebra over the real numbers IR 1 or the complex numbers C. Using the above
general definitions, we introduce an operation for the classification of Lie algebras.

Consider the linear map ad v of V into itself defined by

ad 11 (W) := [v, iii] with 11, iii E V. (2.26)

Using the Jacobi identity (iii) in connection with the definition of the derivation, we
can write

ad V([W, u]) = [ad v(iiI), u] + [W, ad v(u)]; (2.27)

i.e., the map ad v represents a derivation of V. Furthermore, from the Jacobi identity
and the definition of ad v, we obtain

ad[v, iii] (U) = [ad 11, ad iii] (it) . (2.28)

Hence, the set Va = {ad v I 11 E V} is a linear Lie algebra and a subset of the Lie
algebra of all derivations and is called the adjoint algebra. The map tlJ : 11 ~ ad v is
the homomorphism of V onto Va. In addition, the kernel of the homomorphism 4> is
the center of V.

The representation of ad v, called the adjoint representation of the Lie algebra, always
provides a matrix representation of the algebra. If {Vi} is a n-dimensional basis for V,

then

n

ad i\(ad Vj) = 2: ct Vk. (2.29)
k=J

Therefore, the matrix A associated with the transformation ad Vi is given by the
structure constants

(2.30)

where (Ai)i represents the (j, k)th entry for the ith matrix. Note the transposition of
the indices j and k. So if we know the structure constants of a Lie algebra, we also
know the matrix representation of the adjoint Lie algebra.

Lie Algebras 33

Example 5

As an example. let us examine the rotations about the three coordinate axes X. Y,
and Z. The group of the rotation can be represented by the three matrices

Rx[a_] := {{1, 0, O},

{O, Cos[a], -Sin[a]},

{O, Sin [a] , Cos [a]}}

Ry[/L] := {{Cos[I3], 0, Sin[I3]},

{O, 1, O}, {-Sin[I3], 0, Cos[I3]}}

Rz[y_] 1= {{Cos[y], -Sin[y], O},

{Sin[y], Cos[y], O}, {O, 0, 1}}

A representation of the corresponding Lie algebra follows if we calculate the first
coefficient of a Taylor expansion around the identity. meaning that the representation
of the Lie algebra is given by the first derivatives with respect to the parameter
around the identical rotation.

81 = a"Rx[a] /. a -+ 0; MatrixPorm[8d

(
0 0 0) o 0 -1
o 1 0

82 = a{3 Ry [13] /. 13 -+ 0, MatrixPorm [82]

and

83 = a" Rz [y] /. y -+ 0; MatrixPorm[83]

(0 -1 0)
100
000

These three matrices also build the basis for the Lie algebra so(3). We will see in
Chapter 4 that the matrices el. e2. and e3 are the infinitesimal generators of the Lie
group. At the other hand. we know from our examinations above that the structure
constants of so(3) are given by the Levi-Civita tensor. Knowing the structure

34 Elements of Symmetry Analysis

constants, we also know a representation of the adjoint Lie algebra. The structure
constants of so(3) arec7j = <}. Applying relation (2.30), we can represent the adjoint

Lie algebra by

So the matrices

ae1 = MatrixForm[Array[-LeviCivita[l, #1, #2]&:,

{3, 3}]]

ae2 = MatrixForm[Array[-LeviCivita[2, #1, #2]&:,

{3, 3}]]

and

ae3 = MatrixForm[Array[-LeviCivita[3, #1, #2]&:,

{3, 3}]]

(2.31)

are the adjoint representation of the Lie algebra so(3). In fact, these matrices are
identical with the original matrices of so(3). In the above input lines, we used as
argument of Array[] a pure function. A pure function in Mathematica is terminated

by & and allows so-called slots (#1, #2) as input channels. In the above lines, the
function LeviCivita[] with two slots and one fixed argument was used as a pure
function. D

With the definition of the adjoint algebra, we introduced the homomorphism
v ~ ad v. In terms of coordinates, we have

{ad v (ad W)}i ad Vi (ad Vj)

i.e.,

n

L: Cik vi w< ,
k,l=l

(2.32)

(2.33)

Lie Algebras 35

Using these relations, we are able to define a scalar product in a Lie algebra by the
following relation,

(y, w) = Tr(ad y ad w) . (2.34)

This product satisfies the following properties:

(i) Symmetry

(Y, w) = (w, v) (2.35)

(ii) Bilinearity

(av + {3w, u) = a(v, u) + f3(w, u) (2.36)

for all v, w, U E V and a,f3 E IR or C. And, the relation

(iii)

(ad v(w) , u) + (w, ad v(u» = 0 (2.37)

or

([y, wl, u) + (w, [v, ul) = o. (2.38)

These properties are immediately derived from the properties of the trace.

The symmetric bilinear form (Y, w) on V x V is called the Killing form of the Lie
algebra. In terms of the coordinates, this expression is given by

n

(v, w) = Tr((ad v)~ (ad w):) = L eik vi e~i w m

n

= L glm vlwm,

I,m=!

where the symmetric second-rank tensor

n

glm = L eik~i
i,k=!

I,k=!

(2.39)

(2.40)

is called the Cartan metric tensor of the Lie algebra V. Note that for some algebras
the Killing form can be degenerate. Especially for commutative algebras we find
degeneration; i.e., det (gik) = O.

The Killing form and the Cartan metric tensor play a fundamental role in the theory
of Lie algebras and their representations. For example, a simple criterion for the
solvability of a Lie algebra in terms of the Killing form is: if (v, v) = 0 for each

36 Elements of Symmetry Analysis

V E V, then V is called a solvable Lie algebra, or if an algebra V is nilpotent, then
(v, v) = 0 for all v E V.

We have separated the type of solvable and nilpotent algebras from the set of all Lie
algebras by the above criteria. However, we do not know much about the terms
simple and semisimple Lie algebras. In the following, we define the class of simple
and semisimple Lie algebras, which are important in the study of the structure and
classification of Lie algebras

Definition: Semisimple Lie algebra

A Lie algebra V is semisimple if it has a non-zero commutative ideal. 0

The criterion for semisimplicity is given by the following theorem:

Theorem: Cartan' s theorem

A Lie algebra V is semisimple if and only if its Killing form is non-degenerate. 0

This theorem of Cartan is useful for classifying the algebras obtained in the
symmetry analysis as semisimple or not. A simple Lie algebra is defined as follows:

Definition: Simple Lie algebra

A Lie algebra V is simple if it has no ideals other than {O} and V and if
V(l) = [V, V] "* O. 0

The discussed terms are useful for expressing some relations of differential equations
in the following sections. All are the basis for a theory which is general in its settings
and can be used in different applications of physics and mathematics.

3

Derivatives

The symmetry analysis of differential equations is based on several differential
operators. Among these operators are the ordinary differentiation, the total
differential, the Frechet derivative, the Euler-Lagrange derivative, and the
prolongation, to name the main operators. The basis of the symmetry analysis is the
prolongation of a differential equation. Unfortunately, the prolongation as a
differential operator is not implemented in Mathematica. This chapter will discuss
the different types of derivatives used in the calculus of symmetry analysis and will
demonstrate their application by several examples. Another subject of the present
chapter is the presentation of the theoretical background for the derivatives. One
point we will discuss is the connection of the theory with the practical
implementation of these operators in Mathematica. Application of the defined
operators to several examples will demonstrate their use. Throughout the text, we use
subscripts to denote a differentiation. The subscripted representation in Mathematica
is created by the function LieTraditionalForm[]. This MathLie function converts the
standard form of differentials in Mathematica to a traditional form frequently used in
mathematics.

3.1. Ordinary and Partial Derivatives

Ordinary and partial derivatives are widely used in calculus. As a matter of fact, this
kind of calculation is also applied in the symmetry analysis of differential equations.
Gauss, Leibniz, and Newton introduced the notion of derivatives in the 17th century
in order to have a measure for the slope of a function. Still today, we continue to use

38 Derivatives

derivatives to measure the slope of a function at a position x. The definition of a
differential is one of the fruitful concepts mankind invented to describe nature in
mathematical terms. Newton and Leibniz introduced the calculus of differentials to
describe physical and mathematical relations by means of differential equations. The
main ingredients of differential equations are derivatives combined in a linear or
non-linear way. The definition of a derivative in terms of a limiting process is given
by the following:

Definition: Ordinary derivative

Given a smooth function f: IR ~ IR, the derivative of f is defined by the relation

df . f(x+h) - f(x)
-:= hm . 0
dx h ... O h

(3.1)

This definition is the mathematical expression of how to manage the calculation of
the slope for a known function f. The meaning of this formula is that we have to take
two neighboring points separated by a distance h in the x domain and calculate the
ratio of the difference of the function at these points. If we assume that the distance h
becomes smaller and smaller, we end up with a value describing the slope of the
function at the point x. Here we used the representation of the derivative in
mathematical terms. The definition of the derivative given in (3.1) is not only a
symbolic formula but also of practical relevance. In Mathematica, we can
demonstrate the practical use by just applying relation (3.1) to a specific function. Let
us assume that the function f is given by the trigonometric function

f [x_l : = sin [xl

Formula (3.1) in terms of Mathematica reads

[f [x + hl - f [xl]
Df = Limit , h-+ 0

h

Cos [x]

which provides us with the expected result. We certainly know that the derivative of
the sin is given by a cos. The result can be checked by a symbolic calculation using
the differentiation

Cos [x]

which gives the same result. We realize that Mathematica provides the same result by
different algorithmic procedures. However, the standard way of calculating
derivatives of functions f is the application of the operator Ox to f[x]. The pattern

Ordinary and Partial Derivatives 39

ax f[x) or D[F[x), x) serves to calculate all the ordinary differentials of a function f

with one independent variable.

Another way of looking on relation (3.1) in the definition above is based on a
geometrical interpretation. Rewriting the original formula (3.1) helps us to
understand the geometrical contents. Let us first replace the limit in equation (3.1) by
another representation. The derivative defined on the left-hand side of equation (3.1)
can be represented by introducing a condition on the right-hand side. Dropping for
the moment the Limit[] and introducing a reference point Xo on the x-axis, we are
able to rewrite the right-hand side. We assume that Xo is a distance h away from our
point of interest x. The resulting value on the right-hand side of (3.1) is an
approximation of the derivative at the point Xo. In Mathematica, we write

Clear[f]

f [x + h] - f [x]
Df = I • h ... xO - x

h

-f[x] + f[xO]
-x + xO

The left-hand side in equation (3.1) can be represented by the differential operator ax.
The calculation is carried out at the location x = Xo. This representation of the
derivative gives us

Dlf = ax f [x] I. x ... xO

f' [xO]

Combining the two expressions, we get an approximate representation of a derivative
for the function f at the location Xo by

df = Dlf == Df

f' [xO] == -f[x] + f[xO]
-x + xO

The geometrical way of reading this equation is to consider df as a parametric
definition of the function f[x). The parameter Xo denotes a specific location in the
domain of the independent variables. An explicit representation of the function f
follows from df by solving it with respect to f[x):

Boll = Solve [df, f [x)) /. f [x] ... w

{{W-4 f[xO] +xf' [xO] -xO f' [xO]}}

The replacement of f[x) by an auxiliary variable w is necessary to define the function
f[x) in a pure function as

40 Derivatives

fun = f ~ Function [{x, xO}, w] /. Flatten[soll]

f~Function[{x, xO}, f[xO] +xf'[xO] -xOf'[xO]]

The result is a representation of the function f[x] defined at any location x knowing
at the same time the same function f at a point Xo. In addition, we also have to know
the derivative off at this location. The relation appears somewhat strange at the first
look. However, the geometrical content of this expression is easy to understand if we
represent it graphically. To perceive the implications of the relation, let us examine a
plot of f Being specific in the plotting, we set the function f to the trigonometric
function sin

f [x_] : = Sin [x]

In another step, we define a function g[x, xo], combining our results for f[x, xo].
The new function g[x, xo] allows us to represent fat any points x and Xo:

Clear[g]

g [x_, xO_] : = f [x, xO] /. fun

If we plot both functions f[x] and g[x, xo] in a common coordinate frame, we get the
following picture:

Plot [
7T

Evaluate[{f[x], g[x, 1]}], {x, 0, -},
2

AxesLabel ~ {"xn, "f, gn } ,

PlotStyle ~ {RGBColor[l, 0, 0],

RGBColor[O, 0, 1]} 1

f,g

1

0.8

0.6

0.4

0.2

0.25 0.5 0.75 1 1.25 1.5 x

From the above figure, we clearly see the geometrical meaning of g andf In fact, g is
the representation of the tangent of the function f at a certain location xo. In the figure

Ordinary and Partial Derivatives 41

above, we chose Xo = 1. The figure allows us to interpret the derivative of f as a
slope. The relation derived in df clearly displays a linear dependence in the
independent variable x. Examining the slopes of the function f[x) at other points Xo,
we get a set of tangents. A graphical representation of this set is given below. This
sort of plot represents an envelope of the function f[x). The following lines of
Mathematica are necessary to create the envelope off:

Plot [zvaluate[
7f 7f

'l'able [g [x, xO], {xo, 0, -, -}]],
2 20

7f
{x, 0, -}, Axe.Label-+ {RX., Rg"},

2

PlotStyle -+ 'l'able [RGBCOlor [1, 0, 0],
7f 7f

{xo, 0, -, -}]]
2 20

9

1.5

1.25

0.25 0.5 0.75 1 1. 25 1.5 x

The above figure shows that the slope of the function sin [x] starts with a finite value
at Xo = 0 and ends up with a vanishing value at Xo = 1r / 2. The following figure,
showing the function and the derivative of the function, represents another way to
examine the behavior of the slope.

Plot [zvaluate[

{f [x], Bx f [x] }] ,
7f {x, 0, -},
2

Axe.Label {·x·, Rf, fl.},

PlotStyle {RGBColor[O, 0, 1],

RGBColor[l, 0, O]}]

42 Derivatives

f, f'

0.8

0.6

0.4

0.2

0.25 0.5 0.75 1 1. 25 1.5 x

The figure shows us the derived behavior of the slope in a more compact way. The
slope of sin [x] starts with the value 1 at x = 0 and finishes with 0 at x = Tel2.

Knowing the geometrical meaning of differentiation, we can ask for additional
properties of this operation. In the following, we will discuss some of these
properties. We only state a few of these features known by Mathematica. One of
these properties is the product rule which governs the differentiation of a product of
functions, e.g., f and g. The product rule is implemented in Mathematica and
automatically applied to products of functions:

Clear[f, g]

prule = ax (f [x] g [xl) I I LieTraditionall'orm

The result represents the expected relation which is known from standard texts in
calculus. Another feature of derivatives is the rule for rational functions. The
differentiation of the ratio f[x]/g[x] gives

f [x]
qrule = Sim;plify[ax --] II LieTraditionall'orm

g[x]

which is the standard formula. The chain rule of Leibniz is useful in differentiating
nested functions

crule = ax f [g [x]] I I LieTraditionall'orm

Ordinary and Partial Derivatives 43

which indicates that we first differentiate the function / with respect to g followed by
a differentiation of g with respect to x. The properties stated above and more are
known by Mathematica to manage the calculation of differentials.

In symmetry analysis. we frequently have to deal with functions depending on
several independent variables. A function of a set of variables can be differentiated
with respect to one of these variables at a time. The rest of the independent variables
will stay unchanged in this calculation. The slope of a function of several variables is
not just a single function, since the independent variables may vary in different ways.
All the rates of change for a function of m variables are described by m functions.
called its partial derivatives. In the discussion above. we introduced the definition of
the derivative known as an ordinary derivative which is defined for functions
depending on a single independent variable. The more generic case is that we have
functions depending on several independent variables. The partial derivatives of a
function of several variables are its ordinary derivatives with respect to each variable
separately. We can define this as follows:

Definition: Partial derivative

Given a smooth function I: IRm ~ IR depending on m independent variables Xm • we
define the partial derivative of/with respect to the independent variable Xq by

al
= aXq

(/(Xl. X2 • Xq +h, xm) - I(x], X2, xq • xm))
lim --------'-------------'-------. 0
h~O h

(3.2)

This formula allows us to calculate the vanatlon of I with respect to different
coordinates xq • The partial derivative of a function is an operation known by

Mathematica. The partial derivative is accessible under the same pattern aD D.

Although we can access partial derivatives and ordinary derivatives by the same

symbol D[]. Mathematica is capable of distinguishing the different operations.

Consider, for example, a function / = I(XI. X2) of two variables. If we treat X2 as a
constant. / may be differentiated with respect to Xl' The result is called a partial
derivative of/with respect to Xl' In Mathematica. we carry out this by

OXl f [Xl' X2] / / LieTraditionalForm

44 Derivatives

The resulting symbol for the representation of a partial derivative in Mathematica is a
superscripted expression of the function f. The superscripts denote the order of
differentiation with respect to the independent variables. In our example, we get the
first derivative with respect to XI. The derivative with respect to X2 follows in the
same way by

ax. f [X1, X2] / / LieTraditionalForm

The combination of both operations allows us to calculate higher-order derivatives

Ox
"

x. f [X1, X2] / / LieTraditionalForm

Higher-order derivatives follow by carrying out the differentiation with respect to
different variables. The calculation of higher derivatives is done for functions with
only one independent variable in a similar way. Since both operations are nearly
identical, here we will give only the definition for the case with more than one
independent variable. The one-dimensional case is included in this definition. The
kth-order derivative is defined as follows:

Definition: kth-Order derivative

Given a smooth function f: IR m ~ IR depending on m independent variables xq , we

call

(3.3)

the kth-order partial derivative of fwith respect to the m independent variables x. The
non-sorted multi-index J = (jl, j2' ... , A) denotes the derivative with respect to one
of the m coordinates. The integers I ~ jk ~ m of this k-tuple indicate which
derivatives are being taken. The order of differentiation k is equivalent to the sum of
all indices A, which we denote by I J I = 2::=1 j;. 0

Using this definition, we are able to calculate, for example, the second-order
derivative of the function f The calculation of the partial derivative in Mathematica
is as simple as the application of the ordinary derivative even for higher-order
derivatives. For example, the sixth-order derivative of f is derived by

O(x1,2}.{x2,4} f [xl, x2] / / LieTraditionalForm

f x1 ,xl,x2,x2,x2,x2

Tangent Vector 45

So far, we discussed simple examples of derivatives already implemented in
Mathematica. The following sections will illustrate how special types of derivatives
are implemented. We will discuss tangent vectors, vector fields, Frechet derivatives,
prolongations of vector fields, and variational derivatives also known as Euler
derivatives. The special types of derivatives we are going to discuss are useful in
examining symmetries of differential equations.

3.2. Tangent Vector

Sometimes it is important to know how a real-valued function!: IRn ~ IR varies in
different directions. The partial derivative discussed above only measures how
much! changes in a certain direction. However, it is also possible to measure the
variation of! in other directions. Measuring the variation of! at a location x E IRm

along a straight line t::;: x + txo, where Xo E IRm, we need the tangent vector vX • Since
we are dealing with differential operators, we define the tangent vector as an operator
acting in the space of functions. Actually, a tangent vector is a vector with a cetrain
direction and a finite length. However, in view of the application in symmetry
analysis, let us define such an operator.

Definition: Tangent vector

We assume that!: IRm ~ IR is a smooth differentiable function. The tangent vector Vx
is defmed by the relation

(3.4)

where Xo E IR n and t is a real parameter. 0

This definition is known as directional derivative in calculus. A more explicit way to
write the definition is given by

(3.5)
1--+0

Relation (3.5) is more convenient in comparison with the definition of an ordinary
derivative. On the other hand, equation (3.4) is more useful in the implementation of
the tangent vector in Mathematica. Although the second definition (3.5) is based on a
complicated mathematical process involving the determination of a limit, the first
expression is easier to handle symbolically. The reason is that equation (3.4) contains
basic operations like an ordinary differentiation and a substitution. Both of these
operations are easily handled by Mathematica. Since Mathematica does not know
how to calculate the tangent vector of a function, we must define an operator which

46 Derivatives

handles this kind of calculation. Let us now examine equation (3.4) in more detail to
see how an implementation can be based on it. In the calculation of the tangent vector
for an arbitrary function f, we need to know the function J itself, the independent
variables :t, and the support point xo. We use these three components as input
parameters for our function TangentVector[]. We define the function

TangentVector[] in the following way:

TangentVector [f_, x_List, xO_List] : =
Block[{rule, res, t},

rule = Thread [x -+ x + t xO] ;

res = fl. rule;

res = Ot res I. t -+ 0]

These few lines closely follow the definition given in equation (3.4). The lines just
state that the original argument is replaced by a new argument and that after the
replacement, a differentiation with respect to the parameter t takes place. At the end
of the calculation t is replaced by zero. The actual calculation is reduced to an
ordinary differentiation with respect to a parameter. All other operations are
replacements given as a transformation of the argument and as a side condition. The
definition given in Mathematica is capable of reproducing the general formula in
(3.4) at a certain point :to. As an example, we demonstrate here the calculation for a
functionJdepending on four independent variables:

TangentVector [f [xl, x2, x3, x4],

{xl, x2, x3, x4}, {xlO, x20, x30, x40}] II
LieTraditionalForm

xlO fx' + x20 fX2 + x30 fX3 + x40 fX4

As expected, the result of our calculation is a sum of four products. Each product
consists of a partial derivative with respect to the coordinate Xq and the component

XOq of the related location. Similar to the ordinary differentiation, the function

TangentVector[] satisfies some additional properties. Some of these algebraic
features of the directional derivative are listed below. Let us assume that we have two
real numbers a and b and two independent functions Jand g. Then, we can show that
the relation

TangentVector[af[xl, x2] +bg[xl, x2], {xl, x2}, {xlO, x20}] ==
a TangentVector[f[xl, x2], {xl, x2}, {xlO, x20}] +

bTangentVector[g[xl, x2], {xl, x2}, {xlO, x20}]

True

is satisfied. This behavior of the tangent vector is known as linearity. Thus, we can
say that TangentVector[] is a linear operator. The application of TangentVector[] on
a product gives us

TangentVector[f[xl, x2] g[xl, x2],

{xl, x2}, {xlO, x20}]

g[xl, x2] (x20 f IO . 1) [xl, x2] +xlO f I1 . O) [xl, x2]) +

f[xl, x2] (x20g I0 . 1) [xl, x2] +XlOg I1 . O) [xl, x2])

Tangent Vector 47

which is just the scalar product of the vector (J, g) with a vector containing the two
tangent vectors of f and g as elements. There is also a chain rule for the tangent
vector similar to the case of ordinary differentiation. For example, let gl and g2 be
two differentiable functions depending on XI and X2' For a function F given by

f = F [gl [xl, x2], g2 [xl, x2]]

F [gl [xl, x2], g2 [xl, x2]]

we can derive the tangent vector in the form

TangentVector[f, {xl, x2}, {xlO, x20}] II LieTraditionalForm

Fgl (xlOglxl +x20glx2) +Fg2 (xlOg2 x1 +x20g2x2)

which is a superposition of the vector field of gland g2 multiplied by the derivatives
of F. As we demonstrated, all these properties are immediately available without any
additional definitions. This behavior is actually based on the implementation of the
derivative in Mathematica.

The name used for our function to calculate the tangent vector of a given function is
somewhat misleading. Actually, we calculate a scalar product of the tangent vector
and a support vector Xo using our function. In some calculations, however, it is
necessary to have the vector components of the tangent vector available. Such an
application, for example, is the calculation of the tangent surface on a hypersurface.

The components of the tangent vector Vx become available by altering
TangentVector[] in an appropriate way. The following lines generalize the function in
such a way that the result of the calculation is a vector of differentials applied to a
function. We also assume in our definition that the support point is arbitrary and thus
can be created by the operator TangentVector[] itself:

TangentVector[f_, x_List] := Block[{rule, res, t},

xO = Table [Unique [n $aUn] ,

{i, 1, Length[x]}];

rule = Thread [x -+ x + t xO];

res = fl. rule;

res = at res I. t -+ 0;

Table [Coefficient [res, xO [iD] ,

{i, 1, Length[xO]}]]

48 Derivatives

The application of the function TangentVector[] on a function I depending on three
independent variables gives us

Clear[f];

TangentVector[f [xl. x2. xl]. {xl. x2. xl}] / / LieTraditionall'o:z:m

which is, in fact, the gradient of the scalar function f We note that the function
TangentVector[] needs only two arguments, the function I and a list of independent

variables.

For some applications in geometry and physics, we need to calculate the tangent
surface of a given function. Recalling the definition of the tangent of a function given
at the beginning of this section, we generalize this one-dimensional definition to a
two-dimensional version. Using the vector representation of the tangent vector at a
certain point x for the two-dimensional case, we can represent the tangent surface by

Is = I(Xo, Yo) + ex - xo) . 'Ox (f), (3.6)

representing the sum of the function at the support point (xo, Yo) and the scalar
product of (x - xo) and the tangent vector. Similar to the definition of a tangent
vector, we can implement a tangent surface by

Clear[TangentSUrface];

TangentSUrface[f_. X_List. xO_List] :=

Block [{rule. tvector. sf. surface}.

rule = Thread [x xO] ;

tvector = TangentVector[f. x];

sf = f /. rule;

surface = sf + (x - xO) • tvector]

Using the function TangentSurface[], we can determine the tangent space located at
Xo of a given function f. As an example, let us consider a function h in a
two-dimensional space with coordinates x and y

h = Sin [xl Cos [y]

Cos [y] Sin [x]

The function h[x, y] has the graphical representation

pll =

Tangent Vector 49

We calculate the tangent surface of this function at the point (xo, Yo) = (n/2, 0) by
using our function

7r
ht = TangentSurface [h, {x, y}, {-, o}]

2

1 + (- ; +x) Cos [x] Cos[y] -ySin[x] Sin [y]

A graphical representation of this relation for the tangent surface follows with

p12 = Plot3D[ht, {x, .5, 2}, {y, -1, 1},

Colorl'unction -0 HUe]

Superimposing both surfaces demonstrates that the two functions have the common
point (xo, Yo)=(n/2, 0).

Show[pll, p12, PlotRange-o {{-2, 2}, {-2, 2}, {-1, 1}},

ViewPoint -0 {3 .130, -1.044, O. 751}, Boxed -0 False]

50 Derivatives

-2
y

In the above figure, we observe that the tangent surface is located below the surface
h. The tangent surface is plotted for a smaller interval in the x and y directions to
prevent intersections of h and the tangent surface. This example shows that the
one-dimensional notion of a tangent can be generalized to a two-dimensional version.
This generalization is not restricted to two dimensions but can be extended to higher
dimensions. Since the higher-dimensional cases cannot be represented easily by
graphics, we suppress a further discussion of these tangent surfaces.

This section was intended to show how a Mathematica function for a derivative can
be defined if we know an appropriate mathematical definition. We also notice that
not every mathematical definition is an efficient definition for an implementation in
Mathematica. An essential point to efficiently implement a mathematical relation in
Mathematica is a mathematical definition based on structures which are basic
elements in Mathematica. In the case of the TangentVector[] function, it was
essential that we used the pattern matching of Mathematica in the replacement rules.
The application of such simple operations allows us to write refined functions. In the
next section, we will come back to a derivative already known by Mathematica, the
total derivative.

3.3. The Total Derivative

Let us consider functions J depending on a set of independent variables x =
(Xl' X2, ... , xn) and a set of dependent variables U(k), k = 0,1,2, ... , where u(k)

represents all possible derivatives of U = (u l , u2, ... , u<>:) with respect to the
independent variables x. We are interested in the derivative of these functions with
respect to all independent variables. If we assume that u depends on the vector x, we
must consider all derivatives ofJwith respect to X and u(k)' In other words, we obtain
the total derivative ofJby differentiating Jwith respect to x, while treating all the U<>:'S

and their derivatives as functions of x.

The Total Derivative 51

Definition: Total derivative

The total derivative of a function f(x, U(k)) with respect to the independent variable
Xi is given by

of q '" of
Di f = OXi + II Uj,i ou'"

<>=] j]

where for J = (j], jz, ... , h),

au)

aXi

and the sum in (3.7) runs over all J's of order 0 !> I J I !> k with I J I
is the highest order of the derivatives occurring in! 0

(3,7)

(3,8)

The Mathematica analogue of this definition is available by the function D[], which
S, Wolfram [1991] calls a partial derivative. Showing the equivalence of both
notions, let us demonstrate the action of the function D[] by considering a simple
example.

Let us examine a functionjgiven by f = xuuxy , where U = u(x, y) is a function of

X and y. We apply the function D[] on this expression in two steps. First, we use x as
the variable of differentiation, and in a second step, we differentiate with respect to y:

f = x u [x, y] OX,y U [x, y]; f / / LieTraditionalForm

u x Ux,y

D[£, x] / / LieTraditionalForm

u Ux,y + x U x Ux,y + U x Ux,x,y

D[f, y] / / LieTraditionalForm

x U y Ux,y + U x Ux,y,y

Comparing the results obtained by Mathematica with the definition given above
demonstrates the equivalence of both notions. Higher-order total derivatives are
defined by a repeated application of the single operator (3.7) with different variables
of differentiation. If J = (j], jz, ... , jm) is a mth-order multi-index, with 1 !> jm !> P

for each m, then the jth total derivative is denoted by

(3.9)

52 Derivatives

For example. we find the Dx Dy and Dy Dx derivatives by successively applying Dx

and D y. In Mathematica. we can realize this by

dfl = D[D[f, x], y]; dfl II Lie'l'raditionall'orm.

U y Ux,y + x U;,y + x Uy Ux,x,y + U Ux,y,y + x U x Ux,y,y + U X Ux,X,y,y

df2 = D[D[f, y], x]; df2 II Lie'l'raditionall'orm.

Uy Ux,y + x U~,y + x tiy Ux,x,y + U Ux,y,y + x U x Ux,y,y + U x U",x,y,y

Subtracting both representations of the mixed derivatives from each other. we get

dfl- df2

o

It is obvious that both expressions contain the same result. This implies that we can
commute the Dx and D y. In general. we can interchange the D's in the calculation in
any order.

Another representation of derivatives instrumental in the calculation of symmetries is
the prolongation. A prolongation is not a completely new derivative; however. it
introduces a geometrical concept in th-e manifold. allowing a greater flexibility in the
use of coordinates.

3.4. Prolongations

In the calculation of symmetries. we frequently have to calculate the prolongation of
a given system of differential equations. Here. we first define the term prolongation
for a function. In Section 3.7. we will discuss the application of prolongations to
vector fields. This definition is extended to differential equations in an additional step
in Section 4.2.5 for ODEs and in Section 5.4.1 for PDEs.

The term prolongation actually means an extension of the space of coordinates by
their derivatives up to a certain order. As a simple example. we can extend or prolong
the space of variables u for a function u : R ~ R by its first derivative. In classical
mechanics. such an extension of the configuration space with coordinates u to a space
with u and u' as coordinates is known as an extension of the configuration space to
phase space. A more specific example occurring frequently in mathematical physics
is given by a vector-valued function u = f(x) = (/1 (x) •...• fm(x)) with n independent
variables x = (Xl ••.•• xn) and m dependent variables. For such an n X m space. the
definition of the prolongation reads

Prolongations 53

Definition: Prolongation

For a given vector-valued function f: R n -7 Rm, we define the kth prolongation of f
by

pr(k) f(x) := U(k). 0 (3.10)

This relation means that we have to determine all derivatives of u up to a certain
order k. The result of such a calculation is a set of terms containing all possible
derivatives of u up to kth order.

The calculation of the kth prolongation is in some sense equivalent to the calculation
of the first k coefficients in a Taylor expansion off at the point x.

Let us demonstrate the calculation of the prolongation for a single function
f = f (x, y, z). Here, n = 3 and m = 1. We are looking for the second prolongation
of f; i.e., k = 2. We use Mathematica to carry out such a calculation. If we do the
calculation by hand, we have to collect the derivatives of f with respect to the
independent variables x = (x, y, z) up to order 2

pr(2) f (x, y, z) =

[
Jf Jf

f, fh'iii'
Jf a2 f J2 f ~ f ~ f J2 f J2 f 1
~' JxJy' JxJz' JyJz' Jx2 ' Jy2 ' J Z2 .

(3.11)

This list of terms represents the expansion coefficients of a Taylor series of f around
Xo. The first few terms can be read off from the following series expansion:

Clear[f, x, y, z, xO, yO, zOl;

Normal [Series [f [x, y, zl, {x, xO, l},

{y, yO, l}, {z, zO, l}ll //LieTraditionalForm

f+ (x-xO) fxo + (y-yO) (fyO + (x-xO) f xo . yo) +

(z-zO) (fzo + (x-xO) fxo,zo + (y-yO) (fyo,zo + (x-xO) fxo,yo,zo))

Using Mathematica, we do the calculation for the prolongation by applying the
function Outer[] in connection with the differentiation D[]. The aim is to reproduce

the content of equation (3.11). So we have to define a function called prolongation[]

using lists as input variables for the functions f and the independent variables x. The
third argument of prolongation[] determines the largest order k of differentiation:

prolongation[f_List, X_List, order_l :=

Block [{aux, dresul t} ,

54 Derivatives

result = f;

aux = result;

Do [aux = OUter [D, aux, x];

AppendTo[result, aux], {i, 1, order}];

Sort[Union[Platten[result]],

derivativeOrder[#l, #2]&]]

The function prolongation[] is based on the auxiliary function derivativeOrder[]. This
function determines the order of a differential expression. The result of

derivativeOrder[] influences the sorting of the derivatives in the function Sort[].

derivativeOrder[] allows us to sort the derivatives by an increasing order.

derivativeOrder[exprl_, expr2_] :=

If [preeQ [expr1, Derivative] II
FreeQ[expr2, Derivative], True,

plus [exprl /. _ (x_l [__] -+ x] <
Plus [expr2 /. _(x_l [__] -+ x]];

The function derivativeOrder[] checks the two arguments exprl and expr2 on
derivatives. If the expressions are free of derivatives, the function returns True. If the
expressions contain derivatives, the function only returns True if the order of the
derivatives increases. The application of prolongation[] on f[x,y,z] up to second order
gives us the coordinates of the extended space

prolongation[{f[x, y, z]), {x, y, z}, 2] //LieTraditionalForm

From a mathematical point of view, we determined the coordinates of a jet-space of
order 2 (cf. Olver [1986]). The kth prolongation pr(k) (f(x)) is also known as the k-jet

of f The related space of independent and dependent variables extended by the
derivatives is thus called jet-space. Thus, if u = f(x) is a function whose graph lies in
the space of dependent and independent variables, the kth prolongation pr(k) (f(x)) is
a function whose graph lies in the k-jet space.

3.5. The Frechet Derivative

In the previous sections, we discussed differential operators available in
Mathematica. This section deals with a differential operator instrumental in the
theory of symmetry analysis. Here, we discuss a generalized derivative and its
definition in Mathematica. The derivative is called a Gateaux or Frechet derivative.
This kind of derivative is very useful in the calculations of symmetries (Olver [1986],
Fokas [1980, 1987], Fokas and Fuchssteiner [1981], Baumann [1997]). Such a
derivative uses not only the steepest descent of a function but also puts a weight on it.

The Frechet Derivative 55

Definition: Frechet derivative

Let 1= I(x, u(n) be a function in p independent and q dependent variables. u(n)

denotes all the derivatives in this function up to order n = 0, 1,2, The Frechet
derivative Df of a function f based on w(x, u(n) is defined in such a way that

(3.12)

holds for aU auxiliary functions w. We call the function I the support of the Frechet
derivative and w the test function. 0

The algorithmic content of this definition is that Df(w) is calculated by replacing U

and all of its derivatives in I by U + E W. If we later differentiate the resulting
expression with respect to E and set E = 0, we determined the Frechet derivative. The
result of these two steps is the Frechet derivative of f based on the test function w.
Using the steps in a pencil calculation for one independent and one dependent
variable, equation (3.12) can be reduced to an explicit expression like

(3.13)

In (3.13) U(k) denotes the kth derivative of U with respect to x. The sum in (3.13) is
finite since the order of the largest derivative of the support is finite. This is the case
in all practical situations.

Let us consider as a support function I = Ux ux,x,x + u;. The Frechet derivative with a
test function w = w(x, ux,x,x) contained in the class of support functions f is given by
applying equation (3.13) to f:

Df(w) = (ux,x,x + 2 ux) Dx w + Ux Dx.x,x w, (3.14)

where Dx and Dx,x,x denote the first- and third-order total derivatives. If we choose
the test function as w = u; /2, we get from relation (3.14)

(3.15)

representing a differential expression containing only derivatives of u. The definition
of the Frechet derivative given above for one independent and one dependent variable
is easily generalized to a vector of r support functions I = (fl, ... , Ir) and q test
functions w = (WI> W2, ... , wq). Then the Fr6chet derivative of such an r-tuple is
given by the relation

56 Derivatives

[

II (UI + EWI, UZ' ... , Ur) + ... + II (UI, UZ' ... , Ur + EWr) 1
d f2(UI +EWI, Uz, ... , Ur)+ .. · + IZ(UI, Uz, ... , Ur +EW r)

Df(w) = - . <=0' (3.16)
dE :

Ir(UI +EWI, Uz, ... , Ur)+ .. · + Ir(UI, Uz, ... , Ur +EWr)

Introducing the q test functions as a column vector allows us to define the qxr matrix
differential operator

J.l = 1, ... , r, a = 1, ... , q. (3.17)

This expression is equivalent to the matrix differential operator

J.l = 1, ... , r; a=l, ... ,q. (3.18)

The sum in (3.18) extends over all multi-indices 1. To define the Frechet derivative in
Mathematica, we use relation (3.12) and its matrix version (3.16). We note again that
the UCl and all their derivatives are replaced by UCl + E WCl. After the replacement of the
arguments, we differentiate with respect to E and set E = 0 in the next step. The result
in the general case is a matrix containing the derivatives of the support I based on the
test functions WCl. The implementation of the Frechet derivative in Mathematica is

FrechetD[support_List, dependVar_List,

independVar_List, testfunction_List] :=

Block[{indep, frechet, deriv, e, rO, xl, x2},

rO = Function [indep, xl + e x2] ;

frechet = {}; Do [deriv = {};
Do[AppendTo[deriv, 0. (support[jD /.

dependVar[iD -+ (rO / •

{indep -+ independVar,

xl-+ dependVar[iD@@independVar,

x2 -+ testfunction[iD@@independVar}» /. e -+ 0],

{i, 1, Length[support]}];

AppendTo [frechet, deriv],

{j, 1, Length[support]}];

frechet]

The code of the Frechet derivative follows closely the relation given in equation
(3.12). In FrechetD[], we first define a pure function stored in the variable roo This
function serves as a general pattern to replace the original argument by a varied
argument. A loop extending over the number of dependent variables replaces the
independent and dependent variables. This step creates an explicit rule for the
replacement. After the replacement, a differentiation with respect to the parameter E

is performed and, at the end, E is replaced by zero. The resulting expressions are

The Frichet Derivative 57

collected in the list /reehet which is returned by the function. An example will
demonstrate the application of the function.

Example 1

Consider a set of two expressions representing a system of partial differential
equations given by

Vx - u = 0,
Ux

VI - - = 0,
u2

(3.19)

where u and v are functions of x and t. This set of equations is equivalent to a
non-linear diffusion equation in v. Our aim is to calculate the Frechet derivative of
the left-hand side of the system (3.19). Let us define a variable eqsys containing the
left-hand side of the equations:

eqsys / / LieTrll.ditioDlI.1J'oE1ll

The application of our function FrechetD[] to this expression gives us

FrechetD[eqsys, {u , v}, {x, t}, {wl, w2}] / /

MatrixJ'oE1ll / / LieTrll.ditionalJ'oE1ll

(
-wl w2x 1

2 wl U x _ wlx w2
u3 u 2 t

The calculation of the Frechet derivative using FrechetD[] is carried out by supplying
four arguments containing the equations: the dependent variables of the support, the
independent variables, and the test functions WI and W2. The result is a 2 x 2 matrix
containing expressions of WI and W2 and their derivatives. From the result, we can
get the corresponding operators if we consider WI and W2 as auxiliary functions. The
related matrix operator reads

(
-1

2 Ux __ 1_ a
u3 u 2 x

(3.20)

58 Derivatives

In our symmetry calculations, we sometimes need also the adjoint representation of
the Frechet derivative. In general, the adjoint representation of a differential operator
is defined via an integral expression. Assume that we know the differential operator
(3.12). We denote the adjoint operator ofDf by Dj satisfying

LVDfWdx = LWDjVdx. (3.21)

Equation (3.21) holds for any pair of functions Wand V. If we examine definition
(3.21) in more detail, we can replace the integral operation by a plain differential
representation (cf. Olver [1986]). The corresponding expression to (3.18) is given by

CDj) P'" = L: C _1)1 D 1 (: ~~), J1 = 1, ... , r; a = 1, ... , q.
1 1

(3.22)

In view of an algorithm in Mathematica, this means that we convert derivatives of the
test functions to derivatives of the support multiplied by some coefficients. This is
strictly the definition of an adjoint differential operator. The described procedure is
implemented in the following function AdjointFrechetD[]:

AdjointFrechetD[support_List, dependVar_List,

independVar_List, testfunction_List] :=

Block [{subrule, $testf, frechet, n, b},

subrule = b_o $testf(n~) @@independVar H

(-1) Plu {n) ODelete [Thread [{independVar. In} }]. 0] (b $testf@@independVar)

frechet = FrechetD [support, dependVar,

independVar, testfunction];

Do [frechet = frechet / °

(subrule / ° $testf -+ testfunction[i]]) ,

{i, 1, Length[testfunction]}];

frechet = Transpose [frechet]]

The adjoint representation of the Frechet derivative of the system eqsys is thus given
by

AdjointFrechetD[eqsys, {u, v}, {x, t},

{w1, w2}] / / MatrixForm / / LieTraditionalForm

(
-wl

- w2 x

The Euler Derivative 59

3.6. The Euler Derivative

In this section, we will discuss the Ewer derivative. The Euler derivative, also known
as the functional derivative, has its origin in the calculus of variations. The tenn
calculus of variations was first coined by Leonhard Ewer in 1756. He used it to
describe a new method in mechanics which Lagrange had developed 1 year earlier.
Thus, the original application of the Euler derivative originates from mechanics. In
this context, Euler and Lagrange used this sort of derivative to write down their
famous equations, the Euler-Lagrange equations. Up to now, the main application of
this derivative in physics has been the fonnulation of dynamical equations. In
Chapter 9, we will show that the Euler derivative is a useful tool in connection with
Lie-Backlund or generalized symmetries. Before we discuss the Euler derivative and
its implementation, we recall briefly the basic properties of the origin in the calculus
of variations.

3.6.1 The Problem of Variation

The calculus of variations was first used by Johann Bernoulli in July 1696, when he
presented the brachystochrone problem. The problem can be fonnu1ated as follows.
A point mass is moving frictionless in a homogenous force field along a path joining
two points. The question is which curve connects the two points for the shortest
travel. Johann Bernoulli announced the solution of the problem, but did not present
his findings in public. He preferred to first challenge his contemporaries to examine
the problem, too. This challenge was particularly aimed at his brother and teacher
Jakob Bernoulli, who was his bitter enemy. Jakob found one solution, but did not
present it to Johann. It was only upon the intervention of Leibniz, with whom Jakob
had a lifelong friendship and a scientific correspondence, that he sent it to his brother
in May 1697. The most fascinating event was that this solution was a cycloid, a curve
also discovered at this time.

As mentioned above, the main idea in the calculus of variations arose from the work
of Euler and Lagrange. Later, Hamilton contributed the tenn minimum principle to
the theory, and it is still in use today. The main idea of all these considerations of
Euler, Lagrange, and Hamilton is the assumption that there exists a generating
functional F. This functional is responsible for the dynamical development of the
motion. The key point in the calculus of variations is to find a function which
extremizes the functional F. The solution of this issue is to vary the function by
introducing a test function. Thus, the variation of F is actually carried out by
replacing the function u by a slightly changed new function u + E W, where E is a
small parameter and W denotes an arbitrary test function. After replacing u and all of
its higher derivatives in the functional F, we have to determine the extreme of F. The

60 Derivatives

functional in this representation can be considered as a function of the parameter E.

The maximum or minimum of F is found if we use the standard procedure of calculus
for finding extreme values. In mathematical terms, we need to calculate the
derivative of F with respect to E under the condition that E vanishes:

(3.23)

The basic problem of the calculus of variations is to determine a function u(x) such
that the integral

F[u] = [2 f(x, U, Un •••) d X = [2 f(x, U(k) d X,

XI XI

k = 1,2, ... (3.24)

assumes an extreme. An extreme here is either a maximum or a minimum. In
equation (3.24), Ux = au / a X denotes the partial derivative of u with respect to the
independent variables x, where X is a vector of coordinates. Let us assume first that
we have only one independent variable x. This assumption will make it easier to
represent and discuss the theory. A generalization to more independent variables will
be given below.

The expression F[u] given in equation (3.24) is called a functional defined by an
integral over a density f which depends on the independent variable x and the
unknown function u. In general, this density may also depend on derivatives of u up
to a certain order k, denoted by U(k). The limits in the integral (3.24) are assumed to
be fixed. We note that fixed limits are not necessary. If they are allowed to vary, the
problem increases in such a way that not only u(x) but also Xl and X2 are needed to
bring F to an extreme value. The question is how to manage the functional F in
becoming an extreme. Let us assume that an extreme of F exists if a function
u = u(x) makes the functional F a minimum. Then, any neighboring function, no
matter how close it approaches u(x), must make F increase. The definition of a
neighboring or test function may be as follows. We introduce a parametric
representation of u = u(x; E) in such a way that for E = 0, U = u(x; E = 0) = u(x), we
get the identity and the functional yields an extreme. We write the small perturbation
ofu as

u(x; e) = u(x; 0) + E w(x), (3.25)

where w(x) is the test function which has continuous derivatives and vanishes at the
endpoints Xl and X2. We note that the vanishing of w(x) at Xl and X2

W(Xl) = W(X2) = 0 is one of the basic assumptions of the calculus of variations.

If functions of the type given in equation (3.25) are considered as variations of u, the
functional F becomes a function of E :

The Euler Derivative 61

F[u;e] = [2 f(x, u(x; e), Ux(x, e), ...) d x.
XI

(3.26)

The condition that the integral has a stationary value (in other words, an extreme) is
that F be independent of e in first order. This means that

(3.27)

for all functions w(x). This is a necessary condition but not a sufficient one. We will
not pursue the details of the sufficient conditions here. They were extensively
discussed by Blanchard and Bruning [1992]. To demonstrate how these formulas
work in detail, let us consider the simple example of the shortest connection between
two points in an Euclidean plane.

Example 1

Let us consider the equation of a curve in a Euclidean space which yields the shortest
distance between two points in the plane. The geometrical increment of distance ds in
the (u, xl-plane is given by

ds = ~dx2+du2 =)1+(:)2 dx. (3.28)

The total length s of the curve between two points Xl and X2 is

s = [2 ~l +u; dx == F[u].
XI

(3.29)

We know that the shortest connection between two points in the Euclidean plane is a
straight line given by

u(x)= a X + p, (3.30)

where a and p are constants determining the slope and the intersection of the line
with the vertical coordinate axis. Now let us consider the line in the range X E [0, 21r].

To demonstrate the numerical behavior of the functional F, we choose a special test
function w(x) = sin(4 x). Using our representation of u given by equation (3.30) with
a=l and p=O for example, we get for the derivative of u,

Ux = 1 + 4ecos(4 x). (3.31)

62 Derivatives

Inserting this representation into (3.29) we find

(211
F[E] = Jo ...; 1 + 4 Ecos(4 x) dx. (3.32)

This relation represents our specific functional. Weare looking for the minimum of
this function to get the extreme of the functional. Considered as a function of E, this
relation cannot be solved for E. However, to get an idea of the dependence on the
parameter E, we can use Mathematica. If we define equation (3.32) as a function
depending on E, we can use the numerical capabilities of Mathematica to graphically
represent the dependence of F on E. First, let us define equation (3.32) by

F [e_] : = N:Integrate [

-V1+ (1+4eCos[4x])2, {x, 0, 21f}]

We then use the defined function F[] in connection with Plot[] to represent the value
of the functional for certain values of E:

Plot [Evaluate [F[e]] , {e, -1, 1}, AxesLabel-+ {lien, nF"},

PlotStyle -+ RGBColor[l, 0, 0]]

-1 -0.5

F

18

16

14

12

0.5 1 E

The result of our calculation shows that the value of the functional is minimal for e=0
and increases for all other values of E. Thus, we demonstrated numerically that the
minimum of the functional exists. In a second plot, we demonstrate the influence of E
on the function u(x) = x for different values of E. This shows us that the value of
F[u; E] is always greater than F[u; 0], no matter which value (positive or negative) is
chosen for E.

Plot [Evaluate [

1
{y[x, 0], y[x, 1], y[x, --]} /.

2

y -+ Function [{x, e}, x + e Sin[4 x]]],

{x, 0, 2 7r},

AxesLabel -+ {"x", nyn},

PlotRange -+ All,

PlotStyle -+ {RGBColor[O, 0, 0.996109],

RGBColor [1. 000, 0.000, 0.000],

RGBColor[O.OOO, 0.251, 0.251]}]

y

The Euler Derivative 63

x

From this figure, we can conclude that the line u(x) = x is one realization of the
shortest connection between two points in the Euclidean plane. D

3.6.2 Euler's Equation

In this section, we derive the analytical representation of the Euler derivative. The
construction of this sort of derivative is based on condition (3.27). If we carry out the
differentiation with respect to E, equation (3.26) will provide

8F 8 [2 - = - f(x, u, Ux , ...)dx.
8E 8E Xl

(3.33)

Since the limits of the integral are fixed, the differentiation affects only the density of
the functional F. Hence,

(3.34)

If we now use the representation of u = u(x; E) as given in (3.25) to introduce the, E

dependence for the variable u and the derivatives u(k)' we get

64 Derivatives

au
- = w(x), ae

Using these relations in equation (3.34), we find

(3.35)

(3.36)

The result so far is that the integrand contains derivatives of the density t and the test
function w. Since we do not know anything about the derivatives of w, we need to
reduce (3.36) in such a way that it only contains the test function w. The reduction
can be obtained by an integration of parts with respect to the test function. Additional
use of the conditions w(x,) = W (X2) = 0 simplifies expression (3.36) to

(3.37)

The integral in equation (3.37) seems to be independent of E. However, the function
u = u(x; E) and all derivatives of U are still functions of E. We know from the
representation of u(x; E) that this dependency disappears if we set E = O. Before we
start this calculation, we generalize (3.37) to arbitrary orders in the derivatives:

(3.38)

where u(n) = ~:: denotes the nth derivative of u with respect to x. Our aim was to

find the extreme of F. A necessary condition for the existence of an extreme is the
vanishing of the derivative ': 1.=0 = O. In our calculations, we assumed that w is an

arbitrary function. Thus, the derivative of F can only vanish if the integrand vanishes
and so we end up with the result

=

L n d' (at) (-1) - -- = 0,
d xn aU(n)

(3.39)

n=O

where U and all the derivatives of U are now independent of E. This result is known as
Euler's equation and it is a necessary condition for the functional F to allow an
extreme; The Euler equation is reduced to the well-known Euler-Lagrange equation if
we restrict the order of the derivatives to 2. Since the Euler equation is needed in the
calculation of symmetries, we define a special symbol for this operation and call it
the Euler operator.

The Euler Derivative 65

3.6.3 Euler Operator

The Euler operator is also known as a variational derivative in the field of dynamical
formulations or statistical mechanics. In this section, we define this operator as a
special type of derivative.

Definition: Euler operator

Let f = f(x, u, ux , •..) be the density of a functional F[u]. Then we call

=

8F I n tl' (8f) _.- (-1) - --
8u .- d~ 8u(n)

n=O

the functional derivative of F and

=

€:= "" (-It Dn _8_ L....J 8u(n)
n=O

an Euler operator. Dn = !nn denotes the nth-order total derivative. 0

The actual information of this definition is that the functional derivative Ef... can be au
replaced by ordinary and partial derivatives if we know the density of the functional
F. Consequently, we can introduce a general derivative, the Euler operator, which is
based on known operations. The essential content of the definition above is that
knowing the density f of a functional F is sufficient to calculate the corresponding
functional derivative. The functional derivative follows just by differentiation of the
density f. An additional merit is the knowledge of the Euler equation for this
functional F. The definition from above is a result of the calculus of variations. Thus,
the Euler derivative can be calculated by an algorithmic procedure.

3.6.4 Algorithm Used in the Calculus of Variations

Our next goal is to define a Mathematica function allowing the calculation of the
Euler derivative. Before we present the function, we briefly repeat the main steps of
the calculus of variations. These steps are intimately related to the definition of the
Euler derivative and are thus the basis of the calculation. The four main steps of the
algorithm are as follows:

66 Derivatives

1. Replacement of the dependent function u by its variation u = u + E W.

2. Differentiation of the functional density with respect to the parameter E and
replacement of E by zero after the differentiation.

3. Use the boundary conditions for the test function to eliminate the derivatives in w.

4. The coefficient of the test function w delivers the Euler equation.

These four steps define the calculation of the Euler derivative algorithmically. The
function defined in Mathematica is based on these four steps. When looking at the
definition of the Euler derivative E, we realize that we need at least three pieces of
information to carry out the calculation. First, we should know the density of the
functional F, second the dependent variable, and third the name of the independent
variable. From our discussions of the algorithm, we expect that the highest order of
differentiation should be determined by the function itself. Thus, we define the
function EulerD[] with three necessary arguments. A fourth optional argument allows
influencing the representation of the result of the function. The following lines
contain the code for EulerD[]:

(* --- Euler derivative for ---*)
(* --- one dependent and one independet variable ---*)
Clear [EulerD] ;

Options [EulerD] = {eXpand -+ False};

EulerD[density_, depend_, independ_,

options __] : =
Block[{fO, rule, fh, e, w, y, expand},

(*--- check options ---*)
{expand} = {eXpand} / ° {options} / °

Options[EulerD];

(*--- rule for the variation of u---*)

fO = Function [x, y [x] + e w [x]] ;

(*--- rule for the replacement of

derivatives of w --- *)
rule = b_o W(D_) [independ] :ot

(_l)n Hold [O{1ndapend,n) b];

(*--- step of variation ---*)
fh = density / ° depend -+ fO / °

{x ... independ, y -+ depend} ;

(*--- differentiation with respect to e ---*)
fh = Expand[oe fh / ° e -+ 0];

(*--- transformation to w ---*)
fh = fh / ° rule / ° w[independ] -+ 1;

(*---- Euler equations --- *)
:If [expand, fh = ReleaseHold [fh], fh]]

The Euler Derivative 67

Using this function, it is straightforward to calculate the functional derivative of any
density containing one dependent and one independent variable. We demonstrate the
application of this function by discussing the famous brachistochrone problem
already mentioned in the introduction.

Example 1

Let us discuss the classical problem of the brachystochrone solved by Johann
Bernoulli in 1696. The physical content of this famous problem is the following:
Consider a particle moving in a constant force field. The particle with mass m starts
at rest from some higher point in the force field and moves to some lower point. The
question is which path is selected by the particle to finish the transit in the least
possible time. Let us reduce the problem to the point of deriving the Euler equation.
The dimensionless functional density governing the movement of the particle can be
derived from the integral t = iP'l/vds where t is time, ds the line element, and v

PI

the velocity. Expressing the line element and the velocity in Cartesian coordinates,
we can express the density of the functional by

(
1 2)1/2 + Ux

f(x, u, Ux) = -- ,
2gx

(3.40)

where u describes the horizontal coordinate and x the vertical one. The application of

our function EulerD[] on this functional density

f =
1 + (ax u [x]) 2

-------; f / / LieTraditionalForm
2gx

J 1 +u~
gx

gives us

EulerD [f, u, x, eXpand -+ True] / / PowerExpand / / Simplify / I
LieTraditionalForm

U x + u~ - 2 x ux,x

2 Y2 .yg X 3/2 (1 + u~) 312

a second-order ordinary differential equation for the variable u. The solution of this
equation is a cycloid and can be derived by applying Mathematica (cf. Baumann
[1996]).0

68 Derivatives

Example 2

Another example of the application of the function EulerD[] is the derivation of the
Euler-Lagrange equation for a mechanical system with one degree of freedom. The
functional density for such a problem is generally given by the Lagrange function 1:

.c = 1 [t, q[t], q' [t]]; .c / / LieTraditionalForm

where q denotes the generalized coordinate of the particle and t the time. The
Euler-Lagrange equation for this general Lagrangian then follows by

EulerD[.c, q, t, eXpand -+ False]

-Hold[8It . l } 1(0.0.1) [t, q[t], q' [t]]] + 1(0.1.0) [t, q[t], q' [tll

representing the left-hand side of the expression

~t - ~(~t) = O.
8q dt 8qt

(3.41)

The disadvantage of this representation is the appearance of the function Hold[] in
the equation. However, if we are only interested in the explicit form of the equations,
we can set the option eXpand~True. Then, the result reads

EulerD[.c, q, t, eXpand -+ True] == all LieTraditionalForm

This equation is the general representation of the Euler-Lagrange equation. 0

The Euler operator defined above was the result of the variation of a functional. We
demonstrated the calculation for a single dependent variable u = u(x) which was a
function of one independent variable x. The generic case in applications is more
complex. We rarely find systems with only one dependent variable. Thus, we need a
generalization of the formulation considering more than one dependent variable in
the functional F. In the following exposition, we assume that a set of q dependent
variables uO: exists. The functional F for such a case is represented by

i X2
1 2 3 1 1

F[u,u,u, ... J= f(x,u, ... ,ux, ...)dx.
x,

(3.42)

The variation of the dependent variables is now performed by introducing a set of test
functions wO:. Using this set of auxiliary functions, we can represent the variation by

uO: (x; E) = uO: (x; 0) + E wO: (x), a = 1, 2, 3, ... , q. (3.43)

The Euler Derivative 69

The derivation of the Euler operator proceeds in exactly the same manner as
presented above. We skip the detailed calculations and present only the result:

aF [2 q ~ af
aE = L {L (-It D(n) aua }wa (x)dx.

XI a=l n=l (n)

(3.44)

Since the individual variations wa (x) are all independent of each other, the vanishing
of equation (3.23) when evaluated at E=O requires the separate vanishing of each
expression in curly brackets. Thus, we again can define an Euler operator for each of
the q dependent variables uu •

3.6.5 Ellier Operator for q Dependent Variables

In this section, we extend the definition of the Euler derivative to a set of q dependent
variables. Let f = f(x, u 1, u2 , ••• , u; , u; , ...) be the density of the functional
F[u1 , u2 , •••]. Then, we define the Euler operator €a as

~ a
€a := .L: (_I)n D(n) --a-' a = 1,2, ... , q,

n=O aU(n)
(3.45)

which will give us the ath Euler equation when applied to the density f,

(3.46)

The only difference between this definition and the definition for the single variable
is the number of equations contained in (3.46). The occurrence of the q equations in
the theoretical formulas must now be incorporated in our Mathematica definition for
the Euler derivative EulerD[]. The theoretical definition (3.45) only alters our
Mathematica function in a way that, for several dependent variables, a set of Euler
equations results. Thus, we change our Mathematica function in such a way that all
dependent variables are taken into account in the application of the €a operator. We
realize this by including a loop scanning the input list of the dependent variables. The
code of this generalized Euler operator is

BulerD[density_, depend_List,

independ_, options __] : =
Block[{fO, fh, e, w, y, expand,

euler = {}, wtable},

{expand} = {eXp&DC!} /. {options} /.

Options[BulerD];

wtable = 'l'able [w[i],

{i, 1, Length[depend]}];

fO = l!'\lnction[x, y[x] + ew[x]];

70 Derivatives

rules[i_] :=

b_. wtable[i]] <'u [independ] :-+

(-1)" Hold [O{i"depend,n} b];

Do[

fh = density I. depend[j]] -+ fO I.
{x -+ independ, y -+ depend[j]],

w -+ wtable[j]]};

fh = Expand[oe fh I. e -+ 0];

fh = fh I . rules [j] /.

wtable[j]] [independ] -+ 1;

AppendTo[euler, fh],

{j, 1, Length[depend]}];

J:f [expand,

euler = ReleaseHold[euler],

euler]]

Let us demonstrate the application of this function by two examples.

Example 1

Assume that we know the functional density of a two-dimensional oscillator system.
Let us further assume that the two coordinates of the oscillators are coupled by a
product. We expect that the two equations of motion follow by applying the Euler
derivative. The Lagrange density of the system reads

1 = u[t] v[t] + (Ot U[t])2 + (Ot v[t])' - u[t]' - V[t]2;

1 II LieTraditionalForm

The corresponding system of second-order equations follows by

EulerD[l, {u, v}, t, eXpand -+ True] II LieTraditionalForm

{ - 2 U + v - 2 u t , t, U - 2 v - 2 v t, t }

which are the left-hand sides of the Euler-Lagrange equations. 0

Note that we used the same name, EulerD[], for the operators € and €a. This sort of
definition is possible in Mathematica and provides a great flexibility in the
application of a single symbol for different operations. Mathematica is able to
distinguish the two different functions by the different arguments.

Example 2

Another example for a two-dimensional Lagrangian is given by the function

The Euler Derivative 71

f = u [t] v [t] + «Jt U [t]) 2 + «Jt V [t]) 2 + 2 (Jt U [t] (Jt v [t] ;

f II LieTradi tionalForm

U v + u~ + 2 U t V t + v~

This density is a special model of a Dirac Lagrangian containing the derivatives with
respect to time as a binomial. The corresponding Euler-Lagrange equations read

BuJ.erD[f, {u, v}, t, eXpand True] II LieTraditionaJ.Form

{v-2u t ,t -2v t ,t. u-2ut ,t -2vt ,t}

representing a coupled system of second-order ordinary diffemntial equations. D

So far, we are able to handle point systems depending on one independent variable.
However, equations occurring in real situations depend on more than one variable.
Thus, we need a generalization of our Euler derivative to more than one independent
variable. In fact, the definitions of an Euler operator can be extended from the
q+ I-dimensional case to the q + p-dimensional case. We define this operator in the
following section.

3.6.6 Euler Operator for q + P Dimensions

Here, we will discuss the general definition of an Euler operator. This sort of
operator, for example, is used to write down field equations such as Maxwell's
equations, SchrOdinger's equation, Euler's equation in hydrodynamics, and many
others.

Definition: (q,p)-Dimensional Euler operator

Let f = f(x, u(n) be the density of the functional F[u] with x = (xl, x?, ... , xP), and
u = (u l , u2 , ••• , uq) the p- and q-dimensional vectors of the independent and
dependent variables. By u(n) we denote all the derivatives with respect to the
independent variables. We call

(3.47)

the general Euler operator in q dependent and p independent variables. J is a
multi-index J = (jl' ... , A) with 1 s Asp, k ~ O. 0

Since the functional densities f depend on a finite number of derivatives uj, the
infinite sum in (3.47) is terminated at this upper limit. Again, the Euler equations for
a given functional F[u] follow from the application of €" to F:

72 Derivatives

€a F = 0, a = 1,2, ... , q. (3.48)

From a theoretical point of view, we know the general Euler operator. Our next step
is to make this operation available in Mathematica. We define the generalized Euler
operator by taking into account the different independent variables. The
corresponding definition of EulerD[] for q + p dimensions is given by

Clear [BulerD]

BulerD[density_, depend_List,

iDdepeDd_List, options __] : =
Block[{fO, fh, e, w, y, x$m, expand,

euler = {}, wtable},

{expand} = {eXpand} /. {options} /.

Options[BulerD];

wtable = 'l'able[w[i],

{i, 1, Length[depeDd]}];

fO = I'uDction [x$m, y + e w] ;

ruleg [i_] : =
b_. wtable[i] (,,--) Mindepend:o+

(-1) Plu._{I1) Hold [aDelete [Threa4[{iDdepen".{I1))].0] b] I

Do[

fh = density /. depend[j] fO /.

{x$m independ,

y depeDd[j] OOindepeDd,

w -+ wtable[j] OOindepend};

fh = Bxpand[a. fh /. e -+ 0];

fh = fh /. ruleg[j] /.

wtable[j] Mindepend 1;

Append'l'o [euler, fh],

{j, 1, Length[depeDd]}];

J:f [Not [expand] ,

euler = ReleaseBold[euler],

euler]]

We demonstrate the application of the function EulerD[] to the wave equation in 2+1
dimensions and to a system of coupled non-linear diffusion equations.

Example 1

Let us consider a functional in q = 1 and p = 3 variables and assume that the density
is quadratic in the derivatives given by

F[u] = ~ I (U;1 (Xl> X2, X3) - U;2 - u;,) dx, dX2 dX3 . (3.49)

The Euler Derivative 73

Calculating the variational derivative, we immediately find that the Euler equations
are given by the Laplace equation:

(3.50)

Using the generalized definition of EulerD[], we can reconstruct the result of our
pencil calculation. First, let us define the density by

1 2
f = - {(ax1 u[xl, x2, x3]) -

2
(ax2 u[xl, x2, X3])2 - (ax3 u[xl, x2, X3])2};

f / / Lie'l'raditionalForm

The application of EulerD[] to f gives

wave = BulerD[f, {u}, {xl, x2, x3}];

Hap [# == O&:, Flatten [wave]] / / Lie'l'raditionalForm / / 'l'ableForm

-Uxl,xl + U x 2,x2 + u x 3,x3 == 0

The resulting equation is known as the wave equation in 2 + 1 dimensions. 0

Example 2

In this example, we will consider a system in two field variables (q = 2) and two
independent variables (p = 2). The physical background of this model is the diffusion
of two components in a non-linear medium. The Lagrange density of this field model
has the representation

1 = v[x, t] at u[x, t] + ax u[x, t] ()x v[x, t] +u[x, t]2 v[x, t]2;

1 / / Lie'l'raditionalForm

The related equations of motion follow by

cnondiffu = BulerD[l, {u, v}, {x, t}];

Hap [# == O&:, cnondiffu] / / Lie'l'raditionalForm / / 'l'ablePorm

2 U v 2 - Vt - vx,x == 0

2 u 2 V + Ut - ux,x == 0

representing two coupled non-linear diffusion equations for the variables u and v. 0

74 Derivatives

So far, we discussed differential operators like tangent vectors, prolongations,
Frechet derivatives, and several versions of Euler derivatives. All these differentials
are non-standard operators with special applications. One of these applications is
symmetry analysis of differential equations. In the following section, we discuss the
central usage of these differential operators. We will show that the Frechet derivative
is the main link between differential equations and their symmetries.

3.7. Prolongation of Vector Fields

In Lie's theory, a vector field takes a central role in analyzing symmetries of
differential equations. A vector field is closely related to the term of the tangent on a
curve. The following will show the connection between the tangent of a curve and the
related vector field. We will also calculate the prolongation or extension of a vector
field which is instrumental in symmetry analysis. The calculation of the extension of
a vector field is one of the central terms in Lie's theory.

As discussed in Section 3.2, we define a tangent vector as a measure to determine the
variation of a function in all its independent variables. Closely related to the tangent
vector is a vector field. Let us assume that we have a smooth curve C on a manifold
m given in a parametric form by <I> : I -+ M, where I is a subinterval of IR. The
local representation of the curve is thus given by the m coordinates of m by
<I> = (<1>1 (t), <1>2 (t), ... , <I>'" (t», where t is a parameter. The tangent vector of the
curve is given by the derivative with respect to the parameter t and is calculated by

~~. An example for this notation is the three-dimensional spiral defined by the

function

fh {2co.[t], 2Sin[t],-v't}

{2 Cos[t], 2 Sin[t], -ft.}

A graphical representation of this curve is created by

pll = ParametricPlot3D [I!'latt.n [{II,

RGBColor[l, 0, O]}], {t, 0, '7r},

Axe.Lab.l {.xa , .yn, nza}]

z

y

o
1

Prolongation of Vector Fields 75

2

2

The tangent vector of the curve is just calculated with the definition by differentiating
4> with respect to the parameter t:

tang = "t ill
1

{-2 Sin [tJ, 2 Cos [t]. ~}
2 -y t

The derived tangent vector depends on the location on the curve. In the parametric
representation, we also observe that the tangent vector is infinite in the origin and
becomes smaller and smaller if t increases. If we plot the tangents on different
locations along the curve, we get a field of vectors derming the vector field v. The
function Line[] allows us to graphically represent the vector field in connection with
the curve:

vfield = Table [

{RGBColor [0. 000, o. 000, 1. 000],

tang
Line [{ill, ill + }]} ,

.y tang. tang

{t, 0.1, ... Jr, .7}];

The vector field and the curve are shown below. We combine the plots and the
graphic primitives as follows:

Show[pll, Graphica3D[vfield],

PlotRange -+ All]

76 Derivatives

z

o
1

x

We observe that the vector field v of our spiral assigns a tangent vector to each point
(x, y, z). The vector field itself varies smoothly from point to point. In Cartesian
coordinates, the vector field of our spiral is given by

(3.51)

This representation is based on the basis vectors of IR 3 • In symmetry analysis of
differential equations, it is convenient to replace the Cartesian basis by a
representation using the partial differentiations with respect to the Cartesian
coordinates. The partial derivatives with respect to the coordinates can be interpreted
as placeholders for the Cartesian basis. Thus, we define a vector field as a differential
operator in local coordinates as follows.

Definition: Vector field

A vector field v on a manifold m is a tangent vector Vx to each point x E m varying
smoothly from point to point. In local coordinates, a vector field has the
representation

(3.52)

where the ~i are smooth functions of the coordinates x. 0

The related Mathematica definition is thus given by

Prolongation of Vector Fields 77

Clear[VectorField];
VectorField[coef_List,

vars_List] :=Block[{F, k},

Length [coef]

F = k@@vars; 2:: coef[i] OvarS[i] F]
1=1

Application in a three-dimensional manifold m with coordinates (x, y, z) gives

var = {x, y, z};

coefficients = {vl@@var, v2@@var, v3@@var}

{vi [x, y, z], v2 [x, y, z], v3 [x, y, z]}

VectorField[coefficients, var] / / LieTraditionalForm

vi kx + v2 ky + v3 kz

The differential operators are represented in our result by derivatives of an arbitrary
function k with respect to the coordinates contained in the variable var. Let us look at
this example from a more physical point of view, which was the original view of Lie.
Assume that the components of the vector field are the components of a velocity field
of a laminar fluid flow. Then, at each point (x, y, z), the vector Vx describes the
velocity of the fluid particles passing through the point x. Thus, we are able to
describe the velocity field of a fluid by using the mathematical term of a vector field.

Now, let us look at our example of the spiral in a different way. Knowing that the
vector field describes the velocity field of the fluid, we may ask for the stream lines
or potential representation of the flow. From a physical point of view, the vector field
is connected with the flow if we consider the laminar behavior. To derive the
potential representation of the flow of our example, we have to consider the
components of the vector field as the defining components of the flow of the
coordinates. The defining equations read

flowEquations =
1

Thread[{Oex[e], oey[e], oez[e]} == {-y[e], x[e], }]
2 z [e]

{X' [EJ == -Y[E], y' [E] == X[E], Z' [E] == 1 }
2 Z [E]

The right-hand sides of these flow equations are the components of the tangent vector
or the vector field. The flow has to satisfy that the vector x at t = 0 is reproduced at
the origin. The solution of these equations under the initial conditions x(O) = xo,

yeO) = Yo, z(O) = Zo gives us the flow related to the vector field

78 Derivatives

flow = Simplify [

DSolve[

Join[flOWZquations, {x[O] == xO, y[O] == yO, z [0] == zO}],

{x[e], y[e], z [e]}, e]]

{{z[e] -7 _-./Z02 +e, X[E] -7xOCos[e] -yO Sin[eJ,

y[e]-7yOCos[e] +xOSin[eJ}, {z[e] -7-./z0 2 +e,

x[E]-7xOCos[e]-yOSin[eJ, y[e]-7yOCos[e] +xOSin[eJ}}

The result shows that the flow of our vector field is given by a rotation in the
(x, y)-plane and a special translation along the z direction. This flow describes the
spiral we started from in a different representation. We must remember that
(xo, Yo, zo) is an arbitrary position of the three-dimensional space. This initial vector
is transformed to another position if we change the parameter E. This transformation
acts like the flow in a fluid. Generalizing this example, we can define a flow of a
vector field by the following:

Definition: Flow of a vector field

If v is a vector field, we call the integral curve passing through a point x in the
manifold m the flow <I>(x, t) generated by v. 0

The flow of a vector field has the properties

<I>(<I>(x, E), 15) = <I>(x, E + 15), X Em, (3.53)

meaning that the application of the flow on the same point x of m at different values
of E results in the flow at x at a location of the sum in E and 15. Another property the
flow has to satisfy is the representation of x at the origin of E; that is, at E = 0, we
have the identity

<I>(x, 0) = x. (3.54)

Equation (3.54) describes the identity of the flow for a vanishing parameter E

reproducing the original vector x. Comparing the two properties with the features
discussed in Chapter 1 on groups, we see that the flow generated by a vector field v
has some characteristics in common with groups. The derivation of the flow or the
one-parameter group generated by a given vector field v is known as exponentiation
of the vector field and represented by the notation

(3.55)

In the following, we will denote the flow by <I>(x, E). As already discussed, the flow is
a result from the solution of a system of ordinary differential equations related to the

Prolongation of Vector Fields 79

vector field v. The vector field v is the generator; precisely, the infinitesimal
generator of the transformation. Expanding the flow around x = 0, we find the
infinitesimal representation

~(x,e) = x + e~(x) + O(~), (3.56)

where ~ = (gl, g2, ... , gn) are the expansion coefficients of the vector field v. The
related determining equations of the flow also known as characteristic equations are
given by

dx; (e) ~ . -- = gi(x(e», 1= 1,2, ... , n
de

(3.57)

with the initial condition x (e = 0) = x. Above, we discussed the spiral as an example
in three dimensions m=IR 3 . Several other examples will demonstrate the application
of the theoretical considerations connecting the flow and the vector field on a
manifold.

Example 1

Another example describing a one-dimensional translation in m=IR is given by the
vector field v = ax. The corresponding characteristic equation for the coordinate x
reads

onedim = c3e x[e] == 1

X'[E)==l

This equation was created by applying equation (3.57) with gl = 1. The solution of
this simple first-order ODE under the initial condition x(e = 0) = x representing the
identity (3.54) is

flowODedim = DSolve[{onedim, x[O] == xO}, x[e], e] /. xO -+ x

{{X[E)-7X+E}}

which is just a translation of the coordinate. We define the flow ell in Mathematica by
the relation

Using this representation of the flow, we can check the properties (3.53) and (3.54).
The combination of two translations e and 8 satisfy the condition

II! [II! [x, e], c5] = = a! [x, e + c5]

True

80 Derivatives

representing the closure relation of the group of translations. The second property
(3.54), the identity of the group, gives

m[x, 0] ==x

True

Knowing the identity of the group, we are able to construct the inverse element of the
group. The inverse element of the associated group follows from the relation

x == m [InverseFunction[m [x, e]], e]

== m[m[x, -e], e]

E + InverseFunction [x + E J == x

Solve [e + InverseFunction[x + e] == x, InverseFunction[x + e]]

{ {InverseFunction [x + E J --> x - E} }

The found solution represents an inverse translation if we assume that E > O. The
associativity of the underlying group follows from

m [m [m [x, e], c5], w] = =

m [m [m [x, c5], w], e]

m [m [m [x, w], e], c5]

True

We demonstrated for the vector field v = ax, generating a translation in x, that the
corresponding flow possesses all properties of a group. The symmetry of translation
is one of those symmetries frequently encountered in symmetry analysis. D

Example 2

Another one-dimensional example in m = R also possessing the group properties is
given by the vector field v = xax ' From equation (3.57), the corresponding
characteristic equation is

scale=CJ.x[e] ==x[e]

x' [E J = = x [E J

This equation allows the solution

flowScale= DSolve[{scale, x[O] ==xO}, x[e], e] /.xO-+x

{ {x [E J --> EE x} }

Prolongation o/Vector Fields 81

The result defines a scaling transformation of the variable x. We consider the factor
g as a constant greater than or less than 1 depending on the sign of E. For positive E,

the original value of x is enlarged, and for negative values of E, x is reduced in its
value. We can check the two basic properties of the closure and the identity of the
group by defining the flow as

The closure of the scaling group now reads

II [II [x, e], 6] == II [x, e + 6]

True

and the identity is given by

lI[x, 0] == x

True

The two relations demonstrate that the transformation group of scaling is closed and
contains the identity transformation. 0

Example 3

In this example, we will reverse our calculations. Knowing the flow, we will derive
the related vector field. A global transformation commonly encountered in physics
and mathematics is a rotation. To simplify things, let us consider the rotation of an
object in the plane. The corresponding flow of this transformation is given by

II [x_, y_, e_] := {xCoB[e] -ySin[e], xSin[e] +yCoB[e]}

Knowing the flow of a group, we are able to calculate the infinitesimal representation
of the flow by calculating the vector field v. According to equations (3.55) and (3.56),
the infinitesimals g of the flow define the coefficients of the vector field. For the
present example, in two dimensions the vector field has the representation

(3.58)

The infinitesimals are calculated by the relation

diP I g= - .
dE E=O

(3.59)

From the flow for rotations, we get the infinitesimals

, = as II [x, y, e] I. e 0

(-v. xl

82 Derivatives

Thus, the vector field v of plane rotations has the representation v = -y8x + x8y •

Again, we can reverse our considerations and calculate the flow starting from the
vector field. The flow or the global group transformation follow by solving the
characteristic equations, which are a system of ordinary differential equations.

rotation = {o.x[e] == -y[e], a.y[e] ==x[e]}

{x' [E] == -Y[E], y' [E] == X[E]}

The related flow follows by solving these equations:

flow = Si~lify [

DSolve[Join[rotation,

{x[O] ==xO, y[O] ==yO}], {x[e], y[e]}, ell /.

{xO -+ x, yO -+ y}

{{X[EJ->XCOS[E]-ySin[EJ, y[E]-,yCOS[E] +xSin[E]}}

reproducing the relation with which we started. 0

Example 4

As a final example, let us consider the global group action of a flow containing
rational expressions which are related to a projective group:

Differentiating this expression by using equation (3.59), we find the infinitesimals of
the flow to be

g = o. iii [x, y, e] /. e -+ 0

{_x3 y, y2}

which gives us the vector field in the representation v = -XJ y8x + l By. Knowing
the infinitesimals, we are able to graphically represent the vector field. A plot of the
vector field corresponding to the rational flow is given below. The package

Graphics'PlotField' is useful for the representation of vector fields.

« nGraphics'PlotField'n

PlotVectorField[g, {x, -2, 2},

{y, -2, 2}, ColorFunction -+ Hue]

Prolongation o/Vector Fields 83

, ..

.... ... r .I

~ . j t

\ ~ .
o

So far, the discussion of flows and the related vector fields was restricted to a set of
independent coordinates. Let us now ask the question: What happens if we apply the
flow concept to a function f depending on a set of independent coordinates? Let us
assume that v is a vector field on the manifold m and / : m ~ IR is a smooth function.
Our intention is to get a formula describing the changes of / if we apply the
transformation cI> on the independent variables. To simplify things and make them
easier to read in Mathematica, we restrict our considerations to the case m= IR. In
local coordinates, the vector field is thus given by v = 5 (x) ax. Now, let us examine
the behavior of the function / if the flow cI> is applied on the independent variable x .
After the transformation of the independent variables, we calculate the derivative of
/ with respect to the parameter E:

Clear[m, {]

a. f[lII[x, e]]

f ' [~ [x, E]] ~ (0,1) [x, E]

The result is an expression containing derivatives of / and cI>. From our
considerations above, we know that the flow cI> at E = 0 has to represent the identity.
We also know that the first derivative of the flow at E=O is a representation of the
infinitesimals f We use these conditions to define the transformation rule

rulel = {III [x_, 0] :-+x, 111(0,1) [x_, 0] :-+ {[x]}

{~[x_, 0] H X, ~ (0,1) [x_, 0] :~ ~[x] }

84 Derivatives

The second element of this list of delayed rules introduces an abbreviation for the
coefficients of the vector field f If we again evaluate the differentiation of the
function f at E = 0 and use rule 1, we find

0. f [il! [XI e]] /. e -+ 0 / • rulel

{; [x] f' [x]

This relation can be identified with the application of the vector field v on f;

i.e., v f(x) = §(x) ax f(x). The presented calculation shows that the notation for a
vector field is generally useful for simplifying the representation of the infinitesimal
flow. The one-dimensional example can be generalized to higher dimensions. The
vector field v acts as a first -order partial differential operator on real functions f on
m. On the other hand, we can expand the function f containing the transformed
arguments in a Taylor series around E = O. The result of this sort of calculation is

Series[f[il![x, ell, {e, 0, l}] /. rulel

f[x] + {;[x] f'[x] E+O[E]2

representing the infinitesimal change of f under the flow generated by the vector
field v. We can summarize that the flow changes the function f in the following way:

f(cI>(x, E» = f(x) + EV f(x) + o(il), (3.60)

where 'Of gives the infinitesimal change in the function f under the flow generated
byv.

So far, we discussed the meaning of a vector field in a manifold m of independent
variables. We observed that the ensemble of the tangent vectors at different positions
defines the vector field. We also introduced the vector field by replacing the
Cartesian basis with a differential basis. The examination of a function under the
action of the flow demonstrated that the transformed function is represented by the
function itself and the infinitesimal change of the function caused by the application
of the vector field on the function. Up to now, we assumed in our discussions that the
variables in the manifold are independent of each other. Let us now assume that we
have a manifold containing also some dependent variables. Here, the question arises
of how to transform the derivatives contained in such a manifold. This is closely
related to the problem of prolonging or extending a vector field.

We discussed in Section 3.4 how to extend or prolong a manifold. The procedure in a
nutshell is that we add new coordinates, representing the derivatives, to the manifold.
On the other hand, if we extend the manifold by new coordinates, we naturally have
to extend the vector field by these new coordinates. We can write such an extension
symbolically by

Prolongation 01 Vector Fields 85

(k) ~ J: a A.a a A.,a a pr v = ~i Xi + 'I' u· + 'I' u~ + (3.61)

In expression (3.61), we divided the variables of the manifold m into two sets: one
known as independent variables x = (Xl> X2, ••• , x p) and the other known as
dependent variables u = (u1, u2 , ••• , uq). ¢l,a denotes the symbol of the transformed
derivatives uf=aua laxi. The difficulty with relation (3.61) at the moment is that we
do not know how to calculate the coefficients ¢l,a of the extension. However, to get a
feeling of how derivatives change under a transformation, let us go back to the basics
of calculus.

Assume that we have to examine the transformations of a curve u = I(x) in one
independent variable X and one dependent variable u(x). The transformation of this
curve is given by two rules defining the change of the original variables x and u to the
new variables X = Sex, u) and U = 4>(x, u), respectively. In Mathematica, we define
this transformation by the following set of rules:

Clear[O, X, III, 3];

transformation = {X -+ FuDction [{x, u}, 3 [x, u [x]]] ,

0-+ I'WlctiOD [{x, u}, III [x, u [x]]] };

where the transforming functions B and 4> are given functions of the original
variables x and u. Applying the transformation on the curve u = I(x), a new
representation U = F(X) results. The variables U and X in the new representation
depend on the variables of the old representation (x, u). Our intention is to examine
the derivative of the curve in the new coordinates. The calculation of the derivative of
U in this new coordinate system needs to take into account the changes of all the new
variables. These changes are best represented if we use the total derivative to realize
the derivative. The slope of the curve in the new coordinates is calculated at each
point (x, u) of the old coordinate system by

Dt[O[x, u]]
t1' = ; t1' II Lie'l'raditionalJ'orm

Dt [X[x, ull

Dt [u] Uu + Dt [x] Ux

Dt [u] Xu + Dt [x] Xx

The result shows that the derivative in the new coordinate system is a function of the
old variables. If we explicitly express these dependencies by the transformations
connecting the old and the new coordinates, we get

0' = t1' I. tranafoz-matioDl tr II Lie'l'raditionall'orm

86 Derivatives

This is a basic result from calculus and fundamental for our further examinations.
The formula above says that a transformed derivative itself becomes a function of the
transformation in the new coordinates. The connecting link between our current
examinations and the prolongation of the vector field are the transformations 8 and ~
which represent the flow of the related vector field. The variable U' in our notation is
nothing else than the representation of the symbol ~,a. This symbol was introduced in
relation (3.61) for the extended vector field. The difference between the
considerations on vector fields and the representation of the extension in calculus is
that the latter does not depend on a parameter E. However, this dependence is not
essential, as we will show in a moment. We can actually assume that the
transformations 8 and ~ depend on E. The definition of these one-parameter
transformations reads

transformation = {X -+ Function [{x, u}, :;;; [x, u [x], e]],

U -+ Function [{x, u}, it [x, u [x], e]]};

These transformations do not change the previous result. The relations for the
extended vector field are derived if we replace the original transformations by the
E-dependent transformations. Then, the derivative in new coordinates gets the form

Dt [U[x, u]]
U' = / • transformation; U' / / LieTraditionalForm

Dt [X[x, u]]

where E is just a parameter in this expression. This representation of the
transformation is a general transformation determined by the arbitrary functions 8
and ~. Lie demonstrated that this general transformation can be replaced by a much
simpler version, the so-called infinitesimal transformation. We know from our
considerations above that the infinitesimal transformations of the manifold m are
given by

infinitesimalTransfo:rmation =
{X -+ Function[{x, u}, x + e ~[x, u[x]]],

U -+ Function [{x, u}, u [x] + e rjJ [x, u [x]]] };

Using these infinitesimal transformations of the variables, the first derivative in the
new coordinate system becomes

Dt [U[x, u]]
U' = /. infinitesimalTransformation;

Dt [X[x, u]]

u' / / LieTraditionalForm

Ux + E (ux 4>u + 4>x)
1 + E (ux ~u + ~x)

Prolongation o/Vector Fields 87

Remembering the fact that in symmetry analysis, an infinitesimal representation is
based on the linear part of the parameter E, we are able to reduce this rational
expression to a simpler form by expanding U' around E = 0

U' = Expand [Series [U' I {e I 0 I 1}]]; u' / / LieTradi tionall'oZ'1ll

u x + (ux (-ux ~u - ~x) + u x cPu + cPx) E + 0 [E]2

The result is that the derivative U' is given by the old derivative u' plus terms
characteristic of the transformation. This expression represents the infinitesimal
transformation of the first derivative depending on the derivatives of the
infinitesimals 5 and cp for the independent and dependent variables. The
representation of the prolonged vector field is thus given by

prolongation = AppendTo[infinitesimalTransformation,

Upri_ -+ l'unction[{XI u} I w] /. w -+ (Normal [0'] /. u [x] -+ u)]

{X ~ Function [{x, u}, x + E ~ [x, U [x]]] ,

U ~ Function [{x, u}, u [x] + E cP [x, u [xl] 1 ,
Uprime ~ Function [{x, u}, u' [xl + E (u' [x] cP(O,l) [x, u] +

u' [x] (-u' [xl ~(O,,) [x, ul - ~(l,O) [x, u]) + cP(l,O) [x, u])}

The variable prolongation contains the infinitesimal transformations for the
independent and dependent variables x and u and the first prolongation cp' of this
manifold. Knowing the infinitesimal transformations of the variables, we are able to
write down the corresponding vector field. The once extended vector field thus
becomes

vectorl'ield [f_] : = {[x, u] ax f + t/J [XI u] au f +

Coefficient [NoZ'1ll&l [U'] I e] ap f

The application of this function on an auxiliary function / depending on the variables
(x, u, p) gives us the first extended vector field in its general form:

vectorl'ield[f [XI U , p]] / / LieTraditionall'oZ'1ll

We changed the notation slightly by introducing the variable p for the first derivative
in u. This substitution simplifies the representation and clarifies the fact that Ux is
considered as another coordinate of the manifold m. The result shows that the first
extended vector field depends in a characteristic way on the derivatives of the
dependent variables as well as on the first derivatives of the flow components 5 and
cp. Recalling the steps of the calculation for deriving the first extension of the vector
field, we can go to the next order in the extension. The steps we needed in the
calculation were as follows:

88 Derivatives

1. Replace the old differentials by the new differentials.

2. Use the infinitesimal representation of the transformations.

3. Expand the result around E = 0 up to first order.

The second extension of the vector field follows by using the same steps but
incorporates the results of the first extension. The second extension is calculated by
the formula

0"=

Bx (Dt [U[x,u]] /. infinitesi_l'l'ransformation)
[

• [Dt [X[x,u]]
Normal Ser1es ---/.

Bx x [x, u [x]]

infinitesi_l'l'ransformation, {e, 0, l}]];

t1" / / Lie'l'raditionall!'orm

Ux,x + E (2 (-ux';u - ';x) ux,x + <Pu ux,x-

Ux (';u ux,x + Ux ';x,u + Ux (ux ';u,u + ';x,u) + ';x,x) + Ux <Px,u +

Ux (ux <Pu,u + <Px,u) + <Px,x)

The result of the calculation contains a large number of terms. However, looking at
the first terms of the result, we observe that the second derivative. ux,x' is altered by a
sum of terms containing derivatives of the infinitesimals ~ and ifJ. The components of
this expression are derivatives of the dependent variable and the flows ~ and ifJ up to
second order. The twice extended vector field thus follows by

Clear[vectorl!'ield];

vectorl!'ield [f_] : = '[x, u] Bx f + 4» [x, u] Bu f +

Coefficient [Normal [U'], e] Bp f +

Coefficient [11", e] B" f

Applied to an auxiliary function, we get the expression

vectorl!'ield [f [x, u, p, q]] / / Lie'l'raditionalForm

<P fu +'; fx + fp (ux (-ux';u - ';x) + Ux <Pu + <Px) + fq (2 (-ux';u - ';x) ux,x +

<Pu ux,x - Ux (';u ux,x + Ux ';x,u + Ux (ux ';u,u + ';x,u) + ';x.x) +

Ux <Px,u +ux (ux <Pu.u + <Px,u) + <Px,x)

In conclusion, the second extension of the vector field v follows from the first
extension which was created using the infinitesimals itself. If we are interested in the
third extension, we need the second and the first extension. In other words, the higher
extensions of the vector field are recursively defined. This recursive definition was
first observed by Lie and Engel [1888]. Today, the extensions are calculated by a
general formula combining all the discussed steps in a nutshell. The prolongation
formula in its modem form is given by

Prolongation of Vector Fields 89

(k) ~ ~ ~ ""] a pr v = v + 66¢J,,(x, U(k)) -,,-.

a=1] au]
(3.62)

The second summation in this expression extends to all multi-indices
J = (h, ... , j/) with 1 :::;; jl :::;; p, 1 :::;; I :::;; k. The kth expansion coefficients ¢J~ of the
prolongation are recursively given by

(3.63)

where uf = a ua / a Xi and U~,i = a uJ / a Xi' This step corresponds to the recursion
discussed above. For a detailed discussion of the recursive prolongation formula, see,
e.g., BIuman and Kumei [1989], Ibragimov [1985], and Olver [1986].

The problem of such a complicated recursive calculation of the prolongation is that
for the kth-order calculation, we always need to know the k - 1 previous results. If k
is a large number, this can be very time- and memory-consuming if done by
computer, not to mention the labor of a pencil calculation. Thus, we need a method
which simplifies the calculation and makes it efficient for a computer. Actually, there
exists a way to derive the extensions of a vector field much quicker.

The calculation of the prolongation of a vector field is simplified if we keep the
following two points in mind. First, there exists a representation of the infinitesimals
which simplifies the transformations. This representation is known as the
characteristics. Second, the differentiation process of the prolongation can be
eliminated by using the Frechet derivative. The combination of these two tools
provides us with a procedure to overcome the recursive definition of the prolongation.

Before discussing the implementation of the prolongation in Mathematica, let us
briefly show the equivalence of both formulations. To fix terms, we call the first
procedure the recursive prolongation formula and the second, the Frechet
prolongation. The first step to prove the equivalence of the two methods is the
introduction of the characteristics of a vector field. The characteristic function of a
general vector field is defined by (cf. Olver [1986])

(3.64)

90 Derivatives

If we assume that the characteristics Q depend on the dependent variables and its
derivatives, we can write down a relation connecting the prolongation of a function !J.
with the Frechet derivative. The function !J. is a member of the extended manifold and
depends on derivatives up to kth order. The vector field vQ based on the
characteristics Q allows us the inclusion of first-order derivatives of u in the
transformation. The connection between the prolongation of vQ and the Frechet
derivative is given by

(3.65)

This relation follows from the definition of the prolongation of the vector field 1IQ

(3.66)

where, in general, Q", = Q", (u(k» depends on derivatives up to order k = 0, I, If,
in addition, we use the definition of the Frechet derivative, introduced in Section 3.5,
we are able to reproduce equation (3.65).

Relations (3.63) allows us to calculate the kth expansion coefficient of the
prolongation by a total differentiation

p

l/J~ = DJ Q", + 2:~i U~.i· (3.67)
i=1

Substituting this expression for the general representation of the prolongation
formula (3.62) and rearranging terms in the sums, we get

(3.68)

A comparison of the terms in curly brackets with the definition of the total derivative

af ~ '" '" af
Di f = aX' + L... L... UJ,i au'"

I a=1 J J

(3.69)

shows that we can replace the prolongation (3.62) by

P

prlk) 11 = pr(k) 1IQ + 2:~i Di, (3.70)
i=1

Prolongation of Vector Fields 91

where we used definition (3.66) to express the kth prolongation of vQ. If we now use
relation (3.65), we can express the prolongation of a vector field v by the Fr6chet
derivative as

p

pr(k) v = DA(Q) + L:gi Di . (3.71)
i=1

Thus, we demonstrated the equivalence of the two methods. Both procedures are
available in the package MathLie. The advantage of relation (3.71) is that the
prolongation of a vector field v is free of any recursion. If we replace the
characteristics by their infinitesimal representations, we get a formula which contains
all the necessary information:

p

pr(k) v = DA(Q) Qa =</!a - I,;=J' ~:~ +.tt gi D i · (3.72)

Relation (3.72) seems very complicated at first glance. This formula is awkward if
we do the calculation by hand. However, using a computer, (3.72) is just the
expression we need. From a computational point of view, equation (3.72) contains
simple operations. These operations are differentiation, summation, and a
substitution. Each one of these operations is carried out by a computer very
efficiently. Another advantage of calculating the prolongation of a vector field using
(3.72) is the flexibility of its application. We can also use this formula to calculate the
prolongation in connection with Lie-Backlund symmetries. This type of symmetries
is discussed in Chapter 9.

The implementation of the prolongation follows formula (3.72) very closely. The
following lines show how the prolongation is implemented in MathLie. The
prolongation function is based on the function FrechetD[]. For the correct work of
Prolongation[], it is thus necessary that the Frechet derivative is also available. The

function Prolongation[] is based on the differentiation and substitutions as
represented in (3.72). The function itself needs three arguments. The first argument
represents the function on which the prolongation is applied. The second and third
arguments contain the sets of dependent and independent variables of the manifold.
All three arguments are lists. The result is a general expression of the infinitesimals
representing the kth prolongation. The order k of the prolongation is determined by
the function itself. The symbolic names for the infinitesimals gi and rPa are also
created by the function itself.

Clear[proloagatiOD];
Prolongation [equations_Liat,
depend_List, iDdepeDd_Liat] :=

92 Derivatives

Block [{Depend = {}, vars, test = {},

eta = {}, subrule = {}, prol = {},
prolong, mainrule, xyzt, wxc, uvw},

Do[
AppendTo[Depend,

depend[iD@@independ],
{i, 1, Length[depend]}];

vars = I'latten[Join[independ, Depend]];

Do [AppendTo[eta,

Length [independ]

phi [i] @@vars - 2:: xi [j] @@vars 0independITH Depend[iD],
j=l

{i, 1, Length[depend]}];

Do [AppendTo[test,
unique [nw$t n]] ,

{i, 1, Length[Depend]}];
mainrule = wxc -+ l'unction[xyzt, uvw];

Do [AppendTo [subrule, mainrule /.

{wxc -+ test [iD ,
uvw -+ eta [iD ,

xyzt -+ independ} 1,
{i, 1, Length [eta] }] ;

prolong = I'rechetD[equations,
depend, independ, test];

prolong = Expand [prolong /. subrule];
prolong = Apply [Plus, prolong, 1];

Do[
AppendTo[prol,

Expand [prolong[jD+

Leng'th [independ]

2:: xi [i 1 @@vars aindep.ndITi] equations]] ,
i=l

{j, 1, Length[prolong]}];

I'latten[prol]]

Now, we can use this function to check our interactive calculations given above. By
applying the function Prolongation[] to an arbitrary function depending on one
independent and one dependent variable and its derivative, we can check our
calculations. Since the function Prolongation[] uses the Frechet derivative in the
calculation, it is not necessary to specify the highest order of derivatives. The
function automatically detects the order of the derivative. The application of
Prolongation[] to the simple example discussed above gives us

prolongation = Prolongation [{ f [x, u [x], ax u [x]] }, {u}, {x}]

Prolongation of Vector Fields 93

{u' [x] phi[l] (0,1) [x, u[x]] f(O,O,l) [x, u[x], u' [x]]­

u' [X]2 xi[l] (0,1) [x, u[x]] f(O,O,l) [x, u[x], u' [x]] +

phi [1] (1,0) [x, u [x]] f(O,O,l) [x, u [x] , u' [x]] -

u' [x] xi [1] (1,0) [x, u [x]] f(O,O,l) [x, u [x] , u' [x]] +

phi[l] [x, u[x]] f(O,l,O) [x, u[x], u' [x]] +

xi[l] [x, u[x]] f(l,O,O) [x, u[x], u' [x]]}

If we compare this result with the result obtained by the interactive calculation, we
detect a complete equivalence. The result created by Mathematica is difficult to read,
The prolongation becomes more readable if we apply the function
LieTraditionalForm[] to the result of the above calculation.

pro1ongation II LieTraditiona1Porm

The function LieTraditionalForm[] uses the variable TraditionalLieForm containing
rules to transform dependent variables and their derivatives to a shorthand notation.
This representation uses subscripts to denote differentiations and suppresses the
arguments of the functions. The result of the transformation is shorter and contains
the information in condensed form, The representation reminds one of the traditional
mathematical notation but is not usable by Mathematica. An abbreviation for
LieTraditionalForm[] is L TF[]. This function additionally represents the argument as
equations in a table. Both functions deliver easy-to-read output but are inconsistent
with Mathematica's notation. However, we can solve this notational inconsistency for
Mathematica by storing the result of Prolongation[] into the variable prolongation

and suppressing the output. Afterward, we apply the rules TraditionalLieForm to that
variable, In this way, we gain both a consistent representation in Mathematica and a
condensed representation of the result. We will demonstrate this procedure by
calculating higher-order prolongations, We can use the function Prolongation[] in a
manner as simple as in the previous example. The result for the second extension of a
vector field reads

secondPro1ongation

Pro1ongation [{ f [x, u [xl, O{x,l} u [xl, O{x,2} u [xl 1 },
{u}, {x} l; secondPro1ongation II LieTraditiona1Form

{fx';l + fu ¢l - fux u~ (';d u - fux Ux (';d x + fux Ux (¢d u + fux (¢l)x-

3fux ,x Ux (';duux,x-2fux,x (';dxux,x+fux,x (¢l)uUx,x-

fux,x u; (~1) u,u - 2 fux,x u; (~1) X,ll - fux,x Ux (~1) x,x +

fux,xu~ (¢du,u+2fux,xux (¢ilx,u+fux,x (¢dx,x}

Applying the transformation to the variable secondProlongation delivers the
shorthand notation. Multiple differentiations of the dependent variables are denoted

94 Derivatives

by subscripts separated by commas. However, the variable secondProlongation
contains the full Mathematica representation of the result. We can display the
Mathematica expression by

secoDdProlongation

{u"[x] phi[l] 10,1) [x, u[x]] f IO ,O,O,l) [x, u[x], u'[x], u"[x]]-

3 u' [x] u" [x] xi [1] 10,1) [x, u [x]] fIO,O,O,l) [x, u [x] , u' [x] , u" [x]] +

u' [X]2 phi [1] 10,2) [x, u [x]] f IO ,O,O,l) [x, u [x] , u' [x] , u" [x]] -

u' [X]3 xi [1] 10,2) [x, u [x]] f IO ,O,O,l) [x, U [xJ, u' [xJ, u" [x]] -

2u"[x] xi[l]ll,O) [x, u[x]] f IO ,O,O,l) [x, u[x], u'[xJ, u"[x]] +

2 u' [x] phi [1] 11,1) [x, u [x]] f IO ,O,O,l) [x, u [x] , u' [x] , u" [x]] -

2 u' [X]2 xi [1] 11,1) [x, u[x]] f IO ,O,O,l) [x, U [x], u' [x] , u" [x]] +

phi[l] 12,0) [x, u[x]] f IO ,O,O,l) [x, u[xJ, u'[xJ, u"[x]]-

u' [x] xi [1] 12,0) [x, u [x]] f IO ,O,O,l) [x, U [xJ, u' [xJ, u" [x]] +

u' [x] phi [1] 10,1) [x, u[x]] f IO ,O,l,O) [x, U [x], u' [x], u" [x]] -

u' [X]2 xi[l] 10,1) [x, u[x]] f IO ,O,l,O) [x, u[x], u' [x], u" [x]] +

phi[l] 11,0) [x, u[x]] f IO ,O,l,O) [x, u[xJ, u'[x], u"[x]]-

u' [x] xi [1] 11,0) [x, u [x]] f IO ,O,l,O) [x, U [xJ, u' [xJ, u" [x]] +

phi [1] [x, u[x]] f IO ,1.O,0) [x, u[x], u' [x], u" [x]] +

xi [1] [x, u[x]] f l1 ,0,0,0) [x, u[x], u' [x], u" [x]]}

The application of a prolonged vector field to a differential expression is used
extensively in the symmetry analysis of differential equations. Let us demonstrate the
application of this function by two examples.

Example 1

Assume that we know that the infinitesimal flow is given by a rotation in the plane:

flows = {xi [1] I'uDction [{XI y} I -y[x]] I

phi [1] !'unction [{XI y} I x]};

We are interested in the behavior of the differential expression a = Ef2 y(x) / a:x?­
under this kind of flow. First, we will calculate the prolongation of a by using the
function Prolongation[].

pro12 = Prolongation [{B{x.2} Y [x] } I {y} I {x}];

pro12 / / Lie'l'radi tionalJ'orm

{-2 (';dxYx,x-3yx (';dyYx,x+ (ct>dyYx,x-Yx (';dx,x-

2~ (';dx,y-Y~ (';dy,y+ (ct>llx,x+2yx (ct>llx,y+~ (ct>lly,y}

The result is an expression containing a combination of derivatives for the
infinitesimals gi and ¢a and the dependent variables. The prolongation of the vector
field v is simplified if we insert the known representation of the flow

Prolongation o/Vector Fields 95

pro12 /. Y [x] Y /. flows / / Lie'1'raditionall'orm.

{3 Yx Yx,x}

The result is that the prolongation of y" under a rotation results into an expression
which is closely related to the original expression tJ.. We will later show that the
result derived is a consequence of the symmetry group of the equation y" == O. 0

Example 2

Another example invariant under the given flow is given by the following example.
2 -3/2

The differential expression tJ. reads tJ. == y" (1 + y') . The corresponding
prolongation of tJ. under the condition of the symmetry of rotation is

Simplify [prolongation [

{a{X.2}Y[X] (1+ (ax Y[X])2)-3/2}. {y}. {x}] /. y[x] y/.

flows]

{OJ

2 -3/2
The result shows that the prolongation of the expression yxx(l + Yx) under an
infinitesimal rotations vanishes. D

So far, we discussed the basic tools of symmetry analysis. The following chapters
will show you how these tools are used to find the symmetries of functions and
differential equations.

4

Symmetries of Ordinary
Differential Equations

4.1. Introduction

Let us start with the following question. Suppose you have to solve an ordinary
differential equation of second order like

equationl = (I{X,2) u [x] - (x - u [xl) (Ix u [xl == 0;

equationl / / LieTraditionall!'oDD.

- (-u + x) u x + u x •x == 0

How can we proceed to find the solution of this simple-looking equation? The first
idea is to use Mathematica to solve the equation. If we apply DSolve[] to the
equation, we get the answer

solution = DSolve [equationl, u, xl

DSolve [- (x - u [xl) u' [xl + u· [xl == 0, u, xl

After this dissatisfying result, you may check your knowledge as to whether the
differential equation belongs to a class you know. Or you may try to find a
transformation which will put the differential equation into a standard form. If you

Introduction 97

are not successful, you perhaps look up a table of standard equations or you try to
make some ansatz to find a solution. If none of your tasks solved the problem, you
have to leave it unsolved. But you may have an uneasy feeling that there is a method
you may have overlooked or of which you are unaware.

In this section, we will show you a procedure which perhaps solves your problem and
which is simple in its application when MathLie is used as a tool. The method we will
present is a rather ancient method invented at the end of the last century by the
Norwegian mathematician Sophus Lie. He produced a tremendous work on
symmetries which is applied not only to solve differential equations but also to fields
like quantum mechanics, function theory, perturbation theory, etc. In this chapter, we
restrict our considerations to ordinary differential equations. In Chapter 5, we will
discuss partial differential equations, too.

The story of symmetry analysis started in the middle of the 19th century when Lie
and Klein met in Berlin. Both mathematicians contributed a lot to the theory of
symmetries. Lie invented his famous work to examine symmetries in connection with
algebraic and differential equations. In his Gottinger program, Klein developed the
discrete and algebraic parts of the application of symmetries on functions. Lie
merged into the large field of differential equations which was very useful for
classifying the differential equations in a new way. The theory developed by Lie is
very laborious if done by hand. This was one of the reasons why the application of
this theory disappeared for solving practical problems. Very few people used Lie's
procedure to examine their differential equations. One of these was Birkhoff [1950]
who in the 1950s applied the theory to hydrodynamic problems. In recent years, more
and more attention was paid to the theory of Lie as one of the rare methods to deliver
solutions, especially for non-linear differential equations. Today, Lie's procedure is
accessible for a broad application if the computational power of computer algebra is
used. The very extended algebraic calculations today are carried out by computers. In
the past 20 years, there has been a tremendous increase of computer power and of the
development of symbolic languages, allowing the problem to be tackled in an even
simpler way. A summary of the development of symbolic programs was recently
given by Hereman [1994, 1996]. One of these symbolic languages usable for the
implementation of Lie's procedure is Mathematica. Mathematica with its powerful
matching procedures is well fitted as a tool to carry out calculations used in Lie's
theory.

Lie's main idea was that the symmetry properties of a differential equation can be
used to solve the equation. How this works and how Lie's theory is used within
MathLie will be discussed in the following sections.

98 Symmetries of Ordinary Differential Equations

4.2. Symmetry Transfonnations of Functions

Before we apply Lie's method to ordinary differential equations, we will briefly
discuss symmetries in connection with functions. This section serves to introduce the
main concepts of the theory occurring throughout the book.

4.2.1 Symmetries

One of the most remarkable discoveries of Lie in the theory of groups was the
invariance of a function under some transformations. When dealing with differential
equations, one very often tries to simplify the equation by an appropriate change of
variables. This transformation generally involves both the independent and the
dependent variables. In Mathematica, we can represent such transformations by the
following list of rules:

rulel = {x !'unction [{x. u}. X [x. u]] •

u Function [{x. u}. u [x. u]]}

{x --+ Function [{x, u}, X [x, u]], u --+ Function [{x, u}, u [x, u]] }

This kind of transformation involving the original independent and dependent
variables (x,u) is usually called a point transformation, meaning that a point (x, u) of
the manifold m is transformed into another point (X, U). A point transformation
takes only into account a change of the coordinates. The point transformations
actually considered by Lie were transformations depending on at least one parameter
E. As we will see, the parameter E is the parameter of the corresponding group. Thus,
we call E the group parameter. A one-parameter transformation is thus given by

rule2 = {x !'unction[{x. u. e}. X[x. u. e]].
u Function [{x. u. e}. U[x. u. e]]}

{x --+ Function [{x, u, E}, X [x, u, E]],

u--+Function[{x, u, E}, U[x, U, E]l}

Such transformations have the following properties: They are invertible if the
corresponding Jacobi determinant exists, repeated application yields a transformation
of the same type, and the identity of the transformation for E = 0 exists. As we know
from Chapter 2, these three properties are the basis of a Lie group. They can be
summarized in the definition of symmetry transformations.

Symmetry Transfonnations of Functions 99

Definition: Symmetry transformation

A set G of transformations given by

x --+ X(x, u, E),

u --+ U(x, U, E)

is a one-parameter group if it contains the identical transformation I = To and
includes the inverse 1.1 and the composition T. ® Tp E G. By a suitable choice of

the group parameter E, the main group property T. ® Tp E G can be written

that is,

X(X(x, u, E), U(x, u, E), f3) = X(x, u, E + f3),

U(X(x, u, E), U(x, u, E), f3) U(x, u, E + f3).

(4.1)

(4.2)

(4.3)

In particular applications, the two conditions hold only for sufficiently small values
of E and f3. There, we arrive at what is called a local one-parameter group G or an
infinitesimal group. 0

These simple properties ensure that the transformations given in rule2 form a
one-parameter group of point transformations. A simple example to show how point
transformations work can be given by considering the shift of a function.
Mathematically, a shift is defined by T. f(x) = f(x + E), where T. represents the
translation operator. A definition of such an operator in Mathematica reads

This definition assumes that f is a function of x and that x is replaced by x + E in the
argument of f. To demonstrate the properties stated above, we start with the
verification of the identity transformation for E = 0:

'1'[f[x], 0]

f[x]

which demonstrates the existence of the identity transformation. The inverse
transformation can be checked by creating a translation and the corresponding
reverse by

'1'['1'[f [x], 6], -6]

f[x]

100 Symmetries o/Ordinary Differential Equations

meaning that the inverse transformation is represented by a negative shift. The
operation of translation and its inverse yield the original representation of the
function. The closure of the transformation means that the function created by the
transformation is again of the same type. This behavior can be demonstrated by the
following specific example choosing lex) = Xl - ~:

To demonstrate the action of the transformation, we will graphically represent the
results for the identity and for a shift with E = - 2.

Plot [zvaluate[{'1'[x2 _x3 , 0], '1'[x2 _x3 , -2]}],

{x, -2, 4},

PlotStyl {RGBColor[1.000, 0.000, 0.000],

RGBColor[O.OOO, 0.000, 1.000]}]

-2 -1 4

It is obvious from the figure that a shift by -2 in the argument translates the function
by a distance of 2 to the right. Using the animation capabilities of Mathematica, we
can readily demonstrate the shifting process by a small simulation. The process of
shifting is demonstrated by the following animation where the parameter E is varied
from -1 up to 1 in steps of 1120.

x,2 x 3

Do [Plot [Bvaluat. ['1' [- - -, e]],
2 4

{x, -2, 2},

PlotJtang {-.4, .6}, PlotStyl {Ku.[e]}],

1
{e, -1, 1, -}]

20

-2 -1

-2 -1

-2

Symmetry Transfonnations of Functions 101

2 -2 -1 2 -2 -1
-0.2 -0.2 -0.2

-0.4 -0.4 -0.4

0.4 0.4

0.2

-2 -2 -1 1 2
-0.2 -0.2

-0.4 -0.4

0.4

2 -2 2 2

The sequence of graphs shows a continuous movement of the curve along the
horizontal axis. This movement is created by the translation operator T, if we
continuously change E. Each value of E is represented by a different color in the
animation. Another property of our translation is the associativity of the
transformation which can be formulated by

T[T[T[f[x], a], 13], x] ==T[T[T[f[x], a], x], 13]

True

The result True states that the exchange of two of the three parameters cr, /3, and X
does not alter the final result. This specialty is not contained in the basic properties of
a group. However, if a group satisfies the associativity, we call it an Abelian group.

Example 1

Another simple example of a one-parameter group is given by a rotation III the
(x, u)-plane. This sort of point transformation is represented by the rules

102 Symmetries of Ordinary Differential Equations

rotation = {X-+l'unction[{x, u, e}, xCos[e] -uSin[e]],

U -+ Function [{x, u, e}, x Sin [e] + u Cos [e]] }

{X-?Function[{x, u, EJ, XCOS[E] -uSin[E]L

U-?Function[{x, u, EJ, xSin[E] +UCOS[E]]}

The one-parameter group defined in rotation and its action can be visualized as
motion in an (x, u)-plane. To show the action, we take for E = 0 an arbitrary point
(xo, uo) in the plane and follow the motion of the point when E varies. The image of
the initial point will move along some curve.

u

Table [parametricPlot [Evaluate [

{X[x, u, e], U[x, u, Ell /. rotation/. {x-+l, u-+l}],

{e, 0, end},

AspectRatio -+ Automatic, PlotRange-+

{{-l.S, loS}, {-l.S, 1.S}}, PlotStyle-+RGBColor[O, 0,1],
7r 7r

AxesLabel-+ {-X", nun}], {end, N[2 -], N[27r], N[2 -]}]
20 20

u u

.,+T' x .1.~-r., x .'~'
-1. 5 -1. 5 -1.5

u u u

.,(Fl.' x .,~., x .,~:,
-1. -1. -1.5

u u u

.,$, x ·,W, x .,$,
-1. -1. -1.

x

x

x

Symmetry Transformations of Functions 103

The animation shows that an initial point (xo, uo) moves along a circle if we change
the group parameter E. By repeating this kind of transformation for different initial
points, a picture representing the global action of the transformation in the
(x, u)-plane is gained. The following picture contains the orbits of the transformation
given in rotation for several initial points. The initial points are chosen along the
x-axis.

parametricPlot[Evaluate[

Table [{X [x, u, e], U [x, u, e]} / • rotation /. {x -+ xo, u -+ 1},

1
{xo, 1, 5, -}]], {e, 0, 27T},

2

AspectRatio -+ Automatic, PlotStyle -+ Table [Hue [x] ,

1
{x, 0, 1, -}], AxesLabel-+ {nx", nun}]

5

u

x

Once again, this picture shows that the given transformation will move a point along
a circle if E is varied. Each curve represents points that can be transformed into one
another by the given transformation. 0

4.2.2 Infinitesimal Transfonnations

One of Lie's essential findings was that a transformation as given above can be
simplified. This simpler transformation is called infinitesimal transformation. The
content of this idea is that it is sufficient to represent the transformation in its lowest
approximation in E, meaning that the finite transformation can be expanded in a

104 Symmetries of Ordinary Differential Equations

Taylor series around the identity transfonnation. In Mathematica, we have direct
access to such an expansion of the transfonnation by applying the function Series[] to
it. Let us again examine the general point transfonnation in the (x, u)-plane. We
derive the infinitesimal representation by expanding the one-parameter
transfonnation around E = 0 up to the first order in E:

infinitesimalTrafo =

Series[{X[x, u, e], U[x, u, e]), {e, 0, l}]

{X[x, u, 0] + XIO.O,l) [x, U, 0] E+O[E]2,

U[x, u, 0] + UIQ,Q,l) [x, U, 0] E+O[E]2}

If we use the group property of the identity X(x, u, E = 0) = x and U(X,U,E = 0) = u,

we can simplify the expression. The calculation shows that the transfonnation is
represented by the identity plus some tenns linear in E. The coefficients of the
parameter E are called the infinitesimals of the transfonnation and are usually denoted
by sand ¢:

infinitesimalTrafo = TableForm[

infinitesimalTrafo /. ({ae X[x, u, e] -+ {[x, u],

a. U[x, u, e] -+ q,[x, u],

X[x, u, 0] -+ x,

U[x, u, 0] -+u} /. e-+O)]

x+';[x, u] E+O[E]2

u+¢[x, u] E +O[E]2

This result for the infinitesimal representation of a transfonnation was summarized
by Lie in his first theorem. The theorem considers the inverse problem of an
infinitesimal representation. It treats the situation when the infinitesimals sand ¢ are
known and asks for the global transfonnation.

Theorem: Lie's first theorem

There exists a parameter representation of a transfonnation such that the global
transfonnation is equivalent to the solution of the initial value problem for the system
of first-order differential equations

{a. X[e] == {[X[e], U[e]],

a.u[e] ==q,[X[e], U[e]]} //TableForm

X' [E] == ';[X[E], U[E]]

U' [E] == ¢[X[E], U[E]]

with the initial conditions

Symmetry Transformations of Functions 105

{X[O] == x, U[O] == u} / / TableForm

X[O] == x

U[O]==u o

Using this theorem, the finite transformation represented by X and U is derived from
the initial value problem by an integration with respect to E. After the integration the
parameter E is eliminated.

Let us assume we know the infinitesimals g and ifJ. Then, we can apply Lie's first
theorem in a straightforward way. Two examples will demonstrate the application of
this theorem.

Example 1

As a first example, let us consider a scaling transformation. The infinitesimals of this
kind of transformation are given by

{[x, u] =x;

and

4>[x, u] = -2u;

The related defining equations for the global transformations are then

defequation = {c3.X[e] == {[x, u],

c3.U[e] ==4>[x, u]} /. {x-+X[e], u-+U[e]}

{X' [E] == X[E], u' [E] == -2 U[E]}

The initial conditions for this system of equations are

initial = {X[O] == x, U[O] == u}

{X[O] == x, U[O] == u}

Combining these two sets of equations in a common list, we can solve the initial
value problem using standard functions of Mathematica

eqin = Join [defequation, initial]

{X' [E] == X[E], U' [E] == -2 U[E], X[O] == x, U[O] == u}

The solution of the initial value problem follows by applying DSolve[] to eqin

scalingtrafo = D80l ve [eqin, {X, U}, e]

{{X --7 (E#1 x&) , U --7 (E- 2 #1 u&) }}

106 Symmetries of Ordinary Differential Equations

u

The result is the representation of the scaling transformation for the variables x and u.
We can represent the global transformation properties by plotting the new
coordinates X and U if we change the group parameter E. The following animation
shows the action of the transformation:

Table [parametricPlot [Evaluate [
{X[e], U[e]} /. scalingtrafo[l] /. {x ... 1, u ... 1}],

{e, 0, end},

AspectRatio ... Automatic, PlotRange'" {{ 0.9, 3}, {O, 1.2}},

PlotStyle ... RGBColor[O, 0, 1],
AxesLabel ... {nx", nun}], {end, 0.1, 1, .1}]

u u

°t~ __ o·L o~_ 0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2

1.5 2 2.5 3 X 1.5 2 2.5 3 X 1.5 2 2.5 3 X

u u u

o.~ o·L o.~ 0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2

1.5 2 2.5 3 X 1.5 2 2.5 3 X 1.5 2 2.5 3 X

u u u

°l~ __ o.~_ o~ 0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2

1.5 2 2.5 3 X 1.5 2 2.5 3 X 1.5 2 2.5 3 X

o

Lie's first theorem can be incorporated in a Mathematica function, allowing the
determination of the global symmetry transformation. All solution steps used above
are combined in this function. The function GlobalSymmetryTransformation[] will
calculate the global symmetry transformation if the infinitesimals of the
transformation are known. The input variables for this function are the infinitesimals
g and cp. For the calculation, we also need the dependent and independent variables.
The function is designed to calculate a general representation of the global
transformation for an arbitrary number of independent and dependent variables.

Symmetry Transfonnations of Functions 107

Clear [GlobalSymmetyTransformation]

GlobalSymmetyTransformation[xi_List, phi_List,

depend_List, independ_List] : = Block [

{vars, Vars, infini, dVars, equations,

initial, sol},

vars = Join [depend, independ];

infini = Join [phi, xi];

Vars = ToBxpression /@ToUpperCase /@ToString /@vars;

dVars = Table[Vars[i]@@{e}, {i, 1, Length [Vars] }];

equations = Table[oe dVars[i] == infini[i],

{i, 1, Length [Vars] }] /. Thread [vars -+ dVars];

initial = Thread [dVars == vars] /. e -+ 0;

equations = Join [equations, initial];

sol = DSolve[equations, Vars, e]]

The application of this function to the infinitesimals of Example 1 gives us the result:

GlobalSymmetyTransformation[{x}, {-2 u},

{u}, {x}]

{ {U ~ (E- 2 #1 u&) , X -) (E#1 x&) } }

which is identical with the result calculated above. Another example to check the
function is the symmetry of rotation. From our earlier discussions, we know the
global representation of a rotation. The infinitesimals for this kind of symmetry group
are g = -u and ¢ = x. Applying the function GlobalSymmetryTransformation[] to
these infinitesimals, we get

GlobalSymmetyTransformation [{ -u}, {x},

{u}, {x}]

{{U~ (uCos[#1] +xSin[#1]&), x~ (xCos[#1]-uSin[#l]&)}}

The result found is identical with the representation discussed in Section 4.2.1. It
represents the rotation of an initial point (xo, uo) around the origin.

4.2.3 Group Invariants

In this section, a criterion of invariance is formulated which is useful in the
application to ordinary and partial differential equations. A point transformation of an
ordinary differential equation is a symmetry transformation if it maps solutions of the
equation into solutions. We will show in this section that a symmetry transformation
does not change the form of the differential equation. For the moment, we will
restrict our considerations to the case in which only first-order derivatives are
present. The invariance of higher-order differential equations will be discussed in

108 Symmetries of Ordinary Differential Equations

later sections. We know that a one-parameter group of transfonnations is represented
by the infinitesimal transfonnations or the related tangent vector field v. As the
transfonnation is applied to an initial point, it moves along a path in such a way that
the path maps into itself. This basic concept needs an analytical fonnulation. As
mentioned in the previous section, it is always possible to represent the relations in a
manifold by an algebraic expression. For the moment, we will thus restrict our
considerations to curves in the plane.

Group invariants are basic quantities of a symmetry analysis. A group invariant is
defined as follows:

Definition: Group invariant

A function F(x, u) is an invariant of the group of transfonnations if

F(X(x, u, E), U(x, u, E)) = F(x, u) (4.4)

identically in x and u for all values of the group parameter E. 0

This definition is the basis for an invariant in symmetry analysis. It states that a
function is an invariant if it has the same representation in the original and in the new
coordinates. The definition also shows us a way to calculate the invariants F.

Curves in a plane can be represented by F(x, u) = const. As we know, this curve is
said to be invariant under a transfonnation if the curve remains the same in both
coordinate systems: the old and the new. The transfonnations are represented by the
infinitesimal transfonnations due to Lie given by

Clear [~, cfi];

infini = {X -+ Function [{x, u, e}, x + e ~ [x, u]],

U-+Function[{x, u, e}, u+ecfi[x, u]]}

{X~Function[{x, u, E}, x+Ef[x, ul]'

U~Function[{x, u, E), U+E<I>[X, ul]}

The expression of invariance is given in (4.4) and reads in tenns of Mathematica,

invar=F[x, u] ==F[X[x, u, e], U[x, u, e]]

F[x, ul == F[X[x, u, El, U[x, u, Ell

Symmetry Transfonnations of Functions 109

meaning that the form of the curve is the same in the old and new coordinates. The
application of our transformation delivers the invariance condition in an implicit
form:

ivarJ: = invar /. infini

F [x, ul == F [x + E c;[x, ul , u + E cP [x, ul 1

The explicit representation of the invariance condition is obtained by a Taylor
expansion of the equation of invariance with respect to the parameter E:

Thread [Series [i varI, {e, 0, 1}], Equal] / / LieTradi tionalP'orm

If we examine this expression, we observe that the invariance condition is satisfied if
all terms containing the infinitesimal parameter E vanish. However, the first term
linear in E can be represented by the vector field v. To show this relation, let us apply
the tangent vector field to F. A definition of the function TangentVector[] for more
than one independent and dependent variable follows below. So we get the
infinitesimals in a subscripted form.

TangentVector [P' [x, u], {u}, {x}] / / LieTradi tionalP'orm

The result is equivalent to the terms linear in E. Now, if we assume that the
application of the tangent vector field onto the curve has to vanish, we can conclude
that all higher terms in E containing multiple applications of the vector field v on the
curve also have to vanish. Thus, a sufficient condition that a curve is invariant under
an infinitesimal transformation is that the application of the tangent vector field to the
curve must vanish.

Uncovering a practical realization of the group properties, let us formulate the
following theorem. It is again Lie's first theorem in a different representation. The
theorem allows us the derivation of a group invariant. The group invariant is the
function for which we are looking. Lie himself was a great systems analyst who
based his total work on three fundamental theorems. The first of these fundamental
theorems reads:

Theorem: Group invariants

A function F(x, u) in q independent x = (XI, X2, ••• , Xq) and p dependent variables
u = (u l , u2 , ••• , uP) is an invariant if and only if it satisfies the partial differential
equation

110 Symmetries of Ordinary Differential Equations

t~i 8F(x, u) + LifJa 8F(x, u) = 0,
~I 8~ =1 8~

(4.5)

where ~i and ifJa are the infinitesimals of a point transformation. This relation is also
known as the characteristic equation of the tangent vector field

It follows that every one-parameter group of point transformations in the plane has
one independent invariant. This invariant can be taken to be the left-hand side of any
first integral lex, u) = C. The first integral follows by integration of the
characteristic equation which are based on the tangent vector field. The determining
equation for the integral reads

~ [x, u[x]]
chareq = axu[xl -- -----; chareq II Lie'l'raditionalJ'orm.

~ [x, u[x]]

Then, any other invariant is a function of l.

Example 1

Let us consider a circle. We know that a circle is invariant under a rotation around its
center. We already know that the tangent vector field of the group of a rotation is
given by the operator

'l'rot [function_l : = -u ax function + x au function

A circle in the coordinates x and u is represented by

circle = x 2 + u 2 - const

The application of the operator Trot[] on the circle gives us

'l'rot[circlel

o

This result shows that the tangent vector field applied to a curve invariant under the
given symmetry vanishes. Thus, each circle is mapped into itself. This condition is
very useful in the determination of symmetries not only for curves but also for
differential equations. D

Symmetry Transformations of Functions 111

Example 2

Before we consider differential equations, let us discuss the other non-trivial case
when the mapping of the vector field does not vanish. In this example, we apply a
transformation on a curve which is not mapped into itself but in another member of
the same family of curves. To examine the behavior of such a case, let us again
consider the transformations of rotations for the family of straight lines. Rays are
represented by the left-hand side of the expression

u
rays = - - const

x
U

-const +­
x

The application of the vector field TrotD on these lines gives us

rl = Trot [rays]

which represents a single ray with slope 1. A second application of Trot[] on the
transformed rays results into

r2 = Trot [rl]

2 u 3 2 U
--+--

x 3 X

which is, again, a ray with slope 1 in a more or less complicated representation. Thus,
we observe that the application of a tangent vector field on a curve can produce two
types of results. First, a transformation of the curve into itself, and second, a
transformation to a curve contained in the family of the curves. 0

Example 3

In this example, we determine the invariant from the characteristic equation. Let us,
again, discuss the symmetry group of rotation. The infinitesimal representation of this
symmetry is

rot = {'~l'uDction[{x, u}, -u], tP~l'unction[{x, u}, x]}

{';~Function[{x, uL -uL ¢~Function[{x, uL xl}

The corresponding characteristic equation is thus

charaqr = chareq /. rot; chareqr II LieTraditionalPorm

x
U x == - 1:1

112 Symmetries of Ordinary Differential Equations

which has the solution

Bo1 = DSo1ve[chareqr, u, x]

{{u~ (---1-#12 -2C[1] &)}, {U~ (-)-#12 -2C[1] &)}}

The first integral follows by solving one of these expressions with respect to the
constant C[I]:

Bolint = r1atten [Solve [(u[x] /. Bo1[lD) == u[x], C[l]]]

1
{C[l] ~ 2 (_x2 -U[X]2)}

The result defines a circle of radius V - 2 C[1] . D

In the examples discussed, we used group invariants in a two-dimensional plane. As
stated in the theorem, the relations are also useful in higher-dimensional space. In our
discussions, we used the term tangent vector to represent an operator which is central
in the theory of symmetries. In the following section, we will examine this operator
in more detail.

4.2.4 Tangent Vector

A very useful concept closely related to the infinitesimals g and ¢ is the concept of a
tangent vector v. The tangent vector v is also called the infinitesimal generator of the
transformation or tangent vector field or, in short, a vector field. We already
discussed the term tangent vector field in Sections 3.2 and 3.7 in connection with a
manifold m of m independent variables. Here, we will extend the definition to a
q x p-dimensional manifold of q independent and p dependent variables. The tangent
vector can be understood as a generator of the symmetry. The term generator
indicates that repeated applications of the infinitesimal transformation will generate
the finite or global transformation. This point of view for a vector field was stressed
by Lie in his older papers (cf. Engel and Heegaard [1912] Vol. V, p. 2). Lie called the
tangent vector the generator of the infinitesimal transformation. Today, this operator
is called a tangent vector of a transformation, its definition is

Definition: Tangent vector field

A vector field on a manifold m in q x p coordinates is a tangent vector v to each
point (x, u) E m varying smoothly from point to point. In local coordinates, a vector
field has the representation

Symmetry Transformations of Functions 113

q a P a
v = 2:: ~j - + 2:: cfJa -, (4.6)

i=1 aXj a=1 aua

where the ~i and cfJa are smooth functions of the coordinates (x, u). 0

The functions ~ and cfJ are the infinitesimals of the related infinitesimal
transformation. The present definition extends the previous definition to a manifold
m spanned by independent and dependent variables. Some authors call the vector
field v a Lie symbol. Actually, this operator goes back to Lagrange, and, thus, as an
equivalence, deserves the name Lagrange operator (cf. Kowalewski [1931)). We
recognize that the vector field has an old tradition in mathematics. We already
mentioned that Lie, in his lectures, used this kind of operator in connection with a
hydrodynamic flow. He called the paths of the infinitesimal transformation v f the
stream lines of the flow. The infinitesimal generator v is used to generate such flows.

The following function implements the definition of a vector field given in (4.6). The
function TangentVector[] needs three arguments. The first argument specifies the

function to which the vector field is applied. The second and third are lists containing
the independent and dependent variables. The calculation of the vector field follows
formula (4.6) very closely:

Clear[TangentVector];

TangentVector[function_, dependent_List,

independent_List] := Block [{vars, xi, phi},

vars = Join[independent, dependent];

xi = Table[ApplY[Gi, vars],

{i, 1, Length[in4ependent]}];

phi = Table [Apply [~a' vers],

{a, 1, Length[dependent]}];
LelllJth [independent]

2: xi [iD aindepen4ent [i] function +
101

Length[4ependent]

2: phi [aD a4epeD4ent [a] function
a=l

The result of this function is the general representation of the vector field applied to a
given function depending on the variables x and u. Let us demonstrate the application
for a 2 x 2 manifold. A general function f depending on the independent variables
(x, y) and on the dependent variables (u, v) has the vector field

114 Symmetries of Ordinary Differential Equations

'1'angentVector [f [x, y, u, v], {u, v}, {x, y}] II
Lie'1'raditionalPor..

fx ?;l [x, y, u, v] + fy ?;2 [x, y, u, v] + fu rPl [x, y, u, v] +

fv cP2 [x, y, u, v]

The infinitesimals g1 , g2, ¢1, and ¢2 are arbitrary functions. The function

TangentVector[] allows us to calculate the general expression of the vector field for a
given function f. If we know, on the other hand, the global symmetry
transformations of the coordinates, we are able to derive the infinitesimals.
Remember that the global transformation was a result of Lie's first theorem. If we
invert this theorem, the infinitesimals of the q x p-dimensional global transformations
(X(e), U(e» follow by

C,' = dXj(e) I
~, de .=0, i = 1, 2, 3, ... , q (4.7)

and

a=I,2,3, ... ,p. (4.8)

These relations are identical with the defining equations stated in the first theorem of
Lie. The side condition e = 0 in equations (4.7) and (4.8) guarantees that the initial
conditions of Lie's theorem are satisfied. Thus, if we know the global representation
of a point transformation, we are able to write down the corresponding vector field.
How this works for specific transformations will be shown in the following.

To simplify the representation, we restrict our discussions to a two-dimensional
manifold m in x and u. This reduction of the q x p-dimensional manifold allows us to
create a graphical representation of the vector field. In the following examples, we
will show how the vector field is calculated. The infinitesimals of the vector field will
serve as components in the graphical representation. Let us start with the well-known
group of rotations.

Example 1

The global representation of the group of rotation was discussed in an earlier
example. The transformations for the coordinates x and u are defined in rotation. We
can represent the transformed coordinates by

trans = {X[x, u, e], l1[x, u, e]} I. rotation

{xCos [e] - u Sin[e] , uCos [e] + x Sin[e]}

Symmetry Transformations of Functions 115

Using relations (4.7) and (4.8), we can derive the infinitesimals by

rotinfinitesi_ls = iJ. trans /. e -+ 0

{-u, x}

The first element of this list represents the infinitesimal g and the second ¢. The result
is a list containing - u and x as components of the tangent vector in the
(x, u)-manifold. We can use this vector representation of the infinitesimal generator
to graphically represent the vector field. Two-dimensional vector fields are plotted
with a function contained in the package

« nGraphics'Plotl"ield' n

The function PlotVectorField[] allows us to plot the two-dimensional vector field

PlotV.ctorl"ield[rotinfinites~ls, {x, -2, 2},
{u, - 2, 2}, Colorl"UDct ion -+ BUe]

, ' ~ - ... '" , , ~ #

, , ,
, , ' , ' ' ~ -
.........

As a result, we get a figure representing the vector field by vectors in the plane. We
observe that vectors of the same color are tangential to a circle, thus the name tangent
vector field. The vector field also contains information on the transformation
properties. This information is stored in the arrangement of the arrows in the
(x, u)-plane. We also gain an impression on the strength of the rotation on different
locations of the (x, u)-plane by considering the lengths of the arrows. So a graphical
representation of a vector field helps us to assess the behavior of a transformation. 0

116 Symmetries of Ordinary Differential Equations

Example 2

Another frequently encountered example for a tangent vector field is the group of
scaling. Let us assume that we know the global transformations of an inhomogeneous
scaling of the coordinates x and u. A global scaling transformation is given by

scaling = {X -+ Function [{x, u, e}, x]!l"],

U -+ Function [{x, u, e}, U]!l2.]}

{ X~Function[{ x, u, EJ, xE€] , U-->Function[{x, u, E}, uE2 €]}

The infinitesimals of this transformation follow by using equations (4.7) and (4.8):

scalinginf = 0. {X [x, u, e], U [x, u, e]} /. scaling /. e -+ 0

{x, 2 u}

Again, we get a vector of two components containing the infinitesimals sand <p of the
transformation. The vector field of this transformation has the graphical
representation

PlotVectorField[scalinginf, {x, -2, 2},
{u, -2, 2}, Colorrunction -+ HUe]

. ,

,

.. ..

, ,

showing us that, in both directions, the scales are changed if one moves from the
center to a point of the rim. 0

Symmetry Transformations of Functions 117

So far, we demonstrated some basic concepts of Lie's theory. In particular, we
discussed the first theorem which deals with infinitesimal transformations. The
concept of infinitesimal transformations is the basic tool in the derivation of
symmetries of a differential equation and thus serves as a cornerstone in the solution
of the equations. The presented infinitesimal generator or vector field is an essential
part in the calculation of the infinitesimal transformations and is used to derive the
symmetries from the equations. This behavior is related to the fact that the tangent
vector is always a linear operator possibly creating a complicated form of the finite
transformations. So far, we demonstrated transformations which only involved
dependent and independent variables. However, if we examine differential equations,
we have to extend or prolong the concept of transformations to derivatives as well.

4.2.5 Prolongation of Transformations

As discussed in Section 3.4, a prolongation is an extension of a transformation from
the independent and dependent set of variables (x, u) to a space including the
derivatives of the dependent variable (x, u, u'). This extension, for example, is
necessary to examine the point symmetries of a first-order ordinary differential
equation. In this section, we present the concept of prolongation in a
three-dimensional space with coordinates (x, u, u') where u' = p = : is the slope of

the given curve u = u(x). Knowing how the curve in the plane transforms should
enable us to calculate how u' transforms. To demonstrate the prolongation procedure,
let us recall the results known from calculus. We assume for our examinations that
the transformation of the plane into itself is given by the rules

ruleS = {x ... Function [(x, u}, {[x, u [x]]],

u ... Function [{x, u}, I/l [x, u [x]]] }

{X --? Function [{x, u}, .; [x, u [x]]] ,

U --? Function [{x, u}, rP [x, u [x]]] }

Our interest is to examine the transformation of an arbitrary curve and its derivatives.
The functions q and ¢ representing the transformation are given functions of the
variables x and u. The curve we will examine is given by the general expression

curve = u == f [x]

u == f [x]

which has its representation in the new coordinates by

118 Symmetries of Ordinary Differential Equations

n8WCurve = U == P [X]

U == F[X]

The slope of the curve in the new coordinates is calculated at each point (x, u) by the
relation

Dt [U[x, u]]
Uprime = /. ruleS; Uprime / / Lie'l'raditionalPorm

Dt [X[x, u]]

This formula expresses the derivative in new coordinates' by the ratio of the total
differentials of the transformed variables. Using the result for Uprime, we can define
the first extended transformation in terms of ~ and ¢J by

rule6 = {X -+ Function [{x, u}, {[x, u [x]]] ,

U -+ Function [{x, u}, I/J [x, u [x]]] ,

u' -+ Function [{x, u}, w] /. w -+ Uprime}

{x --7 Function [{x, u}, nx, u [x]] J,

U --7 Function [{x, u}, rj; [x, u [x]]] ,

, . [u' [x] rj;(0,1) [x, u [x]] + rj;(1,0) [x, U [x]] 1
U --7 Functlon {x, u}, u' [xl ';(0,1) [x, u [x] 1 + ';(1,0) [x, U [x] J }

Evidently, U' is the slope of the transformed curve at the point (X, U). The second
extension of the transformation is calculated by using the same ideas. Using the result
contained in Uprime, we are able to calculate the ratio of the total derivative of
Uprime and X. Carrying out the calculation, we find

Ox Uprime
Uciprime = ------; Uciprime / / Lie'l'radi tionalPorm

Ox X [x, u [x]]

¢u Ux,x + U x ¢x,u + U x (ux ¢u,u + ¢x,u) + ¢x,x)

U x ';u + ';x

This result allows us to prolong the transformation of the variables (x, u) up to
second-order derivatives. rule6 is extended by

Symmetry Transformations of Functions 119

AppendTo[rule6, U" -+Function[{x, u}, w] /.

w -+ Udprime]; rule6 / / LTF

U == ¢

X ==;

U' = = u x ¢u + ¢x
U x ;u + ;x

U" == (_ (ux ¢u + ¢x) (~u ux,x + U x ;x,u + U x (ux ;u,u + ~x,u) + ;x,x)
(ux ;u + C) 2

rule6 contains the extended transformation of second order. We note that the
transformation of the derivatives essentially depends on the structure of the finite
transformations ~ and rp. The derivatives of the functions ~ and rp determine the slope
in the new coordinates in a characteristic way. Going back to symmetry analysis, for
examining differential equations we need the extensions of the infinitesimal
generator represented by the vector field v. To derive the relations describing the
extended vector field, we consider transformations depending on the group parameter
E. The global transformation for the coordinates (x, u) read

rule7 = {X-+Function[{x, u, e}, {[x, u[x], e]],

U-+Function[{x, u, e}, cII[x, u[x], e]]}

{X --> Function [{x, U, E}, ; [x, u [xl, Ell,

U-->Function[{x, u, E}, ¢[x, u[xL Ell}

The extension formula is calculated in the same manner as in the parameter-free case
by

Dt [U[x, u, e]]
Uprime = /. rule7 /. Dt [e] -+ 0;

Dt [X[x, u, e]]

Uprime / / LieTradi tionalForm

Since the group parameter E is not a component of our manifold spanned by
(x, u, u', u", ...), we have to assume that the variation of the group parameter
vanishes; i.e., we set Dt[E]---70. We simply use the fact that E is a constant and thus its
derivatives are zero. The first extended transformation is thus

rule7 = {X-+Function[{x, u, e}, {[x, u[x], ell,
U-+Function[{x, u, e}, cII[x, u[x], e]],

U' -+ Function [{x, u, e}, w] /. w -+ Uprime

120 Symmetries of Ordinary Differential Equations

{X-->Function[{x, u, EJ, £lx, U[Xl, E]l,

U --> Function [{x, u, E}, ¢ [x, u [x], E]], u' --> Function [

u' [x] ¢(0,1,0) [x, u [xl, E] + ¢(1,0,0) [x, u[xl, :ll}
{x, u, E}, u' [x] ,;(0,1,0) [x, u [x], E] + ';(1,0,0) [x, u[x],

In rule 7, we get the global transformation of the once extended space. The second
extension can be calculated in the same way as discussed above. Starting from a
group G of point transformations and then adding the transformation of the first
derivative, one obtains the group G j , which acts in the space of the three variables
(x, u, u'). By further adding the transformation of the higher derivatives, one obtains
the group Gz acting in the space (x, u, u', un) and so on. The generalization of these
arguments results in the definition of prolonged groups.

Definition: Prolonged groups

The groups G j , Gz, '" Gn are termed the first, second, and nth prolongations of G,
respectively. 0

Actually, we are interested in the infinitesimal representation of the transformation.
This sort of transformation is given by

infini = {X -+ Function [{x, u, e}, x + e ~ [x, u [x]]] ,

u-+J'unction[{x, u, e}, u[x] +eq,[x, u[x]]]}

{X --> Function [{x, u, E}, X + E .; [x, u [x]] J,

U-->Function[{x, u, E}, u[x] +E¢[X, u[x]]]}

The representation of the first derivative in the new coordinates follows from

Dt [U [x, u, e]]
derivat = /. infini /. Dt [e] -+ 0;

Dt[X[x, u, ell
derivat / / LieTraditionalForm

U x + E (ux ¢u + ¢x)

1 + E (ux ';U + ';x)

Since symmetry analysis in an infinitesimal representation is based on the linear
dependence of the group parameter E, we can restrict our considerations to first-order
terms in E. The infinitesimal part of the transformation follows by a Taylor expansion
in E around E = O. The result is

infinider = Normal [Expand [Series [derivat,

{e, 0, l}]]]; infinider / / LieTradi tionalForm

Symmetry Transfonnations of Functions 121

The representation of the infinitesimal transformation of the slope shows that the old
derivative is changed in the new coordinates by four parts, depending on derivatives
of the infinitesimals g and cpo The representation of the prolonged transformation is
thus given by

prolongation = {X -+ Function [{x, u, e},

x + e {[x, u]] ,

U-+Function[{x, u, e}, u[x] +et/J[x, u]],

U' -+ Function [{x, u, e}, w] /.

w -+ (infinider / • u [x] -+ u) } ; prolongation / / L'l'F

U == U + E <P
X == x + E ~

U' ==Ux+E (ux (~ux~u~~x) +ux<Pu+<Px)

The second prolongation of the infinitesimal transformation is derived by

oxderivat
dderivat = -------- /. infini;

oxX[x, u[x], e]

dderivat / / Lie'l'raditionalForm

1

1 + E (ux ~u + ~x)

(~(E (Ux+E (ux<Pu+<Px)) (~uux,x+ux~x,u+ux (ux~u,u+~x,u) +~x,x)) /

(1 + E (ux ~u + ~x)) 2 +

and a Taylor expansion of the result up to first order

infinidder = Normal [Expand [Series [dderivat, {e, 0, 1}]]];

infinidder / / Lie'l'raditionalForm

Ux,x + E (2 (~ux ~u ~ ~x) ux,x + <Pu ux,x ~

Ux (~u ux,x + Ux ~x,u + Ux (ux ~u,u + ~x,u) + ~x,x) + Ux <Px,u +

Ux (ux<Pu,u+<Px,u) + <Px,x)

The second-order prolongation is thus given by

Append'l'o[prolongation,

U" -+ Function [{x, u, e}, w] /.

w -+ (infinidder /. u[x] -+ u)]; prolongation / / L'l'F

U == U + E <P
X == x + E ~

U' == Ux + E (ux (~ux ~u ~ ~x) + Ux <Pu + <Px)

U" == Ux,x + E (2 (~ux ~u ~ ~x) ux,x + <Pu ux,x ~

Ux (~u ux,x + Ux ~x,u + Ux (ux ~u,u + ~x,u) + ~x,x) + Ux <Px,u +

Ux (ux <Pu,u + <Px,u) + <Px,x)

122 Symmetries afOrdinary Differential Equations

Now, we know the infinitesimal transformation rules allowing a change of the
coordinates, including the transformation of the first and second derivatives. It
becomes obvious from the representation of the infinitesimal transformation that only
the infinitesimals g and </J have to be known to find an explicit representation of the
transformation. Some examples will demonstrate the calculation of the prolongations.

Example 1

As a first example, let us again consider the group of rotation whose infinitesimals
are given by

rotation = {{ ~ li'unction[{x, u}, -u],

tP ~ Function [{x, u}, x] }

{.; ~ Function [{x, u}, -u], ¢ ~ Function [{x, u}, x] }

The related infinitesimal transformations for the variables and the derivatives are
obtained in its explicit form for the group of rotation if we insert the infinitesimals
into the prolongation formulas and the transformations

infirot = {X[x, u, e], U[x, u, e],

u' [x, u, e], U" [x, u, e]} /. prolongation /.

rotation; infirot / / LieTraditionall'orm

Thus, the derivatives of a function are replaced by the derivative itself plus
infinitesimal terms quadratic in the derivative of u. So far, we demonstrated the
calculation of the prolongation by directly using the formulas derived above. In
Section 3.7, we already discussed the general prolongation formula for a
q x p-dimensional manifold. The following example will recall the application of the
function Prolongation[]. Be sure that the functions Prolongation[] and FrechetD[] are
known by Mathematica for the following example. 0

Example 2

The second example will serve to show how a vector field in I x 1 dimensions is
calculated by using the function Prolongation[]. We assume that the infinitesimals of
the group are known; e.g., an inhomogeneous scaling group with

iscaling = {{l ~ Function [{x, u}, x],

tPl ~ Function [{x, u}, 3 u] }

{';1 ~ Function [{x, u}, x], ¢1 ~ Function [{x, u}, 3 u] }

Symmetry Transformations of Differential Equations 123

The vector field for a function f depending on a second derivative is thus given by

veetorfield = Prolongation [{f [x, u [x], CJx u [x], CJxox u [x]] },

{u}, {x}] /. u [x] u /. isealing;

veetorfield / / Lie'l'raditionall!'orm

{fx ~1 + fu rf>1 - fux u; (~du - fux U x (~dx + fux U x (rf>d u + fux (rf>d x -

3 fux,x lix (~du ux,x - 2 fux,x (~dx ux,x + fux,x (rf>d u ux,x-

fux,x u; (~du,u - 2 fux,x U; (~dx,u - fux,x U x (~d X,x +

fux,x u; (rf>1) U,u + 2 fux,x U x (rf>1) X,u + fux,x (rf>1) x,x}

Contrary to the interactive calculation, we get the vector field as a scalar. The
coefficients of the derivatives of f contain the infonnation on the infinitesimals and
their prolongations. The replacement of u[x] -+ u is necessary since we defined the
infinitesimals as functions of x and u. The function Prolongation[], however, creates
the infinitesimals depending on u[x]. The prolongation procedure discussed so far is
usable to extend the space of variables to higher orders of derivatives as well. D

So far, we introduced basic concepts of symmetry analysis for functions. We
discussed the tenn of a point transformation, an invariant, and the meaning of the
vector field. These tenns are not only useful for functions but also important in the
examination of differential equations. The following sections will discuss these
subjects in connection with ordinary differential equations.

4.3. Symmetry Transformations of Differential Equations

In this section, we collect the main tools for determining the symmetries of
differential equations. We define the notion of symmetry for a differential equation
and discuss the main properties of the symmetry group. Using these definitions, we
interactively calculate the infinitesimal symmetries of differential equations. We also
introduce the notion of canonical variables useful in deriving the solution of a
differential equation. Let us first start with the definition of a symmetry group.

4.3.1 Definition of a Symmetry Group

Let G be a group of point transformations and let Gj, G2 , ••• be its first, second, ...
prolongation. Then, we define the symmetry of a differential equation as

124 Symmetries of Ordinary Differential Equations

Definition: Symmetry of a differential equation

A group G of point transfonnations is a symmetry group of an nth-order ordinary
differential equation

(du If' U)
60 x, u(x), dx' ... , dxn = 0 (4.9)

or (4.9) admits G if the nth extended manifold mn is invariant with respect to the nth
prolongation Gn of the group G. 0

This definition actually contains the special case for first-order ordinary differential
equations. For this special type of equation, we will discuss the application of the
definition. A first-order differential equation

6o(X, u(x), u' (x)) = 0 (4.10)

admits a group G if the once extended manifold ml, the surface in the space x, u, u',
is invariant with respect to the first prolongation G j of G. This means that equation
(4.10) is invariant under the coordinate transfonnation X = X(x, u, E) and
U = U(x, U, E). The invariance condition can be fonnulated as

6o(X, U, U') = 6o(X, u, u'). (4.11)

This kind of relation also holds for the general case of an nth-order equation. Lie
demonstrated that the invariance condition of the differential equation has a direct
consequence for the solutions. He summarized this behavior in a theorem which is
one of the main properties of a symmetry group.

4.3.2 Main Properties of Symmetry Groups

Let us consider again the case of an nth-order ordinary differential equation. We
represent the equation in such a way that ~ nU is the left hand side of the general

expression. The general equation reads

If'u
~ = f(x, u(x), u'(x), ... , u(n-l) (x)), (4.12)

with a smooth function f depending on the derivatives up to (n - l)st order, u(n-l).

The main property of a symmetry group first proved by Lie in 1891 is the following
(cf. Scheffers and Lie [1891] p. 352, Theorem 1):

Symmetry Transformations of Differential Equations 125

Theorem: Symmetry transformation

A group G is a symmetry group of an nth-order ordinary differential equation if and
only if G converts any solution of the equation

d"u f ' dX' = (x, u(x), u (x), ... , u(n-l) (x)) (4.13)

into a solution of the same equation. 0

This theorem is one of the cornerstones of Lie's theory. It serves as the starting point
for the calculation of the symmetries.

4.3.3 Calculation of the Infinitesimal Symmetries

We already mentioned that a sufficient condition for invariance is the vanishing of
the extended tangent vector field applied to the differential equation, meaning that we
use the condition pr(k) v(A) as the defining equation for the infinitesimals gj and epa.
This condition follows from the invariance of the differential equations A = 0 under
the transformation of independent and dependent variables. The derivation of this
invariance criterion follows from a similar calculation as presented for functions in
Section 4.2.3. The invariance condition of the tangent vector field supplies a system
of equations serving as the determining system for the infinitesimals. We will see that
this system is linear but coupled in gj and epa. As mentioned in Section 3.7, the
invariance condition is closely related to the prolongation of the vector field.

Before discussing the application, let us describe the algorithm of constructing
infinitesimal symmetries. For first-order equations, it is known that an infinite
number of symmetries always exists (cf. Stephani [1989]). For special cases,
however, we find so-called conformal symmetries which are a subset of the possible
symmetries (cf. Olver [1986] and Hydon [1994]). Because of these difficulties, it is
more convenient to start our discussion with second-order equations:

A(X, u(x), u', un) = o. (4.14)

Using the definition of the symmetry group in connection with the extended vector
field,

Tangent [ll._] : = ~ [XI u] ax ll. + C/J [x, u] au ll. + C/J(1) [x, u] ap ll. +

C/J(2) [XI u] a'1.ll.

126 Symmetries o/Ordinary Differential Equations

where p and q are abbreviations for the first and second derivatives of u. The
infinitesimal invariance criterion contained in equation (4.11) takes the form

pr(k) veil) I.~=o = o. (4.15)

This expression follows by expanding (4.11) around the identity E = 0 and taking into
account the prolongation formulas for the derivatives. A detailed derivation of this
formula can be found by Olver [1986] or BIuman and Kumei [1989]. The general
equation (4.15) reduces for a second-order ODE to the relation

Tangent [ll. [x, u, p, q]] == 0 /. ll. [_l -+ 0 / / LieTraditionalPorm

where cp] and CP2 are the fIrst and second components of the prolongation,
respectively. They are computed via the prolongation formula given in Section 3.7.
The equation derived is called the determining equation for the group admitted by the
ordinary differential equation.

If the differential equation is written in the representation of (4.12)

equat = q - f [x, u, p]

q-f[x,u,pj

we can derive the explicit fonn of the determining equation by applying the twice
extended vector field on this expression:

determining = Tangent [equat] ; determining / / LTF

The remaining unknowns in this result are the first and second extensions cp] and CP2'
We are able to extract the representation of cp] and CP2 from the variable prolongation
calculated in the section on prolongation of transformations. Using the variables X,
U, U', and U" and searching for the coefficients of the group parameter E, we end up
with the infinitesimals ~ and rfJ and the fIrst and second extension cp] and CP2:

prol = Coefficient [(X[x, u, e), U[x, u, e),

U' [x, u, el, Un [x, u, e)} /. prolongation, el /.

u [x] -+ u; prol / / LTF

Symmetry Transformations of Differential Equations 127

~ == 0

¢ == 0

u x (-ux ~u - ~x) + u x ¢u + ¢x == 0

2 (-ux ~u - ~x) ux,x + ¢u ux,x-

o

U x (~u ux,x + U x ~x,u + U x (ux ~u,u + ~x,u) + ~x,x) +

Ux ¢x,u + U x (ux ¢u,u + ¢x,u) + ¢x,x ==

For our calculations, we only need the expressions representing ifJ) and ifJ2 given by
the third and fourth element of the list prol. In the next step, we define two rules
representing ifJ) and ifJ2 by

rulel = {4Jl -+ Function [{x, u}, w] ,

4J2 -+ Function [{x, u}, v] } /.

{w -+ prol[311, v -+ prol[411}

{¢, Function [{x, u}, u' [xl ¢10,1) [x, ul +

u' [xl (-u' [xl ~IO,,) [x, ul - ~ll,O) [x, ul) + ¢lloO) [x, ull,

¢2 Function [{x, u},

u" [xl ¢10,1) [x, ul + 2 u" [xl (-u' [xl ~IO,,) [x, ul - ~ll,O) [x, ul) +

u' [xl ¢Ilo 1) [x, ul + u' [xl (u' [xl ¢ 10, 2) [x, ul + ¢ll,l) [x, ul) -

u' [xl (u" [xl ~10,1) [x, ul + u' [xl ~llo1) [x, ul +

u' [xl (u' [xl ~IO, 2) [x, ul + ~11, 1) [x, ul) + ~12, 0) [x, ul) +

¢12,0) [x, ull}

These expressions are used in the determining equation to eliminate ifJ) and ifJ2 :

determ = determining /. rulel; determ / / LTF

-¢ fu - ~ fx - fp (ux (-ux ~u - ~x) + U x ¢u + ¢x) + 2 (-ux ~u - ~x) Ux,x +

¢u Ux,x -Ux (~u Ux,x +ux ~x,u +ux (ux ~u,u + ~x,u) + ~x,x) +

U x ¢x,u + Ux (ux ¢u,u + ¢x,u) + ¢x,x ==

o

The above calculations deliver an expression containing the determining equations of
the infinitesimals q and ifJ in an implicit way. The main characteristic of the result is
the dependence on derivatives of u. However, we know that the equation equal has to
be satisfied on the manifold m. This allows us to eliminate certain derivatives by
using the equation itself. By replacing one type of derivative, we eliminate redundant
information in the expression determ. The replacement is carried out by

128 Symmetries a/Ordinary Differential Equations

dete:r:mi = dete:r:m I. (Solve [equat == 0, q] I.
q -+ 0 {x, 2} U [x]) ; dete:r:mi II LTF

-¢ fu - ~ fx +

o

2 f (-ux ~u - ~x) + f ¢u - fp (ux (-ux ~u - ~x) + U x ¢u + ¢x) -

U x (f ~u + U x ~x,u + U x (ux ~u,u + ~x,u) + ~x,x) +

U x ¢x,u + U x (ux ¢u,u + ¢x,u) + ¢x,x ==

Here /[x, u, p] is a known function. On the other hand, the infinitesimals g and ¢ are
unknown functions of x and u. Thus, the expressions containing first-order
derivatives of u are independent from each other. This independence creates a system
of determining equations in the variables x and u, An additional feature of these
equations is that we find more determining equations than unknown functions g and
¢. Thus, the system of determining equations is overdetermined. Solving this system,
we find the infinitesimal symmetries g and ¢ of the equation.

Example 1

Let us examine the infinitesimal symmetries of the second-order equation

{jx U [x]
dequ2 = {j{x,2} u[x] + - Exp[u[x]]; dequ2 II LTF

x

_ EU + U x + U = = 0 x x,x

We use here the function L TF[] to represent the equation in mathematcal index
notation. The highly nonlinear ordinary differential equation of second order has a
right-hand side / given by

p
subrule= f-+Function[{x, u, p}, Exp[u] --]

x

f --> Function [{x, u, p}, Exp [ul - ~ 1

The defining equation for the infinitesimals follows by inserting the rule for / into
the expression determi and replacing the derivatives p by u'

detexl = dete:r:mi I. subrule I. {p -+ {jx u [x] }; detexl II LTF

Eu¢ ~ux +2 (EU_~) (-u ~ _~) +
x2 X x u x

o

(u U X) '" U x (-ux ~u - ~x) + U x ¢u + ¢x
E - X 'l'u + X -

U x ((Eu - -;) ~u + U x ~x,u + U x (ux ~u,u + ~x,u) + ~x,x) +

U x ¢x,u + U x (ux ¢u,u + rPx,u) + ¢x,x ==

Symmetry Transfonnations of Differential Equations 129

The resulting expression is a third-degree polynomial in the derivatives of u'. Since
the infinitesimals g and if> do not depend on the derivatives the determining equations
decompose into the following three relations. These equations follow by setting the
coefficients of the various powers of u' equal to zero

tabl = Flatten [Table [Coefficient [Expand [detexl) ,

(oxu[x)i), {i, 3, 1, -l}));tabl//LTF

-.;u,u == 0

2 ';u
-x- - 2 ';x,u + ¢u,u == 0

- ~ - 3 EU ';u + -; - ';x,x + 2 ¢x,u == 0

The fourth equation free of any u' is derived by the following line

AppendTo [tabl,

Expand[detexl- PlusH (tabl. {(oxU[X)3,

(ox U [X])2,ox U [X)}»));

tabl = Flatten [tabl) ; tabl / / LTF

-.;u,u == 0

2 ';u
-x- - 2 ';x,u + ¢u,u == 0

- ~ - 3 EU ';u + -; - ';x,x + 2 ¢x,u == 0

- EU .+. - 2 EU ; + EU '+' + ~ + .+. - - 0 If' Sx \flu X '+'x,x--

These four equations are the defining equations for the infinitesimals g and ¢. The
next step in finding the symmetries is the solution of these equations. We do this step
by step. If we integrate the first and second equation, we find the general expressions
for the solution

rule2 = {~-+ Function [{x, u}, p [x) u + a [x)) ,

(p [x))
<p -+ Function [{x, u}, Ox P [x) + -x- u 2 +

(2 (Ox a [x) - a ~)) + q [x)) u + b [x)] }

{.; --7 Function [{x, u}, P [xl u + a [xll, ¢ --7 Function [{x, u},

(oxP[X l + P~Xl) u 2 + (2 (Oxa[Xl- a~xl) +q[Xl) u+b[xl]}

where p, q, a, and b are arbitrary functions of x. Substituting this result into the
determining equations in tabl, we get a reduced set of determining equations
connecting the arbitrary functions a(x), p(x), b(x), and q(x).

130 Symmetries of Ordinary Differential Equations

tab2 = Expand [tabl /. rule2]; tab2 / / LTF

True

4 P == 0
x

U 3a 5pu 3ax 5upx
-3 E p + -;(2 -~ - -x- + --x- + 2 <Ix + 3 ax,x + 3 u Px,x == 0

b U U U 2au pu 2 2aEu 2aEu u 2Eu pu
- E +E q-E qU-~+--;(3---x-+ x + x

o

EU P u 2 2 U 2 u ax b x u 2 u 2 Px
X - E u ax + ~ + x - E u Px -~ +

uqx b
-x- + X,X +

2 u 2 Px,x 2 2
+ U <lx,x + U ax,x,x + U Px,x,x == x

The second equation shows us that the function p(x) has to vanish identically to
satisfy the equation. Using this fact in the representation of the infinitesimals, we can
simplify the results to

rule3 = rule2 /. p -+ Function [x, 0]

{f,-7FUnction[{x, u}, Function [x, Ol[xlu+a[xll, r:P-7FUnction[

(Function [x, 0 1 [Xl) 2
{x, u}, Ox Function [x, 0 1 [xl + x u +

(2 (ox a [xl - a ~l) + q [Xl) u + b [xl] }

These expressions can be used again to simplify the set of the determining equations

tab2 = Expand[tabl /. rule3]; tab2 / / LTF

True

True

3 a 3 ax
-;{2 - -x- + 2 <Ix + 3 ax,x == 0

b u u u 2au 2aEu
- E +E q-E qu-~--x--+

o

A second glance at these equations shows us that a combination of x-dependent
auxiliary functions a, b, and q occur in connection with u-dependent coefficients.
Since the auxiliary functions do not depend on u, the determining equations
decompose into another set of equations. Let us extract the equations from the terms
containing factors like u Exp[u] and Exp[u] .

Symmetry Transformations of Differential Equations 131

coefl = DeleteCases [Flatten [

Table [Coefficient [

tab2, Exp[u] u i], {i, 1, 0, -1}] /. u -+ 0], 0]; coefl / / LTP

2a
-q + -----x- - 2 ax == 0

2a
-b + q - -----x- == 0

The remaining set of equations follow from the terms containing pure coefficients
in u:

AppendTo [coef1,

DeleteCases[Coefficient[

tab2 /. I£xp[u] -+ 0, u], 0]]; coef1 / / Flatten / / LTF

2a
-q + -----x- - 2 ax == 0

2a
-b + q - -- == 0

x
2a 2ax ~

- X3 + ~ + x + ~,x + 2 ax,x,x == 0

The last set of equations follows from those temlS which are free of u:

AppendTo[coef1, DeleteCases[

tab2 /. {Exp[u] -+ 0, U -+ O}, 0]]; coef1 / / Flatten / / LTP

2a
-q + -----x- - 2 ax == 0

2a
-b + q - -- == 0

x
2a 2ax ~

- X3 + ~ + x + ~,x + 2 ax,x,x == 0

3 a 3 ax
--;{2 - ----x- + 2 ~ + 3 ax,x == 0

b x X +bx,x == 0

Thus, the complete set of determining equations reads

coefl = Flatten [coef1] ; coef1 / / LTP

132 Symmetries of Ordinary Differential Equations

2a
-q + --x- - 2 ax == a

2a
"-b + q - --x- == a

2a 2ax ~
-~ + ~ + x + ~,x + 2 ax,x,x == a
3 a 3 ax
--;{2 - ---x- + 2 ~ + 3 ax,x == a
b x
X +bx,x == a

To find the most general solution of these equations, we start by solving the last
equation of this set. This second-order equation in b has the solution

so11 = I!'latten[DSo1ve [Last [coefl] == 0, h, x]]

{b -+ (C[2] + C [1] Log [# 1] &) }

As expected, the solution contains two integrating constants C[l] and C[2]. Applying
this solution to the remaining equations

coef2 = coefl /. Boll; coef2 / / LTI!'

2a
-q + --x- - 2 ax == a

2a
q- --x- -C[2] -C[l] Log[x] == 0

2a 2ax ~
-~ + ~ + x + ~,x + 2 ax,x,x == a
3 a 3 ax
X2 - ---x- + 2 ~ + 3 ax,x == a
True

simplifies the expressions. We find determining equations for a and q. If we examine
the equations, we realize that the second equation is a purely algebraic equation
which can be solved either for a or q. We decide here to solve the equation for a:

8012 =l!'latten[Solve[coef2[2D == 0, a[x]] /. a[x] ... w]

1
{ w -+ - "2 x (C [2] + C [1] Log [x] - q [x]) }

For further use of this solution, we convert the result into a pure function.

80121 = a ... I!'unction[x, w] /. Bo12

a-7FUnction[x, -; x (C[2] +C[l] Log[x]-q[x])]

The application of this solution to the determining equations simplifies the equations
to an overdetermined system in q:

Symmetry Transformations of Differential Equations 133

coef3 = SillliPl.ify[coef2 I. 80121]; coef3 II LTP

-q+C[l] -xqx == 0

True

2~ -----x- + 4 ~,x + x qx,x,x == 0

1
2 (7 ~ + 3 x ~,x) == 0

True

If we examine these equations, we observe that all three equations are connected by
the derivatives of q. Solving the first equation with respect to q' and substituting the
result into the rest gives us

hel.l = Sol.ve[coef3[1] == 0, "xq[x]]

{{q'[x] ~_ -C[l]x+q[x]}}

coef3 = platten [coef3 I. hell] ; coef3 II LTP

True
True

2 (q-C[l]l
x 2

+ 4 qx,x + x qx,x,x == 0

~ (_7 (q-xC[l]) +3X~,x)==O

True

a system of two coupled equations which are connected by q". The solution of the
second equation with respect to q" and the reinsertion of the result into the equations
gives

he12 = Platten [Sol.ve [coef3[4.] == 0, O{x.2) q[x]]]

{ "[] _ 7 (C[l] - q[x]) }
q x ~ 3 x2

coef3 = Pl.atten [Simplify [coef3 I. hel.2]]; coef3 II LTP

True
True

22 q- 22 C[l] + 3 x 3 ~,x,x == 0
3 x 2

True
True

a single equation of third order in q. One solution of this remaining equation is given
by a constant q[x] = C[l]. Thus, we can define q as

134 Symmetries of Ordinary Differential Equations

Bo13 = q Function [x, C [1]]

q~Function[x, C[l]]

We check this solution by

coef3 /. Bo13

to, 0, 0, 0, O}

The infinitesimals g and ¢J are thus given by

!nfini = Simplify [{~[x, u], ~ [x, u]} /.

rule3 /. Boll/. 80121 /. Bo13]

{- ~ x (-C[l] +C[2] +C[l] Log [x]) , C[2] +C[l] Log[x]}

Thus, the infinitesimals depend on two arbitrary parameters C[1] and C[2]
representing the group parameters. In view of the linearity of the detennining
equations, the general solution can be represented as a linear combination of two
independent solutions

nfinil = infini /. {C[l] -+ 1, C[2] O}

1 { -"2 x (-1 + Log [x]), Log [x] }

and

nfini2 = infini /. {C [1] 0, C [2] -+ 1}

{-~,1}

This means that our original equation admits two linearly independent operators and
that we have to consider a two-dimensional vector space with the basis given
above.D

The example discussed shows that the derivation of the determining equations is very
laborious when done interactively. Therefore, it is our goal to present a procedure
which automatically delivers at least a prolongation of the equation.

We already know that the prolongation is related to an expansion of the
infinitesimals. The actual connection is a special form of a derivative known as
Frechet derivative. The definition of a Frechet derivative was introduced in Chapter
3. Here, we will shortly recall the definition in an appropriate form applicable on
ordinary differential equations. A Frechet derivative is a generalization of an ordinary
derivative including a weight of the differential. The symbolic definition is

Symmetry Transfonnations of Differential Equations 135

d
Dp(Q) = dE P(u + E Q(u» 1.=0' (4.16)

In MathLie this definition is realized by the function FrechetD[].

The operational meaning of equation (4.16) is that the dependent variables are
replaced by their variations in the support function P. The dependent variables are
replaced by the variables and by the test function Q multiplied by E. Mter the
substitution a differentiation with respect to E is carried out and finally we set E = O.
This relation defined in general for an r-dimensional support function P and for a
q-dimensional test function Q allows a very efficient implementation in Mathematica.

In Section 3.7, we discussed the connection between the prolongation and the
Frechet derivative. This relation is given by

p

pr(k) v(A) = Da(Q) + 2:~i Di(A) (4.17)
i=l

where the test function Q is a combination of the infinitesimals ~ and <p.

a = 1,2, ... , q. (4.18)

The actual invariance condition for a given system of differential equations is then
given by

(4.19)

The algorithm for calculating the prolongation now consists of three steps. These
steps are contained in equations (4.17)-(4.19). They are verbally expressed by the
following:

1. Define the test functions Q using the infinitesimals as given in (4.18).

2. Calculate the Frechet derivative and the complete derivative by equation (4.16).

3. Apply the side conditions (4.18) and the original equation to the result.

The three steps of the calculation for an ordinary differential equation are collected in
the function ProlongationODE[]. The function ProlongationODE[] needs the
equation, the dependent and independent variables, as input parameters. The function
is written in such a form that only one dependent and one independent variable is
allowed. The general definition of ProlongationODE[] is given in Section 3.7.

136 Symmetries of Ordinary Differential Equations

Clear[ProlongationODE];
ProlongationODB[equations_, dependent_,

independent_] : = Block [
{vars, eta, testfunction, mainrule, prolong,

ux, x, w},

vars = Flatten [Join[

{dependent@@{independent}}, {independent}]];

eta = 9»@@vars - '@@vars aindependent dependent@@{independent};

test function = Unique [nw$xn] ;

mainrule = ux -+ Function [x, w] ;

prolong = FrechetD [{equations}, {dependent},

{independent}, {testfunction}];

prolong = prolong I. (mainrule I .
{ux -+ testfunction, x -+ independent,

w -+ eta});
prolong = Expand [Apply [Plus, prolong, 1] +

'@@vars aindependent equations]]

The action of the function ProlongationODE[] is demonstrated by applying it to some
examples.

Example 1

Let us consider the general ordinary differential equation

ode3 = ax u [x] - F [u [x] , x] ; ode3 II LTF

-F + U x == 0

The function ProlongationODE[] actually only treats the left-hand side of the
equation ax u - F(x, u) = O. The application of the function to the equation provides
the following information:

prolode3 = ProlongationODE[ode3, u, x]; prolode3 II LTF

The resulting expression contains derivatives of the arbitrary function F and the
infinitesimals. We notice that the derivative of the dependent variable u occurs in
different locations. We know that the first derivative of u can be expressed by the
differential equation itself. In this way, we can replace the first derivative by F:

pode3 = prolode3 I. 0,. u [x] -+ F [u [x] , x] ; pode3 II LTF

Symmetry Transformations of Differential Equations 137

Thus, we eliminated the redundant information contained in the original differential
equation. Since the prolonged vector field must vanish according to equation (4.19),
we get conditions determining the infinitesimals. The arbitrary function F in our
example is known for a certain type of equation. Thus, the partial differential
equation for g and ¢ has solutions g = g(x, u) and ¢ = ¢(x, u). The three steps of
deriving the prolongation can be simplified in Mathematica by

Map [# == O&:, ProlongationODE [odel, u , x]] /.

Solve [odel == 0 I ~x U [xl] / / LieTraditionalForm / / TableForm

With this expression, we are able to derive the invariance condition for any ordinary
differential equation. A specific example may demonstrate the derivation of the
invariance condition. 0

Example 2

Let us assume that we have to find the invariance properties of the equation

ode4 = ~x U [x] - g [u [x] 1 f [x] ;

Map[# == O&:, {ode4}] / / LieTraditionall"orm / / Tablel"orm

-f g + U x == 0

where f and g are arbitrary functions of the independent and dependent variables,
respectively. The invariance condition for this differential equation is given by

pode4 = prolongationODE[ode4 , u , x] /.

Solve [ode4 == 0 , ~x U [x]]; pode4 / / l"latten / / LTI"

A solution satisfying the invariance equation is given by

1
infiode4 = {~-+ l"unction [{u , x} I --]

f [x] I

q, -+ l"unction [{u , x} I O]}

{.; --) Function [{u, x}, f [lXl 1 ' rjJ --) Function [{u, x}, 0 J }

We can check this result directly by inserting the solutions into the invariance
condition

pode4 / • U [xl -+ U /. infiode4

{ { O} }

138 Symmetries of Ordinary Differential Equations

The result demonstrates that the given solutions satisfy the invariance condition. 0

A special note on the arguments of functions is appropriate here. In the above
calculations, we used the functions F, ~, and ¢J depending on independent and
dependent variables. In paper and pencil calculations, we are free to interchange
these arguments because we know that these functions are the same, independent of
the order of the arguments. However, in a symbolic calculation, we cannot change
the slots of the variables, since a computer does not know how to handle the same
function with interchanged arguments. So a good rule is to fix the arguments at the
beginning of the calculation and to use the same order in all calculations.

In the above example, the infinitesimals are given. How these solutions are derived
from the invariance condition will be discussed below . We saw in the example
discussed that we can always express the invariance condition of first-order
differential equations free of any derivative. One consequence of this observation is
that a first-order differential equation actually has an infinite number of symmetries.
This behavior can be read off directly from relation pode3, where ~ is connected by
¢J. However, there are exceptions to this statement where only a finite number of
symmetries exist.

Example 3

The derivation of a finite number of symmetries can be best demonstrated with a
higher-order differential equation. In the examples above we restricted our
discussions to first-order differential equations. If one has to examine higher-order
differential equations, we have to extend or prolong the tangent vector field to the
order of the differential equation; e.g., to the second prolongation for second-order
differential equations. To demonstrate the calculation let us examine the following
general second-order equation

odeS = CJ{X,2} U [xl - P [x, u [xl, CJx u [xl l; odeS // L'l'P

-F + Ux,x == 0

The invariance condition (4.19) for this equation stays the same. The only difference
is the higher order of differentiation which the function ProlongationODE[] detects
by itself.

pedeS = pro1ongationODB[odeS, u, xl /.
So1ve [odeS == 0, CJ{x,Z} u [xl 1 ; podeS // P1atten // L'l'P

-cP Fu - .; Fx - 3 F UX ';U + Fux u; ';U - 2 F ';X + Fux UX ';X + F cPu - Fux Ux cPu -
Fux cPx - u~ ';u,u - 2 u; ';u,x - ux ';x,x + u; cPu,u + 2 ux cPu,x + cPx,x ==

o

Symmetry Transformations of Differential Equations 139

From this relation we have to determine ~ and ¢J. The equation found is an identity in
x, u and Ux • As a consequence of the point symmetries the infinitesimals are
independent of Ux • This condition will split the general relation into several equations
according to the different dependence of its parts on u'. We see that the same function
ProlongationODE[] is useful to calculate the invariance relation (4.19) independent
of the order of differentiation. In Section 4.4.2 on second-order differential equations
we will show how we can extract the determining equations from such a relation. For
the moment we stop at this point and discuss another useful tool called canonical
variables.

4.3.4 Canonical Variables

In his work Lie pointed out that the introduction of suitable variables will drastically
simplify the representation of a group. We discuss here the so-called canonical
variables. On the other hand, canonical variables are a very efficient tool in the
solution of ordinary differential equations. In this section we consider the
distinguished situation of having a group consisting of two independent infinitesimal
transformations.

Two infinitesimal transformations given by their vector fields \\ and)12 are
independent from each other if the following relations do not exist

(4.20)

where c is a constant, and the Lie product delivers

(4.21)

where c) and C2 are constants again. The second relation can be simplified by
assuming that the two independent transformations can be used to represent the
product in a different way. If we assume that c) and C2 are equal to zero, we get

(4.22)

On the other hand, we can assume that the infinitesimal transformations are given by
a linear combination of the transformations by

(4.23)

where ai and hi, i = 1, 2, are constants. In these cases, the group is represented by
commuting infinitesimal transformations. If, for example, c) '* 0, we represent the
two infinitesimal transformations by

140 Symmetries of Ordinary Differential Equations

and

1 ~
112 = -V2·

cI

By using this representation, we can rewrite the above condition as

Thus, we can write down the following theorem

Theorem: Canonical variables

(4.24)

(4.25)

(4.26)

Each two-dimensional group of infinitesimal transformations VI and V2 can be used to
represent the product of the two transformations in each of the following forms:

(4.27)

or

(4.28)

Each of the two results is independent from the other. 0

This theorem divides the two-dimensional groups in two classes. Each of these two
classes can be divided into two subclasses.

Canonical variables now follow from the definition:

Definition: Canonical variable

Every one-parameter group of transformations reduces to the group of
translations f = t + E and w = w, with the vector field

V = at (4.29)

by a suitable change of variables t = t(x, u) and w = w(x, u). The variables t and w

are the canonical variables. 0

The proof of this theorem follows from the fact that the tangent vector field in the
original variables transforms according to the formula

Symmetry Transformations of Differential Equations 141

v = (vt)Ot + (v w)Ow . (4.30)

In other words, canonical variables follow from the solution of the following linear
partial differential equations. These two equations represent the invariance of the
transformation

canonicalBquations = {, [x, u] Ox t [x, u] +

,,[x, u] Ou t [x, u] == 1,

,[x, u] oxw[x, u] +,,[x, u] ouw[x, u] == OJ;

canonicalBquationsIILieTraditiODalro~/ITablero~

¢ tu +, tx == 1
¢wu + ,wx == 0

The two equations follow from the definition by applying the tangent vector v to the
canonical variables t and w

vt = 1, vw = O. (4.31)

The relations (4.24)-(4.26) define the canonical variables and present a way how
these variables can be determined. The following examples discuss the derivation of
canonical variables. First, we carry out a manual calculation of the canonical
variables, and at the end of the section, we discuss an automatic procedure.

Example 1

To see how these concepts work in practical applications, let us examine a specific
problem. We will examine a scaling symmetry represented by the vector field

veccan = {, Punction [{x, u}, x],
til l'unction [{x, u}, -u]}

{' ~ Function [{x, u}, xl, r/J ~ Function [{x, u}, -ul}

For this example, the defining equations for the canonical variables reduce to

caneq = canonicalBquations I • veccan;
caneq II LieTraditionalro~ II Tablero~

-u tu + x tx == 1
-uwu +xWx == 0

These two linear partial differential equations are solved by using the function

DSolve[] capable of solving first-order partial differential equations. The solution for
t follows by

142 Symmetries of Ordinary Differential Equations

solei = DSolve [eaneq[l] I t [XI u] I {XI u}]

{{t[x, u] -7 Log[x] +C[l] lux]}}

and the solution for w reads

sole2 = 0801.". [eaneq[2] I W[XI u] I {XI u}]

{{w[x, u] -7C[l] [ux]}}

The result for t logarithmically depends on x and allows an arbitrary function C[I]
combining the two old variables x and u by a product. The second canonical variable
w is given by an arbitrary function which also connects x and u by a product. Since
we are only interested in a special solution of the defining equations, we can simplify
the arbitrary function by

rl = C[l] [ux] -+xu

C[l] lux] -7UX

For the inhomogeneous equation, we are mainly interested in a special solution.
Thus, the general solution derived by the function DSolve[) reduces if we set the
arbitrary function C[1][x, u] to zero. Applying the reasoning to our solutions, we get

esol = Platten [{solel/. C [1] [xu] -+ 0 ,

sole2 I. rl}]

{t[x, u] -7 Log[x] , w[x, u] -7ux}

We can check the derived result by inserting the solutions into the defining equations
caneq. First, we have to transform the representation of the solutions into a pure
function

r2 = Thre.d[{t , w} -+

(!'Unction [{XI u} I 11] to) /0 ({t [XI u] I

W[X, u]} /. esol)]

{t -7 Function [{x, u}, Log [x]] , w -7 Function [{x, u}, u x] }

The application of the result on the original equations gives us a list containing True
for each equation:

Simplify [eaneq /. r2]

{True, True}

This result shows that the solutions given in csol satisfy the defining equations for the
canonical variables. D

Symmetry Transfonnations of Differential Equations 143

Example 2

Another example of great interest is the group of rotations. For this kind of symmetry
group, the infinitesimals are given by

veccan = {g -+ Function [{x, u}, -u],

tP -+ Function [{x, u}, x]}

{~-+ Function [{x, u}, -ul , cj; -+ Function [{x, u}, xl }

The equations determining the canonical variables are thus given by

caneq = canonicalEquations / • veeean;

eaneq / / LieTraditionalForm / / TableForm

x tu - u tx == 1

xWu-uwx==O

The solution for the new independent variable t follows from

solct = DSolve [caneq[l], t [x, u], {x, u}]

{ { t [x, u 1 -+ - ArcTan [b 1 + C [1 1 [~ (- U 2 - x 2) 1 } ,

{t[x, ul -+ArcTan[b 1 +C[ll [~ (_u2 _x2) l}}

The new dependent variable w is determined by

solew=DSolve[caneq[2], w[x, u], {x, u}]

Again, we are only interested in a special solution which follows from

solct = PowerExpand[solet[2] /. C[l] [_] -+ 0]

{t[x, ul -+ ArcTan [~ l}

The solution for w is extracted with

solew = Flatten [solew /. C [1] [x_] -+ x]

The complete expression of the canonical variables are thus

144 Symmetries o/Ordinary Differential Equations

r3 = 'l'hread[{t, w} ...

(I'u.DctioD [{x, u}, #1] &) 10 ({t [x, u],

w[x, u]) I. {solct[l], solow[l]})]

{t --+ Function [{x, u},

W --+ Function [{x, u},

ArcTan [: J J,
u 2 x 2

-T-T]}

The canonical variables of the rotation group are given by the ArcTan of x divided by
u and the representation of a circle. 0

Example 3

Another kind of symmetry frequently encountered in problems is given by a
projective group

veccaD = {{ ... I'u.Dction [{x, u}, xu],

4J ... I'u.Dction [{x, u}, u] }

{~--+ Function [{x, u}, xu] , ¢ --) Function [{x, u}, u] }

The corresponding determining equations are

caneq = caDoDicalll:quatioDs I. veccan;

caneq II Lie'1'raditionall'orm II Tablel'orm

u tu + U x tx == 1

u Wu + U x Wx = = 0

We solve these equations by using the function DSolve[] for the first and second
equations:

solct = DSolve [caneq[l], t [x, u], {x, u}]

{{t[x, u]--)Log[u] +C[l] [u-Log[x]]}}

solow = DSolve [caneq[2], w[x, u], {x, u}]

{{W[x, u] --+ C[1] [u - Log [x]]}}

We extract a special solution from these expressions by

csol = 1'1atteD[{.olct I. C[l] L] ... 0,

solow I. C [1] [x_] -+ x}]

{t[x, u]--)Log[uJ, w[x, u]--)u-Log[x]}

and transform the relations to

Symmetry Transformations of Differential Equations 145

r4 = 'l'hread[{t, w} -+

(I!'u.nction [{x, u}, #1] &) /@ ({t [x, u],

w[x, u]} /. csol)]

{t ~ Function [{x, u}, Log lull , w ~ Function [{x, u}, u - Log [xll }

The result is a representation of canonical variables for the projective group. 0

The interactive steps of the calculation can be collected in a Mathematica function

CanonicalVariables[]. The function needs the dependent and independent variables of
the old coordinates. We also supply the infinitesimals for these coordinates as input
information. The last two arguments contain lists of the new variable names for the
dependent and independent variables, respectively.

The function CanonicalVariables[] calculates the general transformation using the
ftrst-order partial differential equations deftning the determining equations. The
function is designed to generalize the theory in such a way that an arbitrary number
of independent and dependent variables can be transformed. The returned result of
the function CanonicalVariables[] is a list of solutions represented in a pure function
form. The following code serves as the deftnition of this function.

Clear [Canonica1variab1es]
CaDOnica1Variab1es[depeDd_List, iDdep_List,

xi_List, phi_List,

ndepeDd_List, nindep_List] :=
Block [{equations = {}, solutions = {},

ssol, rule, csol},

vara = Join [indep, depend];

infini = Join[xi, phi];

nvars = Join[ndepend, nindep];

newvars = 'l'ab1e [unique [·w$ •] ,

{i, 1, Length[vars]}];

dnewv = 'l'ab1e[newvars[i] Mvars,
{i, 1, Length[newvars]}];

rule = 'l'hread[newvars -+ nvars];

Do[
Append'l'o[equations,

Length [vars] L: infini[i] BvarB [1D dnewv[j] == 0],

{j, 1, Length[cmewv] -1}];

AppeDd'l'O[equations,

Length [vAre J L: infini[i] Bvaro [1] Last [dnewv] == 1];
1=1

146 Symmetries o/Ordinary Differential Equations

Do[

AppeDdTo[solutions,

DSolve [equatiODs[i]l, dDewv[i]l, vars]],

{i, 1, LeDgth[equations]}];

ssol = PowerBxpaDd[Table [solutions[i]l I.
C [_] [x_] :-+ {xHi]l,

{i, 1, Langth[solutiODs] - 1}]];

AppeDdTo [ssol, PowerBxpaDd[Last [solutions] I.
C L] [_] -+ 0]] ;

csol = Platten [ssol] I. rule;

Thread [nvars -+

(PuDction[vars$, #1]&:) 1@(dDewv I.

rule I. cso1)] I. vars$ -+ vars]

The application of the function CanonicalVariables[] to different symmetry groups is
demonstrated in the examples below. Let us fIrst examine an inhomogeneous scaling
group for two variables u and x. The names of the new variables are w and t:

CaDOnicalVariable. [{u}, {x}, {a x},

{bu}, {w}, {t}]

{W ~ Function [{x, u}, u x-} 1, t -7 Function [{x, u}, LOga[X] l}

The result is a logarithmic dependence in the new independent variable t and a
quotient of u and xl'/a . Another example is related to the projective group. The result
becomes more readable if we apply the function LTF[]:

Canonical Variables [{u}, {x}, {~u}, {1},

{w}, {t}] I I L'l'P
t == -u

u 2 1
w=="""2 + x

A further example is the inhomogeneous translation group

CanonicalVariab1es [{u}, {x}, {1}, {k},

{w}, {t}] IILTP
x

t == T
-lu+kx

W== - 1

The symmetry of rotation is connected with the canonical variables

CaDODicalVariables [{u}, {x}, {u}, {-x},

{w}, {t}] I I L'l'P

Symmetry Transformations of Differential Equations 147

t == -ArcTan [~]

u 2 x 2

W== -2 - 2

The scaling of one of the coordinates allows the canonical variables

CanonicalVariablas[{u}, {x}, {x}, {1},

{w}, {t}] / / L'l'J'

t == Log[x]
W == u - Log[x]

CanonicalVariables[{u}, {x}, {1}, {u},

{w}, {t}] II L'l'J'

t == x
W == E-X u

Several other examples demonstrate the capabilities of this function. The occurrence
of the Log[] in one of the infinitesimals demonstrates the flexibility of the function

CauonicalVariabl •• [{u}, {x}, {Log[x] u}, {1},

{w}, {t}] II L'l'J'

t == -u
2

W == T - LogIntegral [x]

An example with parameters in the infinitesimals shows that CanonicalVariables[]
can handle rational expressions:

CanonicalVariablas [{u}, {x}, {kl + k2 x},

{k3 + 2 k2 u}, {w}, {t}] /I L'l'J'

t == Log [kl + k2 x]
k2

-k3 - 2 k2 u
W == - -------;-

2 k2 (kl + k2 x) 2

An example for a higher-dimensional manifold m is examined next:

CanonicalVariabl •• [{u, v}, {x, t}, {x, t},

{O, O}, {un, VD}, {xn, tn}] /IL'l'F

tn == Log[x]

un == u
vn == v

t
xn== -

x

148 Symmetries of Ordinary Differential Equations

This list of examples can be extended by the reader's experiments. We demonstrated
that the knowledge of the infinitesimals allows the introduction of new variables. Lie
pointed out that these canonical variables simplify the solution of the original
equation. The advantage of canonical coordinates is that we may simplify the
solution algorithm. This algorithm consists of first finding the infinitesimals, second,
calculating the canonical variables, and third, transforming the original equation to a
simpler form. These three steps will be the subject of the next sections.

4.4. Analysis of Ordinary Differential Equations
The Lie point symmetries of an ordinary differential equation A = 0 are determined
by calculating the general solution for the infinitesimals g and <p. The procedure
follows the steps discussed in Section 4.3. The first step is to write down the
invariance condition for the equation and then solve the linear determining equations.
The steps of deriving and solving the determining equations are accessible within
MathLie and can be carried out automatically. The calculations done by hand are
very cumbersome, but using computer algebra, the work is easy to accomplish.
However, the view taken here is somewhat optimistic and cases exist which
sometimes involve peculiar results.

One of these peculiarities is the case of first-order differential equations. As we will
soon show, first-order differential equations always have an infinite number of
symmetries and are thus not very appropriate for Lie's method. However, we will
discuss a procedure which allows us to find a restricted class of point symmetries, the
so-called conformal symmetries.

4.4.1 First-Order Equations

The general representation of a fIrst-order ordinary differential equation is given by

F(X, u(x), :) = 0, (4.32)

where F is an arbitrary function combining the independent and dependent variables
x and u, respectively, and the derivatives in a general way. Our intention here is to
use point symmetries to solve this type of equation. We state the main result at the
beginning of this section. A first-order differential equation always has an infinite
number of symmetries. This is immediately obvious if we consider the geometrical
interpretation of the equation. As we know, the set of solutions of a first-order
differential equation is a one-parameter family of curves which look like the
ensemble in the following figure:

Analysis of Ordinary Differential Equations 149

u

~------~----~------~----~~----~ x
1.4 1.6 1.8 2 1.2

A symmetry transformation is by definition a transformation mapping solutions into
solutions. As the example in the above figure shows, new solutions follow from old
solutions by successively changing the involved integration constant. Every
symmetry transformation is represented by a generator V corresponding to a vector
field leading from curves to their neighboring curves. As we know, the vector field
always exists and can be represented by the infinitesimals .; and </J. A different choice
v' of the vector field will result in a different location on the target curve; however,
both points on the target curve are connected by a third vector field S (see the figure).
This is one of several ways to interpret a differential equation. Another view is the
following:

From a conceptual point of view, a differential equation contains two components:

(i) the skeleton of the differential equation

(ii) the solution manifold.

These two parts of a differential equation will be the subject of the following. The
term skeleton was introduced by Lie [1899] to denote the extended manifold on
which the differential equation exists. We will show you how the symmetries connect
these two parts. We start with the skeleton of a first-order ordinary differential
equation.

4.4.1.1 The Skeleton of an Ordinary Differential Equation

As mentioned, the concept of an ordinary differential equation has two components.
Let us first consider the first-order differential equation in the form

F(x, u(x), u') = 0, (4.33)

where u' = ': is the first-order derivative. The two components of an ordinary

differential equation are as follows:

150 Symmetries of Ordinary Differential Equations

Definition: The Skeleton

The skeleton of a differential equation is defmed as the surface

F(x, U, p) = 0 (4.34)

in the space of the independent variables x, u, and p. U and p denote the sets of
dependent variables and derivatives, respectively. The corresponding differential
equation follows from the skeleton with the replacement of p by the derivatives
u(l).O

This general definition reduced to first-order equations introduces nothing more than
an extension of the manifold m. This extended manifold consists of the independent
and dependent variables with the third direction denoting the first derivative. The
once extended manifold is a very useful term in the discussion of first-order ordinary
differential equations. Another term we need is the class of solutions.

The class of solutions is defined in consensus with certain mathematical or physical
assumptions.

Definition: A class of solutions

A solution is a continuously differentiable function h(x) such that the curve U = h(x),

u' = d':1:) belongs to the skeleton, that is, F(x, hex), d':i:») = 0 identically in x for

some interval. 0

The combination of both terms allows us to solve the first-order equation. The crucial
step in integrating differential equations is a simplification of the skeleton. This
simplification can be gained by a suitable change of variables x and u. To this end,
we use symmetry groups of differential equations, leaving the skeleton invariant.
Provided a symmetry group is known, a simplification of the skeleton can be carried
out by introducing canonical variables, for example. This kind of simplification is
demonstrated by the following examples.

Example 1

Let us consider the Riccati equation as a first example:

2
riccati = CJx u [x] + U [xj2 - - == 0; riccati II 1.'1'1'

x 2

2
u 2 - X2 + u" == 0

Analysis of Ordinary Differential Equations 151

The skeleton of this Riccati equation is defined by the algebraic equation

and its surface, a so-called hyperbolic paraboloid, can be displayed by defining the
skeleton as a Mathematica function:

The corresponding surface in three dimensions is given by

pll=Plot3D[f[x, u], {x, 0.25, 2}, {u, -5, 5},

Boxed -+ True, Axes -+ True, Mesh -+ False,

Ticks -+ None, PlotPoints -+ 30,
3

BoxRatios -+ {l, -, l},
5

ViewPoint-+ {1.975, -1.884, 2.000},

AxesLabel -+ {RXR, nuR, Rpll}]

u
x

p

This figure shows that the skeleton in the coordinates x, u, and p has a singularity in
the limit x --t O. We also observe the parabolic shape of the surface for large x-values .
Thus, the surface is twisted in two directions, which obviously baffles the discovery
of the solution. Our goal is to find a transformation which reduces the twisted shape
to a simpler representation. For the Riccati equation, a one-parameter symmetry
group is provided by the following scaling transformations. Ibragimov [1994] calls
this transformation a non-homogeneous dilation.

152 Symmetries of Ordinary Differential Equations

transformation = {x r Bxp [-a] ,
u l'Unction[x, w[xBxp[a]] Bxp[a]]}

{x~E-ar, u~Function[x, w[xExp[a]1 Exp[a]]}

We can check the invariance of the Riccati equation by taking into account that the
derivatives also need to be transformed by the rule

dtrafo=v_(D_) [a_.x_] Ha-D v(ll) [ax]

v_(n_) [a_. x_] Ha-nv(n) [ax]

The rule dtrafo represents the fact that the nth derivative of a function under a scaling
is replaced by the nth derivative divided by the scaling factor an. The application of
transformation and dtrafo to the Riccati equation gives us

triccati = riccati I. transformation I. dtrafo; triccati II LTP

We note that the original equation riccati is reproduced up to a common factor E2 a .

In the definition of the transformation, it is essential that we use the new variables in
the representation for the original variables. x is simply replaced by the new
independent variable r multiplied by the factor ~a. The dependent variable u is
replaced by w~. Since w depends on the new variable r, we have to use the
representation of r in the form x E'. We also have to take into account that the
derivatives need a special treatment which is contained in the rule dtrafo. Combining
all these rules in the transformation of the original equation, we end up with the
equation given in triccati. The different replacements of variables are actually the
steps necessary to carry out the transformation by hand. The application of the
transformation on the first derivative shows us that its behavior is

ax u [x] I. transformation I. dtrafo II L'l'1'

which in conventional notation reads w' -+ u' e-2a • Thus, we observe that the
equation's skeleton is invariant under the inhomogeneous stretching r -+ x ea ,

w -+ ue-a , w' -+ u' e-2a which is obtained by extending the transformations of the
group to the first derivative u'. We can also check the invariance of the skeleton
equation by applying the extended vector field to the skeleton equation. We define
the vector field by

Analysis of Ordinary Differential Equations 153

The skeleton of the Riccati equation is

skeleton = riccati /. {Bxu[x] -+p, u[x] -+u}

2 2
p +u - - == 0

X2

The application of the vector field gives us

Vect/Oskeleton

2 4
-2 p - 2 u + X2 == 0

If we compare the two expressions, the original and the transformed, we observe that
the original equation is reproduced up to a factor -2. Thus, if the skeleton vanishes,
the application of the vector field to the skeleton also vanishes. This result shows us
that under a scaling transformation, the skeleton of the Riccati equation is invariant. 0

Example 2

Another example for a first-order ordinary differential equation is

Bx u [x] (u [x] 2 U [x] 3)
example2 = - x 2 + ----;;- + --x- == 0; example2 / / LTl!'

This example is also invariant with respect to an inhomogeneous scaling
transformation. We define this sort of transformation by a transformation rule like

scalingtrafo = {x Bxp[-a] r,

u -+ Function [x, w[x Bxp [a]] Bxp [a]] };
dtrafo = v_ (IL) [a_. x_] a a-n v(n) [a x] ;

scaling [x_] : = x / • scalingtrafo /. dtrafo

The application of the function scaling[] to the second example shows the invariance
of this equation

scaling[example2] / / LTl!'

E4 a w2 E4 a w3 E4 a Wr
-r-2 - + --r-- - _r_2- == 0

The graphical representation of the skeleton for this equation is created by

154 Symmetries of Ordinary Differential Equations

Plot3D[u2 - xu3 , {x, -1, 1}, {u, -2, 2},

PlotRange -+ All, AxesLabel ... {nx", nun, "pn},

ViewPoint ... {5.287, 3.905, 3.613},
3

Mesh ... False, Ticks ... None, BoxRatios'" {1, -,
5

x

p

u

1}]

This three-dimensional representation of the skeleton looks like a stingray. The
structure of this entangled surface is simplified if we apply the following canonical
transformation:

w[Log[x]]
canonical = {x ... Exp [t], u ... Function [x,] };

x
canonicaltransform[x_] := Simplify [PowerExpand [

x / • canonical]]

The transformation is carried out by

canonicaltransform[Thread[example2 Exp [4 t], Equal]] / / LTF

w+vl- +W3 -Wt == 0

The related skeleton simplifies the surface:

Plot3D[W+w2 +w', {t, -1, 1}, {w, -2, 2},

PlotRange ... All, ViewPoint ... {2.460, -1.182, 2.000},

AxesLabel ... {ntn, nwn , "W' n},

ViewPoint ... {5.287, 3.905, 3.613},

PlotPoints ... 30, Mesh ... False, Ticks -+ None,

3
BoxRatios ... {1, -, 1}]

5

Analysis of Ordinary Differential Equations 155

w'

w

which is a third-order parabola translated along the t-axis. This example shows that
the introduction of canonical coordinates radically simplifies the shape of the
skeleton and thus allows access to the solution. 0

Example 3

Another example demonstrating the concept of the skeleton is given by the first-order
equation

example3 = xaxu[x] -u[x] + ~ u~] == 0; example3 II LTI'

-u + fi + x u x == 0

This type of equation is invariant with respect to the global transformation S = 1 :€X
and ell = _Y-; the related canonical variables are w = !!... and t = 2. The equation in

I-EX x x

canonical variables reads

cexample3 = at w[t] + ~ == 0; cexample3 I I LTI'

Vw + W t == 0

Each skeleton of these two equations is represented in the following figure:

Show [GraphicsArray[

u~
{Plot3D[----X-, {x, .1, 1}, {u, 0, 2},

x x

PlotRange -. All, AxesLabel -. {nxn, nun, RpR},

156 Symmetries of Ordinary Differential Equations

vi_Point -+ {- 2.566, 1.572, 1.548}, Mesh -+ False,

Ticks -+ None, PlotPoints -+ 30,
3

DisplayFunction -+ Identity, BoxRatios -+ {1, -, 1}],
5

Plot3D[-Vw, It, .1, 1}, {w, 0, 2},

PlotRange-+All, AxesLabel-+ {"t", "w", ·w ' ·},

ViewPoint-+ {-2.566, 1.572, 1.548}, Mesh-+False,

Ticks -+ None, PlotPoints -+ 30,

DisplayFunction -+ Identity,

3
BoxRatios -+ {1, -, 1}]}],

5

Displayl"unction -+ $DisplaYFunction]

p

w u

w'

It is obvious from this figure that the skeleton of the original equation is reduced to a
much simpler representation. The convex shape of the original skeleton reduces to a
concave surface which is invariant with respect to a translation along the t-axis. 0

Upon observing that a canonical transformation simplifies the skeleton, we approach
the second component of a differential equation. The second component was
concerned with the solution of the equation. The question now is: How can we use
the information of the symmetries to find solutions of any first-order equation
possessing some symmetries? One idea to solve this problem is to use canonical
variables which allow a transformation to a simpler representation of the equation.

Returning to our first example of the Riccati equation, we know that the canonical
variables for a non-homogeneous dilation is given by

Analysis of Ordinary Differential Equations 157

w[Log[x]]
trafo1 = {x -+ Exp [t], u l'unction[x,]}

x

{X~Et, u~Function [x, W[LO~[Xl l l}

In Section 4.3.4, we derived this type of transfonnations by solving the defining
equations for t and w. The solution used here is a special type of the general solution
derived in Section 4.3.4. Application of this transfonnation to the Riccati equation
gives us the following result:

riccati1 = Simplify[Thread[

PowerExpand[riccati I. trafo1] Exp[2 t], Equal]];

riccati111 loTI'

-2 -w+~ +Wt == 0

The transformation straightens out the skeleton of the original Riccati equation,
taking it to a parabolic cylinder

The right-hand side of g is independent of t; thus, the skeleton reduces to a
cylindrical surface centered along the t-axis.

p12 = Plot3D[g[t, w], {t, 0.25, 2}, {w, -5, 5},

Boxed -+ True, Axes -+ Tru., ... sh -+ False, Ticks -+ None,

3
PlotPoints 30, BoxRatios {1, -, 1},

5
ViewPoint-+ {1.975, -1.884, 2.000},

Ax.sLab.l {ntn, nWn, nw· n}]

w
t

w'

158 Symmetries of Ordinary Differential Equations

The simplification of the skeleton is the reason why the Riccati equation takes the
integrable form when written in canonical variables (cf. the skeleton of the original
Riccati equation).

The stretching of the original Riccati equation is replaced by a group of
translations f = t + E, W = u, and w' = u'. The calculations so far executed by hand can
be collected in a Mathematica function. The information we need for the calculation
are the original equation and the names of the dependent and independent variables.
We also need the canonical transformations which are derived by the function
CanonicalVariables[]. Finally, the function has to know the names of the new
coordinates. The representation of the original equation is carried out by the function

CanonicalRepresentation[] :

Clear [CanoniealRepresentation]

CanoniealRepresentation[equatian_, depend_,
ind.pend_, eanoniealtrafo_List, newdepend_,

newindepend_] : =
Block [{patterni, trafoi, eqin, etrafo,

canonical variables, sol, equat},
aDt [u]

patterni = a_" u_' [x_] + p_" == 0 :-+ + p;
Dt [x]

trafoi = depend@O {iDdepend} -+ depend;

eqin = equation / " patterni /" trafoi;

etrafo = eanoniealtrafo /" Rule -+ Equal;

eanoniealvariableB = Platten [eanoniealtrafo /"

(a_ -+ b_> -+ {a}] ;

sol = Solve [etrafo, {depend, independ}];

equat = Expand [eqin /" Bol];

equat = .quat /" newdepend ... newdependH {n_independ} ;

equat[lD == 0]

We demonstrate the use of this function by applying it to the Riccati equation. We
know that the Riccati equation is invariant with respect to an inhomogeneous scaling
transformation. The related canonical variables are given by

eeoord = CanoniealVariables [{u}, {x}, {x}, {-u},

{w}, {t}]

{w ~ Function [{x, u}, u x], t ~ Function [{x, u}, Log [x]] }

The result is identical with the variables stated above. Using this transformation, we
can reduce the Riccati equation to

eriee = Canoniealaepresentation[rieeati, u, x,

{w ... xu, t -+ Log [x] }, w, t]; eriee / / LTF

Analysis of Ordinary Differential Equations 159

The resulting equation has the same structure as the manually derived one. The
common factor e-2 t is a non-vanishing term which can be eliminated by multiplying
with the inverse:

cricc = Simplify [Tbread[cricc Exp [2 t], Equal]]; cricc II LTI'

-2-w+w2+Wt==o

This equation can be solved by quadrature or a separation of variables. We use here
the Mathematica function DSolve[] to integrate the equation.

sricc = DSolve[cricc, w, t]

The solution in the original variables follows by applying the canonical
transformation again,

solricc = Simplify[w[x, u] -- (w[t] I. aricc) [1] I.
t -+ t [x, u] I. ccoord]

and solving the implicit solution with respect to u,

Solve [solricc, u]

The second of our examples discussed above allows the same scaling symmetries.
The reduced equation follows from

cex2 = Canonicalaapresentation [e~le2, u, x,

{w -+ xu, t -+ Log [x] }, w, t]; cex2 II LTI'

The common factor is eliminated by

cex2 = Simplify ['1'hread [cex2 BKP[' t], Equal]]; cex2 II LTI'

The solution in the canonical variable w follows by separation of variables and
integrating the left-hand side and the right-hand side:

160 Symmetries o/Ordinary Differential Equations

sex2 = Si~lifY[f 1 dlw == fl dlt + c]
w+w +W3

ArcTan [1\J~ w] 1
V3 +LOg[W)-2 Log [1+W+vi') == c + t

Since the solution contains transcendent functions, it is hard to get an explicit
solution at this stage. The inversion of the canonical transformation does not resolve
this problem:

iex2 = Bex2 /. {w -+ w[x, u], t -+ t [x, u]} /. ccoord

ArcTan[1 +J3UX] 1
V3 + Log [u x) - 2 Log [1 + u x + u 2 x 2) == C + Log [x)

However, we can resolve this problem by a graphical representation of the solution.
We create a contour plot by displaying the implicit function for a fixed parameter c:

iex2h = iex2 / • a_ == b_ -+ a - b / • c -+ 1;

ContourPlot[iex2h, {x, .01, 2}, {u, .01, 1},

ColorFunction -+ Hue, PlotPoints -+ 20]

o.

o.

o.

o.

Generally, we observe that u increases if x increases. For small values of u, there
exists a nearly linear relation between u and x.

The third example discussed above is represented in canonical variables by

cex3 = CanonicalRepresentation [ex~le3, u, x,

u 1
{w -+ -, t -+ - - }, w, t]; cex3 / / LTF

x x

Analysis of Ordinary Differential Equations 161

-JW + W t == 0

The solution of this equation for w follows from

sex3 = DSolve[cex3, w, t]

Inverting the transformation and solving for u gives us the explicit solution

u 1
solex3 = - == (w[t] I. sex3) [1] I. t -+ --

x x

.2:.== ~ (~+ 2C[1] +C[1]2)
x 4 x 2 X

so13 = Solve [solex3, u]

So far, we have discussed some examples to show that canonical variables can be
used to simplify the integration process of first-order equations. The method of
canonical variables is useful not only in the integration process of first-order ordinary
differential equations but also in the integration of higher-order ordinary differential
equations. We will come back to this general procedure in Section 4.4.2.2.

Before proceeding with second-order equations, we first discuss another approach to
integrate first-order ordinary differential equations. This method uses the fact that a
first-order equation can be integrated if an integrating factor is known. The procedure
introduced by Lie in 1891 is very useful if one knows the point symmetries of the
equation in an infinitesimal representation.

4.4.1.2 Integrating Factor

The common belief in literature is that the method of an integrating factor is only
useful in connection with a first-order ordinary differential equation. For the moment,
we will take this point of view. However, in Section 4.4.2.2, we will generalize the
method of an integrating factor to higher-order equations. In Section 4.2.3, we
demonstrated by several examples that a curve is invariant under a symmetry
transformation if the tangent vector applied to the curve vanishes. Let us assume that
the curves discussed are integral curves or solutions of a first-order differential
equation. For example, the ODE is

odel = oxu[x] == f[x, u[x]]; ode1 II LTF

-f + U x == 0

162 Symmetries o/Ordinary Differential Equations

where / is given by the ratio of two functions U and X

U [x, u[x]]
f [x, u [x]] = ----­

x [x, u[x]]

If F[x,u] = const. are integral curves, we get

invarl = Dt [F[x, u]] == 0; invarl I I LTF

Dt [ul Fu + Dt [xl Fx == 0

Let us further assume that the differential equation is invariant under an infinitesimal
transformation represented by the vector field v. Then, we find

invar2 = Tangentvector [F [x, u], {u}, {x}] == H; invar2 I I LTF

-H + Fx <':1 [x, ul + Fu ¢1 [x, ul == 0

We always can rescale invar2 in such a way that the right-hand side equals 1.

invar2 = invar2 I • H -+ 1; invar2 I I LTF

Thus, we derived two equations for the derivatives of the invariant curve which have
to be satisfied under the given infinitesimal transformation. We can solve these two
equations for the derivatives of F by

sol. = Sol. ve [{invarl, invar2},

{oxF[x, u], ouF[x, u]}] I. {Dt[u] -+U[x, u],

Dt [x] -+ X[x, u]}

{ { U [x, ul F (1 , 0) [x, u 1 -7 ~~-~=--cc----'c-'---~-----o--,--oc-----c-
U[x, ul <':1 [x, ul -X[x, ul ¢1 [x, ul '

(0 1) X [x, ul }}
F ' [x, ul -7 - U[x, ul <':1 [x, ul -X[x, ul ¢1 [x, ul

We understand from this result that the partial derivatives of the integral curve are
known as functions of x and u. On the other hand, the result shows that the total
differential of the integral curve F is known. The following expression represents the
total differential Dt[F]:

invar3 = Simpl.ify[invarl I. sol. I. 0 -+ Dt [F]]

{ Dt [xl U [x, ul - Dt [ul x [x, ul == Dt [Fl }
U [x, ul <':1 [x, ul - X[x, ul ¢1 [x, ul

Analysis of Ordinary Differential Equations 163

Recall the definition of an integrating factor J.l(x, u) which is, by definition, a
function of x and u that makes Dt[x] Y - Dt[u] X the differential of the integral curve
F. This information allows us to extract from our result invar3 the integrating factor

1
/A = . . Denam1nator[1nvar3[l, 1D]

1
U[x, u] ';1 [x, u] - X[x, u] ¢1 [x, u]

This result was obtained by Lie in 1874. For the derivation of integrating factors, it is
important to know the structure of the equation and the symmetries.

In 1874, Lie proved that a first-order ordinary differential equation can be solved by a
quadrature if the symmetries of the equation are known. He collected his
observations in the following theorem.

Theorem: Integrating factor

The first-order ordinary differential equation

Vex, u) dx - X(x, u) du = 0 (4.35)

possesses a one-parameter group allowing the vector field v = 5 ax + ¢J au if and
only if the function

1
J.l = tV-¢JX

(4.36)

is an integrating factor with tv - ¢JX *- O. If this is the case, the original equation is
solved by a quadrature:

JVdx-XdU
----- = const. 0
tV-¢JX

Relation (4.37) can be simplified if we introduce the following determinants:

(dx du)
db. = det X V

and

(4.37)

(4.38)

(4.39)

164 Symmetries o/Ordinary Differential Equations

Then, equation (4.37) reduces to the simple relation

f(~) = const. (4.40)

Equation (4.40) combines all information necessary for a solution in a nutshell. All
we need to know are the infinitesimals and the left-hand side of equation (4.35).
Integration over the manifold provides us with the solution. A few examples will
demonstrate the application of Lie's theorem.

Example 1

As an example of these considerations, let us examine the first-order ODE

Tan [x - u]
ode2 = ax u [x] == 1 + ; ode2 / / LieTraditionall'orm

U x == 1 _ Tan [u - xl
x

x

The functions X[x, u] and U[x, u] are found by extracting the coefficients of the
differentials. First, we extract this part from the ODE free of any differential:

ode2h = ode2 [2]

1- Tan[u - xl
x

Then, we generate a common denominator,

ode2h = Together [ode2h]

x- Tan[u- xl
x

and determine X[x, u] by

X[x, u] = DeDOID.inator[ode2h]

x

U[x, u] is then given by

17[x, u] = Numerator [oda2h]

x - Tan[u - xl

Analysis of Ordinary Differential Equations 165

The infinitesimals of the fIrst-order equation ode2 are

~l[X, u] = 0;

and

1
1/11 [x, u]

xCos [x - u]

Knowing these relations, we use the definition of jJ to get the explicit representation
of the integrating factor

-Cos [u - x]

The related total differential of the integral curve reads

Expand [invar3]

{-Cos[u-x] (-xDt[u] +Dt[x] (x-Tan[u-x])) ==Dt[F]}

This equation has to be integrated on the right-hand side with respect to F, and on the
left-hand side with respect to x and u. The result is

ip = F == f Coefficient [

Expand [invar3 [1, 1D], Dt [u]] dlu +

f Coefficient [Expand [invar3[1, 1D], Dt [x]] dlx

F == 2 x Sin [u - x]

defining the solution of ode2 in an implicit form. To see how this solution behaves in
the variables x and u, we graphically represent this solution for three values of the
constant F. The use of the function ImplicitPlot[] creates a contour plot of the
implicit function in the (x, u)-plane:

« nGraphics'ImplicitPlot'·

iph = Table[ip /. F i, {i, .1,2, .9}]

{O.1==2xSin[u-x]. 1. ==2xSin[u-x]. 1.9==2xSin[u-x]}

J:D\PlicitPlot [iph, {x, -10, 10}, {u, 0, 20},

AxesLabel {nx·, nun}, PlotPoints 100,

PlotStyle {RGBColor[1.000, 0.000, 0.000],

RGBColor[O.OOO, 0.000, 1.000],

RGBColor[O.OOO, 0.251, O.OOO]}]

166 Symmetries o/Ordinary Differential Equations

u

We clearly observe that small values for F will force the function to be located at the
vertical axis at x = O. Larger values of F push the function away from this vertical
axis. Examination of this example demonstrates that the knowledge of the
infinitesimals is very useful in constructing solutions of first-order differential
equations. For the present equation, we only stated the existence of the infinitesimal
transformations. In Section 4.4.1.3, we will show how such infinitesimals can be
derived from the invariance condition of the differential equation. D

Let us demonstrate the application of Lie's integrating factor theorem by another
example. We are especially interested in collecting the steps of calculation in a
Mathematica function. The basis of this function is the above theorem.

Example 2

Let us again examine the Riccati equation discussed in connection with the skeleton
of a first-order ordinary differential equation:

riccati / / L'l'P

Considering this equation, it is useful to determine the symmetry. Since this equation
is of a polynomial type, it is natural to assume that the symmetries of this equation
are of a scaling type. We already know that the infinitesimals are given by g = x and
ifJ = -u. If we represent the Riccati equation in the form

Analysis of Ordinary Differential Equations 167

ricc = Dt[u] + (u2 - :2) Dt[x] == 0

Dt[u] + (u2 - x~) Dt[x] == 0

we are able to use Lie's theorem to determine the integrating factor in a
straightforward way:

1
lot = SillliPlify ['l'ogether [2]]

X (u2 - -;;-) -u

x

Multiplying the equation rice by the integrating factor p, we get

riccl = Simplify ['l'hread [ricc II1II, Equal]]

x (Dt [u] + (u2 - ±) Dt [x])
- 2 - u x + ~2 x2 = = 0

Integrating the coefficients of the total differentials with respect to the differential,
we get for Dt[u] and Dt[x] respectively

solu = f Coefficient [Expand [riccl(lD], Dt [u]] c:lIu

1 1 3 Log [- 2 + U x] - 3 Log [1 + U x]

and

solx = f Coefficient [ZXpand[riccl(lD], Dt [x]] c:lx

1 1
Log[x] + TLog[-2+ux]- TLog[l+ux]

Comparing the two integrals, we observe that common terms exist. Thus, the
complete solution which is equal to a constant C[l] follows:

1
isol=Expand[- «solx-solu) + solu+ solx)] ==C[l]

2

1 1
Log [x] + T Log[-2 + ux] - T Log[l + u x] == c [1]

After the collection of logarithmic terms and an exponentiation, we get

iisol = 'l'bread [Exp [isol 110 a_o Log [b_] +C_o Log [d_] -+

Log [b- de]] , Equal]

168 Symmetries of Ordinary Differential Equations

x (-2 +UX)'/3

(1 + u x) 1/3
== EC [lJ

The solution of this relation with respect to u reproduces the known result:

Solve [iiBOl, u]

{{U-7
E3C [1] + 2 x 3

X (- E3 C [1] + x 3) }}

All these steps to solve a first-order ordinary differential equation are completely
algorithmic. That is why we can collect them in a common function called

IntegratingFactor[]. The function IntegratingFactor[] needs as input parameters, the
equation, the dependent and independent variables, and the infinitesimals. The
following lines define this function using the steps of the calculation discussed above:

Clear [XntegratingFactor]

XntegratingFactor [equation_, depend_: Symbol,

independ_: Symbol, xi_, phi_] : =
Block [{pattern1, pattern2, eq, eqin, q, p,

ifactor, t1, t2, it1, it2},

Xf [equation / " p_" u_ (n_> [t_] + ~ == 0 H n > 1,

Return [Hold [XntegratingFactor [equation,

depend, independ, xi, phi]]]];

Xf [FreeQ [equation, Equal] ,

Return [Hold [XntegratingFactor [equation,

depend, independ, xi, phi]]]];

trafo = dependH {independ} -+ depend;

itrafo = depend -+ dependH {independ};

pattern1 = p_" u_' [t_] + ~ == 0 H -p Dt [u] + q Dt [t] ;

pattern2 = p_" u_' [t_] + ~ == 0 :-+ {q, -p};

eqin = equation / " trafo; eq = eqin / " pattern1;

{q, p} = eqin / " pattern2;
1

ifactor = ------
xiq-phip

eqh = Together [eq ifactor];

num = Numerator [eqh] ;

den = Denominator [eqh] ;
Coefficient [num, Dt [independ]]

t1 =
den

Coefficient [num, Dt [depend]]
t2 =

den

it1 = f t1 cIIindepend;

Analysis of Ordinary Differential Equations 169

it2 = f t2 dldepend;

J:f [FreeQ [itl, J:ntegrate] &:&: FreeQ [it2, J:ntegrate],

1
itl = Expand [- «itl- it2) + itl + it2)],

2

Return [Hold [J:ntegratingFactor [equatioD,

depend, independ, xi, phi]]]];

Simplify [itl == C[l] I. itrafo] •

The following examples demonstrate the application of the function

IntegratingFactor[] .

Example 3

The first equation solved by this function is a first-order equation containing a ratio
of dependent and independent variables:

x 2 + u[x] 2
eq2 = oxu[x] - == 0; eq2 II LTF

xu[x]

Knowing the infinitesimals g = x and if> = u, the function IntegratingFactor[] is able
to calculate the implicit solution in the form

ieq2 = J:ntegratingFactor[eq2, u, x, x, u]

U[X]2
Log[x] - 2"X2 == e[l]

Solving this equation with respect to u, we find that the solution is given by two
expressions containing a Log[x] in the radicand of a square root:

Solve[ieq2, u[x]]

{{U[X] --7 -I -Y2 -v'x2C[1] -x2 Log[x] },

{ U [x] --7 I -Y2 -J x 2 e [1] - x 2 Log [x] }}

Extracting -1 from the constant of integration C[1], we find the same solution as

DSolve[] does:

DSolve[eq2, u[x], x]

{{U[x] --7--Y2 -JX2 e[l] +X2 Log[x]},

{ U [x] --7 -Y2 -J x 2 e [1] + x 2 Log [x] }}

o

170 Symmetries of Ordinary Differential Equations

Example 4

Another example for which an integrating factor exists but the quadrature is
impossible is given by

eq3 = ax u [x] - u [x] (1 - u [x] 2 Exp [u [x]]) == 0; eq3 / / LTP'

-u (1 - EU u 2) + u x == 0

The function IntegratingFactor[] returns the original input

ieq3 = J:ntegratingP'actor[eq3, u, x, 1, 0]

IntegratingFactor[-u[x] (l_EU lx l U[X]2) +u'[x] ==0, u, x, 1, 0]

The function IntegratingFactor[] is simple to use. If the function cannot find an
integrating factor or is unable to carry out the integrations, it returns the input line. 0

The presented method of an integrating factor for first-order equations can be
generalized to higher-order equations. This generalization is further discussed in
Section 4.4.2.2 for second-order and in Section 4.4.3.1 for higher-order equations.
The method of an integrating factor was only useful in cases where we knew the
infinitesimals. At the beginning of this section, we noted that the first-order equations
have some peculiarities in determining the symmetries. The following section will
discuss how this problem can be partially solved by introducing conformal
symmetries or using heuristic ansatze for the infinitesimals.

4.4.1.3 Infinitesimals of First-Order Ordinary Differential Equations

The determination of infinitesimal transformations of first-order ordinary differential
equations is a special problem in Lie's theory. The problem is that first-order
ordinary differential equations allow an infinite number of symmetries. This property
is an essential obstacle in the calculation of the symmetries. The central point in a
practical calculation is that the determining equations for the infinitesimals reduce to
a first-order partial differential equation. Let us demonstrate this by the general
equation of a first-order ODE:

odell = ax u [x] - CIl [x, u [xl 1 ; odell / / LTP'

-w + U x == °
Applying the function DeterminingEquations[] of MathLie to this ODE, we find a
single first-order POE for the two unknowns gt and CPt :

Analysis of Ordinary Differential Equations 171

DeterminingEquations [{odell}, {u}, {x}, {ax u [xl} 1 / / LTV

Such an equation has no unique solution in general. Thus, the problem is that we
cannot derive an overdetermined system of determining equations allowing us to
calculate the symmetries. This is due to the elimination of the fIrst-order derivatives
in the prolongation formula.

To solve this diffIculty, several approaches are discussed in the literature. The fIrst
and original, already discussed by Lie, is to use group classification, i.e., to fInd
families of ODEs that are invariant under the group generated by a particular
transformation. Most elementary methods are based on this idea. A more recent idea,
suggested by Olver [1986], is to regard the fIrst-order equation as an inappropriate
reduction of a second-order ODE which has a solvable non-Abelian Lie algebra. This
procedure will lead to hidden symmetries of type I. Hidden symmetries are used by
Abraham-Schrauner and Guo [1993] to classify families of ODEs.

Neither of the above methods is helpful when w is given and the equation odell does
not belong to a family of ODEs having known point or hidden symmetries. A way
out of this dilemma is a restriction of the admitted symmetries. Olver [1986] and
Hydon [1994] introduced the term of a conformal symmetry. The background of this
notion is that a vector field v = 2:7=1 ai ax, generates a one-parameter group of
conformal transformations if

(4.41)

and

(4.42)

for a certain function 'P(x). The condition for a one-parameter group thus reduces to
the Cauchy-Riemann equations

(4.43)

In turn, the invariance condition simplifies to

(4.44)

This relation is a result of Lie's theorem on fIrst-order differential equations.

172 Symmetries of Ordinary Differential Equations

Theorem: Symmetries offirst-order ODEs

A first-order ODE u' = w(x, u) allows a one-parameter group ~ ax +¢au if the relation

(4.45)

or, equivalently,

(4.46)

holds for all values of x and u. 0

This theorem was given by Lie (Vol. 3, XIII, Theorem 1, Engel and Heegaard
[1912]) to determine the infinitesimals of a first-order ODE.

Introducing in (4.43) the complex variables

and

z = x + iu, z = x - iu

and the real functions

((z + Z z - z))
/-1(z, z) = arctan w -2-' 2i with II E (-~ ~) ,.. 2' 2 '

the invariance condition reduces to

(i dw)
1m - - + W /-1z = o.

2 dz

(4.47)

(4.48)

(4.49)

(4.50)

The bars over wand z in relations (4.46)-(4.48) denote the complex conjugate values.
Subscripts in these relations indicate a differentiation with respect to the variable.

The replacement of the variables w and w by the functions

f 1 - f 1 {(z) = - dz and {(z) = -- dz
w(z) W(z)

(4.51)

Analysis of Ordinary Differential Equations 173

and the derivatives

1 1
((Z) = - and r' w = -

w(z) W(z)
(4.52)

allows the representation of the infinitesimals by

~ = Im«((z» and ¢J = Re«(' (z» .
I((z) 12 I((z) F (4.53)

In addition to the infinitesimals, the canonical variables are defined by

(z) + rw = J¢JdX -~du s =
2 ~2 + ¢J2

(4.54)

and

(z) - rW = J~dX +¢Jdu
2i ~ + ¢J2 . (4.55)

Relations (4.45)-(4.53) are helpful to reformulate Lie's theorem on infinitesimal
symmetries.

Theorem: Conformal symmetries

A first-order ordinary differential equation u' = w(x, u) = tan(/i(x + iu, x - iu»
allows a one-parameter group of conformal transformations if

i i _
/i(z, z) = F(r) + -In((' (z» - -In (' (z),

2 2
(4.56)

where F is a real function and (an analytic complex function. 0

If we know the conformal symmetries, we also know the general solution of the
equation. The solution follows either from the theorem on an integrating factor or via
canonical variables.

So far, we have discussed symmetries and solution procedures of first-order ODEs.
The problem of first-order ODEs was the assessment of the infinitesimal
transformation. This problem dissolves if we consider ODEs of higher order. In the
following section, we discuss the solution of second-order ODEs by utilizing
symmetry methods.

174 Symmetries of Ordinary Differential Equations

4.4.2 Second-Order Ordinary Differential Equations

Second-order ordinary differential equations are very important for applications in
physics and engineering. All equations based on Newton's second law are
second-order equations. Thus, mechanics, for example, is mainly based on
second-order ordinary differential equations. The integration theory of second-order
ODEs was developed by Lie during the years 1871-1874. In 1891, Lie's theory of
integration was published by Scheffers and Lie [1891] in Vorlesungen iiber
Differentialgleichungen mit bekannten infinitesimalen Transformationen. Scheffers, a
student of Lie, assembled all of Lie's work on ordinary differential equations in a
beginner's book. In another series of books compiled by Lie and Engel [1888], Lie
describes the problem of integrating a differential equation as follows:

"I observed that a large number of ordinary differential equations integrated by older
integration methods are invariant under easily derivable classes of transformations.
The older integration methods are all based on the transformation properties of the
equation. In other words, I realized that the term differential invariant of a finite
continuous group is contained implicitly in every textbook on ordinary differential
equations. Discovering the connection between transformation groups and older
integration strategies I started to develop a general integration theory based on the
finite or infinitesimal transformation of the equation. In my investigations it was clear
from the beginning that the related transformations always created a group for each
case."

We will exemplify Lie's line of thought below. The most general form of a
second-order ODE is given by

F(x, u, u', u") = 0, (4.57)

where primes denote differentiation with respect to x. For our purposes, we assume
that equation (4.57) is solvable with respect to the second-order derivative. Thus, we
consider equations in the form

u" = w(x, U, u'), (4.58)

where w is a given function of x, u, and u'.

For the general equation (4.58) or (4.57), there exist several procedures to derive the
solution. Common to each method is the symmetry of the equation. In contrast to
ttrst-order equations, the determination of symmetries is not difficult. However, the
problem here is to apply the appropriate solution procedure to a specific equation. In
the following, we discuss three methods which allow us to identify the solution of a
second-order ODE.

Analysis o/Ordinary Differential Equations 175

4.4.2.1 Integration by Group Classification

Following the reasoning of Lie, we can solve a second-order ODE if we can classify
the group. The idea is the following: If a second-order equation admits a Lie algebra
of dimension r ~ 2, it can be integrated by a group-theoretic quadrature method. This
can be done in various ways, one of which is given by the following algorithm:

1. Compute the admitted Lie algebra Lr. A basis of Lr is the set v" v2' ... , vr.

2. If r = 2, go to the next step;
if r > 2, then distinguish any two-dimensional subalgebra ~ of L r •

If r = 1, The order of the equation may be lowered;
if r = 0, the group method is not useful.

3. Determine the type of the algebra ~ obtained by the following table:

I [vi' V2] = 0 Vi ®V2 *- 0 Vi = ax, V2 = au u = f (u')

II [Vi' V2] = 0 Vi ®V2 = 0 Vi = au, V2 = ax u = f (x)

III [v\, V2] = VI V: i ®';2 *- 0 = au'
~

= x ax +u au = f (u') Vi V2 U

IV [Vi' V2] = Vi V: i ®';2 = 0 Vi = au' V2 = U au u = f (x)

Ix
(4.59)

u'

Cases I to IV of the table are identified by computing the commutator [v, , V2] of
v, and V2, and their pseudo-scalar product Vi ® V2 = g, ifJ2 - ifJ, g2' The
subscripts of the infinitesimals gi and ifJi denote the number of the vector field Vi.
If [v" V2], is neither 0 nor v" then choose a new basis v~, v;, such that
[~' ~'] ~ v,, v2 = v,.

4. Bring the basis of ~ into agreement with cases I-IV by going over to canonical
variables t, w. Rewrite the equation in canonical variables and integrate it.

5. Rewrite the solution in terms of the original variables.

The stated algorithm is based on the fact that in the complex case, any Lie algebra of
dimensionality r > 2 has a distinguished two-dimensional subalgebra. However, the
structure of a two-dimensional Lie algebra with bases V, and V2 can be described in
terms of the commutator [v" V2] = V, V2 - V2 V, and the pseudo-scalar product
v, ® V2 = g, ifJ2 - ifJ, g2' For more details compare the work by Scheffers and Lie
[1891], Olver [1986], and Bluman and Kumei [1989]. Let us demonstrate these five
steps by two examples.

176 Symmetries of Ordinary Differential Equations

Example 1

The first example considers a second-order ODE. This equation was discussed by
Ibragimov [1994] in connection with Lie's group classification. We use the same
example here to demonstrate how symbolic calculations with a computer can clarify
the solution steps. The equation reads

CJxu[x] 1
equation = {CJ{X,3} U [x] - + }; equation / / L'l'1'

U[X]2 u[x] x

_1 __ ~ +u == 0
u X u2 x,x

The first step of the algorithm consists in fmding the Lie algebra of the equation. This
step is practically revealed by using the package MathLie. MathLie contains a
function designed to determine the infinitesimal transformations. The name of the
function is Infinitesimals[] and has a symbolic template of the form P~,AA]. This
operator takes the independent and dependent variables as subscripts and the
parameters as superscripts. The equation is given as a fourth argument. The equation
above is free of any parameters. The determination of the infinitesimals is carried out
by

inti = f>S~!}, {x} [equation] ; infi / / LTI'

¢l == + u (kl + 2 k2 x)

~l == x (k1 + k2 x)

The result is a representation of the infinitesimals for the independent and dependent
variables. xi[l] corresponds to the independent variable x and phi[J] to the dependent
variable u. It turns out that our equation admits a two-dimensional Lie group. The
two parameters kl and k2 are the group parameters. As discussed in Chapter 2, to
each symmetry group there exists a related Lie algebra. We can inspect the structure
of this algebra again by applying MathLie. The package provides tools to calculate
the commutator table and the structure constants. The commutator table is created by

LieCommutatorTabl. [infi, {u}, {x}] / / Tablel'orm

o -V[2]

V[2] 0

The result of this calculation shows that the corresponding algebra Lz belongs to type
ill of Lie's classification. This becomes obvious if we interchange the vector fields Vi
and calculate the pseudo-scalar product of the infinitesimals

Analysis of Ordinary Differential Equations 177

The calculation of the pseudo-scalar product in Mathematica needs the lines

infi1 = {xi [1] [x, u], phi [1] [x, u]} /. infi /. {k1 -+ 1, k2 -+ O};

infi2 = {xi [1] [x, u], phi [1] [x, u]} /. infi /. {k1 -+ 0, k2 -+ 1};

p •• uc!oSca1arProc!uct = infi1[1D infi2[2D - infi1[2D infi2[1D

ux2

-2-

In step 4 of the integration algorithm, we introduce canonical variables which have to
satisfy the conditions VI (t) = 0 and VI (u) = 1. Solving the related characteristic
equations by conducting the function CanonicalVariables[], we end up with

transformations probably simplifying the original equation. In the following
Mathematica line, the first two arguments, {u} and {x}, denote the dependent and
independent variables, and the next two, {x} and {t}, are the infinitesimals for

kl = 1 and k2 = 0 of the independent and dependent variables, respectively. The last
pair {w} and {t} are the new dependent and independent canonical variables,
respectively:

substitution =
u

CanonicalVariable. [{u}, {x}, {x}, {-}, {w}, {t}];
2

substitution / / L'1'1!'

t == Log [xl
u

W== Yx

The result belongs to the subgroup with kl = 1 and k2 = O. The second set of
transformations follows by the choice kl = 0 and k2 = 1:

secondtransformation =
Canonical Variable. [{u}, {x}, {~}, {x u}, {w}, {t}];

secondtransformation / / L'l'1!'

1
t ==-­

x
u

W== -
x

The next step in the algorithm is to use these transformations to change the
representation of the equation. For this kind of calculation, MathLie offers the
function CanonicalRepresentation[]. This function needs the input of the original

equation, the canonical transformations given by rules, and the target variables. The
first set of canonical variables descending from the subgroup with kl = 1 and k2 = 0
leads to the reduced equation

178 Symmetries of Ordinary Differential Equations

canonicall = CanonicalRepresentation[
U

equation[l]], U , x, {W-+ --, t-+L09[X]}, w, t);
.y;

canonicall / / LTF

At this stage of the calculation, we can use the Mathematica function DSolve[] to
solve the second-order equation. We note that the achieved equation is as
complicated as the original equation and, thus, DSolve[] may fail to find a solution.
In fact, we get

soll = DSolve [canonicall , w, t]

DSolve[2w[t]-w[t]3 -4w'[t] +4W[t]2W"[t] == 0, w, t]

However, using the second set of canonical variables, we discover the reduction

canonica12 = CanonicalRepresentation[

U -1
equation[l]], U , X, {w-+ -, t -+ -}, W, t);

x X

canonica12 / / LTF

3 (Wt) t ""W2 - Wt,t == °
which looks much simpler. This simplification is one aim of symmetry analysis.
Exerting the Mathematica function DSolve[] to this equation, we acquire

so12 = DSolve [canonica12 , w, t]

InverseFunction: :ifun : Warning: Inverse functions are

being used. Values may be lost for multivalued inverses.

(
1 + ProductLog[E~l+C[lJ' (H~C[2J)] 1

{{W-4 e[l] & }}

As expected, the solution of the equation in canonical variables is given by a function
containing two constants of integration. The ProductLog[] function depicts the
solution for w in z = wew • The function is a generalization of a logarithm. It can be
used to represent solutions to a variety of transcendental equations.

The last step of the integration procedure by Lie is the inversion of the
transformation. This back substitution of the canonical variables is also supported by
the package MathLie. The related function is BackTrafoCanonical[]. For the inverse
canonical transformation, we need the solution in canonical variables, the set of
canonical variables themselves, the original variables, and the transformation

Analysis of Ordinary Differential Equations 179

between the two sets of variables. Knowing these quantities, we are able to apply the
function to the solution:

solu = BackTrafoCanonical [so12, w, t, u, x, {u -+ w x, t -+ -1/ x}]

. x (1 + productLog[E-1+C[1]2 (-}-C[2J)J)
{u-+Functlon[x, e[l]]}

The derived solution satisfies the original equation. We can check this by inserting
the solution into the equation:

equation /. solu / / I'ullSimplify

{O}

The result confinns the solution. Since the solution contains a special function, we
have no clear idea of the graph of this function. We can graphically represent the
solution by specifying the constants of integration. For a set of five constants C[1] at
fixed C[2], we create a table containing the different solutions:

soluC = Table[u[x] /. solu /. {C[l]-+e, C[2]-+1}, {e, 1, 5}];

A LogLog plot shows that the solutions with fixed C[2] have a common slope:

« Graphics'Graphics'

Log-Log-Plot [Evaluate [BoluC], {x, 0.001, 10}, Plot Style -+

{RGBColor[O, 0, 0.250004], RGBColor[0.996109, 0, 0],

RGBColor[O, 0.500008, 0], RGBColor[0.500008, 0, 0.250004],

RGBColor[0.700008, 0, OJ},

AxesLabel-+ {RXR, nuR}]

10
5

1
0.5

0.1
0.05

u

0.2
x

0.5 1 2 5 10

180 Symmetries of Ordinary Differential Equations

Varying C[2] we observe only a minor change in the slope:

soluC = Table[u[x] /. solu /. {C[l] 1, C[2] y}, {y, 1, 5, 1}];

LogLogPlot [Evaluate [soluC], {x, 0.001, 10}, PlotStyle

{RGBColor[O, 0, 0.25000'], RGBColor[0.996109, 0, 0],
RGBColor[O, 0.50000B, 0], RGBColor[0.50000B, 0, 0.25000'],

RGBColor[0.700008, 0, OJ},
AxesLabel {·x·, ·u·} 1

10

5

2

1

0.5

0.2

u

0.2
x

0.5 1 2 5 10

In conclusion, we see that Lie's algorithm of group classification is straightforward to
derive explicit solutions of a second-order ODE. All the steps needed to carry out the
calculation are supported by MathLie. Thus, it is fairly easy to construct a solution.
The next example discusses the solution procedure for a more complicated equation.

Example 2

The second example is connected with kinetics and heat transfer (cf. Ames [1968]).
Ames'· equation also occurs in certain other problems like vortex motion of
incompressible fluids, in the theory of the space charge of elasticity around a glowing
wire, and in the nebular theory for the mass distribution of gaseous interstellar
material under the influence of its own gravitational field.

We concentrate our attention on the one-dimensional representations of these
problems. The equation is discussed in cylindrical coordinates. For this special case,
the equation reduces to a second-order ordinary differential equation (Ames [1968])
given by

Analysis of Ordinary Differential Equations 181

ames = l'x.x u [xl +
l'x u [xl
---- + a Bxp [u [xl 1 ; ames == 0 / / LTI'

x

EU ex + ~ + U x x == 0 x '

When trying to solve this simple equation by DSolve[], we end up with the
dissatisfying result

DSolve [ames == 0, u, x]

u' [xl
DSolve [EU[X j ex + ~-x- + u" [xl == 0, u, xl

Thus, Mathematica is unable to find the solution. However, we are currently
discussing a constructive procedure to derive solutions of second-order equations.
Thus, a solution should be accessible if we know the symmetry transfonnations. The
symmetries of the equation are calculated by the function Infinitesimals[] or the
operator PS~,x[~]. The application of this operator provides

ps1~L{x} [ames] / / LTI'

<Pl == k2 + kl Log [xl

~1 == -+x (-kl+k2+klLog[xl)

a two-dimensional symmetry group with group parameters k1 and k2. The subgroups
created by the parameters k1 and k2 are the cornerstones of the integration process.
Let us consider the subgroup related to k1 = 0 and k2 = l. This choice of the group
parameters allows to derive the canonical variables w and t to be

ctransformation =
CanonicalVariables [{u}, {x}, {-x / 2}, {l}, {w}, {t}] 1

ctransformation / / LTI'

t == -2 Log [xl

w == u + 2 Log [xl

Converting the original equation ames into the new coordinates simplifies the
representation of the equation:

canonical = CanonicalRepresentation[
ames, u, x, {w-+u+2Log[x], t-+-2Log[x]}, w, t];

canonical / / LTI'

182 Symmetries of Ordinary Differential Equations

The introduction of the canonical variables allows the elimination of the tenn
containing first derivatives. As a result, the original equation was simplified. Trying
again DSolve[] to disclose the solution in canonical coordinates,

cso1 = DSo1ve[canonica1, w, t]

{ {w ~ (LOg [~ (c [1] -

C [1] Tanh[! (Y2 #1 -VcTiT - Y2 -JCflT C [2])]2)] &)},
{ w ~ (Log [~ (c [1] -

C [1] Tanh [! (- Y2 #1 -VcTiT + Y2 -JCflT C [2])]2)] &) }}

The inversion of the canonical transfonnation provides the solutions in the original
variables u and x:

8011 = Back'1'rafOCanonica1 [801, w, t, u, x,

{u ... w - 2 Log [x] , t ... -2 Log [x] }]

{U~Function[x, -2 Log[x] +LOg[~ (C[l]-C[l]

Tanh[! (-Y2 -VcTiT C[2] - 2 Y2 -JCflT LOg[x])] "2)]],

u~Function[x, -2Log[x] +LOg[~ (C[l]-

C [1] Tanh[! (Y2 -VcTiT C [2] + 2 Y2 -JCflT Log [xl)] "2)]]}

Inserting the derived solutions into the original equation ames, we can check the
solution

ames /. 8011 / / Sim;plify

o

To get an impression of the solution, we plot it for a set of constants C[l] at fixed
C[2] and a.

Plot [Evaluate ['1'ab1e [u [x] /. 8011[1]) /.

{C[l] ... 1, C[2] ... 1, a ... l/l00}, {I, 1, 5, 1}]],

{x, .1, 100}, P10tSty1e ... RGBCo10r[0.996109, 0, 0],

AxesLabe1 ... {nx·, nu·}]

Analysis of Ordinary Differential Equations 183

u

40 60 80 100 x

-15

This example shows that solutions of a second-order ordinary differential equation
are easy to derive if we know the symmetries of the equation.

Actually, we did not use in our calculations the complete theory of Lie discussed
above. In this second example, we only used the existence of a certain symmetry.
This symmetry is sufficient to determine the corresponding canonical variables.
Thus, a canonical transformation can be carried out independently of the
classification scheme by Lie. The canonical transformation of the equation into new
variables simplified the representation. In both examples, this simplification was the
main step toward the solution. However, in Lie's theory, there exists a more efficient
way to detect the solvability of the equation. In tum, there is a procedure which
reduces the complete calculations to quadratures. The following section will discuss
this procedure in detail.

4.4.2.2 The Integrating Factor Method

In Section 4.4.1.2, we discussed the method of an integrating factor for a first-order
ODE. We remarked that this method has a generalization to higher-order equations.
In this section, we generalize the method to second-order equations. The main result
of this procedure is that a second-order equation can be solved by pure quadratures if
the equation possesses an appropriate number of symmetries. The solution procedure
based on integrating factors is completely algorithmic. The algorithm consists of five
steps which Lie discussed in his numerous papers (cf. Engel and Heegaard [1912]).

According to Lie, we can state the integration procedure in the following way: If a
second-order equation admits a finite symmetry of dimension r 2: 2, it can be
integrated with a group-theoretic quadrature method by

184 Symmetries of Ordinary Differential Equations

1. Computing the Lie algebra Lr. A basis of Lr is the set VI, V2, ... , lIr . The
tangent vector fields Vi follow by appropriately specifying the group constants.

2. If r = 2, go to step 3;
if r > 2, distinguish any two-dimensional subalgebra L2 of L r •

If r = 1, the order of the equation may be lowered;
if r = 0, the group method is not useful.

3. Calculate the Lie determinants dA.i and A. and determine the two first integrals by
integration. The Lie determinants are defined by

(4.60)

and

(4.61)

where t;i and <Pi are the infinitesimals corresponding to the vector field Vi, and <P;
denote the first extensions of the infinitesimals <Pi. The first integrals I/Ii related to
the Lie determinants dA.; are given by

i = 1, 2. (4.62)

The constants C; denote the integration constants of the ODE.

4. Solve one of the two integrals with respect to the first-order derivative and
substitute the result into the remaining relation.

5. If we can solve the resulting relation from step 4 with respect to the unknown
function u, we end up with an explicit solution. Otherwise, we get the solution in
an implicit form.

These five steps are implemented in the package MathLie. The functions of MathLie
carry out the necessary calculations automatically. To show how the solution
procedure works interactively, we demonstrate the algorithm by two examples. The
functions needed for the interactive calculation are Infinitesimals[] for the

determination of the symmetries, the function SecondOrderAlgebras[] for the

extraction of the second-order subalgebras, the functions DeltaMatrix[], and the

Firstlntegral[], which are responsible for the determination of the integrals.

Analysis o/Ordinary Differential Equations 185

Example 1

The fITSt example considers a non-linear second-order equation in which the
nonlinearity is given by the square of the first derivative. This non-linear term is
multiplied by a real constant a:

firstExample = a{x.2) u[x] - a (ax u[x])2; firstZXam;ple II L'l'1'

-0: u~ + 1lx,x == 0

The infinitesimal symmetries are derived by the function Infinitesimals[]. which is
part of the package MathLie.

iafi = Xafiaitesimals[firstBKample,

u, x, {a}, SubstitutioDllules {a{x.2) u [x] }] ;

iafi II L'l'1'

- E-U C< k6 + EU C< k7 + EU C< kl x + k8 0: + k2 x 0:
¢1 == 0:

E-ua k3
~1==k4+(k5+E-uak6)x- -k2x2 0:

ex

The option SubstitutionRules is set to the second-order derivative ux•x to help

Infinitesimals[] to find the side conditions more easily. The result is a symmetry
group with eight group parameters ki • i = 1.2 •... 8. The infinitesimals g, = xi[1] and
,p, = phi[l] are represented in a pure function form. The group constants ki
characterize the symmetries of the equation. We note that this eight-parameter group
is the largest group a second-order ODE can have. Lie proved that such an equation
allows a transformation reducing the original equation to the simple form y" = O.
This reduction is always possible if a second-order equation allows a symmetry
group of order eight (Scheffers and Lie [1891]). Thus. the above equation should be
solvable.

To detect that the non-linear second-order ODE is solvable. we examine the algebraic
properties of the corresponding Lie algebra. If we can find a solvable subgroup of
order two in the eight-dimensional algebra. we succeeded. This argument is based on
the fact that all second-order Lie algebras are solvable. To detect all the solvable
subgroups. we apply the function SecondOrderAlgebras[] to the infinitesimals. This
function determines all the second-order solvable subalgebras and represents them by
a set of rules for the group constants:

secAlgebras = SecoDdOrderAlgebras [iafi, {u}, {x}, {a}]

{ { {kl -7 l}, {k2 ~ l} }, {{ kl -7 l}. {k5 -7 l}}. {{ kl ~ l}. {k7 ~ l} }.

{ {kl ~ l}, {k8 ~ l} }, {{ k2 -7 l}, {k5 ~ l} }. {{ k2 -7 l}. {k6 ~ l} } ,

{ {k2 -7 l}. {k8 ~ 1 } }, {{ k3 -7 l}, {k4 ~ l} }, {{ k3 -7 l}, {k5 -7 l} } •

186 Symmetries of Ordinary Differential Equations

{{k3 -d}, {k6 -41}}, {{k3 -'>1}, {k8 -4 1}}, {{k4 -4 1}, {k5 -4 1}},

{ {k4 -4 1}, {k7 -4 1} }, {{ k4 -4 1}, {k8 -4 1} }, {{ k5 -4 1}, {k6 -4 1} } ,

{ {k5 -4 1}, {k7 -4 1} }, {{ k5 -4 1}, {k8 -4 1} }, {{ k6 -4 1}, {k8 -4 1} } ,

{{k7-41}, {k8-41}}}

The function SecondOrderAlgebras[] returns a list containing substitution rules for
second-order algebras. The input of the function are the infinitesimals, the dependent
and independent variables, and the parameters of the equation. This set of rules is
useful in selecting one of the possible two-dimensional solvable subalgebras which
will serve to solve the equation. For the following calculation, we select the seventh
rule to represent the set of infinitesimals by

infhelp = {{xi [1] [x, u]}, {phi [1] [x, u]}} I. infi I. kS -+ /3 I.
secAlgebras[7D I. {k1 -+ 0, k2 -+ 0, k3 -+ 0,

k4-+0, kS-+O, k6-+0, k7-+0, kS-+O} I.u-+u[x] II
Si~lify

{ { { - x 2 a}, {x + /3 }}, {{ O}, {/3}}}

Actually, we changed the subgroup by choosing the group constant k8 to be an
arbitrary constant {3. In addition to the infinitesimals of the subgroup, we need the Lie
matrix for the integration. The function DeltaMatrix[] serves to create this kind of
matrix, which is defined by relation (4.61).

Lie's matrix, part of the integrating factor, is calculated by the function DeltaMatrix[].
This function needs information on the independent and dependent variables on the
right-hand side w of the ODE, the order of the ODE, and the selected subgroup of the
algebra:

tunatrix = DeltaKatrix [x, u, a (ax u [x]) 2, 2, infhelp];

TableForm[tunatrix] I I LieTraditionalForm

o
1

x+/3

/3 o
au~

The result is a 3x3 matrix containing the infinitesimals, the first prolongation of the
two subgroups, and the right-hand side of the equation. The determinant of this
matrix

Det [tunatrix] I I LieTraditionalForm

Analysis of Ordinary Differential Equations 187

is a non-vanishing expression contammg a second-order polynomial of first
derivatives. The coefficients of this polynomial depend on the independent variable x
and the parameters a and p. Inserting the Lie matrix into equation (4.62), we are able
to calculate the first integrals of the non-linear ODE

integrals =
Thread [Pirst:Integral [x, u, &llatrix, {l, 2}] == {cl, c2}];

integrals II LieTraditionalPorm II TablePorm

1 1 == cl
xa xa(l+xaux)

1 u Log [1 + x a U x 1 1
- x ex + 73 - ex f3 + -x- a,------;(:c:;l-+-,-x- a::-:u-x--) = = c 2

The result contains two expressions for the integrals combining the variable u and its
first-order derivative in an algebraic way. These two first integrals define two
surfaces in the space (x, u, u'). The projection of the intersection of these two
surfaces onto the (x, u)-plane defines the solution for which we are looking. The
following figure represents a case with fixed values c] and C2'

u'

2

Figure 4.1. Intersection of the two integrals for c1 = c2 = 1. The parameters a and,8 take the

values a = 1/10 and,8=I. The intersecting line represents the solution of the equation if we
project the intersection to the (x, u)-plane.

Since we know two first integrals, we are able to eliminate the derivatives from the
two integrals analytically. We solve the first relation with respect to u':

188 Symmetries of Ordinary Differential Equations

soll = Solve [integrals [1] , u I [xl 1 / / Simplify

-1 + E" (-c1 (3+u [x])

{ {u' [x] ~ x ex } }

Substituting this result into both integral expressions delivers

int21 = integrals /. soll[l, 1] / / PowerExpand / / Simplify

1 _ Eel " (3-" u [x]

{ True, x ex = = c2 }

The resulting list contains the identity and an implicit representation of the solution.
The explicit solution follows from the second relation if we solve it with respect to u:

solution = Solve [int21[2], u [xl 1

-c1 ex (3 + Log[x (-c2 + }") ex] }}
{{u[x]~- Cl

The constants Cl and C2 denote constants of integration. a and f3 are the model
parameter and the introduced group parameter, respectively. The occurrence of the
group parameter f3 as a mUltiplier reminds us of the fact that the additive integration
constant Cl is related to the group of translations.

The solution steps so far discussed are collected in the MathLie function

SecondOrderIntegrate[]. The application of this function to a second-order ODE is

similar to the use of DSolve[]. The function needs the equation under discussion, the
dependent and independent variables, and the parameters contained in the ODE. The
example discussed above is solved by

sol = SecondOrderJ:ntegrate [firstExample, u, x, {a} 1

{u ~ Function [x, - _L_O..::.g--,-[_-X~C_I--,-[~_]"---_C_I--,-[_2=-] '-] l}

where CIU] and Cl[2] are constants of integration. The solution obtained looks
different in comparison with the solution presented above. However, the extraction of
the multiplier CIU] and a rescaling of CI[2] will create the same representation of
the solution. The same solution as found by the manual calculation is derived by the
function DSolve[]:

DSolve [firstExample == 0, u, xl

{ { u ~ (c [2] _ Log [#1 ~ - C [1]] &)} }

Analysis of Ordinary Differential Equations 189

Again, a constant is extracted from the argument of the logarithm. This example
shows that the solution steps of Lie's method of fust integrals result in the same
solution as that of Mathematica. 0

Example 2

The second example for a second-order ODE is related to the problem of a suspended
cable equation:

2 1/2
ux,x - a (1 - ux) = O. (4.63)

The problem of the suspended cable is discussed by Ames [1968]. We examine here
a generalization of the cable equation by introducing an arbitrary power v in the
second term of the ODE:

2 v
ux•x - a(1 - ux) = O. (4.64)

The original model follows from our model with v = 1/2. The present problem is
similar to the fust example we discussed. The difference is that we added a to the
square of the derivative and raised the second term to the vth power. These small
changes lead to substantial variations in the solution:

.econdBxample = ox.xu[x] -a (1+ (oxU[X])2)V == 0;

.ecoDC!BxlUllPle II L'l'F

-0: (1 + u~) v + ux,x == 0

In applying Lie's algorithm to this equation, we first calculate the point symmetries
of this equation for arbitrary v.

The infinitesimals follow by applying the MathLie function Infinitesimals[] to the
equation:

infi = Znfiniteaimala[aecoDdBxample,

u, x, {a, v}, SuhatitutionRule. -+ {O{x.2} u [x] }] ;

infi II L'l'J'

cPl == k1

~1 == k2

The result is a two-dimensional symmetry transformation which itself is solvable.
The symmetries represent translations in the independent and dependent variables.
The fust difference in comparison to Example 1 is that the group is smaller. This
reduction of the group order has consequences with regard to the solutions.

190 Symmetries o/Ordinary Differential Equations

The two subgroups necessary for integration are derived by independently setting
each of the group parameters kl or k2 to unity. Since the symmetry group is two
dimensional, we know from Lie that the algebra is always solvable. In the worst case,
the solution may in the end be represented by an implicit representation. The
infinitesimals for the two subgroups follow from

inf1 =
{ {xi [1] [x, u] }, {phi [1] [x, u]}} I. infi I. {k1 1, k2 O} I.
u u[x];

inf2 =
{{xi[l] [x, u]}, {phi [1] [x, u]}} I. infi I. {k1 0, k2 1} I.

u u[x];

So far, we put no restrictions on the exponent v. The following derivation of the
solution however assumes a specific value for v. We arbitrarily choose v == 3. The
related Lie matrix for this case is calculated by

bmatrix=DeltaKatrix[x,u, a(l+ (Bx U[X])2)3, 2, {inf1, inf2}];

TablePor.m[bmatrix] II LieTraditionalPor.m

o
1

1

1

o

The determinant of this matrix is given by a polynomial of sixth order in u':

Det [bmatrix] II LieTrac!itionalPoxm

-a - 3 a u; - 3 au! - a u!

The first integrals for the generalized cable equation with v = 3 follow from

integrals =

Thread [Pirst:Integral [x, u, bmatrix, {1, 2}] == {e1, e2}];

integrals II LieTraditionalPoxm II TablePor.m

u+

x-

1 == c1
4a (1+u~)2

3 ArcTan lux 1
8a

3 U x == c2
8 a (1 + u~)

Solving the first relation with respect to u' allows us to eliminate this term in the
second integral:

soll = Solve [integrals[lB, u I [x]] /I Simplify

Analysis of Ordinary Differential Equations 191

{ {u' [xl -4 -

2 cl + jCi=uj"xT - 2 u [xl

-2C;:2U[Xl },

{u' [xl -4

2 c1 + jCi~;;Tx-Y - 2 u [xl
Va }

-2 cl + 2 u [xl '

-2 Cl+~+2 u[x]

cl-u [x]

{u' [xl -4 - --'-----{2~2---}' {u' [xl -4

-2 cl+ ~+2 U [x]

cl-u [x]

-'------{2-,=2~--} }

The solution for u' consists of four expressions containing square roots of u. The
differences in the four solutions are the signs in front of the first and second terms.
Inserting, for example, the second solution into the second first integral, we get the
final solution in an implicit representation:

int21 = integrals[2] /. soll[2, 1]

3 ArcTan [
2 cl+ ~-2 u [x:

-2 cl+2 u [x]
x- ------L-8~a--------

c2

2 Cl+~-2 u[x]

-2 cl+2 u[x]

2 Cl+~-2 ulxj]2

-2 cl+2 u [xl

3
2 cl+ ,/Ci-=-~T~T -2 u [x]

Ie;
-2 cl+2 u[x]

2 Cl+~-2U[Xl
-2 cl+2 u [x]

An explicit solution of this expression is impossible since it contains transcendental
functions:

solution = Solve [int2l, u [xl 1

Solve: : tdep :

The equations appear to involve transcendental functions

of the variables in an essentially non-algebraic way.

2Cl+~-2U[XJ
3 ArcTan [201+2 u [x]

Sol ve [x - ------L-8=-a--------

4a

u[xl]

2 cl+ ~T;Y -2 u[x]
Va

-2 cl+2 u [x]

2 Cl+~-2 u[x]]2
-2 cl+2 u [x]

3
2 cl+ v~l-u(;J -2 u [x]

Va
-2 cl+2 u [x]

2 Cl+~-2U[Xl
-2 cl+2 u [x]

] == c2,

192 Symmetries of Ordinary Differential Equations

At this point, we have to accept that the solution can only be represented in an
implicit form. The solution of the original equation follows in one shot by

80J. = Sec:ondOrder:Integrate[aec:ondBxampJ.e I. v ~ 3, u, x, {a}]

Solve: : tdep :
The equations appear to involve transcendental functions

of the variables in an essentially non-algebraic way.

1
8a [8 x a + 3 ArcTan [

2CI[1] + VcI[~UfXT -2u[x]
---_-:2=--C=cI::-7:[1;--']'-"+'-:::-2-u--;[-x~]-- 1 +

4aCI[1]

4au[x]

4 CI [1] + 2 vcITiT=UfXT - 4 u [x]
Va

-CI[l] +u[x]

4 CI [1] + 2 :/CiIiT-UfXT - 4 u [x] Ya
-CI[l] +u[x]

3 Y2 Va VCI [1] - u[x]
2 CI [1] + {CiTiT::U1XT - 2 u [x] :ra

-CI [1] + u [x]

CI[2]

The result is an implicit representation of the solution. CI[l] and CI[2] are the
constants of integration. Trying to solve the original equation by Mathematica, we
learn that DSolveD is not capable of resolving the relation for the first integral. A
glance at the result of DSolve[] explains the reason:

DSoJ._[aec:~J.e I. v ~ 3, u, x]

Solve: :dinv : The expression (1- I «30» [x] j «30» [xl' (2+«1»')

involves unknowns in more than one argument, so
inverse functions cannot be used.

Solve::dinv: The expression (l-I «30»[X]j«30»[X]' (2+«1»2)

involves unknowns in more than one argument, so
inverse functions cannot be used.

Solve::dinv: The expression (l_IU'[X]jU'[X]' (2+«1»2)

involves unknowns in more than one argument, so
inverse functions cannot be used.

Analysis of Ordinary Differential Equations 193

General: : stop : Further output of Solve::dinv will

be suppressed during this calculation.

{solve [(3 ArcTan[u' lUll - 8 ex #l +

5u'[#1] +6ArcTan[u'[#1]] U'[#l]2 -16ex#lu'[#1]2 +

3 u' [#1]3 + 3 ArcTan [u' [#l]] u' [#l]4 - 8 ex #1 u' [#1]4) /

(8 (1 + u' [# 1] 2) 2) = = C [1] ,

{u' [#1] }]}

The above result shows that a transcendental function is given in an essential
non-algebraic way. The steps presented above demonstrate that the solution of the
generalized cable equation is solvable in an implicit form. 0

The two examples demonstrate that the technique of an integrating factor can be
generalized to second-order equations. We also realize that the presented procedure is
capable of deriving solutions for cases in which Mathematica fails. In Section
4.4.3.1, we will discuss the extension of the integrating factor technique to a general
nth-order ODE. Lie called this procedure the method of generalized multipliers. In
the following section, we discuss another solution procedure helpful in solving
second-order ODEs. This method is related to canonical variables and the skeleton
introduced in Sections 4.3.4 and 4.4.1.1 for first-order ODEs. The following method
uses the canonical variables to integrate the equation.

4.4.2.2 Method of Canonical Variables

Here, we demonstrate by a single example that the term skeleton is also useful for the
case of second-order equations. The combination of canonical variables and the
method of first integrals serves to derive an explicit solution for an ODE for which
only an implicit representation of the solution is known (cf. Ibragimov [1994]). The
considerations serve to demonstrate that a proper combination of different methods
will lead to a solution of the ODE.

Example 1

Again, we use the equation from Example 1 of Section 4.4.2.1. This second-order
ODE serves to show how canonical variables simplify the skeleton and the solution
steps. The specific example we discuss is given by the equation

194 Symmetries of Ordinary Differential Equations

(ax u [x]) 1
firstl:xam;ple = ax,x u [x] - +

U[X]2 xu[x]

firstl:xam;ple II LTP

1 U x
ux - U2 +ux,x == 0

This second-order equation admits the symmetries

infinit •• =Znfinit •• imal.[

firatBxample, u, x, SubstitutionRules -+ {a",x u [x] }] ;

infinite. 1/ LTP

1
rP1 == 2" u (kl + 2 k2 x)

';1 == x (kl + k2 x)

representing a two-dimensional group of scaling and projections. The skeleton of this
equation exists in a four-dimensional manifold m = {x, u, u' = p, un = q}. Since the
dimension of the manifold m is larger than three, we cannot directly represent the
skeleton as a surface. However, Mathematica with its animation capabilities offers
the opportunity to represent the fourth dimension in a sequence of figures. The
combination of these figures in an animation allows us to represent the manifold m
in a special way if one of the coordinates of m is smoothly changed. The resulting
sequence creates the impression of an evolution of the manifold if one moves along
the distinguished coordinate. For the above equation, we define the skeleton in the
fonn

p 1
.keleton [u_, x_, p_] : = - -

u 2 xu

representing the surface for un = q in an explicit fonn. For our animation, we select
the x-axis as the distinguished coordinate. The three-dimensional surface represents
the submanifold m. = {u, u' = p, un = q} for certain values of x. The different
pictures are created by

Map[Plot3D[skeleton[u, I, p],

{u, 0.1, 1}, {p, -3, 3}, PlotRange -+ {-200, 200},

Tick. -+ Pal.e, PlotPoint. -+ 35,
.. ah -+ ralse, Ax.sLabel -+ {nu., np., nqn},

ViewPoint -> {0.717, -2.988, 1.'17},

PlotLabel -+ StringJoin [nx=·, ToString [I]]].,

Table[i, {i, .01, .1, .01}]]

q

q

q

Analysis of Ordinary Differential Equations 195

q q

u u u

q q

u u u

x=O. l

q q

u u u

On top of each picture, the specific x-value is given. This allows us to locate the
position along the x-axis. The animation shows that the manifold along the x-axis
changes rapidly for small x-values. For greater values of x, there are no dramatic
changes in m. We again realize that the skeleton in the original coordinates
represents a complicated manifold.

In Section 4.4.1 .1, we remarked that the method of canonical variables allows us to
simplify the skeleton. To demonstrate this behavior, let us calculate the canonical
coordinates related to subgroups kl and k2 for the above ODE. First, we carry out the
calculation for subgroup kl representing the scaling group for this equation

u
cckl = CanonicalVariables [{u} I {x} I {x}, {-},

2

{w}, {t}], cckl II LTl"

t == Log [xl
u

w == --Ix

196 Symmetries of Ordinary Differential Equations

The second set of canonical variables follows from the subgroup with kl = 0 and
k2 = I by

cck2 = CanonicalVariables [{u}, {x}, {X2}, {x u},

{w}, {t}]; cck2 / / I..TF

1
t ==-­

x
U

W ==
x

For each set of canonical variables, there exists a representation of the original ODE.
The equation in canonical variables for kl = 1 and k2 = 0 reads

ceqkl = CanonicalRepresentation[firstExample, u, x,

cckl, w, t]; ceqkl / / LTI."

2 W - w3 - 4 w t + 4 w2 Wt,t == 0

The second representation related to the second set of canonical variables is

ceqk2 = CanonicalRepresentation [firstExample, u, x,

cck2, w, t]; ceqk2 / / LTI."

Both equations are embedded in the reduced manifold me = {w, w', w"}. This
manifold is free of the independent variable t and thus simplifies the representation
of the equation. The surface of the two manifolds in canonical coordinates is given in
the following figure:

2w-r-4p
Show [GraphicSArray [{Plot3D[- , {w, .1, 2},

4w2
{p, -3, 3}, AxesLabel ... {"w", "P", "Q"}, PlotPoints ... 35,

Mesh ... I."alse, ViewPoint -> {O.717, -2.988, 1.417},

Ticks ... I."alse, Displayl."unction ... I:dentity] ,
p

Plot3D[-, {w, .1, 2}, {p, -3, 3},
w2

AxesLabel ... {own, "P", IIQII}, PlotPoints ... 35,

Mesh ... I."alse, ViewPoint -> {O. 717, -2.988, 1.417},

Ticks ... I."alse, Displayl."unction ... I:dentity] },

Displayl."unction -+ $Di splayl."unct ion]]

Analysis of Ordinary Differential Equations 197

Q Q

'IT

Figure 4.2. The two figures show the skeleton of the equation

(ax u[x]) 1
ax x u[xl - 2 + -[-I = ° . u[xl xu x

in canonical representations. Left: skeleton of equation

Right: skeleton of

2 w[tJ- w[tl3 - 4 w' [tl + 4 w[tl2 w" [tl = 0.

(W'[tl -w"[t])=O.
w[tl2

w

The variables P and Q denote the first and second derivatives of canonical variable w,

respectively.

We observe that the two figures look very similar. However, the skeletons in their
analytical representations are different. Applying canonical coordinates to the
original equation, we impressively simplified the skeleton of the equation. The
simplification occurs by the elimination of one of the coordinates from the
manifold m.

The question arises of whether there are different solutions eXIstmg for similar
looking skeletons or whether the solutions are equal. We will examine this question
by solving the two canonical representations. First, let us solve the original equation
by DSolve[]:

DSo1ve [firstExamp1e == 0, u, x]

1 [1 u ' [x] " [] 0 1 DSo ve [] - --2- + U x == ,u, x
xu x u[x]

The result is disappointing. Mathematica is unable to solve the second-order
equation. Calculating the solution of the first canonical reduction with DSolve[],

so11 = DSo1ve[ceqkl, w, t]

DSolve[2w[t]-w[t]3-4w'[t] +4W[t] 2 W"[t] ==0, w, t]

198 Symmetries o/Ordinary Differential Equations

shows that again Mathematica is unable to solve the equation. The following idea
might reveal this problem. We know that a given equation admits a certain type of
symmetry. This is also true for the first canonical reduction. The symmetries of the
first canonical reduction follow by

infceqkl = J:nfinitesimals [ceqkl. w. t]; infceqkl / / L'l'F

cP1 == Et kl W

';1 == 2 Et kl + k2

representing a two-dimensional symmetry group with an exponential dependence in
t. Since the subgroup with k2 *" 0 only represents a translation in t, we restrict our
examinations to the case kl = 112 and k2 = O. The canonical variables for this

subgroup follow by
Et w

ccceqkll=canonicalVariablea[{w}. {t}. {Bt }. {--}.
2

{v}. {a}]; ccceqkll / / L'l'P

s == _E- t

V == E- t/2 W

Inserting these new coordinates into the first canonical reduction, we get a second
canonical representation of the first reduction:

ceqkll = CanonicalRepreaentation[ceqkl. w. t.

ccceqkll. v. a]; ceqkll / / platten / / L'l'P

-4 I --fS (vs -v2 vs,s) == 0

The calculation shows that the two canonical representations of the first and second
symmetry levels are identical, Compare the second canonical reduction of the first
symmetry level with the present result:

eqh = Thread [ceqkll [i) / (- 4 J: Va). Equal] = = 0; eqh / / L'l'F

Vs _v2 vs,s == 0

The symmetry analysis of this equation illustrates that the equation admits a
second-order group. We know from the above discussions that a second-order group
is sufficient to solve this kind of ODE, The infInitesimals of this ODE follow by

infh = J:nfiniteaimala [eqh. v. a]; infh / / L'l'P

cP1 == k2 v
2

';1 == kl + k2 s

To solve the equation eqh, we apply the method of first integrals in an adapted form.
First, let us determine the Lie matrix with the infInitesimals

Analysis of Ordinary Differential Equations 199

inf1 =
{{xi [1] [s, v]}, {phi [1] [s, v]}} /. infh /. {k1-+ 1, k2 -+ O} /.

v-+v[s];

inf2 =

{{xi [1] [s, v]}, {phi [1] [s, v]}} /. infh /. {k1 -+ 0, k2 -+ 1} /.

v-+v[s];

Inserting the infinitesimals into the Lie matrix, we get

. . [v' [s] .
Lmlatr1x = DeltaMatr1x s, v, ---, 2, {1nf1,

v[s] 2
inf2}];

TableFo~[Lmlatrix] //LieTraditionalFo~

1 0 0
v vs

s
2 2

1 vs
vs
V'2

whose determinant is a non-vanishing quantity

Det [Lmlatrix] / / LieTraditionalForm

Vs v~ --+-
2v 2

One of the two first integrals follows from

integra12 = FirstJ:ntegral [s, v, &!latrix, 2] c2

2 Log [v [s]] - 2 Log [1 + v [s] v' [s]] == c2

The second first integral is not accessible by an integration:

integral1 = FirstJ:ntegral [s, v, &!latrix, 1] c1

f(V[S]' [t] (- ~ v' [s] [t] _ S [t] v' [s] [t]) +
2 v[s] [t]2

, (v' [s] [t] 1, 2)
s [t] 2v[s] [t] + 2 v [s] [t] +

(- ~ v [s] [t] + s [t] v' [s] [t]) v" [s] [t]) /

(v' [s] [t] + ~v, [s] [t]2) dlt ==
2 v[s] [tJ 2

cl

However, the solution of the equation eqh is derived if we take the first integral as a
defining equation for v. Thus, another integration by DSolve[] gives us the solution

200 Symmetries of Ordinary Differential Equations

c801_2 = DSo1ve[integra12, v, 8]

InverseFunction: :ifun : Warning: Inverse functions are

being used. Values may be lost for multivalued inverses.

{ {v ~ (EC2l2 (1 + ProductLog [E-1+E-C2 (#1-C [1]) 1) &) } }

This type of solution also follows by applying the function SecondOrderIntegrate[] to
the equation in canonical variables:

SecoDC!Order:J:ntegrate [eqh, v, 8]

InverseFunction: :ifun : Warning: Inverse functions are

being used. Values may be lost for multivalued inverses.

v~ Function s, E-'--- 1 + productLog[E-l+E (s-C[l]) 1 { [CI[2J (-CI[2 J) 1 }

The solution of the original equation in variables x and u thus follows by inverting
the canonical transfonnations

c801 = «V[8] I. cBo1ex2) [1] == v I.
{v -+ v[t, w], S -+ B [t, w]} I. ccceqk11) I.

{w -+ w[x, u], t -+ t [x, u]} I.
cck1

EC2/2 (1 + productLog[E-1+E-C2 (--}-C[l]) l) u
x

The explicit solution for the original equation thus reads

801 = Solve [c801, u] II Simplify

{{ (
E-c2 (i1-xC[l]))

U ~ Ec2/2 X 1 + ProductLog [E- l - xl} }

where the constants C2 and C[l] are constants of integration. This example shows that
a solution of an ODE is derived if a hybrid algorithm, combining the method of first
integrals, the method of canonical variables, and the solution procedure of
Mathematica, is applied. The solution calculated above is not accessible by DSolve[]
or one of the two other methods alone. We can check the solution by inserting the
result into the original equation:

firstBxulp1e I. (u -+ I'uDction [x, w] I. (801[1, 1] I. u -+ w» II
Simplify

o

The resulting zero demonstrates that the derived solution satisfies the original
equation. This solution is new in the sense that the explicit representation for the

Analysis of Ordinary Differential Equations 201

original equation is given. The solution in an implicit representation was given by
Ibragimov [1994]. A graphical representation of our result, for fixed constants C2 and
C[1], is shown by

Plot[u /. sol /. {c2-+l, C[l] -+l/2},

{x, -.20, .0SlO}, PlotStyle-+RGBColor[0.996l09, 0, 0],

AxesLabel -+ {DXB, By"}, PlotRange -+ All]

-0.2 -0.15 -0.1 -0.05

y

0.1

-0.1

-0.2

-0.3

-0.4

.5

-0.

0.05 x

The example presented in this section illustrates how the combination of different
strategies allows the derivation of a solution. In the following section, we will
generalize the presented procedures to higher-order ODEs.

4.4.3 Higher-Order Ordinary Differential Equations

Differential equations of higher order arise naturally in physics. For example,
third-order ODEs come up in fluid dynamics and fourth-order ODEs in elasticity. For
general higher-order equations, there exist hardly any techniques for obtaining
explicit symbolic solutions. This means that higher-order ODEs are thus not well
studied in the literature. In the following, we will present a symbolic technique for
producing explicit solutions independent of the order of the equation. The method
described in the preceding sections can, without essential changes, be generalized to
the solution of differential equations of higher order.

4.4.3.1 Integrating Factor Method

The essential change in the theory of an integrating factor for higher-order ODEs is
the extension of the Lie matrix to higher prolongations. Extending the Lie matrix to
higher prolongations is the key step for generalizing the procedure of integrating

202 Symmetries of Ordinary Differential Equations

factors. Lie called this extension the determination of the multiplier of the differential
equation.

The five steps of integration discussed for second-order equations remain the same
for higher-order equations. However, the dimension of the Lie matrix changes from a
3 x 3 matrix to an (n + 1) x (n + 1) matrix. Before we discuss the algorithm, let us
state the general settings for higher-order equations.

The most general form of an nth-order ODE is given by

F(x, u, u', un, ... , u(n») = 0, (4.65)

where u(n) = ':t:." denotes the nth derivative of u with respect to x. In the following,

we assume that equation (4.65) can be solved with respect to the nth derivative. Thus,
the actual equation under consideration is

u(n) = w(x, u, u', ... , U(n-I»), (4.66)

where w is a given function of x, u, u', ... , u(n_l).

If an nth-order equation admits a finite symmetry of dimension r 2: n, then the
equation can be integrated by group-theoretic quadrature methods. This, also, can be
done in various ways. For a discussion of other procedures, compare Sections 4.4.1
and 4.4.2. One of the group-theoretic algorithms is based on first integrals. The
algorithm for an nth-order ODE is summarized as follows:

1. Compute the Lie algebra Lr. A basis for Lr is the set Vlo V2, ... , Vr. The tangent
vector fields Vi follow from appropriately specifying the group constants.

2. If r = n, go to the next step;
if r > n, distinguish any n-dimensional subalgebra Ln of Lr.
If r = n - 1, the order of the equation may be lowered;
if r = 0, the group method is not useful.

3. Calculate the Lie determinants dl:1i and 1:1, and if possible, determine the n first
integrals by integration. The Lie determinants are defined by

da, =~H
du du' du(n-I)

¢2 ¢~ ¢~n-I)
(4.67)

u' un w

and

Analysis of Ordinary Differential Equations 203

gl ifJI ifJI' ifJin - l)

d!1i = det dx du du' du(n-I) (4.68)

1 u' u" w

where i denotes the row of the Lie matrix in which infinitesimals are replaced by
differentials. The n x n Lie determinant !1 reads

gl ifJI ifJ'l ... ifJin -
l) 1

!1 = det ~2 ~2 ~~ ... ifJin:- I
) ,

1 u' u" w

(4.69)

where gi and ifJi are the infinitesimals of the vector field Vi and ifJ~ denotes the first
and ifJ~n -I) the (n-l)th extension of the infinitesimals ifJi' The corresponding first
integrals !/Ii are given by

f d!1 i
!/Ii = T = Ci, i = 1,2, ... , n, (4.70)

The constants Ci denote the integration constants of the ODE.

4. Solve one of the n integrals with respect to the (n-l)th-order derivative and
substitute the result into the remaining relations. Repeat this procedure until no
derivative remains in the relations.

5. If we can solve the resulting relation with respect to the unknown function u, we
have found an explicit solution. Otherwise, our solution is implicit.

This procedure becomes very cumbersome with increasing orders of the equation if
done by hand. In principle, the procedure can be applied to any kind of linear or
non-linear ODE. How the algorithm works in particular examples is demonstrated
below,

Example 1

The first example is a third-order equation listed by Kamke [1977] as No. 7.13:

thirdOrderExam;ple = Bx,xu[x] B{X'3}U[X]-0I.~1+f3l (Bx,xU[X])2 ;

Map [# == O&:, {thirdOrderExample}] / / Lie'l'raditionall'o:rm / /

'l'ablel'o:rm

-0 Vi + (32 u~,x + ux,x ux,x,x == 0

204 Symmetries of Ordinary Differential Equations

The parameters a and f3 are real constants. According to Kamke, this third-order
ODE is solvable and the solution can only be represented in parametric form. We will
show here that an explicit solution of the equation is possible. First, let us check if
Mathematica can solve the third-order equation.

DSolve [thirdOrderExam,ple == 0, u, x]

Dso1ve[-a,jl+(32 u "[x]' +u"[x]u(3) [x] ==0, u, xl

The above line shows that Mathematica is not capable of solving the equation. The
question now is: Can we derive the necessary number of symmetries in order to
integrate the equation? Deriving the symmetries is the first step in the general
algorithm. The calculation of symmetries is carried out by the MathLie function

Infinitesimals[]

infi = Infinitesimals[thirdOrderExample, u, x, {a, ~},

SubstitutionRules -+ {c3 IX ,3} u [x]}]

{phi [1] -? Function [{x, u}, k2 + k3 x] ,

xi [1] -? Function [{x, u}, kl]}

The result is a symmetry group of order three. The number of group constants is
equal to the order of the equation. This allows us to apply the integrating algorithm
discussed above. The specific symmetries are denoted by the group constants kl, k2,
and k3. Each of these parameters is related to a vector field 1\, i = 1,2, 3. Since the
number of vector fields is equal to the order of the equation, we can go to step 3 of
the algorithm. In the third step, we determine the Lie matrix by inserting the
prolongations of the infinitesimals and the equation itself:

inf1 = {{xi [1] [x, u]}, {phi [1] [x, u]}} /0 infi /0

{k1 -+ 1, k2 -+ 0, k3 -+ O} / 0

u -+ u [x] ;

inf2 = {{xi [1] [x, u]}, {phi [1] [x, u]}} /0 infi /0

{k1-+ 0, k2 -+ 1, k3 -+ O} /0

u -+ u [x];

inf3 = {{xi [1] [x, u]}, {phi [1] [x, u]}} /0 infi /0

{k1-+0, k2-+0, k3-+1} /0

u -+ u[x];

The Lie matrix is derived by

&llatrix = DeltaMatrix[x,

u,
a...j1+~2 (c3x ,xU[X])2

--~-----------------, 3, {inf1, inf2, inf3}];
c3x ,x u [x]

TableFo~[&llatrix] //LieTraditionalFo~

Analysis of Ordinary Differential Equations 205

1

o
o

1

o
1

x

o
o
1

One of the three first integrals is

o
o
o
0: -VI + f32 U;,X

integl = l'irstXntegral [x, u, ~trix, 1]

integ1 / / Lie'l'rac:Htionall'orm

== cl

c1 / / Simplify;

The result depends on u" and now allows us to rewrite all tenus containing u" in the
Lie matrices. Next, we solve the first integral with respect to u". Since the integral
depends quadratically on u", we get two solutions:

soll = Solve [integ1, A .. , .. U [x]]

{ {u" [xl ~ -) - -W- + c12 0:2 f32 - 2 cl x 0:2 f32 + x 2 0:2 f32 },

{u" [xl ~) - f3\ + c12 0:2 f32 - 2 cl x 0:2 f32 + x 2 0:2 f32 } }

The first of the two solutions is used to replace u" in the Lie matrix. The reader can
easily do the calculation for the second solution by himself:

dmat = ~trix /. soll[l]

{{l, 0, 0, a}, {O, 1,0, A}, {O, x, 1, A},

{I, u'[xJ, -)-;, +cI20:2f32-2clx0:2f32+x20:2f32,

- (0: .J (1 + f32 (- -W- + c12 0:2 f32 - 2 cl x 0:2 f32 + x 2 0:2f32))) /

() - ;2 + c12 0:2 (32 - 2 c1 x 0:2 f32 + x 2 0:2 f32 l}}

The simplified Lie matrix is used again to calculate the second first integral of the
third-order equation:

integ2 = FirstXntegral [x, u, dmat, 3] c2 / / simplify

206 Symmetries of Ordinary Differential Equations

(J -(3\ + c12 a 2 (32 - 2 c1 x a 2 (32 + X 2 a 2 (32

(-1 + c 1 2 a 2 (34 - 2 c 1 x a 2 (34 + X 2 a 2 (34) +

a (32 -V (c1-x)2 a 2 f34 u' [xl J /

(a (32 -V (c 1 - x) 2 a 2 (34)

c2

As expected, we find the integral depending only on first derivatives of u. Since this
integral is linear in u', it is uniquely solvable in u'

8012 = Solve [integ2, u' [x]] / / Sill\Plify

{ {u' [xl -4 c2 - (-V (- ;2 + c12 a 2 (32 - 2 c1 x a 2 (32 + x 2 a 2 (32)

(-1 + c12 a 2 (34 - 2 c1 x a 2 (34 + x 2 a 2 (34)) /

(a (32 -V (c 1 - x) 2 a 2 (34) } }

The resultant expression contains radicals of quadratic polynomials in x. Inserting
this result into the Lie matrix, we are able to eliminate the dependencies on u'. We
find '

dmatl = dmat /. 8012[1~ lD / / Sill\Plify

{i1, 0, 0, a}, {a, 1, 0, a}, {a, x, 1, A},

{1, c2 - (J -(3\ + c12 0:2 f32 - 2 c1 x a 2 (32 + x 2 a 2 (32

(-1 + c12 a 2 (34 - 2 c1 x a 2 (34 + x 2 a 2 (34) J /

(a (32 -V (c1 - x) 2 a2 f34) ,

The last step of integration is inserting the Lie matrices into the third first integral
depending on u and x:

Analysis of Ordinary Differential Equations 207

integ3 = FirstI:ntegral [x, u, dmatl, 2] -- c3 II Si~lify

) - /3\ + c12 ex 2 /32 - 2 c1 x ex2 /32 + X2 ex2 /32 -

2 .J (~; + C 12 ex2 /3 2 - 2 c 1 x ex2 /32 + X2 ex 2 /32) -

2 x 2 ex2 /3 4 .J (;; + c12 ex2 /32 - 2 c1 x ex2 /3 2 + X2 ex2 /32)) +

2 .J (~; + c12 ex2 /32 - 2 c1 x ex2 /3 2 + X2 ex2 /32) +

6 x 2 ex2 /3 4 .J (;; + c12 ex2 /32 - 2 c1 x ex2 /3 2 + X2 ex2 /32)) +

(c1 - x) 2 ex4 /38 U [xl 1 /

((c1 - x) 2 ex4 /38)

c3

The integral contains the dependent variable u again as a linear variable. In turn, we
end up with a unique solution for the Kamke equation 7.13, which is

208 Symmetries of Ordinary Differential Equations

solution Solve[integ3, u[x]] II Simplify

(X3 a 3 [36 _.) (cl- X)2 a 2 [34 + x 2 a 2 [34 .) (cl- x) 2 a 2 [34) +

c1 2 a 2 [34

(2 .) (;~ + c12 a 2 [32 - 2 cl X a 2 [32 + x 2 a 2 [32) (-1 + 3 x 2 a 2 [34) -

c2 a [32 (x a (32 + -J(;l - x) 2 a 2 [34)) +

c2 a [32 (xa(32 +.) (cl-x)2 a 2 (34))) /

((cl - x) 2 a 4 [38) } }

The solution depends on three constants cl, c2, and d, all of which are constants of
integration. The parameters a and f3 are the parameters of the original equation. To
get a feeling how the solution evolves, we plot the solution for different parameter
sets c1, c2, d at fixed a and f3:

sl = Table[

(U[X] I. solution I. {Cl-+ 1, c2 -+ ~ , c3 -+ i, a -+ 1, /3 -+ ~}) [lD,

(i, 0, 5});

Plot[Evaluate[sl],

{x, 5, 7}, PlotStyle-+ {RGBColor[O, 0, 0.996109],

RGBColor[O, 0, 0.62501], RGBColor[0.500008, 0, 0.500008],

RGBColor[0.500008, 0, 0.996109],

RGBColor[0.996109, 0, 0.500008],

RGBColor[0.500008, 0, 0.250004]},

AxesLabel -+ {nxn, nun}]

Analysis of Ordinary Differential Equations 209

u

5~

-5

-10

-15

-20

The figure represents the real valued solutions of the equation

8x,x u[x] 8{x,3} u[x] - a..J 1 + jJ2(8x,x U[X])2 = 0,

The different curves represent the solutions for values of c3 E {O, 1,2,3,4, 5} and
fixed values for c2 = 112, c 1 = 1. The parameters of the equation are a = 1 and f3 =
112.

We note that the solution is explicitly represented by a complicated expression
containing radicals and polynomials. This result is new, as Kamke only offers a
parametric representation of the solution. The example shows that with Lie's
procedure, we are able to arrive at a solution for higher-order ODEs. Mathematica,
by itself, is not yet able to handle this type of equation. 0

Example 2

The second example for higher-order equations is a third-order equation. In this case,
the equation has no direct physical origin. It is only used for checking the integration
procedure:

ux.x,x + Re (ux ux,x - u(x) ux.x.x) = 0, (4.71)

where Re is a positive constant. The equation has some resemblance to hydrodynamic
equations if the first term of the equation is replaced by a fourth-order derivative
ux,x,x,x' However, the fourth-order equation does not possess the necessary number of
symmetries to start the integration process. The reader may check this. The equation
under consideration is thus

thirdOrder = o .. , .. , .. u[x] + Re (oxu[x] o .. , .. u[x] - u[x] ox, .. , .. u[x]);

Map [# == O&:, {thirdOrder}] II LieTraditionalPorm II TablePorm

Ux,x,x + R, (ux Ux,x - U ux.x,x) == 0

210 Symmetries of Ordinary Differential Equations

where Re is a real constant. The equation has a minimum of required symmetries
given by

infi = :rnfiDitesima~s [thirdOrder , u, x, {Re},

SubstitutionRu~es -+ {a{x,3} u [x] }]

{xi [1] -7 Function [{x, u}, k1 + k2 x] ,

. . [k3 (- 1 + u Re) l} phl [1] -7 Functlon {x, u}, Re

The calculation below shows that the functions of MathLie are not able to find all
first integrals in a single run. We need to split the integration into a few steps
considering the symmetries given by the vector fields Vi. The three symmetries
related to the vector fields are given by

iDf1 = {{xi [1] [x, u]}, {phi [1] [x, u]}} /. infi /.

{k1 -+ 1, k2 -+ 0, k3 -+ O} /.

u -+ u[x];

inf2 = {{xi[1] [x, u]}, {phi[1] [x, u]}} /. infi /.

{k1 -+ 0, k2 -+ 1, k3 -+ O} /.

u -+ u [x] ;

inf3 = {{xi [1] [x, u]}, {phi [1] [x, u]}} /. infi /.

{k1 -+ 0, k2 -+ 0, k3 -+ 1} /.

u -+ u [x] ;

The right-hand side of the third-order equation w is given by

w = (So~ve [thirdOrder == 0, ax,x,x u [x]]) [1, 1, 2D;

w // LieTraditiona~Form

Re U x ux,x
-1 + U Re

The 4 x 4 Lie matrix follows by inserting the infinitesimals of the vector fields and w

into the function DeltaMatrix[]:

lImatrix = De~taMatrix[x, u, w, 3, {inf1, inf2, inf3}];

TableFor.m[lImatrix] /1 LieTraditionalFor.m

1 0 0 0

x 0 -ux -2ux ,x

0
-1 + U Re

R
u x lix,x

1 u x lix,x
Re U x ux,x
-1 + U Re

The determinant of the Lie matrix is a polynomial in u, u', and u":

Analysis of Ordinary Differential Equations 211

Det [llmatrix] / / LieTraditionalForm

In order to obtain first integrals for the equation, the second line of the above .l
matrix is replaced by the differentials:

integl = FirBtI:ntegral [x, u, lImatrix, 2] cl / / Simplify

; (Log [-1 + Re u [x] 1 - Log [u" [x]]) == c1

The remaining two integrals r/l1 and r/l3 are not accessible to Firstlntegral[]. The

reason for this is that the function Integrate[] of Mathematica cannot solve certain
types of integrals. However, the result so far derived is helpful to find a solution of
the equation. If we look at the first integral r/l2, we observe that this relation is a
second-order ODE. The solution for u" clearly shows

Boll = Solve [integl, ox,x u [xl 1 / / Simplify

{{u" [x] --7 E-2c1 (-1 + R, u[x])}}

If we transfonn Rule to Equal, we get the equation

eqh = (Boll /. Rule -+ Equal) [1, lD

u"[x] ==E-2c1 (-l+Reu[x])

a second-order equation which is now solvable by DSolve[]:

Bo12 = DSolve [eqh, u, x] /. cl-+ C [3]

{{U--7 (~e +E-E-CI31YR:#lC[1] +EE-CI3JYR;#lC[2]&)}}

Inserting this solution into the original equation, we can verify that the original
equation is satisfied,

thirdOrder /. Bo12 II Simplify

{O}

meaning that the left-hand side of the equation vanishes, and, in tum, equality has
been established. Solving the original equation with Mathematica, we get

DSolve [thirdOrder == 0, u, x]

DSo1ve [u (3) [x] + Re (u' [x] u" [x] - u [x] U (3) [xl) == 0, u, x]

212 Symmetries of Ordinary Differential Equations

showing us that Mathematica in the present form is not capable of handling
third-order equations.

The example demonstrates that we can even find solutions for cases where we know
fewer first integrals than the order of the equation. The procedure of integration splits
heterogeneously using different tools to solve the reduced equation. This behavior of
higher-order ODEs creates some difficulties in the automatic solution process. D

Example 3

The third example considers the fourth-order ODE No. 7.16 of Kamke [1977]. This
equation is a non-linear ODE containing second-, third-, and fourth-order derivatives.
The problem with such an equation is that no standard procedure in literature offers a
way to construct the solution given by Kamke. We will demonstrate that the
integrating factor method is very effective for the construction of the solution. The
equation No. 7.16 by Kamke reads

kamke716 =3ax,xu[x] O{x,4}U[X] -5 (ax,x,xU[X]) 2 ==0;

kamke716 / / LieTraditionall"orm

-5 u~,x,x + 3 ux,x ux,x,x,x == a

Kamke also lists the solution of the above ODE in implicit form:

(4.72)

where C1 , C2 , C3 , and C4 are real constants. The following examinations will
demonstrate that this simple solution follows from our procedure. The first step of
Lie's procedure is the determination of the infinitesimals:

infkamke = :rnfinitesimals [kamke716 , u , x,

SubstitutionRules -+ {a{x,,} u [x] }]

{phi[l] -->Function[{x, u}, k3+klu+k4xJ,

xi[l]-->Function[{x, u}, kS+k2u+k6x]}

The result of this calculation is a symmetry group containing six group parameters ki •

The second step consists in finding a solvable sub algebra of dimension four from
these infinitesimals. The determination of all solvable subalgebras of dimension four
is carried out with

solvabJ.e = SolvableAlgebrasOfOrderN[infkamke, {u} I {x} I 4]

{ { {kl --> l}, {k2 --> l}, {k3 --> l}, {kS --> l} } ,

{ {kl --> l}, {k2 --> l}, {k4 --> l}, {k6 --> l} } ,

{ {kl --> l}, {k2 --> l}, {kS --> l}, {k6 --> l} } ,

Analysis of Ordinary Differential Equations 213

{{kl~l}, {k3 ~ l}, {k4 ~ l}, {k5 ~ l}},

{{kl ~ l}, {k3 ~ l}, {k4~l}, {k6 ~ l}},

{{kl ~ l}, {k3~l}, {k5 ~ l}, {k6~l}},

{{k2~l}, {k3 ~ l}, {k5 ~ l}, {k6~l}},

{{k3 ~ l}, {k4 ~ l}, {k5~l}, {k6~l}}}

From the result, we can choose one of the eight solvable algebras. The related
coefficients of the vector fields creating these subalgebras are derived by inserting
the above result and assuming the other group constants equal to zero:

vactorBasis =
Map [({ {xi [1] [x, u]}, {phi [1] [x, u]}} I. infkamke I . .. I.

(k1 0, k2 0, k3 0, k4 0, kS O, k6 0, u u[x]})&,

solvable]

{{{{O}, {u[x]}}, {{u[x]}, {O}}, {{O}, {l}}, {{l}, {O}}},

{{{O}, {u[x]}}, {{u[x]}, {O}}, {{O}, {x}}, {{x}, {O}}},

{{{O}, {u[x]}}, {{u[x]}, {O}}, {{l}, {O}}, {{x}, {O}}},

{{{O}, {u[x]}}, {{O}, {l}}, {{O}, {x}}, {{1}, {O}}},

{{{O}, {u[x]}}, {{O}, {l}}, {{O}, {x}}, {{x}, {O}}},

{{{O}, {u[x]}}, {{O}, {l}}, {{l}, {O}}, {{x}, {O}}},

{{{u[x]}, {O}}, {{O}, {l}}, {{l}, {O}}, {{x}, {O}}},

{{{O}, {I}}, {{O}, {x}}, {{l}, {O}}, {{x}, {O}}}}

Knowing the infinitesimals of the solvable subalgebras, we can proceed to the
integration step of the algorithm. The information from the original equation
kamke176 about the right-hand side of the equation is extracted by

t&I = Solva[kamke716, B(X,4j u[x]] [[1, 1, 2]];

t&I II LieTraditionalPorm

5 u~,x,x
3 ux,x

The Lie matrix of the equation is then calculated for the fourth subalgebra by

.6matrix = Del tallatrix [x, u, t&I, 4, vectorBasis [411] ;

TablePorm[.6matrix] II LieTraditionalPorm

a u U x ux,x ux,x,x

0 1 0 0 0
0 x 1 0 0

1 0 0 0 0

1 Ux ux,x ux,x,x
5 U~,XIX

The determinant of the !J. matrix is

Det [Alllatrix] II LieTraditionalPorm

_~ u 2
3 x,x,x

3 ux,x

214 Symmetries of Ordinary Differential Equations

Knowing that the determinant of Lie's matrix is a non-vanishing quantity, we can
calculate the first integrals of the equation. One of these integrals is

integ1 = FirstJ:ntegra1 [x, u, Amatrix, 1] == c1 / / Simplify

1 2 (5 Log[u" [xl 1 - 3 Log[u (3) [xl l) == cl

A second first integral follows by

integ2 = FirstJ:ntegral. [x, u, Amatrix, 4] c2 / / Simplify

3 u" [xl
x + 2 u(3) [xl == c2

At this point of our calculation, we know that equation No. 7.16 by Kamke allows
two conserved quantities given by integl and integ2. The right-hand sides of these
differential expressions cl and c2 are two real constants. The two integrals contain
derivatives of third and second order. Since we know that both expressions are
conserved, we can use one of these quantities to eliminate higher derivatives. We
decide to eliminate the third-order derivative in the first integral integl by

sl = Solve[integ2, ox,x,xu[x]] //Simplify

{ { U I 3) [x 1 --> 3 u" [x 1 } }
2 c2 - 2 x

The elimination of the third-order derivative in integ 1 gives us

integ1Help = integ1 /. sl[lD

1 (3 u" [xl) 2 5 Log [u" [xl 1 - 3 Log [2 c2 _ 2 x 1 == cl

representing an integral containing only second-order derivatives. The solution of this
expression with respect to the second integral delivers

s2 = Solve [integ1Help, ox,x u [x]]

{{ u" [xl
3 Y3 Ecl

--> - -vB c2 3 - 24 C22 x + 24 c2 x 2 - S x 3 },

{u" [xl
3 Y3 Ecl

--> -YSC2 3 -24C2 2 X+24C2x2 -SX3 }}

The two resulting expressions can be integrated twice to find the solution. However,
we apply DSolve[] to the expressions to find the solution. Before we can use
DSolve[], we need to transform the rules to equations by

Analysis of Ordinary Differential Equations 215

eqh = s2 /. Rule -+ Equal / / Platten

{u" [X]

u" [X]

3 -f3 Eel

V8c2 3 -24c22 x+24c2x2 -8 X 3

3 -f3 Eel

V8 c2 3 - 24 C22 X + 24 c2 X2 - 8 X3

Solving the first equation gives us

soll = DSolve[eqh[[1]], u, x]

{{u--> (C[l] +C[2] #1-

3 -f3 Eel V8 c2 3 - 24 C22 #1 + 24 c2 #1 2 - 8 #13

2 (-c2+#1)

The second relation for un delivers the second solution

so12 = DSolve[eqh[[2]], u, x]

{{u--> (C[1] +C[2] #1+

3 -f3 Eel V8 c2 3 - 24 C22 #1 + 24 c2 #1 2 - 8 #1 3

2 (-c2 + #1)

In conclusion, we find two solutions in an explicit representation. This has to be
expected since the solution given by Kamke contains the unknown variable u in
quadratic form. The derived solution can be inserted into the original equation to
verify that the gained results are correct. For the first solution, we find

kamke7l6 /. soll / / Si~lify

{True}

meaning that the first solution satisfies the equation. The second solution also
satisfies the equation

kamke716 /. so12 / / S~lify

{True}

At the end, we demonstrated that the integrating factor method is capable of solving a
fourth-order equation. 0

5

Point Symmetries of Partial
Differential Equations

5.1. Introduction

The subject of this section is to discuss the basic tools of Lie's symmetry method in
connection with partial differential equations. These tools will support the practical
calculations. We will show how the theory of Lie becomes vital again by using
computer algebra calculations.

The theory under discussion is the symmetry theory of Lie. This theory is useful for
solving partial differential equations in a systematic way. The question Lie had raised
more than 100 years ago was how to systematically solve differential equations. He
was wondering about the many methods his colleagues used in solving differential
equations. Up to the present day, this question of deriving solutions for a given
differential equation has been of topical interest for physicists and mathematicians
alike. Lie found a solution to this problem by introducing a method which allows the
examination of symmetry transformations of equations. Using this method, he was
able to find solutions not only for ordinary differential equations as discussed in
Chapter 4 but also for non-linear partial differential equations.

From these remarks, we can deduce that Lie's method is capable of handling a large
number of equations. The application of this method depends neither on the type of
the equation nor on the number of variables involved in the equations. Lie's method

Introduction 217

is a general procedure appropriate for any type of differential equation. However,
perusing the literature on Lie's method, we observe that this method has rarely been
applied, compared with the wealth of differential equations in practical and
theoretical problems.

The reason for the widespread rejection of Lie's method during the last hundred years
by the community of mathematicians and physicists is that his method demands a
huge number of algebraic calculations in order to extract the symmetries of a
differential equation. Even for simple equations, the algebraic amount of calculations
is large compared to other methods. If someone is genial enough to guess a solution
to solve a particular problem, he probably does not have a deeper insight into the
solution structure of the equation. However, if he or she is interested in a complete
solution of the symmetry problem, the reader is offered the ability to obtain the
information needed on an equation by using a symbolic calculation in MathLie. This
tool allows us to completely solve the symmetry problem either in a non-interactive
or an interactive way.

This chapter is organized as follows: In Section 5.2 we review Lie's method using the
terminology of today. In Section 5.3, we introduce the invariance condition based on
Frechet derivatives. Section 5.4 discusses some capabilities of the package MathLie
and presents some examples of how to use MathLie to find symmetries. Section 5.5
introduces the term similarity reduction. Section 5.6 is devoted to a number of
applications of MathLie.

5.2. Lie's Theory Used in MathLie

In his work, Lie pointed out that the symmetry of any differential equation is defined
as follows:

Definition: Lie symmetry

A Lie (point) symmetry is characterized by an infinitesimal transformation which
leaves the given differential equation invariant under the transformation of all
independent and dependent variables. 0

The Lie symmetries of differential equations (DEQs) naturally form a group: Since
the composition of any two symmetries is also a symmetry, there is an identity
transformation; the composition of symmetries is obviously associative; and any
symmetry has an inverse. Such groups are called Lie groups and are invertible point
transformations of both the dependent and independent variables of the DEQs. The
DEQs may depend on continuous parameters. Lie pointed out that this group is of
great importance in understanding and constructing solutions of DEQs. Lie

218 Point Symmetries of Partial Differential Equations

demonstrated that many techniques for finding solutions can be unified and extended
by considering symmetry groups. Today, we know several applications of Lie groups
in the theory of differential equations (cf. Ibragimov [1985], Bluman and Kumei
[1989], Olver [1986], Ovsiannikov [1982], Ibragimov [1994-1996], Baumann
[1987]).

To use the symmetry groups in any application, we first need to find the symmetries
of the equations. A first approach to finding point symmetries of such systems is to
make a general change of all variables and then enforce the new variables to satisfy
the same set of DEQs. This approach leads to complicated non-linear systems of
DEQs for the functions used in the transformations. Lie demonstrated that such a
procedure is unnecessary. He established an efficient method based on an
infinitesimal formulation of the problem of finding the symmetry group of a set of
DEQs, replacing these highly complicated and in most cases intractable non-linear
equations by tractable linear overdetermined systems of partial differential equations.
The solution of these so-called infinitesimal determining equations can be used to
determine symmetry transformations.

Let us consider the general case of a non-linear system of differential equations for
an arbitrary number q of unknown functions uO: which may depend on p independent
variables Xi. We denote these sets of variables simply by u = (u l , u2 , ... , uq) and

X=(XI,X2, •.• ,Xp), respectively. The general case is given by a system of m

non-linear differential equations

i = 1,2, ... , m (5.1)

of order k. The term u(k) is understood as the kth derivative of u with respect to x.

We note that m, k, p, and q are arbitrary, positive integers. Consider, further, a
one-parameter E-Lie group of transformations

X' = 8(x, u, E),

u' = <I>(x, u, E)

(5.2)

(5.3)

under which (5.1) must be invariant. The star on the variables X and u denote the new
variables. Invariance of (5.1) under the action of (5.2) and (5.3) means that any
solution u = 0(x) of (5.1) maps into some other solution v = '¥(x; E) of (5.1). Let
u = 0(x) be a solution of (5.1). If we replace the dependent and independent
variables u and x by v and x* = 8, respectively, equations (5.1) become

L~/(X*, V(k» = 0, i = 1, 2, ... , m. (5.4)

Then, v = 0(x*) are solutions of (5.4). This implies that if (5.1) and (5.4) have a
unique solution, then

0(x*) = <I>(x, 0(x), E). (5.5)

Lie's Theory Used in MathLie 219

Hence, e satisfies the one-parameter functional equation

®(8(x, E» = <I>(x, e, E). (5.6)

Expanding equations (5.2) and (5.3) around the identity E = 0, we can generate the
following infinitesimal transformations:

i = 1, 2, ... , p

u·a = ua + Et/>a(X, u) + O(~), a = 1,2, ... , q

(5.7)

(5.8)

where the functions gi and t/>a are the infinitesimals of the transformations for the
independent and dependent variables, respectively. In order to find the unknown
infinitesimals gi and t/>a, we need to extend or prolong the transformation group to
include the properties of the derivatives. It is an infinitesimal approach which
considers the Lie algebra .£. corresponding to the Lie group G. Generalizing the
formulas of Chapter 4, the infinitesimal transformation (5.7) and (5.8) can be put into
the form

P a q a
v = L:g;(x, U) - + L:t/>a(X, U) --,

i=1 aXi a=1 aUa
(5.9)

where v represents a linear combination of the vector fields generating .£., which, in
tum, is based on the characteristic quantities gi and t/>a of the transformation (5.7) and
(5.8). The algorithm used in MathLie for finding the infinitesimals gi and t/>a is
described below. We emphasize that the infinitesimals in this simple form only
depend on independent and dependent variables. A prolongation of the dependencies
to derivatives extends the Lie symmetries to so-called generalized Lie symmetries,
which are discussed in Chapter 9. Transformations (5.7) and (5.8), together with the
transformations for the first, second, ... derivatives of the ua ' s, are called first,
second, ... prolongations. Using these various extensions, the infinitesimal criterion
for the invariance of (5.1) under the group (5.2) and (5.3) is derivable by

(5.10)

where the kth prolongation of the vector field v is given by

(k) ~ ~ ~ '"] a pr v = v + L...J L...J t/>a(X, U(k» -a-'
a=1] au]

(5.11)

The second summation extends over all multi-indices J = (jl, ... , jz) with
1 ~ jz ~ p, 1 :5 I ~ k. The kth prolongation coefficients t/>~ are given by

220 Point Symmetries of Partial Differential Equations

(5.12)

where ur = a ua / a Xi and U~,i = a uJ / a Xi. Thus, the system of differential
equations (5.1) is invariant under the transformation of a one-parameter group with
the infinitesimal generator (5.9) if the g/s and ifJa's are determined from equation
(5.10).

So far, we discussed the standard procedure to derive the determining equations for
the infinitesimals gi and ifJ". This procedure is widely used in the literature (cf. Olver
[1986], Ibragimov [1985], BIuman and Kumei [1990], and Ovsiannikov [1982]).
From a calculation point of view, the procedure described above is very inefficient
and time- and memory-consuming. The main slowing-down step of the procedure is
the recursive calculation of the expansion coefficients in equation (5.11). The
following section will discuss a more efficient way to derive the determining
equations. This procedure is based on the powerful pattern-matching capability of
Mathematica and uses the Frechet derivative to represent the invariance condition
(5.10).

5.3. Invariance Based on Frechet Derivatives

The Frechet derivative can be considered as a generalization of the complete
derivative. In this section, we will use this type of derivative to formulate an efficient
procedure for the calculation of the invariance condition used in the derivation of the
determining equations.

The Frechet derivative of a support function P with respect to a test function Q was
defined in Chapter 2 by

(5.13)

The meaning of equation (5.13) is that in the support P, we have to replace the
dependent variables and their derivatives by a variation of the original variables. The
variation is represented by the variables themselves and by a test function weighted
by a parameter E. After the substitution, we differentiate with respect to E and then set
E = O.

This relation defined for an r-dimensional support P and for a q-dimensional test
function Q can be implemented very efficiently in Mathematica. The implementation
was given in Section 3.5.

lnvariance Based on Frechet Derivatives 221

Let us now briefly discuss the connection between the invariance condition (5.10)
and the Fr6chet derivative. To calculate the detennining equations, we need the
prolongation of a vector field vQ applied to the system of differential equations fl.. If
we assume that the related characteristic Q depends on the dependent variables and
their derivatives, we can write down a relation which connects the prolongation of a
differential system with the Frechet derivative of the system in an evolutionary
representation (cf. Olver [1986]). The term evolutionary representation means that we
consider infinitesimal transformations independent of the independent variables. The
connection between the prolongation and the Frechet derivative is given by

(5.14)

where Q is now the support and we have in mind that fl. is the system of partial
differential equations. This relation follows from the definition of the prolongation in
evolutionary representation:

(5.15)

with Qa = Qa(u(k») depending only on the derivatives of the dependent variables
k = 0, 1, If, in addition, we use the definition of the Frechet derivative given by
equation (5.13), we can immediately reproduce equation (5.14).

Thus, the prolongation operator is related to the Frechet derivative. We can utilize
this relation to reformulate the invariance condition (5.10). Applying relation (5.14)
and the definition of the evolutionary vector field, we are able to replace the
invariance condition (5.10) by the relation

(Dd(Q) + t g; D;fl.) I =0.
(5.16)

Qo:=4Ja-Li=l~i u~

At first glance, this expression appears to be very complicated from the calculation
point of view. Indeed, it is very cumbersome if one tries to use this formula in a
manual calculation. In fact, in a pencil calculation, we first have to replace all
dependent variables and their derivatives by the variation of the dependent variables
which must be extended up to the kth order in the derivatives. Mter the substitutions,
we have to differentiate the expression obtained with respect to E and afterward set
E = O. These steps contain a lot of work if we do them by hand. However, with
Mathematica, all the steps are very easy to handle. This is possible because
Mathematica offers powerful matching procedures already implemented in its kernel
to carry out the calculations.

222 Point Symmetries of Partial Differential Equations

The advantage of this method to calculate the prolongation of a given system of
differential equations is not only its fast calculation but also the flexibility in
choosing expressions for the characteristics in the calculation which allows an
extension to generalized symmetries.

All the steps given above to derive the determining equations are incorporated in the
package MathLie. The result of the MathLie functions is a system of linear
homogeneous partial differential equations for the infinitesimals gi = gi(X, u) and
¢a = ¢a(x, u), in which x and u are vectors of the independent and dependent
variables. These are the so-called determining equations for the symmetries of the
system d.

At this point of the discussion, we note that equation (5.16) looks very similar to the
invariance condition of the non-classical symmetry method. The difference is that the
second side condition Qa is not equal to zero in relation (5.16).

In summary, in this section we discussed the algorithm in mathematical terms to
calculate Lie point symmetries. The essential steps of this calculation are as follows:

1. Calculate the prolongation of the system of differential equations up to kth order
by

pr(k) Vd = O. (5.17)

2. Use the equations themselves to eliminate redundant information of the
prolongation

pr(k) v d L~=o = o. (5.18)

3. Extract the determining equations from the prolongation by setting the
coefficients of the derivatives in the dependent variables equal to zero.

4. Solve the resulting determining equations.

Steps 1 to 3 will be discussed in this section. The fourth step deals with the solution
of the determining equations to be discussed in detail in Chapter 10. We note at this
stage that the determining equations are always solvable in closed form since they
build up an overdetermined system of linear partial differential equations.

5.4. Application of the Theory

In this section, we discuss the application of the theoretical formulas discussed to
appropriately calculate Lie point symmetries. We apply the theoretical notions in
terms of MathLie functions. The main tools discussed here are the prolongation
operator and the derivation of the determining equations.

Application of the Theory 223

5.4.1 Calculation of Prolongations

Calculation of the prolongation in MathLie can easily be carried out by using the
formula based on the definition of the Frechet derivative. The theoretical concept of
the prolongation is realized in MathLie by the function Prolongation[]. The on-line
information on this function reads

:tnformation ["proJ.ongation", Longl'orm l'aJ..e]

Prolongation [equation_,

dependent_,independent_,parameters_: {}]

determines

the prolongation of an equation or a system of equations.

This function expects four different quantities as input. The first argument of the
function contains the equations tl. = 0; the second and third arguments specify the
dependent and independent variables. The fourth slot contains the parameters of the
equation. This input quantity is optional and can be omitted if the equation contains
no parameters. The function Prolongation[] applied to an arbitrary partial differential
equation F(x, t, U, Ut) = 0 allows us to calculate the prolongation for this expression.
Let us first define the equation by

equatl = I'[x, t, u[x, t], "t u[x, t]] == 0

F[x, t, u[x, t], U(O,l) [x, t]] == 0

Applying the function Prolongation[] to this expression, we have to supply the
additional two arguments as well. The second and third lists contain the dependent
and independent variables. Collecting this information, we can write

prl = ProJ.ongation[equatl, {u}, {x, t}]

{U(O,l) [x, t] phi[l] 10,0,1) [x, t, u[x, t]]

F(O,O,O,l) [x, t, u[x, t], U IO ,l) [x, t]] -

U IO ,l) [x, t] U(l,O) [x, t] xi [1] (0,0,1) [x, t, u[x, t]]

F(O,O,O,l) [x, t, u[x, t], U IO ,l) [x, t]] _U(O,l) [x, t]2

xi [2] (0,0,1) [x, t, u[x, t]] FIO,O,O,l) [x, t, u[x, t], U(O,l) [x, t]] +

phi[l] (0,1,0) [x, t, u[x, t]] F(O,O,O,l) [x, t, u[x, t], U(O,l) [x, t]] -

U(l,O) [x, t] xi [1] (0,1,0) [x, t, u[x, t]]

F(O,O,O,l) [x, t, u[x, t], U IO ,l) [x, t]] _U(O,l) [x, t]

xi [2] (0,1,0) [x, t, u[x, t]] F(O,O,O,l) [x, t, u[x, t], U(O,l) [x, t]] +

phi[l] [x, t, u[x, t]] F 10 ,0,1,0) [x, t, u[x, t], U(O,l) [x, t]] +

xi[2] [x, t, u[x, t]] F(O,l,O,O) [x, t, u[x, t], U IO ,l) [x, t]] +

xi [1] [x, t, u [x, t]] F(l,O,O,O) [x, t, u [x, t], U (0,1) [x, t]]}

224 Point Symmetries of Partial Differential Equations

The infinitesimals in MathLie are by default denoted by xifp] [x, u[x, t]] and
phi[q] [x, u[x, t]], where xi stands for the infinitesimals of the independent variables
and phi for the dependent one. The number in square brackets denotes the first,
second, third, etc. variables in the set of independent and dependent variables,
respectively. Here, xi[l] stands for the first independent variable x and xi[2] for the
second variable t. In our example, only one dependent variable u is present, so the
related infinitesimal is phi[l]. The argument of the infinitesimals contains the
independent and dependent variables with all the dependencies.

The result of the above calculation represents the first-order prolongation of the
general equation F (x, t, u, Ut) = O. Alternatively, we can use a shorthand notation

for the function Prolongation[] by the symbol (p,k v()D.], This symbol is part of a

palette accompanying MathLie. Thus, the more symbolic representation of the
prolongation is

prolong = (pr'< v) :~}'{X,t} [equatl]

{U IO . ,) [x, t] phi [1] 10,0,1) [x, t, u[x, t]]

FIO.O,O,l) [x, t, u[x, t], UIO,l) [x, t]] -

U ID ,l) [x, t] U ll . D) [x, t] xi [1] 10.0,1) [x, t, u [x, t]]

FIO,O,O,l) [x, t, u[x, t], UIO,l) [x, t]]_U ID . l) [x, t]2

xi [2] 10.0,1) [x, t, u[x, t]] FIO,D,O,l) [x, t, u[x, t], UIO,l) [x, t]] +

phi [1] 10,1,0) [x, t, u[x, t]] FID,O,O,l) [x, t, u[x, t], UIO,l) [x, t]] -

Ull,O) [x, t] xi [1] 10,1,0) [x, t, u[x, t]]

FIO,O,D,l) [x, t, u [x, t] , U,a,l) [x, t]] - UIO,l) [x, t]

xi [2] 10,1,0) [x, t, u[x, t]] FIO,D,O,l) [x, t, u[x, t], UIO,l) [x, t]] +

phi[l] [x, t, u[x, tJJ FIO,D,l,O) [x, t, u[x, tJ, uID,l) [x, tJJ +

xi [2 J [x, t, u [x, t J J F (0, 1, ° , 0) [x, t, u [x, t J, u I a , 1: [x, t J J +

xi [lJ [x, t, u[x, tJ J FILD,D,D) [x, t, u[x, tJ, UID,l) [x, t] J}

The result created by this operator is identical to the result derived by Prolongation[].

The function behind the operator (p~ v()D.] automatically detects the number of

variables involved and creates the representation of the infinitesimals. Input
quantities needed are just the independent and dependent variables and the equation.
To some, the result may look somehow strange. If one likes to have the result
represented in a more traditional form, the standard representation of this expression
can be transform by means of LieTraditionaIForm[]. The result contains Greek letters
and indices for the numbering of the infinitesimals. The transformation of the
previous result is carried out by the following line:

prolong// LieTraditionalFor.m

{Fx ~l +Ft ~2 +Fu<Pl -Fut Ux (~l)t -Fut Ut Ux (~l)u -Fut Ut (~2)t­

Fut u~ (~2)u +Fut (<Pdt +Fut Ut (<pil u }

Application of the Theory 225

To be more specific, let us calculate the prolongation of the Burgers equation as
another example. The Burgers equation, u, + uux - ux•x = 0, is one of the standard
equations treated in non-linear physics. This equation was used by Burgers [1948] as
a mathematical model of turbulence. The Burgers equation in the field variable

U=u[x, t];

reads

burgers = at U + U ax U - O(x,2} U == 0; LieTraditionalForm[burgers]

U t + U U x ~ Ux,x == 0

The prolongation of this equation follows with the prolongation operator or the
function Prolongation[] as

(pr'< v) ~~ (x,t) [burgers] II LieTraditionalForm

{ux ¢i -Ux (';d t -Ut U x (';d u -uu; (';d u -UUx (';il x -Ut (';2)t-

u~ (';2)u -UUt Ux (';2)u -UUt (';2)x + (¢d t +Ut (¢d u +UUx (¢d u +

U (¢d x + 2 Ux (';2) u Ux, t + 2 (';2) x Ux, t + 3 Ux (';d u u x, x +

2 (';dxux,x+Ut (';2)uUx,x- (¢iluux,x+u~ (';du,u+

2u; (';i)x,u +ux (';i)x,x +Ut u; (';2)u,u +2ut Ux (';2)x,u +

Ut (';2)x,x- U; (¢ilu,u-2ux (¢ilx,u- (¢ilx,x}

The result contains derivatives of the infinitesimals gl, g2, and 4>1 related to the two
independent variables and the dependent variable. We note that the numbers of the
indices of the infinitesimals are related to the occurrence of the variables in the
argument of u. Index 1 is connected to x and 2 denotes the second independent
variable t.

Another function more flexible in its specification of the infinitesimals is

FrechetProlong[]. This function allows us to supply expressions for infinitesimals.

The first three arguments of the function are the same as in Prolongation[]. The
difference is that, in general, we have to deliver infinitesimals in the last two
arguments in such a way that there exists an expression for each variable. The
position in the first list is directly related to the position of the independent variable
in the arguments of dependent variables. The order in the second list depends also on
the order of dependent variables in the arguments of the infinitesimals. Concerning
the names of the infinitesimals, we can arbitrarily choose them. We demonstrate this
by calculating the prolongation of the Harry-Dym equation. Originally a pure
mathematical object, the Harry-Dym equation today is discussed in connection with
physical applications (Kadanoff [1990)). It is a special feature of FrechetProlong[]

226 Point Symmetries of Partial Differential Equations

that only the left-hand sides of the equations are needed. In case of the Harry-Dym
equation

(5.19)

the left-hand side of the equation is expected in a list:

harryDym = {at U - A u 3 a{x.3} U}; harryDym II LTI!'

U t - u 3 A ux,x,x == 0

The Harry-Dym equation is a third-order non-linear partial differential equation in u.
A is a real parameter in this equation. The prolongation in the infinitesimals f, T, and
tP follows by

pharryDym = I!'rechetProlong [harryDym, {u},' {x, t},

{£' [x, t, uJ, 1: [x, t, uJ}, {II! [x, t, uJ} J ;
pharryDym II LieTradi tionall!'orm

{-Ux';t -Ut ux';u -Ut Lt -u~ Lu +git +ut giu + 3 u 3 A LU Ux,t ux,x +

3 u 3 A';u u~,x + 6 u 3 A u~ ux,x ';u,u + 9 u 3 A U x ux,x ';x,u + 3 u 3 A ux,x ';x,x +

3 u 3 AU; Ux,t "'[u,u + 3 u 3 .A U t U x ux,x t:u,u + 6 u 3 .A U x Ux,t I:x,u +

3 u 3 AUt ux,x LX,u + 3 u 3 A Ux,t Lx,x - 3 u 3 A U x ux,x giu,u - 3 u 3 A ux,x gix,u +

3 u 3 A U x Lu ux,x,t + 3 u 3 A LX Ux,x,t - 3 u 2 A gi ux,x,x + 4 u 3 A U x ';u ux,x,x +

3 u 3 A';x ux,x,x + u 3 AUt LU ux,x,x - u 3 A giu ux,x,x + u 3 AU! ';u,u,u +

3 u 3 A u~ ';x,u,u + 3 u 3 A u~ ';x,x,u + u 3 A U x ';x,x,x + u 3 A U t u~ LU,U,u +

3 u 3 AUt u; Lx,u,u + 3 u 3 AUt U x "'[x,x,u + u 3 .A lit I:x,x,x -

u 3 A u~ gju,u,u - 3 u 3 A u~ gjx,u,u - 3 u 3 A U x gjx,x,u - u 3 A gix,x,x}

This representation of the prolongation contains the infinitesimals in a more
indicative form connecting the name of the independent variables with the names for
the infinitesimals in Greek. However, the direct access by sUbscripts is lost. We see
that the use of names for the infinitesimals is by no means restricted.

Another problem frequently encountered in the calculation of infinitesimal
transformations is the partial knowledge of the infinitesimals. We illustrate this kind
of calculation for the heat equation. The heat equation

(5.20)

is a second-order partial differential equation used in the description of temperature
changes in solid and fluid media (BIuman and Kumei [1989]). The left-hand side of
the equation for the scaled temperature field u depending on the temporal and spatial
coordinate reads

heat = {at U - a(x.2} U}; heat II LTF

Application of the Theory 227

If we know a partial representation of the infinitesimals, we can use this information
to define the infinitesimals for the function FrechetProlong[]. For the heat equation,
let us assume that the infinitesimals are given by linear functions in u. The
infinitesimals for the independent and dependent variables are thus

indepJ:nfinite.imals = {f [x, t] U + Sl [x, t], h [t] }

{g[x, t] + f[x, t] u[x, t], h[t]}

dependentJ:nfinitesimal. = {k[t] U}

{k[t]u[x, t]}

This representation of the infinitesimals contains incomplete information about the
final form and thus restricts the solution manifold for the gi and ifJa' Inserting this
form for the infinitesimals in FrechetProlong[], we end up with a special
representation of the prolongation:

pheat = FrechetProlODSl [heat, {u}, {x, t},

indepJ:nfinitesimals, dependentJ:nfinite.imals];

LieTraditionalForm[pheat]

{ukt +kut -ht Ut -uft Ux -gt Ux - fUt Ux +2 fx u; +uUx fx,x +

Ux gx,x - k ux,x + 2 u fx ux,x + 2 gx ux,x + 3 f Ux ux,x}

The result gained is an expression containing functions f, g, h, and k. If we know
these arbitrary functions, we can check the invariance of the equation directly. It is
sufficient to know a subgroup of the complete group to check the invariance. It is
well known that the heat equation is invariant with respect to translations (Bluman
and Kumei [1989]). As we know from Chapter 2, these symmetries are represented in
infinitesimal form by

indepndJ:nfinitesilllls = {kl, k2}

{kl, k2}

dependentJ:nfinite.imal. = {k3}

{k3}

The group constants kl, k2, and k3 are real constants. Inserting these infinitesimals in
our function FrechetProlong[], we find

pheat. = FrechetProlonSl [heat, {u}, {x, t},

indepndJ:nfinites~., dependentJ:nfinite.imals]

{O}

228 Point Symmetries of Partial Differential Equations

The result reveals that the heat equation is invariant with respect to translations. It is
now easy to manually check other types of symmetries for the heat equation. We only
have to specify the infinitesimals in the function FrechetProlong[]. Let us assume
another type of invariance to be given by a rotation of the independent variables and
a translation of the dependent variable. The check of these hypothetical infinitesimals

pheata. = FrecbetProJ.ong[beat, {u}, {x, t},

{-k1 t, k1 x}, {k2}]; pheata. II L'l'F

kl Ux + 2 kl Ux,t == a

shows that the heat equation is not invariant with respect to rotations in the
independent variables.

The function FrechetProlong[] can be used not only to derive the prolongation of an
equation but also to calculate the expansion coefficients of the prolongation in
general. For example, if we need the general representation of the first coefficient of
the prolongation related to variable t, we construct this term by

fir.tBxten.ion= FrecbetProJ.ong[{"tu[x, t]}, {u}, {x, t},

{xi [1] [x, t, u [x, t]], xi [2] [x, t, u [x, t]]},

{pbi[1] [x, t, u[x, t]]}]1

fir.tBxtenaion II LieTraditionaJ.Fo~

The result represents the general formula for the first extension with respect to t. This
sort of expression is tabulated in the book of Bluman and Cole [1974] and is now
available to any order or number of variables. The general expression of the second
prolongation with respect to x follows from

aecondBKten.ion = FrechetProJ.ong[{"<X.2) u[x, t]},

{u}, {x, t},
{xi[1] [x, t, u[x, t]], xi[2] [x, t, u[x, t]]},

{phi [1] [x, t, u[x, t]]}];

aeco:o.dExte:o.aion II LieTraditio:o.aJ.Fo~

{-2ux (';2)uUx,t -2 (';2)xUx,t -3ux (';lluux,x-

2 (';l)xUx,x-Ut (';2)uUx,x+ (C/h)uux,x-u; (';l)u,u-

2 U~ (';1)x,u - Ux (';1)x,x - Ut U~ (';2)u,u - 2 Ut Ux (';2)x,u -

Ut (';2) x,x + U~ (<P1) U,u + 2 Ux (<P1) X,u + (<P1) x,x}

Comparing the results with expressions given in Bluman and Cole [1974], it is
obvious that the formulas are identical. The reader may calculate, for example, the
fifth expansion coefficient related to terms ux,x,t,t,t.

Application of the Theory 229

The function FrechetProlong[] is also capable of calculating the prolongation of a
general expression containing derivatives. Let us demonstrate this behavior by
examining the general partial differential equation of second order given by the
relation

The left-hand side of this general second-order equation in Mathematica reads

{F[x, t, u[x, t], Ull,O) [x, t], UIO,l) [x, t], U I2 ,O) [x, t] J}

The prolongation formula for this general PDE of second-order follows from

PrintDf [FrechetProlong [pde2, {u} I {XI t} I

{xi [1] [x, t, U [XI t]] I xi [2] [XI t, U [XI t]]} I

{phi [1] [x, t, U[XI t]]}] II LieTraditionalForm]

{Fx {l + F t {2 + Fu ¢l - FUt Ux ({l) t - FUt U t Ux ({l) u - Fux u~ ({l) u -

Fux Ux ({l) x - F ut u t ({2) t - Fut u~ ({2) u - Fux u t Ux ({2) u -

Fux U t ({2)x +Fut (¢l)t +Fut u t (¢l)u +Fux U x (¢d u +Fux (¢l)x-

2 Fux,x Ux ({2) u Ux,t - 2 Fux,x ({2) x Ux,t - 3 Fux,x Ux ({l) u ux,x -

2Fux,x ({l)x ux,x -Fux,x U t ({2)u ux,x + Fux,x (¢l)u Ux,x-

Fux,x u~ ({l)u,u - 2Fux,x u~ ({l)x,u -Fux,x U x ({l)x,x-

Fux,x U t u~ ({2)u,u -2 Fux,x U t Ux ({2)x,u -Fux,x U t ({2)x,x +

Fux,x u~ (¢l) u,u + 2 Fux,x U x (¢l) x,U + Fux,x (¢l) x,x}

(5.21)

The result of this calculation was converted to a more readable form in index notation
by the function LieTraditionaIForm[]. This function reduces the standard
Mathematica output to a shorter representation by deleting the arguments of any
derivative and using the variables of differentiation as an index. The expressions free
of any derivatives remain unchanged.

So far, we discussed some applications of the functions Prolongation[] and

FrechetProlong[], allowing us to derive the prolongation of a differential equation. As
we know from the theoretical considerations, the prolongation of a differential
equation is the basis for the derivation of determining equations. In the following
section, we will discuss a function of MathLie which is instrumental in the derivation
of determining equations.

5.4.2 Derivation of Determining Equations

Determining equations for infinitesimals are the result of invariance condition (5.10).
The package MathLie provides a function allowing us to derive determining

230 Point Symmetries of Partial Differential Equations

equations for a given system of differential equations. The name of the function is

DeterminingEquations[]. The on-line description of the function

:Information ["DeterminingEquations", LongPorm False]

DeterminingEquations[equations_List, dependvar_List,
independvar_List,substitutionTerms_List,parameters_List:
{}] calculates the determining equations for a given

system of equations. The function uses the Frechet
derivative to calculate the prolongation.

tells us that we need five input arguments. The first argument contains the left-hand
side of the equation a = O. The second and third arguments are lists for the dependent
and independent variables. The fourth list contains terms for which the equation a =
o is solved. The solutions with respect to these terms are used as side conditions in
the invariance relation (5.10). If the equations under examination contain parameters,
we can feed in these symbols in the last list. This list can be suppressed if no
parameters are contained in the PDE. The function DeterminingEquations[] uses the

function FrechetProlong[] to calculate the kth prolongation of the equations. After the
calculation of the prolongation, the side conditions are applied to the result of the

function FrechetProlong[]. This step reduces the redundant information in the
manifold of the equation. Upon application of the side conditions, the determining
equations are extracted as coefficients of the derivatives of the dependent variables.
Since the infinitesimals themselves are independent of derivatives, we find the
determining equations as a set of coupled PDEs.

Application of the function DeterminingEquations[] is demonstrated by the heat
equation. The determining equations of the infinitesimals for the heat equation follow
from

detheat = DeterminiDg'Bqu.ations [heat, {u}, {x, t},

{at tJ}] ; detheat II L'l'F

(td u == 0

(t2)u == 0

(¢l)u,u == 0

(t2)x==O

-(tl)t + (tdx,x -2 (¢ilx,u == 0

(¢d t - (¢ilx,x == 0

2 (td x - (t2)t == 0

The result of this calculation detheat consists of a list containing the left-hand sides
of the seven determining equations. We transformed these expressions to a system of
equations by LTF[] adding zero to the right-hand side, and the result is displayed in a

Application of the Theory 231

table. The seven equations contain the unknown functions tl, t2, and fIJI' The
function DeterminingEquations[] automatically implants these names for the

infinitesimals. The unknown functions tl' t2' and fIJI depend on the independent
variables x and t and on the dependent variable u. The symmetries of the heat
equation are determined by this set of equations.

Taking a closer look at these equations, we realize that they are linear but coupled.
However, the main observation is that they are linear. Linearity of the equations is a
general feature of the determining equations for point symmetries. This feature is of
great advantage in solving the equations. Another general property of the determining
equations is that this set of equations is always overdetermined. This means that, in
general, there exist more equations than unknown functions. This fact helps a lot in
the derivation of the solution.

In the present case of the heat equation, we find seven equations for three unknowns
tl' t2' and fIJI' Another example demonstrating these two general properties again is
the general second-order partial differential equation

Clear [I']

gheat = {at U + F [a{x.21 U] }; gheat II LTI'

F + Ut == 0

representing one of many generalizations of the heat equation. If we apply the
function DeterminingEquations[] to this equation, we find

detgheat = DeterminingEquations [gheat , {u} I {x, t} I {at U}];

detgheat II LTI'

(~1l u == 0

(~2) u == 0

(ct>l)u,u == 0

(ct>1l t == 0

(~l)t == 0

(~2) x == 0

(ct>l)x,x == 0

- (~llx,x +2 (ct>ll x,u == 0

- 2 (~1) x + (ct>1l u = = 0

(~2)t - (ct>ll u == 0

Looking at this system of 10 equations, we recognize the same 2 properties as in the
example for the heat equation linearity and a larger number of equations than
unknown functions. The equations are linear in the infinitesimals independent of the
form of general function P, and they are overdetermined. This general behavior does

232 Point Symmetries of Partial Differential Equations

not change if we examine non-linear equations like the Burgers equation or the
Harry-Dym equation. The detennining equations for these two models follow by

DeterminingEquations [{burgers [1] }, {u}, {x, t}, {CIt U}] I I LTF

(';d u == 0

(';2) u == 0

(¢d u.u == 0

(';2)x==O

¢l - (';d t -u (';d x +u (';2)t + (';d x.x -2 (¢d x.u == 0

(¢l)t +u (¢l)x - (¢l)x.x == 0

2 (';d x - (';2)t == 0

which are six determining equations in the case of the Burgers equation

DeterminingEquations[harryDym, {u}, {x, t}, {CltU}, {A}] II LTF

(';d u == 0

(';2)u==O

(¢l)u.u==O

(';2) x == 0

- (';1) t + U 3 A (';1) x. x. x - 3 u 3 A (¢l) x. x. u = = 0

(¢d t - u 3 A (¢d x.x.x == 0

- (';d x.x + (¢d x.u == 0

3 ¢l - 3 u (';1) x + u (';2) t = = 0

and eight determining equations for the Harry-Dym equation. Since the Harry-Dym
equation contains a parameter ,:t, we have to tell the function DeterminingEquations[]
that A is a variable in the equation which does not depend on the independent
variables. The last argument of the function DeterminingEquations[] contains this
information.

Up to now, we discussed equations containing only a single dependent variable. The
following example examines a system of two equations. The physical background of
these equations is the flow in a polytropic gas. Following Ibragimov [1985], we can
write down the equations of motion for polytropic gas in two spatial dimensions and
one temporal dimension. In polar coordinates, the radial and angular velocity fields
are

Vr = vr[r, B, t];

VB = v6[r, B, t];

The depth h of the fluid above a flat bottom is given by

H = h [r, B, t];

Application of the Theory 233

The equations of motion for this fluid are given by

ve o"Vr
poly = {Ot Vr + Vr Or Vr + + Or H,

r

veo"ve o"H
Ot ve + Vr Or ve + + --,

r r
ve 0" H (Or (Vr r) 08 ve)

Ot H + Vr Or H + + H + -r- }; poly I I LTF
r r

Va (vr)a
hr + Vr (Vr) r + (Vr) t + r == 0

he Va (Va) a r + Vr (va) r + (va) t + r == 0

h h ha Ve h (Vr + r (vr) r (va) e) == 0
t + r Vr + -r- + r + --r-

This system consists of three equations for the dependent variables vr, vB, and h. The
independent variables are the radius r and the angle B. The determining equations for
the polytropic gas follow by specifying the knowledge on all the variables and the
equations in the function DeterminingEquations[]. The equations do not depend on a
parameter, so the parameter list is empty.

DeterminingBquations[poly,
{vr, ve, b}, {r, e, t}, {OtVr, Otve, OtH}, 0] II

LTF

(';d h == 0

(';2) h == 0

(.; 3) h == 0

($3) ve == 0

(';d ve == 0

(';2) ve == 0

(';3)ve == 0

($3) Vr == 0

(';d Vr == 0

(';2) Vr == 0

(';3)Vr == 0

- Ve ';1 + r $2 - r2 V r (';2) r - r2 (';2) t - r Ve (';2) e +

r Vr Va (';3) r + r Va (';3) t + h (';3) a + V~ (';3) e + h r ($2) h ==
o

234 Point Symmetries of Partial Differential Equations

-Ve;l +r<l>2 _r2 Vr (;2)r _r2 (;2)t -rVe (;2)e +

rVrVe (;3)r+ rVe (;3)t+h(;3)e+V~ (;3)e- hr (<I>2)h==
o

-Ve ;1 + r <1>2 - r2 Vr (;2) r - r2 (;2) t -

rVe (;2)e+rVrVe (;3)r+ rVe (;3)t+~ (;3)e==
o

-r (;2)r +Ve (;3)r + (<I>2)Vr == 0

r (;2)r -Ve (;3)r + (<I>d ve == 0

-h Vr ;1 + h r <1>1 + r Vr cf>3 + h r v: (;3) r +
hrvr (;3)t +hvr Ve (;3)e +hr2 (cf>d r +hr (cf>2)e­

hrvr (cf>3)h +r2 Vr (cf>3)r +r2 (cf>3)t +rVe (cf>3)e ==
o

rcf>l -rVr (;d r -r (;d t -Ve (;d e +hr (;3)r +

r~ (;3)r+rVr (;3)t+VrVe (;3)e+hr(cf>tlh==
o

rcf>l- rVr (;tlr-r(;l)t-Ve (;tl e + hr (;3)r+
r~ (;3)r +rVr (;3)t +Vr Ve (;3)e -hr (cf>tl h ==

o

rcf>l -rVr (;d r -r (;d t -

Ve (;1) e + r v: (;3) r + r Vr (;3) t + Vr Ve (;3) e ==
o

rcf>3 -hr (;tl r +2hrvr (;3)r +

h r (;3) t + h Ve (;3) e + h r (cf>d vr - h r (cf>3) h = =

o

hVr (;3)r -hvr (cf>tl h +rVr (cf>d r +r (cf>d t +Ve (cf>l)e +r (cf>3)r == 0

-h;l + r cf>3 - h r (;2) e + h r Vr (;3) r +

h r (;3) t + 2 h ve (;3) e + h r (cf>2) ve - h r (cf>3) h ==

o
-r (;1) r + 2 r Vr (;3) r + r (;3) t + Ve (;3) e - r (cf>1) Vr + r (cf>3) h == 0

-;1- r (;2)e+
rVr (;3)r +r (;3)t + 2ve (;3)e -r (cf>2)ve +r (cf>3)h ==

o
-(;3)r + (cf>d h == 0

h v r (;3) e - h r v r (cf>2) h +
r2 Vr (cf>2)r +r2 (cf>2)t +rVe (cf>2)e +r (cf>3)e ==

o
-(;de+vr (;3)e+ r (cf>d ve ==0

(;de-vr (;3)e+ r (cf>2)vr ==0

- (;3) e + r (cf>2) h == 0

Application of the Theory 235

The resulting 29 equations are again linear. The symmetries of polytropic gas follow
by solving this set of overdetennined equations. For polytropic gas equations, we not
only have to provide three dependent variables but also three terms in the list for the
substitutions. Compared with the examples discussed above, the typing is a little bit
tedious, but the gain of the calculation is greater than this little hazel. To simplify the
input of the information MathLie provides a template for the function

DeterminingEquations[] which looks like VetEq~·.~ [a] . This operator has the same

functionality as function DeterminingEquations[] itself. In fact it derives the

detennining equations using the function DetenniningEquations[]. The following
example shows the location of the input variables for the Harry-Dym equation.

detHarryDym. = !DetEq{"tU},{A} [harryDym] ; detHarryDym. / / LTF
{u}, {x,t}

(';,)u == 0

(';2)u == 0

(ch)u.u==O

(';2)x==O

- (';,) t + u 3 .A (';,) X,X,x - 3 u 3 .A (eP,) X,X,u == 0

(eP') t - u 3 .A (eP') X,X,x == 0

- U;,)x,x + (eP1)x,u == 0

3 eP1 - 3 u (';,) x + u (';2) t == 0

So far, we have been able to calculate the detennining equations for a given system
of partial differential equations, The question arises of how to solve these equations.
The following section will discuss an interactive procedure to construct solutions for
the detennining equations, In Chapter 10, we will discuss procedures allowing the
automatic solution of the determining equations.

5.4.3 Interactive Solution of Determining Equations

In the above discussions, we found a lot of equations detennining the infinitesimal
transformations of the different models. We realized that a common property of all
these systems of equations was their linearity. Since detennining equations are linear,
contrary to the equations we started from (compare with the Burgers or Harry-Dym
equations), we expect that the linear equations can be solved more easily. How to
tackle this problem interactively by MathLie is the content of this section. We will
show you a way which is similar to the automatic procedure of solving equations.

Let us demonstrate the interactive solution steps for the heat equation. The seven
determining equations for the heat equation are

236 Point Symmetries of Partial Differential Equations

detheat / / LTI'

(~du == 0

(~2)u==O

(4)l)u,u==O

(~2) x == 0

- (~dt + (~dx,x - 2 (4)d x,u == 0

(4)1) t - (4)l)x,x == 0

2 (~dx - (~2)t == 0

Before discussing the solution of these equations, let us introduce some
simplification, During the solution steps of these equations, the variables x, t, and u
are taking the role of independent variables, Taking this behavior into account in our
calculations, we can remove the dependencies in u, In Mathematica, we just replace
the dependent variable by the variable itself:

detheat = detheat / • u [x, t] -+ u

{xi [1 J (0, 0,1! [x, t, u J , xi [2 J (0, 0,1! [x, t, u J ' phi [1 J (0, 0,2! [x, t, u J ,

xi [2 J (1, 0, O! [x, t, u J, - xi [1 J (0,1, 0) [x, t, u J -

2 phi [lJ (1,0,1) [x, t, uJ + xi [lJ (2,0,0) [x, t, u] ,

phi [lJ (0,1,0) [x, t, uJ -phi [1] (2,0,0) [x, t, uJ,

- xi [2] (0,1, 0) [x, t, u J + 2 xi [1 J (1, 0, 0) [x, t, u] }

This simplifies a little the representation of the equations but does not solve them, If
we look at the first four equations, we observe that the infinitesimals ~1 , ~2' and cfJ!

are reduced to special presolutions resulting especially from single terms, For
example, the first two equations state that the infinitesimals for the independent
variables are independent of the dependent variable u, The fourth equation says that,
in addition, ~2 is independent of x, The third equation in the list detheat suggests that
the infinitesimal cfJ! is linear in u, All this information can be collected in rules
allowing us to simplify the detennining equations:

infinil = {xi[l] -+Function[{x, t, u}, xi[l] [x, t]],

xi [2] -+ Function [{x, t, u}, xi [2] [t]] ,

phi [1] -+ l'unction[{x, t, u}, fl [x, t] u + f2 [x, t]]}

{xi[l] ~Function[{x, t, u}, xi[lJ [x, tJJ,

xi[2J ~Function[{x, t, u}, xi[2J [t]J,

phi[l] ~Function[{x, t, u}, f1[x, tJ u+f2[x, t]]}

where fl and j2 are two arbitrary functions depending on x and t, Inserting this
primal representation of the infinitesimals into the determining equations, we end up
with the following system:

Application oj the Theory 237

detheatl = detheat /. infinil; detheatl / / LTF

True
True
True
True
-2 flx - (';d t + (';dx,x == 0

u fl t + f2 t - u flx,x - f2 x,x == 0

2 (';d x - (';2) t = = 0

The seven equations reduce to three equations for the unknown functions ql, qZ, Jl,
andj2. Considering the last equation of this set by differentiating with respect to x,

Ox Last [detheatl] / / LTF

we realize that a single tenn remains. This term defines a partial differential equation
of second order for ql. The solution of this equation is given by a linear function in x.
Thus, we define

infini2 = {xi[l] -+Function[{x. t}. gl[t] x+g2[t]]}

{xi[l]-7Function[(x. t}. gl[t] x+g2[t]]}

Inserting this partial solution again into the reduced determining equations detheatl,
we can simplify the determining equations a second time. The resulting equations
read

detheat2 = detheatl /. infini2; detheat2 / / LTl!'

True
True
True
True
-2 flx -xgl t -g2 t == 0

u fl t + f2 t - u flx,x - f2 x ,x == 0

2 gl - (';2) t == 0

An integration of the fifth element of the list detheat2 with respect to x gives us

integ = J detheat2 [5] dlx - g3 [t] ; integ / / LTl!'

meaning that functionJl can be expressed by

238 Point Symmetries of Partial Differential Equations

sol =Platten[Solve[integ== 0, f1[x, t]] I. f1[x, t] w]

{w~ ~ (-2g3[t]-x2 gi'[t]-2xg2'[t])}

which is converted in a pure function by

infini3 = f1 l'unction[{x, t}, w] I. sol

f1~Function[{x, t}, ~ (-2g3[t] -x2 gi'[t] -2xg2'[t])]

Inserting the result again in the reduced set of determining equations, we find

4etheat3 = Simplify[4etheat2 I. infini3] I 4eth.at3 II L'l'P

True
True
True
True
True

u git 1
f2 t + --2- - f2 x,x - 4 u (2 g3 t + x (x git,t + 2 g2 t ,t)) == °
2 gl - (~2) t == °

Apart from xi[2], the equations contain only relations for the auxiliary functions gl,
g2, g3, andj2. Extracting the coefficients of u, u x, and u x2, we get the following set
of equations:

equat='l'able[Coefficient[detheat3, UX!], {i, 2,1, -1}];

equat II Lie'l'ra4itionalPo:rm

{ { git t } { g2 t t } } 0, 0,0, 0, 0, ---r' 0, 0,0, 0, 0, 0, -~, °
Append'l'o[equat, Coefficient [4etheat3 I. x -+ 0, u]];

Append'l'o [equat, (detheat3 I. u 0) [6]] ;

equat II Lie'l'ra4itionalPo:rm

{ { git t } { g2 t t } 0, 0, 0, 0, 0, ---r' 0, 0,0, 0, 0, 0, -~, ° ,
{ git g3 t } } 0,0,0,0,0, -2---2-' 0, f2 t -f2x,x

h1 = DeleteCase. [Platten [equat] , 0]; h111 L'l'P

_ git.t == °
4

g2
- -----t-"- = = °
~-~==o

2 2
f2 t - f2 x ,x == °

Application of the Theory 239

The final set of detennining equations is solved step by step using the function
DSolveO. By renaming the constants of integration, we prevent misinterpretations of
the group parameters. Function g I follows from the first equation of the set hI by

81=DSolve[hl[1] ==0, gl, t] /. {C[l] ... kl, C[2] ... k2}

{{gl..., (k1 +k2 #1&)}}

The second auxiliary function g2 is

82 = DSolve [hl[2] == 0, g2, t] /. {C [1] ... k3, C [2] ... k4}

{{g2..., (k3+k4#1&)}}

The last of the auxiliary functions g3 reads

83 = DSolve[hl[3] == 0/. 81, g3, t] /. {C[l] ... kS}

{{g3..., (k5+k2#1&)}}

Knowing the representations of functions gI, g2, and g3, we can integrate the
remaining equation of the detennining system

84 = DSolve[(La8t[detheat3] /.81)[1] == 0, xi[2], t] /.

C[l] ... k6

{{xi[2]..., (k6+2k1#1+k2U2 &)}}

Knowledge of the auxiliary functions allows us to write down the solutions for the
infinitesimals:

in:Hnite8i_18 = rlattan[{xi [1] [x, t, u] ,

xi [2] [x, t, u], phi [1] [x, t, u] } /. infinil / •

infini2 /. infini3 /. 81 /. 82 /. 83 /. 84]

{k3 + k4 t + (k1 + k2 t) x, k6 + 2 k1 t + k2 t 2 ,

1 "4 u (-2 (k5 + k2 t) - 2 k4 x - k2 x 2) + f2 [x, t]}

The result shows that the infinitesimals depend on six parameters kI-k6, which are
the group parameters of the symmetry group. In addition to these six parameters, the
infinitesimals contain the auxiliary function 12 which satisfies the heat equation. The
heat equation remains as a last condition in variable hI. The symmetry represented
by 12 is related to an infinite dimensional group. This infinite dimensional group is
characteristic for linear partial differential equations. The subgroups detennined by
one of the parameters kI-k6 are related to translations, scalings, and Galilean boosts.

240 Point Symmetries of Partial Differential Equations

We demonstrated by the above calculation how the linear coupled system of partial
differential equations is solved by using simple integration steps. The package
MathLie offers a function to carry out all these simple steps in one shot. The name of
the related MathLie function is Infinitesimals[]. This function allows the automatic
derivation of the infinitesimal transformations. The shorthand description of the
function shows us the information needed to carry out the calculation:

XDfozmation [ftXDfiDite.imal.-, LoDgForm ~ Fal.e]

Infinitesimals[equations_,

dependentVariables_, independentVariables_,parameters_,

options ___] The function Infinitesimals calculates the

point symmetries of a given system of equations.

The results of the calculation are not saved in a

file. They are available in a pure function representation.

The application of this function to the heat equation reads

XDfiDitesimals [heat, {u}, {x, t}, {}]

{{xi[l] ~Function[{x, t, u}, kS-2k2t+k6x+k4tx], xi[2] ~

Function [{x, t, u}, k3 + t (2 k6 + k4 t)] , phi [1] ~ Function [

(k4 t k4 x 2) {x, t, u}, u k1- -2-- + k2 x - --4-- + free [1] [x, t]]},

{-free[l] (0.1) [x, t] + free[l] (2,0) [x, t]}}

The result of the function Infinitesimals[] consists of a nested list. The first part of the
list contains the infinitesimals; the second, a list of remaining equations. The
remaining equations of the second part are equations which are not solved by the
MathLie package. The function free[l] occurring in the remaining equation is also
part of the infinitesimals. This result has to be expected since the original equation is
a linear equation which has to satisfy the superposition principle reflected by the
occurrence of the auxiliary function free[l]. The first list of the result circumscribes
the infinitesimals in a pure function representation. This cast allows direct
substitution of the infinitesimals into any equation containing the infinitesimals or
their derivatives. The result found for the heat equation represents a six-dimensional
finite group which is isomorphic to the finite group derived by our manual
calculations.

Having the function Infinitesimals[] available, we are able to determine the point
symmetries of the other equations discussed above. For example, the Harry-Dym
equation allows the symmetries

Application of the Theory 241

symharryDym = J:nfinitesi_ls [

atu[x, t] -Au[x, t]3 ax.x.xu[x, t] == 0, {u}, {x, t}, {A}]

{xi[1] ~Function[{x. t. u}. k3+x (k4+k5x)].

xi [2] ~ Function [{x. t. u}. k1 + k2 t].

phi[1] ~Function[{x. t. u}. u (_ ~2 +k4+2k5x)1}

The result shows that the Harry-Dym equation allows a five-dimensional finite group
independent of the parameter A. Group parameters k3 and kl represent the invariance
of the Harry-Dym equation with respect to translations. The scaling symmetries are
determined by the parameters k4 and k2. The remaining parameter, k5, represents a
non-standard conformal transformation.

Another example for a calculation of point symmetries is given by the
two-dimensional polytropic gas discussed above. The symmetries follow by

sympoly= J:nfinitesi_ls[poly, {vr, ve, h}, {r, e, t}]

{xi[1] ~Function[{r. e. t. Yr. ve. h}, (k2+k3) rJ,

xi[2] ~Function[{r. e. t. Yr. ve. h}, -k4].

xi [3] ~ Function [{r. e. t. Yr. ve. h}. kl + k2 t] •

phi [3] ~ Function[{r. e. t. Yr. ve. h}. 2 h k3] •

phi [1] ~ Function[{r. e. t. Yr. ve. h} • k3 vr] •

phi [2] ~ Function [{r. e. t. Yr. ve. h}, k3 vel }

The resulting point symmetries are given by a four-dimensional group. The
symmetry transformations are translations in the time coordinate and the angular
direction. The related group parameters are kl and k4. In addition to the translations,
the polytropic gas enables a scaling of the radial and temporal coordinate denoted by
k2. Group parameter k3 represents a special type of scaling.

The function Infinitesimals[] can not only explicitly treat given equations but is also
capable of analyzing equations of a general form, like

(5.22)

where F is an arbitrary function depending on a set of independent variables x and a
set of dependent variables u. An example of such an equation for one dependent and
two independent variables is given by the general second-order equation

geneq = {at U - F [x, u, ax u, a x•x U]}

{-F[x. u[x. t]. Ull,O) [x. t]. U(2,O) [x. t]] +UIO,l) [x. t]}

The corresponding infinitesimals for this type of equation follow by

242 Point Symmetries of Partial Differential Equations

symgeneq = l:nfinitesi_ls[geneq, {u}, {x, t}]

{phi[l]--+Function[{x, t, u}, 0], xi[l]--+Function[{x, t, u}, 0],

xi[2] --+ Function[{x, t, uL kl]}

representing a one-dimensional symmetry group. Parameter kl characterizes the
translations under which the general evolution equation is invariant. Let us now
specify the auxiliary function F in a more explicit form. For example, let us assume
that F is replaced by a function f independent of u and x. We further assume that the
second derivative in u with respect to x is created by a derivative of f with respect to
x. Taking into account all these assumptions, we end up with an expression for a
general nonlinear diffusion equation:

geneqe = {"t U - "x f ["x U] }; geneqe / / LTr

The symmetries of this general non-linear diffusion equation are

symgeneqe = l:nfinitesi_ls [geneqe, {u}, {x, t}]

{xi[l] --+ Function [{x, t, uL k2 + k~X l,
xi [2] --+ Function [{x, t, u}, k3 + k4 t],

phi[l]--+Function[{x, t, uL k1+ k~U]}

The four group parameters kl, k2, k3, and k4 represent the translation and scaling
symmetries of the equation. If we further assume that f is given by a power of the
derivatives ux , we get the equation

geneqe = {"t U - "x ("x U) ~ }; geneqe / / LTP

where J.l is a real parameter. The infinitesimals of this non-linear heat equation read

symgeneqe = l:nfinites~ls [geneqe, {u}, {x, t}, {II}]

{xi[l]--+Function[{x, t, u}, k4+kSx],

xi[2]--+Function[{x, t, u}, kl+t (-k3 (-1+/1) +kS (1+/1»],

phi [1] --+ Function [{x, t, uL k2 + k3 u] }

The five-dimensional group contains translations and scaling symmetries. In addition
the symmetry group depends on the parameter J.l.

The function Infinitesimals[] is also available in a shorthimd operator notation. The

related operator template is 'P~.Ad]. As input quantities, this operator needs the

Application of the Theory 243

independent and dependent variables, the equations, and the parameters. The example
of the Harry-Dym equation reduces to

psl~L {x.tj [harryDym]

{xi[l] ~Function[{x, t. u}, k3+x (k4+k5x)],

xi[2] ~Function[{x, t, u}, k1+k2t],

phi [1] ~ Function [{x, t, u}, u (- ~2 + k4 + 2 k5 x) l}

5.4.4 Data Basis of Symmetries

The package MathLie offers a few functions allowing the creation of a database for
differential equations. The database consists of different files containing information
on the specific equation. Each file stores information on the equation itself and
results gained by the application of different functions. The merits of such a database
are the consecutive collection of information on symmetries, on algebraic properties,
on transformation properties, and on solutions for the equation under consideration.
Since the information is stored on disk, it can always be retrieved from there.

The basic element of the database is a file containing information on each individual
equation. Such a file is created by the function LieEquations[]. The file contains
information on the independent and dependent variables of the equation and the
equation itself. It also contains information on possible parameters of the equation.
Also included in the file are the expressions for which the equations are solved and
applied as side conditions in the determining equations. After the solution of the
determining equations, the file contains information on the infinitesimals.
Sometimes, it is helpful to have the source or name of an equation available. This
information is contained in two different global variables called Title and Source. The
entire information needed to carry out a symmetry analysis can be created by exerting
the function LieEquationsO. An example will show us how to facilitate this function.

Example 1

Let us again discuss the heat equation. The first step in adding information to the
database is the creation of the related file. For the heat equation, we create the file
heat.dgl. The function LieEquations[] will do the necessary job:

LieBClUatioD8["heat.dgl". {Btu[x. t] -dB{x,2jU[X. t]}.

{u}. {x. t}. {d}. {"Heat eClUation"}.

{{"G. Baumann"}. {"Ulm 1997"}}]

244 Point Symmetries of Partial Differential Equations

The file with the name heat.dgl is created by this function in the current directory.
The file contains the equation, which is given as second argument in a list. The third
and fourth arguments of LieEquations[] are lists containing the dependent and
independent variables. The fifth argument is a list containing the parameters of the
equation-in our example the diffusion constant d. The sixth and seventh arguments
of LieEquations[] are lists containing strings. The sixth list carries the name of the
equation, here Heat equation, and the seventh list consists of sublists specifying for
example the source of the equation. The file created by LieEquations[] contains this
information and more. We can print the contents of the file by

I ! heat. dgl

Title = {-aeat equational
Source = {{nG. Baum&DDn }, {nUlm 1997 n}}
ZndepVar = {x, t}
DepeDdVar = {u}
BqLiBt = {Derivative[O, 1] [u] [x, t] -

d*Derivative[2, 0] [u] [x, t]}
SubsList = {Derivative [0, 1] [u] [x, t]}
ParameterS = {d}
ListXi = {}
ListPhi = {}

The above printout shows that the file contains variables like Title, Source, IndepVar,

DependVar, EqList, SubsList, ParameterS, ListXi, and ListPhi. These variables are
global variables in MathLie and are used extensively in the package. Be sure not to
use these names in your calculations. If you set up this file, it provides you with the
information needed in symmetry calculations. For example, if you have to derive the
determining equations for the heat equation, you can use the function LieD of the
package MathLie. The function Lie[] delivers in its simpler applications, results
similar to those obtained by the program of Champagne et al. [1991].

The function Lie[] needs one argument and a set of options. The options of Lie[]
influence the properties of this function.

Let us calculate the determining equations for the heat equation. We start the
calculation simply by

detheat = Lie [nhaat.dgln] ; datheat II LTP

(';l)u == 0

(';2)u==O

(<Pdu.u==O

(';2)x==O

- (c;d t + d (c;dx,x - 2 d (cPdx,u == 0

(cPd t - d (cPdx,x == 0

-2 (c;d x + (c;2)t == 0

Application of the Theory 245

Function Lie[] calculates the prolongation of the equation using the Frechet
derivative. After extraction of coefficients and a simplification of these equations, the
function returns the determining equations collected in a list. This list can be used to
manipulate the equations. For example, you can manually solve them as discussed in
Section 5.4.3. As mentioned above, the behavior of the function Lie[] is controlled by

different options. One of these options is called ScreenPrint which is set to False by
default and thus suppresses all printing. If we want to see how the calculation
proceeds, we can set the option TraceSteps~True, which is another option of Lie[].
These two options are helpful in checking the calculation if one is curious about the
steps operated by Lie[]. The options also help in locating some errors that occurred
during the calculation. The silent calculation done for the heat equation then looks
like

Lie [nheat .dgl-, TraceSteps -+ True, ScreenPrint -+ True]

+--+

Welcome to MathLie~

for the calculation of the symmetry group

by G. Baumann, © 1992 - 1999
+--+

Loading previous calculations
of the determining equations from HEAT.DEQ

Loading data from HEAT.DGL

Title of the equations:

Heat equation
Source of the equations:

G. Baumann
Ulm 1997
Equations of motion:

Equation No. 1

u t - d ux,x == 0

Substitution No. 1

We are using all the equation(s) checking the infinitesimals

of the given system consisting of 1 equation(s) in total.

246 Point Symmetries of Partial Differential Equations

We find 7 determining equations after simplification.

A list of the determining equations follows.

Equation No. : 1

Equation No. : 2

(xi (2) l u == 0

Equation No. : 3

(phi [1) l == 0
U,u

Equation No. : 4

Equation No. : 5

-2d (phi[l)lx,u - (xi[l)lt +d (xi[l)lx,x == 0

Equation No. : 6

(phi [1) l t - d (phi [1) l X,x == 0

Equation No. : 7

- 2 (xi [1) l x + (xi (2) l t = = 0

We

have to treat 7 determining equations after simplification.

Results are collected in the list FinalResult.

{xi [1) (0,0,1) [x, t, u) ,

xi (2) (0,0,1) [x, t, u [x, t)), phi [1) (0,0,2) [x, t, u [x, t)),

xi (2) (1,0,0) [x, t, u [x, t)), -xi [1) (0,1,0) [x, t, u[x, t)) -

2dphi[l)(l,O,l) [x, t, u[x, t)) +dxi[l)(2,O,O) [x, t, u[x, t)),

phi[l) (0,1,0) [x, t, u[x, t))_dphi[l)(2,O,O) [x, t, u[x, t)),

xi(2)(O,l,O) [x, t, u[x, t))_2xi[l)(l,O,O) [x, t, u[x, t))}

The results of the calculation are again the determining equations. If you look at the
beginning of the calculation, you will realize that Lie[] opens a file called heat.deq

containing the determining equations. This file was created by Lie[] at the end of the

Application of the Theory 247

first run for the specific equation. The file contains the complete set of determining
equations, thus keeping information on one equation in two different files. The first
file with extension .dgl contains the essential information on the equation itself. The
second file with extension .deq is used as source of derived information for the

determining equations. Whenever you call Lie[] or derivatives of the function Lie[]
be aware that both files contain information on the same equation. 0

Let us now solve the determining equations. This can be done by using the function

LieSolve[]. This function allows the solution of the determining equations by

exerting the same procedures as the function Infinitesimals[]. The difference is that
the information gained is saved in the file currently opened. In the case of the heat
equation, we get

solheat = LieSol ve ["heat. dgl n]

{{xi[l]-->Function[{x, t, uL kS-2dk2t+k6x+k4txJ, xi[2]-->

Function[{x, t, ul, k3+t (2k6+k4t)], phi[l]-->Function[

(k4 t k4 x 2) {x, t, u}, u kl--2-+k2x-~ +free[l] [x, t]]},

{ _ free[l] (0,11 [x, t] f [1] (2,01 [
d + ree x, tJ) }

The result of this calculation is a list containing the infinitesimals and the remaining
equations. The remaining equations are usually not solvable by the procedures used
by LieSolve[]. If we look at the first part of this list, we realize that the infinitesimals

xi[1], xi[2], and phil 1] for the heat equation are given in a pure function
representation. This representation allows us to use the results for the infinitesimals
in further calculations. The second part of the resulting list contains the unsolved
equations, which in the present case is given by the original equation. We have to
expect that the arbitrary function freer 1] must satisfy the heat equation since we
analyzed a linear partial differential equation. As noted, the function LieSolve[] saves

the derived infinitesimals in the file heat.dgl. The information on the structure of the

infinitesimals is contained in the lists ListXi and ListPhi. We can check the contents

of heat.dgl again by

! ! heat. dgl

Title = {Heat equation}

Source = {{G. Baumann}, CUlm 1997}}

IndepVar = {x, t}

DependVar = {u}

EqList =

{Derivative [0, 1] [u] [x, t] - d*Derivative[2, 0] [u] [x, t] l
SubsList = {Derivative [0, 1] [u] [x, t]}

ParameterS = Cd}

248 Point Symmetries of Partial Differential Equations

ListXi = {}
ListPhi = {}
ListXi =

{k5 - 2*d*k2*t + k6*x + k4*t*x, k3 + t* (2*k6 + k4*t)}

ListPhi = {(k1 - (k4*t) /2 + k2*x - (k4*x A 2) / (4*d)) *

u [x, t) + free [1) [x, t)}

ListEquations =
{- (Derivative [0, 1) [free [1)) [x, t) / d) +

Derivative [2, 0) [free[l)) [x, t)}

In addition to the two augmented lists ListXi and ListPhi, the file contains a new

variable ListEquations storing the unsolved equations. Mter the application of Lie[]

and LieSolve[] to the heat equation, we created an infonnation basis on the
symmetries of the equation. The symmetries of the heat equation are presented by
constants kl to k6 and by the arbitrary function Jree[l]. We can independently check
the gained infonnation to verify the invariance of the heat equation. Again, we apply
function Lie[] in connection with the option Info.-?True. The application of Lie[] to
heat.dgl in connection with the option Info.-?True gives us

Lie ["heat. dgl" I :Info -+ True] / / LTF

The function Lie[] takes the infonnation on the infinitesimals and carries out the
calculation of a symmetry analysis. In the last step of the calculation, the
infinitesimals are inserted into the detennining equations. The result shows that the
original equation must be satisfied by the arbitrary function r.. = free[1]. It is
essential for this example that the check reproduces the heat equation; otherwise,
there would exist an error in the calculation. We note that for other equations the
result may be an empty list, especially if the equation is a non-linear one. We also
note that the check of the results is completely independent of the solution procedure
used by LieSolve[]. Thus, we have an independent tool allowing us to examine the

results of LieSolve[].

Example 2

Let us demonstrate the whole procedure of deriving the symmetries for another
example. Closely related to the heat equation is the so-called non-linear filtration
equation (lbragimov [1994]). The equation of motion is given for a field u = u(x, t)

by

(5.23)

where k(ux) is an arbitrary function of Ux . In Mathematica's notation, the left-hand
side of the equation reads

Application of the Theory 249

filtration = {Otu[x, t] -k[oxu[x, t]] O{X.2}U[X, t]};

filtration / / LTF

u t -kux,x == 0

We suppressed the right-hand side of the equation and collected the left-hand side in
a list. The file containing the information on this equation is created by

LieEquations[Dfiltra.dgl D, filtration, {u}, {x, t}, {},

{DNonlinear Filtration Equation n },

{{"J:.Sh. Akhatov, R.K. Gazizov and N.H. J:bragimov"},
{"Group classification of nonlinear filtration equations"},

{"Soviet Math. Dokl. 35, 384, 1987"},
{"The equation is listed in the CRC Handbook

of Lie Group Analysis of Differential Equations"},

{"Vol. 1, Chapter 10.3, p. 129"},
{nEd. N.H. J:bragimov n},

{"Boca Raton 1994"}}]

The symmetries of this equation follow by

solfilt = LieSolve["filtra.dgl"]

{{xi[l]-,>Function[(x, t, u), k2+ k~xl,
xi[2]-,>Function[(x, t, u}. k3+k4t],

phi [1] -'> Function[{x. t. u}, k1 + k~ u l},

{}}

The result is isomorphic to the result given by Ibragimov [1994] representing
translations and scaling, Since the filtration equation is a non-linear PDE, we actually
do not expect that arbitrary functions occur in the infinitesimals. However, there
exists quite a number of non-linear examples for which the symmetry group is of
infinite order and thus contains arbitrary functions. These functions are usually
restricted by one or more PDEs which are different from the original equation,

If we know the symmetries, we can use another function of MathLie, called

LieStructureForm[], to derive the algebraic properties of the related Lie algebra. We
get the structural properties of the algebra and the transformation properties by

LieStructureFo~[nfiltra.dgln]

We will check the infinitesima1s and calculate algebraic

as well as group properties

+--+

Welcome to MathLie™

for the calculation of the symmetry group

by G. Baumann, © 1992 - 1999

250 Point Symmetries of Partial Differential Equations

+--+

Loading
previous calculations of the determining equations from

FILTRA.DEQ

Loading data from FILTRA.DGL
Title of the equations:

Nonlinear Filtration Equation
Source of the equations:

I.Sh. Akhatov, R.K. Gazizov and N.H. Ibragimov
Group classificatin of nonlinear filtration equations
Soviet Math. Dokl. 35, 384, 1987
The equation is listed in the CRC Handbook

of Lie Group Analysis of Differential Equations
Vol. 1, Chapter 10.3, p. 129
Ed. N.H. Ibragimov
Boca Raton 1994

Equations of motion:

Equation No. 1

Ut - klux] Ux,x == 0

Substitution No. 1
Ut -7 k [ux] ux,x

Infinitesimals :

xi1 k2 + k4 x
2

xi2 k3 + k4 t

Phil = k1 + ~ k4 u[x, t]

We are using all the equation(s) checking the infinitesimals
of the given system consisting of 1 equation(s) in total.

We have to treat 0
determining equations after simplification.

Calculation of the commutator table of the Lie algebra.

Basis of the Lie algebra.

Vi == au
V2 == ax
V3 == at

Structure of the Lie algebra.

Ideal 0

Ideal 1

Ideal 2

{V1' V2' V3' V.}

{V1' V2' V3}
{solvable algebra}

Casimier(s) of the Lie algebra.

{}

Commutator table of the Lie algebra.

0 0 0 -~ 2
0 0 0 -~ 2
0 0 0 -V3
~ ~ V3 0 2 2

Application of the Theory 251

The commutator table is stored in list LieTable.

The nonzero structure constants are

C1,4,1
1
2

C2,4,2
1

-2
C3,4,3 -1

C4, 1, 1
1
2"

C.,2,2
1
2

C.,3,3 = 1

Structure constants are contained in the list LieStructure.
Metric of the structure constants

0 0 0 0

0 0 0 0
g_{ij}

0 0 0 0

0 0 0 3
2"

Determinant of the metric
det(g) = 0

Calculate the symmetry groups of the transformations

Xi (1) k2 + k4 x
2

Xi(2) k3 + k4 t

Phi (1)
1

tj = k1 + 2 k4u[x,

252 Point Symmetries of Partial Differential Equations

Group order = 4
Number of classes = 15

The subgroups and the related transformations read

{k1 --> 0, k2 --> 0, k3 --> 0, k4 --> I}
x[s) {x[s), t [s), u [s)}

t[s) == {x[s) --> (Es / 2 C[3)&), t[s) --> (ES C[l)&), u[s] --> (Es / 2 C[2]&)}

u[s]=={{}}

{kl --> 0, k2 --> 0, k3 --> 1, k4 --> O}

x[s] {x[s], t[s], u[s]}

t[s) == {x[s]--> (C[3]&), t[s]--> (C[l] +s&), u[s] --> (C[2]&)}

u[s] == {{}}

{kl --> 0, k2 --> 0, k3 --> 1, k4 --> I}
x[s] == {x[s], t[s], u[s]}

t [s] ==
{x[s]--> (Es / 2 C[3]&), t[s] --> (-l+ESC[l]&), u[s] --> (ES/2 C[2]&)}

u[s] == {{}}

To save space the rest of the output was deleted.

There exist no transformations creating new solutions.

Results are collected in the list FinalResult.

The infinitesimals are contained in Result2.

{}

The function actually does not return any result for further use. However, the
function prints out the result shown on the screen. As a first result, we get the
algebraic properties based on the vector fields of the symmetry group. The
commutator table of the vector fields is followed by a number of group
transformations based on subgroups of the symmetry. The subgroup is specified by
replacement rules setting the values of the group parameters ki • Transformations for
the dependent and independent variables are given in a most general form. If the
classification of the group allows a transformation of known solutions to other
solutions of the equation, a graphical representation of this transformation is
created. D

Example 3

One of the frequently used partial differential equations in the description of
non-linear phenomena in physics is the Burgers equation. Writing down the equation
in Mathematica, let us first define the field u by

Application of the Theory 253

U = u [x, t];

The left-hand side of the Burgers equation is given by

burgers = {Ot U + 2 U iJx U - iJ{x,2) U}; burgers II LTF

u t + 2 u U x - ux,x == 0

The physical background and the important solutions are discussed by Lighthill
[1956] and Crighton [1979].

The well-known Cole-Hopf transformation converts the Burgers equation to the
linear diffusion equation. Hence, the solution for the former can be explicitly
obtained by solving the linear problem of the diffusion equation, Our intention here is
to find the symmetries of the Burgers equation for the standard representation given
above,

Derivation of the symmetries as a part of our database system presumes that fIrst we
have to create the information fIle for the Burgers equation, The representation of the
Burgers equation given above was taken from

source = {{"M.J. Ablowitz and P.A. Clarksonn},

{"Solitons,

Nonlinear Evolution Equations and J:nverse Scattering"},
{RCambridge University Press, 1991n},

{Rfirst equation on page 34n}}

{{M.J. Ablowitz and P.A. Clarkson}, {Solitons, Nonlinear

Evolution Equations and Inverse Scattering},
{Cambridge University Press, 1991},

{first equation on page 34}}

We set the title of the equation to

title = {RBurgers equationn}

{Burgers equation}

The file burgers.dgl is then created by

LieEquations[nburgers.dgl R, burgers, {u}, {x, t}, {},

title, source]

The derivation of the determining equations is pursued by

burgersDetEquations = Lie [nburgers.dgl n , Statistics -+ True];

burgersDetEquations II LTF

254 Point Symmetries of Partial Differential Equations

(£ilu == 0

(£2)U==0

(cPl)u,U==O

(£2)X==0

2cPl- (£l)t -2u (£1)X+ 2u (£2)t + (£1)X,x- 2 (cPl)X,U ==0

(cPil t +2u (¢il x - (¢dx,x == 0

2 (£il x - (£2)t == 0

Again, the result of this calculation is a system of linear coupled partial differential
equations. These equations are the basis for the determination of the symmetries,
Before we attempt to solve these equations, we discuss another representation of the
Burgers equation which follows from the above if we replace the dependent variable
u by the gradient of a field v. We define this substitution by

subst = u -+ Function [{x. t}. ax v [x. t]]

u-?Function[{x, t}, oxv[x, tll

and apply this transformation to the Burgers equation

burgersx = burgers I . subst; burgersx II I.TI'

The result is a third-order non-linear PDE for the field v. Integrating this equation
with respect to x, we obtain a potential representation of the Burgers equation:

pburgers = J burgersx[lD d1x; pburgers II I.TF

V t + v~ - Vx,x == 0

This sort of equation was examined by Olver [1986].

In the following, we will show how group properties of the potential representation
differ from the original representation of the Burgers equation. Let us again extend
our database by a new file containing the information on the potential Burgers
equation. We create a file for the potential Burgers equation by

I.ieBquations[nburgersp.dgl R• pburgers. {v}. {x. t}. O.
{RBurgers equationAl. {{RG. Baumannn }.

{nBurgers equation in potentia1 formR}. {nUlm 1997 n}}]

The corresponding determining equations follow by

Lie [nburgersp. dgl n] / / LTF

(~dv == 0

(~2)V==O

(~2)x==O

- (~dt + 2 (¢il x + (~dx,x -2 (¢dx,v == 0

(¢d t - (¢dx,x == 0

2 (~dx - (~2)t == 0

-2 (~')x + (~2)t + (¢d v - (¢')v,v == 0

Application of the Theory 255

A comparison of the results shows that in both calculations, the number of equations
are the same. However, the seven equations differ in their forms. Consequently, the
structure of the symmetries is different. We can illustrate this by using the function

LieSolve[] of the package MathLie. The function LieSolve[] provides us with the
representation of the symmetries in infinitesimal form. The infinitesimals of the
Burgers equation thus follow by

iburgers = Liesol ve ["burgers. dgl"]

{{xi[1]-->Function[(x, t, ul, k2+k4t+ (k3+k5t) x],

xi [2] --> Function [{x, t, u}, k1 + t (2 k3 + k5 t)],

phi[1]-->Function[{x, t, u}, ~ (k4-2 (k3+k5t) u+k5x)]},

{}}

The result is a list containing the infinitesimals in a pure function representation. The
first two elements xi[l] and xi[2] of the list represent the infinitesimals for the
independent variables x and t, respectively. The third element, phi[l], is the
infinitesimal for the dependent variable. Among the five-dimensional symmetry
group are symmetries of translation and scaling. The infinitesimals for the potential
Burgers equation follow by a similar calculation from

iburgersp = LieSolve["burgersp.dgl"]

{{xi [1] --> Function [{x, t, v}, k2 + 2 k5 t + (k3 + 4 k6 t) x],

xi[2]-->Function[{x, t, v}, k1+2t (k3+2k6t)], phi[1]-->

Function[{x, t, v}, k4+2k6t+k5x+k6x2 +Ev free[1] [x, t]]},
{-free[1] (0,1) [x, t] + free[1] (2,0) [x, t]}}

Comparing both results, we recognize that the symmetry structure of the original
Burgers equation and the potential representation of the Burgers equation are the
same for the infinitesimals of the independent variables. The structure of the
dependent variables is completely different. In the case of the Burgers equation, we
find a finite dimensional representation of the symmetry group, whereas in the
potential representation, we get an infinite dimensional group characterized by the

256 Point Symmetries of Partial Differential Equations

arbitrary functionjree[l][x,tj. This arbitrary function has to satisfy the heat equation
as an additional equation. The last list of the result contains this equation. The
discrete part of the symmetry group of the potential Burgers equation is also extended
by one degree to a six-dimensional symmetry group. 0

In physical applications, however, the model equations often tum out to be more
complicated than the Burgers equation, involving as they do, a geometrical expansion
term, a non-linear damping term, or a more general convection term. In the
following, we will examine the influence of this change on the symmetries if the
convection term in the original equation is altered. The convective extension of the
Burgers equation is obtained by replacing Ux with u2 Ux ' This quadratic extension is
sometimes called generalized Burgers equation.

burgerse = {at U + u2 ax U - O{x.2) U}; burgerse II LTF

For a quick overview of the changes in the symmetries, we take advantage of the
interactive function Infinitesimals[]. Application of this function to the equation can
also be used to create a database if the related notebook is considered the basic part
of the data system. The advantage of this view is that the complete information on an
equation is collected in one file and that background information which is not
necessary for a symmetry analysis can also be collected in the notebook. The
determination of the symmetries for this generalized equation is carried out by

iburgerse = J:nfinitesimals [burgerse, {u}, {x, t}]

{ . [1 J . [{ } k1 + k32 xl, Xl ~Functlon x, t, u ,

xi [2J ~ Function [{x, t, u}, k2 + k3 tJ,

phi [lJ ~ Function [{x, t, u}, - k~ u l}

The result shows that the symmetry group of the generalized Burgers equation is
reduced from a six-dimensional to a three-dimensional group containing only
translations in the independent variables and a scaling.

We recognize now that classification of the group of differential equations is an easy
task. For example, the group structure of the Burgers equation with generalized
convection term urn Ux is analyzed by

J:nfinitesimals [{at U + U'" ax U - O{x,2) U}, {u}, {x, t}, {m}]

{xi[lJ ~Function[{x, t, u}, k1+ k~xl,
xi[2J ~Function[{x, t, u}, k2+k3tJ,

. . [k3 u l} phl [lJ ~ Functlon {x, t, u}, - 2m

Similarity Reduction of Partial Differential Equations 257

where m is an arbitrary constant. The result demonstrates that for an arbitrary m, the
symmetry group is of the same structure as for the generalized Burgers equation with
quadratic convection term. The difference between the two results is the dependence
of phill J on the parameter m. This result displays that the function Infinitesimals[] is
capable of handling not only the specific models of the Burgers equation but also a
model depending on an arbitrary parameter.

Concluding this section, we can state that MathLie can be used to collect information
on symmetries in different ways: first, creation of a file system containing
information essential for each equation; second, by creating notebooks that allow
detailed discussion of the equation. Both methods will be used in the remaining parts
of this book.

5.5. Similarity Reduction of Partial Differential Equations

A similarity reduction of a differential equation is closely connected with the
invariance of the equation. In Chapter 3, we discussed the group invariance of
ordinary differential equations. The invariance condition in connection with ordinary
differential equations was beneficial for the reduction of the order or the integration
of ODEs by quadratures. In this section, we will discuss the invariance condition of a
partial differential equation to reduce the equation to an ODE or to a PDE in less
independent coordinates. The first case occurs for an equation with two independent
variables, whereas a general reduction to another PDE follows in cases with more
than two independent variables. The reduction procedure generates a similarity
representation of the original equation. Since we reduce the number of independent
variables, a similarity reduction results into a representation which has some
advantages compared with the original equation.

This procedure works independent of the nature of the PDE, linear or nonlinear. It is
also independent of the order of the PDE and it does not need information on
boundary conditions. The benefit of the reduction is a simpler equation allowing an
analytic or numeric solution. Examples of similarity solutions are widely encountered
in mechanics, hydrodynamics, in the general theory of relativity, etc. However, the
solutions derived in these fields are mainly guesswork and lack an algorithmic
procedure. We are going to show here that a similarity reduction is an algorithmic
procedure delivering a large number of ansiitze discussed in the literature.

The main idea behind a similarity reduction is the term invariance. The discussion of
invariance is the first step in this section. To simplify the theoretical representation,
we restrict the examination to cases with two independent variables. A generalization
to more independent variables is straightforward.

258 Point Symmetries of Partial Differential Equations

Let us consider the general PDE in two independent variables and one dependent
variable in the fonn

~(x,t,u,ux,Ut,ux.x' ...) = 0,

which is invariant under the one-parameter Lie group of transfonnations

x* = X(X,t,U;E),

t* = T(x, t, u; E),

u* = Vex, t, u; E).

(5.24)

(5.25)

(5.26)

(5.27)

Let us further assume that u = 8(x, t) is a solution of equation (5.24). Inserting this
solution into the transfonnations (5.25)-(5.27), we can write

x* = X(x, t, 8(x, t); E),

t* = T(x, t, 8(x, t); E),

u* = U(x, t, 8(x, t); E),

(5.28)

(5.29)

(5.30)

stating that u* is also a solution of the transfonned PDE. The use of these facts allows
us to define the invariance in the following way.

Definition: Invariance

A PDE is invariant under a one-parameter Lie group transfonnation if u* =
U(x, t, 8(x, t); E) also satisfies the transfonned PDE whenever u = 0(x, t) is a
solution of the original PDE. 0

If we additionally require that we can solve this problem uniquely, we end up with
the functional equation

0(X(x, t, 0(x, t); E), T(x, t, 8(x, t); E» = U(x, t, 0(x, t); E). (5.31)

The solution of this functional equation can be found by introducing the infinitesimal
representation of the transformations (5.28)-(5.30). We will carry out the calculation
by replacing the transfonnations (5.28)-(5.30) by their infinitesimal representations

Clear[T, X, U];

itrafo = {X -+ Function [{x, t, u, e}, x + e xi [1] [x, t, u]],

T-+Function[{x, t, u, e}, t+exi[2] [x, t, u]],

U-+Function[{x, t, u, e}, u+ephi[l] [x, t, u]]}

{X ~ Function [{x, t, u, E}, X + E xi [1] [x, t, u]] ,

T~Function[{x, t, u, E}, t+Exi[2][x, t, u]],

U~Function[{x, t, u, E}, u+Ephi[l] [x, t, u]]}

Similarity Reduction of Partial Differential Equations 259

Inserting the infinitesimal representation of the transformations into the functional
equation (5.31), we get the simplification

fun=e[X[x, t, e, e], '1'[x, t, e, ell ==U[x, t, e, e] /. itrafo

e[x+Exi[l] [x, t, eJ, t+Exi[2l [x, t, ell ==e+Ephi[l] [x, t, el

The parameter E is the group parameter of the transformation. On the left-hand side
this expression contains the solution () for which we are looking. Actually, the above
expressions contain e in a functional form, too. However, this representation depends
on the infinitesimals parameter E allowing us a Taylor expansion around the identity
E = O. If we additionally subtract the right-hand side from the left-hand side and
extract the terms of lowest order in E, we get the result

Coefficient [

(Serie. [fun[l:D, {e, 0, 1}] /. e [x, t] e) - fun[2:D, e] == 0 / /
Lie'1'raditioD&lro~

This first-order PDE is called the invariant surface condition. The problem we face is
the solution of this first-order partial differential equation. Actually, this is not a
problem if we use Mathematica. Mathematica offers a package integrated in the
function DSolve[] allowing the integration of first-order PDEs. This package uses the
fact that a first-order PDE is closely related to a set of ordinary differential equations.
The connection between the first-order PDE and the system of ODEs can be
demonstrated by the following reasoning.

Let us assume that an arbitrary surface in the space with coordinates x, t, and u is
given by

u = ®(x, t). (5.32)

Later, we will identify this surface as the solution surface of the first-order PDE. A
curve embedded in this surface can be described by a set of parametric coordinates.
Let s be the parameter along the curve; then the curve itself is given by the triple

(x = xes), t = t(s), u = u(s». (5.33)

The tangent vector to this curve is

~ ~dx ~dt ~du
v = ex - + et - + eu -,

ds ds ds
(5.34)

260 Point Symmetries of Partial Differential Equations

where ex, et, and eu are the unit vectors in the directions of the coordinate axes. The
normal direction on the surface H = u - 8(x, t) = const. is determined by the
gradient divided by the magnitude of the gradient

(5.35)

The condition nv = 0 assures that the curve (x(s), t(s), u(s» is part of the surface H.
This condition, however, is nothing more than

dx dt du
8 x - + 8 t - =

ds ds ds

If we define a family of curves by

dx - = ~,(x, t, u),
ds

dt
- = g2(X, t, u),
ds

du
= ifJ, (x, t, u),

ds

(5.36)

(5.37)

(5.38)

(5.39)

called the characteristic differential equations, we can rewrite the surface condition
n v = 0 in a partial differential equation of first order:

(5.40)

which is equivalent with the equation derived from the functional relation (5.31) for
8. Consequently, each one-parameter family of characteristic curves generates a
surface which defines an integral surface u - 8(x, t) = const. and each such integral
surface is generated by a one-parameter family of characteristic curves.

Example 1

Let us consider the first-order partial differential equation

pdel=x(Jx9[x, t] +tBt 9[x, t] ==9[x, t];

pdel / / LieTraditionalForm

corresponding to a scaling symmetry with infinitesimals g, = x and ~2 = t. The
first-order PDE is solved by

Similarity Reduction of Partial Differential Equations 261

sol = DSolve[pde1, e[x, t], {x, t}]

{{e[x, t]--->xC[l] [~l}}

where C[1][t/xJ is an arbitrary function. A graphical representation of this solution
with C[1] replaced by Sin[] is given by

Plot3D[(e [x, t] /. (sol /. C [1] -+ Sin» [1D,

{x, 0.1, 2}, {t, -27f, 27f},

AxesLabel -+ {nxn, nt n , ne n },

PlotPoints-+ 40, Mesh -+ False]

El

2 o

Actually, the family of solutions of the characteristic differential equations can be
represented in a parametric form by

x = xes, r), t = t(s, r), u = u(s, r), (5.41)

where s is the parameter along a characteristic curve and r is the parameter
identifying a characteristic curve equal to a certain constant on a characteristic. The
essential point of these considerations is that the solution of a first-order partial
differential equation is represented by a family of surfaces u - 0(x, t) = const.

Now, if F(x, t, 0) = 0 defines a surface satisfying the first-order partial differential
equation, then this surface is an invariant of the one-parameter Lie group
transformation. This is obvious from the condition

V F(x, t, 0) = 0, (5.42)

262 Point Symmetries of Partial Differential Equations

where v is the vector field of the transformation given by

(5.43)

The result is that the vector field v applied on the surface F(x, t, ®) delivers the
determining equation for the surface. These facts are summarized in the following
theorem.

Theorem: Invariance condition

The function F(x, t, ®) is an invariant of a one-parameter Lie group transformation if
the condition

vF = 0 (5.44)

is satisfied. 0

This condition always results into a first-order partial differential equation
independent of the number of dependent and independent variables. The equation is
solvable by applying the method of characteristics. We demonstrate the application
of the theorem by an example.

Example 2

Let us apply the theorem for a subgroup of the heat equation. The symmetry we will
examine is connected with the scaling symmetry

xi [1] [x, t, u] = x;
xi[2] [x, t, u] = 2t;

phi [1] [x, t, u] = c u;

where c is an arbitrary parameter. The invariance condition (5.44) now reads

invar = xi [1] [x, t, u] CJx F[x, t, u] +

xi [2] [x, t, u] CJt F[x, t, u] +

phi [1] [x, t, u] CJul'[x, t, u] == 0; invar II L'l'1'

2 t F t + C u Fu + x Fx == 0

The solution of this PDE follows by

801h=DSolve[invar, F[x, t, u], {x, t, u}]

{{F[X, t, u] -7 e[l] [~ , ux-c]}}

Similarity Reduction of Partial Differential Equations 263

representing the general solution of the first-order partial differential equation. The
arbitrary function C[1] depends on two invariants given by II = t I:x? and
12 = u I r. These two invariants allow the reduction of the heat equation to an
ordinary differential equation. The reduction procedure itself is based on the
following theorem:

Theorem: Invariant representation

Let the equation !l = 0 be invariant under a one-parameter group G and let the
infinitesimals gi and ¢la' i = 1,2, ... , p and a = 1,2, ... , q, be non-vanishing
functions on the solution surface H of the equation. Then, the surface H can be
represented by equations of the form

k =1,2, ... ,q, (5.45)

where II' ... , I p_1 define a basis of invariants of the group G. 0

The use of the invariants allows us to reduce the original equation. Let us
demonstrate the reduction process by the example of the heat equation. The left-hand
side of the equation of motion reads

heat = {at u[x, t] - B{",3} u[x, t]}; heat II LTI!'

Ut-Ux,x==O

The two integrals obtained by integrating the characteristic equation are II = tl:x? and
12 = ul r. The first integral combines the independent variables in a unique variable
called the similarity variable {= t I x2 • The second invariant, 12 , combines the
dependent variable and one independent variable to the similarity representation of
the solution u(x, t) = r F({), where F({) = 12 , These two relations allow us to
define the following rules:

t
rule. = {t ... , x 3 , u ... Function [{x, t}, XC F[-]]}

r

{t -+ x2 r, U -+ Function [{x, t}, XC F [:2 ll}

Applying these two rules to the heat equation, we get

rheat = heat I. rules, rbeat II LTI!'

== 0

representing an ordinary differential equation for F depending only on {. The
common factor r-2 can be eliminated by division:

264 Point Symmetries of Partial Differential Equations

rheat
rheat = Expand [---] ; rheat I I LTF

X"-~

Thus, we reduced the original PDE to an ODE by utilizing the invariants of the
group. The merit of this reduction is that the derived ODE is easier to solve than the
original PDE. Another advantage is that we can use the solution procedures discussed
in Section 4.4, allowing us to solve the reduced equation. However, in the present
case, we utilize the capabilities of DSolve[]. The solution of the ODE follows by

sheat = DSolve[rheat[11 == 0, F, ~]

(Ie 3 1 (#11) } - .r + {{F --> C [1] Hypergeometric1F1 ["2 - "2' "2' - 4 #1]

. ell 1 - c / 2 1
C[2] HYPerg eometnc1F1 [-"2' 2' - 4#1] (#1) &}}

The resulting solution is a combination of special functions containing the group
parameter c. Since we started from a second-order ordinary differential equation, we
end up with a solution containing two constants of integration C[1] and C[2]. The
two solutions are graphically shown in the following figure. The different curves
represent different values of the group parameter c.

Plot[Bvaluate[Table[F[~] I. sheat[l, 11,

{e, -2.1, 2.1, .S}] I. {C[l] -+ 1, C[2] -+ O}],

{~, 0.01, 2}, Axe.Label-+ {"~n, "F"},
i

PlotStyle -+ Table [sue [-], {i, 1, 8}])
10

2.5

2

1.5

F

o.~~~~""'~iii~~~
0.5 1 1.5 2

- 0 . 5

The second solution with C[l] = 0 and C[2] = 1 has the graph

Similarity Reduction of Partial Differential Equations 265

Plot[zvaluate['l'able[F[:] /. sheat[l, lB,
{c, -2.1, 2.1, .S}] /. {C[l] -+0, C[2] -+1}],

{:, 0.01, 2}, AxesLabel-+ {n:_, -Fn},

i
PlotStyle -+ 'l'able [aue [-], {i, 1, 8}]]

10

F

The symbolic solution for the heat equation in the original coordinates x and t is
derived from the similarity solution by inverting the transformations:

t
backrule. = {: -+ -, F -+ I!'unction [:, F [:] XC] }

X2

{h'~ :2 ' F~Function[h', F[h'] XC]}

The actual solution follows then by the resubstitution of the similarity representation:

solution = F [:] /. sheat / • backrules

q x: r}-j- C[l] HYPergeornetriclFl[~ - ~, ~, - :~ 1 +

(2) -c/2 1 2
~ C [2] HypergeornetriclFl [- ~ , 2' - : t l}

In conclusion, we can say that a solution of a partial differential equation in two
independent variables can be constructed by two invariants of the group. One of these
two invariants becomes the new independent variable {== {(x, t), the so-called
similarity variable, and the other invariant plays the role of a dependent variable
F(O. The similarity representation of the solution is given by the relation

e == H(x, t, F(O) (5.46)

266 Point Symmetries of Partial Differential Equations

with the dependence of H on x and t and the arbitrary function F({) known
explicitly. The substitution of this similarity representation into the original equation
results in an ordinary differential equation for F({). 0

Now we know the fundamental steps to reduce a PDE to an ODE if the symmetries
of the PDE are given. The package MathLie offers a function called LieReduction[],
which allows us to reduce the number of independent variables by applying the above
considerations. The function LieReduction[] can be used to automatically derive the
similarity representation of the heat equation and others. The infonnation we need to
set up the calculation are the equation, the dependent and independent variables, and
two lists for the infinitesimals. The first list of the infinitesimals carries the
infonnation on the independent variables and the second carries the group structure
of the dependent variables. The following example shows how the reduction for the
scaling symmetry is derived for the heat equation:

redl=LieReduction[{otu[x, t] -O{K.2}U[X, t]}, {u},

{x, t}, {x, 2 t}, {c u}] ; LTJ' [J'latten [redl]] /. zetal -+ '1
t

X2 - Si == 0

ux~c -Fi == 0

(-CFi +c2 F i - (Fd b1 +6si (Fd b1 -4CSi (Fd b1 +4sf (Fd b1 . b1)

== 0

The output of the function is a list containing the similarity variables as equations at
the first position. The second part of the list contains the similarity representation of
the solution. The third and last part of the resulting list contains the reduction of the
original equation. Another example for the application of this function is given by the
potential Burgers equation. We already determined the symmetries of the potential
Burgers equation in Section 5.4.4. Using the results from there for the special group
with k6=1 and ki=O for i#6, we find

redl = LieReduction[{otu[x, t] + COxu[x, t])2 -O{x.2}U[X, t]},

{u}, {x, t}, {4tx, 4t2}, {2t+X2}];

LTJ'[J'latten[redl]] /. zetal-+ '1
~ - Si == 0 x

! (4 u - ~ - 2 Log [x])- Fi == 0

sf (3 -12 F1bl Si + 4 F1~, sf - 4 sf F1b1J1) == 0

Similarity Reduction of Partial Differential Equations 267

The result of the reduction is a non-linear second-order ordinary differential equation
which we can solve by using the function DSolve[]:

solburgersp = DSolve[redl[3, 1] == 0, Fl, zetal]

{{F1~ (C[2] + 3LO~[#l] -LOg[-l+#lC[l]]&)}}

The final solution of the potential Burgers equation follows by using the second part
of the similarity reduction. Inserting the solution for F 1 into the similarity
representation, we get a representation of the solution in x and t coordinates,

solution = Flatten[redl[2] /. solburgersp]

{! (4 u - x: _ 2 Log [x]) = = c [2] + ~ Log [~ 1 - Log [-1 + t C; 1] l}

Solving this relation with respect to u, we end up with the explicit solution of the
potential Burgers equation in the form

solf = Si~lify[Solve[solution[l], u]]

The solution of the chosen subgroup contains two constants of integration which
have to be chosen in such a way that the initial and boundary conditions are satisfied.

Example 3

Another example of two coupled diffusion equations demonstrates the application of
the function LieReductionD on a system of equations. The (1+ I)-dimensional version
of the equations of motion for the density u and the density v are given by

cdiffu = {at u [x, t] - ax,x v [x, t],

at v[x, t] - ax,x u[x, t]}; cdiffu / / LTF

U t - Vx,x == 0
V t - Ux,x == 0

The two equations allow a large symmetry group. The infinitesimals of this group
follow by applying the function Infinitesimals[]. The result reads

268 Point Symmetries of Partial Differential Equations

icdiffu = l:nfinitesimals [cdiffu, {u, v},
{x, t}, {}, Substi tutionRules -+ {at u [x, t], at v [x, t]}];

icdiffu / / LTF

- ('T2) t + ('T,)x,x == 0

- ('T')t + ('T2)x,x == 0

~, == k6 + k7 x - 2 t (k3 + k5 x)

~2 == kl + 2 t (k7 - k5 t)

(k5 x 2) (k4 + k5 t) u + v k2 + k3 x + -2--

(k5 x 2) (k4 + k5 t) v + U k2 + k3 x + -2--

The two functions freef 1] andfreef2] satisfy the original equations and generate the
infinite dimensional part of the group. The finite part of the group is represented by a
seven-dimensional symmetry group. From this group, we select the subgroup with k4

= k7 = 1 representing a scaling symmetry of the coupled equations:

xinfi = {xi [1] [x, t, u, v], xi [2] [x, t, u, v]} /.
icdiffu[l] /.

{k1 -+ 0, k2 -+ 0, k3 -+ 0, k4 -+ 1, kS -+ 0, k6 -+ 0, k7 -+ 1}

{x, 2 t}

uinfi = {phi [1] [x, t, u, v], phi [2] [x, t, u, v]} /. icdiffu[l] /.
{k1-+0,k2-+0, k3-+0,k4-+1, kS-+0,k6-+0,k7-+1,

free [1] [x, t] -+ 0, free[2] [x, t] -+ O}

{u, v}

The reduction of the coupled diffusion equations for the scaling group follows then by

rcdiffu = LieReduction[cdiffu, {u, v}, {x, t}, {x, 2 t}, {u, v}];

LieTraditionall"orm[rcdiffu] /. zeta1 -+ ~1 / / TableForm

~ ==Sl
x 2

U
- == F,
X

The derived coupled set of ordinary differential equations in F) = Fl and F2 = Fl is
not solved by Mathematica. This is obvious from

Similarity Reduction of Partial Differential Equations 269

DSo1ve [rcdiffu[3D, {1'1, 1'2}, zetal]

DSol ve [{Fl' [zetal) - 2 zeta1 F2' [zetal) - 4 zeta12 F2" [zeta1) == 0,

-2 zeta1 F1' [zeta1) + F2' [zeta1) - 4 zeta12 F1" [zeta1) == O},

{F1, F2}, zeta1)

However, this is not the end of the story. Mathematica offers an alternate way: the
numerical solution of the equation. The function NDSolve[] is capable of handling
this task. This function is beneficial in solving the reduced system of equations. In
determining a numerical solution, it is mandatory that the equations be free of any
parameters and that the initial conditions be added to the equations:

eqat = rcdiffu[3D

{F1' [zeta1) - 2 zeta1 F2' [zeta1) - 4 zeta12 F2" [zeta1) == 0,

-2 zeta1 F1' [zeta1) + F2' [zeta1) - 4 zeta1 2 F1" [zeta1) == O}

For the initial conditions, we choose the following relations:

initials =

{1'1[1] == .1,1'2[1] == .2, 1'1'[1] == -.1,1'2'[1] == -0.5};

setting the function values at zeta1=1 and the derivatives to certain constants. These
four equations are joined with the list of equations eqat:

eqat = Join [eqat, initials]

{F1' [zeta1) - 2 zeta1 F2' [zeta1] - 4 zeta1 2 F2" [zeta1) == 0,

-2 zeta1 F1' [zeta1] + F2' [zeta1) - 4 zeta1 2 F1" [zeta1) == 0,

F1[l) == 0.1, F2 [1] == 0.2, F1' [1) == -0.1, F2' [1) == -0.5}

The complete list of equations and initial conditions is now used in the numerical
integration for zeta1 in the range 15 zetal550.

nso1ve=HDSo1ve[eqat, {l!'1, 1'2}, {zetal, 1, 50}]

{{F1 -7 InterpolatingFunction [{ {1., 50.}}, <»,

F2 -7 InterpolatingFunction [{ {1., 50.}}, <»}}

The numerical solution is represented by an interpolating function. We can use the
representations to plot the solution:

Plot [Bva1uate [{l!'l[x], l!'2 [x]} /. nso1ve], {x, 1, 50},

P1otSty1e -+ {RGBCo1or[1.000, 0.000, 0.000],

RGBCo1or[0.000, 0.000, 1.000]},

AxesLabe1-+ {-'1-' -1'1,1'2 n }]

270 Point Symmetries of Partial Differential Equations

-1

-2

-3

-4

-5

-6

The utilization of the numerical capabilities of Mathematica allows us to examine the
solution of the reduced equations for a limited range in zeta] and for a special choice
of initial values. This numerical representation of the solution compared with an
analytic solution is far from being complete. An analytic solution, if we found one, is
valid for all initial conditions and unlimited in the range of the independent variable.
So numerical solution can only show us the behavior for a specific case of initial
conditions. 0

Example 4

Another problem also handled by the function LieReduction[] is the reduction of
partial differential equations in more than two independent variables. Such a case is
given by the Karpman-Belashov equation (KB) (Karpman and Belashov [1991])

6 u; + Ux,t + 6 U ux,x - Uy,y - J1. ux,x,x - E ux,x,x,x - A ux,x,x,x,x,x = O. (5.47)

The KB equation contains the Zabolotskaya-Khoklov equation (ZK) with E = 0 and A
= 0, and the Kadomtsev-Petviashvili equation (KP) with J1. = 0 and A = O. The
KB-equation is used to model two-dimensional solitons and wave packages in
weakly dispersive and dissipative media, Karpman and Belashov studied this type of
equation numerically. We will examine here the algebraic properties of the equation.
Especially, we will examine the ZK equation and the corresponding analytical
solutions. First, let us determine the symmetries of the KB equation

ka:rp = {ax (at U [x, y, t] + 6 U [x, y, t] ax u [x, y, t] -

'" a{X o2) u[x, y, t] - e a{Xo3} u[x, y, t] -

Aa{xo5}U[X, y, t]) -a{Yo2}U[X, y, t]}; ka:rp II LorI'

6 u~ + Ux,t + 6 u ux,x - Uy,y - J.1 ux,x,x - E ux,x,x,x - A ux,x,x,x,x,x == 0

Similarity Reduction of Partial Differential Equations 271

The three parameters '\, p, and E are real constants. The infinitesimals of the KB
equation follow by

ikarp = :Infiniteai_la[karp, {u}, {x, y, t}, {Il, e, A}];

ikarp / / L'l'1'

1
cPl == 12 (2 (1""2)t +y (:1"I)t.t)

1
~1 == 1""2 + "2 y (1""1) t

~2 == 1""1

~3 == k1

The result of the calculation is an infinite dimensional symmetry group determined
by two arbitrary functions 'F] = free[1] and 'F2 = free[2]. These two functions
determine the transformation of the y, x, and u coordinates. We also observe that the
group is free of any system parameter '\, E, and p. The two arbitrary functions free[l]

and free[2] do not have to satisfy any other equations. Thus, we can choose them
individually. If we assume, for example, that these functions are given by two
constants free[l][t] = k2 and free[2][t] = kJ, we immanently select from the
infinite dimensional group those subgroups which describe the invariance of the
equation with respect to translations in the independent variables. At the other hand,
this special subgroup creates the following reduction:

rkarp = LieReduc:tion[karp, {u}, {x, y, t}, {kl, k2, k3},

{O}]; LTI' [I'latten[rkarp]] /. {zetal ... ~1I zeta2 ... ~2}

_ - k1 t + k3 x _ b'1 = = 0
k1

_ k2 x - k1 Y _ b'2 == 0
k1

u - Fl == 0

6 k14 k3 2 (Fd~, + 12 k14 k2 k3 (FIl., (FIl'2 + 6 k14 k22 (Fd~2 -

k1 5 k3 (Fd., .• , +6k14 k3 2 Fl (F1)., .• , _k1 5 k2 (F1)""2 +

12k14 k2k3F1 (F1)""2 _k16 (Fl)'2"2 +6k1 4 k2 2 F l (F1)'2 .• , +

k1 3 k3 3 J..l (F1)!;, .• , .• , +3k13 k2k3 2 J..l (F1)., .• , .• , +

o

3k13 k22 k3J..l (F1)"""'2 + k1 3 k2 3 J..l (FIl., .• ,.'2-

k12 k3 4 € (FIl., .• , .• , .• , -4k12 k2k3 3 € (FIl","""'2-

6 k12 k22 k3 2 € (F I)., .!;, .• , .• , - 4 k12 k2 3 k3 € (F1)., .• , .• , .• 2 -

k12 k24 € (Fd.2 •• 2 .!;2 .• , _k3 6 A (Fd., .• , .• , .• , .• ,.!;, -

6 k2 k3 5 A (F1) - 15 k22 k3 4 A (F1) -
~.~.~.~.~.~ ~.~.~.~.~.~

20k2 3 k3 3 A (F1)"""""2""'2 -15k24 k3 2 A (F1)!:, .• ,.!:2.'2.!:, .• ,-

6 k2 5 k3 A (F1) - k2 6 A (F1) ==
~.~.~.~.~.~ ~,~.~.~.~.~

272 Point Symmetries of Partial Differential Equations

The result is a non-linear partial differential equation of sixth order for the similarity
function Fl. The similarity function depends on the two similarity variables zeta1
and zeta2. Thus, we reduced a (2+1)-dimensional PDE to a (l+l)-dimensional PDE.
Both similarity variables zeta1 and zeta2 are invariants of the KP equation. The
reduced equation is again a candidate for Lie's method. For the sake of simplicity, we
choose the group constants k1, k2, and k3 in a suited way by k1 = k2 = 1, and k3 = v.
The corresponding reduction thus simplifies to

rkarp1 = LieReduction[karp, {u}, {x, y, t}, {1, 1, v},

{O}]; LTF[Flatten[rkarp1]] /. {zeta1-+~" zeta2-+~2}

t-vx-Si==O

-x + y - S2 == 0

U - Fi == 0

6v2 (Fd~, + 12v (Fd s1 (Fd s2 +

o

6 (Fi)~2 -v (Fi)Sl,Sl + 6v2 Fi (F i)Sl,Sl - (Fi)Sl,S2 +

12vFi (F i)Sl,S2 - (F i)S2,!:2 + 6Fi (Fi)S2,S2 +V3 f-i (Fi)Sl,b1,(1 +

3 v 2 f-i (Fi)b1,Sl,!:2 + 3 Vf-i (Fi)!:1,S2,S2 +f-i (F i)S2,!:2,b2 -

V 4 6 (F i)Sl,C,Sl,Sl - 4vJ 6 (F i)Sl,!:1,!:1,!:2 - 6v2 6 (Fi)!:1,",!:2,!:2

4V6 (Fd!:1,S2'S2'S2 -6 (Fd;2,S2,b2,S2 _v6 A (Fd b1 ,b1'!:1'(1,b1,b1 -

6 v 5 A (Fd Sl,Sl,Sl,b',",S2 -15 v 4 A (Fd Sl,Sl,b1,b1,(2,!:2 -

20v3 A (F i l s1 ,Sl,Sl,S2,!:2,S2 -15v2 A (F i l b1 ,b],t:2,b2,S2,C2-

6VA (Fi l s1 ,r2,b2,C2,C2,C2 -A (Fi l b2 ,b2,b2,b2,(2,(2 ==

It is obvious that the reduction of the KB equation is a sixth-order non-linear PDE in
1 + 1 variables. Thus, the resulting equation is nearly as complicated as the original
equation. To simplify things, let us examine models which follow from the KB
equation. If we change the parameters in the KB equation in an appropriate way, we
get a simplified equation. One example is the reduction of the KB equation by

karps1 = karp / • .A -+ 0; karps1 / / LTF

6 u; + Ux,t + 6 u ux,x - Uy,y - jJ. ux,x,x - E ux,x,x,x == 0

This kind of equation is called a reduced KB equation (rKB) in the following. The
infinitesimals of this equation are calculated by

infkarps1 = J:nfinitesimals[karps1, u, {x, y, t}, {il, e}];

infkarps 1 / / LTF

Similarity Reduction of Partial Differential Equations 273

1
';1 == 'T2 + 2 Y ('T1) t

';2 == 'T1

';3 == k1

Again, we find a group which is detennined by two arbitrary functions 'Tl = free[l]

and 'T2 = free[2]. Both functions depend only on t and are not restricted by any side
conditions. It is obvious that the symmetries of the model with A = 0 allow the same
transformations as the complete model.

The following reduction of the A = 0 model assumes that free[2]

k1 = c, with c a real constant:
1 = free[1] and

rkarps1 = LieReduction[karps1, {u}, {x, y, t}, {1, 1, c},

{O}]; LTF[Flatten[rkarps1]] /. {zeta1-+~l< zeta2-+'2}

t - c x - Sl == 0

-x + y - S2 == 0

U - F1 == 0

6 c 2 (Fd ~, + 12 C (Fd" (Fd (2 +

o

6 (Fd~2 -c (Fd",r, +6c2 F1 (FtlSl'!:l-

(F1)Sl,b2 + 12 cF i (F1)Sl,S' - (F1)S2,(2 + 6F1 (F i)i:2,i:2 +

c 3 jJ. (F1)Sl,bl,bl +3c 2 jJ. (F1)S1,Sl,'2 +3cjJ. (F1)",'2,'2 +

jJ. (Fd b2 ,S2,'2 _c 4 E (Ftl"""S"S' -4c3 E (Ftl",S',S','2-

6c2 E (Fd",s"s2,s2 -4CE (Fd sl ,S2,b2,S2 -E (F i)S2,S2,'2,'2

The result is a fourth-order non-linear PDE in the similarity variables zeta1, zeta2,
and F 1. The reduction is as complicated as the reduction of the full KB equation.

Another simplification of the original KB equation follows if we set E and A equal to
zero:

karps2 = karp /. {A. -+ 0, e -+ O}; karps2 / / LTF

6 u~ + Ux,t + 6 U ux,x - Uy,y - jJ. ux,x,x == 0

The resulting equation is known as the ZK equation. The symmetries of the ZK
equation are determined by

infkarps2 = l:nfinitesimals[karps2, u, {x, y, t}, {jJ}];

infkarps2 / / LTF

274 Point Symmetries of Partial Differential Equations

1
12 (-6k2u+2 (1""2)t +y (1""l)t,t)

~1
1 2 (k2 x + 2 1""2 + Y (1""d t)

3 k2 Y
--4- +1""1

~3 == k1 + k2 t

For this model, we again find an infinite symmetry group depending on two arbitrary
functions. Contrary to the models examined above, the discrete part of the symmetry
group increases by one group parameter. The reduction of this model for a scaling
group with k2 = 1, kl = 0, and the arbitrary functions set equal to zero follows by

x 3y
rkarps21= LieReauetion[karps2, {u}, {x, y, t}, {-, --, t},

2 4
u

{ - - }] / / PowerExpana;
2

LTI'[l'latten[rkarps21l1 /. {zeta1-+ ~1I zeta2 -+ ~2}

~ - Sl == 0
x 2

Y
X 3J2 - S2 == 0

UX-F1 == 0

si J4 (48 I t1J4 J-1 F1 + 144 I t1J4 F~ - 24 I t l/4 (F1) 1:1 +

o

432 I t l/4 J-1 Sl (F1) 1:1 + 672 I t l/4 F1 Sl (F1) 1:1 +

192 I t 1!4 sf (F1) ~, + 267 I t l/4 J-1 S2 (F1) 1:2 +

468 I t 1!4 F1 S2 (F1) (;2 + 288 I t1/4 Sl S2 (F1) 1:1 (F1) (;2 +

108 I t l/4 S~ (F1) ~2 -16 I t l/4 Sl (F1) 1:,,(;, +

384 I t l/4 J-1 S~ (F1) 1:1 ,1:, + 192 I t l/4 F1 S~ (F1) 1:1 ,1:: -

12 I t1J4 S2 (F1) 1:,,1:2 + 540 I t l/4 J-1 Sl S2 (F1) 1:1 ,1:2 +

288 I t l/4 F1 Sl S2 (Fd 1:1 ,1:2 - 8 I t l/4 (Fd 1:2 ,1:2 +

189 I t l/4 J-1 S~ (F1) 1:2,1:, + 108 I t l/4 F1 S~ (F1) 1:, ,1:2 +

64 I t 1J4 J-1 S~ (F1) 1:,,1;, ,1:, + 144 I t 1/ 4 J-1 S~ S2 (F1) 1:1 ,1:, ,I:, +

108 I t l/4 J-1 Sl S~ (F1) 1:1 ,1:,,1:2 + 27 I t l/4 J-1 S~ (Fd 1:2 ,1:2 ,1:,) ==

representing a third-order non-linear PDE. Another reduction follows for translations
as symmetry transformations:

rkarps22 = LieReauetion[karps2, {u}, {x, y, t}, {1, 1, e},

{O}l; LTI'[I'1.atten[rkarps22l 1 /. {zeta1-+ ~1' zeta2 -+ ~2}

Similarity Reduction of Partial Differential Equations 275

t-ex-S1==O

-x + y - S2 == 0

U - F1 == 0

6e2 (F1)~, +12e (F1)(;1 (F1)(;2 +

o

6 (Fd~2 -e (Fds1,bl +6e2 F1 (Fd(;l,bl - (Fd b1 ,(;2 +

12 eF1 (F1)bl,b2 - (F1) (;2,(;2 + 6 F1 (F1)b2,b2 + e 3 /.1 (F1)!:1,!:1,(;1 +

3 e 2 /.1 (F1)!:1,Sl,S2 +3 e/.1 (F1)!:1,S2,S2 +/.1 (F1)!:2,!:2,!:2 ==

We use this similarity representation to apply Lie's procedure again, The symmetries
of the reduction follow by

irkarps22 = J:nfinitesimals[rkarps22[3, 1]1, Fl, {zetal, zeta2},

{c, ~}, SubstitutionRules -+ {O(zeta1,3} Fl [zetal, zeta2]}];

irkarps22 I I loTF

~1

(1-4e+24c2 F1) k3
- 6 + 12 c

(-1 + 2 e) k1 - c k3 (zeta1 + 4 c zeta1 - e zeta2)
-1 + 2 c

(-1+2e) k2+k3 «-1+2e) zeta1+ (1-6c) czeta2)

The result is a finite symmetry group of order three, allowing us a further reduction.
Before we execute this step, we rename the variables to simplify the equations:

eqv = {rkarps22 [3, 1, 1]1} I. {Fl -+ H, zetal -+ ,1, zeta2 -+ '2};

eqv I I loTF

6 e 2 H~l + 12 e HI:1 HI:2 + 6 H~2 - C H!:l,!:1 +

o

6 e 2 H Hr:1, p - Hp , (;2 + 12 e H H£:l, 1:2 - H1:2, S2 + 6 H H£'2, s2 +

e 3 /.1 Ho , p, 0 + 3 c 2 /.1 H£'l, h1, 1:2 + 3 c /.1 H(;l, (;2, (;2 + /.1 H(;2, (;2, (;2

For the non-linear third-order PDE in the second similarity representation, we select
the subgroup of translations to carry out another reduction. The infinitesimals for this
case are given by

infl = {xi [1] [zetal, zeta2, Fl], xi [2] [zetal, zeta2, Fl]} I.
irkarps22 I. {kl -+ 1, k2 -+ v, k3 -+ O} I.

{Fl -+ H, zetal -+ ~1, zeta2 -+ '2}

{1, v}

inf2 = {phi [1] [zetal, zeta2, Fl]} I. irkarps22 I.
{kl-+ 1, k2 -+ v, k3 -+ O} I.

{Fl -+ H, zetal -+ ~1, zeta2 -+ '2}

{O}

276 Point Symmetries of Partial Differential Equations

The corresponding reduction follows from

rkarps221 = LieReduetion[eqv, {H}, {rl, r2}, infl, inf2];

L'l'P[Platten[rkarps221]] /. {zetal-+ '}

-~ - v ~1 + ~2 == 0

H - F1 == 0

6 (Fd ~ - 12 e v (Fd ~ + 6 e 2 v 2 (F1) ~ -

o

(F1) !:,!: + v (F1) !:,!: - e v2 (F1) !:,!: + 6 F1 (F1) !:,!: -

12 e v F1 (Fd !:,b + 6 e 2 v2 F1 (F1) !:,!: + J1 (Fd !:,!:,!: -

3 e v J1 (F1) !:,!:,b + 3 e 2 v 2 J1 (F1) !:,!:,!: - e 3 v 3 J1 (F1) !:.!:.!: ==

The result is a third-order non-linear ODE which allows a two-dimensional discrete
symmetry group depending on group parameters c and v of the preceding reductions:

irkarps221 = J:nfinitesimals [rkarps221[3, 1], Pl, {zetal},

{e, Il, v}, SuhstitutioDRules -+ {a{zatal,3) Pl [zetal] }];

irkarps221 / / L'l'P

k2 (-1+v-ev2 +6F1 (-1+ev)2)

6 (-1+cv)2

';1 == k1 - k2 zeta1

The result indicates that the third-order ODE is at least reducible to a second-order
ODE which, in fact, is possible by an integration with respect to zeta] :

firstJ:ntegral = J rka:rps221 [3, 1, 1] dzetal == el;

L'l'P [firstJ:ntegral] /. zetal -+ '1
-c1+ (-1+v-ev2+6Fl-12evF1+6c2v2F1) (F1)!:,

- (-1+ev)3 J1 (Fd!:',b' == 0

The resulting second-order ODE is solved by

soll = DSolve [firstJ:ntegral, Pl, zetal]

{ {F1 ~ (((1 - v + e v 2) AiryBi [(13 - 2 e v 3 + e2 v 4 + 12 e1 U - 2 v

(1+12e (1+e1U)) +V2 (1+2e+12e2 (1+e1#1)))/

(43 2/3 (e1 (_1+ev)2)2/3)]_

231/ 3 (e1 (-1 +CV)2)1/3 AirYBiPrime[

(13 - 2 e v 3 + c 2 v 4 + 12 c1 #1 - 2 v (1 + 12 c (1 + c1 #1)) +

~ (1+2e+12e2 (1+e1#1)))/

(43 2/3 (e1 (_1+cv)2)2/3)] +

Similarity Reduction of Partial Differential Equations 277

(AirYAi[

(13 -2cv3 +C2 V4 +12cl#1-2v (1+12c (l+cl#l)) +

~ (1+2c+12c2 (l+cl#l)))/

(432/3 (cl (-1+cv)2)2/3)]-vAirYAi[

(13 - 2 c v 3 + c 2 v 4 + 12 cl #1 - 2 v (1 + 12 c (1 + cl #1)) +

v 2 (1+2c+12c2 (l+Cl#l)))/

(43 2/3 (cl (_1+CV)2)2/3)] +cv2 AiryAi[

(13 - 2 c v 3 + c 2 v 4 + 12 cl #1 - 2 v (1 + 12 c (1 + cl #1)) +

v 2 (1+2c+12c2 (l+cl#1)))/

(432/3 (cl (_1+cv)2)2/3)]_

2 3 1/3 (cl (-1 + c v) 2) 113 AiryAiPrirne [

(13 -2cv3 +c2 v 4 +12cl#1-2v (1+12c (l+cl#l)) +

v 2 (1+2c+12c2 (l+cl#l)))/

(43 213 (cl (_1+CV)2)213)])

C [11) /
(6 (-1+cv)2 (AiryBi[

(13 - 2 c v 3 + c 2 v 4 + 12 cl #1 - 2 v (1 + 12 c (1 + cl #1)) +

v 2 (1+2c+12c2 (l+cl#l)))/

(43213 (cl (_1+cv)2)2/3)] + AiryAi [

(13-2cv3 +c2 v4+12cl#1-2v (1+12c (1+c1#1)) +

v 2 (1+2c+12c2 (l+cl#l)))/

(4 32/3 (cl (-1 + c v) 2) 2/3)]

C[l1))&)}}

The result is a complicated expression containing special functions of the Airy type.
However, the solution simplifies if we set the integration constant c1 equal to zero.

first:Integra1 = first:Integra1 /. cl -+ 0;

LTP[first:Integra1] /. zetal-+ '1
(-1 + v - C v 2 + 6 F1 - 12 c v F1 + 6 c 2 v 2 F1) (F1)", - (-1 + c v) 3 J1 (F1)", ,",

== 0

The solution now reads

so12 = DSo1ve[first:Integra1, 1'1, zetal]

{{Fl--7(~(1 __ v __ + 1 (.y(-1+2v-v2-2c~+
6 (1-cv)2 1-cv (1-cv)2

2cv3 -c2 v 4 -12C[2] +24cvC[2]-12c2 v 2 C[2])

Tan [

278 Point Symmetries of Partial Differential Equations

~ (- (3 #1 Y (-1 + 2 v - V- - 2 c V- + 2 C v 3 - c 2 v 4 -

12C[2] +24cvC[2]-12c2 v 2 C[2]))/

1
«1-cv)3J1)+ 2

(1- cv)

(C [1] Y (-1 + 2 v - v 2 - 2 C v 2 + 2 C v 3 - c 2 v 4 -

12C[2] +24cvC[2]-

12 c 2 v 2 C [2])))])) &) } }

containing only the Tan[] function. At this stage of the calculation, we derived a
solution for a special subgroup of all the possible symmetries of the original
equation. This special function will help us to represent the solution in the original
variables. To get the representation of the solution in x, y, t, and u, we have to invert
all the similarity transformations carried out above:

Bol = u -+ I'uDction[{x, y, t}, $r] I. $r-+

(Pl[t-cx, -x+y] I. (Pl-+l'uDction[{zetal, zeta2}, $w] I.
$w-+ «(H==Pl[-v,1+,21 I. Boll) I.

{H -+ Pl, '1 zetal, ,2 -+ zeta2}) I.
{Equal [a_. b_1} -> b»)

u~Function[{x, y, t}, (1-v+cv2)

AiryBi [(13 - 2 c v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2v (1+12c (1+c1 (-x-v (t-cx) +y))) +

v 2 (1+2c+12c2 (1+c1 (-x-v (t-cx) +y))))/

(43 2/3 (c1 (_1+cv)2)2/3)]_

23 1/3 (c1 (_1+cv)2)113

AiryBiPrime [(13 - 2 c v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2v (1+12c (1+c1 (-x-v (t-cx) +y))) +

V- (1 + 2 c + 12 c 2 (1 + c1 (-x - v (t - c x) + y)))) /

(43 213 (c1 (_1+CV)2)213)] +

(AirYAi[(13-2cv3 +c2 v 4 +12c1 (-x-v(t-cx) +y)-

2v (1+12c (1+c1 (-x-v (t-cx) +y))) +

v 2 (1+2c+12c2 (1+c1 (-x-v (t-cx) +y))))/

(43 213 (c1 (_1+CV)2)2/3)]_

v AiryAi [(13 - 2 C v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2v (1+12c (1+c1 (-x-v (t-cx) +y))) +

V- (1+2c+12c2 (1+c1 (-x-v (t-cx) +y))))/

(43 2/3 (c1 (_1+CV)2)213)] +

c v 2 AiryAi [(13 - 2 c v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2v (1+12c (1+c1 (-x-v (t-cx) +y))) +

Similarity Reduction of Partial Differential Equations 279

v 2 (1+2c+12c2 (1+c1 (-x-v(t-cx) +y))))/

(432/3 (c1 (_1+CV)2)2/3)]_23 1/3 (c1 (_1+CV)2)1/3

AiryAiPrime [(13 - 2 c v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2v (1+12c (1+c1 (-x-v (t-cx) +y))) +

v 2 (1+2c+12c2 (1+c1 (-x-v (t-cx) +y))))/

(43 2/ 3 (c1 (_1+cv)2)2/3)])

C[l]) /

(6 (-1+cv)2

(AiryBi [(13 - 2 c v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2v (1+12c (1+c1 (-x-v (t-cx) +y))) +

v2 (1+2c+12c2 (1+c1 (-x-v (t-cx) +y))))/

(43 2/3 (c1 (_1+cv)2)2/3)] +

AiryAi [(13 - 2 c v 3 + c 2 v 4 + 12 c1 (-x - v (t - c x) + y) -

2 v (1 + 12 c (1 + c1 (-x - v (t - c x) + y))) +

v 2 (1+2c+12c2 (1+c1 (-x-v (t-cx) +y))))/

(43 2/3 (c1 (_1+Cv)2)2/3)]

C [1]))]

The second type of solution allowed by the reduced KB equation was derived for
c1 == O. In original variables, this solution reads

Bo1s = u l'unction[{x, y, t}, $r] I. $r-+

(1'1[t-cx, -x+y] I. (1'1-+J'uDction[{zeta1, zeta2}, $w] I.
$w-+ «(B==1'1[-v'1+'2] I. so12) I.

{H 1'1, ,1 -+ zeta1, ,2 -+ zeta2}) I.
{Equal [a_, b_]} -> b)))

U-7FUnction[{x, y, t},

~(1 ___ v_+ 1 (...J(-1+2V-v2 -2CV2 +
6 (1-cv)2 1-cv (1-cv)2

2 C v 3 - c 2 v 4 - 12 C [2] + 24 c v C [2] - 12 c 2 v2 C [2])

Tan[~ (- 1 (3 (-x-v (t-cx) +y)
6 (1-cv)3~

...J (-1 + 2 v - v 2 - 2 C v 2 + 2 c ~ - c 2 v 4 -

12 C[2] + 24 c vC[2] - 12 c 2 v 2 C[2])) +

1

(1 - c v) 2

(c [1] ...J (-1 + 2 v - v2 - 2 C v 2 + 2 C v 3 - c 2 v 4 - 12 C [2] +

24 c v C [2] - 12 c 2 v 2 C [2]))) 1))]

We can inspect the ZK equation by this solution:

karp I. {A 0, e -+ O} I. sols I I S1D\plify

{O}

280 Point Symmetries of Partial Differential Equations

The result is that the given solution satisfies the ZK equation. To get an impression
on how the complicated symbolic solutions behave in the x, y, t space, let us plot the
solutions for different times over the (x, y)-plane. We choose the parameters for both
plots as

paramet.rs = {c 2, v 1, C[l] 0, C[2] 1, j.l 2, cl l};

The two functions are created by

pl = u [x, y, t] /. sol I. paramet.rs;

for the general case with c1 = 1

pls = u [x, y, t] /. sols I. parameters

1 6"" (2 + 4Tanh[t-x-yJl

The two special solutions serve to create an animation for - 2 s t s 2 in steps of
at = 1 /4. The general solution looks like a bunch of crests moving from the left to
the right:

Do [Plot3D [Evaluate [pl I. t t:] ,

{x, -27r, 27r}, {y, -7r, 7r}, Ax.sLabel {"x., "y., nun},

PlotRang {{-27r, 27r}, {-7r, 7r}, {-100, lOO}},

PlotPoints 60, M.sh -+ ralse] ,

{t:, -2, 2, .25}]

Similarity Reduction of Partial Differential Equations 281

In the animation of these pictures, we observe that a train of waves moves from the
left to the right. The simpler solution of the ZK equation is given by a Tanh[]
function representing a propagating step from the left to the right:

Do [Plot3D[pls /. t -+ t:,

{x, -21f, 21f}, {y, -1f, 1f}, AxesLabel-+ {nx", Ny", "u-},

PlotRange -+ All, PlotPoints -+ 40, Mesh -+ False],

{t:, -2, 2, .25}]

The animation shows that the step is stable and does not disperse. The solution is a
soliton which propagates in a firm form. D

This section was concerned with the reduction of the original equations (PDEs) either
to an ODE or to a PDE with less independent variables. We demonstrated that the
reductions are instrumental to find symbolic solutions. Even if we fail to write down
an analytic solution, we can utilize the numerical capabilities of Mathematica to
solve the reduction. For PDEs in more than two independent variables, we can apply
the functions of MathLie several times to find the reductions and even the solutions.
The following sections will demonstrate the application of the functions of Math Lie
to physical problems.

282 Point Symmetries of Partial Differential Equations

5.6. Working Examples

This section contains some working examples to show the application of the package
MathLie. We discuss the necessary steps for solving some physical and mathematical
problems. The first example deals with the diffusion equation applied to the problem
of thermal oscillations on a surface. A second example discusses the application of
MathLie in the derivation of symmetries for a model describing a single flux line in a
superconductor. Several applications from hydrodynamics demonstrate the
engineering challenge of the symmetry method. The fIrst atomic explosion serves to
demonstrate the extraordinary success of symmetry analysis for estimating unknown
quantities from a movie. The formation of droplets is an example currently under
discussion in industrial applications.

5.6.1 The Diffusion Equation

The diffusion equation is one of the extensively discussed examples in symmetry
analysis. Since the beginning of the theory. this equation was used to demonstrate the
usefulness of the symmetry method to derive solutions. Lie himself used the diffusion
equation as an example to illustrate the capabilities of the method. In his work. the
diffusion equation is one of the equations comprehensively discussed. The diffusion
equation is used by many other authors to introduce the method and show how the
symmetry method can be extended in different ways. The diffusion equation here is
chosen as a reminiscence to the tremendous work of Lie. The example of the
diffusion equation illustrates how MathLie can be exerted to derive the symmetries of
this equation. We also will show how the gained information can be employed to
solve a particular problem. The problem we discuss is a boundary value problem
concerned with the seasonal oscillations of the temperature on the surface of the earth.

5.6.2 The Earthworm's New Year Problem

This problem is concerned with the propagation of damped temperature waves into
the earth due to annual temperature variation. This example is discussed extensively
by Bluman and Cole [1974]. Imagine a worm has to decide when he has to celebrate
New Year. The only indicator of seasonal changes he has is the variation of
temperature. Let us assume that the worm will celebrate New Year when he measures
the lowest temperature in the year. The propagation of the seasonal temperature wave
the worm must follow is described by a diffusion process. The measured quantity is
the temperature denoted by the variable

t1 = u [x, t];

Working Examples 283

The field u measures the temperature vanatlOn toward the center of the earth
(x > 0) at a certain time (t > 0). The diffusion process of heat is governed by the
equation

diffusion = {Ot U - 0lx , 2) U}; diffusion II LTF

Ut - u x,x == 0

A sketch of the physical situation we have in mind is given in the following figure:

T2 Cos [2 iT tj

The constant temperatures TJ and T3 describe the temperature on the surface and in
the interior of the earth at a certain depth, The seasonal changes of the temperature
near the surface are assumed to be T2 cos(2 m) and are due to radiation changes of the
sun. So, besides the diffusion equation, the solution of the problem has to satisfy
additionally boundary conditions. In deriving the solution of this boundary value
problem, we have to solve the diffusion equation for the given boundary conditions
on the surface and in the center. Examining the symmetries of the diffusion equation
allows us to decide how the general equation is transformed and what types of
transformation are allowed to find the solution. We use the functions LieEquations[]

and LieSolve[] of the package MathLie to create another example in our data basis.
We start with the creation of the information file and carry out the symmetry analysis
by applying the function LieSolve[]. After the derivation of the symmetries, we will
consider the boundary values and check the invariance of these conditions under the
symmetry transformations. In a last step, we will reduce the partial differential
equation to an ordinary differential equation. The solution of this ODE will provide
us with the information the worm needs to decide when the turn of the year happens.

284 Point Symmetries of Partial Differential Equations

5.6.2.1 Symmetry Analysis

The first step in an automatic symmetry analysis is the collection of all the
infonnation available on the equation. The package MathLie offers the function
LieEquations[] to collect this infonnation. If you solve a differential equation with
pencil and paper, you need to know the equation itself. You also have to know the
names of the dependent variables and the independent variables. Sometimes, the
equation contains some parameters which you can also save by using the function

LieEquations[]. If you assemble a greater number of equations in a database, it is
good practice to supply the files with infonnation on the problem and on the sources
from which the equation comes. In MathLie, all this infonnation is stored in a single
file whose name is used by LieEquation[] as first argument. The infonnation we need
to handle in the example for the earthwonn's New Year problem is given below:

LieZquatioDs ["diffuw. dgl", diffusion, {u}, {x, t}, {},
{"The earthwo~ls Hew Year problem"},
{{"G.W. Bluman and J.D. Cole"},
{"SiDdlarity Methods for Differential Zquations n },

{"Springer, Hew York, 197'''}, {"pp. 233"}}]

After the completion of these lines, the function LieEquations[] created a file
containing the infonnation necessary for the symmetry analysis. The content of the
file diffuw.dgllooks like

! ! diffuw • dgl

Title = {The earthworm's New Year problem}

Source = {{G.w. Bluman and J.D. Cole},

{Similarity Methods for Differential Equations},

{Springer, New York, 1974}, {pp. 233}}

IndepVar = {x, t}

DependVar = {u}

EqList =
{Derivative [0, 1] [u] [x, t] - Derivative [2, 0] [u] [x, t]}

SubsList = {Derivative [0, 1] [u] [x, t]}

ParameterS = {}
ListXi = {}
ListPhi = {}

The symmetries of the diffusion equation are calculated by applying the function
LieSolve[] to the collected information. The function LieSolve[] exerts the invariance
condition based on the prolongation fonnalism. The prolongation of the equation is
calculated by using the Frechet derivative. Knowing the prolongation of the equation,
the coefficients of the derivatives of u are extracted. The redundant infonnation

Working Examples 285

contained in these equations is eliminated in the next step by inserting the diffusion
equation itself into the prolongation. After the extraction of the coefficients of the
derivatives, a system of determining equations for the infinitesimals results. The
determining equations are linear but coupled. In the next step, a general canonical
representation of these equations is calculated by LieSolve[]. The last calculation step

of LieSolve[] solves the general canonical form. The result of this sequence of steps
is an explicit representation of the infinitesimals for the diffusion equation:

LieSolve["diffuw.dgl"] II L'1'F

- (7'"'1) t + (7'"'1) x,x == 0

~1 == k5 - 2 k2 t + kG x + k4 t x
~2 ==k3+t (2kG+k4t)

(k4 t k4 x 2) <Pi == u kl - -2- + k2 x - -4- + 7'"'1

The result is an infinite dimensional Lie group containing a six-dimensional discrete
subgroup. The group parameters are denoted by kl-k6. The discrete symmetries
serve to construct similarity solutions.

5.6.2.2. Similarity Solution

Knowing the infinitesimals of the diffusion equation, we are ready to solve the
boundary value problem for the earthworm's problem. The additional condition that
the symmetries have to satisfy are confined in the side conditions on the surface and
in the center of the earth. These boundary conditions are

bl=v[O, t] =='1'2 Bxp[I271"t]

v[O, tj == E2IlTt T2

b2 = v[oo, t] == 0

v[oo, tj == 0

Using this complex-valued representation for the temperature, u:: Re(v), we can
check the invariance of the boundary conditions by using the infinitesimals. The
invariance of x :: 0 implies that

(ListXi[ll1 I. x -+ 0) == 0

k5 - 2 k2 t == 0

From this relation, it follows that the group constants k5 and k2 have to vanish. We
collect these results in a list of rules:

rule = {kS -+ 0, k2 -+ O}

{k5 -+ 0, k2 -+ O}

286 Point Symmetries of Partial Differential Equations

The invariance of the first boundary condition bl, on the other hand, yields the
relation

k4t
equtl = kl - -- == J: 2 7T (Listxi[2:D /. x -+ 0)

2

k4 t
kl- -2- == 2 I IT (k3 + t (2 k6 + k4 t))

which has the general solutions

res = Reauce [CoefficientList [equtl /. 1_ == r_ -+ 1 - r. t]

== {O. o. O}. {kl. k3. k4. k6}]

kl == 2 I k3 IT && k4 == 0 && k6 == 0

We transfonn the equations to rules and add it to the list of rules for the group
constants:

Appena'l'o[rule. 'l'oRules[re.]]; rule = rlatten[rule]

{k5 ~ O. k2 ~ O. kl ~ 2 I k3 IT. k4 ~ O. k6 ~ O}

The general representation of the infinitesimals for the diffusion equation thus
reduces to

J:nfinite.i-.l. = {ListXi. ListPhi} /. rule / •

{free[_] [_] -+ o. u[_] -+u}

{ { O. k3}. {2 I k3 IT u} }

The reduction of the original equation follows by applying the function

LieReduction[) in the subgroup of the diffusion equation:

L'l'r [rlatten [LieReauction [aiffu8ion. {u}. {x. t}.

J:nfinitesi-.ls[l:D. J:nfinites!-.ls[2:D]]] /. zetal-+ '1
x - S1 == 0

E-2IlTt U-Fl == 0

IE2IlTt (2lTF1+I (Fll!:l'!:l) ==0

The similarity variable is zetal = x and the solution has the similarity fonn

SimilaritySolution = u -+ runction [,{x. t}.

BJq) [J: 2 7T t] r1 [x]]

U ~ Function [{x. t}. Exp [I 2 IT t] Fl [x]]

Substituting the similarity solution into the diffusion equation gives us

Working Examples 287

[diffusion I. Simi1aritySo1ution]
equat2 = Expand [1]1 == 0;

Exp[J: 2 11" t]

equat2 II LTF

This second-order equation also contained in the result of LieReduction[] is solved
by applying the function DSolve[]:

res2 = sim;p1ify [DSo1ve [equat2, Fl, x]]

{{Fl ~ (E(-l-II -..[;r #1 C[l] + E(l+II v;; #1 C[2]&)}}

Examining the behavior for x --+ 00, we find that the second constant of integration
C[2] has to vanish to satisfy the second boundary condition b2

h1 = Factor [Expand [Simplify [

Trig'l'oZXp[ComplexExpand[P1 [x] I. res2]]]] I.
{C[2] -+ O}]

{E(-l-II vii x C [1]}

Comparing the result with the first boundary condition, we observe that the real part
of C[1] is given by T2 :

h2 = (hl/. C[l] -+ T2) [1]1

The complete solution is thus given by

SimBol = SimilaritySo1ution I. l!'1 [x] -+ h2

U~Function[{x, t}, Exp[I2rrt] (E(-1-IIV;;xT2)]

After a rearrangement of terms in the exponent,

801 = u[x, t] I. SimBol/.

c_. Bxp[a_. Complex[d_, e_] + b_. Complex [f_, ~L]] -+

c Zxp[(ad +b f) + (ae + bg) J:]

ae[aol]

we can extract the real part of the solution by

288 Point Symmetries of Partial Differential Equations

solution = Re [Exp'1'o'l'rig[sol]] II Simplify

Re[(COSh[(1 + I)

((-1- I) l[t + x (COSh[LOg2[l[] 1 + Sinh[LO~[l[] l)) 1 - Sinh[

(1 + I) ((-1- I) l[t + x (COSh[LO~[l[] 1 + Sinh[LO~[l[] l)) l)

The derived solution describes the temperature variation near the surface of the earth.
The solution indicates that the spatial and temporal coordinates are coupled. If now
t = T is the New Year of a person on the surface, then an earthworm will celebrate
New Year at time t = T + ...[1j2; Xl, where Xl is the depth of the earthworm. The
solution in the time and spatial coordinate with unique T2 looks like

Plot3D[Solution/.'l'l-+l, {x, 0, 2}, {t, 0, l},

PlotRange -+ All, PlotPoints -+ 30,

AxesLabel-+ {"x", "t", "un},

ViewPoint -+ {-2.468, -2.587, 1.256}]

1

0.5

~~o:10
u

-0 .5

t

o
A contour plot of the temperature variation illustrates that the worm in a depth of
about 1.5 meters cannot feel any changes in the temperature. Worms which are
between the surface and the 1.5-meter limit are able to realize the temperature
changes during the year. However, the contour plot shows also that a worm located at
a certain depth will measure a certain value of the temperature some time later than
an observer on the surface. This delay is larger for worms living in a deeper region.

ContourPlot[solution/. 'l'l -+ 1, {x, 0, 2}, {t, 0, l},

PlotRange -+ All,

PlotPoints -+ 30, AxesLabel -+ {nx", "t"},

Colorl'unction -+ Rue, Axes -+ 'l'rue]

Working Examples 289

t

1. 5 2 x

This example demonstrates that the package MathLie is not only helpful in finding
the symmetries of a PDE but also can facilitate the solution of boundary value
problems.

5.6.3 Single Flux Line in Superconductors

In another example, let us examine an equation published by Tang et al. [1994].
These authors discuss the dynamics and noise spectra of a driven single flux line in
superconductors. The authors examine the low-temperature dynamics of a single flux
line in a bulk type-II superconductor, driven by the Lorentz force acting near the
sample surface, both near and above the depinning threshold. The equation of motion
they derive without considering the random fluctuations is given by

k "(x,2) U [x, t] }
tang = {"t u [x, t] - ; tang / / LTF

1 + ("x u [x, t]) 2

where u is the shape function of the flux line and k is a constant. As Tang et al. note
the equation of motion in its two-dimensional representation is a valid approximation
when the driving force is very large (j» jc) and the string moves with a high
velocity. The authors discuss only the steady-state solution of the non-linear problem.
We will demonstrate that the symmetries of the equation are the cornerstone for the
solution of the non-steady equation. We will add this example to our database of
equations. The input parameters needed to create the data file containing the
information for Lie[] is given by the independent variables

290 Point Symmetries of Partial Differential Equations

independentVarlables = {x, t}

{x, t}

and the dependent variables

dependentVariable. = {u}

{u}

The parameters of the equations are collected in the list

parameters = {k}

{k}

The parameter k combines the critical field He, the Ginzburg-Landau parameter and
the damping coefficient of the Bardeen-Stephen model. The physical interpretation of
these parameters is discussed, for example, in the book by Tinkham [1975]. We
choose the title of the equation to be

title = {nSingle rlux Line in Superconductors n }

{Single Flux Line in Superconductors}

The source of the equation, contained in a nested list, is given by

source = {{ -c. Tang, S. reng and L. Golubovic n} ,

{-Qynamdcs and Noi.e Spectra of a

Driven Singlerlux Line in Superconductors H },

{"PhyS. Rev. Lett. 72, 1264-1267, (1994) "},

pequation 7"}}

{{C. Tang, S. Feng and L. Golubovic},
{Dynamics and Noise Spectra of a

Driven SingleFlux Line in Superconductors},
{Phys. Rev. Lett. 72, 1264-1267, (1994) L
{equation 7}}

All the information available on the equation is now stored in the file ctang.dgl. The

function LieEquation[] is designed to do it for us. Be sure that you do not use .deq as

an extension of your file names. The extension .deq is reserved for a file containing
the information on the determining equation for the infinitesimals. This file is
automatically created by the functions Lie[], LieSolve[], and LieStructureForm[].

LieZquations [nctang .dgl n. tang.

dependentVariables. independentVariables.

parameters. title. source]

Working Examples 291

After the completion of this line, we added another example to our database of
differential equations. The next step is the determination of the symmetries.

5.6.3.1 Symmetries

Using the infonnation collected in the file ctang.dgl in the calculation for the
infinitesimals, we start the symmetry analysis with

LieSolve [nctang.dgl n] / / LTF

';2 = = kl + 2 k5 t
1>1 = = k2 + k5 u + k3 x

';1 == k4 - k3 u + k5 x

The application of LieSolve[] results in a list of infinitesimals representing a finite
five-dimensional point group. Curiously, the result is that the infinitesimal gl
depends on the variable u. Such a dependence is quite unusual, although it is
possible. All the examples discussed so far do not show this kind of symmetry (cf.
the Burgers and heat equation). The symmetry of the subgroup related to this special
kind of transfonnation allows a rotation in the (x, u)-plane. This rotation keeps the
equation unchanged.

The function LieSolve[] produces, in addition to the infinitesimals, additional
infonnation not displayed on the screen. These results, like the determining equations
of the equation, the original equations themselves, the substitutions, etc. are collected
during the calculation in a separate global variable called FinalResult. The reason

why we introduced a global variable FinalResult is the necessity of having all

infonnation on the calculation available. A printout of the infonnation contained in
FinalResult for our calculation of Tang's problem can be obtained by calling

J!'inalResult / / Flatten / / LieTraditionalJ!'orm / / TableJ!'orm

kux x
Ut - 1 + ~2

x

U kux,x
t 1 + u~

(';2) u

(';2) x

-3 (';d t + k (';d U,u + 2 k (';d X,x - 4 k (1)d X,u

-2 (';l)t +k (';du,u +k (';dx,x -2k (1)d x,u

292 Point Symmetries of Partial Differential Equations

-6 (';1)t + k (';du,u + 5 k (';dx,x -10 k (cPdx,u

- 3 (';1) t + 2 k (.; d u, u + k (.; d x, x - 2 k (¢d x, u

- (';1)t + k (';1)x,x - 2 k (¢dx,u

-6 (';d t + 5 k (';d U,u + k (';d X,x - 2 k (cPd X,u

6 (¢1) t + 10 k (';1) X,u - 5 k (¢1) U,u - k (¢1) x,x

(¢d t - k (¢d X,x

-3 (¢d t -4k (';dx,u +2k (¢du,u +k (¢dx,x

6 (¢1) t + 2 k (';1) X,u - k (cP1) U,u - 5 k «h) X,x

- 2 (¢1) t - 2 k (';1) X,u + k (¢1) U,u + k (¢1) X,x

-3 (¢d t -2k (';dx,u +k (¢du,u +2k (cPdx,x

(cPd t +2k (';dx,u -k (¢du,u

6 (';d x -5 (';2)t +4 (¢d u

8 (';d x - 5 (';2)t + 2 (¢d u

4 (';d x - 5 (';2)t + 6 (¢d u

-2 (';d x + (';2)t

2 (';d x - 5 (';2)t+ 8 (¢d u

(';du+(¢d x

(';d u + (¢d x

(';du+(¢d x

-(';2)t +2 (¢d u

- (';d t + k (';d U,u

LieStructure

Metric

SyrnrnGroup

The last four elements of the list FinalResult are empty or contain symbolic names
which carry no information at this stage of the calculation, Another global variable of
MathLie is called Result2, containing the information on the infinitesimals:

Result2

{{xi [2] ~Function[{x, t, u}, k1+2k5tJ,

phi[l] ~Function[{x, t, u}, k2 +k5u+k3xJ,

xi[l] ~Function[{x, t, u}, k4-k3u+k5x]},

{}}

The global variable Result2 contains the infinitesimals and the remaining equations
of the determining equations not solved by the function PDESolve[]. The function
PDESolve[] is the solver of the package MathLie. For the current equation, all

determining equations are solved. Thus, the last element of Result2 is empty. The
results for the infinitesimals are given by substitution rules usable in other
calculations. For example, an application of this kind of calculation is the reduction
of the equation.

Working Examples 293

We select the subgroup of interest by setting a subgroup of the group constants to a
numeric value and others to a symbolic value. The infinitesimals are thus reduced by

infil = {{xi[l] [x, t, u[x, t]], xi[2] [x, t, u[x, t]]},

{phi [1] [x, t, u[x, t]]}} I. Result2[1] I.
{kl-+ v, k2 -+ 1, k3 0, k4 -+ 1, kS 0, u[__] u}

{{1, v}, {1}}

This special extraction of a subgroup is related to a moving wave solution. Tang's
equation is thus invariant with respect to translations:

rtang = LieReduction[tang, {u}, {x, t}, infil[l], infil[2]];

LTF [Flatten [rtang]] I. {zetal ~,}

t - v x - Sl == 0

u - x - Fl == 0

2 F1" - 2 V F1~, + v 2 F121 - k v 2 F1b1 . b1 == 0

The reduced equation is solved by

mwtang= DSolve[rtang[3, 1] == 0, Fl, zetal]

{SOlve[21k (-kv2 ArCTan[1-VF1'[#l JJ +

2kLOg[Fl'[# lJ 'S'- (2-2vF1'[#lJ +V2F1'[#lJ2)~4-l-2#1l
C [lJ,

{F1' [#1J } l}

The result is an implicit representation of the solution entangling the similarity
function F 1 in trigonometric and logarithmic relations.

Another reduction of the equation follows by the choice k3 = c:

infil = {{xi[l] [x, t, u[x, t]], xi[2] [x, t, u[x, t]]},

{phi [1] [x, t, u[x, t]]}} I.
Result2[1] I. {kl 0, k2 0, k3 c, k4 -+ 0, kS -+ 0,

u[__] -+u}

{{-cu, a}, {cx}}

The related reduction is

294 Point Symmetries of Partial Differential Equations

rltang=LieReduction[tang, {u}, {x, t}, infil[l], infil[2]];

LTr [r1atten [rltang]] I. zetal -+ '1
t - rl == 0

u 2 x 2

-2 - 2 - Fl == 0

-k + Fl" == 0

Solving the reduced equation, we get the explicit representation for the similarity
solution by

sltang = DSo1ve[rltang[3, 1] == 0, rl, zetal]

{{Fl~ (e[l] +k#l&)}}

Inserting this solution into the similarity representation, we end up with an implicit
representation of the solution for the field u:

so11 = r1atten[rltang[2] I. sltang]

This result illustrates that the circles in the (x, u)-plane are dependent on the time t.
The radius of the circle depends on the actual time and on the signs of the constants

C[1] and k. If both constants are negative the radius of the circle increases to infinity
if time t increases. If C[1] is negative and k> 0, we get an upper limit for
t = 1C[1] I/k for which the radius is real. However, if we set C[1] > 0, there exist no
real radii in the (x, u)-plane. We demonstrate this behavior for k = -3/2 and
C[1] = 1/2 for which a lower limit in t exists. The following animation shows the
increase of the radius - k t - C[1] by increasing the time t above the threshold of
t ;:: 1/4:

« Graphics' Z:aq;)licitP10t'

Do [ZmpliciU10t [

u 2 x 2 1
-+-==-kt-C[l] I. {t-+ti, k-+-l.5, C[l] -+-},

2 2 2

{x, -2, 2}, P10tRange-+ {{-2, 2}, {-2, 2}},

P1otPoints -+ 35, P1otSty1e -+ Hue [ti], P10tLabe1-+

." t="<>'l'oString[ti], AxesLabe1-+ {"x", "u"J],

{ti, 1.5, 0.251, - .OS}]

u
2

-2

-2

u
2

-2

-2 - 1

-2

Working Examples 295

t=1.15 u t=1. 05 u t=0.95
2 2

2x -2 2x -2 2x

-2

t=0.85 t=0.75 u t=0.65
2

2x -2 2x -2 - 2x

-2 -2

t=0.55 u t=0.45 u t=0.35
2 2

1 1
\

2 x -2 -1\" 1 2x -2 -1 1 2x

-1 -1

-2 -2

The solution of this quadratic equation in x and u yields the final representation of
the solution of Tang's equation to be

solll = Solve [soll[I], u]

{ { u ~ - V - 2 k t - x 2 - 2 C[1 J }, {u --> V - 2 k t - X2 - 2 C [1 J } }

containing the parameter k of the original equation and one constant of integration

C[l]. The graphical representation of the second solution for parameters k = -2 and
C[l] = 1/2 gives us the impression that the solution has a smooth behavior:

1
ContourPlot [u /. so111[2] /. {k ~ -2, C [1] ~ - },

2

{x, 0, 2}, {t, 2, 4}, ColorFunctioD~Hue, Axes~'l'rue,

AxesLabel ~ {·x·, nt·}]

296 Point Symmetries of Partial Differential Equations

t

5.6.4 The Korteweg-de Vries Equation and Its Generalizations

The aim of this section is the detennination of the point symmetries for different
generalizations of the Korteweg-de Vries equation (gKdV). We first examine the
original equation of Korteweg and de Vries (KdV). The generalizations of the KdV
are based on additional terms, larger sets of independent coordinates, and changes in
the non-linearity. The models examined are all taken from literature and describe
different physical problems. At the end of this section, we collect the results in a table
containing the equation and the symmetries

The Korteweg-de Vries equation is one of the prominent equations in non-linear
physics which describes a highly regular behavior. The KdV equation originally
derived by Korteweg and de Vries [1895] is used to describe shallow water waves in
a narrow channel. The equation was originally designed to describe the experimental
observations of John Scott Russell [1844] that a heap of water travels along the
Edinburgh to Glasgow channel without change of form and with a constant velocity.

Today, the KdV equation is encountered in different physical systems such as in
plasmas, in elastic strings, in lattice vibrations of a crystal at low temperatures, and in
the description of a rotating liquid in a pipe. All these applications start from a more
or less general physical model and end up in the KdV equation by considering a
specific limit of the physical problem. In this sense, the KdV equation is universal.
The universality is contained in the behavior that the dispersion of linear waves is
counterbalanced by the non-linearity. The interaction of dispersion and non-linearity
stabilizes the solution of the equation and results in the outstanding behavior of
regUlarity. This kind of solution is called a soliton by Zabusky and Kruskal [1965]. A
soliton is a special kind of localized wave. More generally, a soliton is a solution of a

Working Examples 297

non-linear equation or system which represents a wave of permanent shape, is
localized, decaying or becoming constant at infinity, and may interact strongly with
other solitons so that after the interaction, it retains its form (cf. Drazin [1983]).

The KdV equation is a non-linear PDE which reads in its standard form

Ut + 6uux + ux,x,x = O. (5.48)

The field u = u(x, t) describes the deviation from the mean water depth in the
shallow water channel application. Our intention here is to show that the KdV
equation not only allows solitons but also other kinds of solutions. To derive these
types of solutions, we first need to know the infinitesimal transformation of the KdV
equation. In Mathematica, the KdV equation is given by

ltdV = 0tu[x, t] + 6u[x, t] oxu[x, t] +ox xu[x, t] == 0;

ltdV / / LT!'

U t + 6 U U x + u x •x •x == 0

The infinitesimals of the KdV follow by

J:nfinitesi_lsltdV = J:nfinitesi_ls [ltdV, u, {x, t}];

J:nfinitesi_lsKdV / / LT!'

k2
<Pl == 6 - 2 k4 U

.; 1 = = k3 + k2 t + k4 x

';2 == kl + 3 k4 t

The result is a four-dimensional finite group containing translation and scaling
transformations.

The second model we examine is the cylindrical KdV equation. This kind of equation
was discussed by Calogero and Degasperis [1978] in connection with the spectral
transform method. The cylindrical form of the KdV equation reads

1
Ut + 6 U Ux + Ux x,x + - U = O. , 2t

The Infinitesimals for this equation follows from

infCylibdicylltdV =
J:nfinitesi_ls[otu[x, t] + 6u[x, t] oxu[x, t] +

1
ax x xU[x, t] + -u[x, t] == 0, u, {x, t}]; • . 2 t

infCylibdicylltdV / / LTF

(5.49)

298 Point Symmetries of Partial Differential Equations

4 k3 - 16 k1 Vt u - 24 k2 t u + k2 x

24 Vt
';1 == k4 + 2 k3 Vt + ~ (2 k1 + 3 k2 Vt) x

';2 == (k1 + k2 Vt) t

We find a four-dimensional finite symmetry group containing translations, scaling,
and two special symmetry transformations.

Another KdV equation closely related to the cylindrical KdV equation is the
spherical KdV equation given by

U t + 6 U Ux + ux,x.x + - U
t

The infinitesimals of this equation are

infsphericalXdV =

0,

J:nfinitesimals [Ot u [x, tl + 6 u [x, t] Ox u [x, tl +

1
ox,x,xu[x, t] + -u[x, t] == 0, u, {x, t}];

t

infsphericalXdV II LTF

¢1 = = k3 - 2 k2 u
6t

';1 ==k1+k4+k2x+k3Log[t]

';2 == 3 k2 t

(5.50)

The symmetry group is a three-dimensional finite group. Compared with the
cylindrical KdV in which the symmetries changed drastically, there is no longer a
rational exponent of t present but logarithmic dependencies in t.

Another kind of generalization of the KdV was given by Ko and Kuehl [1978] in
their discussion of ion acoustic solitons in a non-uniform plasma. The two authors
assumed that the coefficients of the non-linear and dispersive term depend on time.
The KdV for such a slowly varying medium is given by

Ut + a(r) u Ux + {J(r) ux,x.x = ° and a, {J > 0, (5.51)

where the coefficients a and {J are arbitrary positive functions of a slow time variable
r = E t. The infinitesimals for equation (5.51) are given by

infVaryingXdV = J:nfinitesimals[

0tu[x, tl +a[etl u[x, tl oxu[x, t] +f;l[et] ox,x,xu[x, tl ==0,
u, {x, t}, {e}l;

infVaryingXdV II. TraditionalLiel'orm I.
{Rule -+ Equal, HoldPattern[l'unction[x_, Y-ll -+ y} II Sort II

Tablel'orm

Working Examples 299

~1 ==k2+k1f>X[DSolve'tE] dDSolve't

~2 == 0

CP1 == kl

The infinitesirnals of equation (5.51) show that a discrete group of dimension two
exists. Surprisingly, this symmetry group depends on an integral over the coefficient
of the non-linearity J: a(€t') dt' and not onf3. A similar equation extended by linear

derivatives was discussed by Chan and Li [1994] in connection with the non-standard
dynamics of solitons (oscillating or standing). The equation discussed by Chan and Li
in connection with the inverse scattering theory is given by

(5.52)

where leo, k" and h are continuous functions of t. Equation (5.52) reduces to the
modified KdV equation when leo = 1 and k, = h = O. The symmetries of equation
(5.52) are

infNonPro,pagatingKdV = Xnfinitesimals[

Cltu[x, t] +kO[t] (6u[x, t]2 Clxu[x, t] +Clx,x,,.u[x, t]) -

h[t] (xClxu[x, t] +u[x, t]) +k1[t] Clxu[x, t] == 0, u, {x, t}];

infNonPro,pagatingKdv II LTI'

3 h ko r 2 + k1 (r1 (ko) t - 2 ko (r1) t) + 3 ko (-r1 (k1) t + (r2) t) == 0

-r1 (ko)~ +ko ((ko)t (rd t +r1 (ka)t,t) +k~ (3ht r 1 +3h (rd t + (rdt,t) == 0

~ __ r x (r1 (ka) t + ko (r1) t)
"'1 -- 2 + 3 ko

~2 == r 1

" __ u (r1 (ko) t + ko (r1) t)
'+'1 -- - 3 ko

The infinitesimals of Chan's equation define an infinite dimensional symmetry
group. The symmetries are defmed by the two arbitrary functions freef 1] andfreef2]

and the coefficients ko, k" and h. One of the arbitrary functions, freef 1], occurs in
the infinitesimals, whereas the other is contained in the remaining determining
equations. Equation (5.52) demonstrates that MathLie is capable of handling
equations with general analytic coefficients.

A related model to Chan's was discussed by Fung and Au [1982] to bridge the
solutions and vacuum states of the KdV equation and the equation

Ut - 6u2 Ux + ux,x,x + 6AUx = 0 (5.53)

with A a real parameter. Equation (5.53), despite of the sign in the non-linearity,
follows from Chan's model by setting h = 0, leo = I, and k, = 6A. This A-dependent
model allows the infinitesimals

300 Point Symmetries of Partial Differential Equations

infAXdV = l:nfinitesimals[Btu[x, t]-6u[x, t]2 Bxu[x, t] +

Bx,x,xu[x, t] +6ABx u[x, t] ==0, u, {x, t}, {A}];

infAXdV II LTF

¢1 == -k3 U

~1 == k2 + k3 (x + 12 t A)

~2 == k1 + 3 k3 t

We realize that the restrictions on the Chan equation (5.52) lead to a
three-dimensional symmetry group allowing translations and scalings.

In connection with traveling wave solutions, Yang [1994] examined the generalized
KdVequation

u t + 13 uO! Ux + ux,x,x = 0, (5.54)

where a and 13 are real numbers. This equation reduces to the original KdV equation
and the modified KdV equation for 13 = 6 and a = 1, 2, respectively. Other
combinations of a and 13 are known and discussed in connection with ion acoustic
waves in cold-ion and multi-component plasma (cf. Yang [1994]). The infinitesimals
of this gKdV equation are

infGKdV = l:nfinitesimals[

Btu[x, t] +J3u[x, t]QBxu[x, t] +Bx,x.xu[x, t] ==0,

u, {x, t}, {a, J3}];

infGKdV II LTF

2 k3 u
30:

'" == k1 + k3 x
"1 3

~2 == k2 + k3 t

a set of transformations depending on three group parameters and on the exponent a.
We also observe that the symmetry group does not depend on the non-linearity factor
{3.

Discussing weakly non-linear, long-wavelength waves propagating on the surface of
an incompressible, inviscid, irrotational fluid, the following perturbed KdV equation
arises:

U t + 6 UUx + ux,x,x + E (-au2 Ux + f3uux.x + YUx ux,x + 8ux,x,x,x,x) = o. (5.55)

Here, a, 13, y, 8, and E are constant parameters. E is the amplitude-to-depth ratio and is
assumed to be much smaller than unity; IE I « 1. This kind of KdV equation was
examined by Alexeyev [1994] in connection with Backlund transformations and by
Porsezian and Lakshmanan [1993] in connection with higher-order integrable
models. The infinitesimals of this higher-order PDE follow from

Working Examples 301

infPKdV =
:Infinit.simals[atu[x, t] +6u[x, t] B"u[x, t] +ax, .. ,xu[x, t] +

e (-au[x, t]2 a"u[x, t] + ~u[x, t] Bx,xu[x, t] +

¥axu[x, t] Bx,xu[x, t] +6B(x,5)u[x, t]) == 0,

u, {x, t}, {a, ~, ¥, 6, e}];

infPKdV II LTF

<Pl == 0
~l == kl

~2 == k2

This equation allows only a two-dimensional finite symmetry group representing
translations in the independent variables.

A model extending the KdV equation by an additional dispersive term of second
order is discussed by Parkes [1994]. This so-called Korteweg-deVries-Burgers
(KdVB) equation reads

Ut + UUx + J1 u x•x•x - v ux,x = 0,

where J1 and v are real constants. The infinitesimals of (5.56) are

infKdVB = :Infinit.si_ls[Btu[x, t] +u[x, t] axu[x, t] +

IA ax,x,x u [x, t] - v ax,x u [x, t] == 0, u, {x, t}, {lA, v}];

infKdVB II LTF

<Pl == k3
~l == k2 + k3 t
~2 == kl

(5.56)

The resulting symmetries of the KdVB equation form a three-dimensional group
independent of the model parameters. In connection with two-dimensional spatial
solitons, Parkes [1994] and Ma [1993] discussed a two-dimensional KdVB equation
of the form

(Ut + U Ux + J1 u x•x•x - v ux.x)x + 0' u y•y = O. (5.57)

The infinitesimals of this (2 + I)-dimensional equation follow by

inf2KdVB = :Infinitesimals[

Bx (at u [x, y, t] + u [x, y, t] ax u [x, y, t] + IA ax,x,x u [x, y, t]) +

aay,yu[x, y, t] == 0,

u, {x, y, t}, {lA, v, a}];

inf2KdVB II LTr

302 Point Symmetries of Partial Differential Equations

<P1 -- _ 4 u a Cr 1) t - 6 a ('1"3) t - 2 x a ('1"1) t.t + 3 y ('1"2) t.t + y2 ('1"1) t t.t
-- 6 a

". __ 6 a '1"3 + 2 x a (1"1) t - y (3 (1"2) t + y (1"1) t t)
"1 -- 6 a

2
~2 == 1"2 + 3 Y (1"1) t

~3 == 1"1

By adding an independent variable to the field u, the symmetry group of the
one-dimensional (lD)-KdVB equation makes a transition to an infinite dimensional
symmetry group. The two arbitrary functions free[l] = 'F[and free[2] = 'Fi are not
restricted by any equation. We note that the symmetry group depends on the
parameter (T.

A last example demonstrates the application to a complex field. In this case, the KdV
equation finds its application in the asymptotic investigation of electrostatic waves of
a magnetized plasma. This problem of elastostatic waves is discussed by Mohammad
and Can [1995]. The complex-valued KdV equation is given by

W, + a « I W 1)2 w)x + f3 wx.x,x = 0, (5.58)

where w is the complex field amplitude w = u + iv, and a and f3 are real parameters.
The representation in real field variables u and v is given by

u, + a (u 3)x + f3 ux.x.x + «a(uv2 »x = 0,

v, +a(v3)x + f3vx,x.x + «a(vu2 »x = o.
The infinitesimals of this system of equations are

infCKdV = :tnfinitesimals[{otu[x, t] +aox (u[x, t]3) +

/3o",x,xu[x, t] +aox (u[x, t] v[x, t]2) == 0,

Otv[x, t] +ao" (v[x, t]3) +

/3o",,,,xv[x, t] +aox (v[x, t] u[x, t]2) == O},

{u,v}, {x,t}, {a,/3}];

infCKdV / / LTF

<P1 == - k4 U + kl v
3

1
<P2 == 3 (-3 kl u - k4 v)

~1 == k2 + k4 x
3

~2 == k3 + k4 t

(5.59)

(5.60)

The symmetry group is a four-dimensional discrete group containing translations, a
rotation, and a scaling transformation.

All the calculations carried out above are collected in the following table containing
the equation, the symmetries, and the dimension of the symmetry group.

KdV type equation

Ut +UUx +Ux,x,x == 0

2Ut + Ut + 6 u U x + ux,x,x == 0

f + Ut + 6 u U x + ux,x,x == 0

Ut + U a. U x + {3 ux,x,x == 0

Ut + k1 Ux - h (u + x u x) +

ko (6u2 Ux +UX,X,X) == 0

Ut - 6 u 2 U x + 6 A U x + ux,x,x == 0

lit +ua /3ux +ux,x,x == 0

Ut + 6 u U x + U X , x, x +

E (_u2 aux +u(3ux ,x +

y U x ux,x + 6 ux,x,x,x,x) == 0

Ut + U U x - v U x , x +

f-1 Ux,x,x == a

u~ +ux,t +uux,x +

a Uy,y + J..i. ux,x,x,x == 0

Ut + 3 u 2 a Ux + a (v2 Ux + 2 U v v x) +

(3 ux,x,x == 0

Vt + 3 v 2 a Vx + a (2 U v Ux + u 2 v x) +

(3 vx,x,x == 0

Working Examples 303

Infinitesimals

ch == k62 - 2 k4 U

';1 == k3 + k2 t + k4 x
';2 == k1 + 3 k4 t

"'1 4 k3-16 k1..rt u-24 k2 t u+k2 x
"II -- 24 "It

~1 ==k4+2k3Vc +t (2k1+3k2Vc) x

~2 == (k1 + k2 Vc) t

¢1 = = ~! - 2 k2 U

,;, == k1 + k4 + k2 x + k3 Log [t]

';2 == 3 k2 t

';1 ==k2+k1g a[Et'] dlt'

';2 == 0

cP1 == k1

3 h ko 'T2 + k1 (1"1 (ko) t - 2 ko (1"1) t) + 3 ko (­

'T1 (k1)t + (1"2)t) == 0

-'T1 (ko)~ +ko «ko)t (1"llt +1"1 (ko)t,t) +k~ (3ht 1"1 +

3 h (1",) t + (1"1) t, t) == 0

';, =='T2 + x(r, (kO)t+kO (rll t)
3 kO

';2 == 'T1
<lh ___ U (1"1 (ko)t +ko Crl)t)

3 ko

¢1 == -k3 U

';1 == k2 + k3 (x + 12 t A)

';2 == k1 + 3 k3 t

cP1 ___ 2;~U

';1 == k1 + k;X

';2 == k2 + k3 t

¢, == 0

,;, == k1

';2 == k2

cP1 == k3

';1 == k2 + k3 t

';2 == k1

cP1 ___ 4 u a (1"1) t -6 a (1'3) t -2 x a (1"'1) t t +3 y (1"2) t t +y2 (1"1) t t t

60

c; 1 = = 6 a 1"3 +2 x a ('1'"1) t -~ ~3 (1""2) t +Y (r1) t t)

';2 == 1"2 + t y (1",) t

';3==1"1

cP1 == - k; u + k1 V
¢2 == + (-3k1u-k4v)

';1 == k2 + k~X

';2 == k3 + k4 t

Table 5.1

Dim

4

4

3

2

3

3

2

3

4

304 Point Symmetries of Partial Differential Equations

We note that the symmetries of the examined KdV-type equations can be quite
different in their form. The order of the symmetry groups range from two to infinity
and the symmetries are far from being always polynomial. The collection of these
symmetry groups also illustrate that the access to symmetries is very simple and that
a large number of models can be examined within a short period. This is the real
power of computer algebra in connection with symmetry analysis that the
information is available in split seconds and that variations of the equation can be
checked very quickly.

5.6.5 Stokes' Solution of the Creeping Flow

Let us consider the creeping motion of a fluid stream of speed U around a solid
sphere of radius a. The physical situation is shown in the following figure.

118

~

~ Ur

U ~

---.
~

~

~

Coordinate system

It is convenient to use spherical coordinates (r, ()). We choose the origin of () in such a
way that () = 0 defines the direction of U. The velocity components U r and Uo are
related to the Stokes stream function '¥ in spherical coordinates by the relations

08i1![.r,9]], StreamFunction = {ur l'unction[{r, 9},
rl S1n [9]

Or iI![r, 9]
uth l'unction[{r, 9}, -]}

r Sin[9]

{ . [Oe (j! [r, a] 1
ur ~ Funct~on {r, e), r2 Sin [a] ,

. [Or (j! [r, a] l}
uth~Funct~on {r, 6), - rSin[a]

In the case of creep flows, the motion has a Reynolds number much less than unity.
A consequence of this fact is that we can neglect acceleration terms in the momentum

Working Examples 305

equation. The momentum equation for the stream function is derived by applying the
Laplacian in spherical coordinates:

Applying this operator twice to the stream function 'P, we find the governing equation

Momentum = Operator [Operator [ill [r, e]]]; Momentum II L'l'1'

_ 6 Cot [e] !lie + 4 Cot [e] !lir,e + 6 !lie,e _ Cot [e] !lir,r,e _ 4 !lir,e,e
r 4 r 3 r 4 r 2 r 3

o

(Csc [e]2 !lie _ Cot [e] !lie . e + !Ii + !lie,e,e)
Cot [e] r 2 r 2 r,r,e r 2

!Ii + !lir,r,e,e + 2- (_ 2 Cot [e] Csc [e]2 !lie +
r,r,r,r r2 r2 r2

2 Csc [e]2 !lie,e

r 2

Cot [e] !lie,e,e
r2

!Ii !lie,e,e,e)
+ r,r,e,e + r 2

The resulting equation is a fourth-order linear partial differential equation in spherical
coordinates. The equation, although linear, contains a lot of analytic coefficients.
This linear equation is an example to test the reliability of MathLie. Extending our
database by creating another file called stokes.dgl containing the information on this
equation helps us to derive the symmetries of the equation:

LieEquations["stokes.dgl", {lIoIIDentum}, {III}, {r, e}, {},
{"Creeping flow for an immersed sphere H },

{{"G.G. Stokes"},
{"Trans. Camb. Phil. Soc. 9, 8-106, (18S1)")},

SUbstitutionRules {B(r,,) ill [r, 9]}]

The Lie point symmetries of the momentum equation are derived by

LieSol ve [• stokes. dgl"] II L'l'1'

-3 Cot [e] (2 + Csc [e]2) CT')e +

o

4rCot[e] (9'"llr,e + (6+cot[e]2 +2csc[e]2) (9'"d e ,e-

2 r2 Cot [e] (9'",) r,r,e - 4 r (9'",) r,e,e - 2 Cot [e] (9'",) e.e.e +

r 4 (9'",) r,r,r,r + 2 r2 (9'",) r,r,e,e + (9'",) e,e,e,e ==

~2 == 0
~, == k2 r

(/), == kl!li + 9'",

306 Point Symmetries of Partial Differential Equations

The analysis shows that Stokes' model of creeping flow owns an infinite symmetry as
expected for linear equations. The continuous part of the symmetry group is
determined by the arbitrary function 'Fi = free[l][r, 0]. The function 'Fi has to
satisfy the original linear fourth-order PDE. The two constants k1 and k2 are the
determining elements of the finite group representing a scaling symmetry of the
momentum equation. Knowing that the momentum equation allows only a scaling
symmetry, we can use this information to reduce the PDE to an ODE. The
application of the function LieReduction[] delivers for the scaling group k1 =1 and
k2=a an ordinary differential equation of fourth order. Unfortunately, this ODE is not
solvable by DSolve[].

rmoment = LieReduction[{Momentum}, {!I!}, {r, e}, {r, OJ, {a!l!}];

LTI'[l'latten[rmoment]] /. zeta1-+ ~1

e-S'l == 0
r~a ill - Fl == 0

r a (- 6 a F 1 + 11 a 2 F 1 - 6 a 3 F 1 +

o

a 4 Fl - 6 Cot [S'l] (F1) S1 + 6 a Cot [S'l] (F1) S1 -

2 a 2 Cot [S'd (Fd Sl - 3 Cot [S'd Csc [S'1]2 (F1) 1:1 + 6 (Fd Sl.Sl -

6a (Fds1,Sl +20:2 (Fd",Sl +Cot[S'1]2 (Fd!:l,!,'l +

2Csc[S'd 2 (Fd(1.b1 -2Cot[S'd (Fde,Sl,!:l + (Fds1,Sl,Sl,!,'1) ==

A closer look at the above result reveals that the stream function 'I' can be represented
by a product of a radial component and a function containing the angular part:

stream = II! -+ Function [{r, e}, r a g [e]]

ill --. Function [{r, e}, rO g [ell

We replaced FI in the similarity solution by g. Inserting this result into the original
equation, we get

Momentum /. stream
mom1 = Expand [] ; mom1 / / LTF

r-4 +a:

-6 g a + 11 g a 2 - 6 g 0:3 + g 0:4 - 6 Cot [e] ge + 60: Cot [e] gEl -

o

20:2 Cot[e] ge - 3 Cot[e] Csc[e]2 ge + 6 ge,e - 6 age,e + 2 a 2 ge,e +

Cot [e]2 ge,e + 2 Csc [e]2 ge,e - 2 Cot [e] ge,e,e + ge,e,e,e ==

which is an equation in rand O. The remaining equation for g is a linear ODE of
fourth order. This type of equation is equivalent with the equation gained by
LieReduction[]. Since we already noted that the equation is not solved by DSoIve[],
we try an ansatz for the angular part g(0) by

sub = go ... Function [8, Sin[8]2]

g-+Function[e, Sin[e]2]

Working Examples 307

which reduces the determining equation for g to a polynomial in a of fourth order:

pol = Simplify [_1 I. sub]

pol
poll = ---­

Sin[8]2

The solutions for the exponent a are found by solving this fourth-order polynomial

exponents = Solve [poll == 0, a]

{{a-+-l}, {a-+l}, {a-+2}, {a-+4}}

This list is the basis for a combination of the radial components

radialpart = rex I. exponents

{ 1 2 4 } r' r, r I r

Since the four solutions for a are independent of each other, a linear combination of
the radial parts provides

f=PlusOO(Table[c[i], {i, 1, 4}) radialpart)

~ + r c [2] + r2 c [3] + r 4 c [4]
r

The final representation for the stream function is thus

StreamF = f Sin[8]2

(C~l] +rc[2] +r2 c[3] +r4 C[4]) Sin[e]2

Up to now, we did not consider any boundary conditions for the problem. As one
boundary condition, we have to assume that the derivatives of the stream function
with respect to r and (J vanish at the surface of the sphere. This results in

surfl = (ar StreamF I. r ... a) == 0

308 Point Symmetries of Partial Differential Equations

surf2 = (D" Stream!' /. r -+ a) == 0

2 (C[al] +ac[2) +a2 c[3) +a4 C[4)) Cos[e) Sin[e) == 0

These two non-slip conditions for the surface are sufficient to determine two of the
four integration constants e[i]:

ieonstants = Solve[{surfl, surf2}, {e[l], e[2], e[3], e[4]}]

Solve: :svars :

Equations may not give solutions for all "solve" variables.

The representation of the stream function reduces thus to

Stream!' = Simplify [StreamF /. ieonstants] [1]

1 2
2r ((a-r)

(3 a 3 C [4) + 6 a 2 r C [4) + 2 r (c [3] + r2 C [4)) + a (c [3] + 4 r2 c [4]))

Sin[e)2)

containing two arbitrary constants e[3] and c[4]. If we consider the stream function
for large values of r, we observe that the dominant changes result from the r4 and ?
terms in the solution:

Series [Stream!', {r, , 2}]

c[4] Sin[e]2

(+) 4

If we assume that the radial and angular components of the velocity are finite for
large r, we have to set c[4] = a and c[3] = UI2.

U
Stream!' = StreamF /. {c [4] -+ 0, e [3] -+ - }

2

(a - r) 2 (a + 2 r) U Sin [e] 2

4r

The stream function 'P is thus defined by

1 22 (a 3r 2r2) !I! [r_, 8_, a_, u_] := - Sin[8] a U - - -- +--
4 r a a 2

Working Examples 309

This representation in spherical coordinates can be used to display the stream
function in a Cartesian coordinate system. To this end, we have to transform the
coordinates by

coordTrafo = {r -+ .y X2 + y2 , e -+ ArcTan [x, y]}

{r -JX2 + y 2 , e ArcTan [x, y]}

To suppress the singularities at x=O and y=O, we introduce the condition

ps = l:f [x == 0 tete y == 0, 0, !Ii [r, e, 1, 1] / . coordTrafo]

If [x==O&&y==O, 0 , \I![r, e, 1,1] / . coordTrafo]

The representation of the stream function in x and y is thus given by

Show[{ContourPlot[ps, {x, -3, 3}, {y, -3, 3},

PlotPoints -+ 25,

Colorrunction -+ Hue, AxesLabel -+ {nxn, nyn}, Axes -+ True,

Contours -+ 25, Disp1ayFunction -+ l:dentity],

Graphics [Disk[{O, O}, 1]]}, AspectRatio -+ Automatic,

DisplayFunction -+ $DisplayFunction]

y

x

- 2

-3
-3

The black disk in the center of the picture represents the sphere. The different
shadings outline the different strengths of the stream function around the disk.

The velocity components follow immediately by using the definitions

310 Point Symmetries of Partial Differential Equations

Oeil![r, e, a, U]

r 2 Sin[e]

"r ill [r, e, a, U]
uth [r_, e_, a_, U_] : = - -------­

r Sin [e]

A representation of the radial component of the velocity in Cartesian coordinates
follow by

ul = ur[r, e, 1, 1] I. coord'l'rafo

(~ - 3 Vx2 + y 2 + 2 (x 2 + y 2)) Cos [ArcTan [x, y]]
vx2 +y2

2 (X2 + y2)

The graphical representation in a contour plot shows the orthogonal orientation of the
velocity field U r to the stream function:

Show [
{ContourPlot[:If[x==O&:&:y==O, 0, ul], {x, -3, 3}, {y, -3, 3},

PlotPoints -+ 25, Colorl'unction-+ Hue, AxesLabel-+ {"X", lIyll},

Axes -+ 'l'rue, Contours -+ 25, Displayl'unction -+ :Identity],

Graphics[Disk[{O, O}, 1.1]]}, AspectRatio-+Automatic,

Displayl'unction -+ $Displayl'unction]

y

x

The related representation of the angular part of the velocity field is given by

u2 = uth[r, e, 1, 1] I. coord'l'rafo

(-3 -~ + 4 VX2 + y 2) Sin [ArcTan [x, y]]
x +y

4 VX2 + y 2

Working Examples 311

The graphical illustration of the angular component Uo is

Show [
{ContourPlot[J:f[x==O&:&:y==O, 0, u2], {x, -3, 3}, {y, -3, 3},

PlotPoints -+ 35, Color!'unction-+ Bue, AxesLabel-+ {"x", "y"},

Axes -+ True, Contours -+ 25, Display!'unction -+ J:dentity] ,

Graphics [Disk[{O, O}, 1 . 1]]}, AspectRatio -+ Automatic,

Display!'uDction -+ $Display!'unction]

y

I-----IH X

In this section, we presented the derivation of Stokes' classical solution of the
creeping flow around a sphere. Contrary to Stokes, we did not guess the solution by
an ingenious ansatz. The solution in our calculation followed directly from the
symmetry analysis of the problem. This example illustrates the strength of this
method by a straightforward calculation.

5.6.6 Two-Dimensional Boundary Layer Flows: Group Classification

In this section, we examine the problem of an incompressible boundary layer flow
over a flat plate. We will not solve the physical problem but discuss the symmetries
of several related models. The models differ from each other in the behavior of the
vertical velocity component above the boundary. We demonstrate that the models are
the result of group classification of the general equation. We show that the symmetry
of the different models is closely connected with the symmetry of the general model.
In addition, we illustrate that MathLie is capable of extracting these models from a
symmetry calculation. The physical arrangement of the flow is given in the following
figure. The flow above a plate is governed by the mainstream velocity W. The
coordinates are denoted by x and y and the velocity components in the two directions
are u and v, respectively.

312 Point Symmetries of Partial Differential Equations

w
~

y v ...

t ~ L ... u

... D I

The general two-dimensional, steady, laminar incompressible boundary layer
equations follow from the Navier-Stokes equations if we neglect buoyancy. The
resulting equations are the continuity equation and the momentum equation for
steady flow (Lamb [1945]):

u x + Vy = 0,

u ux + v uy - W(x) Wx - Tf Ux.x = o.

(5.61)

(5.62)

Here, W = W(x) is a known function describing the mainstream flow velocity in the
x direction and Tf is the kinematic viscosity. The boundary conditions to be satisfied
are

U(x, y = 0) = vex, y = 0) = 0 (5.63)

and

U(x,oo) = W(x). (5.64)

If we denote by

u = u [x, y] ; v = v [x, y];

the velocity fields in x and y directions, we can write the left-hand side of the two
equations in Mathematica by

bound = {axu+ayv, ua"u+vByU-W[x] BxW[x] -T/B(y.2)U};

bound II L'1'J'

U x + Vy == 0

U U x + v U y - W Wx - T) Uy,y == 0

The equations bound constitute a system of equations in two dependent variables U

and v. This is a system of partial differential equations of parabolic type. The
equations are today known as Prandtel's boundary layer equations. If we now define a
stream function by

stre_ = {u ... Function [{x, y}, ay III [x, y]],

v ... FuDction [{x, y}, -ax ill [x, y]]}

{u --+ Function [{x, y}, Oy iii [x, y]] ,

v --+ Function [{x, y}, -ax iii [x, y]] }

Working Examples 313

we can reduce the two equations of motion to a single equation given by

boundl = bound / •• tre_; boundl / / L'l'1'

True
-WWx + iliy ilix,y - ilix iliy,y - YJ iliy,y,y == 0

representing a non-linear partial differential equation for the stream function 'P of
third order. In the following, we will analyze this equation to derive explicit solutions
for different mainstream velocities W. Utilizing the functions of MathLie, we are able
to determine the symmetries by

symbound = :Infinitesimals [{boundl[2B}, {III}, {x, y}, {I1}];

symbound / / L'l'1'

<Pl == kl

~l == 0
~2 == 'Tl

The result shows that the equation for the stream function with arbitrary mainstream
velocity allows only a translation with respect to the stream function. In the
following, we will examine the influence of the mainstream function on the
symmetries.

5.6.6.1 The Blasius Solution

If we assume that the mainstream velocity is a constant W(x) = w as in the problem
discussed by Blasius [1908], the symmetry analysis results in the representation of
infinitesimals:

main.tre_ = w ... i'uDction [x, w];

symbound =
:Infinitesimal. [{boundl[2J} /. mainstre_, {iii}, {x, y}, {I1, w}] ;

symbound / / L'l'1'

<Pl == kl + k2 iii
~l == k3 + k4 x
~2 == (-k2 +k4) y+'Tl

314 Point Symmetries of Partial Differential Equations

The similarity reduction for this model follows by using the function LieReductionD.
Let us first examine the reduction of the four-dimensional group with respect to
translations. This subgroup is selected by the group constants k3, kl, and the arbitrary

function freel1] which we set equal to a constant. The related infinitesimals are thus
given by

infil = {{xi [1] [x, y, Ill], xi [2] [x, y, ill]},

{phi [1] [x, y, Ill]}} /. aymbouDd /.

{kl ... 1, k2 ... 0, k3 ... 1, k4 ... 0, free[l] [x] ... c:}

{{I, c}, {I}}

The reduction of the equation follows for this subgroup to

redl = Lieaeduc:tion [

{bouDdl[2:O} /. _inatre_, {Ill}, {x, y}, infil[l:O, infi1[2D];

L'l'F [Flatten [redl]] /. zetal ... tl

-c x + Y - Sl == 0

-x + Y! - Fl == 0

-FI"", - 17 FI" ," ," == 0

The related similarity solution is obtained if we integrate the third-order ordinary
differential equation

sredl = DSolve[redl[3, 1:0 == 0, 1'1, zetal]

{{F1~ (C[I] +E-'o' C[3] +C[2] #l&)}}

and insert the result into the representation of the solution

aaredl = Solve [Flatt_ [redl[2:O /. aredl], Ill]

{{Y!~x+C[l] + (-cx+y) C[2] +E--c;+y C[3l}}

The stream function '¥ is determined by three integration constants C[i], i = 1,2,3.
The solution was derived under the condition that the problem allows the invariance
of translation in the independent and dependent variables. The corresponding
components of the velocity fields follow by

rule = Ill ... runc:tion [{x, y}, w] /. (ssredl /. III ... w) ;

velocities = {u[x, y], v[x, y]} /. stre_ /. rule

Working Examples 315

-c x+y -cx+y
E--ry- C [3] c E--ry- C [3]

{C[2]- 17 ,-l+cC[2]- 17 }

where c is the group parameter and C[2] and C[3] are constants of integration.

Another subgroup of the Blasius model for the steady two-dimensional flow for a flat
plate is the scaling invariance. This kind of invariance is selected from the total group
if we set the group parameters k2 and k4 equal to a constant value. We get the
infinitesimals from

infil = {{xi [1] [x, y, !II], xi [2] [x, y, !II] },

{phi [1] [x, y, !II]}} I. symbouDd I.
{kl 0, k2 c, k3 ... 0, k4 ... 1, free [1] [x] O}

{{x, (l-c) y}, {cYi}}

The second reduction of the equation follows by

red2 =
S~lify[PowerZXpan4[Li.R.duction[{bouDdl[2]} I.mainstr ... ,

{!II}, {x, y}, infi1[l], infi1[2]]]];

L'l'J' [Flatten [red2]] /. zetal ... '1
Solve: :tdep :

The equations appear to involve transcendental functions

of the variables in an essentially non-algebraic way.

X-i.e y -!;;i == 0

X- e Yi - Fi == 0
4c 4c

y--=c s;=C ((-1+2c) (Fd~, -CF i (Fdr"r, -17 (Fd r" r,,1:,) ==0

If we try to solve this type of equation by DSolve[], we get the result

DSolve[red2[3], 1'1, zetal]

[{
4c 4c ,2

DSolve y--=c zeta1 -==- ((-1 + 2 c) F1 [zeta1] -

cFl[zeta1] Fl"[zetal]-lJFl(3) [zeta1]) == OJ,

Fl,

zeta1]

However, we can use Lie's methods to examine the symmetries of this ordinary
differential equation. The symmetries of this equation are given by

316 Point Symmetries of Partial Differential Equations

'c 'c
red2eq = Thread[red2[3, 1] /y-= zetal-=, Equal];

iblasius = :Infinitesimals [red2eq, Fl, zetal, {c, 17}];

iblasius / / LTF

¢1 -F1 k2

~1 k1 + k2 zeta1

demonstrating that the Blasius equation allows a two-dimensional symmetry group
containing a translation with respect to the independent variable zetal and a scaling
in the independent and dependent variables. Since the Blasius equation is a
third-order ODE but the symmetry group is of dimension two, we know from
Chapter 4 that at least a reduction of the order is possible. At this point, the solution
procedure ends since the number of symmetries is smaller than the degree of the
ODE.

5.6.6.2 Falkner-Skan Solution

For the same geometrical situation, Falkner and Skan [1931] proposed that the
mainstream velocity W(x) is a power law function of the horizontal coordinate. We
define this relation as

mainstream = W -+ Function [x, k x!"]

W -'> Function [x, k x"' J

where k and m are real constants. The symmetries of the stream function qt are
determined for this case by

symbound = :Infinitesi_ls [

{boundl[2]} /. mainstream, {iii}, {x, y}, {ry, k, m}];

symbound / / LTF

¢1 == k1 + k2 <l!

~1
2 k2 x
l+m

~2
k2 (-1 + m) y

+ 1'1 l+m

For the Falkner-Skan model, we find a two-dimensional discrete symmetry group
and, in addition, an infinite dimensional group represented by free[l] = 'f'i.
Compared with the case when W is arbitrary, the group is enlarged by an additional
degree of freedom. With respect to the Blasius group, the dimension is reduced by
two components. The main symmetries consist of a translation and a scaling. Let us
first discuss the translation symmetry. The related infinitesimals follow by setting kl
andfree[1] to constants:

infi1 = {{xi [1] [x, y, ill], xi [2] [x, y, III]},

{phi [1] [x, y, III]}} I. symbound I.
{k1-+ 1, k2 -+ 0, free[l] [x] -+ c}

{{O, c}. {l}}

The reduction of the stream function equation follows by

red1 =

Working Examples 317

Simplify[PowerExpaDd[Lieaeduction[{b0un41[2D} I. mainstream,

{III}, {x, y}, infi1[lD, infi1[2D]]];

L'l'J'[I'latten[red1]] I. zeta1-+ '1
x - Sl == 0

- Y... + ~ - Fl == °
C

_k2 msim == 0

The result is somehow surprising since it does not contain any reduction of the
original equation. If we examine the equation for the stream function, we observe that
all terms contain derivatives with respect to the coordinate y which single out the
similarity solution. Only the additive term containing the mainstream velocity W

remains in the reduction. The result shows us that under the symmetry of translations,
only a solution depending linearly on the vertical coordinate y exists.

The other type of symmetry contained in the Falkner-Skan case represents a scaling.
The reduction for the scaling symmetry is given by

infi1 = {{xi [1] [x, y, III], xi [2] [x, y, III]},

{phi [1] [x, y, III]}} I. symbound I.
{k1-+ 0, k2 -+ c, free[l] [x] -+ O}

where we set the group parameters k2 equal to a constant c. The reduction of the
equation for the stream function follows by

red2 =
Simplify[PowerZXpand[Lieaeduction[{bound1[2D} I. mainstream,

{III}, {x, y}, infi1[lD, infi1[2D]]];

L'l'I'[I'latten[red2]] I. zeta1-+ '1
Solve: :tdep :

The equations appear to involve transcendental functions

of the variables in an essentially non-algebraic way.

318 Point Symmetries of Partial Differential Equations

xi- (-l+m) Y - Sl == 0

xi- (-l-m) iJ! - F, == 0

y-~~m s;M'm (-2m (F1)~, + (l+m) F, (F ')!:l,!:l +2 (k2 m+1')

(Fd!:l,!:l,!:l)) == 0

Again, DSolve[] is unable to find a solution. The type of the resulting equation is the
same as the equation in the Blasius model. The same arguments apply here. The
number of symmetries of the equation is not sufficient for an integration. This is one
reason why the Falkner-Skan equation is an unsolved problem. We will not examine
the numerical solution of this equation which actually was carried out by Falkner and
Skan [1931] in their paper. However our interest is concerned with other possibilities
to model the mainstream velocity. There is another case which enlarges the number
of symmetries of the steady two-dimensional flow.

5.6.6.3 Exponential Mainstream Velocity

Another way to choose the mainstream velocity is to assume an exponential increase
in the horizontal direction. The function of this type is given by

mainstream = W -+ Function [x, k Exp [a x]]

W~Function[x, kExp[ax]]

The infinitesimals for this sort of the mainstream velocity are

symbound = I:nfinitesimals [

{boundl[2D}/.mainstream, {iii}, {x,y}, {v,k,a}];

symbound / / LTF

rP1 == kl - k2 iJ!

2 k2
~,

a
~2 == k2 Y + 'T,

The result contains a two-dimensional finite symmetry group representing a
translation and some sort of scaling. The undetermined function free[I][x] = 'Fj
extends the finite group to an infinite one. Again, the symmetry group is extended if
we compare it with the general case in which the mainstream velocity is an arbitrary
function. The reductions for the scaling symmetry follow by

infi1 = {{xi [1] [x, y, iii], xi [2] [x, y, iii]},

{phi [1] [x, y, iii]}} /. symbound /.

{k1 -+ 0, k2 -+ c, free[l] [x] -+ O}

Working Examples 319

red2 =
Simpllfy[PowerExpaD4[LieReduction[{bouDdl[2]} I.mainstr.am,

{III}, {x, y}, lnfi1[l], infil[2]]]];

LTP[Platten[red2]] /. zetal""'l

Solve: : tdep :

The equations appear to involve transcendental functions
of the variables in an essentially non-algebraic way.

E¥- Y - ~l == 0

E-¥- \Ii - Fl == 0

-~f (2 ak2 - 2 a (Fil~l +aF1 (Fils1,Sl + 21') (Fils1,Sl,Sl) == 0

The reduced equation is again of the Falkner-Skan type. Thus, both types of the
mainstream velocity result into the same type of equation.

5.6.6.4 Group Classification

The general topic behind the calculations carried out above is the problem of group
classification of a partial differential equation. The question is formulated as follows.
Assume we have a system of equations containing a certain arbitrariness, expressed
in the dependence of the equations on certain parameters or functions. These
equations admit a certain group G. If we now change the arbitrariness to a specific
form, we may observe that the group G is enlarged. This behavior of enlargement of a
group was the result of our previous discussion. The question now is: Can we find the
specific forms for the mainstream velocity W discussed in the previous sections by
using the functions of MathLie? The problem of group classification is closely
connected with the common factors occurring in the determining equations. These
common factors are eliminated by the functions of MathLie. The information
removed from the determining equations is not lost but collected in a global variable
called EliminatedFactors. This list collects all factors removed by the functions Lie[],

LieSolve[], Infmitesimals[], DeterminingEquations[], and PDESolve[]. If we need to

solve the classification problem, we have to examine the list EliminatedFactors.

The following considerations will illustrate the special cases for the mainstream
velocity discussed above. All models discussed so far follow from a group
classification and can be calculated from the eliminated common factors. We start the
determination of the general classification problem by calling the function

Infinitesimals[] :

320 Point Symmetries of Partial Differential Equations

symbound = J:nfinitesimals [{boundl[2D}, {iii}, {x, y}, {v}];

symbound / / LTF

cP1 == kl

~l == 0
~2 ==:Fl

The factors which were cancelled in the derivation of the determining equations can
be inspected just by reading the variable EliminatedFactors:

elFactor = EliminatedFactors; elFactor / / LieTraditionalForm

{ 1 1 4 3 Wx Wx,x
-, ':3' - W wx , 3 W + 3 Wx ' W (W~ + WWx,x)

WW~,x WWx,x,x
W; + WWx,x I 4 (W~ +WWX,X) ,

w! Wx Wx,x
W (W~ + WWx,x) + 4 (W~ + WWx,x)

WW~,x 3 WWx,x,x

Wx (W~ +WWx,x) + 4 (W~ +WWx,x) ,

(W~ + WWx,x) (-4 W! + WW~ Wx,x - 4 w2 W~,x + 3 W2 Wx Wx,x,x)

27 WW~ W~,x

(W~ + WWx,x) (-4 W! + WW~ Wx,x - 4 W2 w~,x + 3 w2 Wx Wx,x,x) +

15 WW! Wx,x,x

(W~+WWx,x) (-4W!+WW~Wx,x-4WW~,x+3WWxWx,x,x)

(W~ + WWx,x) (-4 W~ + WW~ Wx,x - 4 W2 W~,x + 3 W2 Wx Wx,x,x)

(W~+WWx,x) (-4W~+WW~Wx,x-4W2W~,x+3W2WxWx,x,x) +

3 w2 w~ Wx,x,x,x +

(W~ + WWx,x) (-4 W! + WW~ Wx,x - 4 W2 W~,x + 3 W2 Wx Wx,x,x)

In addition to three numerical factors, the list contains six relations which determine
the mainstream velocity W by a differential equation. In the following calculations,
we will show that all models for W discussed so far are contained in these equations.
Let us start with the first equation which is extracted from position four of the list

elFactor. Applying DSolve[] to this equation, we get

Working Examples 321

eql = ell'actor[4D == 0; eqlll LTI'

-3 WWx == 0

DSolve[eql. W. xl

{{W~ (C[l]&)}}

The result shows that any constant is sufficient to satisfy this equation. The constant
case for the mainstream velocity is the model discussed by Blasius [1908]. The fifth
equation from the list of common factors gives us

eq2 = ell'actor[SD == 0; eq2 II LTI'

Wx + Wx,x == 0
3 W 3 Wx

DSolve[eq2. W. xl

{{W~ (-v'E3C[2] (2 #1-2C[1]) &)}, {W~ (v'E3C[2] (2#1-2C[1]) &)}}

This solution is a special case of the Falkner-Skan model with m = 1/2. Thus, the
eliminated prefactors contain at least the special case of W(x) = k x 1/2 • The sixth
equation of our list contains a very complicated non-linear third-order ordinary
differential equation which we use in the form

eq3 = Rumerator [Together [elPactor(6) 1] I eq3 II L'l'P

If we try to solve this equation by using DSolve[], we end up with

DSolve[eq3 == o. w. xl

DSolve[
W' [X]4 -W[x] W' [X]2 W" [x] +W[X]2 W" [X]2 _W[X]2 W' [x] w(3) [x] == 0,

W, x]

However, the equation is solved by an exponential fwiction

eq3 I • W -+ I'uDcticm [x. k Bxp [a xl 1

o

This result shows that the exponential model discussed earlier is also consistent with
the determining equations for the mainstream velocity. The seventh equation of our

322 Point Symmetries of Partial Differential Equations

list elFactor is connected with the equation eq2. We can show this by just integrating
the equation with respect to x:

eq4 = Numerator ['l'ogether [ell'actor [7]]]; eq4 II L'l'1'

-3 Wx Wx,x - WWx,x,x == 0

feq4dX

-W' [X]2 - W [x] W" [x]

Thus, no more information is gained by considering this equation. The eighth
equation is a third-order ODE which cannot be treated by DSolve[]. The solution of
this third-order ODE is again a special case of the Falkner-Skan type with m = -1 /2:

eqS = Numerator ['l'ogether [ell'actor [8]]]; eqS II L'l'1'

-4 W! + WW~ Wx,x - 4 W2 W~,x + 3 W2 Wx Wx,x,x == 0

Simplify [eqS I . W ... l'unction [x, k x!"]]

The last relation is a fourth-order ODE not solvable by DSolve[]. A particular
solution of this equation is, however, given by the Falkner-Skan relation for the
mainstream velocity . We can check this by

eq6 = Numerator ['l'ogether[ell'actor[9]]] ; eq6 II L'l'1'

-3 (3 W~ Wx,x - 9 WW~ W~,x + 6 W2 Wx W~,x +

o

5 W W! Wx,x,x - 6 W2 w; wx,x wx,x,x + w3 w;,x Wx,x,x -

2 w3 Wx w~,x,x + W2 w; wx,x,x,x + w3 Wx Wx,x wx,x,x,x)

Simplify [eq6 I. W ... !'unction [x, k X"]]

o

Thus, we demonstrated that the group classification problem for the steady
two-dimensional flow is solved by three types of mainstream velocities: (i)
W(x) = const., (ii) W(x) = k X", and (iii) W(x) = k eQX. Special cases also
contained in the classification of type (ii) are the cases with m = 1/2 and m = -1/2.
The maximal group order of four occurs for the type (i), all other types possess a
lower group order.

Working Examples 323

5.6.7 The Plane Jet

The plane jet is an example for Prandtl's boundary layer equations. We consider the
steady two-dimensional motion of an incompressible viscous fluid due to a jet issuing
from a long narrow orifice. We use Cartesian coordinates in the plane of motion. The
origin of our coordinate system is located in the orifice and the x-axis lies in the
plane of symmetry of the jet. The velocities in the x and y directions are denoted by u
and v, respectively. If we assume that the Prandtl boundary layer equations give a
sufficiently good approximation and that the pressure is a constant, then the equations
of the stationary problem read

Ux + Vy = 0,

UUx + vU y = 1]u y,y.

In Mathematica notation, we find

jet = {u[x, y] axu[x, y] +v[x, y] ayu[x, y] ==7Ja{y,2}U[X, y],

axu[x, y] + ayv[x, y] == O}i

jet I I LTF

UUx +VUy -I7Uy,y == 0

ux+vy==O

(5.65)

(5.66)

where 1] is the kinematic viscosity. The equations of motion are accompanied with the
boundary conditions

bound = {ayu[x, y] == 0, v[x, y] == O} I. y -+ 0

{U(O,l) [x, OJ == 0, v[x, OJ == O}

and the asymptotic behavior

asympt = {u[x,y]->O Ii y->Xnfinity}

An additional relation for the total x-component of the fluid momentum must be
satisfied

M = 2 P f u [x, y] 2 clly == constanti

This sort of model was first discussed by Schlichting in 1933. We will use this model
to discuss the analytic solution by means of a symmetry analysis. First, we transform
Prandtl's boundary layer equations to a single equation by introducing the stream
function representation:

324 Point Symmetries of Partial Differential Equations

stream = {u ... Function [{x, y}, ay!li [x, y]],

v ... Function [{x, y}, -ax !Ii [x, y]] }

{u -7 Function [{x, y}, Oy \I! [x, y]] ,

v -7 Function [{x, y}, -ax \I! [x, yJ] }

Applying this transfonnation to the jet equations, we find

sjet = jet /. stream; sjet / / LTF

\l!y \l!x,y - \l!x \l!y,y - 17 \l!y,y,y == 0

True == 0

The original two equations reduce to a single equation for the stream function II'
which is a non-linear partial differential equation of third order:

jet = sjet[l]

_\I!(O,2) [x, y] \I!(l,O) [x, yJ + \I!(O,1) [x, y] \I!(1,1) [x, y] == 17 \I!(O,3) [x, y]

We detennine the symmetries of this equation by applying the function

Infinitesimals[]

syrom = Infinitesimal.s [jet, iii, {x, y}, {ry}]; syrom / / LTF

<P1 == kI + k2 \I!

~1==k3+k4x

~2 == (-k2 +k4) y+'T1

The result is a four-parameter group allowing translations and scalings as
symmetries. Let us first discuss the translation symmetries and afterward use the
scaling symmetry in our calculations. The related reduction of the original PDE
follows by selecting the subgroups with k3=1,jree[1][xj=c, and kl=l.

infil =

{{xi[l] [x, y, iii], xi[2] [x, y, iii]}, {phi [1] [x, y, iii]}} /. syarm/.

{kl ... 1, k2 ... 0, k3 ... 1, k4 ... 0, free[l] [x] ... c}

{{I, c}, {I}}

The reduction follows by

redl = LieReduction [jet, {iii}, {x, y}, infil[l], infil[2]];

LTP [Fl.atten [redl]] /. zeta1 ... '1
-CX+y-S1 == 0
-x + \I! - Fl == 0

-FI s1 ,s1 - 17 FI" ," ,f1 == 0

Working Examples 325

The solution of the reduced equation follows by

ssol = DSolve[redl[3], Fl, zetal]

{{Fl--7 (E-'" rl C[l] +C[2] +C[3] #1&)}}

where #1 represents the variable zetal. The similarity solution in the original
variables x and y is

sol = Flatten [Solve [Flatten [redl[2] /. ssol], ill]]

{Y!--7X+E--C;>Y 17 2 C[1] +C[2] + (-cx+y) C[3]}

This solution contains three constants of integration C[i], i = 1, 2, 3. The constants
must be chosen in such a way that the boundary conditions are satisfied. The first
boundary condition requires

Simplify[o(y,2} (ill /. sol) /. Y -+ 0] == 0

E c"x C [1] = = 0

which can only be satisfied by

rule = {C [1] -+ O}

{C[l] --70}

The second boundary condition requires

Simplify[o(X,l} (iii /. sol) /. y -+ 0] == 0/. rule

1-cC[3]==O

which allows a special choice C[3]=1/c

1
AppendTo [rule, C [3] -+ -]

c

1
{C[l] --7 D, C[3] --7 c}

Using the asymptotic behavior of u results in

Simplify[o(y,l} (ill /. sol) /. rule]

1
c

326 Point Symmetries of Partial Differential Equations

The result shows that the requirement that u ~ 0 for y ~ 00 can only be satisfied if we
set c ~ 00. In conclusion, the symmetry of translation is not compatible with the
boundary conditions.

The second type of symmetry under which the third-order PDE is invariant is given
by a scaling. The related subgroup is extracted by setting k2=c and k4=1:

infil =
{{xi[l] [x, y, !Il], xi[2] [x, y, !Il]}, {phi [1] [x, y, !Il]}} /. s~/.

{kl-+ 0, k2 -+ c, k3 -+ 0, k4 -+ 1, free[l] [x] -+ O}

{{x, (1 - c) y}, {c g:;}}

The similarity reduction for the scaling group follows by

red2 = LieReduction[jet, {iii}, {x, y}, infil[lD, infil[2D];

LT!'[!'latten[red2]] /. zetal-+ ~,

Solve: : tdep :

The equations appear to involve transcendental functions

of the variables in an essentially non-algebraic way.

x- 1 +c y - Sl == 0

x- c g:; - Fl == 0
4 4 c

y-~ sF (- (F1) ~, + 2 C (F1) ~, - c Fl (F1) '" ,b1 - I'] (F1) b1 ,~, ,b1)

== 0

The left-hand side of the equation is without any common coefficients

/
4.c 4c

eq2 = red2[3, 1, lD (y-= zetal=); LTF[eq2] /. zetal-+~,

This third-order ODE is not solved by DSolve[]. However, a first integration with
respect to zetal shows us that the equation is integrable if we choose a special value
for c. If we set c ~ 1/3, we get a second-order ODE which is equal to a first constant
of integration:

- ~ F1'[zeta1]2 - ~ Fl[zeta1] Fl"[zeta1]-I']F1(3) [zeta1]

Working Examples 327

intl = f(eq 2 I. c ~ ~) dlzetal == Kl

1]' "1] 1 -3F1[zeta1 F1 [zeta1]-17F1 [zeta ==K

Taking the boundary conditions into account, we realize that Kl = O. This follows
since Fl' (0) = 0 and Fl" (0) = O. Thus, the result simplifies and we can integrate the
relation a second time:

int2 = f intl[l] dlzetal == -K2

1 - 6 F1 [zeta1]2 - 17 F1' [zeta1] == -K2

Now using DSolve[] to integrate the first-order ordinary differential equation, we get
the solution

sols = I'latten[DSolve[int2, 1'1, zetal]]

The corresponding similarity representation follows by

1
ssol = Solve [red2 [2] I. sols I. c ~ -, iii]

3

{{ill -> -[6 -fK2 x"/3 Tanh [i (-f6X2~ y - 6 -f6 -fK2 e[l]) l}}

This solution contains three parameters 1], K2, and C[l]. 1] is the kinematic viscosity
which we set to unity in the following. The integration constant K2 changes the
amplitude as well as the argument of the Tanh[] function. C[l] determines the
location of the orifice which we set to the origin. The following contour plot of the
stream function gives us a representation of the stream lines in the (x, y)-plane:

sol = (iii I. ssol/. {K2 ~ 1, TJ -+ 1, C[l] ~ O}) [1];

ContourPlot[sol, {x, .01, 3}, {y, -3, 3}, PlotPoints ~ 50,

Contours ~ 20, ColorFunction ~ Hue, AxesLabel ~ {"x", "yn},

Axes ~ True]

328 Point Symmetries of Partial Differential Equations

y

The representation of the stream lines shows that the jet fans out and that the velocity
decreases for larger values of x. This behavior is obvious in a graphical
representation of the velocity for the two components

u = Oy sol

sech [~l2
x 1 /3

and

v = -ox sol

2ySech[~l2 ffTanh[~l
3 X4 /3 x 2 /3

which both follow as derivatives from the stream function . We represent the two
solutions by a contour plot. The velocity in the x direction is

ContourPlot[u, {x, .01, 3}, {y, -3, 3}, PlotPoints 50,

Contours 20, Colorl"unction Hue, AxesLabel {nxn, nyn},

Axes True]

Working Examples 329

y

3 x

The v-component of the velocity looks like

ContourPlot[v, {x, .01, 3}, {y, -3, 3}, PlotPoints -+ 50,

Contours -+ 20, Colorl!'unction -+ HUe, AxesLllbel -+ {ftxft, nyn},

Axe. -+ True]

y

330 Point Symmetries of Partial Differential Equations

5.6.8 Drop Formation

In this section we discuss the fonnation of drops by an axisymmetric model. A
typical example of drop fonnation is shown in the pictures below.

The figure of a single drop was taken from Eggers [1997]. Such a picture is observed
if a drop hits a fluid surface. Drop fonnation is a common phenomenon in our daily
world. Everybody knows the kinetics of rain drops if they hit the surface of a pond.
An animation available in the notebook version of this book for a falling milk drop
demonstrates the dynamic behind drop fonnation. Another animation showing the
fonnation of a water drop illustrates that not only the drop itself is created but also
secondary droplets. The pictures are taken from Perigrin et al. The laws behind this
interaction has been the topic of research for the last 300 years. The interest in drop

Working Examples 331

formation is still growing because of its potential industrial application in
technologies like ink jet printers, chemical mixing processes, fuel injection in
engines, etc. The formation of a drop is mainly governed by two non-linear equations
derived from the three-dimensional Navier-Stokes equation.

We assume that the Navier-Stokes equation is a reasonable model to describe the
drop formation. The Navier-Stokes equation for an axisymmetric column of fluid
with kinematic viscosity T/, density p, and surface tension 'Y are given in cylindrical
coordinates by

Ut + UUr + VVr = -~ + T/(Urr + uzz +!!.!:... - -;-), p , , r r (5.67)

pz (Vr) Vt+uvr+vvz=--+T/vrr+vzz +- -g,
P "r

(5,68)

where U is the velocity in the radial direction, v is the velocity along the axis, and p is
the pressure. The equations are given by Landau and Lifshitz [1987] in the volume on
fluid mechanics. The continuity equation in cylindrical coordinates reads

U
Ur + Vz + - = O.

r
(5.69)

In addition to these three equations, we have to satisfy boundary conditions
controlling the free surface of the fluid:

~ ~ (1 nlTn = -y - +
RJ

(5.70)

and

VlTt = O. (5.71)

Here, IT is the stress tensor, n the outward normal, and R J and R2 are the principal
radii of curvature (cf. figure below), The equation of motion for the height of the
fluid neck h = h(z, t) is

(5.72)

In all the equations, subscripts refer to a partial differentiation with respect to the
independent variables t, r, and z. The formula for the mean curvature (1/ R J +

1/ R2) /2 of a body of revolution is known from differential geometry (cf. Gray
[1993]), The geometrical relations are shown in the following figure:

332 Point Symmetries of Partial Differential Equations

z

The mean curvature which is responsible for the capillary pressure is given by the
relation (Garcia and Castellanos [1994])

(5.73)

where E is a small parameter. The model equations (5.67)-(5.69) simplify
considerably by expanding the velocity fields and the pressure into a power series in
the radial direction. This expansion additionally allows the reduction from a
two-dimesnional to a one-dimensional model. Keeping only the lowest-order radial
dependence, we end up with the equations

pz (1J(h2 vz)) z
v,+vvz = P +3 h2 -g, (5.74)

(5.75)

where the pressure is given by (5.73) with E = 1. The detailed calculation of the
approximation can be found in the paper by Eggers [1993]. Our interest here is the
derivation of a solution for the velocity field v and the height of the fluid neck h in
terms of similarity solutions. We first examine the model equations by Eggers with
the complete pressure expression. Equations (5.74) and (5.75) are the starting point
for our symmetry analysis. We first define the variables and the pressure by

V=v[z, t]; H=h[z, t];

p = y (1 1/2

H(1+(OzH)2)

P / / LieTraditionalForm

Working Examples 333

(1 hz, z
)' hVl+h~ - (l+h~)3/2

The equations of motion for the liquid jet are given by

P B. (H2 B. V)
eggers = {Bt V + V B. V + B. - - 3 TI + 1/1,

P H2

H a. V}
Bt H + V B. H + --- / / Together / / Numerator;

2

eggers / / LTF

-)' h z - 2)' h; -)' h~ + h 2 P I/! VI + h~ + 2 h 2 P I/! h~ VI + h~ +

h 2 P I/! h~ VI + h~ + h 2 P VI + h~ V t + 2 h 2 ph; VI + h~ V t +

o

h 2 p h~ vl-:;:-h1 V t + h2 V P VI + h~ V z - 6 h T] p h z VI + h~ V z +

2 h 2 V P h; ~hI V z - 12 h T] ph; VI + h~ V z +

h 2 V P h~ V 1 + h~ v z - 6 h T] P h~ VI + h~ v z - h)' h z hz, z - h)' h; hz, z +

3 h 2)' hz h~, z - 3 h 2 T] P VI + h~ v z ,z - 6 h 2 T] P h~ VI + h~ v z ,z -

3 h 2 T] p h! VI + h~ v z ,z - h 2)' hz, z ,z - h 2)' h~ hz, z, z

2 h t + 2 v hz + h v z = = 0

where p, y, .", and I/J denote the constant density, the surface tension, the kinematic
viscosity, and the acceleration due to gravity, respectively. The infinitesimals of the
equation follows by applying Infinitesimals[] to the equations:

infiEggers = :Infinitesimals [eggers, {v, h}, {z, t},

{p, Y, TI, I/I}, SubstitutionRules-+ {a{ •• J) H, Bt H}];

infiEggers / / LTF

¢, == k3

¢2 == 0

';, = = k2 + k3 t

';2 == kl

The result of the calculation is a finite three-dimensional point group. The
symmetries of the group are translations in x and t, and a special subgroup denoted
by k3 allowing a translation in v and a transformation of x connected with t. These
symmetries do not allow a scaling solution of the original equations. The scaling
solutions are today used to discuss the pinch of the drop. However, we can find such
solutions by changing the representation of the pressure.

The following calculations are based on the capillary pressure given by Garcia and
Castellanos [1994]

334 Point Symmetries of Partial Differential Equations

P1 = ¥ (____________ 1 __________ _

(1+6H) (1+6 (a. H)2)"2

P111 LieTraditionalForm

6 a •. z H)

Following the considerations by Garcia and Castellanos, we assume first that the
parameter E is a small quantity. This property recommends a Taylor expansion of the
pressure around E = O. So we get an approximation of the capillary pressure for small
E'S up to first order. To identify any correspondence of the following calculations
with those carried out above, we set E = I in the expansion:

p1 = (Series[P1, {6, 0, l}l II Normal) 1.6-+1

,+, (-h[Z, t]- ~ h(l,O) [z, tl 2 _h(2,O) [z, tl)

The pressure in this approximation is given mainly by a constant altered by
geometrical terms linear in h, quadratic in the gradient of the height of the fluid neck
h, and linear in the second derivative of h. Inserting this result into the equations of
motion (5.74) and (5.75), we find the reduced set

{ p1 a. (H2 a. V)
model1 = at v+va. v+a. --371 +1/1,

p H2

Ha. v
at H + V a. H + -----} I I Together I I Numerator;

2

model1 I I LTF

h p Ij; - h ,hz + h p V t + h v p v z - 6 r; p hz v z - h ,hz hz, z - 3 h r; p v z , z

- h ,hz,z,z == 0

2 h t + 2 v hz + h v z = = 0

which are much simpler than the original model. Surprisingly, the infinitesimals of
this reduced model are the same as in the original model:

inf1 =J:nfinitesimals[lIIOdel1, {v, h}, {z, t},

{p, ¥, 71, I/I}, SubstitutionRules-+ {a{ •• 3} H, at H}l;

inf1 I I LTF

¢1 == k3

¢2 == 0

~1 == k2 + k3 t

~2 == kl

Working Examples 335

Thus, we observe that the change of the pressure for small values of E does not affect
the symmetries of the original model. This is also true for higher-order
approximations in E of p. The calculation is left as an exercise for the reader.

Another expression for the capillary pressure follows if we assume that the parameter
E is large. This limit can be achieved by replacing E with 1IA in formula (5.73). In
Mathematica, we substitute 1IA for E and expand the resulting pressure formula
around A = 0:

Pl = ¥ (1
(l+l/AH) (l+l/A (B, H)2)'/2

1 I A B", H)

Plil LieTraditionalForm

(h2) 3/2
A 1+ T

The Taylor expansion of the pressure in the limit E ~ 00 follows by

p3 = (Series[Pl, {A, 0, l}] II Normal) I. A-+l;

p3 I I LieTraditionalForm

In this approximation, the pressure is given by a pure geometric term determined
only by derivatives. This kind of approximation is similar to the Saffman-Taylor
[1958] approximation and is also known as lubrication approximation. The equations
of motion (5.74) and (5.75) in connection with the lubrication approximation are thus
given by

model 2

p3 B, (H2 B, V) H B, V
{Bt v + V B, V + B, - - 3 TJ + !/I, Bt B + V B, H + ---} I I

P H2 2

Together I I Numerator I I PowerExpand;

mode12 I I LTF

h p I/! h! + h p h~ v t + h v p h~ V z - 6 T7 P h; V z + 3 h ¥ h~,z - 3 h T) p h! vz,z

- h ¥ h z hz, z, z = = 0

2 h t + 2 v h z + h V z == 0

The corresponding infinitesimals for this kind of model follows by

inf3 = :Infinitesimals [mode12, {v, h}, {z, t},

{p, ¥, TJ, !/I}, SubstitutionRules-+ {B{"J) H, Bt H}];

inf3 I I LTF

336 Point Symmetries of Partial Differential Equations

rt>1 == k4 + 2 k5 (v + 3 t 1/1)
31/1

hk5
--1/1-

2 k5 Z
£1 == k2 + k3 + k4 t + k5 t2 -~

£2 == kl _ 4 k5 t
3 1/1

We clearly observe that the structure of the symmetries changed. The number of
group parameters increased. The additional symmetries now allow a scaling solution
of the equations. We also observe that the constant of gravity I/t determines the
symmetry properties of the scaling transformation. The related group parameter of
the scaling group is k5.

Another method of approximating the capillary pressure taken from Eggers is the
assumption that the spatial derivatives in p are small compared with the horizontal
elongation h itself. This assumption can be realized in Mathematica by the following
replacement:

p4 = P /. Derivative [--1 [h1 [__] -+ 0

h[z, tj

The two equations of motion simplify to

p4 az (H2 az V)
simplifiedEggers = {at V + v az v + az - - 3 77 + I/!,

P H2

H az v} at H + V az H + --- / / Together / / Nwnera tor;
2

simplifiedEggers / / LTP'

h 2 P tJ; - y hz + h 2 P V t + h 2 V P V z - 6 h 17 P hz V z - 3 h 2 17 P v z , z = = 0

2 h t + 2 v hz + h V z = = 0

The symmetries of this set of equations follow by

inf4 = l:nfinitesimals [simplifiedEggers, {v, h},

{z, t}, {p, ¥, 77, I/!}, SubstitutionRules-+ {atv, at H}l;

inf4 / / LTF

== k4 + 2 k5 (v + 3 t 1/1)
rt>1 3 1/1

4 h k5
-~

2 k5 Z
£1 == k2 + k3 + k4 t + k5 t 2 -~

£2 == kl _ 4 k5 t
31/1

Working Examples 337

The result is again a five-dimensional finite group containing translations kl, la, kJ,
and k4, and a scaling symmetry given by k5. The scaling symmetry depends on the
gravity acceleration 1/1. This set of symmetries is isomorphic to the infinitesimals inf3.
The difference between the two models however is the pressure in the equations. Let
us first examine the solution of the equations connected with the symmetry of
translation. A subgroup of translations is given by the infinitesimals

infi1 = {{xi [1] [z. t, v, h], xi [2] [z, t, v, h]},

{phi [1] [z. t. v, h], phi [2] [z. t, v, h] }} /. inf4 /.

{k1 ... 1, k2 ... c. k3 ... 0, k' ... 0, kS ... O}

{{c, l}, {O, O}}

The corresponding similarity reduction of the original equations follows with

red1 = Lieaeduction[simp1ifiedEggers,

{v. h}, {z, t}, infi1[[1]], infi1[[2]]];

LTP[Platten[redl]] I. zetal ... '1
_-ct+z_S1==0

c
v - Fl == 0
h - F2 == 0

c 2 P 1/1 F~ + c 2 P F~ (F1) " - c P Fl F~ (F1) &, +

cy (F2)!:'1 -617PF2 (Fd" (F2)" -317PF~ (Fd"",

o
-F2 (F1) " + 2 C (F2)" - 2 Fl (F2)" == 0

The similarity solution of the equations including gravity is given by a moving wave
solution. Examining the second equation of the reduction, we realize that a special
solution of this equation is a constant. Inserting this kind of solution into the reduced
equations, we get

rode = red1[3] /. PI ... I'unction[zeta1, 0]

{c2 pI/1F2[zetalj2 +cyF2'[zetalj ==0, True}

The two equations simplify to a single first-order ODE which allows the solution

.1 = DSolve [rode [Ill , P2, zeta1] / / Platten

A special set of solutions is thus

338 Point Symmetries of Partial Differential Equations

h
3
2
1

-3 -2 -
-1
-2
-3

h
3
2
1

3 2 1
-1
-2
-3

h
3
2
1

-3 -2 -1
-1
-2
-3

AppendTo[sl, 1'1-+ l'unetion[zetal, e]]; sl

{F2 --> (C#lPJ-C[ll &), Fl-->Function[zetal, cl}

It is obvious from the formula above that the fluid neck becomes infinite if
~ = C[1] / (cpt{l). In the original variables, the solution reads

soll = redl[2] /. sl / / Simplify

{v==c, h+ -ctP!/r+:P!/r+C[ll ==o}

where C[l] is a constant of integration. If we insert for the parameters y, c, p, t{I, and
C[l] numeric values, we are able to plot the solution. The following animation shows
the movement of the singularity of h along the z-axis while the time is changed from
o to 2.5 in steps of 0.1.

Do[Plot[-
y

/.
-etpl/l+zpl/l+C[l]

{y-+l, e-+2, p-+l, 1/f-+9.81, C[1]-+10, t-+ti},

{z, - 3, 5}, PlotStyle -+ RGBColor [0, 0, 1],

PlotRange -+ {{ - 3, 5}, {- 3, 3}}, AxesLabel -+ {R Z II , IIbR}],

{ti, 0, 2.5, .1}]

h h
3 3

2
1

z z z
1 2 3 4 5 2 3 4 5 -3 -2 -1 2 3 4 5

-1
-2
-3

h h
3 3
2 2
1 1

z z z
3 4 5 -3 -2-1 1 3 4 5 -3 2 -1 1 4 5

-1 -1
-2 -2
-3 -3

h h
3 3
2 2
1 1

z z z
1 2 4 5 -3 -2 -1 1 2 3 5 -3 -2 -1 1 2 3

-1 -1
-2 -2
-3 -3

Working Examples 339

This sequence of pictures shows us that under a translation invariance of equations
(5.74) and (5.75), a singularity of the height h of the fluid neck moves from the left to
the right. It is essential that the singularity in h exist from the beginning to the end.
The structure of the solution is not changed during the evolution in time. If we look at
the analytic expression of the solution, we realize that gravity seems to be an
essential component to create the singularity. To study the influence of the gravity
constant I/t on the solution, let us examine the simplified equations of motion without
gravity. The reduced equations of motion are

modelWithoutGravity = simplifiedBggers I. 1/1-+ 0;
modelWithoutGravity I I LorI'

-y h z + h 2 P V t + h 2 V P V z - 6 h 17 P h z V z - 3 h 2 17 P v z, z == 0

2 h t + 2 v hz + h V z == 0

The infinitesimals of this simplified model follow from

inf5 = :Infinitesimals [modelWithoutGravity, {v, h} I

{ZI t}, {P, ¥, 77}, SubstitutionRules-+ {BtV, Bt H}];

inf5 II LorI'

cPl == k2 - k4 v

cP2 == 2 h k4
{;l == k3 + k2 t + k4 Z

{;2 == kl + 2 k4 t

The four-dimensional symmetry transformation contains a scaling symmetry,
translations in z and t, and a special symmetry related to k2. Let us first examine the
moving wave solution corresponding to the translational invariance, The related
infinitesimals of the symmetry group are

infi2 = {{xi [1] [ZI t, V, h] I xi [2] [ZI t, V, h] } I

{phi [1] [ZI t, V, h] I phi [2] [ZI t, V, h] }} I. inf5 I.
{kl -+ 1, k2 -+ 0 , k3 -+ Cl , k' -+ O}

{{c, l}, {O, O}}

The reduction of the equations of motion without gravity follows from

red2 = LieReduCltion[modelWithoutGravitYI

{VI h}, {ZI t}, infi2[[1]], in£12[[2]]];

(red2 I I Flatten I I LTF) I. zetal -+ &1

_ -c t + z _ rl == 0
c

v - Fl == 0

340 Point Symmetries of Partial Differential Equations

h - F2 == 0

C2 PF~ (F i)Sl -CpF i F~ (F i)Sl +

C Y (F 2) Sl - 6 1) P F 2 (F 1) b1 (F 2) Sl - 3 1) P F~ (F 1) Sl ,Sl

o
-F2 (F,) '" + 2 C (F2) '" - 2 F, (F2) Sl == 0

We again realize that the second equation is solved with FI = c, meaning that the
velocity field v is a constant. Inserting this solution into similarity reduction, we find

red3 = red2[3] /. F1 ... Function [zeta1, c];

(red3 / / LieTraditiona11!'orm) /. zeta1 ... ~1

{cyF2 s1 == 0, True}

The remaining first-order ODE is solved by

81 = DSolve[red3[1], F2, zeta1]

{ {F2 -7 (C [1] &) } }

Thus, the height of the fluid neck remains a constant during the evolution. The
mathematical result in physical terms means that a column of fluid of height h
moving with a constant velocity a without any influence of gravity remains in the
same initial state forever. Thus, the shape of the fluid column does not change. In
conclusion, the singularity of h in the previous model is, in fact, generated by gravity.
The examination of the other symmetry reductions are left as exercises for the reader.

5.6.9 The Rayleigh Particle

The Rayleigh particle is similar to the Brownian particle. The difference between the
two species is that the Brownian particle has a constant velocity, whereas the
Rayleigh particle is characterized by the macroscopic law for the velocity V in the
form of the damping law

V = -yV. (5.76)

We assume that V is not too large. The Fokker-Planck (FP) equation related to the
Rayleigh particle is discussed by Van Kampen [1981]. The equation of motion for
the probability density P reads

Clear[P, V];

rayleigh = atP[V, t] _"((av (VP[V, t]) + kTa{V.2~p[V' t]) == 0;

rayleigh / / LT!'

(k T P) Pt - Y P + V Pv + M V,v == 0

Working Examples 341

This linear equation for the probability density P depending on the velocity V and
time t describes a damped particle of mass M at a temperature T. The constants y and
k are the damping parameter and the Boltzmann constant, respectively. The
independent variables in the equation can be scaled in such a way that the equation is
free of any parameters [T = yt and v = V (m/(kD)1/2]. The scaled equation is given
by

rayleigh = o.P[v, 1:]- (ov (vP[v, 1:]) + O(v.2} P[v, 1:]) == 0;

rayleigh / / LTF

-P - v Pv + P" - Pv,v == 0

This type of equation was examined by Cicogna and Vitali [1990]. We reproduce
their results to demonstrate that the structure of the infinitesimals can be quite
different from a polynomial and that MathLie is capable of finding these symmetries
automatically. The infinitesimals read

infirayl = l:nfinitesimals [rayleigh, {P}, {v, 1:}]; infirayl / / LTF

'TI +v ('Td v - (rd" + ('Tdv,v == 0

~I == E-" kl + E" k2 + ~ E- 2 " (k3 +E4 c k5) v
2

~2 == - ~ E- 2 " k3 + ~ E2 " k5 + k6
2 2

<PI == ~P (_E-2"k3+2k4-2E"k2v-E2"k5v2) +'Tl
2

The symmetry group is given by a six-dimensional discrete group and an infinite
dimensional group determined by the function freer 1] satisfying the original
Fokker-Planck equation. The structure of the infinitesimals illustrates that MathLie is
capable of deriving non-polynomial results.

The infinitesimals can be used to derive solutions of the FP equation. A simple
solution is derived for the subgroup kl = 1 and k2 = 1; the other constants are set to
zero. The infinitesimals for this subgroup reduce to

inf1 = {{xi [1] [v, 1:, P], xi [2] [v, 1:, P]},

{phi [1] [v, 1:, P]}} /. infirayl[l] /.

{k1-+ 1, k2 -+ 1, k3 -+ 0, k4 -+ 0, kS -+ 0, k6 -+ 0, free[l] [__] -+ O}

{{E-"+E". O}, {-E"Pv}}

The corresponding similarity reduction of the FP equation follows from

red1 = LieReduction[rayleigh, {P}, {v, 1:}, inf1[1], inf1[2]];

LTF [Flatten [red1]] /. zeta1 -+ ~1

342 Point Symmetries of Partial Differential Equations

£2 t v2

E~ P - F 1 == 0
£2 ~1 v2

E~ (- Fl + (F d" + E2s1 (F d s1) == 0

We realize that the similarity variable is given by the temporal variable T. The
resulting fIrst-order ODE containing analytic coefficients is solved by DSolve[]:

8o~r1 = DSo~ve [-F1 [zeta1] + F1' [zeta1] + Zl zeta1 F1' [zeta1] == 0,

F1, zeta1]

The solution of the FP equation in original coordinates results by inverting the
similarity representation derived above:

.o~1 = So~ve [red1[2, 1D /. so~r1, P] / / Simp~ify

A picture for a fIxed value of the constant of integration C[l] is shown below. The
figure demonstrates that the probability density P has a single maximum in the
velocity domain. The amplitude of the probability density increases with increasing
time.

P~ot3D[P /. so~1[1D /. C[1] -+ 1, {v, -3, 3}, {t:, -2, 2},

Axe8Labe~ -+ {"v", ".:", ·P"}]

p

Working Examples 343

A second solution with similar properties develops from the subgroup
kl = k2 = k4 = 1. The corresponding infinitesimals are

infl = «xi [1] [v, t:, P] , xi [2] [v, t:, P]},

(phi [1] [v, t:, P]}} I. infiray1[1] I.
(kl-+ 1, k2 -+ 1, k3 -+ 0, k4 -+ 1, k5 -+ 0, k6 -+ 0, free [1] [__] -+ O}

{ {E~" + E", O}, {~ P (2 - 2 E" v) } }

The similarity reduction of the FP equation is gained with

red2 = LieReduction[ray1eigh, (P}, (v, t:}, infl[l], infl[2]] 1

LT.,[.,latten[red2]] I. zetal-+ '1
El: v E21: v 2

E-~+~ P-F1 == a
-Fl - 2 E2 i:1 Fl + (F1) i:1 + 2 E2 i:1 (F1) i:1 + E4 i:1 (F1) i:1 == 0

Again the similarity variable is T. The similarity representation of the solution
combines an unknown function Fl with an exponential depending on the velocity v
and time T. The related fIrst-order ODE which Fl has to satisfy determines the
similarity solution:

.01r2 = DSo1ve[red2[3, 1], .,1, zetal]

This solution reads, in original variables,

8012 = Solve [red2[2, 1] I. 801r2, P] /I Sim,p1ify

e[l] }}

The plot of the solution shows that, contrary to the previous group, a small difference
exists. The difference occurs for larger positive velocities and negative times T. In
this region, the probability density has a non-vanishing value.

P10t3D[P I • • 012[1] I. C[l] -+ 1, (v, -3, 5}, {t:, -2, 2},

Axe.Labe1-+ ("v", "t:", "Pft}, P10tPoint. -+ 25]

344 Point Symmetries of Partial Differential Equations

p

A quite different solution of the FP equation follows if we set k5 = k6 = 1. The rest of
the group parameters are set to zero. The similarity variable for this subgroup is a
combination of the velocity v and the time i. The infinitesimals are

infl = {{xi [1] [v, "C, P], xi [2] [v, "C, P]},

{phi [1] [v, "C, P]}} / . infirayl[l] /.

{k1 0, k2 0, k3 -+ 0, k4 -+ 0, k5 -+ 1, k6 -+ 1, free[l] [__] -+ O}

{ { 1 2 , E2 ' } { 1 2 , 2 } } 2 E v ,1+-2- ' - 2 E P v

The similarity reduction of the original equations displays that the similarity solution
for P is given by a function Fl which now has to satisfy a second-order equation:

red3 = LieReduction [rayleigh, {P}, {v, "C}, inf1[1], inf1[2]] ;

LTl" [Flatten [red3]] /. zeta1 '1
Solve: : tdep :

The equations appear to involve transcendental functions
of the v ariables in an essentially non-algebraic way .

v'
E -'- P - F l == 0

- hl (2 Fl" + 2 Fl" hi + hi Fl" .") == 0

Working Examples 345

The second-order ODE is identified by DSolve[] as

80l.r3 = DSol.ve[red3[3, lD, Fl, zetal]

{ { F1 -> (c [2 1 - ~ -..fir c [1] Er fi [#11 1 &) }}

The result contains the special function Erfi[] which gives the imaginary error
function erfi(z). In original variables, the result reads

80l.3 = Sol.ve[red3[2, lD I . 80l.r3, P] II Simpl.ify

The plot of this function demonstrates that the probability density is localized along a
fixed axis parallel to the time axis. However, there are small variations in the velocity
direction.

Pl.ot3D[P/ . 80l.3[lD I. {C[l] -+1, C[2] -+1/2}, {v, - 3, 5},

{t:, -2, 2}, Axe8Label. -+ {"v", "t:", "P"}, Pl.otPoint8 -+ 25]

Another non-trivial similarity reduction for the FP equation follows from the
subgroup k3 = 1. The infinitesimals for this subgroup read

346 Point Symmetries of Partial Differential Equations

infl = {{xi [1] [v, 1:, P], xi [2] [v, 1:, P]},

{phi [1] [v, 1:, P]}} I. infirayl[lD /.

{kl-+ 0, k2 -+ 0, k3 -+ 1, k4 -+ 0, k5 -+ 0, k6 -+ 0, free [1] [__] -+ O}

The reduced FP equation represents a second-order ODE. The similarity variable
zeta} combines the time T and the logarithm of the velocity v:

red4 = LieReduction[rayleigh, {P}, {v, 1:}, infl[lD, infl[2D];

LTI'[l'latten[red4]] /. zetal-+ ~1

Solve: : tdep :
The equations appear to involve transcendental functions

of the variables in an essentially non-algebraic way.

L + Log [v] - Sl == 0
PV-Fl == 0

_E 3 c (2Fl-3 (Fd b1 + (Fdb1,bl) ==0

The solution of the second-order ODE is a combination of two exponentials

solr4 = DSol ve [red4 [3 I lD I 1'1, zetal]

In the original coordinates, the solution is linear in v and increases exponentially in
time:

so14 = Solve [red4[2, lD I. solr4, P] II Simplify

{ {P -4 E C (C [1] + E C v C [2 J) } }

The solutions derived from different subgroups of the FP equation demonstrate that it
is straightforward to uncover solutions with MathLie for a (1 + I)-dimensional PDE.

5.6.10 Molecular Beam Epitaxy

Before discussing a detailed analysis of the growth equations of molecular beam
epitaxy (MBE), let us describe the main relevant microscopic processes taking place
on a crystal interface. The morphology of the interface is determined by the interplay
among deposition, desorption, and surface diffusion. The term deposition means the
sticking of an atom on the surface if it arrives from vapor. Crystals grow by atomic
deposition. Desorption is the reverse effect, competing with deposition. Under
desorption, we understand that atoms deposited on the surface leave the interface.
When an atom is deposited on a surface, it forms bonds that must be broken before

Working Examples 347

desorption can occur. If only some of the bonds are broken, the atom gains the ability
to move on the surface. From a microscopic point of view, surface diffusion is an
activated process. The discrete positions of the atom are detennined by the crystal
lattice. For an atom on the surface to diffuse to the next lattice position, it must
overcome the lattice potential existing between two neighboring positions. This
excess energy required for diffusion is the microscopic origin of the lattice potential.

The physical mechanism that governs MBE is the surface diffusion of the deposited
particles. For the moment, we assume that desorption is negligible. So we consider
the scenario of atoms deposited on a surface, whereupon they diffuse. The goal is to
find an equation for the fonn

at a(x, t) = F(a, x, t) (5.77)

that describes the variation in the interface amplitude a(x, t). Diffusion processes are
directly connected with a macroscopic current. The local changes in the surface
height are the result of the currents along the surface. Since we neglect desorption,
the total number of atoms remains unchanged during the diffusion process and the
current must obey a continuity equation:

ata(x,t) = -div(7(x,t»). (5.78)

On the other hand, the surface current is driven by the difference in the local
chemical potential 7 - grad(Jl(x, t)). As we already mentioned, the diffusion is an
activated process. The motion of an atom depends on the number of bonds that must
be broken. The more neighbors an atom has, the lower the mobility. A measure of
mobility is the local radius of curvature T. A simple assumption is that the chemical
potential is proportional to -1/ T, which, in tum, is proportional to div(grad(a(x, t))).
Hence, Jl- -ila(x, t), where il denotes the Laplacian. Combining the arguments
given, we end up with the equation

ata(x, t) + K V4 a(x, t) = O. (5.79)

In MBE experiments, we have, on the other side, a flux ¢ = ¢(x, t) of atoms
bombarding the surface. The flux is defined as the number of particles arriving on the
unit surface in a unit time. At large length scales, the beam is homogeneous with an
average intensity ¢. Thus, the growth equation incorporating surface diffusion and
deposition has the form

(5.80)

The growth equation incorporating statistical fluctuations in the flux was originally
introduced independently by Wolf and Villain [1990] and Das Sarma and
Tamborenea [1991]. Since we are only interested in the detenninistic behavior of the
model, we suppress the noise in the equations. If we now include the process of

348 Point Symmetries of Partial Differential Equations

desorption, we can write down a linear model for MBE. Let us assume with Villain
that the desorption-dominated growth of the surface is governed by the difference
between the average chemical potential in the vapor J1 and the local chemical
potential on the surface J.l(x, t). Thus, the temporal change in the amplitude a is given
by - f3(J.l(x, t) - JI). The complete deterministic model including deposition,
desorption, and surface diffusion now reads

(5.81)

Apart from the beam flux ifJ, we incorporated an additional flux f3p. Both terms can be
abbreviated by <I> = ifJ + f3 71:

(5.82)

This equation contains all physically relevant linear terms describing the growth of
interfaces by MBE. The competition between the diffusion and desorption processes
will determine the growth of the surface. The parameters K, a, and <I> are assumed to
be real and positive.

Another aspect to be considered in MBE is the influence of non-linearity.
Non-linearity comes into play if we consider large domains in space. For such cases,
the small gradients in a are not negligible. The corresponding terms of second- and
third-order non-linearity are incorporated in the growth equation, which now reads

ata(x, t) + K V4 a(x, t) =
a V2a(x,t) + <I> +yV2(Va(x,t»2+ AV.(Va(x,t))3,

(5.83)

where we kept terms up to the fourth order in ax. To gain some insight into the
dynamic of this model, let us first examine the symmetries of the one-dimensional
version. For this case, equation (5.83) reduces to a (1+ I)-dimensional expression.
The related equation for the amplitude

A = a [x, t];

reads in Mathematica

nMBE =
atA+ Ka(x.4)A -aa(x.2)A - ya(x.2) (ax A)2 -A.ax (ax A)3 -!Ii == 0;

nMBE / / LTI'

Working Examples 349

where K, a, y, <1>, and A are real constants. The symmetries for this general non-linear
model follow by

inKBE = l:nfinitesimals[nKBE, a, {x, t}, {K, a, .A, ¥, ~}];

inKBE / / LTF

rih == k1

';, == k2

';2 == k3

representing a three-dimensional group containing only translations. The reduction of
this O+l)-dimensional model to an ODE follows by

red1 = LieReduetion[nMBE, {a}, {x, t}, {1, e}, {1}];

LTF [Flatten [red1] 1 /. zeta1 -+ ~1

t - c x - Sl == 0

a - x - F, == 0

-g? + F1!:1 - c 2 a F1!:1 ,i:1 - 3 c 2 .it F1i:1 ,!:, +

6 c 3 .it F1" F1 c1 ,!:1 - 3 c 4 .itF1~, F1!:1,s1 - 2 c 4 ,F1~,,!:1 +

2 c 3 ,F1s1 ,s1,s1 - 2 c 4 ,F1s1 F1s1 ,b1,i:1 + c 4 KF1i:l,bl,bl,!:1

o

describing a moving wave solution governed by a non-linear fourth-order ODE. This
reduced equation can be integrated once:

Clear[H] ;

intMBE = J (red1[3, 1, 1]) dlzeta1 == C [1] /. {F1 -+ H, zeta1 -+ ~};

intMBE / / LTF

H - S g? - C [1] - c 2 (a + 3 .it) Hi: + 3 c 3 .it H~ - c 4 .it H~ - 2 c 3 , (-1 + C Hs)

Hcs + c 4 K Hb,b,' == 0

The symmetries of the resulting third-order ODE are

infinirMBE = l:nfinitesimals [intMBE, H, ~,

{a, K, ¥,.A,~, e, C[l]}, SubstitutionRules-+ {a{l:.3}H[~]}];

infinirMBE / / LTF

cp, == k1 g?

';, == k1

The result shows that the reduced equation following from the general model is not
solvable by Lie's method,

350 Point Symmetries of Partial Differential Equations

In the following, we will discuss two limiting models, including surface diffusion in
connection with non-linearity and desorption with non-linearity. Both models include
a tenn describing deposition.

5.6.10.1 Suiface Diffusion with Nonlinearity

If we choose in the general model (5.83) a = 0 and A = 0, we get a model including
only surface diffusion and quadratic non-linearity in the gradient of a. The equation
of motion reduces to

m811B1!: = nIIBB /. {a ... 0, .A ... O}; m811B1!: / / L'l'r

-111 + at - Y (2 a~,x + 2 ax ax,x,x) + K ax,x,x,x == 0

The symmetry group of this special model

m8infi = I:nfinitesi_ls [m811B1!:, a, {x, t}, {x, ¥, II}];

m8infi / / L'l'r

</!1 == k1 + k4 t 111
k4 X

~1 == k2 + -4-

~2 == k3 + k4 t

contains translations and a scaling. Let us examine the scaling group

infi = {{xi [1] [x, t, a], xi [2] [x, t, a]},

{phi [1] [x, t, a]}} /. m8inH /.

{kl ... 0, k2 ... 0, k3 ... 0, k4 ... 1}

{{~,t},{t1l1}}

This kind of infinitesimals reduce the original equation to a fourth-order ODE:

redl = LieReduction[mBlIBB, {a}, {x, t}, infi[lJ1, infi[2J1] I

L'l'r[rlatten[redl]] /. zetal ... '1
t

X4 - r1 == 0

a - t 111 - F1 == 0

F1!:1 + 840 K F1!:1 r 1 - 1760 Y F1~, rf + 3120 K rf F1!:1,!:1 -

o

3200 Y F1" ri F1,1", - 512 Y ri F1~, ,!:, + 1920 K ri F1" ," ," -

512 Y F1C1 rf F1C1 ," ,1:, + 256 K ri F1c1 ,!:, ,1:, ,1:,

Interestingly, the resulting ODE does not contain the flux tenn 4>. This tenn is
completely separated in the similarity representation of the solution by
a = 4> t + F) (t / x4). The unknown function F) has to satisfy the fourth-order ODE,

Working Examples 351

which cannot be solved symbolically. However, we can derive a numerical solution if
we add four initial conditions to the ODE:

neq = Join[redl[3D,

{Fl[l] ==1, Fl' [l] ==0, Fl"[l] ==3/2, Fl(3) [1] ==-10}] /.

{y -+ 1};

The numerical solution for a fixed value of y and nine different values of K follows by
applying NDSolve[] to the equations

nsol =

Table[NDSolve[neq/. K-+i, Fl, {zetal, 1, lS}], {i, .2,1, .1}];

These solutions are plotted below.

color = Table[RGBColor[i, 0.1, 0.3], {i, .2,1, .1}];

Plot [Evaluate [Fl ['I /. nsol], {" 1, 6}, PlotStyle -+ color,

AxesLabel-+ {",n, "Fl "}]

If we, on the other hand, fix the value of K and vary y, we can examine the influence
of y on the solution

neq = Join[redl[3],

(Fl[l] == 1, Fl' [1] == 0, Fl" [1] == 3/2, Fl(3) [1] == -10}] /.

{K -+ 1};

nsol =

Table[NDSolve[neq/. y-+i, Fl, {zetal, 1, lS}], {i, 1, 5, 1}];

The resulting solutions are shown in the following plot:

Plot [Evaluate [Fl ['I /. nsol], {" 1, 6}, Plot Style -+ color,

AxesLabel-+ {",., "F l "}]

352 Point Symmetries of Partial Differential Equations

6

We realize that the influence of the non-linear terms represented by y increases if y

increases. The given solutions are by no means complete. We only get a caricature of
the solution manifold by a numerical solution. However, for some practical
applications, this solution may be sufficient to solve a specific problem.

5.6.10.2 Desorption with Non-linearity

The general model of MBE reduces to a model containing only effects of desorption
and deposition if we set the constants K and y equal to zero:

1113MB!: = nMB!: I. {K'" 0, y ... oJ; 1113MB!: II LTF

The equation of motion is a non-linear second-order PDE with a constant flux ~
responsible for deposition. The equation of motion is connected with a non-linear
diffusion equation including convective effects of the material in addition to the
diffusive effects. The symmetries of this equation follow by

m3infi = :Infinitesimals [1113MB!:, a, {x, t}, {a, A, ~}];

1113infi II LTF

$1 == k3 + k4 (a + t iii)
iii

k4 x
';1 == kl + -ili-

';2 == k2 + 2 k4 t
iii

describing a four-dimensional finite group with scaling and translation symmetries.
We observe that the constant flux ~ is connected with the scaling symmetry. We will
examine the solutions for the non-linear deposition model for this symmetry. The
infinitesimals for the scaling subgroup read

infi = {{xi [1] [x, t, a], xi [2] [x, t, a]},

{phi [1] [x, t, a]}} /. m3infi / •

{kl~O, k2~0, k3~0, k4~1}

The corresponding reduction follows from

Working Examples 353

redl = LieReduction[m3MBE, {a}, {x, t}, infi[lD, infi[2D];

LTP [Platten [redl]] /. zeta1 ~ '1
~ - Sl == 0
x 2

-a + t iI?
~-x~~ - F, == 0

(F,) Sl - 2 cx Sl (F,) Sl - 6 A Fi Sl (F,) Sl + 24 A F, si (F,) ~, -

24ASi (Fd~, -4cxsf (Fdc,Sl -12AFi si (Fd s1 ,Sl +

48 A F 1 si (F 1) Sl (F 1) Sl , Sl - 48 A sf (F 1) ~, (F 1) Sl ,1:, = =
o

In the similarity reduction, the flux <I> is separated from the similarity function F J •

This function has to satisfy a non-linear second-order ODE which is not symbolically
solvable by DSolve[]. The examination of the symmetry reveals that this equation
does not allow any point symmetry and thus Lie's integration strategy terminates:

I:nfinitesimals [redl[3D, 1'1, zetal,

{.A, a}, SubstitutionRules -+ {l'{ •• tal,2} 1'1 [zeta1] }] / /

LTP

<P1 == 0
';, == 0

The only way to study the equation is a numerical integration. Adding initial
conditions to the second-order ODE and fixing the parameters,

neq = Join[redl[3D, {Pl[l] ==1,1'1'[1] ==1/2}] /. {.A-+l};

allows us the numerical integration. We first fixed A describing the non-linear
influence in the equation and changed a over a large range:

nsol = Table[NDSolve[neq /. a-+i, 1'1, {zetal, 1, 15}],

{i, 1, 50, 10}];

The resulting solutions for different a and identical initial conditions are plotted
below.

plot [Evaluate [1'1 ['] /. nsol] ,

{" 1, 15}, PlotStyle-+ Table[Hue[i], {i, 0, .5, .1}],

AxesLabel -+ {n '", "F1 n}]

354 Point Symmetries of Partial Differential Equations

Fl

4 . 5

4

3 . 5

3

2.5

2

1.5

6 8 10 12 1 4

We observe that the solution shows an increasing behavior in {. By increasing the
dispersive strength a in the ODE, the solutions decrease in their values and tend to a
limiting curve. The other behavior studied under identical initial conditions is the
variation of the non-linear strength A at a fixed value of a. The equations plus initial
conditions are created by

n.q = Join[r.d1[3D, {P1[l] ==1, P1' [l] ==lt2}] t. {a-+1};

The variation of A in the integration process delivers the solutions

n80l = Tabl.[NDSolv.[n.q t. A i, Pl, {z.tal, 1, IS}],

{i, 1, SO, 10}];

which are plotted over {by

Plot [Evaluat. [Pl ['] t. n80l] ,

{" 1, 1S}, PlotStyl Tabl.[Hu.[i], {i, 0, .S, .1}],

Ax •• Label -+ { .. ,n, "P1 n}]

Fl

4.5

4

3.5

3

2.5

2

1.5

2 4 6 8 10 12 14

Working Examples 355

We observe again the same behavior as in the case of the a variation. However, the
decrease in the solution is much smaller by changing the strength of the non-linearity.

5.6.11 The First Atomic Explosion

In March 1950, Sir Geoffrey Taylor [1950] published two papers which examined the
first atomic explosion in 1945 in New Mexico. The author concludes that a similarity
analysis of the experiment is in excellent agreement with the theory and can be used
to calculate the energy release during the explosion. The information on the total
release of energy was a well guarded secret of the U.S. government in these days.
The paper by Taylor was therefore classified when the theoretical investigations were
made. However, the publication 5 years later resolved this secret and made the results
on energy release public contrary to the intention of the U.S. government. The results
on the energy release caused much embarrassment in American government circles.
The flaw of the government was that motion pictures recorded by Mack [1947]
became unclassified while the energy release was considered top secret. These
pictures contained not only the explosion but also a time record which allowed an
estimation of the physical quantities.

How such an estimation can be carried out is the subject of the present example.
First, let us recall the sequence of pictures which were used by Sir Geoffrey Taylor to
carry out the calculations. We took these pictures from the work of Taylor [1950].
They demonstrate the evolution of the blast in the first 2 ms. The animation
capabilities of Mathematica empower us to follow the explosion at the desk.

356 Point Symmetries of Partial Differential Equations

Working Examples 357

The main observation we make is that the thermal wave expands from a point to a
spherical object. The motion of the gas was assumed spherically symmetric. This
simplifying assumption received excellent confirmation in the first atomic test.

The picture 15 ms after the explosion looks like a very large mushroom. This
photograph of the fire ball of the atomic explosion in New Mexico confirms the
spherical symmetry of the gas motion in an excellent way.

c:roUII('

1114 1 trl .

The development of the gas after 127 ms is still nearly spherical. However, the region
near the ground is more disturbed.

358 Point Symmetries of Partial Differential Equations

The pictures above were taken from G.I. Taylor and originally recorded by Mack in
1945. Sir Geoffrey Taylor used in his theoretical considerations three basic equations
of motion describing the evolution of the pressure p, the density p, and the radial
velocity u. The three equations are the equation of continuity, the Euler equation for
the velocity, and the equation of state for a polytropic medium. The third equation
expresses the fact that the entropy is constant along the path of a particle which
generally is not the case, as Courant and Friederichs [1948] remark. According to the
spherical symmetry of the problem Taylor used only the radial component of these
quantities. The three equations of motion for the density p, the velocity field u, and
the pressure pare

Pt + U Pr + P (ur + 2:) = 0,
Po Pr

Ut + U Ur + -- = 0,
P

(p p-Y)t + U (p P-Y)r = O.

In Mathematica we first define the three variables by

U=u[r, t); Rh=p[r, t); P=p[r, t);

The left-hand side of the three equations of motion are then collected in a list:

taylor = {at Rh + U a .. Rh + Rh (a .. u + 2rU),

pO a .. p
atu+uo .. u+ , Ot (PRh-l') +UO .. (PRh-l')};

Rh
taylor II L'1!'B'

p (2r U + u r) + U P r + Pt == 0

pO Pr + U U + U == 0
P r t

p-y Pt + U (p-y Pr - P ¥ p-l-Y Pr) - P ¥ p-l-Y Pt == 0

(5.84)

(5.85)

(5.86)

The equations contain two parameters, y and Po, describing the ratio of the specific
heats and the pressure of the undisturbed atmosphere. A symmetry analysis of these
equations gives us the result

itaylor = J:nfinit •• imal.[taylor, {p, u, p}, {r, t}, {pO, ¥},

Suh.titutioDltul {atp[r, t), atu[r, t), atp[r, t]});

itaylor II L'l'1'

4h == (2 k2 - 2 k3 - k4) p

4>2 == (-k2 +k3) U
4>3 == -k4 P

~l == k3 r

~2 == kl + k2 t

Working Examples 359

The three equations permit a four-dimensional discrete symmetry group. The main
symmetry is a scaling symmetry for all variables. In addition, there is a symmetry of
translation in time. For the moment, we concentrate on the scaling symmetry with
infinitesimals for the independent and dependent variables:

infl = {{xi [1] [r, t, p, u, p],

xi [2] [r, t, p, u, p]}, {phi [1] [r, t, p, u, p],

phi [2] [r, t, p, u, p], phi [3] [r, t, p, u, p]}} /. itaylor /.

{kl 0, k2 1, k3 ... a, k4 ... o}

{{ra, t}, {(2-c-2a) p, u (-l+a), -cp}}

The group parameters are chosen in such a way that we can find the parameters a and
c in accordance with the measurements carried out by Taylor. The reduction of the
equations of motion follows by

rtaylor = LieReduotion[taylor,

{p, u, p}, {r, t}, infl[lD, infl[2D] II PowerExpand;

L'l'F [Flatten [rtaylor]] /. zetal ... '1
Solve: : tdep :

The equations appear to involve transcendental functions
of the variables in an essentially non-algebraic way.

2-c-2 a
r--a- p - Fl == 0

-1+0:
r--a-u-F2 ==O

p rei" - F3 == 0

o

o

o

360 Point Symmetries of Partial Differential Equations

Thus, the original equations reduce to a coupled system of first-order ODEs. This set
of equations contains the new variable zetal = r- 11a t, where tl is a constant. This
constant is determined by the radial coordinate r and the time t. To determine the
exponent a in our analysis, we use the measurements of Taylor for the radius rl of
the explosion front. Since (I = t r- 11a is a constant, we can determine the exponent a

in a double logarithmic plot of the radius r 1 versus time log(r 1) =
(log(t) -log«(I» / a. The slope in the log-log plot is directly related to lIa. The data
we need for this kind of analysis are tabulated in Taylor's paper and are reproduced
here. The first figure of the data set denotes time in seconds and the second the radius
in meters:

tay10rData = {{0.110-3 , 11.1},

{0.24 10-3 , 19.9}, {0.3810-3 , 25.4}, {0.52 10-3 , 28.8},

{0.6610-3 , 31.9}, {0.80 10-3 , 34.2}, {0.94 10-3 , 36.3},

{1.0810-3 , 38.9}, {1.2210-3 , 41.0}, {1.3610-3 , 42.8},

{1.50 10-3 , 44.4}, {1.6510-3 , 46.0}, {1.7910-3 , 46.9},

{1.93 10-3 , 48.7}, {3.2610-3 , 59.0}, {3.531O-3 , 61.1},

{3.80 10-3 , 62.9}, {4.0710-3 , 64.3}, {4.34 10-3 , 65.6},

{4.6110-3 , 67.3}, {15.0 10-3 , 106.5}, {25.0 10-3 , 130.0},

{34.0 10-3 , U5.0}, {53.0 10-3 , 175.0}, {62.0 10-3 , 185.0}};

« Graphics'Graphics'

The double logarithmic plot demonstrates the linear relation between the fire-ball
radius and the time elapsed since the ignition.

p11 = LogLogListP1ot [tay1orData, GriaLines ... Automatic,

rrame ... ra1se, Prolog ... {pointSize [0.02] },

P1otSty1e ... RGBCo1or[1, 0, 0], AxesLabe1 ... {Ot", "rf"}]

150

100

70

50

30

20

15

0.0001

.JIII'

•

0.000($.001

.........
1-

0.0050.01 0.05
t

Working Examples 361

The scaling exponent a can be estimated by fitting a linear relation on the logarithmic
data:

logData = Take [Log [10, taylorData], {1, Length [taylorData] }] ;

The fit of the logData follows by

fu = Fit [logData, {l, t}, t]

2.77674 + 0.405823 t

The result is a relation connecting time t with the radius rf in a logarithmic
representation. The slope of the straight line is given by f3 = 0.405 = 1/ a. The
exponent a thus takes approximately the value a = 5/2 within an error of 1.4%.

Combining both the measurement and the fit in a common picture shows the
excellent agreement between experiment and theory:

Show[pll, Plot[fu, {t, -4, -1},

PlotStyle -+ RGBColor[O, 0, 1], DisplayFunction -+ Identity],

DisplayFunction -+ $DisplayFunction]

150

100

70

50

30

20

15

0.0001

~

...""
~

I.

---'V

0.0005.001

....
/rr

t
0.0050.01 0.05

The plot shows that the scaling relation fl = t r- 2/5 is satisfied over a range of about
three decades in time.

The exponent a was calculated by Taylor by different reasonings. He used a
dimensional analysis of the problem and ended up with the value a = 5/2 for the
scaling exponent. The idea behind a dimensional analysis is that a physical quantity
is expressed by other physical quantities which mainly govern the process. The

362 Point Symmetries of Partial Differential Equations

atomic explosion is mainly determined by the total energy E released at ignition, the
density of the surrounding air Po, and the time 1. The dimensions of the governing
quantities in the length, mass, and time (LMT) system are [E] = ML2 r-2 , [1] = T,
and Po = ML-3 • The dimension of the radius rJ expressed by these quantities is

[rf] = [E]I/' [1]2/' [Por'/'. Since E and Po are constants, we find log(rJ) =

+ (log(t) -log(K;o)1/2). Comparing this result with the formula derived from the

similarity analysis, we can identify {= (K Po / E)1/2. This relation also suggests that

(5.87)

is a constant in time. Assuming that the density Po = 1.25 kg/m3and that K,
depending on the pressure, is near unity, we can estimate the energy from Taylor's
data. The following plot shows an overview of the energy calculated by (5.87) for all
data points:

LogLogListPlot [Map [((#[1]), #[lr2 #[2])5 * 1.25}) &:, taylorData],

GridLin.s Automatic,

I'rame Pals., Prolog {PointSize [0.02] } ,

PlotStyle RGBColor [1, 0, 0], AxesLabel.... {n tn, n En} ,

PlotRange"" {{0.0001, 0.062}, {2.0*1013 , 1.0*1014 }}]

E
1.x1014 .. It jI

• 1-. ..
• • e '. 7.x1013

5. X 1013

3. X 1013

0.00050.001 0.0050.01

•

t
0.05

Despite the first point, the energy values oscillate around a mean energy value of
about

« st.tistics' oescriptiveStatistics'

.... n[Map[(#[lr2 #[2])5 * 1.25)&:, taylorD.t.]]

8.28254 X 1013

Working Examples 363

The value calculated in joules corresponds to a T.N.T. equivalent of about 19,488
tons. The other infonnation contained in Taylor's model is the dynamic behavior of
the density p, the velocity u, and the pressure p. Inserting the value of a into the
similarity reduction, we find the governing equations for these quantities:

L'l'F [(rtaylor / / Flatten) /. {a -+ 5/2} / / Sim;plify] /. zeta1 -+ '1
t

r 2/S - rl == 0

2 (3+c)
r-s- p - Fl == 0

u
r 3/S - F2 == 0

p r2 ciS - F3 == 0

t((-5+2F2rll (Fd., + F l ((-7+2c)F2+2rl (F2).,)) ==0

2 rl

e /2 (c pO F3 - -} Fl (3 F~ + 5 (F2)., - 2 F2 rl (F2).,) + pO rl (F3).,)

r~/2

== 0

t),F3 (-t+F2rd (Fd" + tFl ((c (-1+)') +3)') F2 F 3 + (t - F 2 rd

rl

== 0

The set of equations contain common factors which are eliminated in the following
representation of the first-order coupled ODEs:

eq = {((5 - 2 zeta1 1'2 [zeta1]) 1'1' [zeta1] +

1'1 [zeta1] «7 - 2 c) 1'2 [zeta1] - 2 zeta1 1'2' [zeta1]» == 0,

1'1 [zeta1]

(-31'2 [zeta1j2 - 51'2' [zeta1] + 2 zeta1 1'2 [zeta1] 1'2' [zeta1]) +

2 pO (c 1'3 [zeta1] + zeta1 1'3' [zeta1]) == 0,

'I (-5 + 2 zeta1:1'2 [zeta1]) 1'3 [zeta1] 1'1' [zeta1] +

F1[zeta1] (5F3'[zeta1] +2F2[zeta1] (-cF3[zeta1] +

3'11'3 [zeta1] + c 'I 1'3 [zeta1] - zeta1 1'3' [zeta1]» ==
OJ;

This set of equations contains parameters describing the pressure of air Po, the ratio
of the specific heats 'Y, and a group parameter c. Inserting numerical values for these
three quantities allows us to integrate the ODEs numerically:

eq1 = eq /. {c -+ 1, '1-+ 1, pO -+ 1};

For a numerical integration, we need initial conditions for the density p, the velocity
field u, and the pressure p:

364 Point Symmetries of Partial Differential Equations

eq2 = Join[eql. {Fl[O] == 1.25. F2[0] == 1. F3[0] == 1}];

The integration for~) in the range 0 ::::;~) ::::; 10 delivers the solution by an interpolated
function:

nsol = NDSolve[eq2. {Fl. F2. F3}. {zetal. O. 10}]

{{F1 -7 InterpolatingFunction [{ {O., 10.}}, <> 1 ,
F2 -7 InterpolatingFunction [{ {O., 10.}}, <> 1 ,
F3 -7 InterpolatingFunction [{ {O., 10.}}, <> 1 } }

The functions are represented by Plot[] for the three variables F), F2 , and F3:

Plot [!:valuate [{Fl [r] • F2 [r]. F3 [r] } / • nsol] •

{r. o. 10}. PlotStyle -+ {RGBColor[O. O. 0.996109].

RGBColor[0.996109. O. 0]. RGBColor[O. 0.500008. OJ}.

PlotRange -+ All. AxesLabel -+ {n r1 n. "F1 .F2 .F3 n}]

1.2

2 4 6 8

The plot shows that all three quantities decay in ~). This behavior is expected since
the total amount of energy is released into free space. In conclusion, we not only
estimated the released thermal energy of the explosion but have also the spatial and
temporal decay of the physical quantities available.

6

Non-classical Symmetries of Partial
Differential Equations

6.1. Introduction

The non-classical method of symmetry analysis is an extension of Lie's classical
method. This non-classical method was compiled by Bluman and Cole [1969] in
connection with the analysis of the heat equation. This method allows us to derive
another type of solutions which are different from solutions derived from Lie's
procedure. The method extends the classical approach to find solutions for linear and
non-linear PDEs. This chapter contains the theoretical background of the method and
demonstrates the application to different problems.

Based on a side condition, Bluman and Cole [1969] introduced the non-classical
method. They discussed the diffusion equation as an example. The result of their
considerations was that completely different solutions for the heat equation occur. A
group-theoretical explanation of this result was given by Olver [1986] and Levi and
Winternitz [1989]. The non-classical method was extended to weak symmetries and
side conditions by Olver and Rosenau [1986]. The difference between weak
symmetries and symmetries is defined as follows.

366 Non-classical Symmetries of Partial Differential Equations

Definition: Symmetry of a PDE

A symmetry group G of.l = 0 is a local transfonnation with the following properties:

1. The elements of G transform solutions of .l = 0 into new solutions of this
equation.

2. The solutions of .l = 0 invariant under G follow from a system of PDEs
containing a reduced set of independent variables. 0

The above definition rephrases the invariance conditions of Chapter 5 in different
words. A weak symmetry, on the other hand, is a symmetry which satisfies the
second condition of the definition but does not satisfy the first one. Thus, a weak
symmetry transfonnation does not allow that new solutions of .l = 0 follow from
known solutions. The second condition expand the class of solutions for a PDE. In
the following, we will show that this freedom of a symmetry definition is capable to
deliver a new kind of solution.

6.2. Mathematical Background of the Non-classical Method

In this section, we are looking for solutions of the general equation

(6.1)

under a side condition. Contrary to the classical method of Lie, we are seeking
solutions under the condition that the invariant surface condition vanishes. As we
know, the solution for the function u invariant under a point transfonnation is based
on the characteristic equations

dx 1

~1
=

dxn du 1 du2 dum
--=--=--= ... =--
~n CPl cpz CPm

(6.2)

Equivalently, relation (6.2) can be fonnulated in connection with the vector field v by
using the infinitesimals as

n

~~iUr-CPa = 0, a=l, ... , m.
i=1

(6.3)

This equation (6.3) is abbreviated with Qa(x, U(I») = 0 by Olver [1986]. A solution
of.l = 0 invariant under the transfonnation given by v satisfies the system of PDEs

(6.4)

Mathematical Background of the Non-classical Method 367

Qa (x, u(1)) = O. (6.5)

So far, we recalled the properties of the classical method by Lie. The non-classical
method of Bluman and Cole now considers condition (6.5) as an additional side
condition for the solution of the original equation l:!. = O.

In a non-classical symmetry analysis of l:!. = 0, we are not only interested in the
symmetries of the PDE but also in the symmetries of the PDE extended by the
characteristic equation (6.5). The solutions of the non-classical method will generate
a weak symmetry in the sense discussed in Section 6.1. At the other hand, it is
certain that the vector fields of the non-classical method do not need to form a Lie
algebra. Hence, there can be a wider class of similarity solutions than in the classical
case.

An essential observation by Bluman and Cole [1969] is that an invariant solution u(x)

of l:!. = 0 does not only solve the PDE itself but also the invariant surface condition or
characteristic equation:

Qa = 0, a = 1 q. (6.6)

Thus. the invariance condition of the classical method is extended by this additional
condition:

pr(k) 11 l:!. 1.1=0 = O.
Qa=O

(6.7)

pr(l) 11 Qa 1.1=0 = O.
Q.=O

(6.8)

Equation (6.8) does not establish any additional restriction in the derivation of the
determining equation since it is satisfied identically. The main difference compared
with Lie's method is that not only one side condition occurs but also the
characteristics must vanish. This second side condition has the consequence that the
derivatives of u are strongly coupled. The tight coupling of the derivatives results
into a non-linear system of determining equations for the infinitesimals. This fact is
the main difference between the classical and non-classical method. However. the
non-linearity in the detennining equations is a real problem in connection with
symbolic calculations.

The above theoretical considerations can be cast into a more suitable formulation for
computer calculation. The following discussion shows how the prolongation
formulation can be rewritten in terms of the Frechet formalism. We know from above
that the non-classical method applies the classical Lie method to the extended system
of equations

368 Non-classical Symmetries of Partial Differential Equations

Q", =0,

(6.9)

(6.10)

i = 1, 2, ... , m and a = 1,2, ... , m. The invariance condition expressed by the
Frechet derivative reads

(6.11)

Equation (6.11) is quite similar to the invariance condition for point symmetries. The
difference is that in the present case the characteristics have to vanish. The added
surface condition can be annotated as a side condition or as a conditional equation
that introduces new dependencies for the derivatives of u. These relations have to be
taken into consideration during the calculations. The side condition Q" = 0
introduces a relation representing a strong connection between the derivatives of the
dependent variables. This relationship has to be considered in the elimination of
derivatives in the prolongation formula. Equation (6.11) contains all the necessary
steps to calculate the determining equations in a nutshell. Let us summarize the
algorithm in the following steps:

1. Calculate the prolongation of the equation ~ = 0 as discussed for classical point
symmetries.

2. Apply the side conditions to the prolongation formula.

3. Extract the determining equations as discussed for the classical method.

These three steps are the essentials of the non-classical method. Contrary to the
classical method, we have as side conditions not only the equations ~ = 0 but also the
condition of the vanishing characteristics and the differential consequences of this
relation. The main difficulty of this algorithm is contained in the second step. Since
the characteristic equation is satisfied identically, we can apply this side condition
either to the original equation itself or to the prolongation. Both procedures are
discussed in the literature. The method by Levi and Wintemitz [1989] prefers the
elimination of the side conditions after the calculation of the prolongation. Clarkson
and Mansfield [1994] eliminate the terms of the characteristics before the
prolongation is calculated. The algorithm implemented in MathLie follow the
considerations of Clarkson and Mansfield.

The kind of problems occurring during a non-classical calculation are demonstrated
by the following example. Let us consider the characteristic equation in 2+ 1
dimensions. The characteristic equation for this case reads

Ux 51(X,t,U) + Ut52(X,t,U) - ¢>(x,t,u) =0. (6.12)

Mathematical Background of the Non-classical Method 369

Let us assume that we are looking for a substitution replacing the Ut term. The
resulting expression from (6.12) is given by

(6.13)

We replaced the ratios of ¢ / g2 and g1 jg2 simply by ¢J and g1, respectively. This
substitution corresponds to a formal coordinate transformation assuming that g2 = 1.
The derived substitution rules from (6.13) are up to second order given by

(6.14)

(6.15)

(6.16)

The last of these relations (6.16) contains terms of Ut and Ux,t which have to be
replaced by the first two rules (6.14) and (6.15), respectively. Thus, relation (6.16) is
only expressible if the preceding substitutions were calculated first. If not, relation
(6.16) contains redundant information which affects the invariant condition (6.11).
Thus, one has to keep the following suggestions in mind if one solves the side
conditions Qa = O.

1. The derivatives for which the side condition Q" = 0 is solved should occur in the
original equation in a simple form. This guarantees that the original equation
stays simple after the substitution of the side conditions and thus saves a lot of
computing time.

2. If we have more than one dependent variable, we should solve the characteristic
equation with respect to a derivative occurring in all side conditions. This allows
the introduction of the relation gi = 1 for a specific independent variable Xi.

The substitutions derived in the above example indicate that the determining
equations are non-linear functions in the infinitesimals. This change from a linear
system of determining equations in the case of the classical method to a system of
non-linear determining equations for the non-classical method bears very
complicated problems. The problem of solving the non-linear determining equations
is currently not disclosed. Thus, we cannot automatically find solutions for the
infinitesimals in all cases with MathLie. At the moment, we use an interactive and a
pseudo-automatic method to derive the solutions from the determining equations. The
following examples will demonstrate how we can find non-classical symmetries by
applying the functions of MathLie.

370 Non-classical Symmetries of Partial Differential Equations

6.3. Applications of the Non-classical Method

The non-classical method has been applied to various PDEs. New classes of solutions
which cannot be obtained by the classical method have been found for the heat
equation by BIuman and Cole [1969], the Boussinesq equation by Levi and
Winternitz [1989], the Burgers equation by Pucci [1992], and the Fitzhugh Nagumo
equation by Nucci and Clarkson [1992]. We will demonstrate in this section how the
functions of MathLie can be exerted to derive the determining equations. In addition,
we will solve the determining equations interactively and automatically.

6.3.1 The Heat Equation

Let us start with the well-studied heat equation by BIuman and Cole [1969]. The
scaled heat equation in (1 + 1) dimensions reads

Ut - ux,x = 0, (6.17)

where U is the field describing the variation of a scaled temperature in a pipe, for
example. The heat equation is one of the rare examples which allows the study of
different solution procedures. In Section 5.6.1, we examined the heat equation with
the classical method of Lie. The result was a six-dimensional discrete symmetry
group in connection with an infinite dimensional group. Here, we will examine the
heat equation again by using the non-classical method. The determining equations are
derived with the help of Lie[] in connection with two options of the function. The
equation of motion in Mathematica is created by

t1 = u[x, t];

diffus = {at 0' - ax •x t1 }; diffus II LTP

U t - Ux,x == 0

We first extend our database by a file containing the information on the equation. The
left-hand side of the heat equation (6.17) is stored to the file ncdiffu.dgl by applying
LieEquations[] :

LieZquations[-ncdiffu.dgl-, diffus, {u}, {x, t}, 0,
{-Heat equation-}, {{-G. Baumann-}, {-0'1m 1997-}}]

The file ncdiffu.dgl contains all the necessary information to start the analysis.

The information in the file is contained in global variables. The variable Title, for

example, contains a headline describing the purpose of the equation. The variable

Applications of the Non-classical Method 371

Source carries, in sublists, information on the origin of the equation. The remaining

variables such as IndepVar, DependVar, EqList, SubsList, ParameterS, ListXi, and

ListPhi contain information on the independent and dependent variables, the equation
of motion, the terms for which the side condition in the classical method is solved, a
list of parameters, and two lists for the infinitesimals, respectively. All information
contained in the file is necessary for the function Lie[] to carry out a symmetry

analysis. The non-classical symmetry method is initiated by using Lie[] in connection

with the option NonclassicaISymmetries-+True. The option NonclassicaICases-+{t}

of Lie[] selects those terms of the characteristic equations which contain a derivative
with respect to the specified variable, here t, meaning that all higher derivatives
containing a partial derivative with respect to t are used to match and eliminate the
terms in the original equation. We start the non-classical symmetry analysis for the
heat equation by

Lie ["Dcdiffu.dgl" , NODclassical~tries -+ True,

NODclassicalCases -+ {t}] II LTF

(~2lu==O

(~llu,u == 0

(~2lu,u==O

(~2lx==O

(~2lx,u==O

<1>1 (~2lu+~1 (~2lx+£2 (~2lx,x==O

-~~ (~llt+2~2<1>l (~llu-2~1~2 (~llx+~1~2 (~2lt+

~1 <1>1 (~2 lu + ~i (~2lx + ~~ (~llx,x - 2 ~~ (<I>ll x ,u ==

o

-2 ~2 <1>1 (~llx + ~2 <1>1 (~2lt +

<l>i (~2lu+~l<1>l (~2)x-~~ (<I>llt+~~ (<I>ll x,x==

o

2 ~1 (~llu - 2 ~2 (~llx,u + ~2 (<I>ll u,u == 0

The result is a non-linear coupled system of nine partial differential equations
determining the non-classical symmetries of the heat equation. Our task is to solve
the determining equations. IT we have information on the structure of the
infinitesimals, we can incorporate this information into the database file ncdiffu.dgl.
The extension of the file will simplify the determining equations in the solution
procedure. Let us first store the following relations into ncdiffu.dgl:

ListXi = {xi[1] [x, t, u[x, t]], 1};

Liatpbi = {pbi[1] [x, t, u[x, t]]};

Save["ncdiffu.clgl n , ListXi, ListPbi];

372 Non-classical Symmetries of Partial Differential Equations

Save[] appends the two relations on the infinitesimals to the file ncdiffu.dgl. The
gathered information can now be used to simplify the determining equations by
starting the analysis a second time. Since we provided the database file with new
information, we can activate this information by setting the option

NonclassicalInfo-+True

Li. ["ncdiffu.dgl", Moncla •• icalSymmetrie 'l'rue,

MonelassicalCa.es ... {t}, Monelassical:Info ... 'l'rue] II
L'l'F

(~I)U.U == 0

2 ~1 (~du - 2 (~dx,u + (cf>du,u == 0

-2 cf>1 (~d x - (cf>d t + (<t>dx,x == 0

-(~I)t +2<t>1 (~I)u -2~1 (~I)x+ (~I)x,x-2 (<t>I)x,u ==0

We end up with four non-linear determining equations. We realize that the number of
equations is reduced by five. Although the equations are still non-linear, we have a
good chance to solve them. First, we observe that not all equations are coupled. Thus,
the strategy is to extract those equations which are simple and linear. Solving this
subset of equations will provide us with more information on the infinitesimals. This
information is essential to solve the remaining non-linear determining equations. The
first equation of the determining equations states that xi[l] allows a solution which is
independent of the dependent variable u. Thus, we can use this information to extend
our file ncdiffu.dgl with

Clear [A]

ListXi = {A[x, t], 1};

ListPhi = {phi [1] [x, t, u[x, t]]};

Save ["ncdiffu.dgl", ListXi, ListPhi];

Running the function Lie[] again and using the new information in the file, we get

Lie ["ncdiffu. dgl", Moncla •• icalSymmetrie 'l'rue,

MonelassicalCases ... {t}, Moncla •• ical:Info ... 'l'rue] II
L'l'F

(<t>I)u,u == 0

-At -2AAx +Ax,x -2 (cf>I)x,u == 0

-2 Ax <t>1 - (<t>d t + (<t>dx,x == 0

The resulting three equations are again simplified and determine the infinitesimals. A
glance at these equations shows that we get a mixed system of linear and non-linear
determining equations. The linear equation tfJu,u = 0 serves to gain additional
information on the structure of the infinitesimals. This equation allows us to
represent tfJ as a linear function in u. Thus, we set the infinitesimals to

Applications of the Non-classical Method 373

ListXi = {A[x, t], 1};

as before, and ~ as

ListPhi = {B[x, t] + C[x, t] u[x, t]};

where B[x,tj and C[x,tj are arbitrary functions. Saving this result,

Save [nncdiffu.dgl n, ListXi, ListPhi];

and starting the calculation again by

ncdiffu = Lie["ncdiffu.dgl n , NonclassicalSymmetries -> True,

NonclassicalCases -> {t},

Nonclassicall:nfo -> True]; ncdiffu / / LTF

-At - 2 A Ax - 2 Cx + Ax,x == 0

- 2 B Ax - B t + Bx , x = = 0

-2 C [x, tj Ax - C t + Cx,x == 0

reveals a system of three coupled non-linear equations for the unknown functions A,
B, and C. This system of equations determines the infinitesimals of the non-classical
group. At this stage, we clearly face the problem that starting with a linear PDE, we
end up with a non-linear one. This system of non-linear PDEs is difficult to solve.
However, in our analysis, we only need special solutions of this equation to find new
solutions of the heat equation. We already know a method to analyze such non-linear
equations. Applying Lie's point symmetry procedure in the usual way, we get the
symmetries of these equations. The symmetries of the three coupled PDEs read

incdiffu = :Infinitesimals [ncdiffu, {A, B, C}, {x, t}];

incdiffu / / LTF

PDESolve: :nsf : Use option Standard->True.

This may lead to further solutions in case of

linear Systems

- CTl) t + (r1) X,x == 0

';1 == kl _ 2 kS t + k~ x _ 2 k~ t x

2 k7 t 2

';2 == k2 + k3 t - S

1
<Pi == 10 (-SAk3-20kS+4Ak7t-4k7x)

<P2 == B (k4 + k6 + k7 t + kS x + k~;2) + C r 1 - A (r1) x - (r1) X,x

1
<P3 5 (- S C k3 + SA kS + k7 + 4 C k7 t + A k7 x)

374 Non-classical Symmetries oj Partial Differential Equations

The result is that the three coupled PDEs for the non-classical symmetries posses a
seven-dimensional discrete symmetry group. In addition, there exist an infinite
dimensional group given by the functionJree[1]. This arbitrary function has to satisfy
the heat equation. The symmetries of the non-classical determining equations exhibit
a similar structure as the point symmetries of the heat equation. The symmetries can
now be used to find special solutions for the functions A, B, and C. First, we select
the subgroup with kl = 1:

infi = {{xi [1] [x, t, A, B, e],
xi[2] [x, t, A, B, e]}, {phi [1] [x, t, A, B, e],

phi [2] [x, t, A, B, e], phi [3] [x, t, A, B, e]}} I. incdiffu[l]J I.
{kl -> 0, k2 -> 1, k3 -> 0, k4 -> 0, kS -> 0, k6 -> 0, k7 -> 0,

free L] -+ l'unction [{x, t}, O]}

{{O, 1}, {O, 0, O}}

The corresponding reduction of the non-classical determining equations follow with
this representation of the infinitesimals by

red =
LieReduction [ncdiffu, {A, B, e}, {x, t}, infi [1]J, infi[2]J];

red II Flatten II L'l'1' I. zetal -+ '1
x - zeta1 == 0

A-Fl == 0

B - F2 == 0

C - F3 == 0

- 2 F 3 zetal - 2 F 1 (F 1) zetal + (F 1) zetal, zetal = = 0

- 2 F2 F1zetal + (F2) zetal, zetal == 0

-2 F3 F1zetal + (F3) zetal,zetal == 0

The similarity representation of the non-linear determining equations is given by
three coupled non-linear ODEs. To simplify things, let us assume that the functions
F2 and F3 are given by the trivial solutions

redh =
red[3]J I. {1'3 -+ l'unction[zetal, 0], 1'2 -+ l'unction[zetal, O]}

{-2 F1 [zeta1] F1' [zeta1] + F1" [zeta1] == 0, True, True}

The substitution of F2 = 0 and F3 = 0 into the reduced equations simplifies the
system to a single equation. This equation is solved by DSolve[]

8011 = DS01ve [redh[l]J, 1'1, zetal]

{ {F1 ~ (-V'CT2T Tan [#1 -v'CT2T + c [1] -v'CT2T] &) } }

Applications of the Non-classical Method 375

The solution simplifies further if we specify the constants of integration in a certain
way:

so12 = (Fl [zetal] I. sol1) I. {C [1] -+ 0, C [2] -+ a 2 } I I Sill\Plify

{ -Jai Tan [zetal -Jail }

The final solution for the unknown functions A, B, and C of the non-classical
determining equations is thus given by

rsol = Solve[red[2D I. soll 10
{F3 -+ Function [zetal, 01, F2 -+ Function [zetal, O]} 10

{C[l] -+ 0, C[2] -+a2 } II Sill\Plify,

{A, B, C}]

We can check that this special solution satisfies the determining equations by
rewriting the above results in a pure function form:

infired = {A-+Function[{x, t},.y;2 'l'an[x.y;2]],

B-+Function[{x, t}, 0], C-+Function[{x, t}, Ol};

infired / I L'l'F

A == -Jai Tan [x -Jail
B == 0

C == 0

Inserting this representation of the solution into the non-linear determining equations,
we find that the equations are identically satisfied:

ncdiffu 10 infired I I Sill\Plify

{O, 0, O}

The non-classical infinitesimals for the heat equation are thus given by

infdifus = {ListXi, ListPhi} 10 infired

representing a special transformation under which the heat equation is invariant. The
reduction of the heat equation with these infinitesimals follows:

rdiffus =
LieReduction[diffus, {u}, {x, t}, infdifus[lD, infdifus[2Dl;

rdiffus 1/ Flatten 1/ LTF 10 zetal -+ ~1

376 Non-classical Symmetries of Partial Differential Equations

Solve: : tdep :
The equations appear to involve transcendental functions

of the variables in an essentially non-algebraic way.

1 -ta2 + Log[Sin [xa]] --0 -zeta - a 2 --

u - Fl == 0

(E2 t ,, ' E2 zetal " ,) (2 F 1 F 1) _- _- 0 - a zetal + zeta l, zeta!

The similarity representation of the heat equation is an expression combining
trigonometric and logarithmic functions . The unknown function FI of this reduction
is determined by a second-order ODE. This ODE is solved by DSolve[]:

srdiffu8 = DSolve[(a~ 1'1' [zetal] + 1'1" [zetal]) == 0, 1'1, zetal]

The result is an exponential solution containing two constants of integration C[l] and
C[2]. In original variables, the solution reads

sol = Solve [(rdiffus[2D /. srdiffus) / / SiD\Plify, u] / / platten

{u~C [2] - E- t
'" C[122Sin [xa] }

If we specify the parameters a, C[l], and C[2] in an appropriate way, we can
graphically represent the solution by

Plot3D[Bvaluate[u/.sol /. {a-ol/2, C[l] -+1, C[2] -+2}],

{x, -371:, 3 7I:}, {t, 0, 6}, AxesLabel -0 {"x", "t", nun},

PlotPoints -+ 25]

u

Applications o/the Non-classical Method 377

The example of the heat equation demonstrates how the basic functions of MathLie
can be used to find non-classical solutions. The above discussion is based on the
combination of batch mode calculations and interactive calculations in MathLie. The
following calculation will show how non-classical symmetries can be derived by
pseudo-automatic calculations in MathLie.

6.3.2 The Boussinesq Equation

The Boussinesq [1872] equation

Ut,t + U ux,x + u~ + ux,x,x,x = 0 (6,18)

is one of the equations frequently examined in connection with solution procedures
for non-linear models, The equation arises in several physical applications ranging
from surface waves of rectangular canals to applications in plasma physics. The point
symmetries of the Boussinesq equation were examined by Nishitani and Tajiri [1982]
and Rosenau and Schwarzmeier [1986]. The discussion of the non-classical
symmetries by Levi and Wintemitz [1989] revealed that the symmetries of the direct
method by Clarkson and Kruskal [1989], Clarkson [1989] follow from a non-classical
analysis. We use this equation here to demonstrate the pseudo-automatic calculation
of non-classical symmetries.

The Boussinesq equation in Mathematica notation reads:

boussinesq = Ot u [x, t 1 +

u[x, tl ox,xu[x, tl + (oxu[x, t])2 + o{x"Ju[x, tl == 0;

boussinesq II LTF

lit + u~ + U Ux,x + Ux,x,x,x == 0

The point symmetries of the Boussinesq equation are

liePointSymmetries = I:nfinitesimals [boussinesq, u, {x, t} 1 ;
liePointSymmetries II LTF

¢1 == -2 k3 u

~1 == k2 + k3 x

~2 == kl + 4 k3 t

This finite dimensional group of order three contains translations and scaling
transformations as symmetries. The non-classical symmetries follow by applying the
function NonClassicalPointSymmetries[]. This function assumes by default that the

option NonclassicalCases is set to the last variable of the independent variables.
Typically, this variable is the time t. If you prefer to use another variable, for

378 Non-classical Symmetries of Partial Differential Equations

example, x, you have to specify this change in the option NonclassicaICases~{x}.
The nonlinear detennining equations follow from

nedeter =

NonClassiealPointSymmetries[boussinesq, {u}, {x, t}];

nedeter / / L'l'F

(~du == 0

(~2) u == 0

(~du,u==O

(~2)u,u==o

(~l)u,u,u == 0

(~2)u,u,u == 0

(~l) U,U,U,u == 0

(~2) U,U,U,u == 0

(~2)x==O

(~2)x,u == 0

(~2) X,U,u == 0

(~2) X,U,U,u == 0

(~2)x,x==o

(~2) X,X,u == 0

(~2) X,X,U,u == 0

(~2) X,X,x == 0

(~2) X,X,X,u == 0

<Pl +2u (~11x -4 (~I)x,x,x +6 (<Pl)x,x,u == 0

-3 (~l) X,X,U,u + 2 (<Pl) X,U,U,u == 0

-3 (~l)x,x,u+2 (<Pl)x,u,u==O

-3 (~d X,x + 2 (<Pd X,u == 0

-4 (~dx,u,u,u + (<Pilu,u,u,u == 0

-4 (~dx,u,u + (<Pilu,u,u == 0

-4 (~llx,u + (<Pilu,u == 0

-4 (~d X,u + (<pil U,u == 0

<Pl (~2) u + ~ 1 (~2) x - ~ 2 (~2) x, x, x, x = = 0

- ~~ (~d t + 4 ~ 2 <Pl (~ d u - 4 ~ 1 ~ 2 (~11 x +

~l ~2 (~2) t + ~l <PI (~2) u + ~f (~2) x + 2 ~~ (<Pl) x -

u ~~ (~ilx,x + 2 u ~~ (<I>ilx,u - ~~ (~11x,x,x,x + 4 ~~ (<Pilx,x,x,u ==

o
-4 ~2 <Pl (~ilx + ~2 <Pl (~2)t + <Pi (~2)u +

~l <Pl (~2)x -~~ (<Pdt -u~~ (<Pilx,x -~~ (<Pilx,x,x,x ==

o
-4~l (';11 u + 2 ';2 (';l)x+';2 (<pl)u-2u~2 (';I)x,u+

U~2 (<Pilu,u -4~2 (~ilx,x,x,u +6~2 (<Pilx,x,u,u ==

o

Applications of the Non-classical Method 379

The result is a system of 29 coupled non-linear determining equations for the
infinitesimals gl, g2, and <PI' Only the last four equations are non-linear. The first 25
equations are linear. We can use these linear equations to find a partial solution of the
determining equations. Before we apply a function to the total set of equations, let us
rewrite the infinitesimals in such a way that g2 = 1. Defining a general substitution
for xi[2], we find

nedeterh = DeleteCases [«nedeter I. u [x. t] -+ u) /.

xi[2] -+Punetion[{x. t. u}. 1]) I. u-+u[x. tj. 0];

nedeterh I I L'l'F

(~1 1 u == 0

(~du,u==O

(~du,u,u == 0

(~1 1 U,U,U,u == 0

</;1 + 2 u (~dx - 4 (~dx,x,x + 6 (</;dx,x,u == 0

-3 (~dx,x,u,u + 2 (</;dx,u,u,u == 0

-3 (~d X,X,u + 2 (</;d X,U,u == 0

-3 (~d X,x + 2 (</;d X,u == 0

-4 (~dx,u,u,u + ((hlu,u,u,u == 0

-4 (~dx,u,u + (ct>du,u,u == 0

-4 (~dx,u + (ct>du,u == 0

-4 (~d X,u + (ct>d U,u == 0

-(~dt+4ct>1 (~du-4~1 (~dx+2(ct>dx-

o
-4 </;1 (~d x - (ct>d t - u (ct>d X,x - (ct>d X,X,X,x == 0

- 4 ~ 1 (~1 1 u + 2 (~d x + (ct>d u -

2 U (~1 1 X,u + u (ct>1 1 U,u - 4 (~1 1 X,X,X,u + 6 (ct>1 1 X,X,U,u ==

o

Applying now the general-purpose solver PDESolve[] of MathLie to the system of

coupled non-linear equations, we can automatically derive solutions. The function

PDESolve[] responds with a question concerning the solution branches of the
non-linear determining equations, This interruption of the calculation is terminated
by providing the number of the condition printed by the function:

partsol = PDBSolve [nedeter. {u}. {x. t}]; partsol / I L'l'F

There exists no unique solution of the equations.

Please choose one of the following results

380 Non-classical Symmetries of Partial Differential Equations

1, {free[3] [t] --.O}

2,{free[1](2,0) [x, t]--.O}

There exists no unique solution of the equations.

Please choose one of the following results

1, {free [3] [t] --. O}

2, {free[l] (3,0) [x, t] --.O}

-2 'T1 ('T2) ~ - 'T5 ('T1) t,t + 'T2 (2 ('T1) t ('T2) t + 'T1 ('T2) t,t) == 0

~1 -- 'T 1 ('T) x'T1 ('T2) t
'0 -- 2 + 4 x 1 t 4 'T2

~2 == 'T1

<P1 == ~ U (- ('Td t + 'T1 ~2) t)

We select the second case for each inquiry of PDESolve[]. The result for these
choices is a representation of the non-classical infinitesimals depending on two
arbitrary functions 'Fi = free[i], i = 1,2. We know that for ~2 the relation ~2 = 1 was
assumed in the above calculation. Thus, we can setfree[l] = 1.

ppsol = part sol I. free[l] ~Function[t, 1];

ppsol I I Flatten I I LTF

<P1 == u ~i2) t

~ = = 'T2 _ X ('T2) t
'01 4 'T2

~2 == 1

-2 ('T2)~ +'T2 ('T2)t,t == 0

The infinitesimals reduce to a simpler form contaInIng only one undetermined
function 'F2 = free[2]. This function has to satisfy the last determining equation,
which is a second-order non-linear ODE. The partial results so far derived can be
used in another calculation with PDESolve[]:

isol = PDESolve [ppsol, {u} I {XI t}]; isol I I LTF

4 - k1 x
4 k1 k2 - 4 k1 t

~2 == 1
u

2 k2 - 2 t

The final result of the calculation is a system of infinitesimals contaInIng two
parameters kl and k2. These two parameters determine the transformation properties

Applications a/the Non-classical Method 381

of the non-classical infinitesimal transformation. The above representation of the
infinitesimals is represented in a more convenient way by the following
transformations:

ncinfi = isol I. u[x, t] -+ U I. Rule[a_[n_] [h __], b_] -+

Rule[a[n], Function[$v, $w] I. {$v-+ {h}, $w-+b}] II Flatten;

ncinfi I I LTF

u
2k2-2t

4 - k1 x
';1 4 k1 k2 - 4 k1 t

After the rearrangements of the representation, we know the infinitesimals in a
standard form which is helpful in the following calculations. Our aim is to derive
solutions for the Boussinesq equation. To uncover the reduction of the Boussinesq
equation, we rllst select a sub-class of the infinitesimal transformations with kl = 1
and k2 = c with c a real constant:

infi = {{xi [1] [x, t, u], xi [2] [x, t, u]},

{phi [1] [x, t, u]}} I. ncinfi I.
{k1 -+ 1, k2 -+ c}

Inserting the equation and the infinitesimals into LieReduction[] provides us with a
reduction of the Boussinesq equation:

red = LieReduction[boussinesq, {u}, {x, t}, infi[1], infi[2]];

(red I I Flatten I I LTF) I. zeta1 -+ ~,

_ c + t _ S -- 0
(-4 + x) 4 1 --

U (_4+X)2 -F1 == 0

(1+2904s1) (F1)" +

o

2 (5Ff +2Fl (30+l3s1 (Fd s1 +4s1 (Fd!;l,Sl) +

8 sf ((F1) ~, + 351 (F1) Sl ,!;, +

8s1 (19 (F1)r1,Sl,Sl +2S1 (F1)!;1,!;1,Sl,b1)))

The resulting reduction consists of a similarity representation of the original variable
u containing an unknown function Fl. This function has to satisfy a fourth-order
ODE, which is easier to read if we rename the variables

382 Non-classical Symmetries of Partial Differential Equations

eqr = red[3. 1] /. {1'1 -+ H. zeta1 -+ r}; eqr / / LTI'

120 H + 10 H2 + H, + 2904 s H, + 52 H S H, + 16 S2 H~ +

5616 S2 He, + 16 H S2 H", + 2432 S3 H"", + 256 s· H""", ==

o

Surprisingly we can find a first integral of this complicated equation by integrating
the left-hand side with respect to (.

eqhh = f (eqr[1]) dlr == K

(1+120s) H[s] +lOsH[s]2 +

16 S2 (87 + H[s]) H' [s] + 1408 S3 H" [SJ + 256 S4 H(3) [s]

K

where K is the constant of integration. Now, the question is: Can we solve this
third-order equation by Lie's methods? We know from Section 4.4.3 that a solution
follows by quadratures if the equation possesses at least n symmetries, where n is the
largest order of derivatives. The first step in integrating the third-order ODE is the
examination of the symmetries:

ihh = J:nfinitesimals[eqhh. H. r. {K}]; ihh //LTI'

cPl == 0

{;1 == 0

The result is that the third-order ODE resulting from the Boussinesq equation does
not allow any symmetry. Thus, the integration procedure by Lie fails. However, we
are able to represent a solution by a numerical integration. The validity of the
solution will be restricted by initial conditions and the finite interval for the similarity
variable (. An example for a numerical integration is given below.

nboussinesq = Map [NDSolve [{ eqhh /. K -+ I. H [0.1] == O.

H' [0.1] == 2. H" [0.1] == 1}. H. {r. 0.1. 15}]&.

{1. 2. 3. 4. 5}]

{ { {H -7 InterpolatingFunction [{ {0.1, 15. }}, <>] } } ,

{ {H -7 InterpolatingFunction [{ {O . 1, 15. } } , <> 1 } },

{ {H -7 InterpolatingFunction [{{ 0.1, 15. } } , <>] } },

{{H -7 InterpolatingFunction[{{O .1, 15. } } , <> 1 } } ,
{ {H -7 InterpolatingFunction [{ {0.1, 15. } }, <>1 }}}

The calculation is carried out by changing the constant K in steps of I from 1 to 5.
The initial conditions are fixed for each integration. The result of the numerical
solution is used to graphically represent the different solutions:

Applications a/the Non-classical Method 383

Plot [Zvaluate[H[t] I. nboussinesq],
{t, .1, 6}, AxesLabel ... {ntn, nHD}, PlotStyle ...

{RGBColor[l, 0, 0], RGBColor[0.996109, 0.996109, 0],
RGBColor[0.996109, 0.500008, 0], RGBColor[O, 0.500008, 0],

RGBColor[O, 0, 1]}]

H

0.35

0.3

0.25

0.15

The numerical solution is connected with the similarity solution via the similarity
transformation. We can now at least numerically represent the non-classical
similarity solution for the Boussinesq equation. The example demonstrates that
the functions of MathLie support a pseudo-automatic procedure for the
non-classical method. The interactions are reduced to a minimal number of steps.
We also demonstrated that MathLie is capable of solving non-linear determining
equations with a decision support provided by the user. The functions

NonClassicalPointSymmetries[] and PDESolve[] reduce the solution steps and the
interaction to a convenient number.

6.3.3 The Fokker-Planck Equation

The Fokker-Planck (FP) equation is a general equation to describe statistical
phenomena in condensed matter physics, quantum optics, chemical physics, and
fluctuations in many other physical problems. For a detailed discussion of the
Fokker-Planck equation, we refer to the book by Risken [1984]. In this section, we
restrict our considerations to the (1 + 1)-dimensional version of the FP equation

Ut = (a(x) u)x + (b(x) u)x,x' (6.19)

where a(x) denotes the drift and b(x) the diffusion coefficient. Both coefficients are
functions of the spatial variable x. Subscripts in equation (6.19) denote partial
derivatives with respect to time t and x. Let us assume that we have a system with
constant diffusion b(x) = 1 and a linear drift term a(x) = x. Such a situation is

384 Non-classical Symmetries of Partial Differential Equations

possible for a Brownian particle in a liquid (Cicogna and Vitali [1990]). Under these
conditions, equation (6.19) reduces to

fokkerPlanck = "tu[x, t] - x"xu[x, t] -"x.xu[x, t] == 0;

fokkerPlanck / / LTI'

Ut -XUx -Ux,x == 0

The point symmetries of this equation are

ifokkerPlanck = I:nfinitesimals [fokkerPlanck, u, {x, t}];

ifokkerPlanck / / L'l'1'

- (9"1) t + x (9"1) x + (9"1) X,x == 0

~1==E-tkl+Etk2+ ~ E-2t (-E4t k3+k5)x

~2 == - ~ E2 t k3 - ~ E-2 t k5 + k6
2 2

The result is a six-dimensional finite group extended by an infinite group given by
free[l]. The arbitrary function free[l] satisfies the FP equation. The structure of the
group has some resemblance to the group of the heat equation. However, the detailed
structure is completely different.

The next step of our examination is the determination of the non-classical
symmetries. To derive the non-classical determining equations for the FP equation,
we apply the operator rfPS'{"x [.!l] to the equation

ncfokkerPlanck = nPsl!).{x.t) [fokkerPlanck];

ncfokkerPlanck 1/ LTI'

(~2)U==O

(~l)u,u == 0

(~2)u,u==O

(~2)x == 0

(~2)x.u == 0

ct>1 (~2) u + ~1 (~2) x + ~2 (';2) X,x == 0

-~1~~-~~ (~1)t+2~2<t>1 (~du-2~1~2 (,;dx-X~~ (~dx+

~1~2 (~2)t+~1ct>1 (~2)u+~f (';2)x+~~ (~1)x,x-2~~ (ct>dx,u==
o

-2 ~2 ct>1 (~dx +~2 ct>1 (~2)t +ct>f (~2)u +

~1ct>1 (~2)x-~~ (ct>dt+x~~ (<t>dx+';~ (ct>dx,x==

o
2 ~1 (~du + 2 X~2 (~du - 2 ~2 (~llx,u + ~2 (4)d u•u == 0

Applications of the Non-classical Method 385

Again, we assume that g2 = 1 thus we can simplify the non-classical detennining
equations by

deteql'P = DeleteCases [(ncfokkerPlanck I. u [x, t] ... u) I.
xi[2] ... l'uD.ction[{x, t, u}, 1], 0] I. u ... u[x, t];

deteql'P II L'l'1!'

(~llu,u==O

-~l - (~llt + 2 cPl (~l)u -x (~llx - 2 ~l (~llx + (~dx,x - 2 (cPdx,u == 0

-2 cPl (~dx - (cPd t +x (cPd x + (cPdx,x == 0

2 x (~du + 2 ~l (~l)u - 2 (~dx,u + (cPl)u,u == 0

If we apply PDESolve[] to the derived equations, the solution of the non-classical
determining equations follow. This function originally designed for linear PDEs is
capable of solving some kind of non-linear equations if some hints are supplied to the
function. In the present case, PDESolve[] detects a situation in which either a
function free[2] or free[6] can be set equal to zero. The function asks the user to
decide which of these possibilities it should take. The following calculation is carried
out under the second possibility:

inf1 = PDBSolve [deteqI!'P, {u}, {x, t}]; inf1 II LTI!'

There exists no unique solution of the equations.

Please choose one of the following results

1, {free [2] [x, t] ~ O}

2, {free [6] [x, t] ~ O}

~l == r 1

cPl == r 2 + U r3

-r1 - (r1) t - X (r1) x - 2 r 1 (r1) x - 2 (r3) x + (rd X,x == 0

-2 r 2 (r1)x - (r2) t +x (r2)x + (r2)x,x == 0

-2 r3 (r1) x - (r3) t + X (r3) x + (r3) X,x == 0

The result of the calculation is a general representation of the infinitesimals
depending on three arbitrary functions'Fi = free[i], i=l, 2, 3 which have to satisfy
three nonlinear coupled PDEs. These PDEs again allow some symmetries. In the
following, we determine the point symmetries of the non-classical non-linear
determining equations. We gain a simpler representation by renaming the arbitrary
functions free[i] by

inf1h = inf1[2] I. {free[l] ... g, free[2] ... h, free[3] ... f};

inf1h II LTI!'

386 Non-classical Symmetries of Partial Differential Equations

-g - 2 fx - gt - 2 g gx - X gx + gx,x == 0

-2 h gx - h t + x hx + hx,x == 0

-ft + x fx - 2 f gx + fx,x == 0

For this set of equations, we detennine the infinitesimals by

inf1hh = Xnfinitesimals [inf1h, {g, h, f}, {x, t}]; inf1hh / / LTF

PDESolve: :nsf : Use option Standard->True.

This may lead to further solutions in case of linear Systems

- CT1) t + x (r1) x + (r1) X,x == 0

';1 == E- t kl + Et k2 + ~ E-2t (k3 + E4t k4) x

';2 == - ~ E- 2 t k3 + ~ E2 t k4 + k5
2 2

<P1

- ~ E- 2 t (2 Et kl _ 2 E3 t k2 + g k3 + E4 t g k4 + 2 k3 x - 2 E4 t k4 x)
2

1h == _E- 2 t h k3 - ~ E2 t h k4 + h k6 - Et
2

fr1 - (g+x) (r1)x - (r1)x,x

h k2 x - ~ E2 t h k4 x 2 +
2

<P3 == _E- 2t (f (k3 +E4t k4) +E3t g (k2 +Et k4x) +

E3 t (Et k4 + k2 x + Et k4 x 2))

The infinitesimals represent a six-dimensional finite group and an infinite one given
by the arbitrary function free[ll. Surprisingly, this function must satisfy the original
equation with which we started. Now you see another reason why we changed the
names of the three arbitrary functions in the non-classical analysis preventing
mismatches of the two calculations. Knowing the point symmetries of the
non-classical determining equations, we can reduce the equations by applying

LieReduction[];

infi = {{xi [1] [x, t, g, h, f], xi [2] [x, t, g, h, f]},

{phi [1] [x, t, g, h, f], phi [2] [x, t, g, h, f],

phi [3] [x, t, g, h, f]}} I. inflhh[lD I.
{k1 1, k2 0, k3 -+ 0, k4 0,

kS 1, k6 0, free[__] Function[{x, t}, OJ} II

Expand

For the sub-group kl = k5 = 1, the reduction is gained by

red1 = LieReduction[inf1h, {g, h, f}, {x, t}, infi[lD, infi[2D];

(red1 /. zeta1 '1) / I Flatten / I LTF

Applications of the Non-classical Method 387

Solve: : tdep :
The equations appear to involve transcendental functions

of the variables in an essentially non-algebraic way.

E- t + X - &1 == 0

g + x - F1 == 0

h - F2 == 0

f - F3 == 0

F1 - 2 F3" - 2 F1 (F1)., + &1 (F1)., + (F1)., .• , == 0

2 F2 - 2 F2 Fl., + &1 (F2)., + (F2)., .• , == 0

2 F3 - 2 F3 Fl., + &1 (F3)., + (F3)., .• , == 0

We fmd a coupled non-linear system of ODEs for the similarity functions FI, F2,
and F3. A special solution follows by choosing F2 = F3 = 0:

redl[3] 10 {1'2 -+ I'Imction[zetal, 0], 1'3 -+ l'unction[zetal, O]} 10

zetal -+ '1 I I L'l'1'

F1 - 2 F1 (F1)., + &1 (F1)., + (F1)., .• , == 0

True
True

The remaining ODE for FI is solved by means of DSolve[]:

psol = DSolve [1'1 [zetal] + zetall'l' [zetal] -
21'1 [zetal] 1'1' [zetal] + 1'1" [zetal] == 0, 1'1,

zetal]

{{Fl -+ [-2 E~ ...fil.2 + 2 #1 2 C [1] +...[2Tr #1 2 Erfi [.£fl----l &I}}
#1 (2 C[1] +...[2Tr Erfi [1~~])

The solution for FI contains the special function Erfi[]. The inversion of the used

transformations provides the solution for the unknown functions free[11, free [21 , and

free[31 of the non-classical symmetries:

solg =
{free[l] -+l'I1I1ction[{x, t}, g], free[2] -+l'I1I1ction[{x, t}, h],

free[3] -+ I!'unction[{x, t}, f]} 10
Solve[(redl[2] 10 psol 10 {1'2-+l!'unction[zetal, 0],

1'3 -+ I'I1I1ction[zetal, O]}) I I Flatten,
{g, h, f}]

388 Non-classical Symmetries of Partial Differential Equations

{{free[l]-,>Function[{x, t}, -x+ (_2E+IE-t+XI2 -/(E-t +X)2 +

2 (E- t +x)2 C [1]+-.j2Tf (E-t+X)2Erfi[.y(E~X)2 l)/

((Et+X) (2C[1]+-.j2TfErfi[.y(E~X)21))l'
free [2] -'> Function [{x, t}, 0],

free[3] -,>Function[{x, t}, OJ}}

The check of the initial determining equations reveals that, in fact, the given
functions satisfy the detennining equations:

infl [2D I. solg I I Simplify

{{a, 0, a}}

Finally, the non-classical symmetry transformations for the FP equation under the
condition that the non-linear determining equations allow point symmetries are given
by

ncinfi = Append[infl[lD I. solg I. e[l] -+ kl I. u[x, t] -+ U I.
Rule [a_[n_] [h_], b_] -+

Rule[a[n], Function[$v, $w] I. {$v-+ {h}, $w-+b}] II

Flatten,

xi [2] -+ Function [{x, t, u}, 1]];

ncinfi I I LTF

r:th == °

At this stage of the calculation, we find a very special representation of the
non-classical symmetries. The next step in the calculation should be the reduction of
the FP equation. A glance at the above result reveals that this last step is very difficult
because the infinitesimals contain special functions with very complicated
arguments. Since the infinitesimals are part of a first-order PDE, we face the problem
of solving these equations to find the invariants. Currently, neither Mathematica nor
MathLie can solve this kind of equations. However, the result derived via a mixed
application of Lie's classical and non-classical method demonstrates that a simple
equation allows a very complicated structure of symmetries.

Applications o/the Non-classical Method 389

However, solutions of the FP equation are derivable if we make an ansatz for the
non-classical infinitesimals of the form

inf2 = inf1 /. {free[l] -+Function[{x, t}, free [1] [xl],

free [2] -+Function[{x, t}, 0], free[3] -+Function[{x, t}, OJ};

inf2 / / LTF

~i == 'Ti

<Pi == 0

-'Ti - X ('Ti) x - 2 'Ti ('Ti) x + ('Ti) X,x == 0

True
True

assuming that the arbitrary functions free[2] and free [3] are vanishing constants, The
substitution into the non-linear determining equations of the FP equation reveals that
only one equation for the function free[1] remains. So that the non-classical
infinitesimals are determined by

inf3 = {Append[inf2[lD, xi[2] [x, t, u[x, tl] -+ 1],

DeleteCases[inf2[2D,0]};

inf3 / / LTF

~i -- 'Ti

<Pi -- 0

~2 -- 1

Since the unknown function free[1] is a function of x only, we can again apply

PDESolve[] to solve the determining equation for free[l]:

inf40 = PDESolve [inf3, {u}, {x, t}]; inf40 / / LTF

-2 ~ + kl -Y27r x Erfi [vg 1
~i

2 ~ (E-"~- kl + x) - kl-Y27r x 2 Erfi [1; 1
<Pi == 0

~2 == 1

The result is an explicit representation of the non-classical symmetries for the FP
equation depending on a single parameter kl. This parameter is responsible for the
transformation properties. Because PDESolve[] returns the infinitesimals in a special
representation, we need to transform the infinitesimals into a pure function.

390 Non-classical Symmetries of Partial Differential Equations

ncifokkerPlanck = inf4 /. u [x, t] -+ U /. Rule [a_ [n_] [h __], b_] -+

Rule [a [n], Function [$v, $w] /. {$v -+ {h}, $w -+ b}] II Flatten;

ncifokkerPlanck / / LTI'

-2 -,/xi + kl -{2JT x Erfi [1,~- 1
~l

2 -,/xi (K;'- kl + x) - kl-j2"ir x 2 Erfi [~;,.; 1
~2 == 1

In the following, we will restrict our considerations to a sub-class of transformations
for which kl = O. The non-classical infinitesimals reduce to the simple form

infi = {{xi[l] [x, t, u], xi[2] [x, t, u]},

{phi [1] [x, t, u]}} /. ncifokkerPlanck /.

kl -+ 0

{{-~, l}, {a}}

For this sub-class of infinitesimal transformation, we reduce the original FP equation
by

red
LieReduction[fokkerPlanck, {u}, {x, t}, infi[l:D, infi[2:D];

red /. zetal -+ '1 / / I'latten / / LTI'

1 2 2 (2 t + x) - Sl == 0

U-Fl == 0

_x2 (Fl b1 + Flb1 ,b1) == 0

The resulting second-order ODE is solved by DSolve[]:

rsol = DSolve[red[3, l:D, 1'1, zetal]

{{Fl~ (-E-uC[l] +C[2]&)}}

The solution is a decaying exponential function in the similarity variable
S 1 = (2 t + x 2) / 2. The solution for the original variable u follows by

sol = Solve [red[2:D /. rsol, u] / / I'latten

1 2 } {u~ -EY (-2t-x) C[l] +C[2]

Applications o/the Non-classical Method 391

representing a Gaussian in the spatial variable multiplied by an exponential decrease
in time. The constants C[l] and C[2] are constants of integration and can be used to
implement initial conditions. For a fixed value of C[1] and C[2], we plot the
non-classical solution for the FP equation:

Plot3D[Bvaluate[u/. sol /. {C[l] -+-1, C[2] -+l}], {x, -3, 3},

{t, 0, 3}, AxesLabel-+ {"x", "t", ·u"}, PlotPoints -+ 25,

PlotRange -+All, ViewPoint -> {-1.253, -2.896, 1.221},

Mesh -+ False]

3 t

x

We clearly observe that the solution represents a decaying solution in time. The
initial shape of a Gaussian in x decreases in time but does not change its shape. The
examination of the FP equation demonstrated that the non-classical method can be
combined with the classical method. The results for the non-classical symmetries of
the FP equation are, however, too complicated for MathLie to carry out the final
stage of the solution procedure.

Up to now, we discussed local symmetries of a given equation. In the following
chapter, we will describe the derivation of non-local symmetries. We will show that
the Frechet derivative is a useful tool for determining this type of symmetry.

7

Potential Symmetries of Partial
Differential Equations

7.1. Introduction

The last two chapters discussed point symmetries and non-classical symmetries.
These types of symmetry are local symmetries because the coordinates are involved
in the local transformations in a direct way. This chapter discusses a completely
different type of symmetry. We not only consider the original PDEs Ll ::: 0 but also
derived systems of PDEs whose solutions are solutions of the original equations. The
new associated system of PDEs is treated by the methods discussed in the previous
sections. The result of this treatment are symmetries not only depending on the local
variables of the original equation but also on variables of the affiliated system of
PDEs. Thus, we get a new type of symmetry depending on an extended set of
variables. Such symmetries are generally called non-local symmetries. A special type
of non-local symmetry is a potential symmetry. Our interest in this chapter are
potential symmetries of PDEs.

The following sections discuss how the associated PDEs are derivable in a systematic
way. For this reason, we need to introduce some new terminology. The new terms
have the advantage that a generalization to other kinds of symmetry are possible.

Basics of Potential Symmetries 393

7.2. Basics of Potential Symmetries

In Chapter 6, we distinguished weak and strong symmetries. If we have a strong
symmetry, solutions of the equation D. = 0 are transformed into solutions of this
equation, and a reduction of the original PDEs are possible. In case of weak
symmetries, only a reduction is possible. Based on strong symmetries, we can
generalize the meaning of a symmetry.

Definition: Topological symmetry

A symmetry of a system of PDEs D. = 0 is a transformation which transforms
solutions of D. = 0 into other solutions of D. = O. 0

The symmetry of the PDE given above is of a topological nature because it is
completely free of any coordinates. We see that a symmetry primarily is not
connected to a system of coordinates. However, if we need to carry out practical
calculations, we have to consider the coordinates of the problem.

The classical symmetries of a PDE are point transformations which guarantee the
invariance of the solution space. These kinds of symmetry are point symmetries as
we know them. Point symmetries are created by infinitesimal transformations

x; = Xi + E5i(X, u) + O(~), i = 1, 2, ... , p,

u,a = ua + E I,ba(x, u) + O(~), a = 1,2, ... , q.

(7.1)

(7.2)

The vector field of the infinitesimal transformation is not uniquely defined. Contrary
to Chapter 5, we can represent the vector field by

q

11 = L I]a(x, u, U(l) au" (7.3)
a=1

The infinitesimal components I] of the vector field 11 are given by

p

I]a = I,ba(X, u) - L 5i(X, u) ur , a = I, 2, ... , q, (7.4)
i=1

which are equivalent to the characteristics Qa introduced in Chapter 6 in connection
with non-classical symmetries. Based on the characteristics, the kth prolongation of
the vector field simplifies to

394 Potential Symmetries of Partial Differential Equations

q

pr(k)v = v + LL(DJ 1]a)8u; • (7.5)
a=1 J

We call a transformation local if the characteristics 1]a depend on derivatives of the
dependent variables. The invariance condition from which solutions for the
characteristics follow is given by

(7.6)

where D denotes the Frechet derivative. Relation (7.6) is nothing more than the
invariance condition discussed in Chapter 5 for point symmetries. We note that this
type of invariance condition does not change if the characteristics depend on higher
derivatives. This situation occurs if we consider generalized symmetries. In Chapter
9, we will discuss this type of symmetry. The Frechet derivative, on the other hand, is
the basic tool for the systematic calculation of potential symmetries. How we access
the potential symmetry will be discussed next.

7.3. Calculation of Potential Symmetries

When describing non-local symmetries, it is convenient to introduce new variables
v(x) by additional equations which are connected with the original equations in the
variables u(x). One condition on the new system of PDEs is that the original system
must be derivable from the new. In other words, if (u(x), v(x» satisfy the extended
equations, u(x) also has to be a solution of the original system,

(7.7)

An auxiliary system with new variables can be introduced if at least one PDE, say
!:J..m = 0, of the system !:J.. = 0 can be written as a conservation law (cf. BIuman and
Kumei [1989]).

Suppose one PDE of the system !:J.. = 0, without loss of generality !:J..m = 0, can be
expressed as a conservation law

n

L Di I(x, U(k-l) = O. (7.8)
i=l

Then, the system !:J.. = 0 can be written in the form

v = 1,2, ... , m -1, (7.9)

n

L Di f(x, U(k-l) = O. (7.10)
i=1

Calculation of Potential Symmetries 395

Relation (7.10) allows us to introduce n - 1 new variables v = (Vi, v2 , ••• , vn- I).

These n - 1 variables have to satisfy n - 1 equations. In connection with the
remalmng equations (7.9), they built up a new system of equations
'I'(x, U(k) , V(I») = 0, which is the potential system. Explicitly, we find

(7.11)

/(x, U(k-I») = (_1)1-1 {v~ +v~-I},
1+1 1-1

1<I<n, (7.12)

v = 1, 2, ... , m - 1. (7.13)

The original system a is closely connected to the potential system '1', meaning that
some properties of a are still contained in '1'. One of these properties is that if (u, v)
are solutions of 'I' then u is also a unique solution of a. On the other hand if u is a
solution of a then there exists a v so that (u, v) is also a solution of '1'. However, v in
this case is not unique. These properties of the solutions are also present in the
symmetries of both systems. A symmetry of 'I' is connected with a symmetry of a
and vice versa. The symmetries, however, have different meanings for the two
systems. For example, a point symmetry of 'I' may be a non-local symmetry of a.
This kind of symmetry is called potential symmetry.

Definition: Potential symmetry

Let us assume that 'I' is a potential system of a. A point symmetry of 'I' given by

m P

v'!' = L: {IPa(x, u, v) - L: 5i(X, u, v) un 8ua

a=1 i=1

n-l (n)
+ ~ Xp(X, u, v) - tt 5i(X, u, v) vf 8,!'

(7.14)

with 5;, IPa, and Xp the infinitesimals of x, u, and v, respectively, is a potential
symmetry of a, if the infinitesimals 5; and IPa depend on the new variables vP and are
not reducible to a point symmetry of a. 0

This definition introduces a potential symmetry as a point symmetry of an auxiliary
system, the potential system. We already know how point symmetries of a PDE are
determined. In Chapter 5, we discussed the procedure for different examples. Thus,
we face the problem of finding the potential system for which we can calculate the
point symmetries.

The main problem in determining potential symmetries is to find useful potential
systems '1'. To express one PDE of the system (7.7), a; = L7=1 D; I in a conserved

396 Potential Symmetries of Partial Differential Equations

fonn is not the only possibility to rewrite a system of PDEs. Additionally, a number
of PDEs of the system (7.7) can be multiplied by integrating factors to become
conserved quantities, as Bluman [1993] remarks. There exists a set of integrating
multipliers

(7.15)

which allows the representation

m n

L:>.V(x, u(p))~v(x, U(k)) = ~ Di lex, U(k)). (7.16)
V=! i=!

In replacing the PDE ~v by relation (7.16), we must be cautious. The resulting new
system 'I' may gain a solution which is not a solution of the original system ~.
However, every solution of ~ is a solution of '1', but each solution of the system

~v = 0 v = 1, ... , f.l - 1, f.l + 1, ... , m, (7.17)

(7.18)

satisfies the potential system '1'. So there may exist solutions of 'I' which do not solve
the original system. In fact, we have to exclude such solutions to prevent trouble in
the calculation. So let us define the following:

Definition: Equivalence of conserved representations

A set of integrating factors {AV} creates an equivalent conserved representation of ~ if
for a single f.l, 1 S; f.l S; m, the systems ~ and 'I' allow a common space of solutions.
Potential symmetries exist only for equivalent conserved representations. 0

Experience shows that integrating multipliers A depending on derivatives do not
create equivalent conserved representations. Thus, we restrict our considerations to
multipliers depending only on the independent and dependent variables

(7.19)

The last step in our theoretical considerations is the detennination of the integrating
multipliers. So we need a formula allowing us the systematic determination of the
,lv's. If we apply the invariance criterion (7.6) to the potential system (7.11)-(7.13) in
connection with relation (7.16), we end up with the condition

Calculation of Potential Symmetries 397

D~ (A) Ill=o = 0, (7.20)

where D* denotes the adjoint Frechet derivative. The solutions for the A's follow by
calculating the invariance condition with the adjoint Frechet derivative and replacing
the characteristics 1] in (7.6) by the integrating multipliers. Since MathLie is able to
treat such a system of equations, we have a tool providing the solutions.

The solutions of (7.20) may be either a finite set of solutions or a continuous set,
meaning that for the finite set, a finite number of solutions exists, whereas in the
continuous case, arbitrary functions occur in the integrating multipliers A. Both cases
are useful in classifying the point symmetries of the related potential system '1'.

The theory so far discussed can again be applied to a derived potential system '1'. This
recursive application of the procedure delivers a tree of the potential system if the
integrating multipliers are chosen in an appropriate way.

Thus, we are able to construct new solutions by means of the potential symmetries.
These new solutions are quite different from the solutions derived from point
symmetries because the non-local properties of the equation are the key for this
construction. Solution (u, v) of the potential system allows us to find solutions of the
original system a. These solutions are new solutions, different from the solutions
derived via the classical or non-classical method of Lie. Completely new solutions
may be expected if we analyze the potential system by means of the non-classical
method.

We use the procedure of integrating factors extensively in our package MathLie to
derive the potential systems. The algorithmic procedure to derive potential
symmetries is summarized in the following four steps:

1. Determine the integrating multipliers from relation (7.20).

2. Extract these integrating multipliers which allow an equivalent conservation law.

3. Create for each integrating factor from step 3 the potential representation '1'.

4. Examine the potential system either with the classical or the non-classical method.

These four steps are the basis of the following examples demonstrating the automatic
determination of potential symmetries. The calculations are supported by the function

PotentialSymmetries[], which is part of MathLie. The function PotentialSymmetries[]
allows us to derive the possible potential systems and calculate the point symmetries
of these systems.

398 Potential Symmetries of Partial Differential Equations

7.4. Applications of Potential Symmetries

In the following sections, we apply the theory to several examples. The discussed
theory allows us to derive new solutions for a scalar POE as well as for systems of
POEs. The program MathLie calculates automatically all potential systems and
determines the corresponding point symmetries of the potential system. The
application of the non-classical method to potential systems is novel. As we will see,
there are a lot of problems when non-classical symmetries are used to find solutions.

Let us demonstrate some of the possible calculations carried out by MathLie in
connection with potential symmetries. The following examples demonstrate the
application of the function PotentialSymmetries[].

7.4.1 A Non-linear Reaction Diffusion Equation

The first example demonstrated how the potential systems are derived by MathLie.
We examine a non-linear reaction diffusion equation of the type

reaktionDiffusion = at U[XI tj + ax,x (1 + f3 X2) == 0;
U[XI tj

reaktionDiffusion / / LTl"

2 (3 + Ut + 2u~~ - u~;,x == 0

where f3 is a real constant. Our primary interest is to detect a potential representation
of the equation. The function PotentialSymmetries[] in connection with the option

PotentialSystemsOnly-+True allows us to derive these systems. The function needs
the equation, the dependent and independent variables, and the parameters as input
quantities.

pSyst8mOfReaktionDiffusion

PotentialSymmetries[reaktionDiffusion,

u , {x, t} I {f3} I potentialSyst_sOnly -+ True j ;

pSyst8mOfReaktionDiffusion II LieTraditionall"orm

{{{~ +x2 (3+ViO t • -Vs-ViOx • -u- (Vs)J.

1
{u. Va. ViO}, {x. t}}. {{ux +x(3+Vll t •

V9 } } --;{2-Viix • -ux-(V9)x' {u.V9.Vii}, {x. t}.

E-Il v, E-~v,

{ {- u x (3 + V12 t • - X2 (32 - V12x• -u x - (V9) x}. {u. V9 • V12}.

{x.t}}.

Applications of Potential Symmetries 399

{ { 1 V9 E-~V9 E-,BVg

U X + x [3 + V14 t , - X2 - V14x , - u x [3 + V13 t , - X2 [32 - V13 x },

{ u, V 9, V13, V14}, { x , t}}}

The result is a nested list containing four lists. Each of these sub-lists contains
information on a specific potential system. Added to each potential system are lists
containing the dependent and independent variables of the system. We observe that
three of the potential systems are formulated for three dependent variables and that
one of the potential systems contains four dependent variables. This behavior
indicates that the fourth potential system is a second-stage potential system derived
from a precursor. We learn that not only the original equation is checked on a
possible potential representation but also all potential systems derived from the
original one.

7.4.2 Cylindrical Korteweg-de Vries Equation

The second example examines the symmetries of the potential systems for the
cylindrical KdV equation. The cylindrical KdV (cKdV) equation is given by

cKdV =
u[x, t]

Otu[x, t] + +u[x, t] oxu[x, t] +ox,x,xu[x, t] ==0;
2t

cKdV / / LTF

u
2t + U t + U U x + Ux,x,x == 0

The potential systems of the cKdV equation are calculated by

pcKdV = PotentialSymmetries [cKdV , u, {x, t},

PotentialSyst_sOnly -+ True, OrderReduce -+ False]; pcKdV / /

TableForm [LieTraditionalForm [#] , TableSpacing -> {1, 1}] &

- ~ . Ft u 2 + V14 t - It u 2 'Ie 'Ie X,x

--{t U - V14x

t u 3 t u 2
--3- + T +V15 t - tuux,x

t u 2
--2- -V15x

1 iJ~ -{tu 1 ; __ t 3/2 u 3 + _ "t u 2 x- ___ x + _ t 3 ;2 u 2
3 4 2 2 x

(3/2 -It x 1 + V16 t - t u - -2- ux,x

-~ t 3/2 u 2 + ~·Ft ux-V16 2 2 "c x

u
V14

u
V15

u
V16

x
t

x
t

x
t

400 Potential Symmetries of Partial Differential Equations

The result is a set of three potential systems of first stage. For this equation

PotentialSymmetries[] does not find derived potential systems of higher order. We
used the option OrderReduce-+False for the above calculation to find all reductions

of the original equation. The function PotentialSymmetries[] assumes by default that
the auxiliary system is reduced in order and thus only returns a special class of
potential systems. However, we can control this behavior by the option OrderReduce
and can choose the suitable method.

The next step is the solution of the potential systems to find the related potential
symmetries. Let us start with the first potential system. We calculate the infinitesimal
transformations of this system by selecting the first argument of pcKdV and feed

them into the function Infinitesimals[]:

infpcKdV =
J:nfinitesimals [pcKdV[l, 1D, pCKdV[l, 2D, pcKdV[l, 3D];

infpcKdV / / LTF

- k3 - 4 kl Vt u + 8 k4 t u - 2 k4 x

Vt
¢2 == k2 + kl Vl + x (k3 + k4 x)

~1 == k5 - 2 k3 Vt + 2 (kl - 2 k4 Vt) x

~2 == 6 kl t - 8 k4 t 3 / 2

The result represents a five-dimensional finite symmetry group which is similar to
the point symmetries of the cKdV equation. The difference exists in the dimension of
the group and in the number of elements. The point symmetry of the cKdV equation
consists of three expressions and the potential symmetries of four. Recalling the
definition of a potential symmetry, we have to check the dependence of the
infinitesimals for the original equation on variables introduced in the derivation of
the potential system. If we examine the infinitesimals xi[1], xi[2 J, and phil 1] on the
dependence of variables starting with capital letter V, we quickly realize that these
infinitesimals are independent of the new potential variables. In conclusion, the first
potential system of the cKdV equation does not contribute to potential symmetries. In
order to check all possibilities for the above potential system, we carry out the
calculation by

allJ:nfPcKdv =
Map[:tnfinitesimals[#[lD, #[2D, #[3D]&:, pcKdV]; allJ:nfPcKdV /.

{Rule -+ Equal, HoldPattern[Function[x_, y_]] -+ y} /.

TraditionalLieForm / / Platten / /

TablePorm

Applications of Potential Symmetries 401

- k3 - 4 kl -vt u + S k4 t u - 2 k4 x

-vt

~ 1 = = k5 - 2 k3 -vt + 2 (kl - 2 k4 -vt) x

~2 == 6 kl t - S k4 t 3/2

cP2 == k2 + kl VI + x (k3 + k4 x)

cPl == -2 k3 u

cP2 == kl

~l == k2 + k3 x

~2 == 3 k3 t

cPl == 0

~l == 0

~2 == 0

cP2 == kl

Checking the dependencies of the infinitesimals on the potential variables, we realize
that none of the infinitesimals satisfies the criterion for potential symmetries.
However, the function PotentialSymmetries[] makes it easy to verify the definition
and to decide whether a given equation allows potential symmetries or not.
Experience with this function tells us that potential symmetries are rare symmetries
but occur in connection with some equations. The above two-step calculation can be
done in one step by suppressing the option PotentiaISystemsOnly~True:

PotentialSymmetries [cKdV, u, {x, t}, OrderReduce Palse]

{{{-~ -vtu[x, t]2+ V17 10 ,1) [x, t]--vtu l2.0)[x, t],

- -vt u [x, t] - V17 11, 0) [x, t]},

{u, V17}, {x, t}, {phi[l] ~Function[

{ 17} -k3 - 4 kl -vt u + S k4 t u - 2 k4 x 1
x, t, u, V , -vt ' xi [1] ~

Function [{x, t, u, V17}, k5 - 2 k3 -vt + 2 (kI- 2 k4 -vt) x],

xi[2] ~Function[{x, t, u, V17}, 6klt-Sk4t3/2],

phi [2] ~ Function [{x, t, u, V17}, k2 + kI V17 + x (k3 + k4 x)] } },

112 {{ - 3" t u [x, t]3 +VISIO,l) [x, t] + "2 t Ull,O) [x, t] -

tu[x, t] u I2 ,O) [x, t], -~ tu[x, t]2 _VlS I1 ,O) [x, t]},

{u, VIS}, {x, t}, {phi[l] ~Function[{x, t, u, VIS}, -2k3u],

phi [2] ~ Function [{x, t, u, VIS}, kl],

xi[l] ~Function[{x, t, u, VIS}, k2+k3x],

xi[2] ~Function[{x, t, u, VIS}, 3k3t]}},

402 Potential Symmetries of Partial Differential Equations

{{! -{t xu[x, t]2_

~ t 3/2 U[X, t]3 +V19(O,1) [x, t] - ~ Vt U(l,O) [x, t] +

~ t 3/2 U(l,O) [x, t]2 _ (_ ~ x +t3/2 U[X, t]) U(2,O) [x, t],

1 _~ 1 2 -yt xu[x, t] - 2 t 3/2 u[x, t]2 _V19(1,O) [x, t]},

{u, V19}, {x, t}, {phi [1] ~ Function [

19 } _ 2 (- 6 k2 + k4 Vt u + 36 k3 t u - 9 k3 x) 1
{x, t, u, V , _ ~ ,

3yt

[k4x.~ 1 xi [1] ~ Function {x, t, u, V19}, -3- + 4 -y t (2 k2 + 3 k3 x) ,

xi [2] ~ Function [{x, t, u, V19}, (k4 + 24 k3 -{t) t],

phi [2] ~ Function [{x, t, u, V19},

k4 V19 1 kl + k5 + 3 k3 t + --2-- + k2 x 2 + k3 x 3 }}}

The resulting list now contains the infonnation on the potential systems extended by
the infinitesimals. The outcome is the same as before. No potential symmetries are
present.

7.4.3 The Burgers Equation

Another example which allows potential symmetries is the Burgers equation:

Burgers = CJtu[x, t] +u[x, t] CJxu[x, t] + yCJx,xU[X' t] == 0;

Burgers / / LTF

u t + U U x + y U x , x = = 0

where 'Y is a real constant and measures the strength of second-order dispersion
effects, The potential system and the potential symmetries are calculated with

pBurgers = PotentialSymmetries [Burgers, u, {x, t}, {y},

OrderReduce -+ False]

1 {{{-2u[x, t]2 +V24(O,1) [x, t]_YU(l,O) [x, t],

-u[x, t] _V24(1,O) [x, t]}, {u, V24}, {x, t},

{{xi[l] ~Function[{x, t, u, V24}, k3-k6t+ ~ (k2-4k7t) xl,

xi[2] ~Function[{x, t, u, V24}, kl+t (k2-2k7t)],

phi [2] ~ Function [{x, t, u, V24},

V24 1 k4+k5+k6x+k7x2-2k7ty+2E7Yyfree[1][x, t] ,

Applications of Potential Symmetries 403

k2 u
phi [1] -7 Function [{x, t, u, V24}. -k6 - -2- + 2 k7 t U - 2 k7 x +

E~ U free [1] [x, t] - 2 E~ ¥ free [1] 11,0) [x, t]]},

f [1] 10,1) []
{ree ¥ x, t +free[l] 12,0) [x, t]}}}}

For the potential system of the Burgers equation, we find a seven-dimensional finite
group and an infinite group. The infinite part of the group was derived by
Vinogradov and Krasil'shchik [1984]. In addition, the auxiliary function free[l] of
this continuous group has to satisfy the diffusion equation.

8

Approximate Symmetries of Partial
Differential Equations

8.1. Introduction

The theory of approximate symmetries was developed by Baikov, Gazizov, and
Ibragimov [1989] in the 1980s. The idea behind this development was the extension
of Lie's theory to situations in which a small perturbation of the original equation is
encountered. For such cases, the question arises of how the point symmetries or the
group of the equations are altered if a small perturbation is added to the original
equation. This question initiated the development of a group analysis method that is
stable under small perturbations of the differential equation. The present chapter
discusses the method of approximate symmetries. The method is based on the
concept of an approximate group of transformations. Approximate symmetries are
useful for partial differential equations depending on a small parameter E. This
parameter is usually used in the standard theories to examine the differential equation
in some limit. On the other hand, this parameter is also useful in the examination of
Lie point symmetries.

The basics of the theory were recently developed by Baikov et al. [1991]. These
authors showed that the main part of Lie's theory can be used in an approximate
calculus taking into account the smallness of the critical parameter in the theory. The
new theory maintains the essential features of the standard Lie theory. This chapter

One-Parameter Approximation Group 405

provides a concise introduction to the theory of approximate transfonnation groups
and regular approximate symmetries of differential equations with a small parameter.

8.2. Approximations

Discussing approximate symmetries, we first have to define the tenn approximation.
The following tenns are used to fix the notation. We assume that x =
(Xl, X2, ••• , XN) are the independent coordinates of functions which are analytic in
their arguments. Let us also assume that E is a small parameter on which our
functions additionally depend. We will denote the involved infinitesimal small
functions of order EP+1 by Op(x, E), where p s 0 is a positive constant. This condition
is expressed by Op (x, E) = O(EP). An alternate representation ofthis condition is

(8.1)

Using this notation, we can state what we mean by an approximation.

Definition: Approximation

Let f and g be analytic functions in x. We define an approximation of order p,

f ~ g, by the relation

(8.2)

for some fixed value of p s o. 0

This definition is the basis of all the calculations we will carry out in the following
sections.

8.3. One-Parameter Approximation Group

Following the discussion of Baikov et al. [1991], we define a one-parameter
approximation group for a set of vector functions fi (x, E), i = 0, ... , p, with

coordinates J! (x, E), j = 1, ... , N. The one-parameter family G of approximate
transfonnations is thus

p

x*j ~ I:O; J!(x, E), j = 1, ... , N, (8.3)
;=0

406 Approximate Symmetries 01 Partial Differential Equations

where x = (x" X2, ..• , XN) E IRN are the old coordinates and x· = (xi, xi, ... , xiv)
are the new coordinates, and E and 6 are the group parameter and the perturbation
parameter, respectively. This transfonnation satisfies the following conditions:

I(x, E = 0, li) - x, (8.4)

the approximate identity element. Furthennore, it is assumed that the transfonnation

x· = I(x, E, 6) (8.5)

is defined for any value of E of a small neighborhood of E = 0 and that this
neighborhood allows the relation I(x, E, 6) - x at E = O.

The set G of transfonnation is called a local one-parameter approximate
transformation group if

l(f(x, E, 6), y, 6) - F(x, E + y, 6) (8.6)

for all transfonnations x = I.

Example 1

Let us consider an example with N = 1. The following two functions are equal in a
first-order approximation. The functions f and g depend on the independent variable
x and on the two parameters E and 6. E denotes the group parameter and 6 the small
perturbation parameter.

f [x_, 6_, 05_] : = x + 6 (1 + 05 x + 0526)

g[x_, 6_,05_] :=X+6 (l+c5x) (1+ 6205)

The difference between the two functions is given by

f[X,6,c5]-g[X,6,o5]//Bxpand

which is a function proportional to the square of the small approximation parameter
6. Thus, in first-order approximation, the two functions are equal. The two functions
f and g satisfy, in addition, the relation

f[g[x,6,o5],.,o5] - f[X,6+.,c5] //BxpaDd

Approximate Group Generator 407

which is the approximate association relation of the related group. The difference is a
quadratic function of the group parameters E and </> and at least of order two in the
small perturbation 8. This example demonstrates the general behavior of an
approximate group in first-order approximation. The essential point is that the above
relations are satisfied up to the order of approximation; i.e., the approximation order
(here, first-order) does not occur in the relations. Note that only higher orders in the
perturbation parameter are present.

To determine the group properties of an approximate group transformation, we use
similar tools as in the case of Lie point groups. The applied mathematical objects in
Lie's theory are the group generator, Lie's equation, infinitesimal transformations,
etc. In the following, we will discuss these objects for approximate groups.

8.4. Approximate Group Generator

In close analogy to Lie point groups, we introduce the main tool of symmetry
analysis at this point. The group generator or vector field of an approximate group is
given by a first-order differential operator of the form

P a
v = L: gi(X, 8) ax

i=) l

(8.7)

such that

(8.8)

where the components of the vector field «(l, gl, ... , e) are given by the expansion
coefficients of the transfonnation

eV = a It (x, E, 8) I
~, aE <=0 v = 0, 1, ... , p; i = 1,2, ... , N. (8.9)

Thus, an approximate vector field is given by

(8.10)

The main difference between an ordinary vector field v of Lie point symmetries and
an approximate vector field is an expansion of the coefficients of the vector field with
respect to the perturbation parameter 8. These coefficients follow from a Taylor
expansion of the transfonnation I with respect to the group parameter E and with
respect to the perturbation parameter 8.

408 Approximate Symmetries of Partial Differential Equations

8.5. The Determining Equations and an Algorithm of Calculation

The purpose of this section is to discuss the connection between the classical Lie
theory and the theory of approximate group analysis. We sketch the main steps of the
algorithm for calculating approximate symmetries. A detailed presentation and proofs
of the statements are contained in the work of Baikov et al. [1989].

Let G be an approximate group of transformations given by equation (8.3). Let us
further assume that the order of approximation is p ;:: q. The approximate equation
may be given by

(8.11)

Relation (8.11) is said to be an approximate invariant with respect to G if

/1(f(x, 8, e), e) = o(e") (8.12)

whenever x = (XI, ... , XN) satisfies equation (8.11).

Assume the approximate vector field v is given by equation (8.7). Then, equation
(8.11) is approximately invariant under the approximate group G if and only if

(8.13)

This relation is called the determining equation for approximate symmetries.
Comparing this expression with Lie's theory, we realize that the original condition of
invariance is altered in such a way that the exact vanishing is dropped. In relation
(8.13), only an approximate vanishing is needed to derive the determining equations
for the infinitesimals. If the determining equation (8.13) is satisfied, we say that
equation (8.12) admits the approximate operator v.

To demonstrate the relations discussed so far, let us consider the simple case with
q = p = 1. Relations (8.11) and (8.7) simplify to

and

~ ~O ~I 0 a I a
v = v + e v == ~i (x) - + ~i (x) --,

aXj aXj

respectively. The determining equation (8.13) then reduces to the relation

pr(k)(vO + evl) (110 (x) + e/1l(x»IAo(X)+fAl(X)~O =o(e).

(8.14)

(8.15)

(8.16)

The Determining Equations and an Algorithm of Calculation 409

This relation contains an algorithm for the calculation of first-order approximate
symmetries. The algorithm is based on a theorem stated in Baikov et al. [1989].

Theorem: First-order approximations

In the first-order approximation, the determining equations for approximate
symmetries follow from the system of relations

(8.17)

and

(8.18)

The auxiliary factor A(X) is determined from (8.17) and afterward substituted into
(8.18), where (8.18) itself must hold for the solution x of the unperturbed equation
~(x)=O.O

The above theorem provides an algorithm for the calculation of first-order
approximate symmetries. The algorithm consists of the following four steps:

1. Find the exact symmetries generated by vO of the unperturbed equation. This step
is equivalent to the classical theory of Lie. In equations, we have

(k) ~O
pr v ao(x)l~o=o =0. (8.19)

2. If we know the symmetries in the zero approximation vO, we can use them to
calculate the auxiliary function A(X) if the perturbation £6. 1 (x) is given. The
deficiency A = H follows by

1 (k) ~O
H "'=! - pr v (ao(x) + E a1 (x)) lao +e~1 =0 •

E
(8.20)

3. The symmetries of the first-order approximation then follow from the relation

(k) ~1 I pr v (ao(x)) ~o=o + H = O. (8.21)

4. Check the consistency of the approximation at the end.

We remark that in the approximate group analysis of differential equations, the
prolongation formulas are the same as in the classical Lie algorithm. Thus, it is
straightforward to use the functions of MathLie to derive approximate symmetries.
The package MathLie offers the function ApproximateSymmetries[] to carry out the
calculations in a single step. The following examples will demonstrate the application
of the function.

410 Approximate Symmetries of Partial Differential Equations

8.6. Examples

The following two examples are taken from Baikov et al. [1989]. They serve to
illustrate the calculation of approximate symmetries in connection with computer
algebra. Our results are identical with those published by Baikov and co-workers.

8.6.1 Isentropic Liquid

Let us consider the problem of a liquid in a pipe (Baikov et al. [1989]). The system of
equations of motion for the fluid density p and the velocity field v in a
one-dimensional space is given by

Pt + (pv)x = 0 (8.22)

and

P Vt + P V Vx + px - E P V = 0, (8.23)

where p is the pressure of the liquid and E is the hydraulic-friction coefficient. In
Lagrange coordinates t and q = f P d x, the system becomes

eqOfMotioD = {at (1) _ aqv[q. t] == O.
p [q. t]

at v[q. t] + aqp[q. t] - e v[q. t] == oJ;
eqOfMotion / / LTI'

-Vq - p~ == 0
p

-v E + P q + Vt == 0

hence, for

rulel = p-+l'WlctiOD[{q. t}. l/u[q. t]];

we obtain the equations

eqatioD = eqOfMoticm /. rulel; eqatioD / / LTI'

U t - Vq == 0

-v E + P q + Vt == 0

Differentiating the first equation with respect to t and the second with respect to q,

and replacing the spatial derivative of v by the temporal derivative of u, we end up
with the relation

eczuatioD = «at eqation[l, lD + a,. eqation[2, lD) I.
Solve [eqation[lD, V(1.0) [q, t]]) [lD == 0;

eczuatioD II LTl!'

-eut +Pq,q +Ut,t == 0

If we now represent the pressure by the expression

u [q, t] a+1

ru1e2 = p ... FuDctioD [{q, t},] ;
0'+1

with 0'" a constant, we can represent the equation as

Examples 411

eczuation = eczuatioD I. ru1e2 II Simplify; eczuatioD II LTl!'

U-l+"ou~-eUt +u"uq,q+Ut,t ==0

This equation depends on two parameters 0'" and E denoting the isentropic exponent
and the perturbation parameter, respectively. In the following, we consider the
hydraulic-friction coefficient E as a small quantity. Thus, we can discuss the
symmetries of the equation under the condition that E creates a disturbance of the
original fluid equations. The approximate symmetries of the equation follow by
applying the function ApproximateSymmetries[] to the derived equation:

iDfiDite.ima1. =
A,pproximate~trieB [eczuation, {u}, {q, t}, {a, &}, &];

iDfiDite.ima1. II LTF

4> = = 4 k4 U + k4 U 0 + E (_ k4 t U 0 +
1 4+0 4+0 4+0

(k8 q 0)
~1 == k2 + k3 q + e k5 + k7 q + --2-

U (2 k3 t + k8 (4 + 0))
4+0

(k4 a) (t 2 0 (-2 k3 + k4 0))
~2==kl+t k3--2 - +e k6+k7t+ 4(4+0)

The result is a finite eight-dimensional symmetry group depending on the small
parameter E and the parameter 0'". It was essential in the above calculation that both
parameters 0'" and E are given in the parameters list. The last argument of the function
ApproxirnateSymmetries[] contains only the name of the perturbation parameter E. In
this way, we are able to select one of the parameters as a small quantity. The
coefficients of the eight different vector fields are accessible by

ca.e. = {{xi[l] [q, t, u], xi[2] [q, t, u]},

{phi [1] [q, t, u] }} I. iDfinite.ima1. I.
(Map[(Thread[{kl, k2, k3, k4, kS, k6, k7, kS} ... I=])&:,

PermutatioD. [(I, 0, 0, 0, 0, 0, 0, O}]]) II
Simplify

412 Approximate Symmetries of Partial Differential Equations

{ { { 2 t(24 E+~) }, {24t+U~E }}, {{O, I}, {O}}, {{I, A}, {O}}, q, t - -=-----c--,-----u-,-- u

{{ to'(-8+(-2+tE)O')} {U(4+O'-tEO')}} {{
0, 4 (4+0') , 4+0' ,E, a}, {O}},

{{O, E}, {O}}, {{qE, tE}, {O}}, {{q~O', o}, {UE}}}

We select one sublist from the above list to reduce the original equation and find a
similarity representation. Let us examine, for example, the fourth subgroup which
contains the approximation parameter E. The reduction follows by

redl = LieReduction[equation,

{u}, {c;[, t}, cases[4, 1], cases[4, 2]] //Simplify;

redl /. zetal '1 / / Flatten / / LTF

q -.1::', == 0

t 2/ o U (- 8 - 2 0'+ tEa) 2/0 - F, == 0

(- 8 - 2 0'+ tEa) 2/0

o

(4 (64 + 64 0'-4 (-5 + 2 e E2) 0'2 + (2 - 2 t 2 E2 + t 3 E 3) 0'3) Fi +

O'3F~ (F1)~, +0'2 Fi+a (Fd s1 . s1) ==

The result shows that the similarity variable (I = q and the similarity representation
is given by u = t-2/CT (-8 - 2 (T + t E (T)-2/(T FI (q). This expression depends on E in a
certain power of E. Since our approximation order in E is one, we have to expand the
similarity solution in E to first order. The expansion is carried out by

vl =
Series [u /. Solve [redl[2], u], {E, 0, 1}] / / Normal / / Simplify

t-2/ 0 (_8_20')-2/0 (4+tE+O') Fl[q]
{ 4 + a }

rule3 = u Function@@ { {<;I, t}, vl [1] }

. [{ } t- 2Jo (_8_20')-2/0 (4+tE+O') Fl[q] 1
u Functlon q, t , 4 + a

On the other hand, the arbitrary function Fl has to satisfy a second-order ODE.
Examining this equation, we realize that the second-order ODE contains coefficients
depending on t. However, this dependence will directly lead to inconsistent results.
Since we are looking for solutions linear in E, we have to eliminate the
time-dependent terms. The coefficients containing t contribute terms in E of the order
two or higher. A consistent similarity reduction is only possible if we eliminate those
terms by choosing E = O. The second-order ODE reduces thus to

redh = redl[3] /. E -+ 0; redh /. zetal '1 / / LTF

(-8 - 2 0)2/" (4 (64 + 64 0+ 20 0 2 + 203) Fi + 0 3 F~ (Fd~,

+ 0 2 Fi+" (F1),l.,,) == 0

Examples 413

free of E and t. The solution of this approximation equation follows by

8011 = DSo1ve [redh, 1'1, zetal]

{ {F1 ~ (InverseFunction [

C[2] - (#1- 1 - 0 (C[l] - 256 #1 2+0 -1280#12+0 -16 0 2 #12+")) /

(80 (4 + 0)2 ..J (:2 (#1-2"
(C[1]-256#1 2+o -1280#12+o -1602 #12+0))))_

((-2 - 0) C [1] Hypergeometric2F1 [_21_ 0' ~, 1 + _21_ 0 '

_ (-256-1280-1602) #1 2+"] #1-1+-}(-2-0)-0+~
C[l]

..JC [1] - 256 #12+0 - 128 0 #1 2+0 -1602 #12+0

11 (-256-1280-1602) #12+0)/
-V + C[l]

(8 0 (2 + 0) (4 + 0) 2 ..J (~
(#1- 20 (C[1]-256#1 2+0 -1280#12+0 -1602 #1 2+0)))

..JC[l] + (-256-1280-1602) #12+0)&] [

#1]&)},

{F1 ~ (InverseFunction [

C[2] + (#1-1 -" (C[l] - 256 #12+0 -1280#12+0 -1602 #1 2+0)) /

(80 (4 + 0) 2 ..J (:2

(#1-20 (C[1]-256#1 2+o -1280#12+0-1602 #12+")))) +

((-2 - 0) C [1] Hypergeometric2F1 [_21_ 0 '

1 1 (-256-1280-1602) #1 2+"
2,1+- 2 - 0 ,- C[l]]

#1-1+j- (-2-o)-cr+¥

414 Approximate Symmetries of Partial Differential Equations

~c [1] - 256 #12+0 - 128 0 #1 2+0 -1602 #1 2+0

01 + (-256-128C~~]1602) #12+0]/(80(2+0) (4+0)2

~ (* (#1- 20 (C[l] - 256 #1 2 +0 -128 0 #12 +0 -16 0 2 #12+0)))

~C[l] + (-256-1280-1602) #1 2 +O)&J[

#1]&]}}

The results are two solutions for function Fl. Both representations contain special
functions of the hypergeometric type 2 Fl depending on the isentropic exponent (T.

The representation of the solution in the original variables q and t follows by
substituting the results into the approximated similarity solution. We choose here the
first solution for the representation:

solution = u[q, t] /. rule3 /. soll[l]

1 [t -2 fo (_ 8 _ 2 0) -2/0 (4 + t E + 0) InverseFunction [
4+0

C [2] - (# 1 -1-0 (C [1] - 256 #1 2 +0 - 128 0 #1 2 +0 - 16 0 2 #1 2 +0)) /

(80 (4 + 0) 2 ~ (~2
(#1- 20 (C [1] _ 256 #1 2+0 _ 128 0 #1 2 + 0 - 16 0 2 #1 2+ 0)))) -

[
. [1 1 1

(-2 - 0) C [1] Hypergeometrlc2F1 -2 _ 0' :2' 1 + -2 _ 0 '

_ (-256 -1280-16 (2) #1 2 +0 J #1-1+-t (-2-0)-0+~
C [1]

~C [1] - 256 #1 2+0 -1280 #1 2 +0 - 16 0 2 #1 2 +0

(1 (-256-1280-1602) #1 2+0]1
'V + C[l]

(80 (2 + 0) (4 +0)2

~ (* (#1-20 (C[l] - 256 #12+0 -128 0#1 2 + 0 -16 0 2 #1 2+0)))

~C[l] + (-256-1280-1602) #1 2 + 0)&J [

Examples 415

C[l] and C[2] are constants of integration and InverseFunction[] represents the
inverse of the function!

The original equation of the isentropic fluid in Lagrange coordinates can be
examined either for specific values of the isentropic parameter (T or for different
models for the pressure. Let us discuss two cases for a specific value of (T. The
change of pressure in the model is left to the reader as an exercise. The following
calculation of the approximate symmetries assume that (T = -4/3:

infinitesi_ls = Approxi_te~tries [equation I. a -4/3,
{u}, {q, t}, {e}, e, SUbstitutionltules {"t.t u[q, t]}];

infinite.i_l. II L'l'1!'

(p! == 3 k4 u _ 3 k6 u _ 3 k7 q u
2 2

+ (_ 3 k2 u + 3 kg u _ 3 k3 q u + 3 k4 t u) E
224

~l == k5 + q (k6 + k7 q) + (kiO + q (k2 + k3 q)) E

(k4 t 2) ~2 == ki + k4 t + k8 + k9 t + -4- E

The result of the calculation is a lO-dimensional finite symmetry group in the
first-order approximation. The coefficients of the generating vector fields are

ca.e.2 = {{xi [1] [q, t, u], xi [2] [q, t, u] },

{phi [1] [q, t, u]}} I. infinitesi_ls I.
(1Iap[(Threaa[{kl, k2, k3, k4, k5, k6, k7, k8, kg, kl0} I])&:,

Permutation. [{1, 0, 0, 0, 0, 0, 0, 0, 0, O}]])

{{{O, i}. {OJ}, {{qE, O}. {_ 3~E }},

2 {{ t 2 E} {3 u 3 t U E }} {{ q E, O}. {- 3 qUE} }. 0, t + -4-' -2- + 4 '

{{i, O}. {OJ}' Hq, o}. {_32U}}, {{q2, O}. {-3qu}}.

{{O, E}. {OJ}, {{D, tel, {3~E }}, {{E, OJ, {O}}}

A specific reduction for the third vector field with V3 = E q a q - 3 E q U au follows by

red2 = LieReduction[equ.atioD I. a -4/3,
{u}, {q, t}, ca •• 82[3, 1], case.2[3, 2]] /I Simplify;

rea2 I. zetal '1 II Platten II L'l'P

t - Sl == 0

q3 U - Fl == 0

-E Fi" + Fi". " == D

416 Approximate Symmetries of Partial Differential Equations

The similarity representation is given by the similarity solution u = F[(t) / q3 with
similarity variable ~[= t . The auxiliary function F[has to satisfy a second-order
ODE. We realize that the similarity solution does not depend on E. However, E occurs
in the determining equation of Fl' The solution of the equation for F[is given by

solh = DSolve[red2[3) , Fl, zetal]

This function actually does not depend linearly on E and, thus, it does not fit into the
approximation scheme of a first-order approximation. However, it is a solution of the
reduced equation. The representation of this expression in Lagrange coordinates reads

solution2 = Flatten[Solve[red2[2) /. solh, u]]

{ Et E C [1] + E C [2) }
U ~ q 3 E

A graphical representation of the solution for specific values of the parameters is
given as follows:

Plot3D[Evaluate[u /. solution2 /. {C[l] -+1, C[2] -+2, e-+ .l}],

{q, 1, 2}, {t, 0, 20}, AxesLabel-+ {"q", "t", "un},

Mesh -+ False, PlotPoints -+ 35]

Another case discussed by Baikov et aI. [1989] is the isentropic motion with (T = -4.
The equation of motion for this case reads

eq = equation /. C1 -+ -41 eq / / LTF

4 u 2 U
- --q- - E u t + ~ + u == 0 U S u 4 t,t

The first-order approximate symmetries of this equation follows by

infinitesimals = appraximateSy.mmetries[eq, {u},

{q, t}, {e}, e, SubstitutioDRules ~ {Bx.xu[q, t]}];

infinitesimals II LTF

k4u 1
<lh == - -2- + 2 (-k2 + k6 + 2 k7 t) u e

~1 == k3 + k4 q + (kB + k2 q) e

~2 == kl + (k5 + t (k6 + k7 t)) e

Examples 417

representing an eight-dimensional finite symmetry group. Again, we can use the
infinitesimals to derive analytic solutions for the isentropic model. The generating
vector fields of the subgroups read

Map [(l'old[Plus, 0, Map[l'old[NonCommutativeMultiply, 1, #]A,

Transpose[{Flatten[#], {IIBQ;", DBtn, nBun}}]] I.

**O**~ 0] I.
1 ** a_ **b_ ~ a **b) A,

{{xi [1] [q, t, u], xi [2] [q, t, u]},

{phi [1] [q, t, u] }} I. infinitesimals I.
(Map[(Thread[{kl, k2, k3, k', kS, k6, k7, kS} ~#])A,

Permutations[{l, 0,0,0,0,0,0, O}]])] II
Tablel'orm

1 ** Ot

(qe) **Oq + (- U2E) **ou

1 ** Oq

q * * Oq + (- t) * * Ou

e ** Ot

(t e) * * Ot + U2E * * Ou

(t2 e) **Ot + (tue) **ou

e ** Oq

Here, we used the function NonCommutativeMultiply[] (**) to keep the ordering of
the operators in the representation of the vector fields. The coefficients of these
differential equations are

case.3 = {{xi [1] [q, t, u], xi [2] [q, t, u]},

{phi [1] [q, t, u]}} I. infinitesimals I.
(Map[(Thread[{kl, k2, k3, k', kS, k6, k7, kS} ~#])'"

Permutations [{1, 0, 0, 0, 0, 0, 0, O}]])

418 Approximate Symmetries of Partial Differential Equations

{{{O, l}, {OJ}, {{qE, o}, {_U2E}}, {{l, o}, {OJ}'

{{q, OJ, {-~}}, {{O,E}, {OJ}, HO, tEL {U2E}},

{{O, eEL {tuell, {{E, OJ, {OJ}}

One of the possible reductions can be calculated by combining two sub-groups. For
the present calculation. we combine the third and seventh sub-group:

red3 = Lieaeduetion[ecz, {u}. {cz. t}. eases3[7, lD +eases3[3. lD.

eases3 [7. 2D + eases3 [3. 2D] / / simplifYI

red3 /. zetal -+ C1 / / Platten / / LTP

1 t + q E - Si == 0

- ~ - Fi == 0
t

t 3 E F~ + 4 E2 (Fd ~, - E2 Fi (Fd 1:1 ,1:, - Fi (t2 E (Fd 1:1 + (Fd 1:1 ,1:,)

== 0

Solving for the unknown field u, we find an explicit similarity representation of the
solution:

u 1
SOlve[-- == Pl[- +cze]. u]

t t

{ {u ~ - t Fl [~ + q E]} }

The resulting similarity representation is given by u = -t F J (1 / t + q E), where F J

has to satisfy a second-order ODE depending on t and E. We eliminate this
dependence by choosing E = 0 in the determining equation of F J' The solution of the
resulting equation follows with

solh = DSolve[red2[3D /. e -+ 0, Fl. zetal]

{{Fl~ (C[l] +C[2] #l&)}}

representing a linear function in zetal. The solution in Lagrange coordinates t and q
reads

solution3 = solve [I'latten [red3 [2D /. solh]. u] / / Platten

{u~-tC[l] -C[2] -qtEC(2]}

Examples 419

This solution depends linearly on E and thus is consistent with the approximation
order of the procedure. The choice of numerical values for the integration constants
C[l], C[2] and the approximation parameter E allows us to outline this solution in a
contour plot.

ContourPlot[

Evaluate[u!. solution3!. {C[l] -+1, C[2] -+-1, E-+ .9}],

{q, -3, 3}, {t, 0, 20}, AxesLabel-+ {"qU, "tR},

Colorl"unction -+ Hue, Axes -+ True]

t

8.6.2 Perturbed Korteweg-de Vries Equation

One of the frequently discussed equations in soliton theory is the Korteweg-de Vries
equation (KdV)

Ut + U Ux + ux,x,x = o. (8.24)

The KdV equation is one of the rare equations which is solvable and possesses an
infinite number of integrals of motion. The equation fIrst derived by Korteweg and de
Vries in 1895 describes shallow water waves in narrow channels. Korteweg and de
Vries showed that periodic solutions, which they called cnoidal waves, could be
found in closed form and without further approximation. Our interest here is the
approximation aspect of the fluid dynamics. It is well known that the KdV equation is
an approximated equation in a certain limit incorporating the effects of dispersion
and surface tension which stabilizes a wave. If now we incorporate terms in the
equation which are actually present in nature but are dropped in equation (8.24), we
may gain information on the influence of such terms. For example, let us extend the

420 Approximate Symmetries of Partial Differential Equations

KdV equation by a dispersive teno Uxx that Burgers [1948] used in his turbulent
theory. In the following, we examine the equation

MVepailen = at u [x, t] +

u[x, t] axu[x, t] + a(x.3}U[X, t] +6a(X.2}U[X, t] == 0;

MVepailon II L'l'1'

lit + U U x + E Ux,x + Ux,x.x == 0

where e is a small parameter measuring the influence of second-order dispersion. For
short we call this equation the KdV -e equation. The approximate symmetries of this
equation follow by

MVinfiniteaimala = ApproximateSy.mmetries[MVepailon,

{u}, {x, t}, {6}, 6, SubstitutioDRulea-+ {atu[x, t]}];

MVinfinitesimala II L'l'1'

4>1 == k2 + (k5 - 2 k7 u) E

~1 == k3 + k2 t + (kG + k5 t + k7 x) E

~2 == kl + (k4 + 3 k7 t) E

representing a seven-dimensional approximate symmetry group. The generating
vector fields for this model read

Map [(l'old[Plus, 0, JIap[l'old[ISI'ODC~tativeMu.ltiply, 1, I]&:,

'!'ranspose [{Platten[#], {"ax", "at", -au -}}]] I.

**0**-+0] I.

1 ** a_ ** b_ -+ a ** b) &:,
{{xi [1] [x, t, u], xi [2] [x, t, u] },

{phi [1] [x, t, u]}} I. MVinfinitesimals I.
(Map [('1'hread[{k1, k2, k3, k .. , k5, k6, k7} -+ #]) &:,

Permutations [{1, 0, 0, 0, 0, 0, O}]])] II
Tablel'orm

1 * * au + t * * Ox

1 ** Ox

E * * au + (t E) * * Ox

The coefficients of these vector fields are given by

casesKdV= {{xi[l] [x, t, u], xi[2] [x, t, u]},

{phi [1] [x, t, u]}} /. KdVinfinitesimals /.

(Map [(Thread [{kl, k2, k3, k4, kS, k6, k7} -+ #]) &:,

Permutations [{1, 0, 0, 0, 0, 0, O}]])

Examples 421

{{{O, l}, {O}}, {{t, A}, {l}}, {{l, A}, {O}}, {{O, E}, {O}},

{{tE, A}, {E}}, {{E, A}, {O}}, {{XE, 3tE}, {-2UE}}}

The group of seven vector fields contains symmetries like translations and scalings
depending on the perturbation parameter E. Let us choose a linear combination of
three subgroups to reduce the original KdV -E equation. The following line creates the
similarity reduction in connection with the first, third, and fifth sub-groups.

redKdV = LieReduction[KdVepsilon, {u}, {x, t}, casesKdV[l, 1] +

c casesKdV[3, 1] + casesKdV[S, 1], casesKdV[l, 2] +

c casesKdV[3, 2] + casesKdV[S, 2]] // Si~lify;

redRdV /. zetal -+ '1 // Flatten // LTF

t 2 E
-c t + x - -2- - Sl == 0

-c+u-tE-F,==O

E+F, (F ')Sl +E (F')Sl,Sl + (F')Sl,Sl,Sl ==0

The result is a similarity representation of the solution depending linearly on E. The
similarity variable 4"1 = x - ct - Et2 /2 also depends linearly on E. The determining
equation of the similarity function FI also shows a linear dependence on E. All these
linear dependencies on E will result into a non-linear dependence on E of the solution.
Thus, let us examine the determining equation without the E terms. The reduced
KdV -E equation is integrated by two quadratures to the form

bl = :Integrate [azetal 1'1 [zetal]

(:Integrate [redKdV[3, 1, 1] /. e -+ 0 // Expand, zetal]),

zetal]

Fl[zetal]3 1
6 + 2 Fl' [zetal] 2

This result can be treated in two different ways. First, let us assume that the
expression equals a constant K. For this case, we find by DSolve[]

easel = DSolve [bl == K, 1'1, zetal]

Solve: :tdep :

The equations appear to involve transcendental functions

of the variables in an essentially non-algebraic way.

422 Approximate Symmetries of Partial Differential Equations

Solve: : tdep :
The equations appear to involve transcendental functions

of the variables in an essentially non-algebraic way.

Solve: : tdep :
The equations appear to involve transcendental functions

of the variables in an essentially non-algebraic way.

General: : stop: "Further output of \! \ (Solve: : " tdep
\) will be suppressed during this calculation.

{Solve[C[1]- 1 (2121/3 37/12
Y-F1 3 +6K

U,

Fl] ,

(-1) 5/6 (-1 + F1
6"/3 K"/3

~ (1)516 IF1

11 . . [. [6 VJ Kl/J E lptlcF ArcSln 3"/ 4

1
Solve [c [1] + --;===;r=~

Y_F1 3 +6K

) 5/6 (F1 (-1) -1 + 6 ' / 3 K"!3

#1,

Fl] }

that the solution is given by elliptic functions. Since Solve[] is unable to invert the
expression, we only get the solution in an implicit form. The second case we can
examine is when K = O. In this case, the solution is given by

case2 = DSolve [bl == 0, 1"1, zetal]

The similarity representation of the solution follows from this relation by

sol = Solve [redKdV[2D /. case2 [lD, u]

Examples 423

12
{{U-7C+tE- t 2E 2}}

(-ct+x--2 --C[1])

Since the solution should depend linearly on E, we have to expand the result up to
fIrst order in E around E = 0:

solution Series[u /. sol, {e, 0, l}]

(12) (12 t 2
) 2 c- 2 + t- 3 E+O[E]

{(-ct+X-C[l]) (-ct+x-C[1]) }

This expression gives us an approximate solution of the KdV-E equation. We can
check relation (8.11) by inserting the above solution into the original equation. In the
fIrst step, we convert the solution into a pure function representation:

srule = u -+ Apply [Function, {{x, t}, solution[l] / / Normal}]

U-7

(12 t 2) 12 1 Function [{x, t}, c + E t - - 2
(-ct+x-C[1])3 (-ct+x-C[1])

Inserting the solution into the original equation demonstrates that the equation is
satisfied in first-order approximation:

KdVepsilon /. srule 1/ Simplify

(1
432t4E

E + 7 +
(ct-x+C[1])

144 t 2 E 72 36 t 3 E

(ct-X+C[1])5
---------~,+ --------------,
(ct-X+C[1J)4 (ct-x+C[1])4

o

The two examples presented are a small representation of the huge amount of
equations depending on a small perturbation parameter. We note that the derivation
of an approximate solution is not unique. As the reader has noticed in the solution
step, there is a great flexibility in choosing the stage of approximation. However, at
the end of the calculation, we have to satisfy relation (8.11) defIning the order of
approximation.

9

Generalized Symmetries

9.1. Introduction

The previous sections discussed the classical method, the non-classical method, and
some extensions of Lie's theory. We demonstrated the classification and solution of
some types of ordinary as well as partial differential equations. Although very
general, these methods mainly consider the geometric aspects of the transformations
related to the equations. Essentially, we discussed invariance under point
transformations and demonstrated that some kind of contact transformations are
related to point transformations in case of first-order partial differential equations.
However, it turns out that much wider classes of transformations leave differential
equations invariant, including those considered by Lie.

Emmi Noether [1918] and Felix Klein [1918] demonstrated that a system of
differential equations derivable from a variational principle allows a much greater set
of transformations under which a given system of differential equations is invariant.
They significantly extended the application of symmetry group methods by including
derivatives of the dependent variables in the transformations. Moreover, they were
able to offer a regular procedure to construct the related conservation laws which are
based on the investigation of the invariance properties of the variational integral
under the action of transformation groups. With the publication of her theorem,
Emmi Noether demonstrated that Lie point symmetries cannot provide the total

Introduction 425

number of symmetries for a given system of differential equations. Consequently, the
required integrals of motion and the solutions are not available for many systems.

In recent years, the symmetry methods have become more attractive, especially in the
field of non-linear dynamics. In this chapter, we will consider a generalized method
of Lie's classical theory to determine the symmetries for non-linear PDEs and ODEs.
We will demonstrate that the method is applicable to a large number of different
models. Let us first outline the mathematical theory to generate a firm basis on which
MathLie is grounded.

9.2. Elements of Generalized Symmetries

The setting of our program MathLie is an entirely general one. Its algorithm is well
known and described, for example. in the books by Olver [1986] or BIuman and
Kumei [1989]. We consider the general case of a non-linear system of differential
equations for an arbitrary number q of unknown functions ua which may depend on
p independent variables Xi' We denote these sets of variables simply by
u = (u l , u2 , ••. , uq) and X = (Xl, X2, ..• , x p), respectively. The most general case is

given by a system of m non-linear differential equations

i = 1,2, ... , m, (9.1)

of order k. The term uCk) is understood as the kth derivative of u with respect to x. We
note that m, k, p, and q are arbitrary, positive integers.

In order to find the properties of (9.1) different from point symmetries, non-classical
symmetries, or potential symmetries, it is suitable to apply a transformation of the
independent and dependent variables as well as the derivatives. This kind of
transformation determines the attributes of the corresponding group G.

First, let us consider transformations of (9.1) depending on a single parameter E

which are given by

u· = <I>(x, uCk); E)

(9.2)

(9.3)

with k = 0, 1, 2 ... denoting the order of the derivatives. The functions 8 and <I> are
assumed to be differentiable with respect to the dependent and independent variables.
The identity transformation of the coordinates in (9.2) and (9.3) is given by E = O. In
analogy to Lie's theory, the transformations (9.2)-(9.3) are generated by the vector
field

426 Generalized Symmetries

(9.4)

The infinitesimals gi and tPa are derived from equations (9.2) and (9.3) by
differentiating the transformations with respect to the group parameter E. Considering
these expressions for E = 0, we get

(9.5)

(9.6)

The infinitesimal transformations corresponding to (9.2) and (9.3) are then given by

(9.7)

(9.8)

with E being the group parameter, a small quantity. This representation is a straight
generalization of Lie's classical procedure. On the other hand, it is beneficial to
introduce coordinates in which the infinitesimal transformations become the simple
representation

X~ = Xi, i = 1,2, ... , p, (9.9)

(9.10)

meaning that the complete transformations are represented by a transformation of the
dependent variables. The corresponding representation of the vector field vQ is then

(9.11)

where Qa = Qa(x, U(k)) is the characteristic of the vector field vQ. The characteristics
Qa are related to the infinitesimals by

p

Qa = tPa - Lgi uf, a = 1, 2, ... , q. (9.12)
i=1

Algorithm/or Calculation o/Generalized Symmetries 427

It is obvious from these relations that point symmetries are a subset of generalized
symmetries. Restricting the dependencies of the infinitesimals on the variables x and
u, we are back in the classical theory of Lie. The determination of the characteristics
follow by a similar algorithm as used in the determination of point symmetries. The
determining equations for the characteristics Qa are consequences of the relation

(9.13)

where pr v Q denotes the prolongation of the vector field v Q. The general expression
of the prolongation reads

(9.14)

with D J the total derivative depending on the multi-index J. The invariance
condition (9.13) is based on the fact that the equation a = 0 and their differential
consequences vanish on the solution manifold. From equation (9.13), we get a system
of linear coupled PDEs for the characteristics Qa if we extract the coefficients of the
derivatives in u up to a certain order. We note that this order can be infinite.
However, in practical calculations, we restrict the order of derivatives in Qa to a
finite number. Equation (9.13) contains all the information to derive the generalized
symmetries in a nutshell. The following section discusses the procedure of how
equation (9.13) is algorithmically accessible.

9.3. Algorithm for Calculation of Generalized Symmetries

The procedure to calculate the generalized symmetries proceeds in the same way as
for the classical symmetries. The following steps are based on (9.13):

1. Calculate the prolongation of the system of differential equations up to kth order
by

prvQ a = 0, (9.15)

where k specifies the order of differentiation in the characteristics.

2. Use the equations and their differential consequences to eliminate redundant
information of the prolongation

(9.16)

428 Generalized Symmetries

3. Extract the determining equations from the prolongation. The determining
equations follow as coefficients of the derivatives in u, i.e., ux, ux,x' etc. The
order of derivatives used in the extraction should be greater than k.

4. Solve the resulting linear determining equations.

A selected number of examples will demonstrate the application of the algorithm.
The four steps are realized in the function Baecklund[]. This function fosters the
determination of the generalized symmetries. The symmetries are represented by the
characteristics Qi which are labeled in MathLie by QC[z1. Since the characteristics
depend, in general, on derivatives of an infinite order, we need to restrict this order to
a finite number. At the moment, this number must be specified by the user. The
function Baecklund[] assumes by default that the largest order of derivatives is one.

Thus, Baecklund[] determines so-called contact transformations by default. By

increasing the order of derivatives n > 1 in the characteristics, we can force

Baecklund[] to determine generalized symmetries of order n. The following examples

illustrate the application of Baecklund[] to examples like the diffusion equation, the
potential Burgers equation, the generalized KdV equation, and a coupled system of
wave equations.

9.4. Examples

This section is concerned with application of Baecklund[] to PDEs. The examples
display the capabilities and the flexibility incorporated in the function.

9.4.1 Diffusion Equation

Let us start with the diffusion equation. The four steps of the algorithm are carried
out by the function Baecldund[] automatically. We first demonstrate the simplest
case of application. The standard case occurs when the equation is free of any
parameter. Then, only the equation, the dependent variables, and independent
variables are supplied to the function Baecklund[]. In addition to these three input

quantities, the side condition of equation (9.13) is needed, meaning that Baecklund[]
must know a term for which the equation of motion is solvable. This term must be
provided as the fourth argument. The fifth argument is not necessary for first-order
generalized symmetries. The generalized symmetries of first-order for the diffusion
equation thus follow by

generalSymm = BaecklUDd[
Btu[x. t] -Bx.xu[x. t] ==0. lul, {x. t}. {Btu[x. t]}];

gener.1S~ II LTP

Examples 429

(k3 X) QC [1] [t, x, U, u t ' u x] = = U kl + -2 - + (k2 + k3 t) U x + 'Tl

- ('T1) t + ('T1) X,x == 0

The result of the calculation is the representation of the characteristic QC[l]
depending on the independent and the dependent variables and on first-order
derivatives. Thus, Baecklund[] calculates generalized symmetries of first order by
default. The result also shows that the fIrst-order generalized symmetries consist of
an infinite and a finite part of transfonnations. The infinite part must satisfy the
original equation. This behavior is expected for a linear equation. Generalized
symmetries different from contact transfonnations follow by increasing the order n.
The order of the largest derivative in the characteristics is specified by the fifth
argument of Baecklund[]. For example, if we are interested in second-order
generalized symmetries, we initiate the calculation by

generalSymm = aaeckluDd[

"tu[x, t] -"x."u[x, t] ==0, {u}, {x, t}, {"tu[x, t]}, 2];

generalSymm II L'l'F

QC[l] [t, x, U, Ut, Ut,t, UX, Ux,t, ux,xl ==
1 4 U (4 kl - 4 k7 + 2 k6 t + 2 k3 x + k6 x 2) +

(k2 + k~X +t (k3+k6X)) U x +'Tl + (k4+t (kS+k6t)) ux,x

- ('T1) t + ('T1) X,x == 0

Now, the characteristic Q, depends on the second-order derivative of u. The group
parameters ki denote the six different characteristics under which the diffusion
equation is invariant. The invariance can be checked by Baecklund[] if we provide
additional infonnation to the function. The additional infonnation is carried by the
option CharExpression-.?{list}, where list contains the infonnation on the
characteristics. Let us check the invariance of the diffusion equation with the
second-order characteristics derived above. For the following calculation. we fIrst
need to extract the characteristics from the result generalSymm:

char = QC[l] [t, x, u[x, t], U(O.l) [x, t], U(O.2) [x, t],

U(l.O) [x, t], U(l.l) [x, t], U(2.0) [x, t]] I. generalSymm[lD;

char II Lie'l'radi tioDall'orm

1 4 U (4 kl - 4 k7 + 2 k6 t + 2 k3 x + k6 x 2) +

(kS x) k2 + -2- + t (k3 + k6 x) U x + 'Tl + (k4 + t (kS + k6 t)) ux,x

430 Generalized Symmetries

The expression char is inserted into the option given as the seventh argument of

Baecklund[]. The sixth argument contains the parameters of the equation if any. The
check of the equation is carried out by

generalS~ = Baecklund[at u[x, t] -ax,xu[x, t] == 0, {u},

{x, t}, {at u [x, t]}, 2, {}, CharExpression -+ {char}] ;

generalS~ / / L'l'l!'

We find that the arbitrary function free[l] = 'Pi has to satisfy the diffusion equation
itself. The result tells us that the finite transformation properties in char are
generalized symmetries of the diffusion equation. If the transformation group consists
only of a finite group, the result would be an empty list. At this stage of our
examinations, we are able to derive the generalized symmetries for a certain order of
derivatives and we can check a given symmetry group to be a generalized symmetry
of a specific equation.

9.4.2 Potential Burgers Equation

Another example frequently discussed in non-linear dynamics is the Burgers
equation. Let us examine the potential form of this equation. In a previous section,
we examined the prolongation formula of the Burgers equation. Here, we calculate
the generalized symmetries. The potential Burgers equation in scaled variables read

2
Ut - Ux + p ux•x = O. (9.17)

Subscripts in (9.17) denote differentiations. P is a real constant measuring the
dispersion strength. The generalized symmetries of first-order for the potential
Burgers equation follow by

generalS~urgers

Baecklund[at u[x, t] - (axu[x, t])2 + J3ax,xu[x, t] == 0,

{u}, {x, t}, {at u[x, t]}, 1, {J3}];

generalS~urgers / / L'l'l!'

QC [1] [t, x, U, U t , u x] = = C [1] + k1 U x + Eu /13 {3 'Tl

('Td t + ('Td == 0
{3 x,x

Since equation (9.17) contains the parameter P, we must tell Baecklund[] that P has a
special meaning in the calculation. Because the parameters are supplied as the sixth
argument, we also need to specify the order of derivatives on which the
characteristics depend. This number is given in the fifth argument of Baecklund[].

Examples 431

The resulting characteristic depends on two parameters kl and C[l], and an auxiliary
functionfree[l] which must satisfy the diffusion equation.

9.4.3 Generalized Korteweg-de Vries Equations

The Korteweg-de Vries equation (KdV) is a standard equation with a broad range of
applications. In this example, we examine the generalized symmetries of the
KdV-Burgers equation (KdVB) for different geometries. The equation containing the
plane, cylindrical, and spherical coordinates of the KdVB equation is

j U m
Ut + "2 t + y U Ux - J1 u x•x + /3 ux,x,x = O. (9.18)

j determines the geometry in which the equation resides (j = 0 plane geometry, j = 1
cylindrical geometry, and j = 2 spherical geometry). m, y, J1, and /3 are constants. For
J1 = 0, the KdV equation follows, and for /3 = 0, equation (9.18) reduces to the
Burgers equation. The power m distinguishes between the standard and the
generalized potential form of the equation. y measures the strength of non-linearity.
Let us first examine the generalized symmetries for m = 1, j = 1, and arbitrary y, J1,

and /3. Applying the function Baecklund[] to this subordinate equation, we find

generalKdVSymm =
j u[x, t]

Baecklund[Cltu[x, t] + - + yu[x, t]'"Clxu[x, t]-
2 t

/A Clx • x u [x, t] + (3 Clx • x • x U [x, t] == 0 /. {j -+ 1, m -+ 1},

{u}, {x, t}, {CIt u[x, t]}, 1, {y, /A, (3}];

genera1KdVSymm / / Flatten / / LTF

kl ~ r::
QC[lJ [t. x. U, Ut, uxJ == -~ + (k2 + 2 kl -yt) U x

-y t y

The generalized symmetry in first-order representation consists of two symmetries: a
constant term and a term describing a translation in x. The reader may check the
KdVB equation for other choices of parameters and higher-order representations of
the characteristics. Other third-order-equations of KdV -type include

1 3 (U /3 -u) 0 Ut + ux,x,x - "8 Ux + Ux a e + e + y = , (9.19)

where a, /3, and y are real constants. Equation (9.19) was discussed by Calogero and
Degasperis [1981] and Fokas [1980] in connection with exactly solvable equations.
The generalized symmetries of this equation follow by

genera1KdvSymm =

432 Generalized Symmetries

Bxu[x, t] (aZXp[u[x, t]] +/3Bxp[-u[x, t]] +y) == 0,

{u}, {x, t}, {Btu[x, tj}, 1, {a, /3, y}];

generalKdV~ / / Lor ..

QC[l] [t, x, U, Ut, u x] ==klux

Again, we find, in lowest order approximation of the characteristic, a single
expression representing a translation. Another kind of KdV equation demonstrating
the application of Baecklund[] to a system of equations is the Hirota and Satsuma
[1981] (HS) equation, which is discussed in connection with soliton solutions. The
model equations are

U, + ux,x,x + 6uux - 6vvx = 0,

v, - 2 vx,x,x - 6 u Vx = o.

The generalized symmetries of this system follow by

generalKdVSymm = Baecklund[{Btu[x, t] + Bx.x.xu[x, t] +

6u[x, t] Bxu[x, tj + 2v[x, t] Bxv[x, t] == 0,

Btv[x, t] - 2 Bx.x.xv[x, t] -6u[x, t] Bxv[x, t] == O},

{u, v}, {x, t}, {Btu[x, tj, Btv[x, tj}, 2];

generalKdVSymm / / Lor ..

QC[l] [t, x, u, V, u t , v t , u t , t 1 Vt,t I u x , v x , Ux,t, Vx,t I

ux,x I vx,x] == kl U X

QC[2] [t, x, u, V. u t , V t , u t , t 1 Vt,t I u x , v x , Ux,t I Vx,t I

ux,x 1 vx,x] == kl Vx

(9.20)

(9.21)

Surprisingly, the HS system has only a one-parameter finite symmetry group
depending on first-order derivatives. This happens even though we examined
characteristics depending on second-order derivatives.

9.4.4 Coupled System of Wave Equations

Another example to demonstrate the capabilities of Baecklund[] is the application to

a coupled system of simple wave equations. This example serves to demonstrate that

Baecklund[] is capable of finding symmetries of systems of equations. We
generalized the example given by Olver [1986] to a system of two equations. The two
fields u and v are coupled to each other via the gradients. The generalized symmetries
for the system of equations

u, - vUx = 0,

v, - u Vx = 0

(9.22)

(9.23)

Second-Order ODEs and the Euler-Lagrange Equation 433

follow by

generalSymmWave = Baecklund[{Btu[x, t] - v[x, t] "xu[x, t] == 0,

"tv[x, t] -u[x, t] Bxv[x, t]},

{u, v}, {x, t}, {Btu[x, t], Btv[x, t]}];

generalSymmWave / / Flatten / / L'l'F

QC[l] [t, x, u, V, Ut' v t ' U,,' v"l ==

-k4 - kl U - k2 u 2 - k3 u" - k4 tux + kl x U x + k2 v x U x +

U x 'T, + U x 'T2 + V U x 'T3 - U x 'T4 - V U x 'T5 - U ('T5) t

QC [2] [t, x, U, v, U t ' V t, U,,' v x] = = - k4 - kl v - k2 v 2 - k3 v x -

k4 t Vx + kl x Vx + k2 U x Vx + Vx 'T, + Vx 'T2 + U Vx 'T3 - Vx 'T4 -

U Vx 'T5 + U Vx ('T,) v - V Vx ('T,) v - U Vx ('T.) v + V v" ('T4) v - v ('T5) t

- k3 + k5 - k4 t + k6 t - 'T4 - V'T5 + t'T6 + 'T7 == 0
t

We realize that the characteristics depend on seven auxiliary functions freeli}. These
functions are connected by one algebraic and one differential expression. The
dependence in this algebraic form could not be resolved by the function PDESolve[].
However, we find information on the generalized symmetries in a straightforward
way.

So far, we discussed the application of generalized symmetries to PDEs. The
following section will demonstrate the application of generalized symmetries in
connection with ODEs.

9.5. Second-Order ODEs and the Euler-Lagrange Equation

A great number of problems in physics can be described by second-order ordinary
differential equations

(9.24)

where qj = qj(t) are a set of dependent variables. Dots denote derivatives with
respect to time t. The ~k' S are given functions of the dependent and independent
variables. For example, we can think of these expressions as Newton's or Lagrange's
equations.

Let us assume that (9.24) can be derived from a generating functional S. The action S
and the calculus of variations are the two keys of Hamilton's principle and allow us

434 Generalized Symmetries

to derive the equations of motion (9.24). The variation of an individual path qj in the
action

(9.25)

provides us with the equations of motion. We already know from the discussion in
Section 3.6.1 that the calculus of variations applied to (9.25) is equivalent with the
Euler derivative. The resulting equations (9.24) are known as the Euler-Lagrange
equations

oS
€k('C) = !l.k = - = 0, k = I, 2, ... , N.

8qk
(9.26)

The symbol -!- = ~~ (-It dd: (-{j {j) denotes the variational derivative and
uqk ~n=O t qk;(n)

the Euler derivative is labeled by €k. At this stage of the discussion, we know the
equations of motion and certainly the physical interpretation. However, it is unknown
to us under which conditions solutions of (9.24) can be found. The following section
will outline how solutions of a second-order system of ODEs can be calculated by
examining generalized symmetries of (9.24).

9.5.1 Generalized Symmetries and Second-Order ODEs

It is known that Lie's original procedure pr(2) v !l. I~=o = 0 does not deliver all
possible symmetries of a second-order ODE. For example, Abraham-Shrauner and
Guol [1993] and Olver [1986] discuss so-called hidden symmetries in connection
with ordinary differential equations. At the tum of the century, Emmy Noether
[1918] examined ODEs in connection with generalized point transformations. In turn,
we have to use a generalized method to uncover the "hidden" symmetries. A
generalization of the point transformations can be gained if the infinitesimals g and
¢a do not depend only on the dependent and independent variables but also on
derivatives of the qj's. In the case of second-order ODEs, the space of coordinates
needs to be extended by the first derivatives. All higher derivatives can be eliminated
by the differential equations themselves or differential consequences of the equations.
For a shorthand notation to denote the extended dependencies including derivatives,
we use square brackets [q] = (t, qi, (1) in the infinitesimals g = g[q] and ¢i = ¢M].

The corresponding generalized vector field for such transformations can formally be
given by

N

V = g[q]8t + L¢M]8q, (9.27)
i=!

Second-Order ODEs and the Euler-Lagrange Equation 435

In a second step, we can introduce the characteristics for second-order ODEs by
Qi [q] = ¢>i[q] - ';[q] q. The corresponding vector field has the representation

N

L Qi[q] aqi (9.28)
i=l

The symmetries contained in (9.4) and (9.28) are essentially the same. The only
difference is that (9.28) considers transformations of the dependent variables and
derivatives in the extended form while (9.4) additionally takes into account a
transformation of the independent variables. The main advantage of the evolutionary
representation is its simplicity in the representation of the prolongation

N

prVQ =~~ (9.29)

i=l J=O

The assumption in the calculation of the related symmetries of (9.1) is the same as in
the case of point symmetries. Thus, the computation of the generalized symmetries
proceeds in essentially the same way as the computation of Lie point symmetries.
Since we consider the variables and derivatives as independent up to a fixed order,
we not only take equations (9.1) into account but also consider the derivatives of
(9.1) as concerns the invariance condition. The invariance condition remains nearly
the same and reads

prvQt::..kld1A =0 withJ=0,1,2, ... andk=I,2,
---;1-=0 (9.30)

Contrary to point symmetries, differential equations can be used to eliminate higher
derivatives and also the differential consequences of equations (9.1). Equation (9.30)
provides the determining equations for the characteristics Qi. Although linear, it is
very tricky to solve this system of equations, as it yields a large overdetermined
system of equations. With some skill, solutions of (9.30) can be found by an ad hoc
ansatz for the Qi'S; for example, by assuming that Qi has a special form (polynomial
or power form) in the arguments. By this method, equation (9.30) will split into
several equations that mayor may not have a non-zero solution.

In Baecklund[], we use an ansatz of polynomial form in the coordinates qi and
momenta qi' This ansatz is exclusively used for second-order ODEs. If we can solve
the resulting system of linear equations in the coefficients introduced by the ansatz,
we will have determined the characteristics up to some power. This information can,
in tum, be used to construct conservation laws and invariant solutions.

436 Generalized Symmetries

9.5.2 Conservation Laws

With equation (9.26), we assume that the system of equations (9.1) is derivable by a
variation of the path qi. In close analogy to the question of invariance of (9.1), we
can ask for the invariance of the action itself. This means that we have to assume

(9.31)

Two questions arise at this point:

1. Are the group elements g E G of (9.31) derivable from infinitesimal conditions?

2. How are the symmetries of the Euler-Lagrange equations related to these
variational symmetries?

It is obvious that local transformations preserving the invariance of a functional
transform one solution of the variational problem into another. This must be the case
if relation (9.31) is correct. Thus, we can use Lie's procedure applied to the
Euler-Lagrange equations corresponding to (9.26), taking into account that not all
symmetries of equations (9.1) are symmetries of (9.26). To uncover the variational
symmetries, we can use the methods discussed so far but, in addition, need to check
the relation

prVQt1k + DQt1k = 0, k = 1,2, ... , N, (9.32)

where DQ denotes the adjoint Frechet derivative of the characteristic Q. The

evolutionary vector field vQ with its characteristic Q is a variational symmetry if

equation (9.32) holds for all t and qi. We now have a criterion singling out these
symmetries from the generalized symmetries which are also variational symmetries.
Noether's theorem establishes the connection between the variational symmetries
with their characteristics Qi and the conserved quantities. The case of one
independent variable can be summarized in the formula

(9.33)

which is a special case of the more general divergence formula given by Olver
[1986]. The essential points in determining integrals of motion for a given
Euler-Lagrange system are, first, to find the characteristics Qi for the variational
symmetries, and, second, to integrate equation (9.33). These two steps among others
are implemented in MathLie. To show how the outlined analysis can be used in

Algorithm for Conservation Laws of Second-Order ODEs 437

practical applications, we will give some examples demonstrating the application of

Baecklund[]. However, we first collect the essential steps of the algorithm to
calculate integrals for second-order equations.

9.6. Algorithm for Conservation Laws of Second-Order ODEs

The algorithm uses the notation by Olver [1986]. The work of Olver is instrumental
in a direct implementation. Using the earlier notations, the algorithm involves the
following steps:

1. Applying the prolongation operator prvQ to each equation .li(X, U(k») and
requiring that equation (9.30) be satisfied.

2. Consider equation (9.30) as an algebraic system where derivatives become the
new variables. Provided this system of algebraic equations can be solved by
Solve[], we can gain m solutions wf3 with f3 = I, 2, ... , m which contain the
equations .l = o. The variables wf3 and derivatives of these relations are used as
side conditions in equation (9.30).

3. Extract the determining equations for the characteristics Qo: by equating the
coefficients of all functionally independent expressions in the derivatives uj to
zero.

4. Simplifying the total number of equations by using the first-order derivatives and
homogeneous higher-order derivatives for the characteristics. This step is
repeated until the number of determining equations reaches a stable value.

5. If the determining equations are known, it may be possible to solve these
equations by using an ansatz of polynomials for the characteristics. We note that
this step will not provide the most general solution of ordinary differential
equations, if such one exists, but delivers at least a sub-class of solutions.

This procedure works expediently as long as the variables wf3 are obtainable by

Solve[] from the equations of motion (9.1) and if Solve[] can find a solution from the
linear equations for the constants used in the ansatz of the characteristics. The manual
procedure, feeding back some information on the characteristics gained by partly
solving the determining equations, is completely independent of the automatic
solution procedure. If one is convinced that the ansatz used in Baecklund[] does not
provide the most general solution, one can use a manual and iterative procedure to
find the solutions of the determining equations.

438 Generalized Symmetries

9.7. Examples for Second-Order ODEs

In this section, we will deal with the application of the generalized symmetry method
previously introduced. We discuss the Henon-Heiles model, a quartic anharmonic
oscillator, and the problem of two ions in a Paul trap.

9.7.1 The Henan-Heiles Model

The Henon-Heiles model for gravitating stars in a cylindrical galaxy is described by a
set of two coupled non-linear second-order ODEs. The model in its original form
with fixed parameters was used by Henon and Heiles [1964] to examine the regular
and chaotic motion of a star in a galaxy. Here, we are interested in the regular motion
of the Henon-Heiles system. The two equations of motion are

(9.34)

(9.35)

where A, B, C, and D are model parameters. In the original equations of Henon and
Heiles, these parameters were fixed to a certain value. For these values, Henon and
Heiles found chaotic behavior of the model if the total energy of the system is
increased. Our interest here is to find those parameter combinations for which
equations (9.34) and (9.35) possess symbolic solutions. It is known that the two
equations of motion follow from the Lagrangian

(9.36)

Applying the Euler derivative to the density of the Lagrangian, we can write down
the equations of motion (9.34) and (9.35) by

HenoDHeiles =

'1'hread[S~"1,"2} [(~ «CJt ql[t])2 + (CJt q2[t])2) - : ql[t]2_

~ q2 [t] 2 _ D ql [t] 2 q2 [t] + ..:.. q2 [t] 3)] = = {O, O}];
2 3

HenonHeiles / / LTJ!'

- A ql - 2 D ql q2 - (ql 1 t, t = = 0

-Dq~ -Bq2 +Cq~ - (q2l t,t == 0

Given an arbitrary choice of the parameters A, B, C, and D, chaotic evolution occurs
for the coordinates ql and q2' The non-chaotic or regular cases occur if the motion of

Examples/or Second-Order ODEs 439

the star is controlled at least by two integrals of motion. These two integrals fix the
path of the system in the two-dimensional phase space. The special combinations of
the parameters for which integrals of motion exists were derived with a Painleve test
by Bountis et al. [1982]. Here, we use Baecldund[] to find the special parameter
combinations under which integrals of motion exist. To find the integrals of motion,
we apply the theory presented above. The integrals of motion are accessible by

HH:Integrals = Baecklund [B.nonKeiles, {q1, q2},

{t}, {Ot,tq1[t], Ot,tq2[t]}, 1, {A, B, C, D}, AnsatzPoly-+ {1, 1}];

HH:Integrals / / LieTraditionall"orm / / Tablel"orm

A-4A
B-4A
C-40
D-40
A-4A
B-44A
C-40
D-40
A-4A
B-4B
C-4C
D-40
A-4A
B-4A
C-40
D-40
A-4A
B-44A
C-40
D-40
A-4A
B-4B
C-4C
D-40
A-4A
B-4A
C-4-6D
D-4D
A-4A
B-4A
C -4 -D
D-4D
A-4A
B-4B
C-4C
D-4D
A-4A
B-4B
C-4-6D
D-4D

1 A 2 2 ~ 2 3 1 ()2 1 ()2 - "2 % - D ql q2 - 2 - D q2 -"2 ql t -"2 q2 t

lA 2 D 2 Bq~ 2D 3 1 ()2 1 2 - "2 ql - ql % - 2 - % -"2 ql t - "2 (q2) t

440 Generalized Symmetries

-2q2 (q1)t +q1 (q2)t

q1 (q1) t

-2q2 (q1)t +q1 (q2)t

q1 (q1) t -

(3A (q2)t) / (20)

- 2 q2 (q1) t + % (q2) t

q1 (q1) t +

((-4A+B) (q2)t) / (20)

A~A

B~B

C ~-¥­
O~O

A~A

B~A

C ~-O
O~O

A~A

B~4A

C~O
O~O

A~A

B~A

C ~ -6 0
O~O

_ ~ A q2 _ 0 q2 q2 _ B qj _ ~ _ ~ () 2 1 () 2 2 1 1 2 15 2 q1 t -"2 q2 t

1 4 (3A' 40' ql) ql 3 A q 3
-T O q1+ 40 + 2+

+ q2 (A qf + 2 (q1) ~) - q1 (q1) t (q2) t + 3 A d ~) ;

1 D 4 1-4AB'B',40'qj)qj + (4A-B) q32 + - T q1 - 40

+ q2 (2 A qf - B qi + 2 (%) ~) - % (q1) t (q2) t +

(4A-B) (q2l:

40

The result is a list containing several sub-lists. The sub-lists gather the infonnation on
the symmetries, the parameter combinations, and the related integral of motion. For
example, the ninth element of the result

HHI:ntegrals[9D / / LieTraditionalForm

{ { (q1) t' (q2) t }, {A ~ A, B ~ B, C ~ C, D ~ D} ,

1 2 2 B q~ C q~ 1 2 1 2 }
- 2 A q, - D q1 q2 - -2 - + -3 - - 2 (q1) t - 2 (q2) t

states that the characteristics are given by the pair (ql'[t], q2'[t]) and that all
parameters are arbitrary. The related integral of motion is just the total energy of the
system. Thus we find that for arbitrary parameter combinations, energy is a
conserved quantity. The total energy is one of the two needed integrals to fix a path
of the particle. Another integral of motion is given as the seventh element in

HHI:ntegrals[7D / / LieTraditionalForm

{ { (qd t' (q2) t}, {A ~ A, B ~ A, C ~ - 6 0, D ~ o},

1 2 2 A q~ 3 1 2 1 2 }
-2 A %-D%q2--2-- 2D q,-2 (q1)t-2 (q2)t

Here, the characteristics are the same as before. However, the special combination of
parameters (A and D arbitrary, B = A, and C = -6 D) allows a second integral of
motion in addition to the total energy. These two conserved quantities completely fix
the motion of the star and the galaxy.

In the above calculations, the option AnsatzPoly~{l,l} of Baecklund[] was used.

This option affects Baecklund[] in two ways. First, it creates a polynomial ansatz for

HHJ:ntegrals

Examples/or Second-Order ODEs 441

the characteristics, and second, it detennines the coefficients of this polynomial in
such a way that integrals of motion exist. The two values in the list specify the
polynomial degree in the coordinates and in the first derivatives, respectively. If you
are convinced that the characteristics depend on the third order of the coordinates and
on third order in the derivatives, you can call Baecklund[] by

= Baeeklund[HenOnHeiles, {q1, q2},

{t}, {c3t • t q1 [t], c3t . t q2 [t] }, 1, {A, B, C, D}, AnsatzPoly-+ {3, 3}) ;

HHJ:ntegrals II LieTraditionall"orm II TableForm

A 0
0 B O c q~ _ ~ (q2) ~ (q2) t C C 3 2

D O

A 0
0 B B -+ B q~ 1 (q2) ~ (q2) t C O -2

D O
A 0

0 B B -+ B q~ + C q5 _ J:.... (q2) ~ (q2) t C C 3 2
D O

A A
0 B T

- 118 A q~ 1 (q2) ~ (q2) t C O -2

D O

A A
0 B t -t Aq~ 1 (q2) ~ (q2) t C O -2

D O

A A
0 B A -+ Aq~ 1 (q2) ~ (q2) t C O -2

D O

A A
0 B A -+ Aq~ + ~_..L (q2) ~ (q2) t C C 3 2

D O

A A
0 B 4A

-2 A q~ - + (q2) ~ (q2) t C O
D O

A A
0 B 9A -t Aq~ --'-- (q2) ~ (q2) t C O 2

D O

A A
0 B B -+ Bq~ --'-- (q2) ~ (q2) t C O 2

D O

A A
0 B B -+ B q~ +~_l (q2) ~ (q2) t C C 3 2

D O

442 Generalized Symmetries

o
+Aq~ (q2)t + (Ch)~

o
+Aq~ (q2)t + (q2)~

o
Aq~ (Ch)t + (q2)~

o
4Aq~ (q2)t + (~)~

o
9Aq~ (Ch)t+(q2)~

o
Bq~ (~)t + (q2)~

o
Bq~ (~)t + (q2)~

o
-tcq~ (q2)t + (q2)~

o
(Aq~ - 2C3q~) (q2)t +

(~)~
o
(B q~ - 2 C3 q~) (q2) t +

(~)~
o
(Bq~ - 2C3Qj) (Ch)t +

(~)~

A--'>A
B--,> t
C--,>O
0--'>0
A--'>A
B--,> t
C--,>O
0--,>0
A--'>A
B--'>A
C--,>O
0--,>0
A--,>A
B--,>4A
C--,>O
0--'>0
A--'>A
B--,>9A
C--,>O
0--'>0
A--,>O
B--,>B
C--,>O
0--,>0
A--'>A
B--'>B
C--,>O
0--,>0
A--,>O
B--,>O
C--,>C
0--'>0
A--'>A
B--,>A
C--'>C
0--,>0

A--,>O
B--'>B
C--,>C
0--,>0

A--,>A
B--'>B
C--,>C
0--,>0

A--,>O
B--,>O
C--,>C
0--,>0
A--,>O
B--'>B
C--,>O
0--'>0
A--,>O
B--'>B
C--'>C
0--,>0

1 B2 4 1 -2 () 2 1 4 -"4 q2 - "2 B Y.2 Ch t - "4 (q2) t

-+ A2 q~ + + A C q~ - + C2 q~ -

+~ (3A-2Cq2) (~)~ - + (q2)!

-+ B2 q~ + + B C q~ - + C2 q~ -

+~ (3B-2Cq2) (q2)~ - + (q2)!

-+ B2 q~ + + B C q~ - + C2 q~ -

+~ (3B-2C~) (Ch)~ - + (q2)!

Examples for Second-Order ODEs 443

A-tA
(qd t B-t t

--}- Aqf - -}- (qd~
0 C-tO

D-tO

A-tA
(QJ.) t B -t t --}-Aqf--}-(qd~
0 C-tO

D-tO

A-tA
(qd t B-tA

--}-Aqf - -}- (qd~
0 C-tO

D-tO

A-tA
(q1) t B-tA

--}- Aqf - -}- (qd~
0 C-tC

D-tO

A-tA
(q1) t B-t4A --}-Aqf--}-(qd~
0 C-tO

D-tO

A-tA
(q1) t B-t9A

--}-Aqf - + (qd~
0 C-tO

D-tO

A-tA
(q1) t B-tB

--}- Aqf - + (qd~
0 C-tO

D-tO

A-tA
(qd t B-tB

- -}- A qf - -}- (qd ~
0 C-tC

D-tO

A-tO
(qd t B-tO -Dct, q _ 16Dq~ _-'-- ()2
(q2) t C-t-16D

1 (~)~ 1 2 32 q1 t -"2

D-tD

A-tO
(qd t B-tO

-D qf ~ - 2 D <t. - -}- (qd ~ - + (~) ~
(Q2) t C-t-6D

D-tD

A-tA
(qd t B-tA _ -'-- A qf - D q2 q2 _ Aq~ + c ql _-'--
(q2) t C-tC 2 1 2 3 2 (qd~ -

D-tD + (q2) ~
A-tA

(qd t B-tA _-'--Aq2_Dct,Q2 Aq~ 2Dcrl 1
(Q2) t C -t -6 D 2 1 1 - 2 - -"2 (qd~ -

D-tD + (~)!
A-tA

(q1) t B-tA _ -'-- Act, - D q2 q _ Aq~ D ql 1
(Q2) t C -t -D 2 1 1 2 2 - 3 -"2 (qd~ -

D-tD + (q2)~
A-tA

(q1) t B -t 16 A - -}- A qf - D qf q2 - 8 A crl _ 16 D ql --'--
(Q2) t C -t -16 D 3 2 (qd~ -

D-tD + (~)~

444 Generalized Symmetries

Aq1 (qllt + (qll!
o

Aq1 (qll t + (qll!
0

Aq1 (qllt + (qd!
0

Aq1 (q1) t + (qd!
0

Aq1 (q1) t + (qd ~
0

Aq1 (qd t + (qd~
0

Aq1 (qd t + (qd~
0

A-7A
B-7B
C-7C
D-7D

A-7A
B-7B
C-7-16D
D-7D

A-7A
B-7B
C -7 -6 D
D-7D

A-7A
B-7B
C -7 -D
D-7D

A-70
B-70
C-7C
D-70
A-70
B-7B
C-70
D-70
A-70
B-7B
C-7C
D-70
A-7A
B -7 t
C-70
D-70
A-7A
B -7 t
C-70
D-70
A-7A
B-7A
C-70
D-70
A-7A
B-7A
C-7C
D-70
A-7A
B-74A
C-70
D-70
A-7A
B-79A
C-70
D-70
A-7A
B-7B
C-70
D-70

1 A q2 D q2 t"T_ _ B crl + c q~ _.l. (q1) 2t _ -"2 1- 1""-' 2 3 2

t (q2)~

1 A q2 D q2 q _ B ,,~ _ 16 D q~ _.l. (qd 2t _ -"2 1- 1 2 2 3 2

t (q2)~

1 2 4 1 A-2 ()2 _.l. ()4 - T A q1 -"2 '41 q1.t 4 q1 t

A qf (q1) t + (qd ~
o

(q2) t

(q1) t

(~~ -2q2) (qd t +

q1 (q2)t
q1 (q1)t

(4 :~B -2 q2) (q1) t +

q1 (~) t

ql (q1)t

-2q2 (q1)t +q1 (q2)t

q1 (q1)t

2 D qf q2 (qd t + (%) ~ -

t D qi (q2) t

-tDqi (qd t

(Aqf +2Dqf q2) (qd t +

(qd ~ - t D qi (q2) t

-tDqi (qd t

(Aq~+2Dq~q2+

A q~ + 2 °3 qj) (q1) t +

(q1)! + (- t D qi -

A q1 q2 - D ql q~)

(q2) t

(-tDqi -Aq1 q2-

Dq1 q~) (qd t +

(A qi + 2 D qf q2 +
3

A q~ + 203
q 2)

(q2) t +

(~)~

A-'>A
B-,>B
C-'>C
D-,>O

A-'>A
B-'>A
C -'> -D
D-'>D

A-,>A
B-'>A
C-'>-6D
D-'>D

A-'>A
B-,>B
C-,>-6D
D-'>D

A-,>O
B-,>O
C-'>-6D
D-'>D

A-,>O
B-,>O
C-,>-16D
D-,>D

A-,>A
B -'> 16 A
C-,>-16D
D-'>D

Examplesfor Second-Order ODEs 445

_ 3 A2 ql _ D qf _ D q2 q2 _ 3 A (q, I ~
4D 4 1 2 40 +

q2 (-A q~ + (ql) ~) - ql (q1) t (q2) t

A(4A-Blqj _ Dqf _Dq2q2_ (4A-BI(qli~ +
4D 4 1 2 4D

q2 (-A qi + (qd ~) - q1 (qd t (~) t

+s- D2 qf + t D2 qt q~ - D qf q2 (q1) ~ -

+ (qd! + tDqi (qd t (q2)t

-+ A2 qt +

118 D2 qf + t D2 qt q~ - -T A qf (qd ~ -

+ (qd! + t D qi q2 (A qi - 3 (qd ~) +

tDqi (qd t (q2)t

-+ A2 qt + 118 D2 qf + 112 (-3 A2 - 2 D2 q~) qi -

tAD q~ - -} D2 q~ - -T A q~ (q1) ~ -

+ (qd: + t D q~ (-A qi - (qd ~) -

tDqf q2 (2Aq~ +3 (qd~) +

{-q~ (-4D2 qt -3A (qd~) +

tql (Dq~+3Aq2+3Dq~) (qd t (q2)t+

{- (-3Aqi-6Dqf~-3Aq~-2Dq~) (q2)~­

+ (q2)!

We realize that the structure of the characteristics change and a large number of new
integrals occur. These integrals represent the solution of the equation in implicit form.

446 Generalized Symmetries

9.7.2 Two-Dimensional Quartic Oscillators

When two or more optical waves copropagate inside a fiber, they can interact with
each other through the fiber non-linearity. In general, such an interaction can
generate new waves under appropriate conditions through a variety of non-linear
phenomena such as stimulated Raman and Brillouin scattering. The same
non-linearity also provides a coupling between the incident waves through a
phenomenon referred to as cross-phase modulation. Cross-phase modulation is
always accompanied by self-phase modulation and occurs because the effective
refractive index of a wave depends not only on the intensity of that wave but also on
the intensity of the copropagating wave.

In this subsection, we will consider the coupling of two polarized waves with
different frequencies. We assume that we have a polarization-preserving fiber so that
the two waves maintain their polarization during propagation. This model, consisting
of two coupled non-linear SchrOdinger equations, can be reduced to a Hamiltonian
system (cf. Baumann [1991]). The reduced model shows regular solutions for some
parameter values. On the other hand, the Hamiltonian system can show chaos for an
arbitrary choice of parameter values. The equations of motion follow from the
Hamiltonian

(9.37)

where Pi denotes the momenta and qi the coordinates of the reduced equations. The
a/s and C's are real constants. The equivalent formulation in Lagrange's dynamic
starts from the Lagrangian

(9.38)

Applying the Euler derivative to this Lagrangian, we find the equations of motion as

quarticOscillators =

Thread [B~\11'\12} [(~ ((at ql [t]) 2 + (at q2 [t]) 2 -

~ (alql[t]2 +a2q2[t]2) -rlql[t]' -r2 q 2[t]') -

ql[t]2 q2 [t]2)] ==

{O,O}];

quarticOscillators / / LTI!'

Examplesfor Second-Order ODEs 447

cx1 q1 3 2
- --2- - 2 r1 q1 - 2 % % - (q1) t,t == 0

cx2 q2 2 3
- --2- - 2 % q2 - 2 r2 % - (q2) t,t == 0

These coupled second-order equations represent a similarity reduction of two coupled
non-linear Schrodinger equations, The question now is under what circumstances is
the given system of equations solvable? The answer is given by Baecklund[], which
delivers

QOXntegrals = Baecklund[quarticOscillators, {q1, q2}, {t},

{c3t ,tq1[t], c3t ,t q2 [t]}, 1, {a1, a2, r1, r2}, AnsatzPoly-+ {4, 3}];

QOXntegrals / / LieTraditionall'orm / / TablePorm

(q1) t
(q2) t

(q1) t

(q2) t

(q1) t

(q2) t

(q1) t

(q2) t

(q1) t

(q2) t

(q1) t

(q2) t

(q1) t

(q2) t

(q1) t

(q,) t

cx1 -> 0
cx2 -> 0
r1-> t
r2 -> T
cx1 -> 0
cx2 -> 0

rl-> +
r2 -> +
cx1 -> 0
cx2 -> 0

rl -> +
r2 -> T
cx1 -> 0
cx2 -> 0
r1 -> 1
r2 -> 1

cx1 -> 0
cx2 -> 0
rl -> T
r2 -> t
cx1 -> 0
cx2 -> 0
r1-> T
r2 -> +
a1 -> a1
a2 -> °4"

rl-> +
r2 -> +
cx1 -> a1
a2 -> °4"
r1-> +
r2 -> T

_3L_q2q2_-'!L_Jc.()2 1 ()2 2 1 2 2 2 q1 t -"2 q2 t

- tal qf - -¥- + -ft- (-a1 - 16 qf) q~ - -¥- -
+ (qd ~ - + (q2) ~

- t cx1 qf - -¥- + 116 (-cx1 - 16 qf) q~ -

~ 1 ()2 1 ()2 3 -"2 q1 t -"2 q2 t

448 Generalized Symmetries

al ~ a1
(q1) t a2 ~ ~1
(q2) t r1 ~ 1

r2 ~ 1

a1 ~ a1

(q1) t a2 ~ ""41

(q2) t r1 ~ t
r2 ~ t
a1 ~ a1

(q1) t a2 ~ ""41

(q2) t r1 ~ t
r2 ~-}-

a1 ~ a1
(q1) t a2 ~ a1

(q2) t r1 ~-}-
r2 ~-'--

3

a1 ~ a1
(q1) t a2 ~ a1

(q2) t r1 ~ -'--
3

r2 ~ t
a1 ~ a1

(q1) t a2 ~ a1
(~)t r1 ~ 1

r2 ~ 1

a1 ~ a1
(%)t a2 ~ a1

(q2) t r1 ~ ~
3

r2 ~-}-

a1 ~ a1
(q1) t a2 ~ 4 a1

(q2) t r1~ t
r2 ~ ~

3

a1 ~ a1
(q1) t a2 ~ 4 a1

(q2) t r1 ~-}-

r2 ~-}-

a1 ~ a1
(q1) t a2 ~ 4 a1

(q2) t r1~ +
r2 ~ t
a1 ~ a1

(q1) t a2 ~ 4 a1
(q2) t r1 ~ 1

r2 ~ 1

a1 ~ al
(q1) t a2 ~ 4 a1

(q2) t r1 ~ t
r2 ~ +

-+ a1 qf - .!f- + 1"6 (-a1 - 16 qf) q~ -

~ 1 2 1 2 12 - 2 (q1) t - 2 (q2) t

-+ a1 qf - .!f- + 116 (-al-16 qfl q~ -

.sJ--+ (q1)~-+ (q2)~

-+ a1 qf - -'4- + -} (-a1 - 4 qf) q~ - .sJ- -
+ (qd ~ - + (q2) ~

-+ a1 qf - -'4- + -} (-a1 - 4 qf) q~ - 4 ;l -
+ (qd ~ - + (q2) ~

-+ a1 qf - + + + (-a1 - 4 qn q3

+ (qd ~ - + (q2) ~

4 -+ a1 qf - ~ + + (-a1 - 4 qf) q~ - .sJ- -
+ (qd ~ - 1- (q2) ~

1 2 4 4
-"4 a1 % - :!.f- + (-a1 - qi) q~ -~ 6

1- (qd ~ - 1- (q2) ~

(ql) t

(q2) t

(q1) t

(q2) t

(ql) t

(q2) t

(q1) t

(q2) t

(ql) t

(q2) t

(q2) t

(q1) t

al -> al
a2 -> a2
rl-> t
r2 -> r2

al -> al
a2 -> a2

rl-> +
r2 -> ~

3

al -> al
a2 -> a2
rl-> ~

3

r2 -> t
al -> al
a2 -> a2

rl -> +
r2 -> r2

al -> al
a2 -> a2
rl -> 1
r2 -> 1

al -> al
a2 -> a2
rl -> 1
r2 -> r2

al -> al
a2 -> a2

rl-> t
r2 -> +
al -> al
a2 -> a2
rl-> ~

3
r2 -> r2

al -> al
a2 -> a2
rl -> rl
r2 -> t
al -> al
a2 -> a2
rl -> rl
r2 -> r2

al -> 0
a2 -> 0
rl-> +
r2 -> +
al -> al
a2 -> al

rl -> +
r2 -> +

Examples/or Second-Order ODEs 449

4 - +- al q~ - * + +- (-a2 - 4 qi) q~ - r22q~ -

+ (qd ~ - + (q2) ~

- +- al q~ - -¥- + + (-a2 - 4 qf) q~ - -¥- -
+ (qd ~ - + (q2) ~

- +- al qf - -¥- + 1- (-a2 - 4 qi) q~ - 4 i~
+ (qd ~ - + (q2) ~

- +- al qf - -¥- + + (-a2 - 4 qi) q~ - r22q~ -

+ (qd ~ - + (q2) ~

1 1....2 q4 1 4
- 4" a '-11 - T + 4" (-a2 - 4 qf) q~ - + -
+ (qd ~ - + (q2) ~

- +- al qi - -¥- + +- (-a2 - 4 qi) q~ - r22qj -

+ (qd ~ - + (q2) ~

- +- al qi - if- + +- (-a2 - 4 qf) q~ - -¥- -
+ (qd~ - t (q2)~

- +- al qi - if- + +- (-a2 - 4 qf) q~ - r22qj -

+ (qd~ - t (q2)~

- +- al qi - r12qf + +- (- a2 - 4 qi) q~ - -& -
+ (qd~ - t (q2)~

_ -'- al q2 _ n qf 1
4 1 2 + 4""

450 Generalized Symmetries

q2(q2)t

q2 (qtlt-

2ql (q2)t

q2 (q2)t

q2 (ql)t-

2 ql (q2) t

-2q2 (ql)t +

ql (~) t
ql (%)t

-2q2(ql)t+

q1 (q2)t
q1 (q1)t

-q~ (qtl t +

q1q2 (~)t

ql q2 (ql) t -

q~ (q2)t

-~ (qtlt +

q1 q2 (q2)t

q1 q2 (q1) t -

q~ (q2)t

(_ 3 ~1 _ q~)

(qtlt +

q1q2(q2)t

q1 q2 (ql) t -

q~ (q2)t

(3 ~1 _ q~)

(qtlt +

q1 q2 (q2)t

ql q2 (ql) t -

qf (q2)t

(t (a1 - (2) -

q~)

(qtl t +

ql q2 (~)t

q1 q2 (q1) t -

~ (~)t

a1 --? 0
a2 --? 0

r1 --? +
r2 --? t

a1 --? a1
a2 --? CX4l

r1--? +
r2 --? t

a1 --? 0
a2 --? 0
r1--? t

r2 --? +
a1 --? a1
a2 --? 4 a1

rl--?t

r2 --? +
a1 --? 0
a2 --? 0
r1 --? 1
r2 --? 1

a1 --? a1
a2 --? a1
r1 --? 1
r2 --? 1

a1--? a1
a2 --? 4 a1
r1 --? 1
r2 --? 1

a1 --? a1
a2 --? CX41

r1 --? 1
r2 --? 1

a1 --? a1
a2 --? a2
r1 --? 1
r2 --? 1

- 214 q1 (3 a1 + 16 q~) q~ - 1- q1 q~ -

q2 (qtlt (q2)t +q1 (q2)~

-t q~ <t, + 1- q2 (- qf + 3 (q1) ~) -

q1 (%) t (~) t

- t q~ q~ + t q2 (- 3 a1 q~ - 2 qi + 6 (qtl ~) -

q1 (qtlt (q2)t

t a12 q~ + 3 a~ qf + 1- a1 (qtl ~ +

+ q~ (3 a1 qi + 2 (q1) ~) - q1 q2 (ql) t (q2) t ~

tq~ (~)~

_ ~ a12 q2 _ 3 (Xl qf _
32 1 16

-A- a1 (qtl! + 116 q~ (- 3 a1 qf + 8 (ql)!) -

q1 q2 (q1) t (q2) t + t q~ (q2) ~

-+ a1 (a1 - (2) q~ +

+ (-a1+a2) qi + + (-a1 +(2) (qtl~ +

+ q~ (-a1 qf + a2 q~ + 2 (ql)!) -

q1 q2 (qtlt (q2)t + tqi (q2)~

(++<Iiqn

(qd t +

+ (qd ~ -

t qi q2 (q2)t

-t qi q2 (qd t +

t qf (q2)t
2 (a14q J +

4 + +qf qn

(ql) t +

+ (qd ~ -

tqiq2 (q2)t

-+ qi q2 (qd t +

tqi (q2)t

t q~ (qd t -

t ql q~ (q2)t

-+ ql q~ (qd t +

(<Iiq~++)
(q2) t +

+ (q2) ~

t qi (qd t -

t ql q~ (q2)t

-+ ql q~ (qd t +

(01 q~ +
16

q~ q~ + -"t-)
(~) t +

+ (q2)~
(+ + qi q~ + -"t-)

(qd t +

+ (qd ~ +

(-tqiq2-

tqlq~)

(q2) t

(-tqiq2-

tql qn

(qd t + (+ +

qiq~++)
(~)t +

+ (~)~

0:1 -> 0
0:2 -> 0

r1-> +
r2 -> +

0:1 -> 0:1
0:2 -> 40:1
r1-> t
r2 -> +

0:1 -> 0
0:2 -> 0

r1-> +
r2 -> +

0:1 -> 0:1
0:2 -> <x}

rl-> +
r2 -> +

0:1 -> 0
0:2 -> 0

r1-> +
r2 -> +

Examplesfor Second-Order ODEs 451

.sL~ 4 4_~ 4()2 72 18 ql q2 12 ql ql t -

t (ql): - ""8 qi q~ (qi + 9 (ql) ~) +

tqiq2 (ql)t (q2)t - 1"2 qi (q2)~

_ ~ 0:12 q4 _ <xl qf _.SL _ ~ q4 q4 _
32 1 24 72 18 1 2

2"4 qi (3 0:1 + 2 qi) (ql) ~ - t (ql)! -

3"6 qi q~ (3 0:1 qf + 2 qi + 18 (ql) ~) +

t qi q2 (ql) t (q2) t - ""2 qi (q2) ~

~ 2 6.5!L ~ 4(24 3()2) 18 ql q2 72 + 36 q2 - ql - ql t +

+ ql q~ (qd t (q2) t -

1~ q~ (6 qi + q~) (q2) ~ - t (q2)!

1 (_30:1_16q2)q6_.5!L+_"_ (q4 28'8 1 2 72 4608 2

(-90:1 2 -960:1qf -256qi -384 (qd~)) +

+ql q~ (ql)t (~)t-

9"6 q~ (3 0:1 + 48 qf + 8 q~) (q2) ~ - t (q2)!

.sL~ 2 6_.5!L 1 4()2 72 18 ql q2 72 - 12 ql ql t-

t (ql)! + 3"6 q~ (-11 qi - 3 (ql) ~) -

1"8 qi q~ (qi + 9 (ql) ~) +

+ q2 (qi +q1 q~) (qd t (q2)t +

""2 (-qi - 6 qi q~ - q~) (~) ~ - t (~)!

452 Generalized Symmetries

(a\q1 +

..<!L + a1 <i, +
6 4

qi q~ + sf-)

(q1)t +

+ (qd~ +

(- + a1 q1 q2 -

i- qi q2 -

i-q1 qn

(q2) t

(- + a1 q1 q2 -

i-qiq2-

i- q1 q~)

(qd t +

(a14qt +

a1 ~ a1
a2 ~ a1
r1 ~ i­
r2 ~ i-

_--'-a1 2 q4 _ a1ql _ -'!.l+ --'- (-3al-4q12) q26-
32 1 24 72 72

-% - 214 qi (3 a1 + 2 qi) (qd ~ - t (qd: +

2~8 qi (-9a1 2 -36a1qi -88qi -24 (qd~) +

7; q~

~ + cr.l q~ +
6 4

(- 9 a1 qf - 4 q~ - 9 a1 (qd ~ - 36 qi (qd ~) +

1"2 % q2 (3 a1 + 4 qi + 4 q~) (%) t (q2) t +

qiq~+sf-)
214 (- 3 a1 qi - 2 qi -

3 a1 q~ - 12 qi q~ - 2 qi) (q2) ~ -

+ (q2) ~

The result is a list containing 47 possible cases for finding integrals of motion.
Scanning through the sub-lists, we realize that not only is the coupled system
considered by Baecklund[] but also a decoupling of the equations is taken into
account.

9.7.3 Two Ions in a Trap

Today, ion trapping is a fundamental experimental tool. Basic properties and
elementary constants of physics are derivable from such experiments (cf. Wineland et
al. [1983]). A standard trap for such experiments is, for example, a Paul trap (Paul
and Steinwedel [1953]) in which ions are confined by a high-frequency if field in
connection with a static electric field. A Paul trap is completely free of any magnetic
fields. To uncover the physical properties of a single ion, it is necessary to trap one or
at most a small number of ions; otherwise, one gets a statistical mean of the observed
property. In a typical trap experiment, two ions or a single ion are confined. Here, we
shall consider the case in which two ions are stored in the trap. For two particles in
the trap, we can describe the motion with Newton's equation. A schematic
illustration of a trap follows:

Examples for Second-Order ODEs 453

Figure 9.1

A Paul trap is designed by three hyperbolas of revolution, which are the electrodes.
The inside diameter of the ring is 2 ro and the axial separation of the end caps is 2 Zo.
The electrostatic potential

(9.39)

where ? = x2 + i is created by the shape of the trap if the ring electrode is held at
the dc potential Uo with respect to the two end caps. This static part of the total
potential confines ions along the z-axis. In the x and y direction, the motion is
unbounded. The confinement in both of these directions is achieved by
superimposing the static potential (9.39) by an Jfpotential

",rf __ Vo cos(Ot) (2 2 2)
'I' , 2 r - z .

ro+ 2 ZO
(9.40)

In the case of two ions in the trap, an additional force influences the motion of the
particles. This interacting force is due to the Coulomb repulsion of the ions. In the
case of two identical particles, the Coulomb force is repulsive between particle 1 and
particle 2. The force is given by

(9.41)

454 Generalized Symmetries

where Xl.2 denotes the position of particle 1 and 2, respectively, both carrying the
charge q. In addition to these main forces, there are two other kinds of forces coming
from the emission of photons and from the cooling process of the ions. These two
forces, compared with the other three forces, are of minor importance in connection
with the classical motion of the ions. So we neglect them in our further
considerations. The classical equations of motion for two ions in a Paul trap now read

~T ~C

m Xi = Fi + Fij with i, j = I, 2 and j =I:- i. (9.42)

~T

In equation (9.42), Fi denotes the linear trap force

~T UO + Vo cos(nt) ~ ~
Fi = -2q 2 2 (Xi- 3 Zi ez), i=I,2,

ro+ 2 qj
(9.43)

where n is the external driving frequency. It is obvious that the equations of motion
depend on time t . We can eliminate this time dependency by the averaging method of
Landau and Lifshitz [1981]. Before we carry out this procedure, we introduce relative
and center-of-mass coordinates by x = Xl - X2 and X = Xl + X2, respectively. The
introduction of cylindrical coordinates (p, {) simplifies the equations of motion in the
relative coordinates to

(9.44)

(9.45)

where the dots denote differentiation with respect to time t. The constants wP ' w(,

and lz denote the secular frequencies in radial and axial directions and the angular
momentum directed along the z-axis. The secular frequencies wp and w(are
dimensionless quantities containing the ac and dc voltage, the mass m of the ions, the
external driving frequency n, and the geometrical properties of the trap. For a
detailed description of the derivation of these two equations, compare Baumann and
Nonnenmacher [1992]. A further scaling of the dimensionless time T by one of the
secular frequencies (T' = wp T) and introducing the ratios v = lz / wp and A = w(/ wp

gives us

p + P = (9.46)

(9.47)

Ql,2

1 Sc
Pc

2 Sc
Pc

3 Sc
Pc

Examples for Second-Order ODEs 455

These two equations describe the relative ion motion in a Paul trap in the secular
approximation. The two equations are derivable from the Lagrangian

LPaul

[~
LPaul / / LieTradi t ionalForm

y2 1 1 1
--- + - (_S2),2 _p2) - + -2 (s~ +P~)

2p2 2 ~

describing in classical terms a particle with two degrees of freedom in an anharmonic
potential. The equations of motion follow by applying the Euler derivative to the
Lagrangian:

PaulTrapEquations = Thread[B{r.p) [LPaul] == {O, O}];

PaulTrapEquations / / LTF

-SA2 + S -s --0
(S2+p2)3/2 c,c--

y' P P - P == 0
""""{)'- + (S2+p 2)3/2 L,c

This system of equations is the starting point of our examination in connection with
generalized symmetries. To detect the cases under which this second-order system of
equation is analytically solvable, we have to reveal the parameter combinations v and
A for which Noether's theorem is satisfied. We determine the integrals of motion by
applying the above theory to the equations of motion, The function Baecldund[]
serves as the main tool to derive the integrals of motion:

PaulJ:ntegrals = Baecklund[PaulTrapEquations, {~, p}, {1:},

{o<.<p[1:], o<.t~[1:]}, 1, {v, .A}, AnsatzPoly-+ {2, l}];

paulJ:ntegrals / /

TableForm[LieTraditionalForm[#]], TableHeadings ->
{Automatic, {"Ql.2 n , "Parameters", nJ:ntegral n }},

TableSpacing -> {l, l}] &:

Parameters
y-+y

A -+-2

456

4

5

6

7

8

Generalized Symmetries

h< y~y

p< A~2

h< y~y

p< A~A

pp< y~y

p h< - 2 h P< A ~-2
P P< y~y

P h< - 2 h P< A~2

_p2 h< + h P P< y~y

h P h< - h2 P< A~l

The result contains eight cases for which Baecldund[] found integrals. The
assumption of the calculation was that the characteristics are polynomials in the
dependent variables and their derivatives.

Among the obtained integrals are the total energy of the Paul trap, the angular
momentum and its generalization, and integrals which are related to the Runge-Lenz
vector. In all cases for which generalized symmetries are known, we find that the two
ions are confined to a two-dimensional surface in phase space. These two integrals
are the total energy plus a second constant of motion. The existence of two integrals
in a phase space with two dimensions of freedom is sufficient to determine a regular
motion and are thus integrable (cf. Tabor [1989]).

The integrability of the equation of motion is, in fact, closely related to the ratios of
the two secular frequencies wp and W z • We find that integrals exist for equal
frequencies (;t = ± 1) and that the axial frequency is twice as large as the radial
frequency (;t = ±2), independent of the value of v. We note that the case with A = ±2
is related to the Runge-Lenz vector known from Kepler's problem in classical
mechanics.

So far, we illustrated the application of Baecklund[] for different types of differential
equations. We demonstrated that the function is capable of finding the generalized
symmetries of PDEs. In the case of second-order ODEs the generalized symmetries
are beneficial, in connection with Noether's theorem, for constructing solutions at
least in implicit form. The existence of a sufficient number of integrals of motion
excludes the occurrence of chaotic motion.

10

Solution of Coupled Linear Partial
Differential Equations

10.1. Introduction

In this chapter, we discuss the main steps for solving systems of coupled linear partial
differential equations (PDEs). Such linear PDEs are the result of the invariance
conditions discussed in Chapter 5 on point symmetries, in Chapter 7 on potential
symmetries, in Chapter 8 on approximate symmetries, and in Chapter 9 on
generalized symmetries. Especially for these types· of symmetries, the following
procedures are very successful. The main topic here is the automatic derivation of
solutions. This self-governed method is the basis for an efficient calculation of
symmetries by computer algebra programs.

The ideas behind this automatic procedure goes back to works of Riquier [1910] and
Janet [1920]. Their basic ideas for solving differential equations are extended by a
few heuristics. The incorporation of heuristics into solution procedures simplifies the
task, as Kamke [1977] and Schwarz [1992] remark. However, the use of heuristic
solution steps by itself are not sufficient to succeed. The combination of a regular
procedure and heuristics establish a method which is successful for a very large
number of linear PDEs. Our experience is that the combination of a differential
Groebner technique with heuristic steps is very successful in solving linear PDEs.

458 Solution of Coupled Linear Partial Differential Equations

The central steps for finding solutions of a linear overdetermined system of PDEs
consists of the following:

1. The decoupling of the equations by a completion algorithm.

2. The integration of simple equations.

3. The simplification of the equations.

These three steps are essential in the solution procedure. Since the PDEs are, in
general, coupled in a non-trivial form, it is recommended to disconnect the equations.
This disjoining of differential equations results into a general canonical form. The
term general canonical form was introduced by Janet and Riquier at the beginning of
the 20th century. These authors developed a procedure to create an equivalent and
simplified representation of a given system of PDEs. Thus, our discussion is not only
restricted to heuristic solution steps for PDEs but also includes a step of
standardization.

To keep the integration procedure for PDEs as simple as possible, we first calculate
the general canonical form to find a simpler representation of the equations. The first
section of this chapter discusses the theory of the general canonical algorithm due to
Janet and Riquier. The second section describes the heuristic integration steps to
solve the simplified equations.

10.2. General Canonical Fonn of PDEs

In this section, we will describe a method originally given by Riquier and Janet
which they called forme canonique generaie (general canonical form) and later
discussed by Thomas [1929, 1934] in the investigation of coupled differential
equations. The present implementation in Mathematica uses a Groebner basis
algorithm originally designed to solve polynomial equations of higher order
(Buchberger [1985]) adapted and generalized for differential equations. The aim of
our Groebner algorithm for differential equations is to transform a given system of
equations to an equivalent decoupled representation. Before we describe our
procedure to derive a general canonical form, let us define what we understand by a
canonical form.

Definition: Canonical form

A general canonical form of a system of partial differential equations is a simplified
form of a system in such a representation that all Schwarzian integrability conditions
are satisfied. It is essential that the solution manifold under such a transformation is
conserved. 0

General Canonical Form of PDEs 459

This verbal definition states the essential property of a general canonical form
simplifying the original equations but does not clarify how such a representation of
equations can be calculated.

In practical applications, it is necessary to have a constructive definition available.
However, the above definition does not explain how a general canonical form may be
calculated and thus gives room for several algorithms. In fact, there exist several
more or less different procedures in the literature approaching the definition of a
general canonical form (cf. Schwarz [1985], Reid [1993], Mansfield [1992],
Carra-Ferro [1993]).

In the following, we will discuss five steps which are sufficient to calculate a general
canonical form. One of these basic steps uses the knowledge that all equations
involved can be solved for a certain derivative which is called the leading derivative,
meaning that a leading derivative can be identified which may depend on other
independent derivatives. We further assume that the derivatives are unique.
Uniqueness of the derivatives suggests that independent derivatives cannot be
represented by other derivatives in the system. Again, we realize that derivatives are
the basic tools of our calculations.

After these preliminaries, let us state the five sufficient properties of a general
canonical form:

1. All equations are solved in such a way that the leading derivatives occur only on
the left-hand side of the equations.

2. In a canonical representation of equations, it is impossible that the same
derivatives occur on the left-hand side and on the right-hand side of the equation.

3. All derivatives of the left-hand side of the equations are disjunct.

4. There exists no derivative which is a non-trivial derivative of any derivative
occurring on the left-hand side of the equations.

5. All the Schwarzian integrability conditions are satisfied.

The condition that a leading derivative exists will require that we have an appropriate
measure for detecting it as a leading derivative. An appropriate tool for this decision
is the order of a differential expression. All of the remaining four steps are based on
the ordering idea of derivatives. There are many ordering schemes suited; all have
various advantages for different purposes. For example, a lexicographic ordering
yields elimination ideals, while a total degree ordering is used to obtain the
integrability conditions. The total degree ordering is useful in getting the initial data

460 Solution of Coupled Linear Partial Differential Equations

for convergent formal power series solutions. In general, the ordering scheme used,
denoted here by ordO, can be chosen arbitrarily. However, the essential point is that
we are consistent in its application. Following Janet, this means that an arbitrary
differential operator a has to satisfy the following:

(i) ord(a u) > ord(u),

(ii) ord(ul) > ord(u2) --+ ord(a ul) > ord(a u2).

These two rules summarize the idea that the order of a differential equation is always
greater than the order of an ordinary function and that the lexicographic ordering has
a direct consequence on the ordering of derivatives. In our algorithm, we realized
these concept by an ordering scheme which satisfies the following properties:

(a) Total ordering of the derivatives

ord (un > ord (u~) if#J>#K

where # J denotes the number of J.

(b) Lexicographic ordering of the derivatives

ord (ax ua) > ord (ax , , ua) if i > j.

(c) Lexicographic ordering of function names

ord (ua) > ord (uP) if a >/3.

We note that the ordering scheme used has an influence on the representation of the
equations. However, it does not change the solution manifold of the equations.
Calculating the general canonical form of a given system of equations, we only
operate on equivalence relations. This guarantees that the solution manifold is not
changed.

The first step in calculating a general canonical form is thus the solution of the
equations with respect to the highest derivative. The solution is used to eliminate all
occurrences of the highest derivatives in the remaining equations. Thus, the
procedure is based on identifying an equation containing the highest derivative. The
remaining equations can then be treated by the above ordering scheme. It is also
crucial to insert the solution for the highest derivatives into the remaining equations.
If we carry out the steps accurately, we can satisfy conditions 1, 2, and 3 of the
canonical algorithm.

General Canonical Form of PDEs 461

If we have solved all equations for the highest derivatives, we next implicitly
substitute the derivatives; i.e., we replace all non-trivial derivatives by the derivatives
of the corresponding terms. At this point, it may happen that not all derivatives of the
left-hand side are different from each other. If this happens, we have to go back to the
first step of our algorithm and repeat the calculation again. The whole procedure is
repeated as long a conditions 1 to 4 are satisfied.

If we can satisfy the first four steps of the general canonical form algorithm, we can
proceed to calculate the integrability conditions for the complete system. The
integrability conditions serve to terminate the algorithm. If we cannot find new
integrability conditions, we say that the original system of PDEs is, in general, a
canonical form.

The explicit calculation of the integrability conditions works in the following way.
We differentiate two of the equations containing different derivatives of the same
function on the left-hand side. If we do the differentiation on both sides in an
appropriate way, we create two identical expressions on the left-hand side.
Subtraction of the two equations results in a new integrability condition. If we find
such a relation, we start again with step 1 of the general canonical algorithm. The last
step to find the integrability condition can be mathematically formulated as

(10.1)

(10.2)

where L = max(J, K) and

o = u~ - u~ = GL- J - HL - K • (10.3)

Using this procedure, we are able to simplify all types of partial differential
equations, both linear and non-linear. In practical situations, especially for non-linear
PDEs, there is a little restriction for the termination of the algorithm. This restriction
is connected with the unique solution of the non-linear equation. For example, we all
know, as does Mathematica, that the general solution of a quadratic polynomial
consists of two solutions. Thus, the program has to know what branch of solution it
should take next. In a general case, we have to deal with more complicated solution
branches than just a bifurcation. So, if we are unable to uniquely handle the set of
solutions for non-linear equations in the highest derivative, we cannot derive a
general canonical form of the original equations.Thus, the algorithm for calculating
the general canonical form bifurcates to an interactive version if a set of solutions for
the highest derivatives exists. So, the occurrence of more than one solution will force
us to examine different representations of the canonical form.

462 Solution of Coupled Linear Partial Differential Equations

10.2.1 Application of the General Canonical Fonn Algorithm

The following examples demonstrate the application of the general canonical form
algorithm. As a fIrst step, we recall how the original Groebner basis algorithm for
polynomials works and how this algorithm can be used to solve PDEs. Groebner
bases appear in many modern algebraic algorithms and applications. In Mathematica,
the function GroebnerBasis[] takes a set of polynomials and reduces this set to a
canonical form from which many properties can be deduced. An important feature is
that the set of polynomials obtained always has exactly the same collection of
common roots as the original set. Thus, a Groebner basis is useful if one is interested
in the solution of a system of polynomials. The solutions, if they exist, are the
invariants of the representations. Groebner bases were first introduced in the
mid-1960s by Hironaka (who called them "standard bases") and, independently, later
by Buchberger in his Ph.D. thesis. The name Groebner bases was coined by
Buchberger to honor his thesis adviser W. Groebner. The Groebner basis
representation has the merit that it is much easier to solve than the original set of
polynomials. We can demonstrate this behavior by the following example:

polyl = x' y + y + 4

4 + y + x 2 y

poly2 = xy' + 1

The Groebner basis of this set of polynomials is determined in Mathematica by

gpoly = GroebnerBasis [{polyl, poly2}, {x, y} 1

The result shows that the second-order set of polynomials can be represented by a
fourth-order polynomial in y and a linear relation in x. The solution of these two
polynomials are

Solve[Thread[gpoly== {O, O}], {x, y}] lIN

{{X-4-2.23012, Y-4-0.669632L {x-4-0.0629971, Y-4-3.98419},

{x -4 1.14656 - 2 .409 I, Y -4 0 . 32691 - 0 . 51764 I} ,

{x -4 1.14656 + 2.409 I, Y -4 0 . 32691 + 0 . 51764 I} }

General Canonical Form of PDEs 463

According to the fourth order of the first polynomial, we find two real distinct
solutions and two solutions which are complex conjugate to each other. The direct
solution of the coupled system delivers the same result:

SoJ.ve[{poJ.yl == 0, poJ.y2 == O}, {x, y}] II iii"

{{X-7-2.23012, Y-7-0.669632}, {X-7-0.0629971, Y-7-3.98419},

{X-71.14656-2.409I, Y-70.32691-0.51764I},

{x -7 1. 14656 + 2 .409 I, Y -7 0.32691 + 0 . 51764 I} }

Another example, which at first glance, is very similar to the example examined
above starts from the two polynomials

poJ.yl = x A 2 y + y +,

poJ.y2 = xyA2

The Groebner basis of the polynomials is given by

gbasis = GroebnerBasis [{polyl, poJ.y2}, {x, y}]

{4+y,x}

The solution of these polynomials follow by solving the basis

SoJ.ve[Thread[gbasis == {O, O}], {x, y}]

{{X-70, y-7-4}}

The direct solution of the set of equations yields

Solve [{polyl == 0, poJ.y2 == O}, {x, y}]

{ {y -7 - 4, X -7 O} }

the same result. To understand what goes on behind the function GroebnerBasis[], we
repeat the calculation for the last example a second time by hand.

The Groebner basis technique to solve sets of polynomials works manually as
follows. The present equation polyl and poly2 are decoupled by multiplying the
polynomials with appropriate variables and adding the result to another polynomial.
The starting equations are

464 Solution of Coupled Linear Partial Differential Equations

2 x 2 y + y + 4 = 0,

xl =0.

(lOA)

(l0.5)

Our aim is to separate both equations. We first mUltiply the first equation by the
factor -y and the second by the factor 2 x. After the multiplication, we add the results
and find

2 i y + y + 4 = 0,

xl = 0,

l + 4 Y = 0 -----t i = -4 y;

(10.6)

(l0.7)

(10.8)

substituting the result of (l0.8) into equation (l0.7) and eliminating the factor 4 by
division, we get

2 x2 Y + y + 4 = 0,

xy = 0,

l + 4y = O.

(l0.9)

(10.10)

(10.11)

If we use equation (l0.1O) in equation (l0.9), we obtain a relation which allows us to
detennine the solution for y:

y + 4 = 0 -----t y = -4,

xy = 0,

l + 4y = O.

(10.12)

(10.13)

(10.14)

The result from equation (10.12) can be used in the remaining two equations, (10.13)
and (10.14), satisfying the third equation identically and delivering the second
solution for x = O. Thus, we get the complete solution of the original set of
polynomials to be

y = -4,

x = O.

(10.15)

(10.16)

We easily can check that this is the complete solution. Using equation (10.13), we
observe that either x or y has to vanish. Setting, in a first attempt, y = 0, we observe a
contradiction in the first equation, i.e., 4 = O. The other choice, x = 0, will result in
the same result derived by the manipulations of the equations. The method of
manipulating the set of polynomials is identical to the algorithm used in the
calculation of the Groebner basis. A detailed description of the Groebner algorithmic
procedure is given by Buchberger [1985].

General Canonical Form of PDEs 465

Our aim is to use the Groebner basis technique to solve partial differential equations
transformed to a canonical form. The fIrst step for handling this problem is to
decouple the system of partial differential equations. Using the Buchberger algorithm
to solve this problem, we need a scheme to translate the operations from a differential
representation to a polynomial representation. The rule to convert differential terms
to polynomials goes as follows: Use the differentiation order and the variable to
represent the related polynomial. Reading this transformation in reverse, we are able
to transform a polynomial into a differential equation. To demonstrate this
transformation, let us consider the example of polynomials examined in the previous
example. We also have to introduce a function F depending on the two independent
variables x and y. The differential analogue of equations (1004) and (10.5) read

2 axxy F(x, y) + a y F(x, y) + 4 F(x, y) = 0,

axyy F(x, y) = O.

(10.17)

(10.18)

The question now is: How can we benefIt from the Buchberger method of solving
polynomials in simplifying this formally equivalent system of PDEs?

The answer of this question is that we have to use the same algorithm as for
polynomials but now with the interpretation of our transformation rule that the
variables x and yare replaced by partial derivatives. Using this interpretation, we are
able to decouple the above system of PDEs. The following calculation will
demonstrate this. First we apply to equation (10.17) the partial derivative with respect
to y (ay)' In a second step, we apply the operator -2ax to equation (10.18). Adding
the results, we fInd three relations

2 axxy F(x, y) + By F(x, y) + 4 F(x, y) = 0,

Bxyy F(x, y) = 0,

Byy F(x, y) + 4 By F(x, y) = o.

The last equation provides

--+ Byy F(x, y) = -4By F(x, y).

Substituting the result (10.22) into equation (10.20) the PDEs become

2 axxy F(x, y) + By F(x, y) + 4 F(x, y) = 0,

Bxy F(x, y) = 0,

a yy F(x, y) + 4 By F(x, y) = o.

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)

(10.25)

466 Solution of Coupled Linear Partial Differential Equations

Using relation (10.24) of this system, we are able to write (10.23) as

By F(x, y) + 4 F(x, y) = 0 ~ By F(x, y) = -4 F(x, y),

Bxy F(x, y) = 0,

Byy F(x, y) + 4 By F(x, y) = O.

(10.26)

(10.27)

(10.28)

The result from relation (10.26) can be used to satisfy equation (10.28). Substituting
expression (10.26) into equation (10.27), we automatically decouple the
differentiations. At the end, we get a decoupled system of POEs which is equivalent
to the original system (10.17) and (10.18):

By F(x, y) = -4 F(x, y),

Bx F(x, y) = o.

The solution of this simplified system of equations is

F(y) = Fa e-4 y .

(10.29)

(10.30)

(10.31)

It is a simple task to verify that the original equations are also satisfied by this
solution. Thus, we conclude that the canonical representation of the POEs allows us
to derive the solution by a simple integration. In fact, the solution also satisfies the
original equation. All these steps carried out so far by hand can be handled by
Mathematica. To show how this calculation works, we will first define the
transformation of polynomials in two variables to a differential representation. The
transformation rule given is a very simple version of transformations for the products
of two variables and for the variables itself. If the polynomial contains numeric
factors, they will be transformed to the dependent function. We note that the given
rules are only usable for handling our special problem but are not designed to allow
general transformations. The simple transformation to a differential representation
has the form

toDifferentia18 = {x"n_o y"DLo -> Derivative[n. m] [1'] [x. y].

y -> Derivative [0. 1] [1'] [x. y].

x -> Derivative [1. 0] [1'] [x. y].

a_I; HumberQ[a] -> al'[x. y]}

{xn_. y"'-' ~ F(n.m) [x, y] , y ~ F(O,l) [x, y], x ~ F(l.O) [x, y],

a_ /; NumberQ [a] ~ a F [x, y] }

The application of this transformation rule to the two polynomials poly1 and poly2
gives us the representation of the linear second-order POEs:

General Canonical Form of PDEs 467

pdel = polyl I. toDifferentials

4 F [x, y] + F(O,l) [x, y] + F(2,1) [x, y]

pde2 = poly2 I. toDifferentials

F(1,2) [x, y]

The more interesting case in connection with our aim to solve PDEs is the case
considering the inverse transformation from a differential representation to a
polynomial one. A simple version for this reduction to a polynomial can be defined
as follows:

backToPolynomials = {b_. Derivative[DI.....-..-] [1'] [x_] :>
bApply[Times, {x}" {ill}],

1'[_] -> 1}

{b_. F(m_) [x __] :-->bTimes@@{x}(m}, F[__] --71}

We note that the given transformation rule is sufficient to handle one dependent
variable only. The application of our transformation gives us

poll = pdel I. backToPolyuomials

po12 = pde2 I. backToPolYUOllLials

These two polynomials are just the polynomials from which we started. We know
that the Groebner basis algorithm allows us a simplified representation of this set by

gbas = GroebnerBasis [{poll, po12}, {x, y}]

{4+y,x}

Applying the transformation rule to a differential representation, we find a linear
first-order system for the function F:

pdegbasis = gbas I. toDifferentials

{4 F[x, y] + F(O,l) [x, y], F(l,O) [x, y]}

Now, using the capabilities of Mathematica to solve this system of first-order partial
differential equations, we end up with the solution. Rewriting the PDEs in a standard
form, we can use them in the function DSolve[]:

468 Solution of Coupled Linear Partial Differential Equations

pd.s = 'l'hread[pdegbasis == {O, O}];

pd.s / / Li.'l'radi tiouall'o:r:m / / 'l'abl.l'o:r:m

4 F + Fy == 0

Fx == 0

The solution of the fIrst equation shows that the y coordinate decays exponentially,
while the x coordinate is included in an arbitrary function denoted by C[l][x]:

sl = DSolve [pdes [[1]], I' [x, y], {x, y}]

{{F[x, y] --+ E- 4 y C[l] [xl}}

The solution of the second equation shows us that F is just a function of y:

s2 = DSolve [pd •• [[2]], I' [x, y], {x, y}]

{{F[x, y] --+C[l] [y]}}

Thus, the complete solution of this problem is given by sl if we set the arbitrary
function C[1][x] equal to a constant C[1]:

sol = .1 /. C[l] [x] -> C[l]

{{F[x, y]--+E-4Y C[1]}}

Knowing the solution, we are able to check whether the original equations pdel and
pde2 are satisfIed. To make this check as simple as possible, we convert the solution
of F to a pure function:

solution = F -> Function [{x, y}, F [x, y]] /. sol [[1, 1]]

F--+Function[{x, y}, E- 4 YC[1]]

Having this representation of the solution available, it is easy to verify that the
original PDEs are satisfIed. The only thing that remains is to replace the dependent
variable F by the solution:

{pd.l, pde2} /. solution

{O, O}

Both checks show that the derived solution, in fact, solves the original equations.

As discussed above in the interactive calculation, a general canonical form follows
from the application of a differential Groebner basis algorithm. The package MathLie
contains a function GeneralCanonicalForm[] supporting this kind of calculation. The

General Canonical Form of PDEs 469

function contains a generalization of the simple steps presented in the above
discussion. To demonstrate the automatic calculation of the general canonical form as
an example, let us recall the manipulations done by hand. All the following steps are

implemented in the function GeneralCanonicalForm[], allowing the derivation of a

canonical representation.

First, let us repeat the ordering for two functions gl = gl (x, y) and g2 = g2(x, y). The
ordering is defined by

The ordering used gives the highest derivative the highest priority in the calculation.
To see the consequences of the ordering, let us consider the simple system

o (10.33)

o (10.34)

where gl = gl (x, y) and e = g2 (x, y) are functions of the independent variables x

and y, respectively. Applying the general canonical form algorithm, we first have to
solve the equations with respect to the leading derivative which results to

(10.35)

Substituting this result into the second equation gives us

o = (g;)2 + 2g2 (_g~ + g2) _ (e)2, (10.36)

o = (g; _g2)2. (10.37)

The result of these manipulations is that g~ = e. Going back to our second equation

of the original system and solving this equation with respect to the leading derivative
g;, we find

1 2
I 2 (g)y ~2 ~2

~xl -- ~ ~ ~ 0
~. "2 ~ - 2 g2 ="2 - "2 = . (10.38)

To derive this result, we used the relation g~ = e. At this stage of our calculation, we

know two relations connecting gl and g2 by

(10.39)

(10040)

470 Solution of Coupled Linear Partial Differential Equations

Since these two equations are represented by two differential equations with unique
derivatives on the left-hand side, we do not need to use an implicit substitution step.
Thus, we can skip step 3 and go to step 4 of the algorithm and calculate the
integrability condition by

&1 &1 2 o = ~xy - ~xy = 5x . (10.41)

Since the Schwarzian integrability conditions are necessary conditions for deriving
the general canonical form, we have to assume that the resulting relation for 52 is an
additional equation determining the solutions for 51 and e. Thus, we have to add
relation (10.41) to equations (10.39) and (10.40). The complete general canonical
form thus reads

5~ = 0, (10.42)

0, (10.43)

and

(10.44)

To check the function GeneralCanonicalForm[], we examine the same equations as
above. The function GeneralCanonicalFonn[] calculates the related general canonical

form for equations expressed in the dependent variables xi[/l and phi[i]. The field
functions xi[i] and phi[i] can depend on any number of independent variables. The
function GeneralCanonicalFonn[] possesses two options allowing us to control the

printing on the screen. With the option TraceStep~True, gives information on the

steps carried out by the function. The option WamingSS~True we get information on
factors eliminated during the calculation. The on-line help text informs us about the
capabilities of the function:

?GeneralC&DonicalPo~

GeneralCanonicalForm[equations_Listj calculates the
general canonical form for a given list of coupled
partial differential equations.

Our example above needs the following input:

GeneralCanonicalPozm[{ax xi[l] [x, y] + a y xi[l] [x, y] -

xi [2] [x, y],

(ayxi [1] [x, y]) 2 + 2 xi [2] [x, y] ax xi [1] [x, y] -

xi [2] [x, y] 2}, 'l'raceStep -> 'l'rue] II
'l'ablePozm[Lie'l'raditionalPorm[JIap[1 == O&:, I]]]&:

Solution of Linear PDEs 471

C-l explicit substitutions of leading derivatives

C-2 implicit substitutions of leading derivatives

C-3 determining minimal integrability conditions

C-l explicit

C-2 implicit

-?2 + (?d y == 0

(?d x == 0

(?2)x==O

substitutions

substitutions

of leading derivatives

of leading derivatives

The derived canonical system is the same as above and contains all the solutions of
the original equations. We can show the equivalence of the solution manifold by
solving the general canonical form representation. The use of the solution in the
original equations shows us the equivalence of both representations. The first and last
equations of the canonical form imply that

(10.45)

and

(10.46)

This result shows that the dependent functions are only functions of y. Knowing this
fact, we are able to satisfy both original equations if we take into account the second
relation of our canonical representation of the equations.

10.3. Solution of Linear PDEs

In this section, we discuss heuristic procedures to integrate simple differential
equations. The term simple equations means that we are interested in equations
containing, for example, only one element so-called monomials, or ordinary
differential equations, and exact PDEs. Applying one of the integration steps
successfully to such equations, we will find an explicit solution or at least some
functional dependencies of the solution. Consequently, we can use this information to
transform or simplify some or all of the equations. We will discuss heuristic
procedures like the integration of monomials, the solution of ODEs and
pseudo-ODEs, the determination of integrating factors for exact PDEs, and the
derivation of a potential representation for some types of PDE. Solving equations is
intriguingly connected with the simplification of the intermediate results. Thus, we
will also discuss different steps of simplification.

472 Solution of Coupled Linear Partial Differential Equations

10.3.1 Integration of Monomials

The simplest type of equation which may appear in a system of POEs is a monomial
with the general representation

(10.47)

where i], ... in are integers denoting the order of differentiation with respect to the
independent variables x I, ... , Xn • Using the terminology of Riquier and Janet, we call
this type of equation a monomial. Integrating the monomial with respect to the
independent variable Xk, we obtain the general solution

n ik-l

f(x] , ... , xn) = 2::: L Cjk(XI, ••• , Xk-I' Xk+I, ••• , xn) x~
k=] j=O

(10.48)

with Cjk arbitrary functions of the independent variables Xi. Note that the functions
C jk do not depend on Xk. This result is useful if we try to simplify the remaining
equations of our system.

The simple integration of a monomial with respect to a variable Xk is a common
method used in pencil calculations and is widely discussed in the standard texts like
Kamke [1977] or Ince [1956]. In the following sections, we will describe other
procedures which are also effective in pencil as well as in computer-based
calculations.

Let us consider a simple example to illustrate the integration step discussed. Assume
f = f(x, y) is a sufficiently smooth function which satisfies the POE

8x f(x, y) = o. (10.49)

The solution of this equation follows by a partial integration with respect to the
independent variable x. In the integration step, we have to assume that y is
independent of x, which is trivial if we consider X and y as independent variables.
Assuming this, we can write down the solution for f as

f(x, y) = g(y) x + h(y), (10.50)

where g(y) and h(y) are arbitrary functions in y. These two functions are especially
independent of x. Integrating the POE (10.49), we introduced two arbitrary functions
depending only on the variables of the intersection of the independent variables and
the variable with respect the differentiation is carried out. This set-theoretic
interpretation is crucial when implementing this step in Mathematica.

Solution of Linear PDEs 473

10.3.2 Integrating ODEs and Pseudo-ODEs

Ordinary differential equations (ODEs) have a distinguished role in mathematics. We
know that for certain types of ODEs, there exists at least particular solutions. Since
Mathematica has implemented a large number of procedures solving ordinary
differential equations, we will use them for our purposes. Knowing a solution of an
ODE will help us to solve partial differential equations. Commonly, differential
equations with one independent variable are called ODEs. However, dealing with
PDEs, we can generalize the term ODE to pseudo-ODE. A pseudo-ODE is defined
by the following type of relation:

(10.51)

This kind of equation is called a pseudo-ODE because there only occur derivatives of
the field F with respect to one independent variable Xi' So the changes of the
function F are restricted on the single coordinate Xi. The other independent variables,
Xb act as parameters or pseudo-constants. Under this condition, it is obvious that
(10.51) behaves like an ODE. So we can treat equation (10.51) as an pseudo-ODE.
With this interpretation, we are able to solve (10.51) by taking into account that the
integration constants are functions of the independent variables except Xi' The notion
of a pseudo-ODE allows us to solve special types of PDEs occurring frequently in the
determining systems in symmetry analysis.

This procedure allows us to determine the explicit dependence of the function F on
the single variable Xi. Knowing this kind of solution, we are able to simplify some of
the remaining equations in the system of determining equations.

10.3.3 Integrating Exact PDEs

From the theory of ordinary differential equations, we know that a distinguished type
of equation is an exact ODE. This type of ODE allows us to write down the solution
if we know an integrating factor of the equation. In Chapter 4, we discussed the
generalization of the term-integrating factor. However, this factor follows from a
complete algorithmic procedure using only the ODE itself. The idea is to use the
results for ordinary differential equations again to solve some types of partial
differential equation.

In case of PDEs, we call a differential equation 11 = 0 exact if we are able to write the
differential expression 11 as a total derivative of an integral I with respect to a single
variable Xi. Consequently, we have

474 Solution o/Coupled Linear Partial Differential Equations

dI
(l0.52)

Integrating this relation automatically, we need a function calculating the integral I
of the right-hand side. If we know the integral I, we can replace the equation A = 0
by the relation I = const. It is important to note that we do not lose any information
by this replacement. However, using a procedure originally designed for ODEs, we
have to take into account that the integration constants are again not constants in the
original sense but depend on all independent variables occurring in A except Xi.

10.3.4 Potential Representation

Closely related to the integration of exact PDEs is the procedure to find a potential
representation of the original equations, as Wolf [1991] remarks. Let us discuss the
procedure by considering an equation of the form

(l0.53)

where /1 and 12 are functions of XI and X2. Relation (l0.53) can be integrated by
introducing a potential V = V(XI, X2) satisfying the properties

(l0.54)

The connection between the potential representation with V and the concept of an
exact PDE can be shown if we take into account that the left-hand side of our first
equation is exact with respect to XI and the right-hand side is exact with respect to
X2. This observation is the basis of the algorithmic calculation. Thus, we can use the
following six steps to check the existence of a potential representation. As the input
quantity, we use the differential expression A.

1. Integrate A with respect to XI and call the exact part of this result II .

2. Calculate the residue R by R = A - aXl II.

3. If R = 0, then A is exact and the procedure terminates.

Otherwise:

4. Determine 12 as the exact part of R with respect to X2.

5. Again, calculate the residue R = R - aX2 12 .

6. If R "* 0, then no potential exists. This also terminates the procedure.

The result of these steps are that II = aX2 V and 12 = -aXl V.

Simplification of Equations 475

This algorithm perfonns two steps. First, it checks whether a potential can be
introduced, and second, if it is possible to introduce a potential the necessary
conditions to represent the potential are calculated.

10.4. Simplification of Equations

This section discusses three procedures allowing the simplification of the
determining equations in connection with the integration steps discussed so far.

10.4.1 Direct Separation

We already know that the integration of monomials results into a pseudo-polynomial
representation of the solution. This pseudo-polynomial has the special property that
the expansion coefficients possess a dependence on a reduced set of independent
variables. The explicit occurrence of some of the independent variables in the
representation of the solution can be used to simplify the determining equations by a
direct separation of variables. Inserting the solution into the determining equations
allows us to separate some parts of the determining equations from each other.
Comparing the coefficients of the resulting polynomials allows us to derive a new,
simplified set of determining equations. These equations are actually simpler than
those from which we originally started. Suppose some parts of the determining
equations are of a polynomial type in the variable Xi. We can perfonn a separation by
setting the coefficients of the various powers of Xi equal to zero. Let us demonstrate
this procedure by the following example where Xi = z. Consider the equation:

(10.55)

This PDE can be considered as a polynomial in z with variable coefficients. The
extraction of the different coefficients of powers of z results in a new system of
determining equations given by

8 y f(x, y) = 0,

8x f(x,y)+8x g(x) = 0,

8x g(x)+y8;g(x) = o.

(10.56)

(10.57)

(10.58)

The last equation (10.58) of this system can again be considered as a polynomial in y.

The application of the same rules result into an additional separation of the equation.
Thus, we can maintain, in a second step, the last equation in two equations. The
resulting equations are

476 Solution 01 Coupled Linear Partial Differential Equations

a y I(x, y) = 0,

ax I(x, y) + ax g (x) = 0,

a;g(x) = o.

(10.59)

(10.60)

(10.61)

(10.62)

From this set of four equations it follows by applying the integration of monomials
that the solution can be represented by

g(x) = k, and I(x, y) = k2' (10.63)

where k, and k2 are constants of integration. This solution satisfies not only the final
four equations but also the original equation from which we started. At this point, it is
obvious that we can reduce the integration process of a partial differential equation to
a simple chain of steps involving the integration of monomials.

10.4.2 Indirect Separation

An essential requirement of a direct separation was the existence of terms containing
one independent variable in polynomial form. Generally, we cannot assume that such
case will occur. In the following we will discuss a more general situation in which
the independent variable only occurs in the argument of a function. If the other
involved functions do not depend on the same variable, it is possible to separate parts
of the equation. The separation is possible if we cross-differentiate the expressions.
This procedure allows an indirect separation of terms. Cross-differentiating splits up
the equation into independent parts. The separated parts depend only on a reduced set
of independent variables.

To demonstrate the method, let us examine the solutions of the first-order partial
differential equation

I(x, y) + ax g(x) = o. (10.64)

Differentiating this PDE with respect to the independent variable y, we find that I
has to satisfy the equation

a y I(x, y) = o. (10.65)

Since the term containing g does not depend on y, it simply vanishes. The
differentiation of the equation with respect to the conjugate variable to x allows a
separation. The original equation reduces to a single determining equation containing

Simplification of Equations 477

only f. However, the equation for f can be integrated with respect to y. The result
reads

f(x, y) = h(x) . (10.66)

This results shows thatfdoes not depend on y but only on x. Inserting the result into
the original equation (10.64), we get

h(x) + ax g(x) = O. (10.67)

This equation is an inhomogeneous ordinary differential equation of first order in g.

An integration with respect to x yields the solution

g(x) = - JX h(z) dz . (10.68)

The result of the indirect separation is a relation connecting f with g by an arbitrary
function h = h(x). If we know the function h, we also know g and f.

Although we derived simpler equations from an indirect separation, this method will
not contain as much information as the direct separation, meaning that we cannot
replace the original equations by the separated ones. However, we are able to use
parts of the equation or the separated equation itself in other equations. This again
will simplify the original equations but does not replace them.

10.4.3 Reducing the Number of Dependent Variables

The fact is that if we can uniquely solve an equation of the determining equations
with respect to an unknown function, this allows us to use this function as a
substitute. The substitution of this function permits an elimination of all occurrences
of this function in the rest of the system. If such a situation occurs, we can reduce the
number of unknown functions in the system by one. The elimination of unknown
functions by using infonnation from the equations involved is an important method
of simplifying systems of PDEs. Because the number of unknown functions increases
by each integration of monomials, one can imagine that after a few steps, we have a
huge number of unknown functions in the determining equations. Thus, it is
necessary to counterbalance the increase of unknown functions by an elimination
procedure. Since not all unknown functions are useful in the elimination of
dependencies, the unknown function has to satisfy several conditions. The following
list contains the main properties an unknown function has to satisfy for an
elimination.

478 Solution of Coupled Linear Partial Differential Equations

1. The function with respect to which the equation under consideration is solved
must depend on all variables which occur in the remaining set of equations.

2. The equation must be uniquely solvable with respect to the unknown function.

3. The equation solved does not contain derivatives of the unknown function.

The last condition is very important, because if the unknown function occurs in a
derivative, we cannot replace the unknown function itself in any expression of the
whole system of determining equations.

To demonstrate the elimination of unknown functions, let us consider the example

f(x, y) + ax g (x, y) + hex) = O. (10.69)

This equation is only solvable with respect to f(x, y). Neither g nor h satisfy the three
conditions from above. If we accidentally solve this equation [e.g., with respect to
hex)], we lose the information that f(x, y) + ax g(x, y) depends on y. On the other
hand, if we solve the equation with respect to ax g(x, y), we cannot replace all
expressions containing g(x, y) which occasionally may occur in other equations (not
shown here).

All methods so far discussed for simplifying and integrating partial differential
equations are implemented in our MathLie function PDESolve[]. To solve a given
system of the determining equations completely, it is necessary to repeat the
discussed methods several times in different orders as long as no further
simplifications are possible. To show how the function PDESolve[] can be used, let
us examine the determining equations of the Korteweg-de Vries equation. These
equations follow by

detEquationsKdV = DeterminingZquations[

{Btu[x, tj +u[x, tj Bxu[x, t] + Bx,x,xu[x, tj},

{u}, {x, t}, {Btu[x, t]}j;

detEquationsKdV II LTI'

(';d u == 0

(';2)u == 0

(h)u,u==O

(';2)x == 0

cJ>1 - (~dt -u (~dx +u (~2)t - (~dx,x,x +3 (cJ>dx,x.u == 0

(cJ>d t +u (cJ>d x + (cJ>dx,x.x == 0

- (~dx,x + (cJ>dx,u == 0

-3 (~dx + (~2)t == 0

Example 479

These eight equations are linear but coupled. Before we use the function PDESolve[],
let us look at the shorthand description of the function:

? PDBSolve

PDESolve[list of equations,dependent vars., indep.

vars., Options]

The related option of the function PDESolve[] are

Options [PDBSolve]

{Standard -4 False, WarningSS -4 False, TraceStep -4 True}

The application of this function to the determining equations of the Korteweg-de
Vries equation gives us the result

infinitesimalsKdV = PDBSolve [detBquationsKdV, {u} I {x, t}];

infinitesimalsKdV / / L'l'F

~1 == kl + k2 t + k4 x
3

~2 == k3 + k4 t

cJ>1 = = k2 _ 2 k4 u
3

remembering that the KdV equation allows a four-dimensional symmetry group.

10.5. Example

The algorithm to solve partial differential equations is designed to treat coupled
systems of determining equations. Such determining equations occur frequently in
symmetry analysis. The following example demonstrates the capabilities of the
function PDESolve[] in connection with a non-standard equation. The example
originates from quantum gravity theory and demonstrates the flexibility of the
algorithm in connection with special functions.

480 Solution of Coupled Linear Partial Differential Equations

10.5.1 Liouville-Type Equation of Quantum Gravity Theory

The first example is related to an equation occurring in quantum gravity theory
describing the evolution of the Killing vector. Boyer and Finley [1989] showed that
the Killing vector of a rotational symmetric space can be described by an equation of
the form

ax,x u(x, y, z) + ay,y u(x, y, z) + az,z eu(x,y,zl = o. (10.70)

This equation is of some importance in quantum gravity theory, dealing with a
special form of general relativity theory including quantum effects. The solution of
the Killing equation determines a Riemann metric which admits only vectors which
are invariant under rotations. A first solution of equation (10.70) was given by Drew
et al. [1989],

Applying Lie's symmetry method to this equation will give us a system of 16
determining equations:

detEqsLiouville = DetermdningEquations[
{ax,x u[x, y, z] + ay,yu[x, y, z] + a z ,. Exp[u[x, y, z]]},

{u}, {x, y, z}, {ax,x u[x, y, z]}];

detEqsLiouville II LTI'

(,;ll u == 0

(';2l u==0

(';3l u ==0

(tI>ll u,u == 0

(,;!l z == 0

(';2)z==0

(';3)y==0

(';3)x==0

- (';2) x, x - (';2) y, y + 2 (tI>l) y, u = = 0

- (,;!lx,x - (,;!ly,y + 2 (tI>dx,u == 0

(hlx,x + (tI>dy,y +Eu (tI>dz,z == 0

(,;ll y + (';2 lx == 0

tl>1 +2 (,;ll x -2 (';3)z + (tI>!lu == 0

tl>l +2 (,;ll x -2 (';3)z == 0

-(,;ll x + (';2)y ==0

2 (tI>ll z - (';3)z,z +2 (tI>dz,u == 0

Example 481

Using the notation of Mathematica, we denote the derivative with respect to the kth
argument by a superscript at the kth position. The solution of these equations follow
within a few seconds by applying the function PDESolve[] to these equations. The
result of this calculation is

infiniLiouvill. =

1

2

3

4

PDBSolve [detB~sLiouville, {u}, {x, y, z}] I infiniLiouville / /

TableForm[LieTr.ditionalForm[#], TableRe.dings-+

{{ "infinitesimals", ·det-e~.tions"}, Automatic},

TableDirections -> {Row, Column}] 80

infinitesimals det-equations

£1 ~ - (9'"'2)y (9'"'2) X,X + (9'"'2) Y,Y

£2 ~ - (9'"'2)x 9'"'3 + (9'"'2) X,X + (9'"'2)y,y

£3 ~ kl + k2 z 9'"', + (9'"'2) X,X + (9'"'2)y,y

cP1 ~ 2 (k2 + (9'"'2) X,y) -9'"'1 + (9'"'2) X,X,y + (9'"'2) y,y,y

The result of the calculation is a combination of a discrete and a continuous group.
The unknown function'F2 = free[2] of the continuous part has to satisfy the
two-dimensional Laplace equation

(10.71)

The point here is that this result is different from the result given by Drew et al. The
difference is not a marginal one. However, since a different result was derived by our
program, we had to check the results of Drew et al. with another program. We
substituted the result of Drew et al. into our determining equations and discovered
that their result do not solve our determining equations. On the other hand, our result
is a solution of the detennining equations derived by the function Infinitesimals[].
We also examined the validity of our determining equations by using a different
computer algebra program. Using the Maple program by Reid [1991], we could
check that our derived determining equations are correct and that our solution solves
the equations obtained from Reid's program.

The solution given by Drew et al. did not satisfy the determining equations derived
by Reid's program in general. Only for the special case with

jree[2][x, y] = const. (10.72)

482 Solution of Coupled Linear Partial Differential Equations

could the equations be satisfied. This choice of the unknown function was the main
case discussed by Drew et at. All these various checks proved that our result is
correct. Furthermore, we could show that there is no transformation which maps both
solutions into each other. The result given by Drew et al. has a completely different
structure of the infinitesimals 51,52' and ifJ1, but the expression for 53 is identical in
both results.

11

Appendix

A. Marius Sophus Lie: A Mathematician's Life

Born: Nordfjordeide, Norway, 17 December 1842
Died: Christiania (Oslo), Norway, 18 February 1899.

Sophus Lie: Derived from a painting by Erik Werenskiold (Engel and Heegaard Vol. 2 [1912]).

484 Appendix

Marius Sophus Lie, a Norwegian mathematician who made significant contributions
to the theories of algebraic invariants and differential equations, was the youngest of
six children of a Lutheran pastor, Johann Herman Lie. His mother came from a
well-known Trondheim family. Lie first attended school in Moss (Kristianiaford);
then, from 1857 to 1859, he attended Nissen's Private Latin School in Christiania. Lie
mastered the classes without any difficulties. He studied at Christiania University
from 1859 to 1865, mainly mathematics and sciences. During his studies at
Christiania, he had no preference for mathematics. Although mathematics was taught
by Bjerknes and Sylow, Lie was not very impressed. After his examination in 1865,
he gave private lessons, became somewhat interested in astronomy, and tried to learn
mechanics; but he could not decide what to do. Lie himself said that the road to
mathematics for him was long and difficult. The situation changed when, in 1868, he
hit upon Poncelet's and PlUcker's writings. Later, he called himself a student of
PlUcker, although he had never met him. Plucker's momentous idea to create new
geometries by choosing figures other than points-in fact, straight lines-as elements
of space pervaded all of Lie's work.

Lie's first publication brought him a scholarship for studying abroad. In 1869, Lie
went to Berlin, where he met Felix Klein, with whom he later cooperated in
publishing several papers. He spent the winter of 1869-1870 in Berlin where he met
Kummer and WeierstraB. In the summer of 1870, Lie and, later, Klein traveled to
Paris via G6ttingen to meet Darboux and Jordan. Jordan acquainted Lie and Klein
with the notion of a group introduced into algebra by Galois in 1832. In 1870, Lie
discovered contact transformations. Using these transformations, a one-to-one
correspondence could be established between lines and spheres in a way that tangent
spheres correspond to intersecting lines. He also became familiar with Monge's
theory of differential equations. At the outbreak of the Franco-Prussian war in July of
1870, Klein left Paris; Lie, a Norwegian, stayed. In August, he decided to hike to
Italy, but on his way he was arrested as a German spy near Fontainebleau. His
mathematical notes were suspected to be military secrets in code-a letter from Klein
seemed suspicious. After being locked in prison for a month, he was freed through
Darboux's intervention. Just before the Germans blockaded Paris, he escaped to Italy.
From there, he returned to Germany, where he again met Klein in Dusseldorf.

In 1871, he became an assistant tutor at the University of Cristiania (Oslo). In the
same year, he submitted for his doctor's degree a memoir in which he advanced the
theory of tangential transformations. During the period 1871-1872, he developed the
integration theory of partial differential equations, now found in many textbooks,
although rarely under his name. Appointed extraordinary professor on 1 July 1872,
he began his researches on continuous transformation groups in 1873. In 1874, Lie
married Anna Birch from Tvedestrand. They had two daughters and a son. The
marriage was very happy, and Lie was very fond of his family. In 1873, Lie turned
from the invariants of contact transformations to the principles of the theory of

Appendix 485

transformation groups. Together with Sylow, he assumed the editorship of Niels
Abel's work.

Lie was quite isolated in Christiania at that time. He had no students who were
interested in his research. He was disappointed that his works did not receive more
attention abroad. Except for Klein, Mayer, and later, Picard, nobody paid attention to
his work. Lie's results on the integration theory of partial differential equations were
found by Adolph Mayer at that time, with whom he had conducted a lively
correspondence. In a letter to Mayer he writes, "If I only knew how to get the
mathematicians interested in transformation groups and their applications to
differential equations. I am certain, absolutely certain in my case, that in the future
these theories will be recognized as fundamental. I want to form thus an impression
now, since for one thing, I could then achieve ten times as much." His main interest
turned to transformation groups, his most celebrated creation; although in 1876, he
returned to differential geometry. In the same year, he joined G.O. Sars and Worm
Muller in founding the Archiv for mathematik og naturvidenskab.

In 1884, Klein and Mayer induced Engel, who had just received his Ph.D., to visit
Lie in order to learn about transformation groups and to help him write a
comprehensive book on the subject. Engel stayed 9 months with Lie. Thanks to
Engel's activity, the work was accomplished, its three parts being published between
1888 and 1893. Engel and Lie developed a warm and lifelong friendship. Engel
helped Lie by giving his rather intuitive geometrical ideas a more precise
mathematical form. Lie often felt it a burden to prepare his ideas for publication.
After 9 years of collaboration with Engel, Lie published Theorie der
Transformationsgruppen, 3 vols. (1893). This work contains the results of his
investigations of the general theory of finite continuous groups of transformations. It
was followed by Geometrie der Beruhrungstransformationen (1896).

In 1886, he succeeded Klein on the chair of mathematics at the University of Leipzig,
with Engel as his assistant. At Leipzig, he found interested students, among them
Scheffers, Zorawski, and Kowalewski. With Scheffers, Lie published textbooks on
transformation groups and on differential equations, and a fragmentary geometry of
contact transformations. Afterward, his student Kowalewski, wrote many books
about Lie's work. At this time, it was quite unusual for young French mathematicians
to go to Germany for studying. But the Ecole Normale Superieure in Paris sent some
of their best students to Lie; and he was very proud of this. Lie did not plan to stay in
Leipzig forever; he had in mind a period of 6 to 8 years. So he did not resign from his
professorship in Christiania, but was granted an extraordinary leave of absence. Life
in Leipzig was not that easy for Lie. His teaching duties were much heavier than at
home, the language caused him some problems, and he became tired of supervising
weak and dependent graduate students. As time passed, he also ran into trouble with

486 Appendix

some of his colleagues. In the last years of his life, Lie turned to foundations of
geometry, which at that time meant the Helmholtz space problem.

In 1898, he returned to Cristiania to accept a special chair of mathematics created for
him, but his health was already broken. Lie, who was described as on open-hearted
man of gigantic stature and excellent physical health, was struck by what was then
called neurasthenia. This was the result of his rushing work and the overload of
mental action. Treatment in a mental hospital led to his recovery, and in 1890, he
could resume his work. His character, however, had changed greatly. He became
increasingly sensitive, irascible, suspicious, and misanthropic, despite the many
tokens of recognition that were heaped upon him. He died of pernicious anemia in
February 1899. His papers were edited, with excellent annotations, by Engel and
Heegaard.

An analysis of Lie's work is given in the Bibliotheca Mathematica (1900). His
collected works are contained in Gesammelte Abhandlungen, 7 vo1s (1922-37). Two
other standard works are his Differentialgleichungen (1891) and Vorlesungen aber
continuierliche Gruppen (1893).

In 1890, Lie himself wrote on his work in a letter to his friend Motzfe1dt, " ... my life'
s work will stand through all times and, in the years to come, be more and more
appreciated-no doubt about it." It seems he was absolutely right!

Appendix 487

B. List of Key Symbols Used in Mathematica

This section summarizes some key symbols used in Mathematica. The compiled list
contains the main shortcuts for symbols used in the text.

Abbreviation

=

/;

:> or :-t

x_

/.
#or #1
(#)&

**

Function description

assignment

used in equations

equality testing

function definition
lhs := rhs assigns rhs to be the delayed
value of lhs .
conditional (provided that)

rule assignment

delayed rule assignment

pattern matching to free variable x

sequence of symbols named x

sequence of zero or more expressions
named x

under the rule ReplaceAll

slot in a pure function

pure function definition

non-commutative multiply

488 Appendix

C. Installing M athLie

The following instructions serve to install MathLie a program based on the fonner
program Lie by G. Baumann [1992].

C.l Windows 95

C.l.l Manual Installation

1. Create the directory "AddOns\Applications\MathLie" at that location where your
Mathematica files are located. You'll get the location by

$TopDirectory

C:\PROGRAMME\WOLFRAM RESEARCH\MATHEMATICA\3.0\

2. Copy all the files and directories on CD in the directory MathLie into the directory
"AddOns\Applications\ MathLie."

3. Go to the Help menu and select "Rebuild Help Index."

4. MathLie uses the global variable $MathLiePath to locate different files. Set this
variable to the path where you have located the files.

$MathLiePath = $TopDirectory<>n/AddOns/Applications/MathLie/ n

C:\PROGRAMME\WOLFRAM RESEARCH\MATHEMATICA\3.0/AddOns/

Applications/MathLie/

5. Add to the variable $Path in the init.m file the location of MathLie.
AppendTo[$Path,$MathLiePath"]

AppendTo[$Path, $MathLiePath]

You are now ready to use MathLie and view the Help information.

C.l.2 Automatic Installation

The following lines install the package and the documentation of MathLie. The files
are located in the AddOns application directories.

Clear [l:nstall]
:Install [] : = Block [{locationl, source},

locationl = $TopDirectory<> n /AddOns/Applications/MathLie n ;

source = :Input[

Appendix 489

-Where is the CD located? Use a string as input value;
eg. d:/MathLie .R];

CreateDirectory[locatianl];
CopyDirectory [source, locationl];
Print[RZnstallation successfully

tez:minated-]];
Znstall[]

Installation successfully terminated

Go to the Help menu and select "Rebuild Help Index."

MathLie uses the global variable $MathLiePath to locate different files. Set this
variable to the path where you have located the files.

$MathLiePath =
$To,pDirectory<>n/AddOns/Applications/MathLie/ n ;

Add to the variable $Path in the file init.m the location of MathLie.
AppendTo[$Path,$TopDirectory<>"IAddOns/ApplicationsIMathLie"]

AppendTo[$Path, $MathLiePath]

You are now ready to use MathLie and view the Help information.

C.2 Mac

C.2.] Manual Installation

1. Create the directory "AddOns\Applications\MathLie" at that location where your
Mathematica files are located. You'll get the location by

$To,pDirectory

C:\PROGRAMME\WOLFRAM RESEARCH\MATHEMATICA\3.0\

2. Copy all the files and directories on disk/CD in the directory MathLie into the
directory "AddOns\Applications\ MathLie."

3. Go to the Help menu and select "Rebuild Help Index."

4. MathLie uses the global variable $MathLiePath to locate different files. Set this
variable to the path where you have located the files.

490 Appendix

$HathLiePath = $TopDirectory<>n/AddOns/Applications/HathLie/ D

C:\PROGRAMME\WOLFRAM RESEARCH\MATHEMATICA\3.0/AddOns/

Applications/MathLie/

5. Add to the variable $Path in the init.m file the location of MathLie.
AppendTo[$Path,$MathLiePath "]

AppendTo[$Path, $HathLiePath]

You are now ready to use MathLie and view the Help information.

C.2.2 Automatic Installation

The following lines install the package and the documentation of MathLie. The files
are located in the AddOns application directories.

Clear [l:nstall]
Install [] : = Block [{locationl, source},

locationl = $TopDirectory<> n /AddOns/Applications/HathLie";

source = Input[

DWhere is the CD located? Use a string as input value;

ego d:/HathLie .n];

CreateDirectory[locationl];

CopyDirectory[source,licationl];

Print["Installation successfully

terminated"]] ;
Install []

Installation successfully terminated

Go to the Help menu and select "Rebuild Help Index."

MathLie uses the global variable $MathLiePath to locate different files. Set this
variable to the path where you have located the files.

$HathLiePath =
$TopDirectory<>n/AddOns/Applications/HathLie/ D;

Add to the variable $Path in the file init.m the location of MathLie.
AppendTo[$Path,$TopDirectory<>"1 AddOnsl Applications/MathLie"]

AppendTo [$path, $HathLiePath]

You are now ready to use MathLie and view the Help information.

Appendix 491

C.3 UNIX

C.3.] Manual Installation

1. Create the directory "MathLie" in your $HOME/.Mathematical3.0/AddOnsl
Applications directory. You'll get the location of your home directory by

$HomeDirectory

/users / departl / gbaurnann

2. Copy all the files and directories on CD in the directory MathLie into the directory
"MathLie."

3. Go to the Help menu and select "Rebuild Help Index."

4. MathLie uses the global variable $MathLiePath to locate different files. Set this
variable to the path where you have located the files.

$MathLiePath = $HomeDirectory<>n/MatLie/ n

/users/departl/gbaurnann/MathLie/

5. Add to the variable SPath in the init.m file the location of MathLie.
AppendTo[$Path,$MathLiePath "]

AppendTo [$Path, $MathLiePath]

You are now ready to use MathLie and view the Help information.

C.3.2 Automatic Installation

The following lines install the package and the documentation of MathLie. The files
are located in the AddOns application directories.

Clear [:Install]

:tn.tall [] : = Block [{location1, source},

location1 = $HomeDirectory<>

n/.Mathematica/3.0/AddOns/Applications/MathLie n ;

source = :tnput [

nWhere is the CD located? Use a string as input value;

ego d:/MathLie .n];

CreateDirectory[location1];

CopyDirectory[source, location1];

Print[n:tnstallation successfully

terminatedn]] ;

:tnstall []

492 Appendix

Installation successfully terminated

Go to the Help menu and select "Rebuild Help Index."

MathLie uses the global variable $MathLiePath to locate different files. Set this
variable to the path where you have located the files.

$MathLiePath = $HameDirectory<>
n/.Mathematica/3.0/AddOns/Applications/MathLie n ;

Add to the variable $Path in the file init.m the location of MathLie.
AppendTo[$Path,$HomeDirectory<>"/.Mathematica/3.0/AddOns/Applications/
MathLie"]

AppendTo[$Path, $MathLiePath]

You are now ready to use MathLie and view the Help information.

References

A

B. Abraham-Schrauner and A. Guo, Hidden and nonlocal symmetries of nonlinear
differential equations, pp. 1-5, In: Modem Group Analysis: Advanced Analytical and
Computational Methods in Mathematical Physics, Eds: N.H. Ibragimov, M. Torrisi,
and A. Valenti, Kluwer, Dordrecht, 1993.

A.A. Alexeyev, Approximating pseudopotentials, scattering problems, and Backlund
transformations for the Korteweg-de Vries and modified Korteweg-de Vries
equations with perturbations, J. Phys. A: Math. Gen. 27, 865-881 (1994).

W.P. Ames, Nonlinear Ordinary Differential Equations in Transport Processes,
Academic Press, New York, 1968.

B

V.A. Baikov, R.K. Gazizov, and N.H. Ibragimov, Approximate symmetries, Math.
USSR Sbomik, 46, 427-441 (1989).

V.A. Baikov, R.K. Gazizov, and N.H. Ibragimov, Perturbation methods in group
analysis, J. Sov. Math. 55, 1450 (1991).

G. Baumann, Integrability and chaos for two copropagating pulses in optical fibers,
Phys. Lett. A156, 298-302 (1991).

494 References

G. Baumann, Lie Symmetries of Differential Equations, A Mathematica program to
determine Lie symmetries, Wolfram Research, Inc., Champaign, IL, Math-Source
0202-622 (1992).

G. Baumann, Mathematica in Theoretical Physics, Springer-VerlagffELOS, New
York,1996.

G. Baumann, Symmetry analysis of differential equations with Mathematica, Math.
Com put. Modelling 25, 25-37 (1997).

G. Baumann and T.F. Nonnenmacher, Regular and chaotic motions in ion traps: A
nonlinear analysis of trap equations, Phys. Rev. A 46, 2682-2692 (1992).

G. Baumann and T.F. Nonnenmacher, Lie transformations, similarity reduction, and
solutions for the nonlinear Madelung fluid equations with external potential, J. Math.
Phys. 28, 1250-1260 (1987).

G. Birkhoff, Hydrodynamics, Princeton University Press, Princeton 1950.

Ph. Blanchard and E. Bruning, Variational Methods in Mathematical Physics,
Springer-Verlag, Berlin, 1992.

H. Blasius, Grenzschichten in Fliissigkeiten mit kleiner Reibung, Z. Angew. Math.
Phys. 56,1-37 (1908).

G.W. BIuman, Potential symmetries and equivalent conservation laws, p. 71; In:
Modem Group Analysis: Advanced Analytical and Computational Methods in
Mathematical Physics, Eds: N.H. Ibragimov, Kluwer Academic Publishers,
Dordrecht, 1993.

G.W. BIuman, The Use of Factors to Discover Potential Systems or Linearizations,
preprint (1993).

G.W. BIuman and J.D. Cole, The general simlarity solution of the heat equation, J.
Math. Mech. 18, 1025-1042 (1969).

G.W. Bluman and J.D. Cole, Similarity Methods for Differential Equations,
Springer-Verlag, New York, 1974.

G.W. Bluman and S. Kumei, Symmetries and Differential Equations,
Springer-Verlag, New York, 1989.

G.W. BIuman and S. Kumei, Symmetry-based algorithms to relate partial differential
equations: I. Local symmetries, Eur. J. Appl. Math. 1, 189-216 (1990).

References 495

T. Bountis, H. Segur, and F. Vivaldi, Integrable Hamiltonian systems and the
Painleve property, Phys. Rev. A25, 1257-1264 (1982).

J. Boussinesq, Theorie des ondes te des remous qui se propagent Ie long d'un canal
rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des
vitesses sensiblement parielles de la surface au fond, J. Math. Pures Appl. 7, 55
(1872).

C.P. Boyer and J.D. Finley, Killing vectors in self-dual, Euclidian Einstein spaces, J.

Math. Phys. 23, 1126-1130 (1989).

B. Buchberger, Groebner bases: An algorithmic method in polynomial ideal theory,
In: Multidimensional Systems Theory, Ed: N.K. Bose, Reidel Publ., Dordrecht, pp.
184-232, 1985.

J.M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl.
Mech. 1, 171-199, 1948.

c
F. Calogero and A. Degasperis, Solution by the spectral transform method of a
nonlinear evolution equation including as a special case the cylindrical KdV
equation, Lett. Nuovo Cim. 23, 150-154 (1978).

F. Calogero and A. Degasperis, Reduction techniques for matrix nonlinear evolution
equations solvable by the spectral transform, J. Math. Phys. 22,23-31 (1981).

G. Carra-Ferro, Differential-algebraic and differential-geometric approach to the
study of involutive symbols, pp. 93-99, In: Modem Group Analysis: Advanced
Analytical and Computational Methods in Mathematical Physics, Eds.: N.H.
Thragimov, M. Torrisi, and A. Valenti, Kluwer, Dordrecht, 1993.

B. Champagne, W. Hereman, and P. Winternitz, The computer calculation of Lie
point symmetries of large systems of differential equations, Compo Phys. Comm. 66,
319-340 (1991).

W.L. Chan and K.S. Li, Non-propagating solitons of the non-isospectral and variable
coefficient modified KdVequation, J. Phys. A: Math. Gen. 27, 883-902 (1994).

G. Cicogna and D. Vitali, Classification of the extended symmetries of
Fokker-Planck equations, J. Phys. A: Math. Gen. 23, L85-L88 (1990).

P.A. Clarkson, New similarity solutions for the modified Boussinesq equation, J.
Phys. A: Math. Gen. 22,2355-2367 (1989).

496 References

P.A. Clarkson and M.D. Kruskal, New similarity solutions of the Boussinesq
equation, J. Math. Phys. 30,2201-2213 (1989).

P.A. Clarkson and E.L. Mansfield, Algorithms for the Non-classical Method of
Symmetry Reduction, SIAM J. Appl. Math. 54,1693-1719. (1994).

R. Courant and K.O. Friederichs, Supersonic Flow and Shock Waves, Interscience
Publisher, Inc., New York, 1948.

D.G. Crighton, Model equations of nonlinear acoustics. Rev Fluid Mech. 11, 11-23
(1979).

D

S. Das Sarma and P. Tamborenea, A new universality class for kinetic growth:
One-dimensional molecular-beam epitaxy, Phys. Rev. Lett. 66,325-328 (1991).

P.G. Drazin, Solitons, Cambridge University Press, Cambridge, 1983.

M.S. Drew, S.c. Kloster, and J.D. Gegenberg, Lie group analysis and similarity
solution for the equation Jx,x u(x, y, z) + Jy,y u(x, y, z) + Jz,z eU(x,y,z) = 0, Nonlinear

Anal. Theory Methods and Applic., 13,489-505 (1989).

E

J. Eggers, Universal pinching of 3D axisymmetric free-surface flow, Phys. Rev. Lett.
71,3458-3460 (1993).

J, Eggers, Tropfenbildung, Phys. Bl. 53,431--434 (1997).

F. Engel, Sophus Lie, Bibliotheca Mathematica 3, 166-204 (1900).

F. Engel and P. Heegaard, Sophus Lie Gesammelte Abhandlungen, B.G. Teubner,
Leipzig; H. Aschehoug & Co., Kristiania, 1912-1934.

F

V.M. Falkner and S.W. Skan, Solution of the boundary-layer equations, Phil. Mag.
12,865-896 (1931).

A.S. Fokas, A symmetry approach to exactly solvable evolution equations, J. Math.
Phys. 21, 1318-1325 (1980).

A.S. Fokas and B. Fuchssteiner, Backlund transformations for hereditary symmetries,
Nonlinear Theory Methods Applic., 5,423--432 (1981).

References 497

AS. Fokas, Symmetries and integrability, Studies Appl. Math., 77, 253-299 (1987).

P.C.W. Fung and C. Au, Bridge between the solutions and vacuum states of the
Korteweg-de Vries equation and that of the nonlinear equation
Yt + Yxxx - 6l Yx + 6 Ayx = 0, Phys. Rev. B 26,4035-4038 (1982).

G

F.J. Garcia and A Castellanos, One-dimensional model for slender axisymmetric
viscous liquid jets, Phys. Fluids 6, 2676-2689 (1994).

A Gray, Modem Differential Geometry of Curves and Surfaces, CRC Press, Boca
Raton, FL, 1993.

H

M. Henon and C. Heiles, The applicability of the third integral of motion: Some
numerical experiments, Astron. J. 69, 73-79 (1964).

W. Hereman, Review of symbolic software for the computation of Lie symmetries of
differential equations, Euromath. Bull., 2, 45-82 (1994).

W. Hereman, Symbolic software for Lie symmetry analysis pp. 367-413, Ed.: N.H.
Ibragimov, In: CRC Handbookof Lie Group Analysis of Differential Equations, Vol.
3: New Trends in Theoretical Developments and Computational Methods, CRC
Press, Boca Raton, FL, 1996.

R. Hirota and J. Satsuma, Soliton solutions of a coupled Korteweg de Vries equation,
Phys. Lett. 85,407-408 (1981).

P.E. Hydon, Conformal symmetries of first-order ordinary differential equations, 1.
Phys. A: Math. Gen. 27,385-392 (1994).

I

N.H. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel
Publ., Dortrecht, 1985.

N.H. Ibragimov, Sophus Lie and harmony in mathematical physics, on the 150th
anniversary of his birth, Math. Intel. 16,20-28 (1994).

N.H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations,
Vols. 1-3, CRC Press, Boca Raton, FL 1994, 1995, 1996.

498 References

E.L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1956.

J

M. Janet, Sur les systemes d'equation aux derivees partielles, J. Math. Pure Appl. 3,
65-151 (1920).

K

L.P. Kadanoff, Exact solutions of the Saffman-Taylor problem with surface tension,
Phys. Rev. Lett. 65,2986-2988 (1990).

E. Kamke, Differentialgleichungen, G.B. Teubner, Stuttgart, 1977.

V.I. Karpman and V.Yu. Belashov, Dynamics of two-dimensional solutions in
weakly dispersive media, Phys. Lett. 154, 131-139 (1991).

F. Klein, Uber die Differentialgesetze flir die Erhaltung von Impuls und Energie in
der Einsteinschen Gravitationstheorie, Nachr. Ges. Wiss. Gottingen Math. Phys. 2,
171-189 (1918).

K. Ko, and H.H. Kuehl, Korteweg-de Vries soliton in a slowly varying medium,
Phys. Rev. Lett. 40,233-236 (1978).

D.J. Korteweg, and G. de Vries, On the change of form of long waves advancing in a
rectangular channel, and on a new type of long stationary waves, Phil. Mag. 39, 442-
443 (1895).

G. Kowalewski, Einfohrung in die Theorie der Kontinuierlichen Gruppen,
Akadernische Verlagsgesellschaft M.B.H, Leipzig, 1931.

L

H. Lamb, Hydrodynamics, Dover Publications, New York, 1945.

L.D. Landau and E.M. Lifshitz, Mechanics, Butterworth-Heinemann, New York,
1981.

L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon, Oxford, 1987.

D. Levi and P. Wintemitz, Non-classical symmetry reduction: Example of the
Boussinesq equation, J. Phys. A: Math. Gen. 22,2915-2924 (1989).

S. Lie, Gesammelte Werke, Vols. 1-7, Eds.: F. Engel and P. Hergard, Teubner,
Leipzig, 1899.

References 499

S. Lie, Zur Theorie des Integrabilitatsfaktors, Christ. Forh., Aar 1874, 242-254, 1875.

S. Lie and F. Engel, Transformationsgruppen, Vols. I-II, Leipzig, (1888, 1890,
1893); reprinted by Chelsea, New York, 1970.

M.J. Lighthill, Viscosity effects in sound waves of finite amplitude, pp. 250-351. In:
Surveys in Mechanics, Eds.: G.K. Batchelor and R.M. Davis, Cambridge University
Press, Cambridge, 1956.

M

W. Ma, An exact solution in two-dimensional Korteweg-de Vries-Burgers equation,
J. Phys. A: Math. Gen. 26, L17-L20 (1993).

J.E. Mack, Semi-popular motion picture record of the Trinity explosion.
MDDDC221. U.S. Atomic Energy Commission, Washington, DC, 1947.

E.L. Mansfield, Differential Grobner Bases, Ph.D. Thesis, University of Sydney,
Australia, 1992.

AA Mohammad, and M. Can, Exact solutions of the complex modified
Korteweg-de Vries equation, J. Phys. A: Math. Gen. 28,3223-3233 (1995).

N

T. Nishitani and M. Tajiri, On similarity solutions of the Boussinesq equation, Phys.
Lett. 89A, 379-380 (1982).

E. Noether, Invariante Variationsprobleme, Nachr. Konig. Gesell. Wissen. Gottingen,
Math.-Phys. Kl. 2 235-257, (1918); see Transport Theory Stat. Phys. 1, 186-207
(1971) for an English translation.

M.C. Nucci and P.A Clarkson, The nonclassical method is more general than the
direct method for symmetry reductions. An example of the Fitzhugh-Nagumo
equation, Phys. Lett. A 164,49-56 (1992).

o
P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag,
Berlin, 1986.

P.J. Olver and P. Rosenau, The construction of special solutions to partial differential
equations, Phys. Lett. A 114, 107-112 (1986).

500 References

P.J. Olver and P. Rosenau, Group-invariant solutions of differential equations, SIAM
1. Appl. Math. 47, 263-278 (1987).

L.V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New
York,1982.

p

E.J. Parkes, Exact solutions to the two-dimensional Korteweg-de Vries-Burgers
equation,l. Phys. A: Math. Gen. 27, L497-L501 (1994).

W. Paul and H. Steinwedel, Ein neues Massenspektrometer ohne Magnetfeld, Z.
Natuiforschg. 8a, 448-450 (1953).

M.D.K. Porsezian and M. Lakshmanan, On the integrable models of the higher-order
water wave equation, Phys. Lett. A 174,237-240 (1993).

E. Pucci, Similarity reductions of partial differential equations, 1. Phys. A: Math.
Gen. 25,2631-2640 (1992).

R

G. Reid, Findng abstract Lie symmetry algebras of differential equations without
integrating determining equations, Eur. 1. Appl. Math. 2, 318-340 (1991).

G.J. Reid, D.T. Weih, and A.D. Wittkopf, A point symmetry group of a differential
equation which cannot be found using infinitesimal methods, pp. 311-316, In:
Modern Group Analysis: Advanced Analytical and Computational Methods in
Mathematical Physics, Eds.: N.H. Ibragimov, M. Torrisi, and A. Valenti, Kluwer,
Dordrecht, 1993.

Ch. Riquier, Les systemes d'equations aux dirivees partielles, Gauthier-Villars, Paris,
1910.

H. Risken, The Fokker-Planck Equation, Springer-Verlag, New York, 1984.

P. Rosenau and J.L. Schwarzmeier, On similarity solutions of Boussinesq-type
equations, Phys. Lett. USA, 75-77 (1986).

J.S. Russell, Report on waves, Report of the 14th Meeting of the British Association
for the Advancement of Science, pp. 319-320, John Murray, London, 1844.

References 501

s
P.G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or
He1e-Shaw cell containing a more viscous liquid, Proc. Roy. Soc. 245, 312-329
(1958) .

G. Scheffers and S. Lie, Vorlesungen iiber Differentialgleichungen mit bekannten
infinitesimalen Transformationen, B.G. Teubner, Leipzig, 1891.

H. Schlichting, Laminare Strahlausbreitung, z. Ang. Math. Mech. 8,260-263 (1933).

F. Schwarz, Automatically determining symmetries of partial differential equations,
Computing 34, 91-106 (1985).

F. Schwarz, Reduction and comp1etition algorithms for partial differential equations,
pp. 27.6-29.6, In: International Symposium on Symbolic and Algebraic Computation,
Berkeley, Ed.: P.S. Wang, ACM Press, New York, 1992.

H. Stephani, Differential Equations: Their Solution Using Symmetries, Cambridge
University Press, Cambridge, 1989.

G.G. Stokes, On the dynamical theory of diffraction, Trans. Camb. Phil. Soc. 9, 1--62
(1851).

T

M. Tabor, Chaos and Integrability in Nonlinear Dynamics, John Wiley & Sons, New
York,1989.

c. Tang, S. Feng, and L. Golubovic, Dynamics and noise spectra of a driven single
flux line in superconductors, Phys. Rev. Lett. 72, 1264-1267 (1994).

G. Taylor, The formation of a blast wave by a very intense explosion, I. Theoretical
discussion, Proc. Roy. Soc. 201, 159-174 (1950); II. The atomic explosion of 1945,
Proc. Roy. Soc. 201, 175-186 (1950).

J.M. Thomas, Riquier's existence theorems, Ann. Math. 30, 285-321 (1929).

J.M. Thomas, Riquier's existence theorems, Ann. Math. 35,306-311 (1934).

M. Tinkham, Introduction to Superconductivity, McGraw-Hill, New York, 1975.

502 References

v
N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland,
Amsterdam, 1981.

A.M. Vinogradov and I.S. Krasil'shchik, On the theory of nonlocal symmetries of
nonlinear partial differential equations, Sov. Math. Dokl. 29,337-341 (1984).

w
H. Weyl,Gruppentheorie und Quantenmechanik, S. Hirzel, Leipzig, 1928.

D.J. Wineland, W.M. Itano, and R.S. van Dyck Jr., High-resolution spectroscopy of
stored ions, Adv. Atom. Mol. Phys. 19, 135-186 (1983).

T. Wolf, The Symbolic Integration of Exact PDEs, preprint, 1991.

D.E. Wolf and J. Villain, Growth with surface diffusion, Europhys. Lett. 13,389-394
(1990).

S. Wolfram, Mathematica: A System for Doing Mathematics by Computer,
Addison-Wesley Publishing Company, Reading, MA, 1991.

y

Z.J. Yang, Traveling wave solutions to nonlinear evolution and wave equations, J.
Phys. A: Math. Gen. 27,2837-2855 (1994).

z
N.J. Zabusky and M.D. Kruskal, Interaction of solitons in a collisionless plasma and
the recurrence of initial states, Phys. Rev. Lett. 15,240-243 (1965).

N.S. Zakharov and V.P. Korobeinikov, Group analysis of the generalized
Korteweg-de Vries-Burgers equation, J. Appl. Math. 44,668-671 (1980).

V.E. Zakharov and E.A. Kuznetsov, Three-dimensional solitons, Sov. Phys.-JETP 39,
285-286 (1974).

Index for MathLie and
Mathematica Functions

AdjointFrechetD[1,58
AiryAi [1,278
AiryAiPrime[1,278
AiryBi [1,278
AiryBiPrime[1,278
ApproximateSymmetries [1,409,

411
Array [1,34

BackTrafoCanonical [1, 179
Baecklund [1,428--429,431--432,435,

437,439,441,447,455

CanonicalRepresentation [1, 158,
177

Canonical Variables [1,145-147,
158,177

CommutativeQ [1,25,27-28

D [1,43,51,53
Del taMatrix [], 184, 186,210
derivativeOrder[l,54
DeterminingEquations [1,170,

229-232,235,319
Do [], 20
DSol ve [1,96, 105, 141-142, 144, 159,

169,178,181-182,188,192,197,
199-200,211,214,239,259,264,
267,306,315,318,320-321,326,
342,353,374,387,390,421,467

Erfi [1,345,387
EulerD [1,66-70,72-73

FirstIntegral [1,184,211
FrechetD [1, 56-57, 122, 135
FrechetProlong [1,226-230

GeneralCanonicalForm [1,469--470
GlobaISymmetryTransformation[l,

106-107
GroebnerBasis [1,462--463

Hold[1, 68

ImplicitPlot[l,165
Infinitesimals [1,176,181,

184-185,189,204,240-241,243,
247,257,267,319,324,333,400

Integrate [1,211
IntegratingFactor [1,168-170
Inverse [1 , 16
InverseFunction[l,415

Length [1 , 25
LeviCivita [1,25,34
Lie [1,244-245,247-248,289-290,319,

370,372
LieCommutatorTable[l,176
LieEquations [1,243-244,249,

283-284,290,305,370

504 Index for MathLie and Mathematica Functions

LieProduct [] , 24
LieReduction [], 266-267, 270,287,

306,314,381,386
LieSolve [], 247, 249, 255, 283, 285,

290-291,319
LieStructureForm [],249,290
LieTradi tionalForm [] , 37, 93, 224
Limit [], 39
Line [], 75
Log [], 147, 169
LTF [], 93,128,231

MatrixForm [], 16

N [], 15
NDSolve [], 269, 364
NonClassicalPointSymmetries[],

378,383
NonCommutati veMul tiply [], 417

PDESolve [], 292, 319, 379-380,383,
385,389,433,478

Plot [] , 19,62,364
PlotVectorField[],115
Potential Symmetries [] , 397-398,

400
PrintDf [] , 229
ProductLog [], 178
prolongation[],53
Prolongation [], 91-94,122,223-225,

229
ProlongationODE [] , 135-136, 138

Rotation [], 9-10
RotationX [] , 12
RotationY [], 12
RotationZ [] , 12

Save [], 372
scaling [] , 153
SecondOrderAlgebras[],184-186
Series [], 104
Signature [], 25
Sin [], 261
Sol vableAlgebrasOfOrderN [], 31,

212
Sol ve [] , 422, 437
Sort [], 54

Table [], 27
Tan[], 278
TangentSurface[] ,48
TangentVector [] , 46-48, 50, 109,

113-114
Tanh [],327
Trot [], 110-111

union [],25

VectorField [] , 77

Subject Index

Abel, 485
Abelian group, 8-9,101
activated process, 347
addition, 15 •
adjoined algebra. 34

differential operator, 58
Frechetderivative,58
Lie algebra, 32, 34
operator, 58
representation, 58

admitted Lie algebra, 175
affiliated system of PDEs, 392
Airy, 277
algebra, 14, 176
algebraic calculations, 97, 217

invariants, 484
manipulation, 3

algorithm, 65, 135, 175,202,204,213,222,
437

calculating the prolongation, 135
for conservation laws of second-order

ODEs, 437
for integrating factors, 183
for potential symmetries, 397
for the calculation of generalized

symmetries, 427
for the non-classical method, 368
of approximate group analysis, 408
of calculating generalized symmetries,

427
of first-order approximation, 409

of generalized symmetries, 425
of group classification, 180
of integration, 175
to calculate first-order approximate

symmetries, 409
used in the calculus of variations, 65

algorithmic procedure, 65
procedure of similarity reduction, 257

analysis of ordinary differential equations,
148

analytic manifold, 21
solution, 270

anharmonic potential, 455
animation, 106, 194-195,294,338,355

a falling milk: drop, 331
of rotation, 102
of a translation, 100
of the formation of a water drop, 331
of the singularity movement, 338

ansatz,97
AnsatzPoly, 441
anti symmetric, 24
anti symmetry, 22
application of the general form algorithm,

462
for potential symmetries, 398
of the non-classical method, 370

approximate association relation, 407
calculus, 405
group, 404, 408
group analysis, 408

506 Subject Index

approximate association relation (cont'd)
group generator, 407
identity element, 406
invariant, 408
symmetries, 4-5, 404-405, 408,

457
symmetry group, 420
transformation, 405
transformation groups, 405
vector field, 407-408

approximations, 104,405
order, 412

arbitrary function, 248
associative, 218
associativity, 7, 16, 18, 80, 101
asymptotic behavior, 323, 325

solutions, 4
atmosphere, 358
atomic deposition, 347

explosion, 355
automatic derivation of solutions, 457

installation on Mac, 489
installation on UNIX, 491
installation on W95, 488
procedure, 458
symmetry analysis, 284

automorphism, 31
auxiliary factor, 409

function, 68, 88
system, 394, 400

averaging method of Landau, 454
Axiom, 3
axioms, 22

Backlund transformations, 300
Bardeen-Stephen model, 290
Basics of Potential Symmetries, 393
Berlin, 484
Bernoulli, 59, 67
bilinearity, 35
binomial, 71

solution, 313
Birch, Anna, 484
Birkhoff, 97
Blasius equation, 316

model, 315, 321
Boltzmann constant, 341
bonds, 347
boundary conditions, 66, 257, 307, 312,

325,327,331

boundary-layer equation, 312
flow, 311
value problem, 282, 285
values, 283

Boussinesq equation, 370, 377
brachistochrone problem, 59, 67
Brillouin scattering, 446
Brownian particle, 340

in a liquid, 384
Buchberger algorithm, 465
buoyancy, 312
Burgers equation, 225, 232, 235, 252, 256,

370,402-403,431

calculate first integrals, 187
symmetries, 218
the commutator table, 176
the prolongation, 91, 222-223

calculation of canonical variables, 141
of generalized symmetries, 434
of invariants, 108
of potential symmetries, 394
of prolongations, 223
of the infinitesimals, 176
of the infinitesimal symmetries, 125
of the invariance condition, 220
of the kth prolongation, 53
of the prolongation, 89, 122
of the symmetries, 125

calculus, 14,38,85,117
of variations, 59-60, 434

canonical algorithm, 460
coordinates, 182, 195, 197
form, 465
reduction, 198
representation, 197-198
transformation, 154, 159-160, 182
transformation simplifies the skeleton,

156
variables, 123, 139, 141-143, 150,

155-156, 158-161, 173, 175,
177-178, 181, 193, 198

variables of the projective group, 145
capillary pressure, 332-333, 335-336
Cartan,36
Cartan metric tensor, 35
Cartesian, 26

basis, 76, 84
coordinates, 67, 76

CD-ROM,5

center, 22
center-of-mass coordinates, 454
chain rule of Leibniz, 42
change of original variables, 85

of variables, 85, 98, 150
chaos, 446
chaotic evolution, 439
characteristic, 221,426,429

curves, 260-261
differential equations, 260-261
equations, 79-80, 110-111, 177,263,

366-368,371
function, 89

characteristics, 89-91, 367, 393, 397,
427-428,433,435,437,440,
445

CharExpression, 429
check the invariance, 227
chemical mixing processes, 331

physics, 383
potential, 347-348

Christiania, 483-486
circle, 294
cKdV equation, 399
classical equations of motion, 454

lie algorithm, 409
lie theory, 408
method,367,369,424
symmetries, 393

classification, 183
of lie algebras, 32
of second order algebras, 175

classify a lie algebra, 29
class of solutions, 150
closure, 81

of group, 81
relation, 7

coefficients of a transformation, 104
of the vector field, 81, 84

Cole-Hopf transformation, 253
combination of non-classical and classical

method,391
common factors, 319

space of solutions, 396
commutation of derivatives, 52
commutative algebra, 22, 35

ideal,36
lie algebra, 30

commutator, 22, 24, 26-27, 175
table, 28-30, 176, 252

Subject Index 507

commuting infinitesimal transformation,
139

completely integrable equations, 2
complex conjugate value, 172

number, 32
variables, 172

components of tangent vector, 47, 77
composition, 7

of two symmetries, 218
computer algebra, 3, 6, 97, 148,216,410,

457
concave surface, 156
concepts of lies theory, 117
condensed matter physics, 383
configuration space, 52
conformal symmetries, 125, 148, 171-172,

173
transformation, 171, 173,241

conservationlavvs, 2,394,425,435-436
conserved quantities, 1,436,440
constants of integration, 178
contact symmetries, 4

transformations, 424, 429
continuity equation, 312, 347
continuous derivative, 60

matrix group, 15
movement, 101
parameter, 218
symmetry,1

contour plot, 288, 327, 419
convective extension of the Burgers

equation, 256
coordinates, 19, 22
Coulomb force, 453

repulsion, 453
coupled differential equations, 458

linear partial differential equations, 457
nonlinear diffusion equations, 72-73
nonlinear Schrodinger equations, 446
PDEs, 230
system of vvave equations, 432

creeping motion of a fluid, 304
critical parameter, 405
cross-phase modulation, 446
crystal interface, 347
curvature, 331
curve in parametric form, 74
cycloid,67
cylindrical coordinates, 180,454

geometry, 431

508 Subject Index

cylindrical coordinates (cont'd)
KdV equation, 297, 399
surface, 157

damped particle, 341
temperature waves, 282

damping coefficient, 290
Darboux, 484
data basis, 243, 291

for differential equations, 243
of symmetries, 243

decoupling of the equations, 458
deficiency, 409
defining equation for infinitesimals,

128-129
definitions

approximation, 405
canonical form, 458
canonical variable, 140
class of solutions, 150
equivalence of conserved representations,

396
Euler operator, 65
flow of a vector field, 78
Frechetderivative, 55
group, 7
group invariant, 108
invariance, 258
isomorphic groups, 14
kth order derivative, 44
Lie algebra, 22
Lie group, 15
Lie symmetry, 217
of a symmetry group, 123
ordinary derivative, 38
partial derivative, 43
potential symmetry, 395
prolongation, 53
prolonged groups, 120
(q, p)-dimensional Euler operator, 71
sernisimple Lie algebra, 36
simple Lie algebra, 36
skeleton, 150
symmetry of a differential equation, 124
symmetry of a PDE, 366
symmetry transformation, 99
tangent vector, 45
tangent vector field, 112
topological symmetry, 393
total derivative, 51

vector field, 76
degeneration, 35
delayed rule, 84
density, 333, 358
dependent variables, 50, 57, 84,106,138
depinning threshold, 289
deposition, 347
derivation, 31

of a group invariant, 109
of a Lie algebra, 31
of canonical variables, 141
of the determining equations, 222, 229

derivative, 38
derived algebra, 29

Lie algebra, 29-30
systems of PDEs, 392

derive the symmetries, 282
desorption, 347-348, 352

with nonlinearity, 352
determinant, 163, 184, 190, 199,210,213
determination of infinitesimal

transformations, 170
of integrals, 184
of symmetries, 110
of the characteristics, 427
of the multiplier of adifferential equation,

202
of the symmetries, 291

determining equation, 110, 126--127,290,
307,416,421

for approximate symmetries, 408
for the group, 126
of a surface, 262

determining equations, 79, 128-129,
131-132,145,148,220-222,
229-231,235,243-244,247,
253,299,320,322,367-368,
428,437

for canonical variables, 144
for the characteristics, 435
for the polytropic gas, 233

diffeomorphism, 4
differential basis, 84

equation, 97, 123,484
geometry, 331
Groebner technique, 458
operator, 26, 28
operator in local coordinates, 76
operators, 37, 74
representation, 466

differentiation of a product, 42
of the ratio, 42

diffusion, 73
coefficient, 384
equation, 30,253,282, 365,398,428

dimensional analysis, 362
Dirac Lagrangian, 71
directional derivative, 45
direct method, 377

reduction method, 4
separation, 475

discrete group, 341
subgroup, 285
symmetry, 1
symmetry group, 359

disjunct, 459
dispersion, 297

strength, 430
display, 9
divergence formula, 437
drift coefficient, 384
drop formation, 330-331
drops, 331
dynamical equations, 59

formulation, 65

Ecole Normale Superieure, 486
earthworm's New Year problem, 282
effective refractive index, 446
eight parameter group, 185
elasticity, 201
elastic strings, 297
electrodynamics, 2
electrostatic potential, 453

waves, 302
elements of generalized symmetries,

425
ElirninatedFactors, 319
elirninationideals,460

of unknown functions, 478
elliptic functions, 422
energy release, 355
Engel, 485
engineering, 174
enlargement of a group, 319
entropy, 358
envelope, 41
equation for a polytropic medium, 358

of continuity, 358
parameters, 284

Subject Index 509

equations for canonical variables, 141
of motion, 70
of motion for a fire ball, 358
with analytic coefficients, 299

equivalent conservation law, 397
conserved representation, 396
system of PDEs, 465

Euclidean plane, 61
space, 61

Euler, 59
derivative, 45, 59,63, 66, 70-71, 74,434,

438,446,455
Euler-Lagrange derivative, 37

equations, 59, 64, 68, 71, 434, 436
system, 437

Euler operator, 64-65, 68-69, 71
for q-dependent variables, 69
for (q-p)-dimensions, 71

Euler's equation, 63, 64-67, 71, 73, 358
evolutionary representation, 221,435

vector field, 221, 436
evolution of a blast, 355
exact ODE, 473
Examples for second-order ODEs, 438
excess energy, 347
expansion coefficient of the prolongation,

90
experiment, 5
experimental mathematics, 5
explosion, 357

front, 360
exponential mainstream velocity, 318
exponentiation, 78

of vector field, 78
expression of invariance, 108
extend a manifold, 84
extended equations, 394

manifold, 90,149-150
transformation, 119
vector field, 84, 119, 126, 152

extension, 52, 74, 84, 86, 88,117
formula, 119
of a transformation, 117
of Lie's theory, 404

extreme, 60

Falkner-Skan equation, 318-319
model, 316, 321
solution, 316

families of ODEs, 171

510 Subject Index

family of characteristic curves, 260
of curves, 260
of surfaces, 261

fiber, 446
nonlinearity, 446

field theory, 2
FinalResult, 291
find non-classical solutions, 377
finite dimensional algebra, 21

dimensional vector space, 22
~up,8,240,297-298,306,318,337

nurnnberofsynunetries, 138
point group, 291
synunetry, 202
synunetry group, 275, 298, 415
transformation, 105, 119

fire ball, 357
radius, 360

first atomic explosion, 282, 355
coefficient of prolongation, 228
extended transformation, 118-119
extension, 126,228
integral, 110, 187, 191,202-203,

205-206,214,382
first-order approximation, 406, 423

differential equation, 104, 138, 148-149
equations, 148, 161
ODE,79
ordinary differential equation, 117, 124,

148, 161
partial differential equation, 259
partial differential operator, 84
PDE, 259-260
prolongation, 224

first prolongation, 87, 124, 126, 186
reduction, 196
theorem of Lie, 117

Fitzhugh Nagumo equation, 370
five steps of integration, 184
flow, 77, 79, 81-83

equations, 77
in a polytropic gas, 232
ofa~up,81

of a vector field, 78
fluctuations, 383
flnid, 232
fluid dynamics, 201, 420

flow, 77
neck,338
line,289

Fokker-Planck, 383
equation,340-341,383

Fontainebleau, 484
formal coordinate transformation, 369
formation of droplets, 282, 330
forme canonique generale, 458
fourth-order linear PDE, 305

nonlinear PDE, 273
ODE,212

FP-equation, 340-341, 383
Franco-Prussian war, 484
Fr6chet,54
FrechetD, 56
Fr6chetderivative, 37,54,55,74,89-92,

134-135,220-221,223,245,368,
394,436

formalism, 367
prolongation, 89

fuel injection, 331
functional, 60-63, 65, 69, 71

density, 64-68
derivative, 65
equation,258

function theory, 97

Galilean invariance, 2
Galois, 484
Gateaux, 54
Gauss, 38
general canonical algorithm, 458

canonical form, 285, 458, 460
canonical form of PDEs, 458
Euler operator, 72
integration theory, 174

generalization of a logarithm, 178
of the heat equation, 231
of the Korteweg-de Vries equation, 296

generalized Burgers equation, 256
cable equation, 193
derivative, 54
Euler operator, 69
KdV equation, 300
Korteweg-de Vries equation, 296, 431
Lie synunetries, 219
method of Lie's classical theory, 425
point transformations, 434
suspended cable equation, 189
synunetries,4-5,59,394,430,432,

434-436,455,457
synunetries of first order, 429

symmetries of partial differential
equations, 424

symmetry, 431
vector field, 434

general partial differential equation of
second-order, 229

prolongation formula, 122
properties of a group, 6
second-order equation, 241
vector field, 89

generating functional, 60
vector field, 417

generator of symmetry, 112
of the infinitesimal transformation, 112

geometrical increment, 61
interpretation, 39
interpretation of first-order ODE, 148

Geometry· Rotation' , 9
Ginzburg-Landau, 290
gKdV equation, 296, 300
GL(n),15
global group action, 82

scaling transformation, 116
symmetry transformation, 106, 114
transformation, 81, 105-106, 114,

119-120, 155
variables in MathLie, 224

glowing wire, 180
Gottingen, 484
gradient, 260
graphical representation of the solution, 160
graphic primitives, 75
Graphics' ImplicitPlot·, 165
Graphics' PlotField • , 82, 115
grapical representation of vector field, 82
gravitating stars, 438
gravitational field, 180
Groebner algorithm for differential

equations, 458
basis, 462-463, 467
basis algorithm, 458, 469

groups, 6-7, 78,174,218,227
action, 82
axioms, 16
classification, 171, 311, 319

problem, 322
constan~,31, 184-185,202,204,286
element, 9
generator, 407
invariance, 257

Subject Index 511

invariant, 108, 112
multiplication, 7, 16
of projection, 194
of rotation, 122
of scaling, 194
of translation, 80,140
parameter, 98, 119, 134, 181,212,259,

264,406
properties, 7
representation, 18
and Lie Groups, 6
theoretic algorithm, 202
theoretic quadrature, 175, 183
theory, 6
transformations, 252

growth equation, 348
equations of molecular beam epitaxy,

347
of interfaces, 348

Hamilton, 60
Hamiltonian, 446

principle, 434
system, 446

Harry-Dym equation, 226, 232, 235
heatequation,28,226,228,230-231,235,

240,243-244,248,262-263,265,
365,370,374,384

transfer, 180
Henon-Heiles model, 438
Herarnan, 97
hexagon, 11
hidden symmetries, 171,434
higher derivatives, 60

extension, 88
higher-order derivatives, 44

equation, 202
ODE, 212
ordinary differential equations, 201
prolongations, 93
total derivatives, 51

high-frequency if field, 452
Hirota and Satsuma equation, 432
homomorphism, 14, 17-18,32,34
hybrid algorithm, 200
hydraulic-friction coefficient, 410-411
hydrodynamics, 2, 71,257,282

equations, 209
flow, 113
problem, 97

512 Subject Index

hyperbolas of revolution, 453
hyperbolic paraboloid, 151

ideal, 22-23, 29
identical transformation, 99
identity, 78, 81, 83, 104

element, 7, 17
of a transformation, 98
of group, 80-81
transformation, 81,99, 104,218

implicit representation of a solution, 188,
294

solution, 159, 169
incompressible viscous fluid, 323
independent variable, 39,46,50,57,74,83,

106,138
indirect separation, 476
industrial applications, 282
infinite dimensional group, 239, 256

Lie group, 285
symmetry group, 271, 299, 302
vector space, 17

infinite group, 8
number of integrals of motion, 420
number of symmetries, 125, 138, 148,

170
infinitesimal

change, 84
criterion of invariance, 219
determining equations, 218
flow, 84, 94
formulation, 218
generator, 79, 115, 117, 119, 220

of a transformation, 79
group, 99
invariance criterion, 126
operator, 21
parameter, 109
representation, 79, 81, 87, 120,258

of characteristics, 91
small functions, 405
symmetries, 30, 125, 128, 173, 185
transformation, 86-88, 104, 108,113,

117, 121-122, 139-140, 162, 166,
174,219,221,393,400

of the KdV equation, 297
infinitesimals, 81-83, 89, 94, 104--107,

112-116,121-122,125,127-128,
130, 134-136, 138-139, 145,
148-149, 164-166, 170, 173,

175-176, 184, 186, 189-190, 198,
203,210,212-213,219-220,222,
224-228,230-231,236,240,263,
267,275,285-286,290-293,318,
334-335,339,341,352,367,
371-372,381,385,388,417,426

for the potential Burgers equation, 255
of Blasius' model, 313
of first-order ordinary differential

equations, 170
of the Burgers equation, 255
of the general nonlinear diffusion

equation, 242
of the gKdV equation, 300
of the Harry-Dym equation, 240, 243
of the heat equation, 239
of the KB-equation, 271
of the nonlinear heat equation, 242
of the polytropic gas, 241
parameter, 259

infinite symmetry group, 274
inhomogeneous

scaling group, 116, 146
scaling transformation, 153, 158
stretching, 152

initial condition, 77, 79, 104-105,269,391
initial points, 103
initial value problem, 104-105
ink jet printer, 331
input, 46
installing MathLie, 488
integrability conditions, 461, 470
integral

curves, 78, 161-163
of motion, 425, 437,439-441, 452
surface, 270

integrating
algorithm, 204
exact PDEs, 473
factor, 161, 163, 165, 167, 170, 173, 183,

186,202,397,473
method, 201, 212
theorem, 000

multiplier, 396-397
ODEs and pseudo-ODEs, 473

integration
algorithm, 177
by separation of variables, 159
of a monomial, 472
of ODEs by quadrature, 257

of simple equations, 458
procedure, 183
procedure for PDEs, 458
process, 181, 209
strategies, 174

intensity, 347
of a wave, 446

interaction of dispersion and nonlinearity,
297

interactive solution, 235
interface amplitude, 347
interpolating function, 269
invariance,108,257-258

based on Frechet derivatives, 220
condition, 109, 124, 137-138, 148, 166,

220-221,257,285,368,394,397,
435

for point symmetry, 221
of partial differential equations, 257

criterion, 396
equation, 137
of a differential equation, 125
of the boundary conditions, 285
of the Riccati equation, 152
of transformation, 141
properties, 425
relation, 230

invariant, 108-110,262-263,388
condition, 109
curve, 162
in symmetry analysis, 108
of a group, 263-264
skeleton, 152
solution, 367, 435
surface condition, 259, 366-367
under a one-parameter Lie group,

258
inverse, 15, 99

element, 7,16-17,80
of group, 80

symmetry, 218
transformation, 99
translation, 80

inversion, 182
of a transformation, 179

invertible linear transformation, 17
point transformation, 218

ion-acoustic solitons, 298
ion-acoustic waves, 300
ion trapping, 452

Subject Index 513

isentropic exponent, 411, 414
fluid, 415
liquid, 410
model, 417
motion, 416

isomorphic, 17-18, 28
group, 14

isomorphism, 14, 18

Jacobi determinant, 98
identity, 22, 24, 32

Janet, 458
jet equations, 324

solution, 327
space, 54

Jordan, 484

Kadomtsev-Petviashvili equation, 270
Kamke, 204,215
Karpman-Belashovequation, 270
KB-equation, 270-273, 279
KdVB equation, 301, 431
KdVequation, 30-31, 296-297,431

for a slowly varying medium, 298
Kepler problem, 456
Killing equation, 480

form, 29, 35-36
kinematic viscosity, 323, 331, 333
k-jet,54
Klein, 97, 484
Korteweg de Vries-Burgers equation, 301
Korteweg-{}e Vries equation, 30, 296,419,

431,479
Kowalewski, 486
Kristianiaford, 484
kth prolongation, 219
Kummer, 484

Lagrange, 59, 113
coordinates, 416, 418
density, 70, 73
function, 68
operator, 113

Lagrange's dynamic, 446
equations, 433

Lagrangian, 68, 438,446,455
laminar, 77

fluid flow, 77
Laplace equation, 73, 481
Laplacian, 305, 347

514 Subject Index

largest group of a second-order ODE, 185
lattice potential, 347

vibrations, 297
laws of nature, 1

of physics, 1
leading derivatives, 459
Leibniz, 38, 59
Levi-Civita, 27

density, 25-26
tensor, 34

lexicographic ordering, 460
of function names, 460
of derivatives, 460

. Lie, 97
algebra, 5, 21, 28,175-176,184-185,

202,219,249,367
Backlund symmetries, 91
bracket, 22, 24, 27-28
determinant, 184,202-203
group, 5, 14,34, 176,218-219
matrix, 184, 186, 190, 198,202-206,

210, 213-214
point symmetries, 222, 305,404,407,

435
product, 22, 24, 26, 28, 139
symbol, 113
symmetries, 217, 219
theory, 74

Lie, Marius Sophus, 483
Lie's classical method, 365

theory, 4
classification, 176
equation, 407
first theorem, 104, 109, 114
group classification, 176
integration algorithm, 189
integration theory, 5
matrix, 186
method, 217, 315, 367
method of first integrals, 189
point symmetry procedure, 373
procedure, 275
theory, 405
theory used in MathLie, 217

linear algebraic structure, 21
combination of transformations, 139
coupled PDEs for the characteristics,

427
determining equations, 148
group, 15

mapping, 31
operator, 2, 21
overdetermined systems of partial

differential equations, 218
solution techniques, 2

linearity, 22, 232
of determining equations, 134
independent operators, 134

line element, 67
Liouville type equation of quantum gravity

theory, 480
liquid in a pipe, 410

jet, 333
local coordinates, 76

group, 4
one-parameter approximate transformation

group, 406
one-parameter group, 99
symmetries, 392
transformation, 366, 392

localized wave, 297
locally isomorphic, 21
long waves, 300
loop, 69
Lorentz force, 289
low-temperature dynamics, 289
lubrication approximation, 335

Mac, 489
macroscopic current, 347
Macsyma,3
magnetic field, 452
main group property, 99

properties of a symmetry group, 123-124
mainstream velocity, 313, 318-319
manifold, 14-15,76-79,83-86,90,98,

108, 112, 114, 124, 127, 150, 164,
194-195

manual installation
Mac, 489
UNIX, 491
Windows 95, 488

Maple, 3
map solutions into solutions, 149
mass distribution of gaseous interstellar

material, 180
Mathematica, 3
mathematical background of the

non-classical method, 366
MathLie, 5, 30, 217

matrix, 186,211
differential operator, 56
group, 15
operator, 57
product, 24
representation, 32

of Lie algebras, 26
maximal ideal, 22
maximum, 60
Maxwell equation, 71
Mayer, 485
measure, 45
mechanical system, 68
mechanics, 2,174,257
method of an integrating factor, 161

of canonical variables, 161, 193, 195
of characteristics, 262
of first integrals, 193
of generalized multipliers, 193
of integrating factor, 183
of manipulating a set of polynomials,

464
microscopic processes, 347
minimum, 60, 62

principle, 60
mirror reflection, 1
mobility, 347
molecular beam epitaxy, 346
momentum equation, 305, 312
monomial, 472
motion of gas, 357

pictures, 355
moving wave solution, 293
multi-component plasma, 300
multi-index, 51, 71
multiplication, 8

table, 8

Navier-Stokes equation, 312, 331
nebular theory, 180
necessary condition, 61

number of symmetries, 204, 209
new coordinates, 117

differentials, 88
system, 85

Newton, 38
equation, 433, 452
laws, 2
second law, 174

new variable, 85, 218, 395

Subject Index 515

New Year problem, 282
nilpotent, 36

algebra, 36
Noether's theorem, 436, 455
non-associative, 22
non-classical algorithm, 368

and heat equation, 370
determining equations, 385
group, 373
infinitesimals, 375, 389
method, 4, 365, 367-369, 397,424
solution of the FP-equation, 391
symmetries, 5,222, 369, 371,389,

392-393,425
symmetry analysis, 371
symmetry method, 371
symmetry transformations of the

FP-equation, 388
NonclassicalCases,371
non-commutative, 9, 11, 13
non-homogeneous dilation, 151, 156
nonlinear, 2

coupled system of partial differential
equations, 371

determining equations, 367, 369, 372
differential equation, 97, 218
diffusion equation, 57, 242
dynamics, 425, 430
equation, 218, 232
filtration equation, 248
ordinary differential equation, 128
partial differential equation, 216, 226

of sixth order, 272
PDE, 297, 461
physics, 296
reaction diffusion equation, 398
second-order equation, 185
strength, 354
system of determining equations, 367
system of differential equations, 218
third-order PDE, 275

nonlinearity, 348
non-local properties, 397

symmetries, 392, 394-395
non-slip condition, 308
non-standard differential operators, 74

dynamics of solitons, 299
nontrivial derivative, 459

similarity reduction, 345
normal direction, 260

516 Subject Index

numerical integration, 269, 353, 382
numerical solution, 269, 351, 383

ODE, 52, 473
of first-order, 79

old differentials, 88
one-dimensinal translation, 79

symmetry group, 242
one-parameter

approximation group, 405
functional equation, 219
group, 99, 108, 110, 163, 171,220
Lie group, 258

transfonnation,261-262
transfonnation,86,98,104

operator, 46
optical waves, 446
orbits of the transfonnation, 103
order of differentiation, 44

of equation, 204
OrderReduce, 400
ordinary and partial derivatives, 37

derivative, 65
differential, 39

equation, 5, 96-98, 108
differentiation, 37,46

origin, 77
original variables, 85
orthogonal group, 28
oscillators, 70
Oslo, 485
overdetermined, 231

equations, 5,235
system, 132
system of determining equations, 171
system of equations, 128, 435
system of linear partial differential

equations, 222

package, 82
palette, 224
paper and pencil calculations, 138
parabolic surface, 151
parameter combinations, 440

representation of a transformation,
104

parameters, 21
of the equation, 290

parametric representation, 60, 75
partial derivative, 43-44, 65, 76

partial differential equation, 2, 5, 141,216,
237

of parabolic type, 312
partial differentiation, 14,76
partial knowledge of the infinitesimals, 226

solution, 237
particle physics, 2
particular transformation, 171
Pauli matrices, 23, 25, 28
Paul trap, 438, 452, 456
PDE,52
pencil and paper, 284
pentagon, 19
pennutation, 25
perturbation parameter, 406

theory, 97
perturbed KdV equation, 300
phase space, 456
photons, 454
physics, 174
Picard, 485
pinch of a drop, 333
plane jet, 323
plasma physics, 377
plasmas, 297
Plucker, 000
point group, 333
point symmetries, 5, 117, 139, 148, 189,

217-218,231,296,353,384,392,
394-395,397,425,457

of partial differential equations, 216
of the Boussinesq equation, 377
of the non-classical determining

equations, 386
of the potential system, 4, 98-99, 101,

104,108,110,114,120,123,218,
366,398

system, 71
transfonnation, 393, 424

polarization-preserving fiber, 446
polarized waves, 446
polygon, 9, 19
polynomials, 166,437,462

ansatz,441
polytropic gas equations, 235
potential Burgers equation, 254, 266, 430

representation, 77, 397-398, 474
symmetries, 392, 394-395, 401,425,457
system, 395, 399, 402
of the cKdV equation, 399

PotentialSystemsOnly, 398
power law, 316
Prandtel's boundary-layer equations,

312,323
pressure, 331, 358, 411
principles of symmetry, 2
probability density, 340
problem of variations, 59
projective group, 82, 144
prolong a manifold, 84
prolongation, 37, 52, 54, 74, 86, 89-91,

94, 117, 120, 123, 134-135, 137,
186,202,204,219,221-223,
225-226,228-230,245,368,
393,427,430,435

coefficients, 219
formalism, 285
formula, 88,90, 122, 126, 171, 229,

368,409
formulation, 367
evolutionary representation,

221
of a vector field, 74, 90, 94
of transformations, 117-118
operator, 222, 225, 437

prolonged group, 120
transformation, 121
vector field, 87, 137

prolong the space of variables, 52
the transformation group, 219

properties of a flow, 78
of general canonical form, 459
of a group, 80
of Lie algebras, 29
of flow, 78

pseudo automatic calculation of
non-classical symmetries,
377

ODE,473
polynomial, 475
polynomial representation, 475
scalar product, 175-177

pure function, 39, 57, 132, 142, 145,
238,375,389

quadratic polynomial, 206
quadrature, 159,163,170,183,382

method, 175, 202
quantum gravity theory, 480

mechanics, 23, 97

optics, 383
theory, 2

Subject Index 517

quartic anharmonic oscillator, 438

radial velocity, 358
radiation changes, 283
radical, 209
rain drops, 331
rational expression, 87

function, 42
numbers, 15

Rayleigh particle, 340
real Lie algebra, 25
recursive definition of extension, 88

prolongation, 89
prolongation formula, 89

reduced a PDE to an ODE, 264
determining equations, 237
equation, 319
KB-equation, 272
KdV-equation, 421
manifold, 196
set of determining equations, 238

reduce of independent variables, 257
the Riccati equation, 158

reducing the number of dependent
variables, 477

reduction, 266, 272-273, 317, 324, 349,
353,393

of differential equations, 257
of order, 257
of partial differential equations, 257
of the Boussinesq equation, 381
of the coupled diffusion equations, 268
of the FP-equation, 388
of the non-classical determining

equations, 374
of the order, 316
procedure, 263
process, 263

redundant information, 127,222,369,427
regular and chaotic motion, 438

motion, 456
of the Henon-Heiles system, 438

relative ion motion, 455
remaining equations, 292
representation, 16-17,26,28,63

of a Lie algebra, 26, 28, 33
of a Lie group, 18
of the invariance condition, 109

518 Subject Index

representation (cont'd)
of vector field, 82
of infinitesimals in MathLie, 224

restrictions on structure constants,
23

Reynolds number, 305
Riccati equation, 150, 157-158, 166
Riemann metric, 480
Riquier, 458
rotating liquid in a pipe, 297
rotation, 9, 26, 33, 78, 81, 101, 107, 110,

114, 122, 146
and canonical variables, 143

Runge-Lenz vector, 456

Saffman-Taylor approximation, 335
scalar product, 35, 47
scaled temperature, 226
scaling, 249

exponent, 362
factor, 20, 152
group, 19,81, 116,274,350
relation, 361
solution, 336
symmetry, 141, 159,242,260,262,306,

359
transformation, 81, 105-106, 151,336

Scheffers, 486
Schlichting, 323
Schrodingerequation, 71
Schwarzian integrability conditions, 459,

470
seasonal oscillations of temperature,

282
second extension, 88, 118, 126
second-order derivative, 214

differential equation, 125
dispersion, 420
dispersion effect, 402
equation, 193
generalized symmetries, 429
group, 198
ODE, 174-176, 188,211,433
ODE and the Euler-Lagrange equation,

433
ordinary differential equation, 71, 174,

180, 183
polynomial, 187
prolongation, 121, 126, 228
solvable subalgebras, 185

second rank tensor, 35
reduction, 196
similarity representation, 275

secular frequencies, 454
self-phase modulation, 446
self-similar objects, 20
semisimple, 36

Lie algebra, 36
separation of variables, 159
several algorithms, 459
shallow water waves, 29~297, 420
shift operator, 17
shortest connection between two points, 61,

63
side condition, 243, 368
signature, 25
similarity analysis, 355

form, 286
function, 387
reduction, 326,337, 341,343,353,363,

447
of the FP equation, 343
representation, 257, 263, 265-267, 275,

294,327,342-343,376,381,412,
418,421-422

of the nonlinear determining equations,
374

of the solution, 266
similarity solution, 257, 285-286, 294, 306,

314,317,325,332,337,343-344,
367,416

transformation, 383
variable, 263, 265-266,342,382,416,

421
simple Lie algebra, 36
simplification, 259

ofequations,458,475
of ODEs, 178
of the determining equations, 130, 475
of the skeleton, 150

single drop, 331
flux line in a superconductor, 282, 289

sixth-order nonlinear PDE, 272
Skan, 316
skeleton, 149-150, 153, 155-157, 166,

193-194, 197
graphical representation, 153
of differential equation, 149
of an ordinary differential equation, 149
of the Riccati equation, 151, 153

skew-Hermitian matrices, 23
skew-symmetric, 28
SL(n),15
slope, 38,61,111,117
slot, 34, 223
small perturbation, 60, 404
smooth function, 83
so(3), 28, 34
SO(3),15
solenoid,74
soliton, 297

theory, 419
solution

branches, 379
for the infinitesimals, 239
in implicit form, 445
manifold, 149,427,460
maps into other solution, 218
of a second-order ODE, 174
of coupled linear partial differential

equations,457
of first-order differential equations, 166
of linear PDEs, 471
of Tang's equation, 293, 295
of the determining equations, 222, 235,

247
of the FP equation, 342, 344
of the non-classical determining

equations, 375
of the potential Burgers equation, 267
procedure, 458

solvability, 29-30
of a Lie algebra, 36

solvable, 30, 185, 190
Lie algebra, 36
non-Abelian Lie algebra, 171
subalgebra, 212

solve equations, 96
physical and mathematical problems, 282

Sophus Lie, 97
space, 54

charge of elasticity, 180
time translation, 1

special function, 179, 264, 278, 387
orthogonal group, 15
type of derivative, 65

specific heat, 358
spherical geometry, 431

KdV equation, 298
spin matrices, 23

spiral, 76
standard bases, 462

equation, 97
form, 97

stationary value, 61
statistical mean, 452

mechanics, 2, 65
steady flow, 312

Subject Index 519

stimulated Raman scattering, 446
Stokes model, 306

Solution of the Creeping F1ow, 304
stream function, 304

straight line, 61
stream function, 305, 307, 312, 316, 323,

328
function equation, 317
lines, 77, 113, 328

strong symmetries, 393
structural properties, 249
structure constant, 22, 26, 28-29, 32, 176
subalgebra,22-23, 31,175,184,186,213
subgroup, 181, 186, 198,271

of order two, 185
submanifold, 194
SubstitutionRules, 185
sufficient condition, 61

of in variance, 109, 125
superposition, 2,47
support, 55, 57, 220-221

function, 135, 220
surface, 150,259,347

condition, 260
current, 347
diffusion, 347, 350
diffusion with nonlinearity, 350
tension, 331, 333
wave, 377

suspended cable, 189
symbolic calculation, 38, 138

in MathLie, 217
languages, 97
names, 292

of infinitesimals, 91
programs, 97
representation of the prolongation in

MathLie,224
solution, 201, 280,438
technique producing explicit solutions,

201
template, 176

520 Subject Index

syrrunebies, 80,98,336, 349,352
and functions, 98
of a differential equation, 28, 74, 123,

217
of first canonical reduction, 198
of ordinary differential equations, 96
ofPDEs,289
of the Burgers equation, 253
of the heat equation, 231

syrrunetry,35,74
analysis, 5, 45, 54, 178,282-283,291,

358,365
of differential equations, 2, 74, 94
calculation, 311
group, 95, 176,204,212,218,268,318,

341,350
method, 425
of the cylindrical KdV equation, 297
of the generalized Burgers equation,

256
of a differential equation, 123,217
of an equation, 174
of rotation, 26, 95
of translation, 80
principle, 1
theory of Lie, 216
transformation, 98, 108, 114, 149, 181,

218
of differential equations, 123
of functions, 98

systematically solve differential equations,
216

system of determining equations, 128,
285

of differential equations, 2, 221
of linear homogeneous partial differential

equations, 222
of partial differential equations, 221

tangent, 41
space, 21
surface, 47--48
vector, 45, 47,74-77,84, 112, 115, 161,

202,259
field, 109-110, 112, 115, 125, 184

target curve, 149
Taylor expansion, 33, 53, 109, 121,259,

334,407
series, 84, 104

technique of integrating factor, 193

temperature, 226, 341, 370
on the surface, 283
variation, 283, 288

template, 235
tensor, 26
test function, 55,60--61,64,66, 135,220
theorems

canonical variables, 140
Cartans theorem, 36
conformal syrrunebies, 173
first-order approximations, 409
group invariants, 109
integrating factor, 163
invariance condition, 262
invariant representation, 263
Lies first theorem, 104
syrrunebies of first-order ODEs, 172
syrrunetry transformation, 125

theory of relativity, 257
thermal oscillations, 282
thermal wave, 357
third-order

derivative, 214
equation, 203
nonlinear ODE, 276
nonlinear PDE, 274
parabola, 155

three-dimensional spiral, 74
time reversal invariance, 1

translational invariance, 1
ToNoTo equivalent, 363
tools of Lie's syrrunetry method, 216
topological, 393
topology, 14
total degree ordering, 460

derivative, 50-51,90
differential, 37, 162, 165
energy, 362,438,440
length between two points, 61
ordering of derivatives, 460

trace, 35
traditional form, 37, 224
TraditionalLieForm, 93, 224
transcendental equation, 178

function, 191, 193
transformation, 78, 81, 83, 85-86, 97-98,

100, 103, 106, 111, 115, 120, 125,
149,218-219,258

groups, 174
of independent variables, 83

transfonnation (cont'd)
of the dependent variables, 426
properties, 249

transfonned derivatives, 85
function, 84
PDE,258

translation, 17-18,78-79,99, 188,227,
241-242,249,274

group, 146
traveling wave solutions, 300
tree of potential system, 397
trigonometric function, 38, 40
Trondheim,484
turbulence, 225
turbulent theory, 420
twice extended vector field, 88
two component nonlinear medium, 73

coupled diffusion equations, 267
two-dimensional boundary-layer flows, 311

group, 140
KdVB equation, 301
Lagrangian, 70
oscillator system, 70
quartic oscillators, 446
spatial solitons, 301

two ions in a Paul trap, 438
type-II superconductor, 289

unified, 218
technique, 218

unimodular group, 15
unique solution, 207, 218
unit vector, 260
universality, 297
UNIX, 491

Subject Index 521

vacuum states of the KdV equation, 299
variational derivative, 45, 65, 73,434

integral, 425
principle, 425
symmetry, 425, 436-437

variation, 60
of a path, 434
of the argument, 220

vector field, 28, 31, 52, 74-75, 77, 79,
81-84,93,112-113,149,210,
219,221,252,262,393,407,
415

of an approximate group, 407
Frechet derivative, 55
space, 15, 17,26
valued function, 53

velocity, 67, 331
field, 77,332
of a fluid particle, 77

vortex motion, 180

wave equation, 72,432
in weakly dispersive and dissipative

media, 270
of penn anent shape, 297

waves, 297
weak symmetries, 365-367, 393
WeierstraB, 484
Windows 95, 488
Working examples, 282

Zabolotskaya-Khoklov equation, 270
ZK-equation, 270, 273, 279-281
ZK-Soliton,281
Zorawski, 486

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

