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Preface

Many problems arising in applied mathematics or mathematical physics, can be
formulated in two ways namely as differential equations and as integral equations.
In the differential equation approach, the boundary conditions have to be imposed
externally, whereas in the case of integral equations, the boundary conditions are
incorporated within the formulation, and this confers a valuable advantage to the
latter method. Moreover, the integral equation approach leads quite naturally to
the solution of the problem as an infinite series, known as the Neumann expansion,
the Adomian decomposition method, and the series solution method in which the
successive terms arise from the application of an iterative procedure. The proof
of the convergence of this series under appropriate conditions presents an inter-
esting exercise in an elementary analysis.

This book encompasses recent developments of integral equations on time
scales. For many population models biological reasons suggest using their differ-
ence analogues. For instance, North American big game populations have discrete
birth pulses, not continuous births as is assumed by differential equations.
Mathematical reasons also suggest using difference equations—they are easier to
construct and solve in a computer spreadsheet. North American large mammal
populations do not have continuous population growth, but rather discrete birth
pulses, so the differential equation form of the logistic equation will not be con-
venient. Age-structured models add complexity to a population model, but make
the model more realistic, in that essential features of the population growth process
are captured by the model. They are used difference equations to define the pop-
ulation model because discrete age classes require difference equations for simple
solutions. The discrete models can be investigated using integral equations in the
case when the time scale is the set of the natural numbers. A powerful method
introduced by Poincaré for examining the motion of dynamical systems is that of a
Poincaré section. This method can be investigated using integral equations on the
set of the natural numbers. The total charge on the capacitor can be investigated
with an integral equation on the set of the harmonic numbers.

This book contains elegant analytical and numerical methods. This book is
intended for the use in the field of integral equations and dynamic calculus on time
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scales. It is also suitable for graduate courses in the above fields. This book contains
nine chapters. The chapters in this book are pedagogically organized. This book is
specially designed for those who wish to understand integral equations on time
scales without having extensive mathematical background.

The basic definitions of forward and backward jump operators are due to Hilger.
In Chap. 1 are given examples of jump operators on some time scales. The
graininess function, which is the distance from a point to the closed point on the
right, is introduced in this chapter. In this chapter, the definitions for delta derivative
and delta integral are given and some of their properties are deducted. The basic
results in this chapter can be found in [2]. Chapter 2 introduces the classification of
integral equations on time scales and necessary techniques to convert dynamic
equations to integral equations on time scales. Chapter 3 deals with the generalized
Volterra integral equations and the relevant solution techniques. Chapter 4 is
concerned with the generalized Volterra integro-differential equations and also
solution techniques. Generalized Fredholm integral equations are investigated in
Chap. 5. Chapter 6 is devoted on Hilbert—Schmidt theory of generalized integral
equations with symmetric kernels. The Laplace transform method is introduced in
Chap. 7. Chapter 8 deals with the series solution method. Nonlinear integral
equations on time scales are introduced in Chap. 9.

The aim of this book was to present a clear and well-organized treatment of the
concept behind the development of mathematics and solution techniques. The text
material of this book is presented in highly readable, mathematically solid format.
Many practical problems are illustrated displaying a wide variety of solution
techniques. Nonlinear integral equations on time scales and some of their appli-
cations in the theory of population models, biology, chemistry, and electrical
engineering will be discussed in a forthcoming book “Nonlinear Integral Equations
on Time Scales and Applications.”

The author welcomes any suggestions for the improvement of the text.

Paris, France Svetlin G. Georgiev
June 2016
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Chapter 1
Elements of the Time Scale Calculus

This chapter is devoted to a brief exposition of the time scale calculus that provide
the framework for the study of integral equations on time scales. Time scale calculus
is very interesting in itself, this challenging subject has been developing very rapidly
in the last decades. A detailed discussion of the time scale calculus is beyond the
scope of this book, for this reason the author confine to outlining a minimal set of
properties needed in the further proceeding. The presentation in this chapter follows
the book [2]. A deep and thorough insight into the time scale calculus, as well as the
discussion of the available bibliography on this issue, can be found in the book [2].

1.1 Forward and Backward Jump Operators, Graininess
Function

Definition 1 A time scale is an arbitrary nonempty closed subset of the real numbers.

We will denote a time scale by the symbol 7.
We suppose that a time scale 7 has the topology that inherits from the real
numbers with the standard topology.

Example 1 [1,2], #, A are time scales.
Example 2 [a,b), (a, b], (a, b) are not time scales.

Definition 2 For 1 € .7 we define the forward jump operator o : T —— T as
follows
o(t) =inf{s € T :5 > t}.

We note that o(¢) > ¢ forany r € 7.

© Atlantis Press and the author(s) 2016 1
S.G. Georgiev, Integral Equations on Time Scales, Atlantis Studies
in Dynamical Systems 5, DOI 10.2991/978-94-6239-228-1_1



2 1 Elements of the Time Scale Calculus
Definition 3 For ¢ € .7 we define the backward jump operator p : T —> T by
p(t) =sup{s € T :s < t}.

We note that p(z) < ¢ forany t € 7.

Definition 4 We set
inf@=sup.7, sup@ =inf 7.

Definition 5 For r € .7 we have the following cases.

If o (t) > t, then we say that ¢ is right-scattered.

Ifr < sup 7 and o (t) = 1, then we say that 7 is right-dense.

If p(t) < t, then we say that ¢ is left-scattered.

If t > inf .7 and p(¢) = ¢, then we say that ¢ is left-dense.

If ¢ is left-scattered and right-scattered at the same time, then we say that ¢ is
isolated.

6. If 7 is left-dense and right-dense at the same time, then we say that ¢ is dense.

A

Example 3 Let 7 ={/2n+1:ne€ A} If t =+/2n+ 1 for some n € 4, then
-1

n= and
2

o) =inflle N :V2A+1>2n+1}=V2n+3=Vt2+2 for ne N,
pt) =sup{lle N :V2A 1T <20+ 1} =/2n—1=+t2-2 for ne N, n=>2.

For n = 1 we have
0(v/3) = sup@ = inf 7 = V3.

Since

V2 =2 <t <+t24+2 for n>2,

we conclude that every point +/2n 4+ 1, n € A", n > 2, is right-scattered and left-
scattered, i.e., every point /2n + 1,n € A4, n > 2, is isolated.

Because
V3=p(3) <o (v3) =5,

we have that the point V3is right-scattered.

1
Example 4 Let = [2— neN ] U {0} and t € .7 be arbitrarily chosen.
n

1
1. t = —. Then
2
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1 1 1 1 1
U(E) Ilnfiz—l,oz—l,0>§,l€</1/] =1nf®=sup9=§,

1 ! 1 1
NV=supl—0:—0<zienrl=0<=,
p(z) Sup[zz TR S I )

. I,
ie., 3 is left-scattered.

1
2. t=—,n€e AN, n>2 Then
2n

1 . 1 1 1 1 1
ol—)=infi—:—> —leN}=">—,
2n 21 21 2n 2h—1) 2n
1 1 1 1 1 1
— ) = —0:—=,0< —,le N} =" < —.
'O(Zn) SuPHzl TR ] CER
. 1 .
Therefore all points o’ n € A4, n > 2, are right-scattered and left-scattered,
n
1
i.e., all points o n € A, n>2,areisolated.
n

3. t = 0. Then

o(0) =inf{s € 7 :5 >0} =0,
p(0) =sup{s € T :5 <0} =sup@ =inf 7 = 0.

Example 5 Let T = {% ‘n e JI{)} and t = g, n € A, be arbitrarily chosen.
1. n € 4. Then

n . l _l n n—+1 n
U(g)—lnf[§,0.§,0>§,le%]— 3 >§,

n l l n n—1 n
0(5)=S“I’[§’0~§’°<§*’€%]= 3 <3

Therefore all points t = g n € &, are right-scattered and left-scattered, i.e., all

. n .
points t = —, n € 4, are isolated.

2. n =0. Then
) [ [ 1
c(0)=inf{-,0:=-,0>0,le M} ==->0,
3 3 3
[ 1 .
0(0) = sup §:§,O<O,le/16 =sup@ =inf T =0,
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i.e., t = 0 is right-scattered.

Exercise 1 Classify each point t € .7 = {v/2n — 1 : n € 4} as left-dense, left-
scattered, right-dense, or right-scattered.

Answer. The points J2n — 1,n € N, are isolated, the point —1 is right-scattered.

Definition 6 The numbers
HO = O, Hn =

will be called harmonic numbers.

Exercise 2 Let
H ={H, :n € M}.

Prove that 7 is a time scale. Find o (¢) and p ().
Answer. o (H,) = H,11,n € N, p(H,) = H,—1, n € A, p(Hy) = Ho.
Definition 7 The graininess function u : 7 +—— [0, 00) is defined by

w(t) = o (t) — 1.
Example 6 Let 7 = {2""" :n € A'}. Let also, t = 2" € 7 for some n € 4.
Then
o(t) =inf {2*' 2 S 2 1 e ) =27 =01,
Hence,
uity=o@)y—t=2t—t=t or pn(2"")=2""" ne.s.

Example 7 Let T = {\/n—i—l ‘n EJV}.Letalso,t: ~/n+ 1 for somen € A .
Then n = 1> — 1 and

o) = [VIFT:VIFT>VatLleN ) =vata=Vitl

Hence,

wu)y=c@)—t=+V2+1—t or pu(Wn+D)=~vn+2—-Vn+1, ne. .

Example 8 Let T = {g ‘n e J%)}.Letalso,t = %forsornen € M. Thenn = 2t

and | |
n—+

e Mt = =t+ -

€ 0] ) +2

n
> =
2

N~
N~

o(t) = inf[
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Hence,
D=0 —t=t+ s —p= (")—1
py=o “iTy Ty T RG) Ty
Example 9 Suppose that .7 consists of finitely many different points: 1, t;, . . ., #.

Without loss of generality we can assume that
H<b<..<TI.
Fori =1,2,...,k — 1 we have
o(t)=inf{tr e T :t,>t,1=1,2,...,k} =t;11.

Hence,
w(t;) =tiy) — ti, i=1,2,...,k—1.

Also,
o(ty)=inflty € Tty > t,,1=1,2,....k} =inf @ =sup T =¢.

Therefore
uwt) =oty) —tr =t —tr =0.

From here,

k k—1 k—1
Do) =" )+ pte) = D (tiar — 1) =t — 1.
i=1 i=1 i=1

Exercise 3 Let . = [\3/71 +2:ne J%)}. Find (1), 1t € 7.

Answer.,u(f/n—i—Z) =n+3—Jn+2.

Definition 8 If f:.7 —— % 1is a function, then we define the function
f°: T — Zby

fo@t) = f(o(t)) for any te€ 7. ie, f°=foo.

Below, for convenience, we will use the following notation ok (t) = (o)),

5o = (fF)k ke %.
Example 10 Let 7 = {t =2""* :n e A}, f(t) =t* +t — 1. Then

o(t) =inf {272 : 22 > 22 1 e '} =270 =21,
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Hence,
) = flo@®)=c’O)+0(@)—1=Q0)>+2t—1=4>+2t—1, te 7.

Example 11 Let F ={t=~n+3:ne AN}, f&) = t + 3, t € 7. Then
n=1t>—3and

o) =inf{sI1+3:VIi+3>Vn+3leN})=Vn+4=V2+1.

Hence,

flo®) =0 +3=vVr2+1+3.

Example 12 Letﬂ:[lzne,/i/]U{O},f(t):tS—t,teﬁ.

n

1 1
l. t=—,n>2.Thenn = - and
n t
o1 1 1 ;
fH=inf{-,0:=,0>—leN}= -
o(t) m[l 720> —l¢€ ] — =
Hence,
3
flo®) =0’(t)—a(t) = _y ot
1—1¢ 1—1¢
__r t Pt =)
T -0} 1-t (1—1)3
P =t =241 P —14207 - 12— 1)
a (1—1)? B (1 —1)3 T -3
2. t = 1. Then
[ 1 .
U(l)=1an7,0:7,0>1,le</V}=1nf®=sup9=1,
fle)=0c’(1)—o(1)=1—-1=0.
3. t =0. Then

1 1
a(O):infiT,O:7,0>0] =0,

f(@(0) =0°0) —a(0) =0.

Exercise 4 Let.J — {z —Jnt2:ne JV},f(t) —1—£,t e 7.Find f(o (1)),
te 7.
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Answer. —7°.

Definition 9 We define the set

TI\(p(sup T),sup 7] if supT < o0

7 otherwise.

m:[

1
Example 13 Let T = [— /S /V] U {0}. Then sup 7 = 1 and
n

1 1 1
P(l):sup|7,0:7,0<1,leﬂ] :E

Therefore ) 1
T = 3‘\(5, 1]: [; neN,n> 2} U {0}

Example 14 Let 7 = {2n:n € A}. Thensup.7 = oo and T = 7.

E lel5 Let T =1 ———:
xample e [n2+3

1
ne/}U{O}.Thensup9:Z<oo,

1 1 0 1 0 1 le 1
- )=sup}l——>,0: ——,0 < —, =—.
P\ Pleys " pys” g 7
Hence,
9”—9\(1 1]— L s2luo
BRERACARY Bl PP R '
Definition 10 We assume that a < b. We define the interval [a, b] in 7 by

l[a,bl={t e . T :a <t <b}.

Open intervals, half-open intervals and so on, are defined accordingly.

Example 16 Let [a, b] be an interval in .7 and b be a left-dense point. Then

supla, b] = b and since b is a left-dense point, we have that p(b) = b. Hence,

[a, b]* = [a, bI\(b, D] = [a, D]\D = [a, b].

Example 17 Let [a, b] be an interval in .7 and b be a left-scattered point. Then
supla, b] = b and since b is a left-scattered point, we have that p(b) < b. We
assume that there is ¢ € (p(b), b], c € Z,c # b. Then p(b) < ¢ < b, which is a

contradiction. Therefore

[a, b]* = [a, bI\(p(b), b] = [a, b).
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Exercise 5 Let 7 = [ ‘n e JV} U {0}. Find .7*.

2n +1

1
Answer. 'neN,n>21U{0}
2n+1

1.2 Differentiation

Definition 11 Assume that f : .7 — & is a function and let r € 7. We define
f A(t) to be the number, provided it exists, as follows: for any ¢ > 0 there is a
neighbourhood U of ¢, U = (t — §,t + §) N 7 for some § > 0, such that

|f (o) — f(s) — fA) (@) —s)| <elo(t) —s| for all seU, s#o().

We say £ (t) the delta or Hilger derivative of f at t.

We say that f is delta or Hilger differentiable, shortly differentiable,in T* if f* (1)
exists for all # € 7. The function f* : .7 — Z is said to be delta derivative or
Hilger derivative, shortly derivative, of f in 7.

Remark 1 If 7 = Z,then the delta derivative coincides with the classical derivative.
Theorem 1 The delta derivative is well defined.

Proof Lett € % and f(t),i = 1,2, be such that
|fe@®) = f(s) = [ @) —9) < %Ia(t) - s/,
[F@@) = F©) = D@0 =) = Slo@) =]

forany ¢ > 0and any s belonging to aneighbourhood U of t,U = (1 — 8,1 +8) N T
for some § > 0, s # o (t). Hence,

s aen | pay  F@EO) = F6) | FE@) = f©)
R0 = 201 = [ 720 - T S 0|
- ‘flA(t) _ flo@®) — J‘(S)‘Jr flo@)— f(s) —ff(r)‘

o(t)—s o(t)—=s

_ fle@) = f(s) = [0 (@) =)l + |fle®) = f(s) = [ (D)(0@) = 9)
lo(2) —s| lo(z) — s

IA
I ST

+

| ™
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Since ¢ > 0 was arbitrarily chosen, we conclude that

[0 =,
which completes the proof.

Remark 2 Letus assume thatsup .7 < ooand f4(¢) is defined atapointt € .7\.7*
with the same definition as given in Definition 11. Then the unique point# € .7 \.7*
is sup 7.

Hence, for any ¢ > 0 there is a neighbourhood U = (¢t — 8, ¢t + 8) N (T\.T"),
for some § > 0, such that

fle®) = f(s) = flo(sup 7)) = f(sup.7), seU.

Therefore for any « € # and s € U we have

|[f(e@®) = f(s) —alo () —s)| = |f(supT) — f(sup.T) — a(sup T —sup.7)]|

< elo(t) — s,

i.e., any o € Z is the delta derivative of f at the point r € 7\ . .

Example 18 Let f(t) = a € %. We will prove that f(t) = 0 forany t € .7~.
Really, for t € 7 and for any ¢ > O thereisa§ > O suchthats € (t — 8,1+ §)
N.7,s # o(t), implies

[f(@(@®) = f(s) =0(c () —9)| = |a —«f

<elo(t) —s]|.

Example 19 Let f(t) =t,t € 7. We will prove that f(t) = 1 forany t € .7*.
Really, for t € 7 and for any ¢ > O thereisad > O such thats € (r — 5, t + §)
N.7,s # o(t), implies

[f(a@®) = f(s) = 1) —als)] =lo(®) —s = (o(t) —s)]

<elo(t) —s|.

Example 20 Let (1) = t>,t € 7. We will prove that f2(t) = o (1) + 1,1 € T*.
Really, for t € 7° and for any ¢ > 0, and for any s € (t —¢,t +€)N .7,
s # o(t), we have |t — s| < ¢ and

1£@(@®) = f(5) = (@) + D (1) — )| = [o%() — s> = (@(1) + )(o (1) — 5]
= (@) —s)o@)+s)— (@) +1)(o@) —s)|
=lo(®) —sllt —s|

< elo(t) —s|.
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Exercise 6 Let /(1) = «/1,t € 7,t > 0. Prove that f2(r) =
Te,t > 0.
Exercise 7 Let f(t) = 1>,t € 7 .Provethat f2(t)=0>(t) + to (t) + 1> fort € T*.

Theorem 2 ([2]) Assume [ : T +—— X is afunction and lett € 7. Then we have
the following.

1. If f is differentiable at t, then f is continuous at t.
2. If f is continuous at t and t is right-scattered, then f is differentiable at t with

1
—ﬁ+mf0rt €

flo@) — f@)
n(t) ‘

3. Ift is right-dense, then f is differentiable iff the limit

A =

lim L8O = f6)
m ——

s—>t r—39
exists as a finite number. In this case

0= i L0160

i
—>t r—s
4. If f is differentiable at t, then

flo(@®) = f(t) +u@) f2@0).

Example 21 Let T = [ ‘ne Jﬁ{)} U{0}, f(t) =o(t),t € 7. Wewill find
1—1

» =
2n+1 2t

2n +1

fA@),te 7. Forte T,t =

,n > 1, we have

1 1 1 1
t) = inf ,0: ,0 JdeMmy =
o) m[21+1 A+1 2+l 0} 20— 1
1 t
Toiy T 1-x "
=t
i.e., any point t = T n > 1, is right-scattered. At these points
n
i LEO =0 a0 —ow) _, 0
o(t)—t o(t) —t (1—=20) (o) —1)
2 2
_>y (%) _ T _ 1 1

- 2) (-0 B~ 2ed—4n - 1-4
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Letn =0,1.e.,t = 1. Then

1

1
DD=inf] —— 0: —— 0> 1,l€ A =inf@ = T =1,
o(l) =in [21+1 T > € 0] inf @ = sup

i.e., t = 11is aright-dense point. Also,

_ _  [E—— _
limwzhmwzhmﬁ_rmi +

= 11 =
s—1 1—=s s—1 1—=s s—1 l—s s—1 (1 —s)(1—2s)

Therefore o’(1) doesn’t exist.
Let now ¢t = 0. Then

1
,0:
21+ 1 21 +

a(O):inf[ 1,O>O,le%]=0.

Consequently # = 0 is right-dense. Also,

h) —o(0 2 =0 1
lim M = lim =2 — lim = 1.
h—s0 h h—s0 h h—01—2h

Therefore o/(0) = 1.

Example 22 Let 7 = {n® :n e M)}, f(t) =12, g(t) = o (t), t € . We will find
fA(t)and g2(1) fort € T*. Fort € T, t =n’,n = /1, n € A, we have

o()=inf{l>: P>n*leM)=m+1>=Wt+1)7>>r1.

Therefore any points of .7 are right-scattered. We note that f(¢) and g(¢) are
continuous functions in .7 . Hence,

fag = JO—FO) P -2

ct)—t = o()—t =o0+t
= (ﬁ+1)2+t:t+2ﬁ+1+t:1+2ﬁ+2t,
dA(0) = go@®) —g) _o(o®)—o)
o(t)—t o(t)—t
W+ Do) o) +2J/o@)+1—0(1)
- o(t) —t - o(t) —t

14200 14+2(/t+ 1) _3+2¢?
oo -t Wi+ D2—1 1421

Example 23 Let 7 = (§2n + 1:n € ), f(1) = t*,t € T. We will find £2(1),
-
te I Forte T,t=~2n+1,n=

,n € A, we have
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o) =inf{(2l+1: 21 +1>2n+1,1e M) =v2n+3

=Vt +2 > 1.

Therefore every point of .7 is right-scattered. We note that the function f(z) is
continuous in .7 . Hence,

flo®)—f@) o) —1t*
oty—t  o(t)—t
a3) +10%(t) + 2o (t) + 13
=V T+ AV 2 v 24P e T

A =

Exercise 8 Let 7 = {~n+1:ne M), f(t)=t+1,te Z.Find f2@t),t €
T*.

Answer. 1 + V(15 + D2 + 1715+ 1 + .
Theorem 3 ([2]) Assume f, g : T +—— X are differentiable att € .T°. Then
1. thesum f + g : T +—— Z is differentiable at t with

(f+%0) = f20) + ¢ ).
2. forany constant a, af . T +—— X is differentiable at t with
(@) (1) = af (o).

3. if f(t) f(o(t)) # 0, we have that % : T +——> X is differentiable at t and

(l)A ) = O
f T fOfe@)’

4. ifg(t)g(o(t)) # 0, we have that i : T +—— R is differentiable at t with
g

(f)“ o = L1080 = F0g°0)

g g()g(a (1)

5. the product fg : T —— Z is differentiable at t with
(f9)* (1) = fAg(0) + flo@)g*(t) = f(Hg (1) + fA(1)g(o(1)).

Example 24 Let f, g, h : T ——> Z be differentiable at t € .7“. Then



1.2 Differentiation 13

(fgh)* (1) = (f)) (1) = (fe)* (Oh(t) + (f) (o (t)h™ (1)
= (fAg) + o) ENh() + f7()g” (R (1)
= fANgh(t) + f g (Oh(t) + f7(1)g% (1)h™(1).

Example 25 Let f : F —— % be differentiable at t € 7. Then

(P20 = (fH2O) = FAOF@) + FOO) A0 = FADU @) + f1)).
Also,

(FH2) = (FFHY0 = FAO 21 + Fe)(FH2 @)
= FAOAO+ fFOLAOUT@) + 1)
= A0 + FO L@ + (FO) D).

We assume that

n—1
2@ = £20 D A oun) ")

k=0

for some n € A"
We will prove that

S0 = 20 D oG @),

k=0

Really,

(f"HA@0 = (ffH0) = FAO L0 + f7 O 0)
= fAOL O+ FAOST O+ 120 £ @)
o fOUT O+ )TN0
= PAO(F O+ T OLTO+ OGO+ + (F)0)

= £20 D FF O o.

k=0

Example 26 Now we consider f(¢t) = (t —a)" fora € # and m € /. We set
h(t) = (t — a). Then h*(¢) = 1. Hence and the previous exercise, we get

m—1
ORGP IO E
k=0
-1
(t —a)c) —a)y" ' .

3

o~
Il
o
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1
Let now g(¢) = ——. Then

f(@)
A @
&= oo
whereupon
1 m—1

A — Nk o ym—l—k
0=~ o= ;a @) (o (1) - a)

_ '"Z‘l 1 1
S (1 —ay* (o) —a)+!

Definition 12 Let f : 7 — Zandt € (T*)" = T * 'We define the second deriv-
ative of f at ¢, provided it exists, by

4 = (fA)A L T — A,
Similarly we define higher order derivatives /2" : 7" — 7.

Theorem 4 [2] (Leibniz Formula) Let S,E") be the set consisting of all possible strings
of length n, containing exactly k times o and n — k times A. If

A exists for all AeS",

then

n

G* =3 > 1) 8™

k=0 AGS}EH)

Example 27 Let u is differentiable at t € .77° and ¢ is right-scattered. Then

s (pa o _ (@O = FOY _ f@@@) ~ flo@)
rew = 0= (FTE=E) =G

_ flo@@®)) — fle®) 1

o(t)—t U(G(Z;:za(l)
) = gy — L
o4 T+ p@)

i.e.,

A = (1+ p2@M) £ ).
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Also,

o7 = (f)° () = A+ p @) (£74) () = (L + p2 @) f72° (1),
747 = (f)% @) = ((£)%)° @
= (A +p2O)F7 ) = (1+p20) f2°°@0).

Theorem 5 ([2]) (Chain Rule) Assume g : # —— % is continuous, g : T —— X%
is delta differentiable on 7%, and f : % ——> X is continuously differentiable. Then
there exists ¢ € [t, o (t)] with

(f o)1) = f'(g(c)g” ().
Example 28 Let 7 = %, (1) =13 + 1, g(t) = t*>. We have that g : Z — Z is

continuous, g : 7 +—— Z is delta differentiable on .7, f : Z —— Z is continu-
ously differentiable, o (t) = ¢ + 1. Then

g = o) +1,
(fo)(D) = f'(g(c)g” (1) =3g°(c) (o (1) + 1) = 9c*, (1.1)
Here c € [1,0[1]] =[1, 2].
Also,
fog)=flgm) =g O)+1=1"+1,
(f o)) =0°(t) +to*(t) + 1203 (t) + o (1) + tro (1) + 12,
(fo)® ()=’ +a*(D) +0°(1) +0*(1) +0(1) + 1 =63,
Hence and (1.1), we get
63=9¢* or ¢*=7 or c=v7¢ [1,2].
Example 29 Let 7 ={2":n e A}, f(t) =t+2, g(t) =1> — 1. We note that
g T +— Z is delta differentiable, g : #Z +—— % is continuous and f : Z +—— X#
is continuously differentiable.
Fort € 7,1t =2",n € Ay, n =log,t, we have

o) =inf {2 :2' > 2" 1 e M} =2"" =2t > 1.

Therefore all points of .7 are right-scattered. Since sup .7 = oo we have that
T* = T. Also, fort € F, we have
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(fog)t)=flgt) =gt)+2=12—1+2=1>+1,
(fo@)®(t)=0(t)+1=2t+1 =3t

Hence,
(fog)*(2) =6. (1.2)

Now, using Theorem 5, we get that there is ¢ € [2, o(2)] = [2, 4] such that
(fo)?@ = f(g)g?(2) =g =0Q)+2=4+2=6.  (1.3)
From (1.2) and (1.3) we find that for every ¢ € [2, 4]
(f 0 2)*(2) = f'(g(e))g? ).

Example 30 Let . = {3”2 ‘n € Jl/o}, f@t)=1>4+1, g(t) =¢>. We note that
g X +—— ZAiscontinuous, g : 7 ——> X is delta differentiable and f : Z —— %
is continuously differentiable.

Forte 7,t=3"ne M,n= (logs 1), we have
o =inf {3":3" > 3" 1 e g} =30
5 1
=3.3" .32 =3,3200e )" 5
Consequently all points of .7 are right-scattered. Also, sup.7 = oco. Then

T =T.

Hence, for t € .7 we have

(fog)t) = flgt) =g*t)+1=1+1,
(fo)?®) ="+ D =0"@t) +t0*(t) + 207 (t) + 0> (1) + t'o (1) + 1,

(fe®?(M) = () +a* () +0 () +0*() +0o(l) +1

=3 +3+334+32+3+1 =364 (1.4
From Theorem 5, it follows that there is ¢ € [1, o (1)] = [1, 3] such that
(f o)) = f'(g(e)g*(1) = 2g(c)g* (1) = 2cg* (D). (1.5)

Because all points of .7 are right-scattered, we have
2=’ +o()+1=9+3+1=13.
Hence and (1.5), we find

(f o 9)*(1) = 26¢°.
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From the last equation and from (1.4) we obtain

364
364 = 26¢° or c3:2—6:14 or ¢=n14.

Exercise9 Let 7 =%, f(t)=t>+2t+1, g(t) =1>—3¢. Find a constant
c € [1,0(1)] such that

(fo)*() = f'(ge)g(D).

Answer. Ve € [1, 2].

Theorem 6 ([2]) (Chain Rule) Assumev : T — X% {s strictly increasing and T =
o(T) is a time scale. Let w : T —> Z. Ifv2(t) and w2 (v(t)) exist fort € T*, then

(wo v)A = (WA~ o v)v2.

Example 31 Let 7 ={2":ne A}, v@t)=1t>, wt)=1"+1. Then v:
T —> A is strictly increasing, .7 = v(T) = {24” ‘ne </16} is a time scale. For
teJ,t=2" ne A, wehave

o(t) =inf {2% : 2% > 2% 1 € M} =27 =4¢,
VAt =o(t) +1t = 5t.

Fort € 7,t = 2" n € ., we have
&(t) =inf 2% : 2% > 2% 1 € A5} = 2" = 161
Also, fort € .7, we have

(wov)(t) = w () =v2(@)+1=1"+1,
(wov)2(t) = o3(t) +ta?(t) + 20 (t) + 13

= 6413 + 168 + 4% + 1 = 851°,
wh o v(t) = 6 (M) + v(t) = 16v(t) + v(t) = 17v(t) = 1712,
(WA~ ° v(t)) VA () = 1762(51) = 851°,

Consequently
wov)A(t) = (W2 o v(t)v2(t), te T .

Example 32 Let 7 = {n+1:n € M}, v(t) = 2, w(t)=rt.Thenv:.7 —> %
is strictly increasing, .7 = {(n + 1)*> : n € 4} is a time scale.
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Fort € ,t =n+1,n € 4, we have

oc@)=inf{{+1:l+1>n+1,le MN}=n+2=1t+1,
Vi) =o@)+t=t+1+1=2t+1.

Fort € ﬁ,t:(n—i—l)z,neﬂ{),wehave

GO ={U+D*>:(+1D*>m+D*1leM=m+2)?
=m+ 1> +2n+ D+ 1=14+2Vi + 1.

Hence, fort € .7, we get

WAov) ) =1, WAov)(O)vd(t) =12t +1) =2 + 1,
wouv(t) = v(t) =12, (Wov)?(t)=0o(t)+1t=2t+1.

Consequently
won)A(t) = W o v()vA(t), te T*.
Example 33 Let T = {2" S JI{)}, v(t) =1, w(t) =1>. Thenv: T —> Z is
strictly increasing, v(.7) = 7.

Fort € 7,t =2",n € 4, we have

o) =inf{2' :2' > 2" 1 e M} =2 =2, vA() =1,
wov) (1) = w(®) = v*(1) =17,
wWov)2(t) =0 (1) +1t=2t+1t =23t
(WA ov)(t) = o(v(t)) + v(t) =2v(t) + v(t) = 3v(t) = 3t,
W o ) (VA (1) = 3t.

Consequently
wov)2(1) = W2 o v()A(1), teT*.
Exercise 10 Let 7 = {2 : n € A4}, v(t) = 1>, w(t) = t. Prove
wov)2(1) = W2 o v()A(1), te T*.

Theorem 7 (Derivative of the Inverse) Assume v : T > % is strictly increasing
and 7 = v(7) is a time scale. Then

W H2ou(t) = e



1.2 Differentiation 19

forany t € T such that v2(t) # 0.

Example 34 Let 7 = .4, v(t) =t>+1. Then o(t) =1+ 1, v: T — Z is
strictly increasing and
Vi) =0o(t)+1=2t+1.

Hence,
1 1

VI B
() ev =5 = g

Example 35 Let 7 ={n+3:ne A}, vit)=t> Then v:T —> Z is
strictly increasing, o (t) =t + 1,

vAt) =o(t) +1t =2+ 1.
Hence,

A _1_1
@)OM”_Mm_m+r

Example 36 Let T = [2”2 ‘n € J%)}, v(t) =13, Then v :.F —> Z is strictly
1
increasing and fort € .7, t = 2”2, neMn= (log2 t) 2 we have
a@):iﬁ{132“>2fJev%}=2m“V
— 2n222n+1 — t22(10g2 t)%+1‘
Then
1 1
UA(I) — Uz(t) + tO'(t) + t2 — z‘224(10g2 t)2+2 + t222(]0g2 t)2+1 + t2.

Hence, i |
(v_l)A ov(t) =

T T .
t224(10g2t)2+2 + 1292(logy 1) 2 +1 412

Exercise 11 Let .7 = {n +5:n € A}, v(t) = 1> +¢. Find (v’l)A o v(?).

1
2t +2

Answer.

1.3 Mean Value Theorems

Let 7 be atime scale anda, b € ,a < b. Let f : 7 —— % be a function.
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Theorem 8 Suppose that f has delta derivative at each point of [a,b). If
f(a) = f(b), then there exist points &, & € [a, b] such that

fAE) <0< fAE).

Proof Since f is delta differentiable at each point of [a, b], then f is continuous on
[a, b]. Therefore there exist &, & € [a, b] such that

m = {Eil,r}f(t) =fE), M= I[I‘}%if(f) = f(&).

Because f(a) = f(b) we assume that £, &, € [a, b).
1. Leto (&) > &;. Then

A fle@E)) — fED)
=" 2" >(.
S ED o) —& >
2. Leto (&) = &;. Then
w o fED) = F@)
FAE) = lim S 2 0.
3. Leto (&) > &. Then
A fo(§)) — f(62)
prm 0.
f7(&) Ta— <
4. Leto (&) = &. Then
w e fE) = f0)
fo &) = ,15?2 T <0.

Theorem 9 If f is delta differentiable at t,, then
flo) = ft) + (f(00) + EM) (1) — 10), (1.6)
where E(t) is defined in a neighbourhood of ty and

lim E(t) = E(t) = 0.
t—>1p
Proof Define

fo@)—f ) A
E(t):[TtoO_f (to), teT, t#1,

1.7
0, r=rn. (1.7)
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Solving (1.7) for f(o(t)) yields (1.6) if t # t,.
Lett = ty. Then

1. o(ty) > to. Then (1.6) is obvious.
2. o(ty) = to. Then (1.6) is obvious.

Theorem 10 Let f is delta differentiable at ty. If f*(to) > (<)0, then there is a
8 > 0 such that
flo(®) = (=) f(t) for Vi € (ty, 10+ 9)

and

f(o(®) = (=) f(t) for Vi€ (1h—46,1o).
Proof Using (1.6) we have, for ¢t # t,

flo(®) — f(t)

_ §A
o) —10 o () + E(1). (1.8)

Let § > 0 is chosen so that |E(t)| < fA(to) for any t € (tp — 8, 1o + §). Such
8 > 0 exists because lim E(t) = 0. Hence, for any ¢ € (f, — 5, tp + §) we have
t—>to
f2(t0) + E(1) = 0.
Ift € (ty, to + 8), then o (¢) > 1y and from (1.8) we find

flo®) = f@w) _

a(t) —ty -

e, f(o(®) = f().
Ift € (19 — 8, 10), thent < o(t) < 1y and from (1.8) we get f (o (t)) < f(t).

Theorem 11 (Mean Value Theorem) Suppose that f is continuous on [a, b] and has
delta derivative at each point of [a, b). Then there exist &, &, € [a, b) such that

fAENG —a) < fb) — fl@) = fAE) b —a). (1.9)
Proof Consider the function ¢ defined on [a, b] by

16— 1@,
a

P a).

o) = f@) - fla) -

Then ¢ is continuous on [a, b] and has delta derivative at each point of [a, b).
Also, ¢ (a) = ¢(b) = 0. Hence, there exist &1, & € [a, b) such that

o2 (&) <0 < 92 (&)
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or

<0< &) —

sy IO~ f@
SoED P

f) — fa)
b— a

b —
whereupon we get (1.9).

Corollary 1 Let f be continuous function on [a, b] that has a delta derivative at
each point of [a, b). If f*(t) = 0 forall t € [a, b), then f is a constant function on
[a, b].

Proof For every t € [a, b], using (1.9), we have that there exist &, & € [a, b) such
that

0= f2ENt—a) < f()— fla) < fAE)E —a) =0,
ie., f(t) = f(a).

Corollary 2 Let f be a continuous function on [a, b] that has a delta deriva-
tive at each point of [a, b). Then f is increasing, decreasing, nondecreasing and
nonincreasing on [a, bl if f2(t) >0, f2@t) <0, f2@) =0, f2(t) <0 for any
t € [a, b), respectively.

Proof 1. Let f4(t) > 0 for any ¢ € [a, b]. Then for any 1,1, € [a,b], t; < t,.
there exists & € (¢, tp) such that

f(t) = f(t) < fFAEN(H — 1) <0,
ie., f(t) < f(t).

2. Let f4(r) < Oforany € [a, b]. Thenforany t,, 1, € [a, b].1; < t,. there exists
£, € (t1, t) such that

f(t) — f() = f2EN(H — 1) > 0,
ie., f(t) > f(n).

The cases f A(t) > 0 and f 4(t) < 0 we leave to the reader for exercise.

1.4 Integration

Definition 13 A function f : .7 —— Z is called regulated provided its right-sided
limits exist(finite) at all right-dense points in .7 and its left-sided limits exist (finite)
at all left-dense points in 7.

Example 37 Let 7 = A and

2

g(t):L, te 7.

=7 (41
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We note that all points of .7 are right-scattered. The points t € 7, ¢t # 1, are left-
scattered. The point r = 1 is left-dense. Also, linll f(¢) is not finite and lirrll g(®)
t—s1— t—>1—

exists and it is finite. Therefore the function f is not regulated and the function g is
regulated.

Example 38 Let = % and

0 for t=0
fm:[} for ¢ € Z\{0).

We have that all points of .7 are dense and lirré f() and lirr(; f(t) are not
t—0— t—>0+

finite. Therefore the function f is not regulated.
Exercise 12 Let .7 = % and

11 for t=1
f(t)=[; for e Z\{1}.

-1
Determine if f is regulated.

Answer. No.

Definition 14 A continuous function f : .7 —— Z is called pre-differentiable with
region of differentiation D, provided

1. Dc 7,
2. Z*\D is countable and contains no right-scattered elements of .7,
3. f is differentiable at each r € D.

[e.¢]

Example 39 Let T =P, = U[k(a +b),k(a+b)+a] for a>b>0,
k=0
f 7 —— % be defined by

0 if 7e U2 lka+b), k(a+b)+b]

f@ =
t—(a+bk—b if te€(a+bk+b, (a+bk+al

oo
Then f is pre-differentiable with D\ U {(a + b)k + b}.

k=0
Example 40 Let = % and
0 if r=3
f(’)z[% it te2\[3).

Since f : T — Z is not continuous, then f is not pre-differentiable.



24 1 Elements of the Time Scale Calculus
1

Example 41 Letﬂ:%U l——:ne A} and
n

0 if teN
f)=

t otherwise.

Then f is pre-differentiable with D = .7\ {1}.
Exercise 13 Let = % and

0 if r=-3
S = [ L if rea\(-3).

Check if f : 7 ——> Z is pre-differentiable and if it is, find the region of differ-
entiation.

Answer. No.

Definition 15 A function f : .7 —— Z is called rd-continuous provide it is con-
tinuous at right-dense points in .7 and its left-sided limits exist(finite) at left-dense
points in .7. The set of rd-continuous functions f : .7 —— % will be denoted by
Cra(T).

The set of functions f : 7 —— % that are differentiable and whose derivative is
rd-continuous is denoted by €, (7).

Some results concerning rd-continuous and regulated functions are contained in
the following theorem. Since its statements follow directly from the definitions, we
leave its proof to the reader.

Theorem 12 Assume f : T +— Z.

If f is continuous, then f is rd-continuous.

If f is rd-continuous, then f is regulated.

The jump operator o is rd-continuous.

If f is regulated or rd-continuous, then so is f°.

Assume f is continuous. If § © T —— X is regulated or rd-continuous, then
f o g has that property.

SR W~

Theorem 13 Every regulated function on a compact interval is bounded.

Proof Assume that f : [a, b] —> %, [a,b] C 7, is unbounded. Then for each
n € A there exists f, € .7 such that | f(z,)| > n. Because {f,,},e.+ C [a, b], there
exists a subsequence {t,, }ke.sr C {t1}ne.s such that

ty, >ty and limt, =ty or t, <ty and lim t, =1t.
k—o00 k— 00

Since .7 is closed, we have that 1y € 7. Also, t is a left-dense point or a right-
dense point. Using that f is regulated, we get
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| lim f(z,) = f(t0)] # oo,
k—> 00

which is a contradiction.

Theorem 14 (Induction Principle) Let 1y € 7 and assume that
{S@) : 1 € [10, 00)}

is a family of statements satisfying

(i) S(tp) is true,
(ii) Ift € [ty, 00) is right-scattered and S(t) is true, then S(o (1)) is true,
(iii) Ift € [ty, 00) is right-dense and S(t) is true, then there is a neighbourhood U
of t such that S(s) is true for all s € U N (¢, 00),
(iv) Ift € (ty, 00) is left-dense and S(s) is true for s € [to, t), then S(t) is true.

Then S(t) is true for all t € [ty, 00).

Proof Let
S* = {r € [tp, o0) : S(¢) is not true}.

We assume that S* # @. Let inf S* = t*. Because .7 is closed, we have that
e 7.

1. If t* = 1y, then S(¢*) is true.

2. If t* # tp and t* = p(t*), using (iv), we get that S(¢*) is true.

3. If t* # 19 and p(t*) < t*, then p(¢*) is right-scattered. Since S(p(t*)) is true,
we get that S(#) is true.

Consequently ¢* ¢ S*.

If we suppose that ¢* is right-scattered, then using that S(z*) is true and (ii), we
conclude that S(o (%)) is true, which is a contradiction. From the definition of ¢ it
follows that t* # max .7 . Since #* is not right-scattered and t* # max .7, we obtain
that ¢* is right-dense. Because S(¢*) is true, using (iii), there exists a neighbourhood
U of t* such that S(s) is true for all s € U ﬂ(t*, 00), which is a contradiction.

Consequently S* = (.

Theorem 15 (Dual Version of Induction Principle) Let ty € . and assume that
{$() : 1 € (o0, 1}

is a family of statements satisfying

(i) S(ty) is true,
(ii) Ift € (—o0, ty] is left-scattered and S(t) is true, then S(p(t)) is true,
(iii) Ift € (—o0, ty] is left-dense and S(t) is true, then there is neighbourhood U of
t such that S(s) is true for all s € U N (—o0, t),
(iv) Ift € (—o0, ty) is right-dense and S(s) is true for s € (t, ty), then S(t) is true.
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Then S(t) is true for all t € (—00, ty].

Theorem 16 Let f and g be real-valued functions defined on 7, both pre-
differentiable with D. Then

72| <1g%(t)| forall t e D

implies
[ f(s)— f(r)| <g(s)—g(r) forallr,s,e 7, r<s. (1.10)

Proof Letr,s € 7 withr < s. Let also,
[r,s)\D ={t, :neN}.

We take ¢ > 0 arbitrarily. We consider the statements

S@) 1f(0) = fr)| = g) —gr) +8(f - +22n)

ty <t

fort € [r, s].
We will prove, using the induction principle, that S(¢) is true for all ¢ € [r, s].

1. S(r):0< 822*" is true.

ty<r

2. Lett € [r, s] is right-scattered and S () holds. Then for r € D we have

@) = F)] = £@) + m@0) fA0) — £
< uOIfAO1+1£0) = f()
<uOIfFAO1+80) —gr) +e(t—r+>, 27"
< uOg W +g) —gr) +e(t—r+Y, 27"
<glo®)—gr)+e(t—r+, 27" (<o)
<g®) =g +e(c® —r+3, 12",

i.e., S(o(¢)) holds.
3. Lett € [r, s) and ¢ is right-dense.

1. case.t € D. Then f and g are differentiable at t. Then there exists a neigh-
bourhood U of ¢ such that

£ — f() — A —1)] < §|r — 1]
forall T € U, and

18() — g(x) — g2 ()t — T)| < §|z — 1]
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forall T € U. Thus
FO = fol = (1F2O1+3) 1t =7
forall T € U, and
§(0) =80 + O —7) = 5|t 7|
forall T € U or
§(0) =80 =g (O =) = 5|t 7|

forallt € U.
Hence forall T € U N (¢, 00)

lf@) =l =I1f@)— f@O)+ f@)— fr)]
=1f@)—=fOI+1f@) = fr)l
< (/21 +5) It — vl +g@) — gr)
+e(t—r+2, 27"
< (8" +5) It —tl+g@0) —g()
+e(t—r+>, 27"
=g —0)+ 5 —1)+g@1) —gr)
+e (t —r+ Zt,,<t Z_n)
<g@m—gW)+5t—t|+ 5@ —1)+gt)—gr)
+¢ (t —r+ Z,ﬂd 2’”)
=g(r)— g +e(t—N+e(t—r+%, 27"
= g(T) _g(r) +¢€ (T =r +Zt,,<1 2—n) s
so S(t) follows forall t € U N (¢, 00).
2. case. t ¢ D. Then t =t, for some m € 4. Since f and g are pre-
differentiable, then they both are continuous. Therefore there exists a neigh-

bourhood U of ¢ such that

(1) — f(0)] < gz—m forall TeU

and .
lg(t) —g@®)] < 52*’” forall 7 eU.

Therefore e
gr)—g) = —527’" forall t e U.

Consequently
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[f(@) = fWOI=1f) = f@O)+ f@) = f()

[f (@) = fOI+1f@) — f()

527"+ g(t) —g(r) +¢ (t —r 4+ Zln<t 2_”)

527" 4+ g(r) + 527" —g(r) + & (t —r+ Zt,,<t 2_”)
27"+ g(m)—gr)+e(t—r+>, 27"
27"+ g(t)—glr)+e¢ (r —r+ Zt”q 2’") ,

IA I IATATA

so S(t) follows forall T € U N (¢, 00).

3. Let ¢ is left-dense and S(¢) is true for T < t. Then

lim, ., | f(r) — f()] < lim, ., {g() —g) +e(t —r+3, 27"}
<lim, ., {s() —gr)+e(t—r+, 27}

implies S(¢) since f and g are continuous at ¢.

Hence and the induction principle it follows that S(z) is true for all ¢ € [r, s]. Con-
sequently (1.10) holds forall r < s,r, s € 7.

Theorem 17 Suppose [ : T —— X is pre-differentiable with D. If U is a compact
interval with endpoints r, s € 7, then

lf(s)— fr)l = [ sup IfA(t)I} ls —rl.
teUknD
Proof Without loss of generality we suppose that » < s. We set
g(t) = [ sup IfA(l)] t—r), teT.
teU*ND

Then
g (t) = [ sup IfA(t)I] > 2@

teU*ND

forallt € DN [r,s]*.
Hence and Theorem 16 it follows that

If@) — f()] < g@) —g@r) forall tel[rs],

whereupon

teU*ND

1) = f(N=g(s) —glr) =g(s) = [ sup IfA(l)I] (s —r).

Theorem 18 Let f is pre-differentiable with D. If f*(t) =0 for all t € D, then
f(t) is a constant function.
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Proof From Theorem 17 it follows that for all , s € .7

lf(s) = f(] = [ sup IfA(t)I] |s —r|=0,

teU*ND

i.e., f(s) = f(r). Therefore f is a constant function.

Theorem 19 Let f and g are pre-differentiable with D and (1) = g*(¢) for all
t € D. Then
gy=f®+C foral re .7,

where C is a constant.

Proof Let h(t) = f(t) — g(t),t € 7. Then
hA(t) = f2(t) —g?(t) =0 forall e D.

Hence and Theorem 18 it follows that /(¢) is a constant function.

Theorem 20 Suppose f, : T +—— Z is pre-differentiable with D for eachn € N.
Assume that for each t € T there exists a compact interval U (t) such that the
sequence {an tne converges uniformly on U (t) N D.

(i) If {fu}nen converges at some ty € U(t) for some t € T, then it converges
uniformly on U (t).
(it) If {fu}nen converges at some ty € 7, then it converges uniformly on U (t) for
allt € T~
(iii) The limit mapping f = nli_r)noo fn is pre-differentiable with D and we have

A = lim f2(t) forall teD.

Proof (i) Since { an}n€ v converges uniformly on U(¢) N D, then there exists
N € 4 such that
sup  |(fin — f)2 (5]

seU@)ND

is finite for all m, n > N.
Letm,n > N andr € U(¢). Then

Lfu(r) = SO = [fa(r) = fin(r) = (fu o) — fin(10)) + (fu(t0) = fin (10))]
= 1 falto) = fun ()| + {8UPscry o | = ) 2 ()1} Ir — tol.

Hence, {f,},c» converges uniformly on U(?), i.e., {f,}nes is locally uni-

formly convergent sequence.
(i1) Let { f,,(t0)}nes converges for some #y € .7 . Let

S(@) : {fu(t)}hes converges.
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1. S(t) : {fu(ty)} converges is true.
2. Lett is right-scattered and S(¢) holds. Then

(@ @) = fut) + n(0) f(2)

converges by the assumption, i.e., S(o (¢)) holds.

3. Lett isright-dense and S(¢) holds. Then, by (i), { f,},c_4+ converges on U (¢)
and so S(r) holds for all r € U(t) N (t, 00).

4. Lettisleft-dense and S(r) holds forall 7y < r < ¢.Since U(t) N [tg, 1) # @,
using again part (i), we have that { f,,},c 4 converges on U (), in particular
S(t) is true.

Consequently S(¢) is true for all ¢ € [y, 00). Using the dual version of the
induction principle for the negative direction, we have that S(¢) is also true for
all r € (—o0, tp] (We note that the first part of this has already been shown,
the second part follows by f,,(p(?)) = f,(t) — n(p (t))an (p (1)), the third part
and the fourth part follow again by (i)).

Lett € D. Without loss of generality we can assume that o () € U(t). We take
¢ > 0 arbitrarily. Using (i), there exists N € .4 such that

|(fa = F) ) = (fa = f) (@ @O)] < {sUDscpynp |(fo = fu) 2 (S} Ir — o (0)]

for all » € U(¢) and all m,n > N. Since { an}ne _v converges uniformly on
U(t) N D, there exists N; > N such that

forall m,n > Nj.

sup  |(fu — fm)A(S)| =

seU@)ND

W] ™

Hence,
£

|(fo = ) (1) = (fu = f) (0 (D)) < §|r —a(n)]
for all r € U(t) and for all m, n > N;. Now, letting m — o0,
(= 0 = (o = HEO)] = Sl =0 )
forall» € U(t) and all n > N,. Let
gty = lim f2(0).
n—>00
Then there exists M > N; such that

Ifi3 () — g()] <

W] ™
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and since f), is differentiable at ¢, there also exists a neighbourhood W of ¢
with

| (o (@) = fu(r) = fig (D)o @®) =) < gld(t) — 7

forallr e W.
From here, for all r € U(t) N W, we have

If(@®) = f(r) —gDlo@) —rll < |(fm — o) — (fu — £H(@)]
+HfG®) — gDllo) —r]
+Hfm o) — fu () — fi7Olo@) —rll
< Elo@® —rl+§lo@ —r|
+Elo(t) —r|
=¢lo(t) —r].

Consequently f is differentiable at t with f4 (1) = g(t).

Theorem 21 Let tg € T, xg € %, [ : T“ +——> X be given regulated map. Then
there exists exactly one pre-differentiable function F satisfying

FA(t) = f@t) forall t €D, F(t) = xo.
Proof Letn € 4 and
there exists a pre — differentiable (F,;, D),
S(@): 3 Fu i [to, ] — #Z with F,;(t)) = xo and
|F4(s) — f()| <1 for s € Dy.

1. t = ty. Then D,,, = @ and F,,(f)) = xo. Then the statement S(zy) follows.
2. Let ¢ is right-scattered and S(7) is true. Define

Dna(r) = Dnt ) {t}
and F,; ) on [fy, o ()] by

[ Fuls) if s €t 1]
Faow® =1 Bty 4w @) if s = o).

Then

Fna(t)(tO) = Fnt([()) = X0,

A _ _ A _ l
| Fooy () = f()| = [F,(s) — f()] < . for s € Dy,
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and
Fao (@ (D))= Fon (¢
[F0(0) = F0)] = | Pelelifon® £ ()
Fu)+1) f()=Fuo () f(t)‘

()
—_ | Fu @O+ fO—Fu(t) _
il o E—— (”‘

_ |k f@) _ 1
- o) _f(t)‘—()§;

and therefore the statement S (o (¢)) is valid.

. Suppose ¢ is right-dense and S(#) is true. Since ¢ is right-dense and f(¢) is

regulated,
fahH = 1irtn f(s) exists.
s—>t,5>1

Hence, there is a neighbourhood U of ¢ with

1f(s) — faD)| < % forall s € U N (t, 00). (1.11)

Letr € U N (¢, 00). Define
Dnr = [Dnt\{t}] ) [l, r]K
and F,, on [ty, r] by

F ()_ Fnt(s) if Se[t07t]
S ZVEL O+ Fa) s —1) if s e (t,r]
Then F),, is continuous at ¢ and hence on [y, r]. Also, F,,, is differentiable on
(t, r]° with
FA(s) = f(t*) forall se(,r]".
Hence F),, is pre-differentiable on [7y, ). Since 7 is right-dense, we have that F),,
is pre-differentiable with D,,.. From here and from (1.11), we also have

1
|FAGs) — f(s)] < - for all s € D,,.

Therefore the statement S(r) is true for all r € U N (¢, 00).

. Now we suppose that ¢ is left-dense and the statement S(r) is true for r < .

Since f(t) is regulated,

f@7)= 1lim f(s) exists. (1.12)

s—>t,5<t

Hence there exists a neighbourhood U of ¢ with
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foralls e U N (—o0,1).

S| =

[f(s) = fa)] =
Fix some r € U N (—o0, t) and define

D — D, U (r,t) if r is right — dense
"7 | D Ulr, t) if ris right — scattered

and F,, on [fy, t] by

B F,.(s) if se(t,r]
Fu(s) = {Fnr(t) + f@)(s—r) if se(rt]

We note that F),, is continuous at r and hence in [#y, ¢]. Since
Fa(s) = f(t7) forall s e (r1t],

F,; is pre-differentiable with D,,, and

(s) f(s)]| < — forall s € Dy.

Hence, the statement S(¢) holds.

By the induction principle S(#) is true for all # > 1y, t € 7. Similarly, we can show
that S(¢) is valid for r > fy. Hence F, is pre-differentiable with D,,, F, (fy) = x( and

1
|[FA(t) — f(1)] < - forall € D,.

Now let
F= lim F, and D= ﬂD

n—-o0
neN

Then F(ty)) = xo, F is pre-differentiable on D and using Theorem 20

FA(t) = lim F*(t)= f(t) forall e D.
n—-00

Definition 16 Assume f : .7 —> % is a regulated function. Any function F' by
Theorem 21 is called a pre-antiderivative of f. We define the indefinite integral of a
regulated function f by

/f(t)At = F(t) +c,

where ¢ is an arbitrary constant and F is a pre-antiderivative of f. We define the
Cauchy integral by
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N
/ f)At = F(s) — F(tr) forall r,s € 7.
T

A function F : .7 +—— % is called an antiderivative of f : .7 —— &% provided
FA(t) = f(t) holds for all t e .7~.

Example 42 Let.7 = % .Theno (t) =t + 1,t € 7. Letalso, f(1) = 3t> + 5t + 2,
g(t) =1+t € 7. Since

gA(t) =o*(t) +tot)+ 12 +o(t)+1t
=@+ D24+t +D)+2+t+1+1
=242+ 14+2 4141242t +1
=324+ 5t+2,

we conclude that

/(3t2+5r+2)m=t3+z2+c.

t 3t
Example 43 Let 7 =27, f: .7 > Z is defined by f(1) = ZSinzcos >
t € 7. Letalso, g(t) = sint, t € 7. In this case we have that o (¢) = 2. Since

A __ sin(o(t))—sint
871 o(D—1
— sin(2¢)—sin t

t
2 it 3t
= sin 5 cos 5,

we get

/2 ot 3tAt int 4
— S1n — CoS — = S1n .
t 2 2 ¢

1
E ledd Let T = N2, T —> A is defined b )= ———
xample o f 1 y f(@) 12/

t+1)?
log((\/_+)),t € 7. Letalso, g(r) = logt,t € 7.Since o (1) = (v/1 + 1)* and

Acsy — logla(®)—logt
go(n) = 0=

log| (v14+1)* ) —log ¢
Wr+1)2~t

= 1+;ﬁ log((\ﬂz;l)z)’

we get

t =logt +c.

/ 1 o (1+ﬁ)2A
14241 ¢ t
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Exercise 14 Let 7 = 4;°. Prove that
/(2t+3€/ﬁ+33/?+2)m — 2+t +e.

Theorem 22 Every rd-continuous function [ : 7 —— % has an antiderivative. In
particular, if ty € 7, then F defined by

F(t):/ f(t)Atr for te 7,

is an antiderivative of f.

Proof Since f is rd-continuous, then it is regulated. Let F be a function guaranteed
to exist by Theorem 21, together with D, satisfying

FA(t) = f(t) for teD.
We have that F' is pre-differentiable with D.
Lett € 9\ D. Then t is right-dense. Since f is rd-continuous, then f is contin-
uous at ¢. Let ¢ > 0 be arbitrarily chosen. Then there exists a neighbourhood U of ¢

such that
| f(s)— f(t)| <e forall seU.

We define
h(t) = F(t) — f(t)(t —ty) for 7€ T.

Then 4 is pre-differentiable with D and

h4(t) = FA(t) — f(t) = f(xr) — f(t) forall T e D.

Hence
|h2(s)| = |f(s) — f(r)| <e forall se DNU.
Therefore
sup |h%(s)| <&,
seDNU
whereupon

|[F(@) = F@r)— fO)@ —r)|=|h@)+ f@O)( —10) — (h(r)
+f (O —10)) — f()( =)
[ (t) — h(r)]

{sup,cpru B2 (I}t — 7|

glt —rl,re DNU,r #1t,

INIA
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which shows that F is differentiable at ¢ and F2(r) = f@).

Theorem 23 If f € 6,4(7) andt € T, then

o(t)
/ f(@AT = p@) f(0).

Proof Since f € 6,4(.7), there exists an antiderivative F of f, and

o(t)
f()ATr = F(o (1)) — F(1)

t

= w(O)F2(1)
= (1) f(1),

so that the conclusion follows.
Theorem 24 If 4 > 0, then f is nondecreasing.

Proof Leth >0andlets,r €  witha <s <t <b. Then

f(t)=f(5)+/ fA@AT = f(s)

so that the conclusion follows.

Theorem 25 Ifa,b,c € 7, a € Z and f, g € G.a(T), then

(i / "0+ A= / Cfwant / e,

(i) /%WfX0At=a/waﬂM
(ﬁUt/be)At=—iAafKﬂAn

(iv) /b far = /Cf(t)At +/b f () At
W)/‘fwang(ﬂAt ) — (f)(@) /‘f(nmnAr
(vi) /.ﬂog(nAr (FO®) — (f9)@) - /‘f(UAUODAt

(vii) / f()At =0,
(iii) if | £ ()] < g(t) on [a, b], then

b
< / (DAL,

(t) At
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b
(ix) if f(t) >0foralla <t <b, then/ f(@®)Ar > 0.
Proof Since f, g € €,4(.7), they possess antiderivatives F and G, respectively. We
have
FA(t) = f(t) and G2(r) = g(r) forall e T*.

(i) Forall t € 7 we have

(F+G)2(t) = F2(t) + G2(1).

Hence,
b
/ (f@)+g®)At = (F + G)(b) — (F + G)(a)
=F(®)—F(a)+G®) —G(a)
b b
= / £ At +/ ¢ AL,
(i) Since
aF2(t) = (@F)2(t) =af(t) forall te T",
we get

b
/ af () At = (aF)(b) — (aF)(a)
= a(F(b) — F(a))

b
= a/ f(t)At.

(iii) We have

b
/ f@)Ar = F(b) — F(a)
= —(F(a) — F(b))

- —/af(t)At.
b

(iv) We have
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b
/ fO) At = F(b) = F(a)
= F(c)— F(a)+ F(b) — F(c)

c b
:/ f(t)At+/ f)At.

(f2(t) = fAg) + flot)g” ()

(v) Forall t € .7 we have

or

Fle@)g?(t) = (f) (1) — fA(1)g().
Hence and (i), (ii), we get
b b
/ fle®)g* (At = / ((f)*(t) — fA()g(1)) At
b b
= / (fe)* (1) At — / FADgt)At
b
= (f9)(b) — (fg)(a) — / FADg(t)At.

(vi) Forall t € 9 we have

(fo)2 (1) = fF(g* (1) + f2()g(o (1)

or

FOgtt) = (f9) ) — fA()g(o ().
Hence and (i), (ii), we find
b b b
/ fgtnar = / (fe)* (At — / FAglo (1) At
b
= (fg)(b) — (fg)(a) — / FAglo (1) At.

(vii)

/af(t)At=F(a)—F(a)=0.

(viii) We note that
|FA(1)] < G*(t) on [a,b].
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Hence and Theorem 16, we get

|F(b) — F(a)| = G(b) — G(a)

b b
/ f()At 5/ g()At.

(ix) This property follows directly from the property (viii).

or

Exercise 15 Leta,b € 7 and f € 6,4(.7).

(1) If I =2, prove
b b
/ f@0)Ar = / @,

where the integral on the right is the usual Riemann integral from calculus.
(i) If [a, b] consists only isolated points, then

0 if a=b

b D el KO (@) if a<b
/ fAr =
‘ = by KO F(@) if a>b.

Definition 17 (Improper Integral) If a € 7, sup .7 = oo, and f is rd-continuous
on [a, 00), then we define improper integral by

[e'e] b
/ f(t)At:blim/f(t)At

provided this limit exists, and we say that the improper integral converges in this
case. If this limit does not exist, then we say that the improper integral diverges.

Example 45 Let 7 = ¢, q > 1. Then o (1) = gt. Since all points are isolated,

then o 1 | |

.
[ = X o= 3
1

teqgo teq*

1.5 The Exponential Function

1.5.1 Hilger’s Complex Plane

Definition 18 Let 47 > 0.

1. The Hilger complex numbers we define as follows
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1
‘fhz{ze%:z;ﬁ—z}.
2. The Hilger real axis we define as follows
1
%’hz{ze%:z>—z}.
3. The Hilger alternative axis we define as follows
1
Ap={z€€:z2<—-}.
h
4. The Hilger imaginary circle we define as follows
11
Rl k)

fhz{ze%: Z+ -

For h = 0 we set
Co=C, H=% =0, Sh=Ii%.

Definition 19 Let 2 > 0 and z € %),. We define the Hilger real part of z by

h4+1]—1
Re,(z) = lht1l—1
h
and the Hilger imaginary part by
Arg(zh + 1
Iy (9 = 2D,

where Arg(z) denotes the principal argument of z, i.e.,
-1 < Arg(z) <.

We note that
< I{e < o0 d < lm < .
h his an h his h

In particular, Rey, (z) € %),.

Definition 20 Let —% <w< % We define the Hilger purely imaginary number
by
° eiwh —1
w =
! h
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Theorem 26 Let z € 65,. Then ; Imy(z) € %,

Proof We have

R eiMmi () _
i Imy,(z) = A
and
° 1 Mm@ 1 ]
ilmh(Z)‘l‘E‘: T-ﬁ-z
|eihlm,,(z)|
h
_!
e

Theorem 27 We have

lim [Rey,(2)+ i Imy(2)] = Re(2) + im(z).

Proof We have

z = Re(z) + ilm(z),
zh+1 = (Re(z) +ilm(z))h + 1
= hRe(z) + 1 +ihIm(z),

Arg(zh + 1) = arcsin hm(z)
Z = .
V(hRe(2) + 1)2 + h2Im2(z)
Iy (2) = Arg(z:ll +1)
) him(z)
= — arcsin )
h V(hRe(z2) + 1)2 + h2Im2(z)

|zh 4+ 1| = \/(hRe(z) + 12 + h2Im?(2),

lzh 4+ 1] —1

h
_ V(hRe(2) + D? + h2Im*(z) — |
- ; .

Reh (Z) =
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Hence,

. V(hRe(z) 4+ 1)? + h2Im>(z) — 1
0 h
(hRe(z) + DRe(z) 4+ hIm?(z)

= lim
0 V(hRe(2) + D2 + h2Im?(z)

%i_I)I%)Reh(Z) = 11

= Re(2),
. ! . hlm(z)
lim Imy,(z) = lim — arcsin
h—0 h—0 h \/(hRe(z) +1)2+ h21m2(z)
1
= lim X
h—0 \/1 _ RImi)
(hRe(2)+1)2+h2Im?(z)

Im(2)v/(hRe(z) + 1)* + h2Im?(z) — hlm (z) ¢REQEDRG HhIn o)
&/ (hRe(2)+1)2+h2Im?(2)

x (hRe(z) + 1)? + h2Im2(2)

= Im(z),
which completes the proof.

Theorem 28 Let —% <w< % Then

o 5, 4 wh
i w|” = n sin ( > )
Proof We have

o ™ —1  cos(wh) —1+isin(wh)

o h
Hence,
o 5 (cos(wh)—1)?  sin®(wh)

i w|” = i + W
cos2(wh) — 2 cos(wh) + 1 + sin®(wh)
2(1 — cos(wh))
4  ,(wh

= ﬁ Sin (7)
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Definition 21 The “circle plus” addition @ on %}, is defined by
Z@w=2z+w+zwh.

Theorem 29 (%, ®) is an Abelian group.

1
Proof Letz,w € 6),. Thenz,w € € and z, w # 5 Therefore z ®w € ¥

Since

h(zeéw)+1=h(z+w+zwh) +1
=1+ hz 4+ hw + zwh?
=14+ hz+hw(l + hz)
=1+ hw)(1 4+ hz)
#0,
we conclude that z @ w € €.

Also,
0dz=z00=7¢,

i.e., 0 is the additive identity for &.
For z € %), we have

2@\ — < =2z— < -z < h
1+zh) 1+ zh 1+ zh

_ 2%h 22h
14zh  1+4zh
= O’
i.e., the additive inverse of z under the addition @ is _HL}:' We note that
Z
__= € ¢ and
14 zh N !
- = £0,
14+zh 14zh
fe, ——= 7&—1 Therefore ———— € €
T 14zh h 1+ zh -

For z, w, v € €, we have

ZOW)dv=(C+w+zwh)dv
=z4+w+zwh+v+ (z+w-+zwh)vh
=z 4w+ zwh + v + zvh + woh + zwvh?®
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and
z&@(wdv)=z+Wdv) +zwdv)h
=z+w+v+wvh+zw+v+wvh)h
=74+ w+ v+ woh+ zwh + zvh + zwuh?.
Consequently

ZOWBv)=(Zdw) v

i.e., in (%}, @) the associative law holds.
For z, w € 6, we have

2hw=z+w+zwh
=w+z+wzh
=wdz,

which completes the proof.

Example 46 Let z € 6, and w € €. We will simplify the expression

A=z&

w
1+ hz
We have

w
—+——h
1+ hz + 14 hz
1+ hw

1+ hz
=z+w.

A=z+

=z+

Theorem 30 For z € 6, we have

7z =Re,(2)® ;Imh (2).
Proof We have

o zh+1|—1 o Arg(zh +1
Reh(z)ﬂailmh(z):l | @i e )

h ! h
lzh+1]—1 A+l
- h @ h
lch+1]—1 ABGh+D 1 zp g =1 ABGD g
- h h h ' h

1 . .
. (Izh 1= 14 e AERED _p g op g 11l ATBGRED oy
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_elArghtl) 1)

1 iArg(zh+1)
ﬁ(lzh + 1le — 1)

1
ZZ(Zh-I-l—l)

=z
Definition 22 Letn € .4 and z € 6),. We definite “circle dot” multiplication © by
nOz=z20z8z2d---Dz.

Theorem 31 Letn € A and z € 6),. Then

h+1D"—1
noz= DV =1 (1.13)
h
Proof 1. Letn = 2. Then
207=2®z2
=z+z7+47%h
=27+ z2%h

1
= Z(zzhz +2zh)

1
= Z(zzh2 +2zh +1—1)

_Gh+ 1) -1
= p .
2. Assume
(zh+ D" =1
o=

for some n € 4.
3. We will prove that

h+1n+1_1
ot ozn UL

Indeed,

m+1)Oz=m02)dz
_ (Zh+1)n_1€Bz
o h
h+1D)"—1 h+1D"—1
=(z h) JFZJF(Z h) .

h
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_ @h+ 1" =1 +zh+zh(zh +1)" —zh
- h

@
-G -

Hence, we conclude that (1.13) holds for all n € 4.

Definition 23 Let z € 6. The additive inverse of z under the operation & is defined
as follows
-z

o= 1+zh

Theorem 32 Let z € 6),. Then
o(Bz) =z.

Proof We have

__ S
L+ (©2)h

-z
14-zh

U+ 55

e(.7) =

1+zh
14+zh—zh

1+zh

=7z.
Definition 24 Let z, w € %),. We define “circle minus” substraction as follows
ZOw=2z@ (Ow).
For z, w € €6}, we have

76w =28 (6w)
=z+ (6w) + z(Gw)h
w zwh

B 1+ wh B 1+ wh
Z+zwh —w — zwh

=z

1+ wh
_ =W
1 4wh’
ie.,
zow= " (1.14)
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Theorem 33 Let 7 € 6),. Then7 = Oz iff z € I,

Proof We have

07 +—
E:__ Hfzh -
I+z72zh=—7 —
2Re(z) + |z]*h = 0.

Il
|

Also,
+il= =
k+%f=§ =
(Re(z) + é) +Im?(z) = %

Re?(2) + 7Re(z) + 1 +Im*(2) = %

2> 4+ %Re(z) =0

2Re(z) + |z|*h = 0,

which completes the proof.

T T
Theorem 34 Let —% <w< T Then

eiw) =iw.
Proof We have

P w
1+ G wh

e |
h

—
1+ €01,
iwh -1

9(? w) =

e
o heiwh
e—iwh -1

h

[e]
i w.

Definition 25 Let z € %),. The generalized square of z is defined as follows

° = —z(&2).

47
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‘We have

Theorem 35 For z € 6}, we have

1 Elements of the Time Scale Calculus

(©2)° = z°.
Proof We have
(62)° = —(62)(6(62))
z
1+ zhz
1+zh
— ZO_
Theorem 36 For z € 6, we have
2
z
Proof We have
22 7
Z_G - =
1+zh
=14zh
Theorem 37 For z € 6, we have
2+ (©z) = %h.
Proof We have
o) 22
h = )
¢ 1+zh
+(©B7)=z7— <
< B 1+4zh
_ Z%h
4z’

which completes the proof.
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Theorem 38 For z € 6}, we have

1®° =z+7%
Proof We have

7®7° =7472°4+22%

R i
14+zh  1+4+zh
22(1 + zh)

B 1+zh

=z+7%

b4 b4
Theorem 39 Let 7 <w< T Then

° 4 h
—(iw)® = 5 sin’ (WT) .

Proof We have

—(G w)°® —(; w)(@?w)

o o
=@Gwiw

o
=i’

4 5 (wh
= —sin“ | — ).
h? 2

P2 €eR iff ze€ XU U,

Exercise 16 Let z € €),. Prove that

1.5.2 Definition and Properties of the Exponential Function
For h > 0, we define the strip
%z{ze%:—% <Im(z)§%}.

Forh =0, weset 2 =%.

Definition 26 For i > 0, we define the cylindrical transformation &, : 6), —> 2,
by
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1
&@)=Ehwﬂ+zm,

where Log is the principal logarithm function. For & = 0, we define &y(z) = z for
allz € €.

‘We note that
zh _ 1

s,:l<z>=g'h

forz € .

Definition 27 We say that a function f : .7 —— % is regressive provided
1L+ u@) f@)#0 forall teT"

holds. The set of all regressive and rd-continuous functions f : 7 —— Z will be
defined by #Z,(.7) or %,.

In %, we define “circle plus” addition as follows

(f & &) = f(1)+gt) + pu) f(1)g(0).

Exercise 17 Prove that (%, ®) is an Abelian group.
Definition 28 The group (%, @) will be called the regressive group.
Definition 29 For f € %, we define

A, .
(CHIVE T 00 forall teJ*.

Exercise 18 Let f € Z,. Prove that (©f)(t) € %, forallt € T*.
Definition 30 We define “circle minus” substraction © on %, as follows

(fegat)=(f®©g)t) forall te T*.

For f, g € %, we have

fog=ro©g

8
_f@(1+mJ
8 Kfg
l+png 14+ pug
f—g

1+ png
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Theorem 40 Let f, g € %,. Then

I fef=0
2.e00=/
3. fegeZ,
4 o(feg =go/f
5. o(fog =(©f) @ (S8,
6. f®1+uf:f+g'
Proof 1.
fer=re@©yn
_ S
_f®( 1+/Lf)
_ e f
l+uf  1+uf
I e el i
B 1+ puf
=0.
2.
(S
e(ef)—e( 1+/Lf)
I
_ I+uf
3.
Il
1+,U«(f98)—1+—1+ug
4uf
_1+Mg7é0

We note that lf+ 8 is rd-continuous. Therefore f © g € Z).
224

51
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o(fdg) =o(f +g+ufg)

___ JfHstufg
L+ uf +png+u*fe
___Jtstnufs
(L +pnfH1+pg)’
f
L+ pnf’

8
1+ g’

of=-

og =

©Ne g =0f+ 8 +unefoeg

___f s nre
L+pf 1+png A+ wpf)+ug)

_ —f+npg) —g(+puf)+nfe
I+ pfHA + png)

_ fretufg
I+ pf)(1 4 pug)
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6.

8§ _ g,y 8 WS
1+ puf T+ uf  14+uf

fe
=f+g
Definition 31 If f € %, then we define the generalized exponential function by
er(t,s) = eli fu (f(AT for s,teJ.
In fact, using the definition for the cylindrical transformation we have
es(t,s) = el mpLog(Hu(f () AT for s,te 7.
Theorem 41 (Semigroup Property) If f € 2%, then
er(t,r)es(r,s) =eyp(t,s) forall t,r,se .
Proof We have

er(t,r)es(r,s) = el SO @A G (f (@) AT

— ef,t Euo (f@NATH ] Euin (f (D) AT

= ej.;’ Euny (f (1) AT

=ey(t,s).
Exercise 19 Let f € ;. Prove that
eo(t,s) =1 and ep(t,t) =1.
Theorem 42 Let f € %, and fix ty € 7. Then
et (t.10) = f(D)es(t, 19).

Proof 1. Leto(t) > t. Then
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er(o(t), 19) —er(t, to)
w(r)
ol e (F@OIAT _ L fbun (F(0) AT

wu(t)

ef(t, 1) =

oo G0 (F@ATH [TV 6 (F@NAT _ L fi Euor (f () AT

()
o (1) . A .
— el oAy — lel,o Eun (f (1) AT
w(t)
el OEW(FO) _ |
= — e (t, to)
(1) !
= f(t)es(t, to).

2. Leto(t) =t. Then
lef(t. t0) —ef(s, to) — f(Dey(t, 10)(t — 9)|
=ley(t,t0) —ef(t,to)ef(s, 1) — f(t)ep(t, t0)(t — s)|
=lep(t, to)lll —ep(s, 1) — f(O)( — )]
= les (1. 10)I|1 = [} ) (F AT = €150 + [ £y (f@DAT = F(1)(E = 5)
< les (|1 = f{ o (F@)AT — (5.1

+

K &u (F@naT = F0 —s))
<lest0)l(|1 = [ guo (FE0AT — e 6.1

+

S G () = &o(F ) at]).
(1.15)
Since o (t) =t and f € %4, then

lim £, (£ (1) = (£ (1)),
Therefore, there is a neighbourhood U, of f such that

Eue (S (D) =S (f (D)l < 3 forall teU.

)
les(t,10)]
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Lets € U;. Then

les (2, to)] / Euw)(f (@) =& (f())AT| < glt =] (1.16)
Also, using that
lim ﬂ =0,
z—0 Z

we conclude that there is a neighbourhood U, of ¢ so that if s € U,, we have

‘<8*,

‘ 1= [ &) (f (D) AT — €4 (s, 1)
[ Euo (f(0)) AT

where

e*:min[l, ° ]
L+ 3| f(Dlles(t, 1)

Lets € U = U; N U,. Then
et )1[1 = [ Eun (F @D AT — e55.1)|

‘ 1= [{ &) (f (1) AT—ey <s,r>‘

= les (1 10) J! o (f (@ At

I tu (F() AT

<les(t, to)le*

j;t su(r)(f(f))A‘r‘

< les (. 0le* { |/ Guo (/@) = & (F O AT| +1 £ Olr = 1)

IA

les (. 10)]] [} Euir) (f (1) — éo(f(l)))AT‘ +les(t, t0)e¥| f (D[]t — 5]
< §lt—sl+ 5l —sl
=Z|r—s|.

From the last inequality and from (1.15), and (1.16), we conclude that

€ € €
les(t,t0) —es(s,10) = f(Des(t, 10)(t = 5)| < Zlt = s|+ 3|t = 5|+ Z|t =]

=¢l|t —s|,

which completes the proof.
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Corollary 3 Let f € %) and fixty € T. Then es(t, ty) is a solution to the Cauchy

problem
YA = fO)y@), y(w) =1. (1.17)

Corollary 4 Let f € Z andfixty € . Then es(t, ty) is the unique solution of the
problem (1.17).

Proof Let y(t) be any solution of the problem (1.17). Then

( y() )A _ yA(0ey(t 1) — y(1)ef (1, 1o)
ep(t,t)) er(o(t), t)es(t, to)

_ S@y@)es(t, t0) — y(@) f(D)es(t, fo)
er(o(1), to)ey(t, ty)

=0.
Consequently y(z) = ces(t, to), where c is a constant. Hence and
1 = y(ty) = cey(ty, 1) = c,

we conclude that y(z) = e (2, f).

Theorem 43 Let f € %#,. Then
ep(o(t),s) =+ pu@)f@)es(t,s).
Proof We have

er(a(t),s) —ep(t,s) = u()es(t,s)

= @) f(D)es(t,s),
which completes the proof.

Theorem 44 Let f € %,. Then

=egs(s,1).

1
er(t,s) = er(s, 1)

Proof We have
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es(t,s) = gf; Sun (f(1) AT
—=e f:s Eun (f (1) AT

1
1
er(s, 1)

Now we fix fp € 7 and consider the problem

YA =efM)y®), v = 1.

Its solution is eg ¢ (f, 5).
Also,

( 1 )A B ef(t,s)
er(t,s) B er(o(t),s)es(t,s)
_ f@®es(t,s)
(L+p@) f@)er(t,s)es(t,s)

_ ()
(I+p@) f(@)er(t,s)
1
er(t,s)

(CHI0)

Therefore

=egrll,s).
ef(l‘, s) f( )
Theorem 45 Let f, g € %#,. Then

er(t,s)ey(t,s) = erge(t,s).

Proof We have
er(t,s)eg(t,s) = efvr é?W’(f(”)meff fum () AT
— e G SO+ (3 AT

— ef; 5 Log(14+4(7) f () +Log(1+1(7)g (v) At

57
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— ef; e Log((L+p(0) f (@) (+p(D)g () At

— o e Los+R@) (f (O)+g(D)+u() f(1)g(r) AT

— ol B (@R () AT

= e ge(t, s).

Theorem 46 Let f, g € %,. Then

er(t,s)
_— = 1,s).
ee(t.s) erog(t,s)
Proof We have
er(t,s)
_— = t, t,
et 9) er(t,s)egg(t, s)

= efaog(l,s)

= ero4(t, 5).

Theorem 47 Let f € %#,. Then

er(t,o(s)es(s,r) = )ef(t,r).

1
L+ () f(s

Proof We have
e (t, 0 ($)es(s, r) = el 5o T AT [ &y ()4

— oo B (F@DATH [ £y (F () AT+ [ £y (f (1) AT
— o B0 (fOWS)+ [ Eun (f (D) AT

— o Log+fOu®) o f} ue (f () AT

1
EEETOTONANE
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Theorem 48 Let f, g € %,. Then

(f@)—g@®)eys(t, to)
eq(o (1), o) ’

fe,(t, 10) =

Proof We have

ef(t, lo))A

€g (I, tO)

e?@g(t’ fy) = (

_ e (1, t0)eg (1, 10) — ef(t, fo)eg (¢, to)
€g(f, tO)eg(G(t)s tO)

_ S 0ey(t to)eg(t, 1) — g(1)ey (2, to)eg (1, 10)

eg(t, 10)eg (o (1), o)

_ (@) —g(®)es(t, t0)
eg(a(t)vto) .

Theorem 49 Let f € % and a,b,c € . Then

(efe, ) = = f()(ef(c,N)” = —f(D)es(c, o (1))

and

b
/ f@es(c,o()At =ef(c,a) —ef(c, b).
Proof We have

fWey(c,a(t)) = f(t)egr(o(t), )

= fO+u(@)© f(1))ees(t, c)

u(t) f (1)

= 1— _—
f(t)( L4 () f ()

) eqr(t, c)

f@

= Trporoer®o

—(©/)egy(t, c)

= _eéf(ti C)

= —e? (c,t).
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Hence,

b b
/ f@eys(c, o)At = —/ e?(c, 1At

t=b

—ez(c,t)

t=a

=es(c,a) —es(c,b).

2 5
Exercise 20 Assume 1 + M(t)? #0,1+ ,u(t); # 0 forallt € .7 N(0,00). Let
also, tp € 7 N (0, 0o0). Evaluate the integral

t es(s,t)
I:/ —U As
Iy Seg(sato)

Solution. We have

(5 2) eg(S,l‘o) 3e§(s,t0)

T s) eSGst) s €S(s, 1)

s

N N

A
= ege%(&to)

= e’ 3 (s, to)
1+u() %

=e?, (s, to).
SH2u()

Hence,

1 t
1=—/ e (s, 19)As
fo

3 20

=t

s
S

S+20(s)

-1 (s, 7o)
—363 S, Iy

=Iy

1 1
= 3¢ () — 5.

3
3 20
Exercise 21 Let o € %;. Let also, the exponents

€2 wap(t,to) and e«(t, 1)

o
t o(t)
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exist forall t € .7 N (0, 00). Prove that

1.
e @y (1, 1)
I (t, to)

eq (1, 1y) 7@

2. ( )
e« (1, I 1
o 0
(I)—ZE_L(I,tO)Z—
e% (t, tO) o(n) t

forall ¢, 1y € 7 N (0, c0).

Solution.
1. We have

o? (o — l)2 o o? (o — 1)2 o
(:‘ o )er =\ ew ) ed)
o? (o — 1)2 o o2 (o — l)2 o
) +(9?)+ P (97)’“‘(”

o @-D* ¢
t o(t) 1+ %u@)

o? (a — 1)2 %
+(z ) (_1 +%u<r>)“m

_0{727(01—1)27 o _ 01727(01—1)2 o o
= o) ttap@ \ 1 o) Jitan”

(¥ _@-1? (1_ ap ) )_ o
“\ ¢ o (1) t+au(t) t+ou(r)

o (@—1)? ! o«
t o(t) t+ap()  1+aup()

_ 0{20(1) —t(a — 1)2 t B o
- to (1) t4au() 4+ au)
At pu@) —te® +2ar—t 1 o

o) f+ap() 1 +an)
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ozzu.(t) + 20t — t B o
o) +apn@®) t+ap@)

_ otzpc(t) + 20t —t —au(t) —at
B o (1)t + ap(t))

_ap()(ae—1) + (e — Dt
T o Fap®)

_ =D +an®)
o)t +ap))

o—1

T o)

Hence,

Q

t o(r)

2 _ w2 (1, 1o)

ex (1, ty)

2. We have

S
S
I
—_

a—1

o(t)

o= o (e%)

S o) e (e

o(t) t o(t)
_a—1 < _a-—1 < ®
T o 1+p0f o 1+ume”
a—1 o a—1

o
o) i¥an®  o® r+apm™?

_a—l(_ au(t) )_ o
o) t+ ou(r) t+ ou(r)

ta—1) _ o
o) +au(®) t+oau@)
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_ ot —t —opu(t) — ot
o ()t +ap(r))

_ t 4 au(t)
o Fap()

1
o)
Therefore
EL—; (ta t())
ot
—— = €a-l g(l‘, to)
es(t,tg) "0
=e__1 (t,19)
o)

y !
_ ef,o ﬁ(r)(*ﬁ)ﬂf
fr 1 ()
I mLog(lf%)Ar

=e

to_1 T
— effo utr)LOgU(ﬂAr

1.5.3 Examples for Exponential Functions

63

Let o : .7 +—> % be regulated and 1+ a(t)u(t) #0 for all + € 7. Let also,

fo,t € T, 1y <t.
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1. 7 =h%Z, h > 0. Every point in .7 is isolated and u(t) = h forevery t € 7.
Then

eu(l. 10) = ej;; i Log(l+a(t)u(r) At
o ’ -

— Zsclipn Lo+ ))uls)

— o Ducti Log(I+ha(s))

= H (1 + ha(s)).
s€(ty,1)

If « is a constant, then

et 1) = [] (1+he)

s€lto,1)

(1 + ha)'™.

2. 7 =q™, q > 1. Every point of .7 is isolated and (1) = (g — 1)z for all
t € . Then
ey (t, ty) = ej;:) o Log(l+a(Du () Ar

— o Zsetgn ity Lo+

— ez.vg[ro,r) Log(1+a(s)pe(s))

— pZselign Log(+(g—Dsa(s))

= [] 0+ @—Dsas)).

s€(ty,1)

Exercise 22 Let 7 = q[mJ U {0}, 0 < g < 1. Prove that

ety = [] (1+1;q0t(s)s).

s€lto,1)




1.5 The Exponential Function 65

3. 7 = ,/16", k € 4. Every point of .7 is isolated and

k
o = (Vi+1) .
Then
Ji = Log(l4+a(t)u(r) At

ey (t, tg) = e’ 1@

— eZsclipn Lo+ ) (s)

o 2selig.n Log(+a () ()

[T a+eats)nes)

s€lty,t)

I1 (1 + ((</E+ 1)t - s) a(s)) .

selto,t)

1.6 Hyperbolic and Trigonometric Functions

Definition 32 (Hyperbolic Functions)If f € 6,4 and —juf* € %), then we define
the hyperbolic functions cosh ; and sinh ; by

ert+e_y er—e_g¢

h, =
coshy 5

and sinhy =

Theorem 50 Let [ € Cq. If —juf* € %), then we have

1. cosh? = fsinhy,
2. sinhﬁ‘ = fcoshy,
3. cosh?r — sinh? =e_yup.

Proof 1. We have

A
coshd — (&£ T¢r
f 2

_ fer—fes

= fsinh;.
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2. We have
A
sinh? = (& —¢=1
- 2
_ fesrt fey
2
= fcoshy.
3. We have

2 ) efte_y 2 er—e_y 2
coshf —smhf ={—) | ——
2 2

_ e§c+2€fe_f +e%f B e% —2ere_y +e%f
o 4 4

=ere_g
= €fa(-f)

= C_pp.

Definition 33 (Trigonometric Functions)If f € €,q and uf? € %, then we define
the trigonometric functions cos and siny by

eif te-if
2

€if —€e_if

cosy = T
i

and siny =

Theorem 51 Let f € €q and —juf* € %#,. Then

1. cos? = — fsing.
2. sinf = fcos;.

2

3. cosy + sin? =eup.

Proof 1. We have

A
A _ [¢ir te-if
€08y = (T)

N ife,'f - ife_if
B 2
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_ eif —e_jf
f 2i
= —fsing.
2. We have
A 1, -1,
siny = | ———
f ( 2 )
_ ifel-f + ife_if
B 2i
= fcosy.
3. We have

e +esir\' | (er —e-ir )
2 .2 i —i i —i
COS Sin = _— _—
%+ sin% ( 5 ) +( 5 )

el +2eie s+ ety el —degeig+eX;

4 4

= eife i
= Cife(-if)
= ey

Exercise 23 Let f € €,q and uf*> € %,. Show Euler’s formula

ejf = Cosy +isiny .

1.7 Dynamic Equations

Theorem 52 Let p : T +—— X% be rd-continuous and 1+ n(@)p(t) # 0 for all
t € . Let also, ty € T and ¢y € €. Then the unique solution to the initial value
problem

¢ = p)p, @) = do. (1.18)

is given by
d(t) = goey(t, t9) on T (1.19)
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Proof We have
¢ (1) = (doe, (1, 10))”
= ¢oe; (1, 1o)
= gop(t)e,(t, to)

=p)gp, 1€7,

and

@ (t0) = doe,(to, t0) = ¢o.

Consequently ¢ (), defined by (1.19), satisfies (1.18).
Now we will prove that the Eq. (1.18) has unique solution. Let ¢; () and ¢, (¢) be
two solutions of (1.18). Then

V(1) =¢1(t) — (), t€T,

satisfies the problem

v =p0y, Y1) =0.
Therefore ¢ (1) = 0on 7.

Theorem 53 (Variation of Constants) Let f, p : T +—— X be rd-continuous func-
tions and 1 4+ u(t)p(t) #0 forall t € T, ty € T and ¢y € €. Then the unique
solution of the initial value problem

¢2 (1) = —p(p (o () + f(1), (1) = o, (1.20)
is given by
¢ (1) = eqp(t, 10)9o +/ eep(t, T) f(T)At. (1.21)

fo

Proof We start by showing that ¢ (¢) given by (1.21) is a solution to (1.20).
Indeed,

' A
¢ (1) = (eep(tvt0)¢0+/ eep(t, T)f(T)AT)

fo

t A
= (eop(t, 1)) + (/ eop(t, t)f(r)Ar)

to
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= goed (1. 1) + / ¢A (1,7 f (D) AT + eop(o (1), D (1)
= 40 © plt)eey(t.10) + Bp(1) [ eyt DFDAT + ey 0 0.1 1)

= ¢0 © p()eg,(t, 1) + ep(t)/ ecp(r, T) f(T) AT

+ (1L + 1) © p()egy(t, 1) f(1)
= ¢0 © p()eg,(t, 1) + ep(t)/ ecp(t, 1) f(T) AT

Trropn’ ?

B L _L t
_ Poesp(t, o) L+ pu@p@) /g

T upn) cerlt DT

T e’
Multiplying both sides by 1 + 1 (¢) p(¢) gives
(1+ (@) p(0))p* (1) = —op(t)es,(t, 1) — P(f)/ ecp(t, T) f(T)AT + f (1)

=—p() (¢069p(ta fo) +/ eop(t, f)f(f)Af) + ()

=—p®p @)+ f(1).
Hence,
(1) = —u®) p()P* (t) — p(OHP () + f(t)
= —p®) (kPO + o) + ()
=—p®p@®) + f(1).
Also,

@ (ty) = egp(to, to) o +/ ecp(to, T) f(T) AT = ¢y.
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Consequently ¢ (¢) satisfies (1.20).

Now we proceed to show the uniqueness of the solution. Suppose that ¢ (¢) is a
solution of (1.20). Then

f(t) =91+ p(O)p(o (1)),

whereupon

ep(t,10) f(1) = e,(t, 1) (92 (1) + p(HP(a (1))

e,(t, 1) (1) + p(He,(t, to)p (o (1))

ep(t, 1) (1) + e, (1, 10)p (0 (1))

= (e, (1, 10)p ()",

whereupon

/ep(r, to)f(t)Arz/ (e, (z, 1) (1)) AT

t

= ep(7,10)¢(7)

T=
T=Iy

=ep(t,10)p (1) — ¢ (1),

ie.,

e (1. 1) (1) = do + / ep(t. 10) f (D) Ar.

Solving for ¢ (¢) we get
¢ (1) = poeep(t, 1) +/ eop(t, 1o)ep (T, 1) f(T) AT
= Poec,(t, to) +/ ecp(t, to)eg,(to, T) f(T)AT

=¢Oeep(tvt0)+/ eep(t, 1) f(T)At.

Consequently if ¢ (#) and ¢, (¢) are solutions to the problem (1.20), we find that
Y (1) = ¢1(t) — ¢a(2) satisfies the problem
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YA = —pOY (o), V) =0,
whereupon ¥ () =0 on 7.

Corollary 5 (Variation of Constants) Let f, p : T +—— Z be rd-continuous func-
tions and 1 + u(t)p(t) 0 forallt € T, ty € T and ¢y € X#. Then the unique
solution of the initial value problem

(1) = p()p(t) + f(1), ¢(to) = o, (1.22)
is given by

¢ (1) = ep(t, 10)¢o +/ ep(t,o(1)) f(r)Ar.

to

Proof Let ¢ be a solution to the problem (1.22). We have

P(1) = P (1) — () (1).

Then (1.22) takes the form

¢4 (1) = p(@) (0 (1) — n$* (1) + f (1)

= p()p(a () — p()®)$* () + f(t)

or
(L+ pOr) (1) = D)0 (1)) + f(1).
Hence,
a P £0)
O = T 00 T o0
 —p0 £0)
= 15200 O T 000

Q)

= =8P+ =

Therefore ¢ (¢) satisfies the problem

Q)

Apy = — S
¢°(t) = =0 p(HP(o (1)) + T 2Op®’

¢ (t0) = ¢o. (1.23)

From here, from Theorem 53 and from ©(©p)(¢t) = p(t), we get that the problem
(1.23) has unique solution given by
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t
f(T)
B(1) = doe,(t, 1) +/ eyt ) —1
! w o T u@po)

f(@)
ep(t,)(1 + u(r)p(r))

=¢oep(l,to)+/t A

o ep(@(1),1)

= ¢oep(t, 1) +/

— Goe, (1. 10) + / e, (t, o()) f (1) At

o
which completes the proof.

Example 47 Consider the problem
¢4 =20+3, $0)=0, T=2.

Here
p(t)zzv f(t)=3ls ¢0=09

ocW)=t+1, ut)y=1, re 7.

Then, using Corollary 5, we obtain
t

o) = / er(t,o0(1))3" At
0

t
=/ er(t, T+ 1)3" AT
0

=/t3’—f—13fm
0
t
:/ 3-1Ar
0
t
=3’71/ At
0

=31
Example 48 Consider the problem

P2 =4p+t, ¢(O)=1, T =2%.
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Here
ot)y=t+2, wul) =2, p@k) =4,

f®y=t, ¢po=1, te 7.

Then, using Corollary 5, we obtain
t
(1) = ey(1,0) +/ es(t, o ()T AT
0
. t
=92 +/ es(t, T+2)TAT
0
! 1—t=2
=3 +/ 9 tAT
0
1 ! T
=3 +9r‘/ 9 ITAT
0

=3+37 D ()3
s€[0,r-2]

=3 42.32 Z s37.
s€[0,1-2]

Example 49 Consider the equation

¢4 = p)p +e,(t t0), ¢ty) =0,

where p : 7 +—— X is rd-continuous and 1 + u(t) p(t) £ Oforallt € 7.
Using Corollary 5, we obtain

() = / e, (1, 5 ())e, (T, 1) At

fo

! 1
=A @), n (AT
S L+ p(@p(r))e,(t, 1)

:/t ep(t, 1o) Ar
n 1+ p(@u()

Exercise 24 Let p : .7 —— % be rd-continuous and 1+ w(t)p(r) # 0 for all
t € 7. Let also, ¢ () be a solution to the equation

e, (T, 19) AT
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¢ = p)p =0
and v (¢) be a solution to the equation
VA + py” =0.

Prove that

Y () =c, 1€T,

where c is a constant.

1.8 Advanced Practical Exercises

Problem 1 Classify each points 7€ .7 ={vTn:n e A} as left-dense,
left-scattered, right-dense or right-scattered.

Answer. Each points t = JIn,n € N, are isolated, r = 0 is right-scattered.

Problem 2 Let 7 = {«4/11 FT:ne J%)} Find u(t), 1 € 7.

Answer.,u(f/n—i—7) =Jn+8—n+17.

Problem 3 Let 7 — {t — i line JV}, f(t)=1+2* te 7. Find
flo@®),te 7.

Answer. 5 + 21*.

Problem 4 Let 7 = [ ‘n € JV] U {0}. Find .

4n +3

Answer.[ :ne,/V,nEZ]U{O}.

2
dn+3
Problem 5 Let f(1) =1 +t>+ 13,1 € . Prove that

A =1+t4+2+ A +0)o(@)+0(1t), teT"
Problem 6 Let 7 = {n®:ne 4}, f(t) =t>+2t,t € T.Find f4(1),t € T*.
3
Answer. 2 + ¢t + («7;+ 1) .

Problem7 Let .7 = {n+2:n € 4}, f(t) =1>+2, g(r) = t>. Find a constant
c € [2,0(2)] such that

(f o)) = f'(g()g”(2).
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13
Answer. c =,/ —.
2
Problem 8 Let 7 = {2**:n € A}, v(t) = £*, w(t) = t* +t. Prove
Wov)2(1) = WA o vV (1), te T

Problem 9 Let 7 = {n+9:n € A}, v(t) = 1> + 71 + 8. Find (v™")” 0 v(1).

Answer.

2t +8°
Problem 10 Let .7 = % and

1 for t=2

f@t) =
19 for t e Z\{2}.

t
Determine if f is regulated.
Answer. No.

Problem 11 Let .7 = % and

0 if t=5
f) =
L if 1 e Z\(5).

Check if f : .F —— Z is pre-differentiable and if it is, find the region of differen-
tiation.

Answer. No.

Problem 12 Let 7 = 37" Prove that
r ..
—/ > sint sin(2t) At = cost + c.

Problem 13 Let p : 7 +——> % be rd-continuous and 1+ wu(t)p(t) # 0 for all
t € 7. Let also, ¢(t) be a nontrivial solution to the equation

¢* — p(tH)p = 0.

. . .
Prove that —— is a solution to the equation

v+ p()y? =0.



Chapter 2
Introductory Concepts of Integral Equations
on Time Scales

A delta integral equation (or in short integral equation) is the equation in which the
unknown function ¢(x) appears inside a delta integral sign. The subject of integral
equations is one of the most useful mathematical tools in pure and applied mathemat-
ics. Many initial and boundary value problems associated with dynamic equations on
time scales can be transformed into problems of solving some approximate integral
equations.

Suppose that .7 is a time scale and let o, p and A denote the forward jump operator,
the backward jump operator and the delta differentiation operator, respectively,break
on 7. A standard type of integral equation in ¢(x) is of the following form

g(x)

$() = ux) + A /f | K@ womay, @.1)
X)

where f, g : J —— Z are the limits of integration, X is a constant parameter, and
K : 7 x J —— % is a known function of the variables x and y, u : 7 —— Zisa
known function. The function K (x, y) in (2.1) is called the kernel or the nucleus of
the integral equation. In (2.1) the unknown function ¢(x) appears the integral sign.
There are many other cases in which the unknown function ¢(x) appears inside and
outside the integral sign. The functions u(x) and K (x, y) are given in advance. Note
that the limits of integration f (x) and g (x) may be both constants, variables or mixed.
If the limits of integration are fixed, the Eq.(2.1) is called a generalized Fredholm
integral equation given in the form

b
P(x) = u(x) + A/ K(x, y)p(y) Ay, (2.2)

where a and b are constants. If at least one limit is variable, the equation is called a
generalized Volterra integral equation given in the form

© Atlantis Press and the author(s) 2016 77
S.G. Georgiev, Integral Equations on Time Scales, Atlantis Studies
in Dynamical Systems 5, DOI 10.2991/978-94-6239-228-1_2
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P(x) = u(x) + )\/ K(x,y)p(y)Ay. (2.3)

Example 1 Let F = 2%, Then the equation

() = sinhy(x, 1) + A /1 (x — V6O Ay,

where f € %, is an example for a generalized Volterra integral equation.

If the unknown function ¢(x) appears only under the integral sign of generalized
Fredholm or generalized Volterra equation, the integral equation is called a first kind
generalized Fredholm or generalized Volterra integral equation, respectively.

Example 2 Let 7 = % . The equation

2
coyr(x,0) = [ 604y,
1

where f € ), is a first kind generalized Fredholm integral equation.

If the unknown function ¢(x) appears both inside and outside the integral sign of
generalized Fredholm integral equation or generalized Volterra integral equation,
the integral equation is called a second kind generalized Fredholm or generalized
Volterra integral equation, respectively.

Example 3 Let F = 2% The equation

4
600 =x> — 142 /1 (x = Y)() Ay

is a second kind generalized Fredholm integral equation.

If in the Eq. (2.2) or (2.3) the function u(x) is identically zero, the resulting equation

b
600 = A / K(x,y)é() Ay

or

600 = A / K(r. y)() Ay

is called homogeneous generalized Fredholm or homogeneous generalized Volterra
integral equation, respectively. Any equation that includes both (delta-)integrals
and (delta-)derivatives of the unknown function ¢(x) is called delta-integro-delta-
differential equation (or in short integro-differential equation). The Fredholm integro-
differential equation is of the form
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b
6% () = u(x) + A / K(x, 1)6() Ay

However, the Volterra integro-differential equation is of the form

6% () = u(x) + A / K(x.y)6() Ay.

The equation

u(x):/x( —o(»A4y, 0<a<l,
0

is called generalized Abel’s integral equation. The equation

¢<x>—u(x)+/ Ay 0<asl

is called generalized weakly singular integral equation. If the unknown function
¢(x) inside the integral sign is one, the integral equation or the integro-differential
equation is called linear.

Example 4 Let J = % . The equation

3
x = /1 (x — 25)6() Ay

is a linear equation.

If the equation contains nonlinear function of the unknown function ¢(x), the integral
equation or the integro-differential equation is called nonlinear.

Example 5 Let Z = 2% Then

u() = 2 — /1 T = 92200 Ay

is a nonlinear equation.

The main objective of this text is to determine the unknown function ¢(x) that will
satisfy (2.1) using a number of solution techniques. We shall explain these methods
to find solutions of the unknown function.
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2.1 Reducing Double Integrals to Single Integrals

It will be seen later that we can convert initial value problems and other problems to
integral equations. It is useful to outline the formula that will reduce double integrals
to single integrals.

Theorem 1 Letf : T —— % be integrable and a € 7. Then

/X /XIf(t)AtAxl = /X(x—a(t))f(t)At for xe 7. (2.4)

Proof Using integration by parts, we have
/x /Mf(t)AtAxl = /X(x1 —a)? /XIf(t)AtAxl
~m-a [ roaf - [ (oo - arean
—a-a [ oa- [0o-arwa

=/ (x —o@)f () Ar.

Example 6 Let 7 = 2. Theno(t) =t+1,t € 7, and

X X X
/ / 2 At Ax, :/ (x — o ())> At
0 0 0

:/ (x —t — Di*At.
0

Example 7 Let T = 2% Then o(t) = 2t, t € 7, and

/)C /X] e (t, D AtAx; = /x(x —o(t)e(t, 1) At
1 1

=/ (x — 20)e,(t, 1) At.
1
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Example 8 Let 7 =3%.Theno(t) =t+3,t € Z,and
5 X1 X
/ / (sin, (7, 0) + ) AtAx; = / (x — o (1)) (sin, (1, 0) + £3) At
3 J3 3

= /X(x — 1 —3)(sin, (¢, 0) + °) At.
3

Exercise 1 Convert the following double integrals to single integrals.

// (> = DAtAxy, T = Z.
X1 [2
2. // Amxl,y—z”ﬂ

// (3t—2)AtAx1,y=2JV.
2 2

Answer

1. /X(x —t—1)(* — 1) At,
0

x 2 +1
2. —2t)—— At
/l(x )t4+1
X
3. / (x—1t—2)3t—2)At.
2

As aresult to (2.11) we can show the following corollary.

Corollary 1 Letf : T —— X be integrable and a € 7 . Then

/x /Xl (x — o ()f (1) AtAx, = /x(x — o) F ()AL for xe T
Proof By Theorem 1, we have
/a ) / Y = o) 0 ArAx = x / ’ / " 0 arax — / ! / Y of 6 AtAx
e / "— o) (A1 / "= oo ar

- /x(x —a()2f (1) At

Example 9 Let 7 =2%.Theno(t) =t+2,t € 7, and

/x /Xl(x—t—Z)(t3+1)AtAx1 :/x(x—t—Z)z(t3+l)At.
2J-2 -2
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Example 10 Let 7 = 4% Then o(r) = 4t,t € 7, and
X X1 X
/ / (x — 41) (> + 1) At Axy :/ (x — 40 (©* + 1) At.
16 J16 16
Example 11 Let 7 = A% Then o(t) = (vt + 1)*, t € 7. Then

X X X
/ / @ = (V1 + DHViArAx = / x — (V1 + DHViAr.
0o Jo 0
Exercise 2 Convert the following double integrals to single integrals.

X X1
1. // (x —t =P AtAxy, T =270 U {0},
0 0

X X
2. / / (x = 50> + 2t + 3)AtAxy, T =570 U{0}.
0 0

X1
/ (x—1t— DtAtAxy, T = N,
11

where for ¢ > 1 with ¢”*® U {0} we will denote in all places in this book the set

o L1 Lo
) — — ..., ,q,q9°,....
gk gkt

Answer

/ (x —t — 2)’F At,

/( —56)2(t* + 2t + 3) At,

0
X

(x —t — D’tAr.
1

2.2 Converting IVP to Generalized Volterra Integral
Equations

In this section we will convert an initial value problem (IVP) to an equivalent general-
ized Volterra integral equation and generalized Volterra integro-differential equation.
We will apply this process to a first order IVP

22 () 4+ a(x)z(x) = u(x) (2.5)

subject to the initial condition
z(x0) = 20, (2.6)
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where xo € 7,20 € Z,a,u € 6,4(.7), and to a second order IVP
722 (x) + a(0) 72 (x) + b(X)z(x) = u(x) Q2.7)
subject to the initial conditions
2(x0) = 20, 2°(x0) = 25 (2.8)

where xy € .7, zo,zOA €X,anda,b,uc €q.(7).
Firstly, we will consider the problem (2.5), (2.6). Let

P(x) = 22 (x). (2.9)
Now, using (2.6), we get
/ p(y) Ay = / () Ay
o
= z(x) — z(x0)
= z(x) — 20,
ie., .
z2(x) = 20 +/ d(y)Ay. (2.10)

Substituting (2.9) and (2.10) into (2.5) yields the following generalized Volterra
integral equation

o(x) + a(x) (ZO +/ ¢(y)Ay) = u(x).

The last equation can be written as standard generalized Volterra integral equation
in the following way

$(6) = u(x) — oa(x) — / a()6() Ay.

Xo

Example 12 Let = .4 . Consider populations with a fixed interval between gen-
erations or possibly a fixed interval between measurements. With xy we will denote
the initial population size and with x(#) we will denote the population size at time .
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Suppose the population changes only through births and deaths and suppose further
that the birth and death rates are constants b and d, respectively. Then

XA =b-dx@), teT, (2.11)
x(0) = xo (2.12)

determines the population size in each generation. We integrate the Eq.(2.11) from
0 to ¢, and using (2.12), we get the integral equation

x(t)=x0+(b—d)/x(s)As, te 7.
0

Example 13 (Verhulst difference equation) Let 7 = 4. The dynamic equation

(r = Ax(t) = x*(1)

A _
O =0

te 7, (2.13)

describes a population that die out completely in each generation and has birth rates
that saturate for large population sizes. Here A and r are positive constants. If we
suppose that x(0) = xo, then the Eq. (2.13) can be converted to a generalized Volterra

integral equation
t —_A 42
x(t) = xo +/ (r Jx(8) —x7(s) As.
0 A+ x(s)

Exercise 3 Let .7 = . Consider a simple electric circuit. The total charge Q(¢)
on the capacitor at t € 7 is given by the equation

Q4(1) = bQ(r), b = const.

Reduce it to an integral equation if Q(ty)) = Qy for some 7y € S and some real
constant Q.

Example 14 Let 7 = % . Let us consider the IVP
22 () + 2xz(x) =0, z(0) = 1.

Here
a(x) =2x, ulx)=0, zo=1.

Then we get the integral equation

Px) = —2x — 2x /0 o) Ay.

Example 15 Let 7 = .4 . Let us consider the IVP
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0 +xz) =x, () =1L

Here
xo=1, alx) =x?, ulx) =x, zo=1.

Then we obtain the following integral equation
P(x) =x —x* — / 2p(y) Ay.
1

Example 16 Let = 2%y {0}. Let us consider the [IVP
22(x) + e, (x, Dz(x) = sinh,(x, 1), z(0) = 1.

Here
x0=0, zo=1, alx) =-e(x,1). u(x)=sinh,(x, 1).

Then we get the following integral equation

6(x) = sinh,(x, 1) — ex(x, 1) — / Cen(r, 16 () Ay.
0

Exercise 4 Convert the following IVPs to integral equations.

1.
22@) + (2 +2x — Dzx) =3

2000=2, I=%2,

> 280 + ex(x, 0)z(x) = 3
20) =1, T =M,

> Z8(x) — cos(x, )z(x) = —x
2(000=0, 7 =2%U{0)}.

Answer

1. p(x) =3 —2(x2+2x— 1) — /x(x2 +2x — Do(y) Ay,
0

2. ¢(x) = 3x% — ex(x,0) — / ex(x, 0)p(y) Ay,
0

3. ¢(x) = —x+/ cos,(x, 1)p(y)Ay.
0
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Now we consider the problem (2.7), (2.8). Set
@) = o).

Then, using (2.8), we get

ZA(X)_ZA(XO)Z/ () Ay

or ¥
z4(x) =z§+/ d(y) Ay,
Xo
whereupon . o
2wzt = [ av+ [ [ omayan
X0 X0 X0
or

X X
2(x) = 20 + 2§ (x — x0) +/ / o) AyAxy.
X0 X0
Hence, applying Theorem 1, we find
X
2w =20+ -0+ [ (= 30604y
X0
Substituting (2.14), (2.15) and (2.16) in (2.7), we get

o) +a) (s + [ 60) 2y)

+b) (20 + 0 = x0) + [1(x = (DS AY) = u(x)

or
(x) = u(x) — a(x)zg — b(x)z9 — b(X)z§ (x — x0)

—a() [ dMAy = b(x) [, (x = a () () Ay,

ie.,

rX

(2.14)

2.15)

(2.16)

P(x) = ux) — a(x)z§' — b(x)zo — b(x)z§ (x —x0) — / [a(x) + b)) (x — c ()] d() Ay. (2.17)

X0

Example 17 Let 7 = 2% Consider the IVP
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2
22 () + X222 (x) +xz(x) = x — 1,
(=1, 41 =2.

Here
o(x) =2x, akx)=x%, b(x)=x, ulx)=x-—1,

w=1, =2 x=L1
Then, using (2.17), we get the following integral equation

p(x) =x—1—2x* —x — 2x(x — 1) —/x [¥* +x(x =20 ] () Ay
1

=4’ +2x—1— 2/lx(x2 — xy)(y) Ay.
Example 18 Let = 2% . Consider the IVP
2 () +xz4 (x) — 2%z (x) = x,
z2(0) =0, z4(0) =1.

Here
c(x)=x+2, akx)=x, bkx)=—x> ukx) =x,

70 =0, Z@:l, xo = 0.
Then, using (2.17), we get the following integral equation
o(x) =x—x+x —/ [x—xz(x—y—Z)](b(y)Ay
0
== [ 42 sa et 2no0)ay
0

Example 19 Let 7 = A;’. Consider the IVP
2% (x) = 2e,(x, 0)z(x) = sinh,(x, 0),
2(0) =0, z%(0) = 1.

Here
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o) = (Wx+ 13 akx)=0, bx)=—2e(x,0), u(x)=sinh,(x,0),
720=0, z@:l, xo = 0.

Then, using (2.17), we get the following integral equation

$(x) = sinh,(x, 0) + 2xe,(x, 0) + 2 / ex(x,0) [x — (¥ + D] o) Ay.
0

Exercise 5 Convert the following IVPs to integral equations.

) () — x4 () =0,
20) =0, z20) =0, T =.4.
2. i
2@+ AW 4z =1,
2(0)=0, z20)=1, T =2"%U{0},
3.
2 (1) + ec(x, DZA(x) = 0,
(=1, 2 =2, T=.L.
Answer

1. o) = /0 26 Ay,
2. () = —x — /0 (14 x — 2)6() Ay,

X

3. 600 = —2e0(x, 1) — /1 ex(x. D) Ay.

2.3 Converting Generalized Volterra Integral
Equations to IVP

A method for solving generalized Volterra integral and Volterra integro-differential
equation converts these equations to equivalent initial value problems. This method is
achieved by differentiating both sides of generalized Volterra equations with respect
to x as many times as we need to get rid of the integral sign and obtain a differential
equation. The conversion of generalized Volterra equations requires to use Leibnitz
rule for differentiating the integral at the right hand side. The initial conditions are
obtained by substituting x = a into u(x) and its derivatives. For instance, after we
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differentiate (2.3) with respect to x we get

¢4 (x) = u®(x) + A / K2(x, y)¢(y) Ay + AK (0(x), ) (x) (2.18)
and substituting x = a in (2.3) we find

P(a) = u(a).

If there is an integral sign in (2.18), then we differentiate it with respect to x and so
on.

Example 20 Let 7 = % . Consider the equation
o =5+ [ o014y 2.19)
0

We have
cx)=x+1, xe 7,

and
)=o) +x=x+14+x=2x+1.

Hence, differentiating (2.19) with respect to x, we get

oA (x) = (N + p(x)

=2x+ 1+ o(x).

Substituting x = 0 in (2.19), we find ¢(0) = 0.
In this way, we get the following IVP

P2 (x) — p(x) = 2x + 1
»(0) =0.

Example 21 Let 7 = 2% Consider the equation
o) =5+ [ = nomay. (220)
1

We have

o(x) =2x, xe€ 7,
(x3)A = 0’2()6) + xo(x) +x?
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= 4x* + 2x% + 2
= 7x2,

x—ye=1

We differentiate with respect to x the Eq. (2.20) and we get
X A
¢4 () = ()4 + ( / (x — y>¢(y>Ay)
1
=7 + /1 ¢ Ay + (0 () = 1)H(x)
= Tx* + xé(x) +/ P(y) Ay,
1

ie.,

620 = T + x0(x) + / () Ay. 221)
1

Now we differentiate (2.21) with respect to x and we find

X A
™ () = (T2 + (p(0)> + ( /1 ¢<y>Ay)

=7(0(x) +x) + ¢(x) + ()™ () + P(x)
= 21x 4 26(x) + 2x¢* (x)

or
6™ (x) — 262 (x) — 26(x) = 21x.

We put x = 1 in (2.20) and we get ¢(1) = 1.
‘We substitute x = 1 in (2.21) and we find

(1) =7+ ¢(1) = 8.

In this way we go to the following IVP

I P2 (x) — 2x2 (x) — 26(x) = 21x,
p() =1, ¢2(1)=8.

Example 22 Let 7 = 3% . Consider the equation

P(x) = ex(x, 1) +/l (x4 2y)¢(y) Ay. (2.22)
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Here
cx)=x+3, xe 7.

Then, differentiating (2.22) with respect to x, we get

X A
620 = edx, 1) + ( /1 (c+ 2y>¢(y)Ay)
— veu(x, 1) + / "6 Ay + (@) + 206()
1
— xex(r, 1) + G + 300 + / T o)Ay,
1

i.e.,

¢*(x) = xe,(x, 1) + 3(x + Dop(x) +/ o(y)Ay. (2.23)
1

Now we differentiate (2.23) with respect to x and we find

X A
Y (1) = (e (x, 1) +3((x + D)) + ( / <z><y)Ay)
1

= e.(x, 1) + o()xex(x, 1) + 3¢(x) + 3(0(x) + D™ (x) + ¢(x)
= (2 4 3x + Dey(x, 1) 4+ 40(x) + 3(x + 4)¢” (x),

i.e.,
¢ (1) = 3(x + DA (1) — 4d(x) = (& + 3x + Dey(x, 1).

We put x = 11in (2.22) and we find ¢(1) = ¢;(1, 1) = 1.
We substitute x = 1 in (2.23) and we get

¢ (D) = e1(1,1) +6¢(1) = Te (1,1) = 7.
In this way we get the following IVP

I Y (X) = 3(x + DA (x) — 46(x) = (¥ 4 3x + De,(x, 1),
p(h =1, ¢*(1)=7.

Exercise 6 Convert the following generalized Volterra integral equations to IVPs.
L g =2~ 1 +/ oM Ay, T = A,

0
2. ¢(x) =x+3 +x/ o) Ay, T = 3",

1

360 =20+ /0 (= 6M) Ay, T = N,
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Answer
- ¢ () — Px) = dx + 2,
[wm=—L
2.
¢4 (x) — 9xd? (x) — 4(x) =0,
| ¢(1) =4, ¢*(1) =13,
3.

¢ () = B+ 2y () — T5LH(0) =0,
3(0) =0, ¢(0) =2.

Example 23 Let 7 = 2% Consider the generalized Volterra integro-differential
equation

600 = 6A() +x + /1 (x + 1)d() Ay. (224)

We have o(x) =2x, x € .
Then we differentiate with respect to x the Eq. (2.24) and we get

¢ (x) = ¢* () + 1 Jr/1 P Ay + (0(x) +x)(x)

= % () £ 3x600) + 14 /1 6() Ay.

ie.,

¢ (x) = 6% () + 3xp(x) + 1 + / P Ay. (2.25)
1
Now we differentiate (2.25) with respect to x and we find
67 (1) = 6% () + 36(x) + 30 (1) (x) + $(x)

= ¢%"(x) + 49(x) + 6x6% (x)

or
¢ () — 62 (%) + 6307 (x) + 49 (x) = 0.
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We put x = 1in (2.24) and we get

p(1) = ¢*(1) + 1.
Now we substitute x = 1 in (2.25) and we find

(1) = o2 (1) +36(1) + 1
=Y (1) +3¢2(1) +3+1

= ¢ (1) + 302 (1) + 4

or s
A (1) +262(1) +4 =0.

In this way we go to the following problem
¢ () = 9% (1) + 6x0” (1) + 49 (x) = 0,
A1) —p(H)+1=0, ¢2(1)+2¢2(1)+4=0.

Example 24 Let 7 = 3.4. Consider the generalized Volterra integro-differential
equation

o) =000+ [ 04 2.26)
1
Then, differentiating (2.26) with respect to x, we get

() = ¢ (1) + ¥ (x)

or

¢ (x) — A (x) + 22o(x) = 0.
We put x = 1 in (2.26) and we find
o(1) = ¢?(1).
Therefore we obtain the following problem
() — 2 () + X2 (x) = 0
¢(1) = ¢A(1).
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Example 25 Let T = 5% U {0}. Consider the generalized Volterra integro-differe-
ntial equation

% (x) = p(x) —x /O P(y) Ay. (2.27)

Here o(x) = 5x, x € 7. Then, differentiating (2.27) with respect to x, we get
A? A !
o7 (x) = ¢~ (%) —/ d(y) Ay — o (x)p(x)
0

— i) — /0 6() Ay — 5x6.(x).

ie.,
6% (1) — 6200 + /0 () Ay + 5x6(6) = 0. (2.28)
Hence, . .
% () = ¢% (X) + P(x) + 5¢(x) + 50(x) ¢ (x) =0
or

¢ (x) — ™ (x) + 25x¢2 (x) + 66(x) = 0.
We substitute x = 0 in (2.27) and (2.28) and we obtain
3(0) = ¢*(0) = ¢*(0).
Consequently we get the following problem
[ A (1) — ¢4 (x) + 25162 (x) + 66(x) = 0

$(0) = ¢2(0) = ¢*(0).

Exercise 7 Convert the following generalized Volterra integro-differential equations
to IVPs.

L 6% = o) + 22+ / sinh, (v, Do) Ay, T = .
1

2. 640 = 60 +2° + / (x +v)e, (s Do) Ay, T =25,
1

3. p(x) = ¢2(x) +x* —/ 2x+y)p(y)Ay, T =2%.
0
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Answer

1. .
o4 (x) — ¢ (x) — sinh, (x, Do(x) =2x + 1,
oY (1) = (1) + 1,

2.

P2 (x) — ¢ (x) — 6xen, (2x, 1A (x) — (4 4 6xD)e, (x, Dp(x) = 21x,

P2 =)+ 1, ¢¥ (1) = ¢2(1) +36(1) +7,

A4 (x) — 2" (x) — Bx + 10)¢2 (x) — 5¢p(x) = —12x% — 48x — 56,

B(0) = ¢2(0), $*(0) = ¢*°(0) — 4¢(0) + 8.

2.4 Converting BVP to Generalized Fredholm Integral
Equation

In this section we will represent a method for converting boundary value problems
to generalized Fredholm integral equation. This method is similar to the method for
converting of [VP to generalized Volterra integral equation. Here boundary conditions
will be used instead of initial conditions. In this case we will determine another initial
condition that is not given in the problem.

We consider the following boundary value problem

ZAZ (x) —|—f(x)z(x) =g(x), xp<x<x, Xp,X € 7, (2.29)
z(x0) =20, z(x1) =21. (2.30)

We set ,
P(x) =z (x). 2.31)

Integrating both sides of (2.31) from x( to x we obtain

/X A (At = /x P(t) At

2% (1) — 2% (x) =/ (1) At,

or



96 2 Introductory Concepts of Integral Equations on Time Scales

or

22(x) = 2%(x0) + / o) At.

We integrate the last equation from x to x and we find

/ZA(V)Ay=/ ZA(Xo)Aer/ /2¢(I)AIAXz

2(x) — z(x0) = z° (x0) (x — Xo) +/ / 2 d(t) AtAxy,

or

or

X X2
2w =20+ D+ [ [ owaan,
X0 X0
Applying Theorem 1 we find
X
2(x) = 20 + 2% (x0) (x — x0) +/ (x —o()Ar. (2.32)

Xo

We substitute x = x; in the last equation and using that z(x;) = z; we go to

21 = 20 + 2% (%0) (x1 — Xo) +/ (x1 — o (1)) (1) At

or

A (x0) (1 — %0) = 21 — 20 — / (1 — 00D AL,

or
21— 20 1 H

2% (x0) = - (x; — a(0)p(1) At.
X1 — Xo X1 — X0 Jx

We substitute the last expression in (2.32) and we find

21 — 20 xX—xo [
z2(x) =20 + ——(x — x0) —
X1 — Xo X1 —Xo Jx,

(1 — o ())(r) At

+/x(x —o(0)o() At.

X0
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The last expression and (2.31) we put in (2.29). Then

60 +1 W + T ()5 =) = () / (61 — 0 (D)D) Al

b / (x — o (D)D) AL = g(x)

or
d(x) = g(x) —f(x)zp — f(X)(x — X0) +f(x) / (x; — o)) At
—f ) / (x— ()N AD)
X0
= g() — f(¥)z0 — f(x)(x —x0) +f(x) / (1 — o)1) At
oD AL— () / (x — 0 (D)) At
= g(0) — ()2 — 2 — e =0
+ / "o (xl AR pata a(t)) B(0) At
X0 X1 — X0 X1 — X0
— o(1)é(1) At
= g() — f(¥)z0 — f(x)(x —x0)
+ / "o (— (1= 0% _ x-x a(z)) $() At
X0 X1 — X0 X1 — X0
— X1
T il / (x1 — 0 (1)) At,
X1 — X0 Jx
i.e.,

d(x) = g(x) — f(X)z0 — f

+ / T (— =% x- );‘Oa(t)) $(1) At

X1 — Xo X1 —

— £ () (x — x0)
-~
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+f ) / (x1 = o)D) Ar.
X1 — X0 Jx

Let

o) (-2 - 20 ) for =1 sx

K(x, 1) =

fO@ —o);=¢ for x<t=<x

and _
h(x) = g(x) = f(®)z0 — ii _i:)f(X)(x —Xo) for Xo<x<ux.

Consequently we obtain the following generalized Fredholm integral equation

b(x) = h(x) + / K, o) At. (2.33)

Xo

Example 26 Let 7 = %3. Consider the following BVP
(@) +x%00) =x, 0<x<8,
z2(0) =0, z(8) =2.
Here
o) =Wi+1)7 1e€7, f)=x g =x xel08],
x=0, x1=8, z0=0, z1=2.

From here we obtain
hx) = x — 2x°.

Substituting this in (2.33) gives the following generalized Fredholm integral equation

8
$0) = x - %f + / K(x, (D) AL,
0

where
— X =8) Wi+ 1) for 0<1=<x
K(x, 1) =
§x3(8—(3/f+1)3) for x<t<8.
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Example 27 Let 7 = 4”% U {0}. Consider the following BVP

22 (%) + cosh, (x, Dz(x) =x, 1 <x < 16,

z(1) =0, z(16) = 3.

Here
ocx)=4x, xe€.7, f(x)=cosh,(x,1), gx)=ux,

x=1 x1=16, z0=0, z3=-3.

Hence, we find |
h(x) =x+ 15 cosh, (x, I)(x — 1).

Substituting this in (2.33) gives the following generalized Fredholm integral equation

16

ox) =x + % cosh,(x, D(x — 1) + K(x, 1)o(t) At,
1

where

—% cosh,(x, (16 —x)(1 —4t) for 1 <x<t
K(x,t) =
%(x — 1)(4 —t)cosh,(x, 1) for t <x <16.
Example 28 Let 7 = 3./4;. Consider the following BVP
2 () 4 ex(x, Dz(x) =x2, 0 <x <6,

z(0) =1, z(6) =1.

Here
cx)=x+3, xe.7, f(x)=elx,1), gkx) =x>

x=0, x1=6, zo=2z=1.

Then
h(x) = x* — ex(x, 1).

Substituting this in (2.33) we get

6
Sx) = x> — ex(r, 1) + / K(x, () At,
0
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where
—éex(x, Dx—6)(t+3) for 0<t<ux
K(x, 1) =
te.(x, Dx(3—1) for x<1<6.

Exercise 8 Convert the following BVPs to generalized Fredholm integral equations.

1.

) —z)=x% 0<x<2,

2000=z22)=0, T=2,

2.
2 +2z(0) =x, 1<x<5,
z2(D=0, zB =1, T=4,
3. .
2 —2x+ Dz =1, 0<x<9,
20)=0, zH =1, T ="
Answer
1. h(x) =2,

1=+ 1) for 0<x<t
K(x,t) =
—3x(1—=1) for 1<x<2,

2. hix) = %(x—i— 1),

—lt(x=5) for 1<x<t
K(x,t) =
=@ -1 for t<x<5,

1
3. h(x) =1+ §x(2x—|— 1),

Tx+ D —NWI+D? for 0<x<t
K(x,t) =
—5x@x+ 1) (9- Wi+ 1)?) for x<t=<09.
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We next consider the following boundary value problem for the Eq.(2.29) with

boundary conditions
2x) =22, 2%(0) =z

(2.34)

Again we set A () = @(x). Integrating both sides of (2.31) from x, to x we get

X
Bw =00+ [ omar
Xo
We put x = x; in the last expression and we find

2% (n) = 2% (x) +/ lcb(t)At

or

23 = 7% (x0) +/ | o) At,

whereupon

74 (%) = 73 —/ lqS(z)At.

We substitute the last expression in (2.35) and we obtain

A =z — / (At + / S AL,

which we integrate from x to x; and we get

/ ZA(I)At:/ (z3—/]¢(t)At) Ay+/ /qu(t)Azsz,
200 — 200) = (zg— / | ¢(I)At) (x — x0) + / / "6 At Axa,

Z(x) =2 + <Z3 —/ ] ¢(I)At) (x — xp) +/ / 2 o) At Ax,.

Applying Theorem 1 we get

or

or

2(x) =2+ (Z3 - /x1 qb(t)At) (x — xo) + /x(x — o)) At.

We substitute (2.31) and (2.36) in (2.29) and we find

(2.35)

(2.36)
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) +2f ) +£0) (2 = [ 60 Ar) @ = x0)

H @) [o (x— o) Ar = g(x)

or
H) = 8 — 2f () — 256 — XY (@) + () (x — x0) / o)At
e / :<x — o6 A
= () — 2 () — 5 — W ) + £ — o) / b At
PG — o) / oA - £ / :<x — o )61 At
= g(x) — z2of (%) — z3(x — x0)f (x)
+ / (F)(x = x0) — F@)(x — 7(0) (1) A
A — o) / o ar
— () — 2f () — 13 — ) () + / :f(X)(—xo o060 A
+ / " f@ 0 - xdn A
Let

hi(x) = g(x) — 22f (x) — z3(x — x0)f (x),
fX)(=xo+0@) for xo<t=<x
Ki(x,1) =
f)(x —xp) for x <t =<x.

Then we get the following generalized Fredholm integral equation

o(x) = hi(x) +/ | Ki(x, )¢(1) At. (2.37)
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Example 29 Let 7 = A;*. Consider the following BVP
zAz(x) + x2z(x) = cos,(x, 1) + sinh,(x,2), 0 <x < 81,

2(0) =0, z4@81)=1.

Here
ox)=(Wx+ 1D xeT,
f() =" g(x) = cosy(x, 1) + sinh,(x, 2),
x0=0, x;=81, =0, zz=1.

Then

hy(x) = —x> + cos,(x, 1) + sinh, (x, 2).

Substituting this in (2.37) gives the following generalized Fredholm integral equation

81
B(x) = —x* 4 cos,(x, 1) + sinh,(x, 2) +/ Ki(x, )o(t) At,
0

where
xz(f/f—i— H* for 0<t<x
K1 ()C, [) =
x3 for x <t <8l.
Example 30 Let 7 = 37 U {0}. Consider the BVP
20+ 2x =32 =x2-1, 0<x<?27,

2000 =1, z4()=-3.

Here
o(x)=3x, x€ 7,
fx)=2x—-3, g) =x2—1,
x0=0, xy=1, =1, zz3=-3.
Then

hi(x) = g(x) — zof (x) — z3(x — x0)f (x)
=x—1—(2x—3) — (=3)x(2x — 3)
=x>—1—2x+3+6x*—9x
=7x* —1lx+2.
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Substituting this is (2.37) gives the following generalized Fredholm integral equation

27
d(x) =Tx* — 11x+2 +/ K\ (x, o) At,
0

where
32x —3)t for 0<t<x

Ki(x, 1) =
2x% — 3x for x <t <27.
Example 31 Let & = 2% . Consider the BVP

A —xAx) =1+x, —2<x<6,

2(=2)=0, z4(6) =1.

Here
cx)=x4+2, xe.7,
f)=—x, gl)=1+ux,
Xo=-2, x1=6, =0, zz=1.
Then

hi(x) = g(x) — 22f (x) — z3(x — x0)f (x)
=14+x—(x+2)(—x)
=1 +x+x>+2

=x>+3x+ 1.

Substituting this in (2.37) gives the following generalized Fredholm integral equation

6
d(x) =x>+3x+ 1+ / K\ (x, 1)p(t) At,
-2

where
—x(t+4) for —2<t<x

Kl(x,t)=
—x2 —2x for x <t <6.
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Exercise 9 Convert the following BVPs to generalized Fredholm integral equations.

1.
722 (x) + sinxz(x) = cosx, 0 <x <4,

2000=0, 24 =3, T=2,

> ZAz(x)—Sz(x)=x2+1, -1 <x<4,
(=H=1, zH=0, T=2,

3.
AW+ a0 =1, 1 <x <27,
(=0, 2Q7) =1, T =3%

Answer

1. hy(x) = cosx — 3xsinx,

Ki(x, 1) = [)(C[S;;)lc) ii(grx ){Ogrtogi,t <x,
2. hi(x) = x>+ 4,

o[ & 221
3. () = )‘2);—?;2

2.5 Converting Generalized Fredholm Integral
Equation to BYP

In the previous sections, we have represented a technique to convert Volterra integral
equations to equivalent initial value problems. In a similar manner, we will represent
a technique that converts Fredholm integral equations to equivalent boundary value
problems.
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We first consider the generalized Fredholm integral equation
o0 =g+ [ Ko 238)
Xo

where

f)x —x)(o(@) —x0) for xo <t =<x
K(x, 1) =
FX)x1 —o@)(x —xo) for x <t =<x.
The Eq. (2.38) we can rewrite in the following form

P) = g) + [ F)(x1 — ) (0 (1) — x0) (1) At
(2.39)
+ [ f O = o (D)) (x = x0)p(1) At

For simplicity reason, we may assume that ' (x) = a, where a is a constant. Then
(2.39) takes the form

P(x) = g(x) +alx — x)/ (o(t) = x0)p(1) At + a(x —xo)/ 1()61 — o)1) At.

(2.40)
We differentiate (2.40) with respect to x and we get

P (x) =g%(x) —a / (o(t) — x0)p(t) At
+a(x; — o()((x) — x0)P(x) +a / (1 — (1)) At

—a(o(x) — xp)(x; — o (x)p(x)

— %) —a / (0(t) — x0)$(1) Al +a / (x1 — 0 (D)D) AL

0

Again we differentiate with respect to x and we find

¢* () = %' (%) — a(a(x) — x0)d(x) — alx — 7 (x)) ()

= g% () — alx; — x0) (),

i.e.,
o () + alx) — x0)p(x) = g2 (v). (2.41)



2.5 Converting Generalized Fredholm Integral Equation to BVP 107
By substituting x = xp and x = x; in (2.40) we find that

P(xo) = g(xo) and P(x1) = gx1). (2.42)
Combining (2.41) and (2.42) gives the following boundary value problem

Y (0) + a(x; — x0)p(x) = g2 (x), X0 < x < xi,
(2.43)

d(xo) = gxo), @(x1) = glxy).

Example 32 Let 7 = 2% U {0}. We consider the following generalized Fredholm
integral equation

4
b(x) =2x +3 +/ K(x, (1) At,
0

where
2t(4 —x) for 0<t<ux

K, 1) =
2x(2 —1t) for x <t <4

Here o(x) =2x, x€ .7, a=1, gx) =2x+3. Then g(x) =2, gAz(x) =0.
Hence, using (2.43), we get the following BVP

PN (x) +40(x) =0, 0<x <4,
»(0) =3, ¢4 =11

Example 33 Let T = ,/1{,3 U {0}. Consider the following generalized Fredholm
integral equation

27
d(x) = x* +2x + / K(x, 1)p(t) At,
0

where
227 —x)(Jt+ 13 for 0<t<x
K(x, 1) =
227 — (V1 + 13 for x<t<27.
Here

o) = (x+13, xeT,

a=2, gx)=x>4+2x, x=0, x5 =27.
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Then

g = o) +x+2
=Wx+1)7’+x+2
= x4+ 3V 3+ 1 +x+2

= 2x + 3V 4+ 3% + 3,

3525—VF+3335—&§
o(x) —x ox) —x
3 o) — VD)o@ + %)
(V700 = D02 (0) + Jx/a @) +a?)
+3 Vo) —Jx
(Vo) = VD)2 (@) + Ja/o@) + Vo)
EPSE GOh fha
Vo2 (x) + Jxdo@) + Va2
3 X+ T4+ Jx+1
(WX + D2+ Yx(x+ 1) + Va2
=2+6 ik
Va4 2%+ 1+ VA% 4 Yx VAP
Vx+1
302 4+ 393+ 1

¢ =243

=246

Also,
g(0) =0, g(27) =1783.

Hence, using (2.43), we get the following boundary value problem

2 Ix+1
¢Auy+ywu)=2+6§ﬁ%§;? 0 <x <27,

?(0) =0, ¢Q27) =783.
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Example 34 Let .7 = 37" Consider the following generalized Fredholm integral
equation

9
dx) = x> =232 + / K(x, 1)p(t) At,
1

where
O—x)3t—1) for 1 <t<x
K(x,t) =
O-3nx—1) for x<t<09.
Here
a=1, ox)=3x, xe€ 7,
xo=1, x; =09, g(x)=x3—2x2.
Then

g2 (%) = o2 (x) + x0(x) +x* — 2(x + o (x))
= 9x? 4 3x% + x* — 8
= 13x* — 8x,
¢ (x) = 13(c(x) +x) — 8
=52x -8,
g()y=—1, g =567.
Hence, using (2.43), we get the following boundary value problem

Y (x) +8p(x) =52x—8, 1 <x<09,

o(1) =—1, ¢(9) =567.
Exercise 10 Convert the following generalized Fredholm integral equations to
BVPs.
1.
10
o =x-2+ [ K@wnowar,
0
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where
(10 —=x)(t+1) for 0<t<x
K(x,t) =
O —tx for x <t<10,
T =%,
2. 5
dx) = x> + / K(x, 1)o(t) At,
—1
where
2 —x)(t+2) for —1<t=<x
K(x, 1) =
20 -0x+1) for x<t=<2,
T =%,
3. .
() =2+ / K(x, D60 Ar,
1
where
@A4—-x)2t—1) for 1 <t<x
K(x, 1) =
20— (x—1) for x<t<4,
T =2,
Answer
1.
‘ ' (x) + 106(x) =0, 0 <x < 10,
»(0) = =2, ¢(10) =38,
2. ,
P (X) +60(x) =2, —1<x<2,
o(=1) =1, ¢22) =4,
3.

[ d)Az(x) +3p(x) =21x, 1 <x <4,
o) =1, ¢4) =64

Next we consider the following generalized Fredholm integral equation

o(x) = g(x) +/ K(x, t)o(t) At, (2.44)
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where
f&)(=xo + () for xo<t=<x
K(x,t) =
S (x —x0) for x <t =<x.

The Eq.(2.44) we can rewrite in the following form

X1

o(x) =g(x)+/ K(x, t)(b(t)At—i—/ K(x, )o(r) At

X0 X

=g +/ FO)(=x0 + o) p(t) At

4 / FO (= x0)b(n) Al

For simplicity reasons, we may assume that f(x) = b, where b is a real constant.
Then the Eq. (2.44) takes the form

ox) = g(x) + b/ (=x0 + (@) p(t) At + b/ (x —x0) (1) At. (2.45)

We differentiate the last equation with respect to x and we find
X1
¢2(0) = g7 (1) + b(=x0 + T (0))P(x) + b / P(1) At

—b(o(x) — x0)p(x)

— i) +b / (A,

ie.,

X1
P2 (x) =g%(x)+ b / (1) At. (2.46)
X
We differentiate with respect to x the Eq. (2.46) and we find

oY () = g% (1) — bo(x)

or
™ () 4+ bp(x) = g% (x). (2.47)

We substitute x = xg and x = x; in (2.45) and (2.46), respectively. We find

P(xo) = g(xg), ¢ (x1) = g% (x1). (2.48)
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Combining (2.47) and (2.48) we get the following boundary value problem
$* () + bp(x) = g¥' (), X <x <x,

(2.49)
P(xo) = g(x0), P*(x1) = g (x1).

Example 35 Let 7 = % . Consider the generalized Fredholm integral equation

4
d(x) = x* +3x° +3x + / K(x, )o(t) At,
0

where
_Jt+1 for 0<x<t
K(x’l)_[x for x<tr<4
Here
U(-x):x+1, xey, b:], xOZOv x1:4’
g(x) = x* 4 3x% + 3x.
Then

g2 (1) = o’ (x) + x0?(x) + o (x) + X° +3(0(x) +x) +3
=@+ D +xe+ D>+ 20+ D+ +30+1+x) +3
=437+ x4+ 1+ + 22 +x+ 25+ 47
+x°+6x+6
= 4% +6x7 + 10x 4 7,
g% () = 407 () + x0(x) + %) + 6(c(x) +x) + 10
=4+ D> +4x(x+ D +42+6(x+14+x) +10
=4x> + 8x + 4+ 4x° +4x +4x* + 12x + 16
= 12x% + 24x + 20,

g(0) =0, g%(4)=399.
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Hence and (2.49) we get the following BVP

A2 (xX) + d(x) = 1232 + 24x +20, 0 <x < 4,

#(0) =0, ¢4(4) =399.

Example 36 Let 7 = 2% U {0}. Consider the following generalized Fredholm inte-
gral equation

4
d(x) =x> —Tx* 4+ 2x + / K(x, 1)¢(t) At,
0

where
4t for 0<x <t
K(x,t) =
2x for x <t <4.
Here
o(x)=2x, x€7, x=0, x1=4, b=2,
glx) = X3 —7x% 4+ 2x.
Then

gA(x) = 0’2()6) + xo(x) + X2 — T(ox)+x)+2
=4x> 2 4 x* —21x +2
=7x* = 21x + 2,
AZ
g° x)=T(ckx)+x) —21
=21x — 21,

g(0) =0. g% =30.
Hence, using (2.49), we get the following BVP
P () +2¢(x) =21x —21, 0 <x <4,

$(0) =0, ¢*(4) = 30.
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Example 37 Let . = 4% . Consider the following generalized Fredholm integral
equation
8
K(x, 1)¢(1) At,
4

¢(x)=2x3—x2+4x+2+/

where
—t—8 for —4<t<x
K(x,t) =
—x—4 for x <t<8.
Here
cx)=x+4, xe€7, xo=—-4, x1=8, b=-1,
g(x) =2x% — x> +4x 4+ 2.
Then

g4 =20 () + xa(x) + %) = (0 (x) +x) + 4
=2((x+ 4>+ x(x+4) +xH) —(x+4+x) +4
=2(x* 4+ 8x + 16 + x% + 4x 4+ x?) — 2x
= 2(3x% + 12x 4 16) — 2x
= 6x% + 24x + 32 — 2x
= 6x7 + 22x + 32,
g% (¥) = 6(a(x) +x) + 22
=6(x+4+x)+22
= 6(2x +4) +22

= 12x +24 +22

12x + 46,

g(—4) = —158, g4(8) = 592.



2.5 Converting Generalized Fredholm Integral Equation to BVP 115
Hence, using (2.49), we get the following BVP

¢ (x) — p(x) = 12x + 46, —4 <x <8,

P(—4) = —158, ¢*(8) = 592.

Exercise 11 Convert the following generalized Fredholm integral equations to
BVPs.

1. ¢>(x)=x+10+/

4
K@, 0o(t)At, T = Z, where
2

t+3 for —2<t<x
K, 1) =
x+2 for x <t <4,

6
2. p(x) =x+1 +/ K(x,1)p(1)At, T = 2%, where
0

—2(t+2) for 0<t<x
Kx, 1=
—2x for x<t<6,

4
3. ¢(x) = x>+ 3x +/ K(x, o) At, T = 27 U {0}, where
0

2t for 0<t<x

K, 1) =
x for x <t <4
Answer
1.
V) +d(x) =0, —2<x<4,
p(=2) =8, ¢4 =1,
2. .
¢ (x) —2¢(x) =6x+ 12, 0<x <6,
$(0) =1, ¢*(6) = 148,
3.

YD)+ o) =3, 0<x<4,

$(0) =0, ¢4 =15.
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2.6 Solutions of Generalized Integral Equations
and Generalized Integro-Differential Equations

Definition 1 A solution of a generalized integral equation or generalized integro-
differential equation is a function ¢(x) that satisfies the given equation. In other
words, the solution ¢(x) must satisfy both sides of the examined equation.

Definition 2 The solution is called exact if it can be represented in a closed form,
such as a polynomial, exponential function, trigonometric function or the combina-
tion of two or more of these elementary functions.

The following examples will be examined to explain the meaning of a solution.

Example 38 Some examples of exact solutions are as follows:
o(x) = x> +x + " + cosx,
d(x) = x — 2ex(x, 3),
¢(x) = 1 4 cosh,(x, 1) + cosx.

Example 39 Let 7 = % . Consider the equation
P(x) =x>+4x+4— / P(t) At.
-1

We will prove that ¢(x) = 2x + 3 is its solution. Indeed,

/X ¢(t)At:/x(2t+3)At
—1 —1
zz/xtAt+3/xAt
—1 —1
—2/x l(tZ)A—l At+3(x+1)
=7, 2 *

:/ (ﬂ)AAt—/ At +3x+3
-1 -1

=x>—1—(x+1)+3x+3
=x>—1—-x—1+4+3x+3

=x>+2x+1.
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Hence,
x2—|—4x—|—4—/ dOAt =x>+4x +4— (x> +2x+ 1)
-1
=2x+3

= P(x).

Example 40 Let 7 = 2% . Consider the equation

1 1 x
o(x) = x — X —=x>4x+1 —x/ tp(t) At.
2 3 0

We will prove that ¢(x) = x + 1 is its solution. Indeed, we have that o(x) = x + 2

and
/t¢(t)At=/ t(t+ 1)At
0 0
:/(r2+t)At
0
1 54 24, 2 1 o
= —(r — (r - —(r —1) At
/0<3() (%) +3+2()
=/((t)A ~(H* — )At
= /(t)AAt /(t)AAt——/ At
1
:—x3——x2——x.
3 2 3
Hence,
1 1 1 *
3x4 2x3 — gxz +x+1 —x/o to(t) At
1 1 1 1 1 1
=§x4—§x3—§x2—|—x+l—x(§x3—§x2—§x)

1 1 1 1 1 1
=§X4 - §X3 — §x2+x+ 1-— §x4+ §x3+ 5}6'2
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Example 41 Let 7 = 2% _ Consider the integral equation
L, 4 *
o(x) = —gx +x+ 3 + (x — Dex(x, 1) + o(t) At.
1

We will prove that ¢(x) = e, (x, 1) 4 x is its solution. Really, we have that o (x) = 2x
and

/x o(t) At = /X(te,(t, 1) +1)At
1 1

/te,(t, 1)At+/ tAt
1 1

=x 1 x
+= / At
=1 3 1

t=x
=

e (t, 1)

1,
=ex, 1) —e(1,1)+ §t

=1
= é,(X, + X .

Hence,

1, 4 x
— =X +x+§+(x—1)ex(x, 1)+/ o(t) At
1

3
N T T N0 | REPIYAS | SO IS | PRLIC R
= 3x X 3 X e, (x, e (x, e (1, 3)c 3
=xey(x, 1) +x
= ¢(x).

Exercise 12 Show that the given function is a solution of the corresponding gener-
alized Volterra integral equation.

L ¢x)=x, T =2Z,
P(x) = —1x6 +x° — ix“ +x% + ix +x/x 1 p(r) At
5 3 15 0 ’
2. o) =x+2, T =%,

b0 = — Lo de Liog 1>/xr¢<r>m
X) = —gx = e a4 e X ; ,
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3. o) =2x+ 2+ 1, T = M2,
Hx) = x> +2x+2/x+ 1+ x/ (1) At.
1
Example 42 Let = 2. Consider the equation
4
d(x) = x* — 4x + x/ (1) At.
0

We will prove that ¢(x) = x? — 2x is its solution. Indeed, we have that o(x) = x + 1
and

4 4
x2—4x+x/ ¢(t)At=x2—4x+x/ (1> — 20) At
0 0

:x2—4x+x/4 1(r3)4—1(r2)A+1—2 l(tz)A—l At
o \3 2 6 2 2

=x% —4x +x/4 (1(9)4 — l(ﬂ)ﬂ + L ) + 1) At
o \3 2 6

Tosa 304, 7
—(r i U — ) At
3() 2()+6

1 =4 3 =4 77 t=4
2 3 2
=x*—4 | —=t —t
* x+x(3 =0 2 t=0+6 t=0)
2 _4x+ o4 24+14
=x"—4dx+x|{— — —
3 3
_ .2
=x"—4x+2x
=x*—2x

= o).
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Example 43 Let 7 = 3% _ Consider the equation
e ?
to(t) At.
00 = 77 [ 1000
We will prove that ¢(x) = x? is its solution. Really, we have that o(x) = 3x and
1 ? 1 ?
—xz/ 1h(1) At = —x2/ 2 At
164/, 164

A
_ A
Tea™ 40/(” !

2 4’
6560

t=1

:x2

= ¢(x).

Example 44 Let 7 = Jl{)z U {0}. Consider the equation

d(x) = 12x/x +6x — 2 + —x / o) At.

We will prove that
B(x) = 6x% + 12x/x + 6x — 2

is its solution. Really, we have that o(x) = (v/x + 1)? and
3 4
12x/x 4+ 6x — 2 + —x2/ (1) At
32 Jo
= 12x/x+6x—2+ —x / (6x + 12x/x + 6x — 2) Ax
= 12x/x +6x—2

3 4
+ 3—2x2/ (203x% + 6xy/x + Tx +4/x + 1) — 42x + 2/x + 1)) Ax
0
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3 4
N / (269 — 46)%) Ax

0

x=4

3
:12Xﬁ+6x—2+3—2(2x3

x=0
3 2
= 12x/x+6x — 2+ R (128 — 64)

= 12x/x + 6x — 2 + 6x2

= ¢(x).

Exercise 13 Show that the given function is a solution of the corresponding gener-
alized Fredholm integral equation.
1. o) =x*+2x+1, T =2,
2
() =x> —dx + 1+ x/ P(1) At,

)
2. ¢x)=x—4, T =3%,

6

Px) = 16x — 4 +x/ o(t) At,
0

3. o) =x—1, T =2"0{0},

4
o(x) = —lx —1 —i—x/ o(t) At.
3 0

2.7 Advanced Practical Exercises

Problem 1 Convert the following multiple integrals to single integrals.

// ex(t, N AtAx,, T =3Z.

/ / eor (t, 1) AtAx,, T = 30U {0).
0 JO

X X1
3. / / sinh, (¢, 2) AtAxy, T = 2% U {0}.
0 0
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Answer
1. / (x —t—=3)ep(t, 1) At,
0
2. / (x = 30)e;on(t, 1) At,
0
3. / (x — 2¢) sinh,(t, 2) At.
0
Problem 2 Convert the following multiple integrals to single integrals.
X X1
1. / / () —Dt*AtAxy, T = X,
Ox 0)(1
2. / / (x1 — 3De(t, 1) AtAxy, T =37 U {0},
0 Jo
X X1
3. / / (x; — 2¢) sinh, (¢, 2)AtAxy, T = 2%,
2 J2
Answer
1. / (x — 0)*r* At,
0
X
2. / (x — 30)2e,(t, 1) At,
0
3. / (x — 20)* sinh, (¢, 2) At.
2

Problem 3 Convert the following IVPs to integral equations.

' A0 — Sz = -1
z2(000=0, =2,
> A0 — (222 + Dz(x) =2
O =1, T =,
> ) —z) = —1
z2) =10, T =.4.
Answer
L o) = —x+/0x§1;¢(ymy,

2. bx) =2x+ 1+ / 2y + Dé(y) Ay,
0
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3. 6() =12 —x+ / d(y) Ay.
2

Problem 4 Convert the following IVPs to integral equations.

1.
[ 22 (x) — sin, (x, 0)z(x) = 1,

20)=0, z2(0)=1, T =22,

* () + 224 () + 2(x) = 0,
[z(l): I, 2H)=2, T=2,
3.
20+ 220 4 2(x) = e, (x, 2),
L(O) =1, A0)=2 T =M
Answer

L o) = %xz + /0 Sin, (3, 0)(x —2 = )6 Ay.

2 600 = <3+ dx= [ (+x= 30004,

3. 0(0) =3x+1— /Ox(x — Mo Ay + /Ox(x —y— Dey(y,2)Ay.

Problem 5 Convert the following generalized Volterra integral equations to IVPs.
L 600 = sinn,(x.2) + [ (1= 26018y, 7 = 2.

2 @) = a+ /1 omay. 7 = A7,

3. o) =x2—2x+2+/ x+ )6 Ay, T =47,
1

Answer
1.
[ ¢ (x) — (1 — 2x)p(x) = x cosh,(x, 2),
»(2) =0,
2.

[ PA(x) — X2 (x) = 2x + 3Vx2 + 3Yx + 2,
o(1) =2,
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[ ¢4 (x) — 20662 (x) — 6p(x) = 5,
o) =1, ¢*(1) =8,

Problem 6 Convert the following generalized Volterra integro-differential equa-
tions to IVPs.

1. ¢(x) =¢A(x)+/0 yo Ay, T = N,
2. A = () + 2 + / 604y, T = A2,
0

X

3. ¢ (x) = d(x) +x° — 2x +/ xp( Ay, 7 =3%U{0}.
0

Answer
" 62" (x) — 64(6) + x(x) = 0,
[ $(0) = $4(0),
2.
PN (x) — ¢A () — p(x) = 20+ 2J/x + 1,
[ $4(0) = 6(0),
3.

[ 4 (x) — ¢ (x) — 9 (x) — deb(x) = 52,
$2(0) = (0), ¢ (0) = ¢ (0) — 2.

Problem 7 Convert the following BVPs to generalized Fredholm integral equations.

1.
‘ZAZ(X) +zx)=1, 0<x<9,

2(00=z29=0, 7=2,

'zAz(x)—i—xz(x) =1, 1<x<1l6,

2(1) =z(16) =0, T = A,

'ZAz(x)+xzz(x) =1—-x, 1<x<38,

() =0, z@8 =1, 7 =24
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Answer
1. h(x) =1,
—5(x =9 +1) for 0<r=<x
K(x, 1) =
5@8—1) for x<t=<9,
2. h(x) =1,

—%x(x—l6)(t+2\/lt) for 1<t<x
K(x,t) =
Ex(e— D5 —1=21) for x<1<16,

3. h(x) = —(x = 1) (;x2 + 1) ,

—lx=8)x}(=1+21) for 1<t1<x
K(x,t) =
I(x— D@ —1) for x<t<8.
Problem 8 Convert the following BVPs to generalized Fredholm integral equations.
1. ,
2@ — Bx+7Nz(x) =1+cosx, 0<x<4,

2000=0, 2@ =1, T =2,

> ) -z =1, —1<x<09,
2(=1)=7z49 =0, 7=2,
3.
) Fazx) =x2+2x, 1 <x <27,
(=0, 22N =1, T =3",
Answer

1. hi(x) = 1 + cosx + 3x> + 7x,

—Bx+7N@E+1) for 0<t<x
Ki(x,t) =
—x@Bx+7) for x <t <4,
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2. hiy(x) =1,
—t—2 for —1<t<x
Ki(x, 1) =
—x—1 for x<t<9,
3. hi(x) = 3x,
x(—143t) for 1 <t<x
K](X,I)Z

x(x—1) for x<t<27.

Problem 9 Convert the following generalized Fredholm integral equations to BVPs
1.
4
d(x) =x>+2x+4+ / K(x, 1)p(t) At,
0

where
34—x)@t+1) for 0<t<ux
K(x, 1) =
3x(3—1t) for x <t <4,
T =%,
2. )
d(x) = x> —3x2 +/ K(x, 1)p(t) At,
—1
where
22 —x)(t+2) for —1<t<x
K, t) =
2l —t(x+1) for x <t <2,
T =%,
3. R
H(x) = x* +x +/ K (x, (1) At,
0
where

3t(3—x) for 0<t<x
K, 1) =
3x(1 —¢t) for x <t <3,

T =3%U{0).
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Answer
1. ,

o2 (1) + 12¢(x) =2

P(0) =4, ¢4) =28,
2. )

‘ A (X) + 6p(x) = 6x
p(—1) = —4, ¢(2) = —4,

3.

% (x) + 3 (x) = 520x>

$(0) =0, ¢@3) =284

Problem 10 Convert the following generalized Fredholm integral equations to
BVPs.

8
1. ¢(x) =x*—10x+5 +/ K(x, o) At, T = %, where
0

t+1 for 0<t<x
K(x, 1) =

x+2 for x <t<8§,

8
2. px) =x*+ / K(x,0)p(t)At, T = 2%, where
2

t+4 for —2<t<x
K, t) =
x+2 for x <t<8§,

4
3. ¢(x) =x° +/ K(x, D) At, T = ;> U {0}, where
0

2Wt+1)? for 0<t<x
K(x, 1) =

2x for x <t <4.
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Answer
1. ,
Y +o(x) =2, 0<x <S8,
p(0) =35, ¢2@®) =1,
2. )
Y () + p(x) = 12x> +48x + 56, —2<x <38,
d(=2) =16, ¢ (8) = 2952,
3.

6V W) + 200 =2+ 2, 0<x<4,

$0) =0, ¢4 =13

Problem 11 Show that the given function is a solution of corresponding generalized
Volterra integral equation.

1. o(x) =x*, T =%,

1 1 1 1 1 *
H(x) = —gxé + sz + 8x4 - Zx3 + 357 +x? +x/0 (* + Do) At,

2. ¢(x) =x*+sinx, T =%,

5 4

7
o(x) = —% + % + Ex— (x — l)sinx—i—(x2 — x) cosx + x?

+2xcosl —xsinl —i—x/ (t— Do(r) At,
-1
3. ¢o(x) =x, T =3M,
‘l X
H(x) = —Ex(x3 —14) +x / to(t) At.
1

Problem 12 Show that the given function is a solution of the corresponding gener-
alized Fredholm integral equation.

1. o) =x4+x, T =2,

3
d(x) =x° —23x + Zx/ (1) At,
0
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2. px) =x>+2x—4, T =22,
5
¢(x)=x2—13x—4+x/ (1) At,
0
3.6 =2x+2Vx+ 1, T =,

4
d(x) =2x+1+ %\/}/ (1) At.
0



Chapter 3
Generalized Volterra Integral Equations

In this chapter we investigate generalized Volterra integral equations. They are
described different methods for finding a solution as an infinite series such as: the
Adomian decomposition method, the modified decomposition method, the noise
terms phenomenon, the differential equations method and the successive iterations
method. It is given a procedure for conversion of generalized Volterra integral equa-
tions of the first kind to generalized Volterra integral equations of the second kind.
They are provided existence and uniqueness of the solution.

The generalized Volterra integral equations arise in many scientific applications
such as the population dynamics, spread of epidemics and semi-conductor devices. It
was shown that Volterra integral equations can be derived from initial value problems.
In this chapter we will apply the Adomian decomposition method, the modified
decomposition method, the noise terms phenomenon, differential equations method
and successive approximations method. The theorems of existence and uniqueness
of the solutions are given in the last section of this chapter.

3.1 Generalized Volterra Integral Equations
of the Second Kind

3.1.1 The Adomian Decomposition Method

The Adomian decomposition method (ADM) consists of decomposing the unknown
function ¢ (x) of any generalized Volterra integral equation into a sum of infinite
number of components by the series

$x) =D dux) 3.1)
n=0

© Atlantis Press and the author(s) 2016 131
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or equivalently

d(x) = ¢o(x) + d1(x) +Pa(x) +- -,

where the components ¢;(x), [ € 4, are to be determined in a recursive manner.
To establish the recursive relation, we substitute (3.1) into the generalized Volterra
integral equation

¢ x) =ux) + ?»/ K(x,y)p(y)Ay. (3.2)

‘We obtain - -
S a0 =)+ [ Ky X )4,
n=0 a n=0

or equivalently,

G000 + $1(X) + $2(x) + - = u(x) + A / K(x, )do() Ay
+k/ K(x,y)p1(y)Ay

) / K(r. )2 () Ay
+ “ ..

We set
Po(x) = u(x),
$1(x) =1 [T K(x, )o(y) Ay,

$2(x) = A [} K(x, y)p1(3) Ay,

and so on for the other components, or equivalently,

do(x) = u(x),

' (3.3)
Gnx) =4 [ K, ))pu1()Ay, ne N,

In view of (3.3), the components ¢ (x), ¢;(x), ¢2(x), ... are completely determined.

The solution ¢ (x) of (3.2) in a series form is obtained by using the series (3.1).

In other words, the Adomian decomposition method converts the generalized
Volterra integral equation into a determination of computable components. Note that
if an exact solution exists for (3.2), then the obtained series converges to that solution.
However, for some equations, when a closed form solution is not obtainable, a number
of terms of (3.1) can be used for numerical purposes. The question for convergence
of ¢, (x) will be discussed in the last section of this chapter.
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Example 1 Let = % . Consider the generalized Volterra integral equation

6 () =x+/ () Ay.
0

Here
cx)=x+1, x€.7, ux)=x, Kx,y)=1, r=1.

Then

¢o(x) = x,
¢1(x) :/0 P1(y) Ay

=/yAy

0

_ [ (ta_ L
—/0(2@) 2)Ay

1> 1 [~
== (yz)AAy——/ Ay

2 Jo 2 Jo
1 1

= —x> — —x,
2 2

$a(x) = /0 1) Ay
(1 1
- [ (-2)
_l XZA l XA
—2/y y_Z/yy
_ 1 A 2,4 l
—2/(@) y) 6)Ay
L A RV
/(2() 2)Ay
1 X
6/(y)Ay /(y)AerE Ay
——/(yz)“Ay+l/Ay
4 Jo
/(y)Ay— /(y)Ay+ /Ay
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¢3(x) = /O $2(y) Ay

_/X1 Lo 1Y,
e T T) A

—/ 2A+l/xA
> yt+3 [ y4y

()’)A‘i' (y)A)Ay

1
(g (Y)A ) y

e
(

\\/—\ <,

T Tt e T
Lo1s ]
276" 6

1, 1, 11, 1

—xt— -+ —x?— —x

Example 2 Let 7 = 2% U {0}. Consider the equation

Here

Then

6 =1 +x/0 6()Ay.

Kx,y)=x, ux)=1, ox)=2x, xe€ 7.

$o(x) =1,
¢1(x) = X/O $o(y) Ay

:x/ Ay
0

:xz,

$2() =x/0 $1() Ay

X
=X/ y* Ay
0
1 X
L / %) Ay
T Jo
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¢3(x) = X/O $2(y) Ay

1 X
:—x/ 4Ay
A
= A
217 /(y) y

217

Exercise 1 Let .7 = 37 U {0}. Consider the equation

o) =x+2/0 () Ay.
Find ¢;(x), i € {0, 1,2, 3}.

Answer

1 1
Po(x) = x, ¢1(x)=§x2, ¢>2<x)=ﬁx3, P3(x) = 260

Example 3 Let 7 = 3% . Consider the equation

o(x) =1 +2/0 o (y)Ay.

‘We will find its solution in a series form.
Here
ux)=1, Kx,y)=1, r=2, ox)=x+3, xe 7.

Using the ADM we set the recurrence formula

[050()6) =1,
() =2 [y pu_1 (N Ay, neN.

This in turn gives

1) = 2 /0 do(y) Ay

0

= 2x,
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$2(x) = 2/0 ¢1(»)Ay

“i [
ke

¢3(X)=2/0 D2 (y) Ay
= 4/X(y2 —3y)Ay
0
(L osa 3 04,3 (1l oa 3
4/0 (5()’) 2()’) +2 3( o) 2))Ay
* 1 3\ A 3 2\A 3 A
4/0 (§(Y) _E(y) +2 ()’) )Ay

4 / ) (%(ﬁ)“ _307)8 + 6) Ay
0

4 X X X
= —/ o)Ay — 12/ (yz)“Ay+24/ Ay
3Jo 0 0

= —x3 — 12x% + 24x.

IS

Then the solution in a series form is given by
2 4 3 2
¢(x) =142x+ 2x° — 6x) + gx —12x" 4+ 24x )+ ---
Example 4 Let = 2% U {0}. Consider the equation

dx)=x+1 —x/o o () Ay.

We will find its solution in a series form.
Here
ux)=x+1, r=-1, Kx,y)=x, o(x)=2x, xe 7.
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Using the ADM we set the recurrence formula

[¢0(x) =x+1,
u(x) = —x [§ a1 (N Ay, ne.N.

This in turn gives
X
¢1(x) = —X/ ¢o(y) Ay
0

= —x/ o+ 1Ay

——x/ ( )" +1)
= —— x/(y)AAy /OAy

hr(x) = —x ; d1(0) Ay

] 4 3
—x/o (E(y) +7(y))
! /x(y“V‘A ;! x(y3)AA
= —x =X
457 ), YT3
|
= E)C —|—§x )

¢3(x)=—x/ d2(y) Ay
0
== f (37 7)
——x/o 157 +7y y
= — ' L 04 L 5\A
- x/0 (2835@) + (y))Ay
= 2835 /(y) y—mx/(y)

2835 217 '

Then the solution in a series form is given by

1 1 1 1 1
— 1 3 2l = o) ——— T — —xf )+



138 3 Generalized Volterra Integral Equations

Exercise 2 Let .7 = 4% U {0}. Find a solution in a series form of the following
equation

o) =1 +/ o (1) At.
0

Answer

$O) =1 xt o+ ——x
X) = X S.X 105x .

3.1.2 The Modified Decomposition Method

For many cases, the function u(x) can be represented as the sum of two partial
functions, namely, u; (x) and u,(x), i.e.,

u(x) = ur(x) + up (x).

The modified decomposition method(MDM) introduces the modified recurrence rela-
tion.
Po(x) = u; (x), §
P1(x) = up(x) + A Ji K(x, »)¢o() Ay, (3.4
() =1 [ K(x, )1 (1) Ay, ne A\{1}.

The difference between the standard recurrence (3.3) and the modified recurrence
relation (3.4) is in the information of the first two components ¢ (x) and ¢; (x). The
other components ¢, (x), n > 2, remain the same in the two recurrence formulas. The
success of this modification depends only on the proper choice of u;(x) and u, (x).
A rule for such choice of u; (x) and u;(x) could not be found yet. If u(x) consists of
one term only, the standard decomposition method can be used in this case.

Example 5 Let = 2. Consider the equation

¢(x):x2+x+/ ¢ (y) Ay.
0
Here
ux) =x>+x, r=1, Kx,y)=1, ox)=x+1, xe 7.

Let
up(x) =x, ur(x) = x2.
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Then, using (3.4), we have

Po(x) = x,
$1(x) = x* + /0 Po(y) Ay

X
=x2+/yAy

0
_x2+/x ](y2)A_1 A
- . 2 2) 7

2
$2(x) =/ ¢1(y) Ay

Loga Lo Iy 171 504 1
(3(y) 2(y)4r6) 2(2(y) 2))Ay

A le l
o) (V)Jr 4@)+4)Ay

2
1 1
= 5}63 — x>+ Ex,

00 = [ b0y
(1 1
=/0 (5y3—y2+5y)Ay
_ xl 1 4A_l 3\A lZA
—/0(2(4@) 20%) +4(y>)
Lomaptoya L (Laa 1
0%+ 367 6+2(2<y> 2))Ay
Tl 1 1 1
= /0 (gcy“)A — 700+ 20N -

134
107

12A
F3OM4 — 24 20M% — 1) 4y
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[ (GoH* = oo+ 5002 = )y

::/@ﬂ n/@f /@fA——xm

5 1
=—x ——x + —x? ——x

8 12 8 12

Example 6 Let T = 2%y {0}. Consider the equation

d(x)=x—2+ 3x/0 o () Ay.

Here
ux)=x—-2, Kx,y)=3x, ox)=2x, xe€ 7.

Let
ur(x) = =2, uwx) =x.

Then, using (3.4), we have

Po(x) = —
¢mm==x+3x[;¢awAy

:x—6x/ Ay
0

=x—6x2,

@m=%lwmm
=h/%—WMy
0
_ (124 0 34
—334 (;y) ¢y>)Ay
=x/?ﬁwa—§x/1ﬁfAy
0 T Jo

18
320
7

=x
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¢3(x) = 3x / $2(y) Ay
0
* 18
= 3x / (y3 - —y4) Ay
0 7
Y1 18
[ (—(y“>A - —(W) Ay
o \15

_l x4A __/ A
—5x/0(y) Ay 7" ()2 Ay
15

6

=X — —Xx

X
5 217

Exercise 3 Let .7 = 3%2. Consider the equation

S =x+1 +/0 ¥ () Ay.

Using MDM, find ¢ (x), ¢1(x), ¢2(x) and ¢3(x).

Answer

o1,
do(x) =1, $(x) = ——x—i—zx

1 15 3
e e TR R
$300) 1 4 89 5+374 933+92+27
X)=—x"— —x" 4+ —x"— —x "+ =x" 4+ —x.
’ 487 2400 T160 160 27 120
Now we consider the following generalized Volterra integral equation of the second

kind .
¢(x) = ux) + A/ K@, y)p(c(y)Ay, ae T. 3.5)

‘We define
Po() = u(x). a6
() = A [T K@, V)i (0 () Ay, ne.N. '

Then a series solution of the Eq. (3.5) is given by

P =D $ux),

where ¢, (x), n € 4, are defined by (3.6).
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Example 7 Let 7 = 2. Consider the equation

ox) =1 +2/0 yo(y + 1)Ay.

Here
ux)y=1, rx=2, a=0, Kkx,y)=y.

Then

do(x) =1,
d1(x) = 2/0 Ypo(y + DAy

=2/XyAy

0

(a1
2/0 (E(y) 2)Ay
z/((y)A—I)Ay

frrw-[

—X — X,

h2(x) = 2/0 yo1(y + DAy

=2/xy((y+1)2—(y+1))A
0

2/ Y2 +2y4+1—y— DAy
0

2/ yO* +y) Ay
0

2/ 0"+ ) Ay
0

71 1 1 1 1 1
2/ (§<y3)A - —(y2>A +o+ —(y“)“ — —(y3)A + Z(yZ)A) Ay
0

2/(—%() 004 109 + )
/(y)Ay /(y)Ay+ /(y)Ay+ /Ay

1
= x —xz——x3+—x.

3 2 3 2
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Example 8 Let T = 2%y {0}. Consider the equation

¢ (x) =x+3/ y$(2y)Ay.
0

Here
ux)y=x, r=3, Kx,y)=y, a=0.

$o(x) = x,
$1(x) =3 /0 Y$o(2y) Ay

= 6/ y* Ay
0
6 X
= —/ o)Ay
7 Jo

x3
7
r() = 3 / ¥61(2y) Ay
0

18 [+
= —/ y(2y)* Ay

144
= y Ay

144 Aq
- 217/ )4
144
217"

Exercise 4 Using ADM, find ¢(x), ¢;(x) and ¢, (x) for the equation

b =2 + / y6Gy 4y, T = 3% U0},
0

Answer 9 729
do(x) =%, ¢1(x) = x4 ¢>z(x)=mx6.
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3.1.3 The Noise Terms Phenomenon

The noise terms are defined as the identical terms with opposite signs which can
appear in the components ¢o(x) and ¢;(x) and in the other components as well.
Noise terms may appear if the exact solutions of the considered equation is part of
the zeroth component ¢ (x). By cancelling the noise terms between ¢ (x) and ¢ (x),
the remaining non-cancelled terms of ¢ (x) may give the exact solution of the given
equation. Verification that the remaining non-cancelled terms satisfy the integral
equation is necessary and essential. Note that the noise terms appear for specific
cases of inhomogeneous integral equations. Homogeneous integral equations do not
give rise to noise terms. The question for convergence of ¢, (x) will be discussed in
the last section of this chapter.

Example 9 Let 7 = 2% U {0}. Consider the equation

d(x) = x> —3x +/ ¢ (y) Ay.
0
Using ADM, we have

do(x) = x* — 3x,
@1 (x) :/o do(y) Ay

=/ O* =3y Ay
0

* 71
=i£(¢ﬁﬂ—@%ﬂAy

1
— 32
7
The noise term is x>. Therefore we will check that ¢ (x) = —3x is a solution of the

given equation. We have

x? —3x +/ (=3 Ay =x* =3x— [ (P)*Ay
0

= —3x

=¢).

Example 10 Let = 3% . Consider the equation

1 X
Mm=x+§+/¢@My
0
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Using ADM, we have

¢0(X)=x+%,
X 1
¢1<x>=/0 (y+§)Ay
_ [l a3 1
—/0 (2@> 2+2)Ay
= [ (G- 1)
1 X X
=3 O(VZ)AAy—/O Ay
_ L1,
—2.x X

1
The noise term is —x. We will check if ¢ (x) = 3 is a solution of the given equation.
We have

x+l+/xlAy=x+l+lx
2 0 2 2 2
3 1
_§X+§
# ¢ (x)

1
Therefore ¢ (x) = 7 is not a solution of the given equation.

Exercise 5 Check if the noise terms phenomenon gives a solution to the equation

¢><x):x2—x+/ oAy, T=2.
0

Answer No.

Exercise 6 Use the noise terms phenomenon to solve the following equation
X
s =x-1+ [ 9man 7=2%00)
0

Answer ¢ (x) = —1.
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3.1.4 Differential Equations Method

In this section we will solve some generalized Volterra integral equations reducing
them to IVPs for some differential equations. This method is known as Differential
Equation Method (DEM).

Example 11 Let & = 2. Consider the equation

¢ =1+ / V¢ () Ay. 3.7)
~1
We differentiate the Eq. (3.7) with respect to x and we get

% (x) = X’ (x).

Substituting x = —11in (3.7) we find ¢ (—1) = 1. In this way we obtain the following

v P2 (x) = X*p (x)

[¢(_1)= | (3.8)
Also,o(x) =x+1, x e .7.Hence u(x) = o(x) —x = 1. Therefore

1+ ux>=14+x>#0 forany xe 7.

Consequently the solution of (3.8) is given by

¢ (x) = ep(x, —1),
which is a solution of (3.7).
Example 12 Let 7 = 3% . Consider the equation

o =-3+2 [ s0ay (39)

We differentiate (3.9) with respect to x and we find

¢ () =26 (x).

We substitute x = —1 in (3.9) and we obtain

(—1) = —3.
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Consequently we go to the following IVP

A —
e

Here o (x) = x + 3. Hence,
ux)y=ox) —x=x+3—-—x=3 and 1+4+2ukx)=7#0.
Therefore the solution of (3.10) is given by
P (x) = —=3ex(x, —1).

Example 13 Let 7 = 3% Consider the equation

P(x) = 10+2/ P (y)Ay. (3.11)
1
We differentiate the Eq. (3.11) with respect to x and we get

¢4 () =26 (x).

We substitute x = —1in (3.11) and we find ¢ (1) = 10.
In this way we go to the following IVP

P4 (x) =26 (x)
[¢>(1) 0. (3.12)

Here
ox)=3x, ukx)=ox) —x=3x—x=2x,
14+2ux)=14+4x#0 forany xe 7.

Consequently the solution of (3.12) is given by

¢ (x) = 10ex(x, 1)
=10 [T a+3-129

s€[1,x)

=10 [] (1 +4s).

s€[1,x)

which is a solution to the Eq. (3.11).
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1
Example 14 Let J = Ef'f . Consider the equation

Pp(x)=-2 +/ o (y)Ay. (3.13)
0
We differentiate the Eq. (3.13) with respect to x and we get

P4 (x) = ¢ (x).

We substitute x = 0 in (3.13) and we find ¢ (0) = —2.
Therefore we obtain the following IVP

A _
g (O(;C):__ﬁfx) (3.14)

Here

a(x):x—i—%, ,u(x):a(x)—x:x+%—x=%.

Consequently the solution of (3.14) is given by

¢ (x) = —2e1(x,0)

13x
=-2(1+=
(+3)
43x
e
3

Example 15 Let 7 = q”, ¢ > 1. Consider the integral equation

X 1 _ y
P x) = b+/ ——9( Ay, (3.15)
1 (g—1Dy
where b is a real constant. We differentiate (3.15) with respect to x and we find

% (x) = ¢ (x).

—Xx
(g — Dx?
We substitute x = 1 in (3.15) and we find ¢ (1) = b.
Therefore we go to the following IVP

$2(0) = L p ()
(1) — b (3.16)
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Here
o) =qgx, pux) =0 —x=(q— Dx,
I+ p@ s =1+ @G- Ixgd g =1+ =1#0

forany x € 7.
Therefore the solution of (3.16) is given by

d(x) =be_1x_(x,1),
(g—1)x2

which is a solution of the Eq. (3.15).

Example 16 Let 7 = A*. Consider the equation

p(x) =1 +/ ¢()Ay. (3.17)
0
We differentiate the Eq. (3.17) with respect to x and we find

% (x) = ¢ (x).

We substitute x = 0 in (3.17) and we obtain ¢(0) = 1. In this way we go to the
following IVP
P2 (x) = P (%)
3.18
p(O) = 1. G189
Here
o) = (WA+ D% p) =0 —x=2Ji+1,
1+ pux)=2+2/x#0 forany xec 7.
Therefore the solution of (3.18) is given by
¢(x) =ei(x,0),
which is a solution of the Eq. (3.17).

Exercise 7 Find a solution of the following generalized Volterra integral equations.
Log()=-1 +/ Yomay, 7 =2,
0
2. () =2+/ o'+ Doy, T =22,
0

3. ¢>(x)=10+4/ A +np(y)Ay, T =2".
1
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Answer

1. —epn(x,0),
2. 2ey441(x,0),
3. 10e4+4x(x, 1)

Theorem 1 Let f, g : T +—— X be rd-continuous functions and g be delta differ-
entiable in 7 . Then a solution of the generalized Volterra integral equation

¢(x) =f(x) +/ g Ay, ae 7, (3.19)

is given by the expression

P (x) = e, (x, a)f (a) + /x MfA(r)Ar. (3.20)
a I+ u(g(r)

Proof We differentiate the Eq. (3.19) with respect to x and we get
¢4 () =f2@) + gWP ().
‘We substitute x = «a in (3.19) and we find
¢(a) = f(a).
Therefore we get to the following IVP

[ P2 (x) = ()P () +£4(x)
¢(a) =f(a).

The solution of the last IVP is given by (3.20).
Example 17 Let = 2. Consider the equation

P(x) = x* +x+/0 y$ () Ay.

Here
f)=x>+x, gx)=x, a=0,
cX)=x+1, pu)=o0cx) —x=x+1—-x=1, xe 7.

Hence,

A =0@+x+1
=x+1+x+1
=2x+2,

£(0) =0.
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Then, using (3.20), we find

[Tk 1)
¢<x>—/0 55 e 4240

= 2/ e.(x, T)AT.
0
Example 18 Let 7 = 4;>. Consider the equation

$(0) = 207 — 3x + / 02 +)$ () Ay.
1

Here

fx) =24 =3x, gx)=x>4x, a=1,
o) = Wx+1),
nx) =ox) —x
= Wx+1)P —x
=x4+3Vx2+3Jx+1—x
=302 4+ 3Jx+ 1,
1 1
I+ 1@)g®) 14+ GY2 43S+ D2 +x)
A =2(c(x)+x)—3
=2(Jx+ 1P +2x -3
=2+ 6Vx2 4+ 6/x+2+2x—3
=dx+6vVx2 +6x — 1,
f)=-1

Then, using (3.20), we find

e, (x,7)

1+ GV 43T+ D2 + 1)

d(x) = —e,2,,(x, 1) +/x (4t + 6\3/72+6EE— Az,
1

Exercise 8 Using DEM, find a solution of the following generalized Volterra integral
equations.

L. ¢>(X)=x3—4X+/xy¢(y)Ay, T =2M,
1
2. ¢(x)=x2+2x+1+/ O+ 0PN Ay, T =3%,
1

3. ¢>(x):2x+3+/ 0+ + Doy ay, T =2.
0
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Answer
I ¢(x) = —3ey(x, 1)+/ elx(jf—’;)(m —4)Ar,
1
* ex2+x(x: 7)

2. —dea, (x, 1 e (21 +5) AT,

60 =despntn )+ [ 5D oot 5ar

* Cxtia241 (x,7)

3. ¢(x) = 3eui241(x,0) +2/0 Py

Theorem 2 Letf, g, h: T +—— X be rd-continuous functions, and f and h be delta
differentiable in 7, and h(x) # 0 for all x € . Then the generalized Volterra
integral equation

¢ (x) =f(x) +h(X)/ gMP»MAy, ae 7, (3.21)

has a solution given by the expression

_ T oelx, 1) Apy hA(T)f(T))
¢ (x) = ei(x, a)f (a) +/a T+ 1l (f (7) o) AT, (3.22)
where
10 =" | hemew
X) = 7o o(x))g(x
and
1+1(x)ux) #0 forany xe€ 7.
Proof From (3.21) we get
d(x) —f(x) = h(x)/ g () Ay,
whereupon
| smemay= 250, (3.23)
a (x)

We differentiate (3.21) with respect to x and we get

¢4 =200 +h* () / gMP () Ay + h(o (x))g(x)p (x).
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Applying (3.23), we obtain

¢4 00) =f(x) +h* (x)% + (o (1)) g () (x)
RANf(x)  hA(x)
_ rA _
- o) T e PW T hEEIEXEX
— hA(X) A hA(x)f(x)
_ ( - —i—h(o(x))g(x)) 600+ - )
A
— WP + 2w — :C)f(x)-
(x)

We substitute x = @ in (3.21) and we find

¢(a) = f(a).
In this way we go to the following IVP
$A () = 10§ (1) + /4 (x) — LWL
¢(a) = f(a).
The solution of the last IVP is given by (3.22).

Example 19 Let 7 = 2% . Consider the equation

X)) =x+2+ (% + 1)/ Yo (y) Ay.
0

Here
o) =x+2, px) =0 —x=x+2-x=2, a=0,
fX)=x+2, gw)=x, hkx =x>+1.

Then

hA(x) = o) +x
=x+2+x
=2x+2,
h(o(x)) = o2(x) + 1
=x+27+1
=x? +4x+5,
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100 = 29 L e
e 8

2x+2
= o + (6% 4 4x + 5)x
2%+ 24 %7 4+ dx* 4523 + 3+ 4x% + 5x
x24+1
XAt o 4P+ Tx+2
x2+1

s

2x+2

A -

o TG+2)

x2+1—2x —4x —2x—4
x24+1
2 4+6x+3
o2+

A =1,
f(0) =2,

44t 4+ 63 +412+ T +2
1+I(u(t) =142

241
T4 14207 + 800 41207 + 877 + 147 44
o 241
_ 273 + 874 + 1273 + 972 + 147 +5
- 241
Then, using (3.22), we obtain
P (x) =2e 5+4x4+ﬁz3+412+7x+2 (x,0)
¥2+1
/X (x. 7) 246143
- €5 adred a4 (X, T
| Gt (6 1) e s e T 4 15

Example 20 Let = 3”%_ Consider the equation

¢uw:ﬁ+xj>¢@vw

Here
ox)=3x, ux)=ocx)—x=3x—x=2x, a=1,

fx) =x%, gx) =h(k) =x.
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Then

) =1,
h(o (x)) = o (x)

= 3x,

h? (x)
h(x)

1
— 4352
X

l(x) =

+ h(o (x))g(x)

1+ 3x%°

’

X

1+ 373
+T2r

L+pu@l(t) =1+
=1+2(1+37

=3+67°,
fAr)=0@)+1
=31+71
= 4r,
S =1
h? (T)f (1) T’
A _————— — —_— —
e S
=4t -7
= 37.

Hence, using (3.22), we get

x T
(p(x):e#(x, 1)+/1 EH—X%?X}(X’ T)WAT.

Exercise 9 Using DEM, find a solution of the following generalized Volterra integral
equations.

1. ¢(x)=x—3+2x2/xy¢(y)Ay, T =N,
1

2. ¢(x)=x+(x+1)/ 0+ Do(yAy, 7 =M,
1

3. ¢(x):x—2x/xy¢(y)Ay, T =2,
1
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Answer

P(x) = —2e¢ 2x5+4x4+72x3+2x+l (x, 1

x=

* 2 —-57-3
- el\5+4/\4+‘%\3+2’6+1 (x, 1)
1 2

A
T 205 4+ 474 4203 + 2 427+ 1

¢ (x) = e.\'3+4.\'2T5x+3 (X, 0)

1

x
+ / €34a2is043 (X, T)
1 x+1

3. p(x) = e a3 (x, 1).

A
B4 6T +4

)

Theorem 3 Letf, g : T ——> % be rd-continuous, and f be delta differentiable in

T, 1+ px)gx) #Oforall x € . Then a solution of the equation

¢(x) =f(x) —/ gMP(a(y)Ay, ae 7,

has a solution in the following form

P(x) = ecy(x, a)f (@) + [ ecg(x, T)f (1) AT
= ego(x, a)f (@) + [} %D £A () A,

ey (x,a)

Proof We differentiate the Eq. (3.24) with respect to x and we get
¢4 (0 =fA@) = g (o ().
We substitute x = a in (3.24) and we find
¢(a) = f(a).
In this way we get the following IVP

[ ¢4 (x) = —g()P (0 (1) +14(x)
¢(a) =f(a).

The solution of the last IVP is given by (3.25).

(3.24)

(3.25)
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Example 21 Let 7 = 2. Consider the equation

Here

Then

p(x)=x"+1 —/ yo(y+ DAy.
0

cx)=x4+1, pux)y=o0(x)—x=x+1—-x=1,
f)=x*+1, gk =nx

gx)
S8 = T s
_ X
Cl4x
@) =0@ +x
=x+14+x
=2x+1,
£(0) = 1.

Using (3.25), we get

a=0,

¢ (x) = e_ir](x, 0) + /x e_ﬁ(x, )2t + 1) AT
' 0

Example 22 Let 7 = 37%_ Consider the equation

Here

Then

¢(x) =x* + 2/1 ¥ ¢ (3y) Ay.

ox)=3x, ux)=okx) —x=3x—x="2,
f) =x% gx)=-2x.

_ g(x)

I+ ux)g(x)
_ —2x3
T4 2x(—2x3)

2x3
T4t

ogk) =

a=1,

157
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A = o) +x
=3x+x
= 4x,

() = 1.

Hence, using (3.25), we obtain

P(x) =e 3 (x, 1)—}—4/){6&()@ T)TAT.
1 4

1—4x% 14

Exercise 10 Using DEM, find a solution to the following generalized Volterra inte-
gral equations.

X

1. ¢(x)=x2—3/0 yoO&y + DAy, T =2,

2. ¢(x)=x2+4x+1—/lx(y2+2y)¢(2y)Ay, T =2M,
3. ¢(x):x3+7x2+6x—/lxy¢(3y)Ay, T =3,
Answer

1. p(x) = /X E,I-L(X, )2t + 1) AT,
0 +3x

FERETRN] FERETRN]

2. ¢(x) =6e_ 2 (x,1) +/ e 2o (x,71)3t +4) A1,
1

142:2

X
3. p(x) = 14eﬂ+22 (x, 1) +/ e_ _x_(x, r)(137;2 + 287 + 6)Art.
y 1

3.1.5 The Successive Approximations Method

The successive approximations method (SAM), also called the Picard iteration
method, provides a scheme that can be used for solving initial value problems or
generalized integral equations.

Given the linear generalized Volterra integral equation of the second kind

$() = ux) + A / K@ yomAy, ae 7,
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where ¢ (x) is unknown function to be determined, K (x, y) is the kernel, and X is a
parameter. The successive approximations method introduces the recurrence relation

$a(x) = () + 2 / K)o i) Ay, ne A, (3.26)

when the zeroth approximation ¢, (x) can be any selective real-valued function. We
select 0, 1, x for ¢ (x), and using (3.26), several successive approximations ¢y (x),
k > 1, will be determined as follows.

1) = u() + A / K y)do() Ay
$2() = ux) + A / K, )1 () Ay
$3() = ux) + A / K(x, )2 () Ay

$n(x) = ulx) + l/ K(x, y)n1(») Ay.

a

We point out that the successive approximations method for the equation
¢ ) = ux) + k/ax K(x, )¢ (o(y)Ay
introduces the recurrence formula
$n(x) = u(x) + /\/: K(x, y)pn-1(0 () Ay, ne.N. (3.27)

For the zeroth approximation ¢y (x) we select 0, 1, x.
The question of convergence ¢, (x), defined by (3.26) or (3.27), will be discussed in
the last section of this chapter.

Example 23 Let 7 = 2. Consider the equation

¢ (x) =x+/0 yo(y)Ay.
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We select ¢g(x) = 1. Then

¢1(x) =x—|—/ Yoo (y) Ay
0

=x+/ yAy
0

$2(x) =X+/0 yo1(y) Ay
=x+%/ Y+ yH) Ay
0
=x+1/ 0% +yH Ay
2 Jo

— lxl34_12All4A_13A12A
=x+ /0(3@) 707 +6+4(Y) 707 +4(y))Ay

2
L Vooa_Lisa 1oaa 1
= = —= - - = A
x+2/0(4(y) L0+ 200+ 2 ) Ay
S X@Z)AAy—i/x(y3>AAy+1/xcy4>AAy+i 4y
8 Jo 12 Jo & Jo 12 /o
1 1 1
=x—<x'— =X+ -xt+ —x

8 12 8 12

Example 24 Let T = 2% U {0}. Consider the equation

() =x" +x /0 Yo (y) Ay.



3.1 Generalized Volterra Integral Equations of the Second Kind

We select ¢g(x) = 1. Then

$10) = 2 +x / o) Ay
0
=x2+x/ ysz
0
1 X
=x2+—x/ )2 Ay
T Jo
1 4

— 2
=x +7x,

$2(x) = X +x / V1 () Ay
0
:)chrx/Xy2 (y2+ly4) Ay
A 7
=x2+x/x(y4+ly6)Ay
A 7
=x2+x/x (i(ys)A—l-L(YBA)A
0
—x +—x/ o) y+@x/ 074 Ay

o _8
= x? +31x +889 .

Exercise 11 Let .7 = 3% U {0}. Consider the equation

¢ (x) =2x+2/0 Yo () Ay.

Using SAM and ¢y (x) = 1, find ¢; (x) and ¢, (x).

Answer

2 4 1 I
d1(x) =2x + —x7, ¢2(x)—2x+—x + —x".

13 10 1183

Example 25 Let 7 = % . Consider the equation

d(x) = x>+ 2/0xy¢(y + 1) Ay.

Let ¢o(x) = 0. Then

161
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$1(x) = 2%,
() = x* +2/0Xy¢1(y+ 1) Ay
=x2+2/0xy(y+1)2Ay
:x2+2/0xy(yz+2y+l)Ay
:x2+2/0x(y3+2y2+y)Ay
=2 [ (300 = 09+ 092 42 (%(y%ﬁ 0D+ é)
F307 )4y
=2 [(509% = J09% 4+ 107% 4 307% - 0
#3+3000 - g)a
="+ 2/X(1@4>A T R A LY

—4 L /(y)AAy+ /(y)AAy /(y)A / Ay

=x’ +2x +3x3—5x —gx

1 1 1
= §X4 + §x3 + 5)(2 — §X.

Example 26 Let 7 = 2% U {0}. Consider the equation
s =x+ @) [ 30Cnay.
0
Let ¢o(x) = 0. Then

@1 (x) = x,
br(x) = x + 2x + 1) / V61 (25) Ay
0

=x+2(2x+1)/ y2 Ay

0

a2 RV

_x+7(2x+l) )~ Ay
0

2 3
:x—}—?x (2x+1)
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Exercise 12 Let 7 = 2. Consider the equation

¢<x>=1+/0 Y6 + 1)Ay.

Using SAM and ¢y (x) = 1, find ¢ (x) and ¢, (x).
Answer

PITES R S SPRLIC e S B I € SN S
X) = — =X —X, X) = — —X — X — —X —X .
! 272 2 1278 12 8

3.2 Conversion of a Generalized Volterra Integral
Equation of the First Kind to a Generalized Volterra
Integral Equation of the Second Kind

In this section we will represent a method that will convert Volterra integral equations
of the first kind to Volterra integral equations of the second kind. Having converted
the Volterra integral equation of the first kind to the Volterra integral equation of the
second kind, we then can use any method that was presented before.

Consider the generalized Volterra integral equation of the first kind

u(x) = X/X K, o)Ay, ae T, (3.28)

a

where ¢ : T —— % is unknown function to be determined, K :  x J —— Z is
the kernel, A # 0 is a parameter, u : .7 —> & is a given function.

Suppose that K*(x, y) exists for any (x,y) € 7% x 7, K*(o(x), x) # 0 for any
x € .T*. Also, assume that u* (x) exists for any x € .7*.

Differentiating the Eq. (3.28) with respect to x we obtain

u?(x) = /\/ K, )¢ () Ay + AK (0 (x), )¢ (x)

or

AK (0(x), ) (x) = u (x) — A / K2 (x, )¢ (y) Ay,

a

whereupon

K2 (x,y)

b - [ KGE»
00 = @ / om P Oa. (3.29)

which is a generalized Volterra integral equation of the second kind.
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Example 27 Let 7 = 2. Consider the equation

¥ =2 / (x +1)°$ () Ay,
0

which is a generalized Volterra integral equation of the first kind.

Here
oc(x)=x+1, x€.7, Ax=2, a=0,

ux) =x3, K(x,y) = @x+y?>~

Then

az(x) + xo (x) +x?
=4+ D2+x(x+1)+x?
=24+ 2+ 1+x>+x+x2
=3 +3x+1,

K(o(x),x) = (0(x) +x)°
=(x+1+x)?
=Q2x+1)?
=4x> +4x+ 1,

K2 (x,y) =o(x) +y+x+y

=x+14+x+2y
=2x+2y+ 1.

u (x)

Hence, using (3.29), we go to the following generalized Volterra integral equation
of the second kind

¢ () Ay.

3x24+3x+1 x4 2y+1
() = / Y
0

TS24 8x+2 Sy A2 tdax+1

Example 28 Let 7 = 2% Consider the equation

¥ x= / (X + 2x9)9 (y) Ay.
1

Here
oc(x)=2x, x€9, a=1, r=1,

ux) =x>+x, K, y) =x>+2xy.
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Then

W) =oc@) +x+1
=2x+x+1
=14 3x,

K (x,y) =0 (x) +x+2y
=2x+x+2y
= 3x + 2y,
K(o(x),x) = 02(x) + 20 (x)x
= 4x* 4 4x?

= 8x°.
Then, using (3.29), we get the following generalized Volterra integral equation of

the second kind. 143 ¥ 3x 40
X X y
b (x) = —/1 a2 P4y

Example 29 Let 7 = 3% Consider the generalized Volterra integral equation of
the first kind

et D)4 bx=2 / (sinh, (x, 2) + 3 + x)b (3) Ay.
1

Here
ox)=3x, x€7, A=2, a=1,

ux) = e (x, ) +x*+x, K, y) = sinh,(x, 2) + x> + xy.
Then

uA(x) = xey(x, 1) + 03(x) +x02(x) +x20(x) +x3 41
=xe,(x, 1) + 273 + 97 + 3 + 17 + 1
= xey(x, 1) +40x° + 1,
K2(x,y) = xcosh,(x,2) + 0 (x) +x +y
= xcosh,(x,2) +4x +y,
K (o (x), x) = sinhs,(3x, 2) 4+ 9x? + 3x?
= sinhs,(3x, 2) + 12x°.

Then, using (3.29), we get the following generalized Volterra integral equation of
the second kind.

xeo(x, 1) +40x3 + 1 *xcosh,(x,2) +4x+y
d(x) =
1

- - A
2(sinhs, (3x, 2) + 12:7) Sinhy(3x, 2) 1 1202 204
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Exercise 13 Convert the following generalized Volterra integral equations of the
first kind to generalized Volterra integral equations of the second kind.

1. x2+2x+3=2/ x+o(Aay, T =2,
0

2. x2+2x=/ QCx+ 2oy Ay, T =2".
1

Answer
2x+3 * 1
1. = — Ay,
b0 = 1 /0 Ay
3x+2 T ox + 2y
2. = -2 Ay.
b= / 60 Ay

3.3 Existence and Uniqueness of Solutions

In this section we will state and prove the existence and uniqueness of the solutions of
generalized Volterra integral equations of the first and second kind. For this purpose
we need of some preliminary results.

3.3.1 Preliminary Results

Let s, t € . Define the polynomials.

8o(t,8) = ho(l; 5) =1, ,
Srt1(t,8) = fv g0 (1), 8)At, hyi(t,s) = L h(r,s)Ar, k=0,1,2,....

We have

gi1(t, s) / go(o (1), 5) At

t
=/A‘C

=1t—y,

gz(t,S)=/ g1(o (1), 5)At
Z/(G(f)—S)Ar,

hy(t, S)=/ ho(t, s) AT

t
=/Ar
s

=1—1y,
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h(t, ) =/ Iy (e, 5) At

=/ (t —s)Art,

8ot s) = gio1(o(0),5), hit,s) =h_1(t,s), ke N.

and so on.
Also,

Lemmal Let n€ AN . If f is n times differentiable and p;, 0 <k <n—1, are
differentiable at some t € T with

P () =pi@) forall 0<k<n-2, n>2,

then we have

n—1 A
(Z(—l)"fAk ()px (t)) = (D" Opy (0 +f(Opg @)

k=0

Proof We have

n—1 A n—1
(Z(—l)"fAk (r)pkm) = >0 (P omn)”
k=0

k=0

n—1
= DD oo + 4 0pf o)
k=0

n—1 n—1
= > (=D 0p ) + D (=D opf @)
k=0 k=0
n—2 .
=D (DT Op )+ (D" 0p, )
k=0
n—1
+ D D 0pf o + 12 (pg (o)

k=1

n—2
— Z(_l)kaHI (t)pkA_H (l) + (_1)11—lfA” (t)pg_] (I)
k=0
n—2
+ DDA 0p, () + £ (0pg ()

k=0

= (=D)"' 0PI () + £ Opg ).
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Lemma 2 The functions g,(t, s) satisfy for allt € T the relationship

gn(PX(), 1) =0 forall ne N andall 0 <k <n-—1.

Here p*(t) = p (p"‘l (t)).
Proof Letn € .4 be arbitrarily chosen. Then
(" (1), 1) = ga(1,1)
t
~ [ smie@.nar
t
=0.

Assume that
gu1(PX (), ) =0 and g,(o"(t),1) =0

forsome 0 <k <n—1.
We will prove that
g (@), 0 =0.

1. case. pX(r) is left-dense. Then
P 1) = p(p* ) = ().
Consequently, using the induction assumption, we have
(P (1), 1) = gu (0" (1), 1) = 0.
2. case. pk (1) is left-scattered. Then

p(p (1) < p* (1)

1) < s < p*(¢). Hence,

and there is no s € .7 such that p
o (o (1) = p* ().
Therefore

8o (0" @), 1) = g (P (D), D) + n(e" T @) gl (T @), 1)

or
2. (05 (1), 1) = g (T (), 1) + (P g (" 1), 1),
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whereupon

g (P @), 1) = g (" (1), 1) — (P () gl (P (1), 1)
= 2.0 (1), ) — (" (1)) guo1 (@ (P TH(1)), )
= 2,05 (1), 1) — (" (1)) g1 (P (1), 1)
=0.

Lemma 3 Letn € ¥, and suppose that f is (n — 1)-times differentiable at p"~ ().
Then

n—1

F@ =D =D (0" g™ (@), 1)

k=0

Proof 1. Letn = 1. Then

0
S )8k (0" (@0). 1) = (—=DFA (gt 1)

k=0
=f().
2. Assume that .
F@) = > DA (" ) g(0™ 1), 1)
k=0

for some m € 4.
3. We will prove that

F@& =D (=D 0" )™ @), 1)

k=0
1. case. p™'(7) is left-dense. Then

" (1) = p(p" (1) = p"(0).

Hence and the induction assumption, we obtain

S o (= DR A (o (0)gr (™ (1), 1)

= 20 (DA (" 0) g™ (1) 1) + (=) A" (0" (1) g (" (1), 1)
= 20 (DA (o (1) gr(p" (1), 1)

+ (=D)"A (" @0) gm(p™ (1), 1)

now we apply Lemma?2 (g,,(0" (1), 1) = 0)

= DS (DA (0 ) g (0™ (1), 1)

now we apply the induction assumption

=f@).
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2. case. ,0”’_1 (1) is left-scattered. Then
p" (1) = p(p" () < p" (1)
and there is no s € .7 such that

oMt < s < p" ).

Also,
o(p™ (1) = p" ' (@).
Hence,
g(a(p" (1), 1) = g (p" ' (1), D).
Therefore
(P 1), 1) = gi(@ (p™ (1)), 1)
= g (p" (1), 1) + n("™ (O)ge (o™ (1), 1)
= g(p" (1), 1) + (" (1)) gk—1(o (0" (1)), 1)
= g (p" (), 1) + n(p" () ge—1(p" " (1), 1),
whereupon
("), ) = g (P (1), 1) — (" ) gr—1 (0™ (1), 1).
Consequently

S (= DA (0" (1) g (0™ (1), 1)

= F(0" () + X (= DA (0" (1) gk (0™ (1), 1)

= F(0" (1)) + X4 (=D (0" () g (0" (1), )
+ 3 (DA () (™ (0)) g1 (0" (8. 1)
=F(p" (1) + 2= (DA (" () g (e (1), 1)
+ (=1 fA" (" (0) gm (0™ (1), 1)

+ 3 (CDEFAT () (™ (1) gk (0" (8). 1)
= > (DA (0" () gk (0" (1), 1)

+ 3 (CDR (A (0" () gk (0" (1), 1)

= S5 D (P2 0 0) + mo" ) A 0" 1)) 8e (0™ 1), 1)
= >0 (DA (o (0" (1)) (0" (1), 1)

= 0 (DA " @) (" (1), 1)
=f(.
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Theorem 4 (Taylor’s Formula) Let n € A . Suppose f is n-times differentiable on
T Leta € 7't € T. Then

n—1
£y =" (=D geler, nf * (@)

k=0

Pl
+ / (— 1" gur (). f Y (2) At

Proof We note that, applying Lemma 1 for p; = g, we have

i A
(TS Dra nr @)
= (=" (@) g1 (0 (1), 1) +f(1)g5 (T, 1)
= (=) 2 (1) gu_1(0 (1), 1) forall T e T,

n—1

The last relation we integrate from « to p"~ ' () and we get

Pt ! . 4 P .
/ D (D (r) ) Ar = / (=D () gu1 (0 (x), AT
o k=0 . o

or
ZZ;ég—Dkgk(p"—‘ 0. OF " (p" 71 (1) = Do (=D giler, Y (@)
= 7O Y (@) gan1 (0 (1), D AT

Hence, applying Lemma 3,

ot k p"’l([) n
FO =D (=D gile, Of* (@) = / (=D (D) g1 (0 (1), D AT.
k=0 o

Theorem 5 The functions g, and h,, satisfy the relationship

hy(t,8) = (—1)"gu(s, 1)
forallt € T andall s € T .

Proof Lett € 7 and s € 7 be arbitrarily chosen. We apply Theorem 4 for a = s
and f(t) = h,(z, s). We observe that

@) =hi(tos), 0<k<n
Hence,

) = hyi(s,9) =0, 0<k<n—1,
) = ho(s, ) =1, A" (1) =0.
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From here, using Taylor’s formula, we get
F@) = hu(t,5)
n . Ak p”(t) An+]
= > (= Dfgile, f * (@) + / (—=1)"gu(o (), Of " (1) At
k=0 o

n . p" (1) -
= > (Dl 0F ¥ () + / (—1)'gu(o (1), 0f " (1) At
k=0 $

n—1

= D (= DF gl 0F () + (—1)"guls. F ' (5)

k=0
= (—=1)"gu(s, ) *"(s)
= (=1)"g,(s, 1),

ie.,
hu(t, 5) = (=1)"gu(s,1).

From Theorems 4 and 5, it follows the following theorem.

Theorem 6 (Taylor’s Formula) Let n € 4. Suppose f is n-times differentiable on
T Letalso,a € 7', t € 7. Then

n—1

. ") .
10 =3 mearf@+ [ haeo@y* ma.
k=0 o

Corollary 1 Let @ € [a, b]. Then for |\] < 00

> Mt @)
k=0

is absolutely and uniformly convergent on the interval a <t < b.

3.3.2 Existence of Solutions of Generalized Volterra Integral
Equations of the Second Kind

Theorem 7 Let K(x,y) be a real-valued rd-continuous function defined on
a <x,y <b, u(x) be a real-valued rd-continuous function defined on a < x < b.
Let also,

lux)| <M forall x € la,b],

IK(x,y)| <N forall x,y € [a,b].
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Then for |L| < oo the generalized Volterra integral equation of the second kind

¢ ) = ux) + k/x K(x,y)¢(»Ay, a=x=b, (3.30)

has a rd-continuous solution ¢ (x) defined on [a, b].

Proof Suppose that a formal power series

o0

P(x) =D N'gu(x). a<x=<b, (3.31)

n=0

satisfies (3.30). Then substituting (3.31) in (3.30) we get

DN pa(x) = u(x) + 2 / K(x,y) D A'¢u(y) Ay

n=0 a n=0

or o ~
> W) = ul) + > A / K, 3)$u() Ay,
n=0 n=0 a

or

Bo(X) + Ap1(x) + A2Pa(x) + - + A P(x) + - -

=u(x)+/\/ K(x,y)¢o(y)Ay+>»2/ K(x, y)p1(y) Ay
+~~+A”/ K, )10 Ay +--- .

Hence, by a comparison of coefficients, we get the following relations

$o(x) = u(x),
$1(x) = / K(x, y)po(y) Ay,

$a(x) = / K(r. 1)1 () Ay,

Ga () = / K&, Yt () Ay,



174 3 Generalized Volterra Integral Equations

or
Po(x) = u(x),
Pn(x) = JZC K(x, y)¢n—1 (y) Ay, ne N (3.32)

For all x € [a, b], we have
[po ()| = u(x)]
<M,
[p1 ()] = / K (x, y)po(y) Ay

a

< / K () 10)| Ay

< MN/ Ay
= MN(x —a)
= MNh;(x, a),

#2001 = | [ K ngnay]

< / K (x, )l ()] Ay

< MNz/xh](y, a)Ay
= MNzh;(x, a).
Assume for some m € A
| (X)| < MN™h,,(x, a) forall x € [a,b].
We will prove that
[ Pmi1 X)| < MN"™ i (x, @) forall x € [a,b].

Really, we have

|¢m+l ()C)| =

| K@
< / K () 6 ) ] Ay

§MN’”+'/ B (y, @) Ay

= MN" 0, 1 (x,a), x € la,b].
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Consequently
| (x)| < MN"hy, (x, a)

forall m € .4 and all x € [a, b].
Therefore for |A| < oo the series (3.31) is absolutely and uniformly convergent on
the interval [a, b]. Hence, the formal solution (3.31) is a genuine solution of (3.30).

3.3.3 Uniqueness of Solutions of Generalized Volterra
Integral Equations of Second Kind

Theorem 8 Letxyg € T and,f, g € 6y(T),and1 + u(x)f (x) > Oforallx € 7.
Then
qu(x) <fX)px)+gkx) forall xe T (3.33)

implies
$() < ¢ (xo)ey (¥, x0) + / o oW Ay forall xe T, x=x. (334)

Proof We calculate

(¢ (Weer(x, xo))A = ¢* (Wegyr (0(x), X0) + ¢ () (Of (x))eey (x, X0)

- oW
= ¢ (X)EQf(U(x)v X()) + ¢(X) 1 + M(x)(@f(x))
of )

T M(x)(ef(x))) ¢er(@(x). x0)
R A€))
= (¢A<x> + ¢<x>1_lj+ji§;§)eef(a<x), x0)
I+p(x0)f (x)

= (¢*(x) — fF(X)P (1)) eer (o (x), Xp).

eor (0 (x), xo)

= (¢A(X) +o(x)

The last relation we integrate from x( to x and we get

| @0rertm0) ay= [ (620 ~F0100) ecr@ ). )y
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or

6 (X)eay (¥, x0) — b (x0)ear (Yo, x0) = / (6°0) —F0)O)) eor (@ (). x0) Ay,

or

6 (¥)ear (x. x0) = §(x0) + / (620) —FOIO)) ear (@ (). %) Ay.

Note that eqf (0 (y), xo) > Oforally € .7 because 1 + u(y)f(y) > Oforally € 7.
Hence, using (3.33), we get

6 (X)ear (v, x0) < B (x0) + / eer (@3, x0)g() Ay
— $(xo) + / ¢/ (x0. 5 (1))g () Ay.

From the last inequality, using that ey (x, xo) > 0 and

ety g0 gl gl o) =0 ()

for all x, y € 7, we obtain the inequality (3.34).

Theorem 9 (Gronwall’s Inequality) Let xo € 7 and ¢, f, g € 6,4(T), and
14+ pux)gx) >0, gx)>0 forall xe 7.

Then .
Px) <fx) +/ Mg Ay forall x e T, x> x, (3.35)

implies
d(x) <fx) +/: eg(x, cMf MM Ay forall x €7, x=>xp. (3.36)
Proof Define
v (x) =/x:¢(y)g(y)Ay for xe 7, x=xo.

Then 1 (xy) = 0. Also, using (3.35), we get

@) <fxX)+Y ) for x€T, x>x. (3.37)
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Hence, we get

YA(x) = p(x)g(x)
<f@gkx) +gx)YE), xeJ.

From here and Theorem 8, we obtain

¥ (x) < ¥ (xo)eg(x, xo) +/ eg(x, o (Mf (ML) Ay

Xo

- / e, (x, (N 1)) Ay.

X0
From the last inequality and from (3.37), we get the inequality (3.36).

Theorem 10 Suppose that all conditions of Theorem 7 are fulfilled. Then the
Eq. (3.30) has unique rd-continuous solution ¢ (x) defined on [a, b].

Proof The existence of a rd-continuous solution ¢ (x) of the Eq. (3.30) is ensured by
Theorem 7.

Assume that ¢ (x) and ¢, (x) are rd-continuous solutions of (3.30) defined on [a, b].
Then ¥ (x) = ¢ (x) — ¢»(x) is a rd-continuous solution of the equation

w<x>=A/ K. y)¥ 0 Ay, x € la.bl.

Hence,

)| = ‘A/ K(x,yw(ymy‘
sm/ K G 1 )] Ay
st/ W4y, xelabl

From the last inequality and from Theorem 9, we get that

V(x) = ¢1(x) —d2(x) =0 forx € [a, b].
3.3.4 Existence and Uniqueness of Solutions of Generalized
Volterra Integral Equations of the First Kind

Theorem 11 Let u(x) be differentiable in [a, b]“, K(x,y) be rd-continuous in x
and y, x,y € [a, b], and Kf(x, y) exists for all (x,y) € [a, b]* x [a, b]. Let also,
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K(o(x),x) # 0 forall x € [a, b], and

WA = My, |gks| 2 Mo for xelabl,
KA (x, y)| < M3 forx,y € [a, bl.

Then the generalized Volterra integral equation of the first kind (3.28) has unique
rd-continuous solution ¢ (x) defined on [a, b].

Proof We reduce the Eq.(3.28) to the Eq.(3.29). Now the result follows from
Theorems 7 and 10.

3.4 Resolvent Kernels

We shall give another expression of the solution ¢ (x) of the Eq.(3.30) as follows.
We will start with the following useful lemma.

Lemmad Letf : T x T +——> X be rd-continuous function and a € 7 be fixed.
Then

/ / f(x1, y)AyAx, =/ f(xy,y)Ax; Ay. (3.38)
a a a o(y)

Proof Let
Glx) = / / F o1 3) Ay — / £ (a1, 3) Ax) Ay,
a a a o(y)
Then

X X o (x)
GA(x) = / fx,y)Ay — / fx,y)Ay — fxp, x)Ax; = 0.
a a o(x)

Since G (a) = 0, we get (3.38).

From (3.32) it follows that

o1 (x) =/ K (x, y)po(y) Ay

= / K (x, y)u(y)Ay,

a
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$r(x) =/:K(x,y)¢1(y)Ay
_ / Koy / " KO, Qu() Ay
_ / ' / " K K. u(z) AzAy
= / ' /g ; K (x, 2)K (z, y)u(y) Az Ay

:/ u(y)/ K(x,2)K(z, y) Az Ay.
a o)

Let .
K@, y) = / K(x,2)K(z,y)Az.
o(y)
Therefore .
$r(x) = / K@ (x, y)u(y)Ay.
Hence,
$3(x) = / K(r. )2 () Ay
X y
= / K(x,y) / K@y, 2)u(z) AzAy
Xy
= / / K(x, )KP(y, 2)u(z) AzAy
= / / K(x,)KP(z, y)u(y) AzAy
a Jo(y)
- / ) [ K 9K y) Azay.
a a(y)
Let .
K¥(x,y) = / K(x,2)K@ (z,y)Az.
o)
Then

$a(x) = / KO (x, y)u() Ay.

Repeating the same argument, we obtain the iterated kernels.

KDV (x,y) = K(x,y),

K", y) = [7, K0, DKV (z,y) Az

(3.39)
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We set

I,y 2) =K@, y) +AKP 0, y) + KD 0, p) + -+ A KD y) + -0

Definition 1 The function I'(x, y; 1) is called the resolvent kernel of the kernel
K(x,y).

Theorem 12 Let K(x,y) be defined and rd-continuous on [a, b] X [a, b]. Let also,
|K(x,y)| <M for all (x,y) € [a, b] x [a, b], for some positive constant M. Then
I'(x,y; A) converges uniformly with respect to (x,y) for |\| < oo.

Proof Let (x,y) € [a, b] x [a.b] be arbitrarily chosen. Without loss of generality we
suppose that y < x. Then

KD, y)| <M,

X
/ K(x, 2KV (z, ) Az
o(y)

IK?(x,y)| =

X
< / K (. D IKD (@, )| Az
o(y)

<M*(x—0o(y)

= M’y (x,0(y)),

/ K(x,2)K®(z, y)Az
a(y)

X
< / K DIK® (2. y) | Az
o(y)

KD (x, )| =

<M / Iz 0 () Az
o(y)

= M’hy(x, 0 ().

Assume that
IK™ (x, y)| < M"hy 1 (x, 0 ()

for some m € A
We will prove that
KD (e, y)| < M hy(x, 0 (3)).
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Really, we have

|K(m+l)(x, y)l —

X
/ K(x, )K" (z,y) Az
o(y)

X
< / K (v, 2K (2, y)| Az
o(y)

SM”’*'/ hn—1(z, 0 (y)) Az
o (y)

= M""h,(x, 0 ().
Consequently
1K™ (x,y)| < M"hy_1(x,0(y) forall me N,

which completes the proof.

Theorem 13 The resolvent kernel I' (x, y; 1) of the kernel K (x, y) satisfies the gen-
eralized Volterra integral equation of the second kind

X

'(x,y; 2) = K(x,y) + A/ Kx,2)I'(z,y; M)Az (3.40)
a(y)

Proof We have

F,yn) = K@ y) +AKP(,9) + 22K (x,y) + -
— K(r,y) 4+ 1 (K@ @ y) + KD y) + - )

X

= K(x,y) + 2 (/ K, 2KV, y)Aer/

K. (K@ @) Az - )
) a(y)

X

— K(x,y) +A/ K(x,2) (K<‘>(z,y) T AKD @) + - ) Az
()

X

= K(r.y) + 1 / K, )T (2 y: WAz
o(y)

Exercise 14 Prove that the resolvent kernel I"(x, y; A) of the kernel K (x, y) satisfies
the generalized Volterra integral equation of the second kind

X

'(x,y;\) =K(x,y) + K/ I'(x,z; MK(z,y)Az. (3.41)
o(y)
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Remark 1 Assume that the kernel K(x,y) satisfies all conditions of Theorem 7.
Hence, from Theorems 7 and 10, it follows that there exists unique rd-continuous
function I'(x,y;A) with respect to (x,y) € [a, b] X [a, b] which satisfies the
Egs. (3.40) and (3.41) for |[A| < co.

Remark 2 Assume that the resolvent kernel I"(x, y; A) satisfies all conditions of
Theorem 7 for |A| < co. Hence, from Theorems 7 and 10, it follows that there exists
unique rd-continuous function K (x, y) in [a, b] x [a, b] which satisfies the Eqs. (3.40)
and (3.41).

From Remarks 1 and 2 we get the following theorem.

Theorem 14 (Reciprocity Theorem) If I" (x, y; 1) is the resolvent kernel of K (x, y),
then the resolvent kernel of I' (x, y; A) is the kernel K (x, y) itself.

Example 30 Let 7 = %, K(x,y) = 1 for (x,y) € [0, 4] x [0, 4]. Then

KD, y) =K(x,y) =1,

X

K(Z)(x,y)=/ K(x,2)K(z,y)Az
o(y)

:/ Az
a(y)

=x—-y—1,

X
K9, y) = / K(x,2)K?(z,y)Az
o(y)

X

= (z—y—1DAz

a(y)

x 1 1
/ —<z2)A———y—1) Az
o) (2 2
1 X 2. A 3 X
= (Z)Az—(—+y)/ Az
2 Joey 2 o)

1, 12 3 |
S =t >>—(§+y)(x—y— )

Il

<

|

<

I

—_

N
/N
| —
=

_|_

|

<

+

|

I

|

|

<
N—"

1
Ew—y—U@—y—D.
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Example 31 Let 7 =27 and K(x, y) = x, (x,y) € [1, 8] x [1, 8]. Then

KV, y) =K(x,y)

=X,

K@@, y) = / K(x, 2KV (z,y) Az
2

y

X
= / xzAzZ
2y

X
= x/ zAz
2y

l X
=-x | (»*Az
37 )y

1 2 2
. —4yY),
3Jc(x y°)

X
KO, y) = / K, KD (2, y) Az
2y

1 X
= —x/ z(z2 — 4y2)Az

3 2
1 X

= —x/ (Z® —4zy") Az
3 )

1 1 a4 4, 2A)
- 5 - = A
3x/zy(ls(z) 3y () z

1 ! 4\ A 4 2 ! 2\A
=—x [ ()7Az— —xy" [ (2)7Az
457 J,, 9y

1 4
= E}c()c4 — 20 — §xy2(x2 -2y

_ %x(xz — D + @) - 207)

1
= Ex(xz — 47 (x* — 16y%)

1
= Ex(x —2y)(x —4y)(x + 4y)(x + 2y).

Exercise 15 Let 7 = 3% and Kx,y)=x+y, (x,y)€[1,9] x[1,9]. Find
K@ (x,y).

Answer
17x% 4+ 116xy + 75y>

(x —3y) =
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3.5 Application to Linear Dynamic Equations

It was shown in Sect. 2.2 that initial value problems for second-order and first-order
dynamic equations can be reduced to generalized Volterra integral equations of the
second kind. In this section we will show that initial value problems for nth order
dynamic equations can be reduced to Volterra integral equations of the second kind.
We will start with a formula that reduces multiple integrals to single integrals.

LemmaS5 Leta € T andf : T +—— X% be integrable. Then

[ [ F () Ay Ax, . .. Ax Axy

3.42
= [ y) — pOV s e YDF D) Ay, x € T (3.42)

Proof 1. n = 1. Then, using Theorem 1 in Chap. 2, we have

/ / FO)AyAn = / (x — 5 (N () Ay
=/ (x =y +y— oG () Ay
_ / (I (x.y) — o (e I ) Ay.

2. Assume that (3.42) holds for some n € A4".
3. We will prove that

JE L [ () Ay Ak - .. A Axy
= [*(hns1 (5, y) — ka2, () Ay, x € T.

Really, for x € .7, using (3.42), we get

/ / / DA Ax = / (1 (1Y) — G2 (e, I () Ay,
Hence,

N[ Ay.. L AxAx,
[ (hn 1(x1,y) — O h—a(xp, Y))f ) Ay Ax
f n—1(X1,Y) — w2 (x1, ) () Ax Ay

2 () e (1 3) = 1O (1) A ) £ ) Ay

f B (61, ) A% = 0O) [} o261, ) A% ) F0) Ay
P (x, y) = () a1 G, ) (1) Ay.

Ja

I

Consequently (3.42) holds for all n € 4.
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We consider a linear dynamic equation of nth order, in unknown z,

2@+ () 4+ pa(0)2) = () (3.43)
where f(x) and p;(x), [ =1, 2, ..., n, are rd-continuous in a neighbourhood of the
point x = a.

Setting

) =),
we obtain that
A7) = / smay+an,
() = / A )y o
_ /ax (/aXl¢(y)Ay+cl) Ax + 0
= /ax/am dO)AyAx; +c1(x —a) +
= /:(hl(x, Y) — uMho(x, y) Ay + c1hi(x, a) + c2,
A7) = / A Ayt es
= [([ ey = uohot o0y
Feihi(x,a) + 6‘2) Axy + ¢3
= / ) / Y e y) — nYhoter, )G ) AyAx,
nps /axhl(xl, a)Ax; + cz/: Axi 4¢3

_ / / (i (x1, y) — 1OVho(x1, 1)) () Ax Ay
a Jy
+cihy(x,a) +cr(x —a) + c3
— / ( / (I (s ¥) — o, y))Axl) () Ay

+crha(x, a) + c2hi(x, a) + c3

:/ (/ hl(xl,y)Axl—/L(y)/ ho(xl,y)Axl)cb(y)Ay
a y y

+ciha(x, a) + c2hi (x, a) + ¢3
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= [ (heta3) = kM50 0) 2y
+ciha(x, @) + cahi(x, a) + ¢,
and so on. We find
A7) = / (i1 (52 9) = 1OV h-206, DS O) Ay + €11 (3, @)
+ohpa(x,a)+ - Fepmthi(x,a) 0y, m=2,..., n.

Accordingly the Eq. (3.43) is reduced to an equation, in unknown ¢, of the form

dx) +pix) (/ d(y)Ay + Cl)
+pa(x) (/ (h1(x,y) — uWMho(x, )P () Ay + cihi(x, a) + Cz)

2 Oha(r.3) = RO G 3O0) By + crha(r, ) + calx,0) + )
a0 ([ Gaa (603) = 1OI2( 1)) Ay + 1y (. )

+ehyo(x,a) + -+ cumthi (x, a) + Cn) =f(x),

or

=1 =2

$(x) + / (Zp,oc)hzl(x,y)—u(pr,(x)hzz<x,y>)¢(ymy

o1 D piOh1(x, @) + 2 D prh 2 (x, @) + -+ capa(x) = (),
=1 =2

or
¢(x) + /x (znlpl(x)hl—l(wi —p(y) ipz(X)hg_z(x,y))qj(y)Ay
¢ \i=l =2
+ Zn: icmpl(x)hl—m(x, a) =f(x),
m=1 I=m
or

)+ [ (X P (x,y) — () D) P2 (x, y)) ¢ () Ay

3.44
=) — D01 Do CnP1 () Ry (x, ). G449
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We note that the Egs. (3.43) and (3.44) are equivalent. The existence and uniqueness
of the solution z(x) of the initial value problem for the nth order linear dynamic
equation (3.43) corresponds exactly to the existence and uniqueness of the solution
¢ (x) of the generalized Volterra integral equation of the second kind (3.44). The
constants cy, ¢y, ..., ¢, in (3.44) are determined by the initial conditions for (3.43).

Remark 3 The above arguments suggest that we can define a linear dynamic equation
of infinite order by

d) + [ (2 PR (x,y) — () X2, 2 (x, ) ¢ () Ay

3.45
=f() = 200 2L Pt (D (x, @). (49

If we suppose
sup |p(x)| <A, I=12,...,

x€la,b]

o0 o0
for some positive constant A, and Z |cm| < 00, using that the series Z hi(x,y) is

m=1 =0
absolutely and uniformly convergent on the interval [a, b], we have that the series in

(3.45) are absolutely and uniformly convergent on the interval [a, b]. Thus we can
find a unique solution ¢ (x) of the Eq. (3.45).

Example 32 Let 7 = 2. Consider the initial value problem

22 (1) 4 222" (1) + 22 (0) + 2(x) = #2

20) = 23(0) = 22 (0) = 1. (3.46)
Hereo(x) =x+1,xe€ 7.
We set \
22 () = (). (3.47)
Then .
20— 22 (0) = /O () Ay
or .
Ao =1+ / d () Ay. (3.48)
0
Hence,

) — 250) =/x (1+/X1¢@)Ay) Ax,
0 0
=/xAx1+/X/X'¢(y)AyAx1
0 0 0
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X
vt [ - o0)omay
0

=x+/0 (x—y— () Ay,

or
2 =x+1 +/ (x —y—1Dp(y)Ay. (3.49)
0

From here,
2 = 2(0) =/ (x1+1+/ (xl—y—1>¢(y)Ay) Ax,
0 0

=/0 (x1+1)Ax1+/ /l(xl—y—1>¢<y)AyAx1

X 1
=/ ( (xl)A—5+1)Ax1+// (1 =y — D) AyAn
_! / (D)4 Ax + 2 / Axi + / / (1 =y — D () AyAx,

1
_ L +—x+// (x1 =y — D () AyAx,

2 2

2 2
1 1 *
= —Xx +—x+/ / (xl—y—l)fb(y)AxlAva/ d(y)Ay
2 2 0 Jy 0
1 1 A *
:§x2+§x+/ (/ (xl—y—l)Axl)qb(y)Ava/ d(y)Ay
0 y
:%x2+%x+/ (/ ( (xl)A—l—y——)Axl)fﬁ(y)Ava/ d(y)Ay
0 y
12 1 X X A
S +§x+/ (/ ( o) —y——)Ax1)¢<y>Ay+/ $() Ay
0 y
1,1 o, 3 | A
= 2% +§x+/0 (E(x —y)—(y+§)(x—y)+ )¢(y) y
_ 1,1 la 1, 2 3. .3
= 5% +2x+/0 (2x 7Y xy+y 2X+2y+1)¢(y)Ay
(1

2 1o 3 3
X+ oy —xy——x+Zy+ 1) o)Ay,

ie.,

W=zt gttt [543 —w = Frs Tr1)oman G50
(X)) = —X —X —X - — Xy — —X - . .
< T , 2t Ty T T ey
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We substitute (3.47)—(3.50) in (3.46), and we get

¢u>+x(rh/¢@pw)+@+4>+/Xx—y—nmwAy

0 0
+12+1+1+/)€12+12 Sty 1)emay =2
=X —X —X =y =Xy — =X+ = =x",
' T A I S S B PEy

or

¢ (x) +x+/ x¢(y)Ay+x+1+/(x—y—l)¢(y)Ay

0 0

+12+1+1+/X12+12 S 2y 1) emay =2
=X —X —X -y =Xy — =X+ = =X
5 5 2 3V T = xSy Ay = x%,

or

¢ (x) +/0 x¢(y)Ay+/0 (x—y—1p(Ay
+/x ey e i i) emays tesldiga=x
| XY m Xy oxt oy () Ay ¥t 5x =X,

or

¢()+/x Lyl I T+ 1) oAy = 22 =252
X A 2x 2y Xy 2x 2y xX+x—y y y—zx 2x ,

or

¢U+/“12+12 F it y)pmay = s = 2x—2
X X"+ =y —xy+ =x+ = = —x"— —x—2.
, 2t Ty TR T Y=r T3

Example 33 Let = 2% U {0}. Consider the initial value problem

20+ xz) = 1

Z(O) = ZA(O) — ZAZ(O) — 1’ ZA.‘(O) — 0. (3.51)
Hereo(x) =2x, xe 7.
We set )
) = 9. (3.52)
Then

ZARX)—ZA%0)=LA $() Ay
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or

40 = / 6() Ay.
0

Hence,
20— 24(0) = /0 ) /0 " pwavay
= /Ox(x —o()e()Ay
- /0 =264y,
or x
2w =1+ /0 (x = 2006 (M Ay.
From here,

A0 — 2A0) = / (1+ / ](xl—zyw(ymy) Axy
0 0
_ / Axi + / / (1 — 206 (0) AyAn
0 0 0

—x4 / / (1 — 206 () AyAx,
0 0

:x+/0 / (x1—2y)¢(y)Ax1Ay+/0 Yoy Ay
y

:x+/ (/ (xl—zy)Axl)qs(y)Aw/o V() Ay

( oD — Zy) Axl) d(y)Ay +/ 2o () Ay
SR B
X ¥ = 2y(x —y) +3* ) ¢ (») Ay

2 2 2
3¥ +3y —2xy +2y* ) p(») Ay

8
=x+/ x2+ y2—2xy)¢)(y)Ay
o \3 3

or

A (1, 8,
Z (x):x+l+/ (—x + =y —2xy)¢(y)Ay.
o \3 3
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Hence,

200 — 2(0) = / (x1+1+/'(§x1+§y —2x1y)¢>(y>Ay)Ax1

/(x1+1)Ax1+/ / ( e y —2x1y)¢(y)AyAx1

/ ( o) +1)Ax1+// (x1+ Sy —2x1y)¢<y)AyAx1
/(xl)AAler/O Ax1+// ( e y —2x1y)¢<y)AyAx1
e [ (,x1+§y —2x1y)¢(y>AyAx1

X ‘l 2 8 X 3

3 + 292 = 2xpy ¢0’)Ax14y—/(; o)Ay

3713

(1 34 2 24 85 ("3
/y(m(xl) e +3y)Ax1)¢(y>Ay /wamy
1

21

[ (
) * 3 13 2, 23 8, 83 3
=3 +x+/0(1x T 3Xy+3y +3yx 3 d()Ay
_ley +/xi3 85 202,082 ) sma
3 AT\t T T3t >
or
() = x4 +1+/x L % 20 80 ) smay. G5y
X —x X —x" = —y’ — =x —y°x . .
z o 21y 3 x%y 3 y) Ay

We substitute (3.52) and (3.53) and we find

600 +x (a4 +1+/X Lo 2 2t D) pa
X X =X X —X — — —X X
3 , 21t T2 T3 gy Y

or
(1o, 64 5 2, 8 1,
d(x) + —x*— —x® = Sy + oy qb(y)Ay_—gx —xt—x+1.
0

Exercise 16 Let .7 = 3% U {0}. Convert the following IVP

[ZA3 ) +72x) =1
2(0) = z24(0) = z2°(0) = 0.

Answer

() +/0 (=3P Ay = 1.
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3.6 Advanced Practical Exercises

Problem 1 Let .7 = 2% . Consider the equation

o(x) = x—f-x/o ¢ (y)Ay.

Using ADM, find ¢ (x), ¢1(x) and ¢, (x).
Answer

1 5 3 2
WO =5 W= 20— o) = = g e - 2

Problem 2 Let .7 = 4% . Using ADM, find a solution in a series form of the equa-
tion .
d(x) =x — 3/ ¢ (1) At.
0

Answer

32 33 2
o(x) =x+ —5% +6x ) + >* —18x> +48x ) +---

Problem 3 Let 7 = 3% U {0}. Consider the equation

p(x) =1+ +/ ¢ () Ay.
0

Using MDM, find ¢y (x), ¢;(x), ¢2(x) and ¢3(x).

Answer

Bo(x) =1 ¢1(x) = x* +x,

1, 1 5
P2(x) = —x +Zx, P3(x) = %x +5—2x

Problem 4 Use the noise terms phenomenon to solve the following equation

¢>(x)=2x—2+/x¢(y)Ay, T =47 U {0).
0

Answer ¢ (x) = —
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Problem 5 Using DEM, find a solution of the following equations.
Lo ¢() =3+ /1x(y3 + DoAY, T = A,

2. p(x) =8 +/0X(y4 +y + oAy, T =2,

3. ¢ =1+ /1Xy3¢(ymy, 7 =2

Answer

L o) =3en(x, 1),
2. ¢(x) = —8epiyr241(x, 0),
3. p(x) = ea(x, 1).

Problem 6 Using DEM, find a solution of the following generalized Volterra integral
equations,

1 ¢<x>=x—3+2/ Vomay, T =%,
0
2. ¢<x>=x2+/xy2¢><ymy, 7 =34,
1
3. ¢(x):x3+/ Yo Ay, T =4%.
0

Answer

. Y ere(x, T)
1. ¢(x) = —3er2(x,0) +/0 Tra02

2 6w = et +4 [ DA

Te(x,0) 5
3. = —(@3 12 16)Ar.
¢ (x) /0 1+4t( o+ 121 + 16) At

Problem 7 Using DEM, find a solution of the following generalized Volterra integral
equations.

1. ¢(x)=2x+2/ yo(y) Ay, T =2,
0
2. ¢(x>=3—2x+4x/xy¢<ymy, T =2M,
1

3. ¢(x)=x2+x/xy¢(y)Ay, T = 4%,
1
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Answer

1. ¢p(x) = Z/X e (x, 7)
0

AT,
1+27

3 [ 1
2. ¢)(x):e#(x,l)—§/l 6@()(?, T)WAT,

x T
3. ¢)(x)=e%(x, 1)+[ e.%z(x, T)WAT.

Problem 8 Using DEM, find a solution of the following generalized Volterra integral
equations.

L¢m=f—A3%@+mw T =2,
2¢m=f—[3%@wm 7 =2/,
3. p(x) =x* — /lxy4¢(4y)Ay, T = 4%,
Answer

1. ¢(x) =/0xe_%(x, )21 + 1) At,

T4

2. p(x) =e_ o (x, 1)+7/ e s (x,T)T° AT,
4 1

I+x 14
X

3. p()=e_ o (x, 1)+85/ e 4 (x,T)T’AT.

143x 1 14325

Problem 9 Let . = % . Consider the equation

o(x) =2x+4 +/0 yo () Ay.

Using SAM and ¢y (x) = 1, find ¢; (x) and ¢, (x).
Answer

Pr) = o+ orhd $a0) = A o
1) =527+ Jx 4, () = AT g

Problem 10 Let .7 = 27" U {0}. Consider the equation

¢m=1+A¢@+nm.

Using SAM and ¢y (x) = 1, find ¢; (x) and ¢, (x).
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Answer 1
D) =1+x, ¢r(x)=1+2x+ §x2-

Problem 11 Convert the following generalized Volterra integral equation of the first
kind to generalized Volterra integral equation of the second kind.

x2+x+10=—x+/ Qx4+ )’p(y) Ay, T =21,
1

Answer

¢ x) =

3x+2 T 12x + 4y
- Ay.
25x2 / o5z P4

Problem 12 Let .7 =27 and Kx,y)=y, (x,y)€[l,16] x[1,16]. Find
K(z)(x,y).

Answer 1
gy(x —2y)(x +2y).

Problem 13 Let 7 = 2. Convert the following IVP

[ 0+ W = x
2(0) = z2(0) = 2 (0) = z2°(0) = z2'(0) = 0.

Answer

() Jr/o~ (x—y— Do) Ay = x.



Chapter 4
Generalized Volterra Integro-Differential
Equations

In this chapter we describe the Adomian decomposition method for generalized
Volterra integro-differential equations of the second kind. They are given procedures
for conversion of generalized Volterra integro-differential equations of the second
kind to generalized Volterra integro-differential equations of the first kind and gen-
eralized Volterra integral equations.

Volterra integro-differential equations appear in many physical applications such
as glassforming process, nanohydrodynamics, heat transfer, diffusion process in gen-
eral, neutron diffusion and biological species coexisting together with increasing and
decreasing rates of generating, and wind ripple in the desert. To find a solution for
the integro-differential equation, the initial conditions should be given.

4.1 Generalized Volterra Integro-Differential
Equations of the Second Kind

4.1.1 The Adomian Decomposition Method

The Adomian decomposition method (ADM) gives the solution in an infinite series
that can be recurrently determined. The obtained series may give the exact solution if
such a solution exists. Otherwise, the series gives an approximation for the solution
that gives high accuracy level.

We consider a generalized Volterra integro-differential equation of the second
kind given by

¢ (x) = u(x) + [} K(x, y)p(») Ay,
4.1)
p@=a, ¢*@=a. ..., ¢*" (@) =a,.
© Atlantis Press and the author(s) 2016 197
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We integrate the Eq. (4.1) from a to x and we get

/¢A"(I)At=/ u(t)At+// K(x1, y)p(y)AyAx;

or

o2 () = 2" (@) + / u(t) At + / / K (x1, y)p(y) Ay Ax;.

Again we integrate from a to x and we obtain

/ 2" () Ay = / 2" (@) Ay + / / u(t) At Axy

+ / / / K (x2, 1) () AyAx, Ax,

or

67 () = 62 (@) + 6% (@) (x —a) + / / u() At Ax,

+ / / / K (x2, 1) () Ay Axy Axy

=¢A”’2(a)h0(x,a)+¢A”"(a)hl(x,a)+/ /lu(t)AtAxl

+ / / / K (52, 1)$(y) Ay Axy Axy,

n—1

¢ (x) :Z¢Al(a)h1(x,a)+/ /1/ Hu(r)ArAx,,,l...Axl
1=0 a a a

X X1 Xn
+/ / / K(x,, y)p(y)AyAx, ... Axy,
a a a

P(x) = 3 oY @hi(x,a) + [ (hao1(x, y) — LD a2 (x, Y)u(y) Ay
4.2)

and so on,

or

+ [ LK ()@ () Ay Ax, . Ax
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We will search ¢ (x) in the form

D) =D pu (). (4.3)

m=0

We substitute (4.3) in (4.2) and we find
Yoo b () = 2050 ¢X (@hi(x,a) + [ (o1 (x, ¥) = w(Dhaa(x, y)u(y) Ay
L T K G ) X S (D Ay A, . Axy
= Y100 oY @hi(x. @) + [F(ha-1(x, y) = (a2 (x, Y)u(y) Ay
> o L K (i ) () Ay Axy . Axy.
To determine the components ¢ (x), ¢2(x), ¢3(x), . .., we set the recurrence relation
Po(x) = 2y ¢ @hi(x, @) + [ (hu1(x, y) — £ (¥)hy—a(x, y)u(y) Ay.

dr(x) = [F L7 [ K (s y)do(0) Ay A, ... Axy,

Ge(x) = [7 7 [ K o o1 (DAY Ax, . Axy, k=2,
Having determined the components ¢ (x), k > 0, the solution ¢ (x) of the equation

(4.1) is then obtained in a series form. Using (4.3), the obtained series converges to
the exact solution if such a solution exists.

Example 1 Let T = 2%y {0}. Consider the equation

<zﬁ“(x)=1+/O oAy, ¢(0) =0.

Here o (x) = 2x, u(x) = x, x €€ 7.
We integrate both sides of the given equation and we obtain

/ $3(n) Ay = / Ay + / / 6() Ay A,
0 0 0 0

o) =[x [ [ smavax,
y=0 y=0Jo Jo

or
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or
Pp(x) =x +/0 (x —a(y)o(y)Ay
=x+A<x—wwwm»
We set
¢do(x) = x,
dr(x) = [y (x =201 (N Ay, k€N,
Then

«mmzAu—MWMMy
=Lu—wwm

= / (xy —2y%) Ay
0

_ ! l 2A_% 3\4
—/0 (SX(y) 7(y))Ay

L o,py=x 2 5p=x
- 3xy y:0—7 y=0
1 2
— S35
3 7
1
_ —x3,
21

MM=A@—MWMMy
_Lr 29)y3 A
—i/o(x—y)y y

1 * 3 4
= — —2yHA
21/O(xy yHAy
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1 ) 1 4\A 2 5,4
=37 = - = A
21 Jo (xIS(y ) 31(y ) Y

HA A A
315/@) Ay 651/<y>Ay

y‘ “o51” ‘

~ 315

5
X 2 E

315 651

_ 1 5
= 9765

Example 2 Let 7 = % . Consider the equation

¢A(x)=1+x+/ yo(y) Ay, ¢(0)=0.
0

Here
cx)=x+1, ux)=1, xe J.

We integrate both sides of the given equation from O to x and we get

/ $3(n)Ay = / (14 y) Ay + / / yo(») AyAx,
0 0 0 0

y=x * L 4 1 !
:/ (1 + -(y9)° — —) Ay +/ (x —o()yd(y)Ay,
y=0 0 2 2 0

or

or

1 X 2 A X
¢(X)—¢(0)=§/0 1+ 0% )Ay+/0 (x =y —=Dys(y)Ay,

or

1 X 1 X X
$(x) = 5/ Ay+§/ (y2>AAy+/ (x =y — Dyg() Ay
0 0 0

=x 1 ,pr=x
=— +—
y 40 2)’

y=0

+/O (x—y—=Dyo(y)Ay

201
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1 1 x
= —x+ —x° +/ (x—y—=1Dyop(y)Ay.
2 2 0

We set
Po(x) = 1x + a2,

o(x) = [y (x —y = Dygr1(0) Ay, ke AN,
Example 3 Let 7 = 2. Consider the equation
¢ (x) =1 +/ p(NAy, ¢0)=¢*0)=0.
0

Hereo(x) =x+1, ukx)=1, xe 7.
We integrate both sides of the given equation and we get

/ oY (y)Ay = / Ay + / / ¢ (y) Ay Ax,
0 0 0 0

so| =x+ [ [ omayan,
y=0 0 Jo

or

or

¢A(x)=x+/)/0 ¢ (y)AyAx;.
(

We integrate the last equation from 0 to x and we obtain

/ $A(y) Ay = / yAy + / / / ¢ () Ay Ax, Ax,,
0 0 0 0 0
or

71 1 x X X2
() — $(0) = / (5@2%—5) Ay + / / / 6() Ay Axy Ax,

0 0 0 0

1 x A 1 x x X1 X2

= —/ )" Ay — —/ Ay+/ / / P () Ay Axy Axy

2 Jo 2 Jo o Jo Jo
L A
y:o—z)’ y:0+/0 /0 /0 P (y)AyAxy Axy

1 1 X X1 X2
=—x?— —x +/ / / O (V) AyAx, Ax,
2 2 o Jo Jo

=3y
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1 1 x
= Exz - 3% +/ (ha(x,y) = hi(x, y)o (y) Ay,
0

ie.,

1 1 x
B = 52 = 2x +/ (ha(x. ¥) — (5, ) (3) Ay.
0

Note that

ha(x,y) =/ hi(t, y)At
y

ha(x,y) = w(hi(x,y) =

2 2 2 27"
Then

1

1, 1 1, o1, 33
P(x) =x"—Zx+ SXTE Sy —xy—Ssx+ Sy ) e(n)Ay.
0

2 2 2 2

G () =[5 (327 + 307 —xy = 32+ 3Y) e () Ay, ke N

|
|
=
+
2
|
=
~<
|
|
=
+
2
|
=
+
~

203
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Example 4 Let T = 2%y {0}. Consider the equation

¢>A2(x)=1+/0 o () Ay, $(0) =¢*(0)=0.

Hereo(x) =2x, ukx)=x, xe€ 7.
We integrate both sides of the given equation from O to x and we get

/ 6% () Ay = / Ay + / / $(») AyAx,
0 0 0 0

y=x y=x rora
o= D [ [ emayan,
y=0 y=0Jo Jo

or

or

¢A(x)=X+/O/0 P (y)AyAx;.

Now we integrate the last equation from 0 to x and we obtain

/ 62 Ay = / Ay + / / / 6 () Ay Axs Axy
0 0 0 0 0

or y=x 1 X - X X1 X2
oo =5 [orrav+ [ [T [ emayanan,
y=0 3Jo o Jo Jo
or
1 L= x X1 X2
o= v [ [ emaranan,
y=0Jo Jo Jo
or . i
d(x) = §x2 +/o (ha(x,y) — (WA (x, y)@ () Ay.
Note that

hz(X,y)=/ hi(t, y)At

=/X(T—y)AT

),
(1 2\A

[ o)
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1 X X
=§/ (rz)AAt—y/ At
y y

1 | T=Y T=x
= — —yT
31— =y Y =y
1 2 2
=30 =) —yx—y)
1 2 1 2 2
= — —_ = — X —|—
3)5 3)’ yTy
1 2
= §X2 + §y2 — Xy,

1 2 2 2
hz(x,y)—u(y)hl(x,y)=§x +§y —xy—y(x—y)

1 2
=3+ oy —
1 5
= §x2 + §y2 —2xy.
Consequently
1, (1o 5,
¢(x) = 7x" + X YT = 2xy ) (3 Ay.
3 o \3 3
We set

po(x) = §x°,
¢ () = [y (357 + 397 = 2xy) o1 (1) Ay, ke AN

Remark 1 The modified decomposition method that we used before can be used for
handling generalized Volterra integro-differential equations in any order.

Remark 2 The phenomenon of the noise terms that was applied before can be used
here if noise terms appear.



206 4 Generalized Volterra Integro-Differential Equations

Exercise 1 Using ADM, find the recurrence relation for {¢ (x)};2,, for the following
equations.

1.
' 2 (x) = 207 () + 92 (x) + (1) = > +x + [ yp() Ay,

P(0) = ¢2(0) = 9% (0) =0, T =2,

[ P + (1) = x>+ 20 =3+ x [J Y () Ay,

$(0) =¢*(0) =0, ¢(0)=3, T =27U{0},

[ 2 () + 1292 (x) = d(x) + 3+ [ yp(1) Ay,

p0) =1, ¢2(0) =2, T =3%U{0}.

4.1.2 Converting Generalized Volterra Integro-Differential
Equations of the Second Kind to Initial Value Problems

Consider the generalized Volterra integro-differential equation of the second kind
¢ (x) = ulx) + g(X)/ Fe(y)Ay, (4.4)

¢ (@) =a, 0<i<n—1,

where f,g: T > %, g(x) Z0forx € [a, b].
We substitute x = a in (4.4) and we get

6% (@) = u(@) + g(@) / FOI() Ay

= u(a).

Also, N
¢ (x) — u(x) = g(x) / FOe(y) Ay,

whereupon
P (x) —u(x)

/ fOMe(y)Ay =
a g(x)

x € [a, b]. 4.5)
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We differentiate (4.4) with respect to x and we get

2" () = u? () + ¢4 (x) / FMPW Ay + g(o(x) f(x)g(x).

Now applying (4.5) we obtain

A” J—
¢ (1) = ul (x) + gm)% +8(e() (D)), x € [a.bl,
or
A
¢An+l (x) _ g—(x)¢A" (x) _ g(a(x))f(x)¢(x) — MA(.X) _ gA(x)M,
g(x) g(x)
x € [a, b].

Consequently we obtain the following initial value problem

6" (1) — B G () — g(0 (1)) F ()P (x) = uA(x) — g ()1

g(x) g(x)

qui(a):a,-, 0<i<n-—1, ¢* (@) =u(a), xe€la,bl.

Example 5 Consider the equation
dY (x) = x2 4+ 2x — 2x [ y¢(Ay, xe T =4,

p()y=1, ¢*()=-1, ¢ (1) =2.

Note that
ocx)=x+1, pux)=1, xe 7.
Then .
Zx/ Yo Ay = x? + 2x — 6% (x)
1
or

x2+2x — ¢ (x)

o (4.6)

/1 Yo (y)Ay =
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Now we integrate the given equation with respect to x and we find
4 * 4
¢ (x) = (x2 +2x — 2x / yas(y)Ay)
1

x A
= (@ +20% -2 (X/1 y¢(y)Ay)

X X A
= (x4 42244 — 2(xA/1 yo(y)Ay + o (x) (/ y¢(y)Ay) )
1

=x+ox)+2-2 (/ yo(y)Ay + (x + 1)x¢(x))
1

o3 2/ o) Ay — 2x(x + D (),
1

ie.,

X' (x) =2x +3 - 2/ Yo (1) Ay — 2x(x + D (x).
1
Now applying (4.6) we obtain

22_A3
X7+ 2x ¢(x)+2

¢4 (x) = —2x(x + D (x) —2 5
X

x +3

or
2 (x) = —2x(x + Dp(x) —x — 2+ %d)A}(x) +2x +3,

or . -
¢ (x)—;q& xX)+2x(x+Dop(x) =x + 1.

We substitute x = 1 in the given equation and we find
¢+ (1) =3,
Therefore we get the following initial value problem
$A () — 1627 (x) + 2x(x + D) = x + 1,

p(h =1, ¢2()=—1, ¢¥(1)=2, ¢2'(1) =3.
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Example 6 Let 7 = 2% Consider the equation
¢ () = e, D) +x [[y9()Ay, x€ T,

o) =921 = L.

Here
o(x)=2x, ux)=x, xe 7.
We have .
x / Vo) Ay = ¢ (x) — e (x. 1),
1
whereupon

% (x) —ea(x, 1)

X

/1 Vo (y)Ay =

We differentiate the given equation with respect to x and we get
3 * A
0¥ 0 = (ot 0 [ o0m1ay)
1

. A
= exAz(x, D+ (x/ y2¢(y)Ay)
1

X X A
=x%en(x, 1) + x4 / Y:p() Ay +o(x) ( /1 y%(y)Ay)

1

=x%en(x, 1) + / Y2 (») Ay + 2x (¢ (x))
1

=x%en(x, 1) + / V2P0 Ay +2x° ¢ (x).
1

Applying (4.7) we obtain

A? e
¢A3(x) = Xzexz(x, 1+ ¢ (x) —en(x, 1)
X

whereupon

3 1 2 1
¢ () = —¢% —2P(x) = (x2 - —) e(x, 1).
X X
We substitute x = 1 in the given equation and we find

A () =e(1,1) = 1.

+2x3¢ (%),

209

4.7



210 4 Generalized Volterra Integro-Differential Equations

Consequently we obtain the following initial value problem
Y () — LY — 283 (x) = (¢ = L) e(x. 1)
$(1) =2 (1) =¢* (1) = 1.
Example 7 Let 7 = 3% Consider the equation
¢* () = X (0) + 7 + 20 + 1+ [ V() Ay

(1) =921 = L.

Here
o(x)=3x, pukx)=2x, xe7.
We have .
x / Yo Ay = ¢4 () — 133 (x) —x% - 2x — 1,
1
from where
" 1 2 1
/ Yo Ay = 6% (x) —x¢?(x) -1 — = — .
1 X X X

We differentiate the given equation with respect to x and we find

X A
¢4’ (x) = (x%ﬂ(x) + x4 20 4+ 1427 / y%(y)Ay)
1

X A
= (x3¢A(x))A + DA+ 204+ 14 + (xz/l y3¢(y)Ay)

= ()22 () + 03 (0)pY (¥) + o (x) +x +2
X X A
() /1 Yo (0) Ay +0%(x) ( /1 y%(y)Ay)
= (02(x) + x0(x) + xD)PA(x) + 2732 (x) + 4x + 2

+ (0 (x) +x) /1 Vo) Ay 4+ 957 (X p (x))

(4.8)
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= (9x% 4 3x% + x)PA(x) + 275302 (x) + 4x + 2

+4x/ ysp(y) Ay 4+ 9x°¢ (x)
1

= 13x202(x) + 275302 (x) + 4x + 2 + 4x / V3o Ay + 9x3¢ (x).
1

Applying (4.8) we obtain
2 (x) = dx +2 + 95 (x) + 13x202(x) + 27x30% (x)

+4x (%W(x) R i)
X X

x2

— 4x 42495 (x) + 13x202 (x) + 27x°6% (x)
+ 265 () — 4P (0 —dx —8 - =
X X
4 ; s s
=L 6o + 952 ()
X

+ (27x3 + ;) 2 (%),

i.e.,
4 4
4 (x) — (27x3 + —) 2" (x) — 9x294 (x) — 9x3p(x) = —— — 6.
X X
We substitute x = 1 in the given equation and we find
¢ (1) =¢*(1) +3=4.
Consequently we obtain the following initial value problem

¢ () = (2727 + 1) 27 (x) — 924 (1) — IxTP(x) = =% — 6

() =¢2(1) =1, ¢2'(1) =4.
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Exercise 2 Convert the following equations into initial value problems.

1.
¢V (x) = 202 (x) = x* + 207 + 22 + 20 + 1 + [ (2% = y)p () Ay,

pO0)=¢2O0)=1, T =2,

% () + 92 () + 2 (x) — p(x) = 2x + 1 +x [; ¥ p(y) Ay,

$(0) = ¢2(0) = 92 (0) = —1, T =2,

P2 (%) + 92 (x) = ¢ (x) — 247 [T yp () Ay,

$(0) = ¢2(0) = 2’ (0) = ¢’ (0) =0, T =2 U{0}.

4.1.3 Converting Generalized Volterra Integro-Differential
Equations of the Second Kind to Generalized Volterra
Integral Equations

Now we consider the equation

¢4 (x) = ux) + A [ hi(x, y)p(y)Ay
» (4.9)
oY@ =a, 0<i=n-1,
where u : 7 — Z is a given rd-continuous function, A € % is a given parameter,
ai,i =0,1,...,n—1, are given constants and / € .4 is fixed.
We will reduce the Eq. (4.9) to a generalized Volterra integral equation of the second

kind.
We integrate the Eq. (4.9) from a to x and we obtain

/' ¢A”(r)m=/ u(y)AyH// hu(xr, )¢ (3) Ay Ax,.

Now we use Lemma 4 in Chap. 3 and we get

An—l =X x X x
ol D= [emav e [ e emanay
T=a a a Jo(y
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- / u(3)Ay + A / / h(x1. )6 (3) Ax; Ay
a a Jy
x ro(y)
—A/ / hy(x1, Y)p () Ax1 Ay
a y

X X X
=/ u(y)Ay+k/ hz+1(x,y)¢(y)Ay—A/ hi(y, u(y)p(y)Ay

=/ u(y)Ay+)»/ hiv1(x, y)p(y)Ay,

whereupon

67 () = any + / u(y) Ay + 2 / st (5, )6 () Ay.

Then we integrate the last equation from a to x and so on while on the left side we
obtain ¢ (x).

Remark 3 For every [ € .4 we have
S G, ) Axy = [ hi(xy, y) Axi — f;(‘y) hi(xy, y)Ax
= i1 (x, y) = h(y, y)u(y)

=hip(x,y).

Example 8 Let 7 = % . Consider the equation
¢2(x) = x + J§ ha(x, )P (1) Ay

$(0) =920 = 1.

We integrate the given equation from O to x and we find

/¢A2(I)Ar=/ rAr+// ha(xi, )¢ (y) Ay Ax
0 0 0 0

X 1 - ] X X
=/ (E(T A — 5) At —l—/ (/ ha(xq, y)Axl) P (y)Ay
0 0 oy
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1 * 2\A 1 ! '
=_/ (%) At——/ Ar+/ hs(x, y)¢(y)Ay
2 0 2 0 0

=

+/ hs(x, y)p(y)Ay
0 0

1 1 x
le Loy / hs(x. )$(y) Ay,
A

whereupon

1 X
¢4 (x) — p2(0) = x —§x+/0 hs(x, y)¢(y) Ay

or

1 X
¢ (0) = —x —§x+1+/ hs(x, y)$ () Ay.

Now we integrate the last equation from 0 to x and we find

1
/¢ (r)Af—/ ( T —§r+1)Ar+// hs(x1, y)p(y)AyAx;
(Y (Y a4 L oa ]
_/o (2(3(” 2 +6) (( * )“)
+/ (/ h5<x1,y>Ax1)¢<y)Ay
0 o(y)
_ * 1 3A_l 2\ A L_l 2\ A l
—/O (g(w T @) +4+1)Ar

+ /0 hs(x. Y)$(y) Ay

4 X
=/ ( (tH - (2)A 3)Ar+/ he(x, ) (y) Ay
0 0

_ l/x(ﬁ)ﬂm_1/X(r2)AAr+i/xAr+/x he(x. )¢ (y) Ay
6 0 2 0 3 0 0

T=x

+ / hs(x. V)b (y) Ay
0 Jo

T=
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1 1 4 *
=X +/0 ho(x, H(3) Ay,
from where

1 3 1 ) 4 x
B~ 9(O) = 22— 2x +§x+/ o (x, ¥)$(¥) Ay,
0

or

1y 1, 4 g
p(x) = —x° — ~x +—x+1+/ he(x, y)p(y)Ay.
6 2 3 0

Example 9 Let T = 2%y {0}. Consider the equation
¢ (x) = 1+ [y ha(x, () Ay,

O =1, ¢20)=—1, ¢*(0)=2.

We integrate the given equation from O to x and we get

/X % (1) AT =/XA‘L'
0 0
~y / (/ h2<x1,y)Ax1)¢<y)Ay
=0 0 o(y)
:x+/ (/ hz(xl,ym)cl)qs(yw

0 y

. +/ hs(x, V6 () Ay,
0

+ / / ha(ar ) () AyAx
0 0

=T

whereupon

6% (x) — 6™ (0) = x + / s (x, )$ (3) Ay
0

or

6% () = x +2+/ s (x. )6 (¥) Ay.
0
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We integrate the last equation from O to x and we obtain

/0 “’Az(”m:/o (r+2)m+/0 /0 ha(xr, Y6 () Ay Axy

_ / ( (rz)ﬂ+2)+ /0 ( / hs(xn, y)Axl)my)Ay
o(y)
/<r2>AAr+2/ Ar+/ (/ h3<x1,y)Ax1)¢(y)Ay

T=.

+2r

T=l

1
= —‘[2
3

1 X
_ §x2+2x+/ ha(x, V)¢ () Ay,
0

¥ / ha(x, V)b () Ay
0 0

T=

from where

$3() — $2(0) = x Ford / ha(x. y)$ () Ay

or
¢ (0) = —x -1+ / ha(x, )b (y) Ay.

We integrate the last equation from O to x and we find

/ ¢ (T)Al’—/ (—T +27—1) At+/ / ha(x1, y)p(y)Ay Ax,
Z/X(l(3)A+ (.[Z)A )AT
o \21
+/ (/ h4(x1,y>Ax1)¢(y)Ay
o(y)
21/ (13) At 4+ — /(rz)AAf / AT
+/0 (/ hatar, )Ax1)¢(y)Ay
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. I, r=x+2 H[F=¥ r=x+/xh( Yo () A
_211 N 31 o Tr=0 A 5(X, Y y)Aay
1 3 2 2 *
= —x"+zx"—x+ [ hs(x,y)p(y)Ay.
21 3 o
Hence,
2 X
H) —$(0) = 5ox + 202 —x+/ hs(x, )b (y) Ay
or

2 X
$(x) = —x +3x —x+1+/ hs(x, )b (y) Ay.

Example 10 Let T = 2% U {0}. Consider the equation
$2' () + ¢4 (1) + ¢4 () = x + [) i (x, NP Ay,
$(0) = ¢*(0) = ¢*°(0) = 1

Hereo(x) =2x, x€ 7.
We integrate the given equation from O to x and we get

/O (¢A3<r>+¢ﬂz(r)+¢A(r>)Ar=/ rAr+/o/0 hi(xr, y)e () Ay Ax,

0

or
N ¢ (1) At + ¢ (1) AT + Jy 924 (AT
=1 J5 @2 AT+ J3 ([2) MG A ) $0) Ay,
or i i
¢ (x) — 92 (0) + 92 (x) — 92 (0) + P (x) — P (0)
—1 2‘1’:): X X
= 31' r:0+f0 (fv hl(xl,y)Axl)Ay,
or

A? A _ l 2 )
o7 (x)+¢ (x)+¢(x)—3+3x + ; ha(x, Y)$(y)Ay.

We integrate the last equation from 0 to x and we find

I3 (0% @ +02@ +00) At = [§ (3+ §72) A7+ 5 [§ hax1, )60 AyAxi,
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" Jo #¥ (AT + [ 2@ AT + [} p (1) Ay
= [FB+LEHY) ar+ [} (f;’(y) ha(x1, y)Axl) b(y)Ay,
T 90— 820 + 600 — BO) + [ $(MAY
=3[ Ar 4 g7 [Fa)2an 4 [ ([ hat. ) an) () Ay,
or

‘T:

A0 + B0 + [ pWAy =243t 457 4 [ hsx o)Ay,

or

X 1 X
¢A<x>+¢<x>+/0 $(») Ay =2+3x+ax3+/0 s (x. )6 () Ay.

We integrate the last equation from 0 to x and we obtain
Jo (@2 + o) + 3 d(NAY) Axy = [ (2431 + 5;77) At

+ Jo Jo ha(xr. )@ (0) Ay Axy

or
fy o2 @ AT+ [ oAy + [3 [y #(»)AyAx
= Jy @+ @)%+ 559 A+ [ ([ Bt » A ) 60 Ay,
Or X X X
P(x) = pO0) + [y p(MNAY + [y (x — o (MM Ay =2 [} At
+ f;(IZ)AAT + ﬁ fOX(f4)AA1— + fox (fv" h3(xy, y)Axl) d(y)Ay,
or =X
) = 1+ 3 6WAY + fy (x =209 () Ay = 21|
+12 :Jrﬁr‘“:}r Jo hatx, »)p(y) Ay,
or

¢>(x)—1+/0 <x+1—2y>¢(y>Ay=2x+x2+%x“+/0 ha(x, y)$(y) Ay,
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or
1 X
¢(x) =1+2x +x* + Ex4 +/ (ha(x,y) —x — 1 +2y)p(») Ay.
0

Exercise 3 Convert the following equations into generalized Volterra integral equa-
tions.

- $2'(x) + 3P (x) = x2 +2x + T+ x* [ o (y) Ay,
P0)=¢20) =1, ¢*(0)=-3, T =472,
2.
¢% (x) + 3x¢2 (x) — 3 (x) = 2x — 5+ x° [ p(y) Ay,
$(0)=9¢20) =1, 7 =3%U{0},
3.

2" (x) + ¢4’ (x) + 242 (x) = x [ p() Ay,

$(0) = $2(0) = ¢p2°(0) = p2'(0) = ¢2'(0) = 92’ (0) =0, T = N

4.2 Generalized Volterra Integro-Differential
Equations of the First Kind

The standard form of the generalized Volterra integro-differential equations of the
first kind is given by

[FK@, )¢ Ay + 30 ki [7Ki(x, )¢ (0) Ay = u(x),

¢4 @) =a;, j=0,1,....,n—1,

where K, K; : 9 x T +——> %, i =1,2,...,n, are rd-continuous functions,
u: 7 —> Z is given rd-continuous function, A;, i = 1,2, ..., n, are parameters,
a;i,i =0,1,...,n— 1, are given constants.

Using integration by parts, the generalized Volterra integro-differential equations of
the first kind can be reduced to generalized Volterra integro-differential equations of
the second kind or generalized Volterra integral equations of the second kind.

Example 11 Let 7 = % . Consider the equation

Jo G EPdMAY + [f2x —y = Do (MAy =x, ¢(0) =1.



220 4 Generalized Volterra Integro-Differential Equations

Hereo(x) =x+1, x € .7.Then
/ C@r -y — DAy = /0 "2 — )P ed() Ay
= x| - [ ex-niemay
— xp(x) = 266:(0) + /qus(ymy

— () — 2x + /0 6 () Ay.

Then the given equation we can rewrite in the form

/0(x+y)¢(y>Ay+x¢<x>—2x+/o 6 () Ay = x

or

() = 3x — /0 (1+x +)p()Ay.

Example 12 Let 7 = % . Consider the equation

2x/ ¢(y>Ay+/ Yot (Ay =1, ¢(0) =2.
0 0

We have
/0 Yt ay = o) - /0 "M@ () Ay
=29 - [ @0+ 60N
=29 = [ @y+ Do+ Da.
Then

ZX/ ¢(y)Ay+x2¢(X)—/ Q2y+De(y+ DAy =1.
0 0
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Example 13 Let = 2%y {0}. Consider the equation

¢ () + ¢4 () = [ d(AY,

$(0) = p2(0) = p*°(0) = 1.

Here o (x) =2x, xe€ 7.
We integrate from O to x both sides of the given equation and we get

/ X () Ay + / P2 () Ay = / / ¢ (y) Ay Ax,
0 0 0 0

or
¢V (x) — ¢ (0) + p(x) — $(0) = /0 (x — ()P () Ay,
or .
2 (x) — 2 (0) + ¢ (x) — $(0) = /0 (x = 20)p(») Ay,
or N
60 (1) + d(x) —2 = /O (x — 20)p () Ay,
or

PY () =2 —p(x) + /0 (x = 2y)p(y) Ay.

Now we integrate from 0 to x both sides of the last equation and we find

/0 oY (y)Ay = /0 2 —¢()Ay + /0 | = 28()4yax,

or

¢*(x) — 92 (0) =2/0 Ay—/o ¢ (y) Ay
+/0 /0 (h1(x1,y) — () ho(x1, y)P(y) Ay Ax)
=2x—/0 p(y)Ay

+// (hi(x1,y) — u(ho(x1, y)9(y)Ax Ay
o Jow
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. /0 $(3) Ay
+/0 (/ (hl(xl,y)—u(y)houl,y))ml)qs(y)Ay
i

e /0 Ry /O (ha(x, y) — ) (x ) () Ay,

or

X

¢4 (x) =2x +1 —/0 ¢ (y)Ay +/O (ha(x, y) — w(Mhi(x, y)o(y)Ay.

Now we integrate from O to x both sides of the last equation and we find

/¢A(y)Ay=/ (2y+1)Ay—// ¢ (y)AyAx;
0 0 0 0

+/0 /0 (h2(x1, y) — p(Mhi(x1, y)P(y) Ay Ax,

(2 2\A !
=/ (§<y> +1) Ay—/ (x — () Ay
0 0

+/0 (/( )(hz(th) — u(Yhi(xg, y))Axl) d(y)Ay
oly

_ 2 [ 2\A ! _ * _
=3 H*Ay+ | Ay (x —o(y)e(y)Ay
0 0 0

+/0' (/ (a1 ¥) — p(hi (1, y))Axl) $(») Ay
y

y=x
+y
y=0

22
_gy

T / (x — 29)p(») Ay
y=0Jo

+/0 (h3(x,y) — u(Mha(x, ) (y) Ay

2, *
=3 +x—/0 (x = 2y)p(y)Ay
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+ / (ha(x. y) — ha(x, 1) () Ay,
0

or

X

2 X
d(x) —¢(0) = gxz +x _/o (x =2y)p(y)Ay +/0 (h3(x,y) — n(ha(x, y)p(y) Ay,

or
2 "X X
B =27 4t —/0 (r — 20)p () Ay +/0 (h3(x. 3) — (A2 (x, Y)H() Ay,

Exercise 4 Convert the following equations into generalized Volterra integro-
differential equations of the second kind.

1.
‘ [y (M) Ay =203 [F yp() Ay = x> +x* [ yip(y) Ay,

p0) =940 =1, T =2,

l [5G+ Do (nAy = [ () Ay,

$(0) = ¢2(0) = $*°(0) = -2, T =270U (0},

[ [ y2 Y (M Ay = x2 +x [; ¢(») Ay,
$(0) = ¢2(0) = ¢2°(0) = ¢* (0) = p2'(0) =0, T = Z.

4.3 Advanced Practical Exercises

Problem 1 Using ADM, find the recurrence relation for {¢ (x)} 2, for the following
equations.

1.
‘qbﬂ‘(x) = x>+ 2x +x [ yp(» Ay,

$(0) =¢2(0) =9 (0) = 9> (O) =1, T =2,

[ PA(x) + (2 +2x + Dp(x) = 1 +4x +x* [ y () Ay,

pO)=1, T=2,
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[ % (x) = X% (x) —x —x [i yp () Ay,
$(0) = ¢2(0) = 2’ (0) = =2, 7 =3 U0}

Problem 2 Convert the following equations into initial value problems.

1.
[ P2 (x) = 2X%¢ (x) = x> +x* [ v (n) Ay,

p(0) =920 =1, T =2,

[ P2 (x) — 3x29% (x) — 3x¢A(x) — 3¢ (x) = [; p(») Ay,

$(0) = ¢2(0) = ¢2°(0) = -2, T =2 U {0},

[ 2 () + ¢4 (x) + 2 (x) = x2 4+ x [T () Ay,
$(0) = ¢2(0) = 2’ (0) = 2’ (0) = p2'(0) =0, T = Z.

Problem 3 Convert the following equations into generalized Volterra integral equa-
tions.

' 62 (0) + 2 (1) = 22+ x [ (x+ 2P () Ay,
[¢(0) =420 =1, ¢*O)=-1, T =32,
2.
¢ (1) + 2294 () + T2 (x) = 2 [ p(1) Ay,
‘ $(0) = ¢2(0) =2 (0) = =2, ¢* () =0, T =7%U{0},
3.

‘ ¢2" (%) + 497 (1) + 592 (0) = x [T 9 () Ay,
#(0) = p2(0) = ¢p2°(0) =0, T =27.

Problem 4 Convert the following equations into generalized Volterra integro-
differential equations of the second kind.

1.
[ JEG? 42y + 1+ 002 () Ay — 263 [F(x + 2 () Ay = [ v () Ay,

p(0) =1, ¢20)=-11, T =2,
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2.
[ JrO? +xy + D2’ (1M Ay = x =3 [ yp (y) Ay,

$(0) = ¢4(0) = *°(0) =0, 7 =3%U (0},

| Jia =Y Ay =22+ [i yo(») Ay,

#(0) = ¢2(0) = 2’ (0) = ¢4 (0) =0, T =7Z.



Chapter 5
Generalized Fredholm Integral Equations

In this chapter we adapt the Adomian decomposition method, the modified decom-
position method, the noise term phenomenon, the direct computation method and
the successive approximation method for generalized Fredholm integral equations.
They are considered generalizations of the Fredholm Alternative theorem, the Smidth
expansion theorem and Mercer’s expansion theorem.

5.1 Generalized Fredholm Integral Equations
of the Second Kind

We will first study the generalized Fredholm integral equations of the second kind
given by

b
¢(x) = u(x) +?»/ K(x,y)p(y)Ay. GRY;

The unknown function ¢ (x), that will be determined, occurs inside and outside the
integral sign. The kernel K (x, y) and the source term u(x) are real-valued functions,
and X is a real parameter.

5.1.1 The Adomian Decomposition Method

The Adomian decomposition method (ADM) was introduced in Chap. 3 and it con-
sists of decomposing the unknown function ¢ (x) of any equation into a sum of an
infinite number of components defined by the decomposition series
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[e.¢]

$(x) =D pi(x) (5.2)
=0

or equivalently

¢ (x) = do(x) + P1(x) + Pa(x) + -,

where the components ¢;(x), [ > 0, will be determined recurrently.
The Adomian decomposition method concerns itself with finding the components

$o(x), $1(x), $2(x), $3(x), ..., individually.
To establish the recurrence relation, we substitute (5.2) into the generalized Fred-

holm integral equation (5.1) to obtain

b
$000) + B1(x) + 2 (6) + - - = ulx) + A/ K y) (Go(y) + 1) + $2(y) +---) Ay.

We set

do(x) = u(x),
(5.3)

$n(¥) = 1 [} K¢, gua (DAY, n =1,
or equivalently

Po(x) = u(x),
$1(x) = [V K (x, »)do(y) Ay,
$(x) =2 [V K (x, »)d1(y) Ay,
$3(x) =1 [ K(x, y)a(y) Ay,

and so on for other components.

In view of (5.3), the components ¢y (x), ¢ (x), ¢2(x), ¢3(x), ..., are completely
determined. As a result, the solution ¢ (x) of the generalized Fredholm integral
equation (5.1) is obtained in a series form by using the series assumption in (5.2).

Example 1 Let & = Z. Consider the equation

4
$0r) = x +/ V() Ay.
0

Here
ox)=x+1, x€7, ux)=x, Kkx,y)=y, rA=1
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Then

do(x) = x,
4
¢1(x) =/ yoo(y) Ay

1 4 4
=— [ o)Ay - 5/ (yz)AAer—/ Ay
0 0 0
y=4 1 ‘y=4

o 2V =0T

4
hr(x) = /0 yo1(y)Ay

4
=14/ yAy
0
4 A 1
14/ ( o) —E)Ay
- (/(y)AAy / )
0
—4
(L)
y=0 y=0

= 7(16 — 4)
= 84,
4
P3(x) = /0 y$a2(y) Ay
4
= 84/ yAy
0
= 504,

4
$4(x) =/0 yo3(y)Ay

4

= 504/ yAy
0

= 3024

229
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Example 2 Let 7 = 2. Consider the equation

2
p(x) =1+ ZX/O d(y)Ay.

Here
cx)=x+1, xe€7, ulx)=1, K(x,y)=x, r=2.

Then

$o(x) =1,
2
¢1(x) = 2X/O Po(y)Ay

2
=2x/ Ay
0

= 4x,

2
$2(x) = ZX/O ¢1(y)Ay

2
Sx/ yAy
0
2
4x/ (H? = 1) Ay
0
2 2
= 4x (/ <y2>AAy—/ Ay)
0 0
4 ) y=2 ’y=2
I G y=0 yy=0
= 8x,

2
¢3(x) = ZX/O $2(y)Ay

2
= 16x/ yAy
0

= 16x,

2
$a(x) = 2 /0 () Ay

2
=32x/ yAy
0

= 32x.
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Example 3 Let T = 2%y {0}. Consider the equation

4
¢(x)=x+1+X/o yo(y)Ay.
Here
cx)=x+1, xe7, ulx)y=x+1, K(,y)=xy, A=1.
Then
Po(x) =x+1,
4
$1(x) :x/ Yoo(y)Ay
0
4
=X/O y(y + DAy

4
=x/0 (v + Ay
4
* / ( DA 4 (W‘)Ay
( /(y )2 Ay + = /(y2)AAy)
Logp=4 1,
x(7 y:0+3y y—o)
(@ 16
X 7 +?)
304
04
21

4
$a(x) = X/O yo1(y)Ay

304 /4A
= —X
R yAy

304 1 A
== A
213x/( )= Ay

)6

4
$3(x) = X/O y$a2(y) Ay

304\ (16 /4 )
={—=—)l=)=x yeAy
21 3 0
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()9

4
Pax) = X/O yo3(y) Ay

(304)(16)2 /4 2 4
=\ )\5) x| yay
21 3 0
_ (304 (16’
“\20)\3) "
Exercise 1 Using ADM, find ¢o(x), ¢1(x), ¢p2(x), ¢p3(x) and ¢4(x) for the equation

2
$() = 1 +x2/0 Yo Ay, T =2%U0).

Answer
Po) =1, ¢1(x) = x2, () = ¥ (19) 42,

00 = 3 (19722 gutr) = 4 (19)° 2.

5.1.2 The Modified Decomposition Method

For many cases, the function u#(x) can be set as the sum of two partial functions,
namely u;(x) and u;(x). In other words, we can set

u(x) = u(x) + uz(x).

The modified decomposition method(MDM) identifies the zeroth component ¢ (x)
by one part of u(x), namely u(x) or u,(x). The other part of u(x) can be added to
the component ¢ (x) that exists in the standard recurrence relation. The modified
decomposition method admits the use of the modified recurrence relation

bo(x) = uj (x),
$100) = ur(x) + 1 [7 K (x, y)o(») Ay,
G () = A [T K (x, () Ay, k> 1.

A rule that may help for the proper choice of u;(x) and u,(x) could not be found
yet. If u(x) consists of one term only, the modified decomposition method cannot be
used in this case.
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Example 4 Let 7 = 2. Consider the equation

1
p(x)=1+x +/1¢(y)Ay-

Here
cx)=x+1, x€7, ux)=1+x, Kx,y)=1, A=1.
Let
ui(x) =1, ur(x)=x.
Then

do(x) = 1.
1
616) = x + /] $o(») Ay

1
=x+/ Ay
~1

=x+4+2,
1
$a(x) = / 04y

1
=/<y+2)Ay

-1

1

1, 1

- - ——42)aA
/_](2@) 2+) y
l 12A 3 1
- Av+2 [ A
2/71(y) y+2/71 y

1 ,p=! +3 y=1
— 2V 2V
—3,

1
¢3(x) =/1¢2()’)Ay

1
:3/ Ay
—1
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1
$a(x) = / )4y

1
=6/ Ay
—1

y=1

y=—1
=12.

Example 5 Let 7 = 2%y {0}. Consider the equation

2
SO0 = x +x° + 2/0 Yo () Ay.

Here
o(x)=2x, xe€.7, ulx)=x+x> Kx,y)=y, r=2.
Let
ur(x) =x, uy(x)= x2.
Then

do(x) = x,
2
$1(x) = x> +2 / yo(y) Ay

2
hr(x) = 2/0 Y1 (y)Ay
2
=2/ y(y2+§)Ay
0
2
2/ (y3 + 1—6y) Ay
0 7

2 1 4N\ A 16 2\ A
2/0 (E(” 309 )Ay
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2 g 4\ A 32 g 2\A
= — Ay + — A
15/0(y) Y 21/o(y) Y

2 L p=2 32 Lp=
- Ey )y:()—i_i y=0
288
= g,

2
$3(x) = 2/0 y$a(y) Ay

576 [?
=35, yAy
192 =2
a gy y=0
768
=35

2
$a(x) = 2/0 yo3(y)Ay

1536 [
=¥ ; yAy

512 ,pp=2
- gy y=0
2048
=35

Example 6 Let 7 = 2%y {0}. Consider the equation

¢ (x) =x2+x3+x/02¢(y>Ay.
Here
o(x)=2x, xe€.7, ulx)=x>+x°, K(,y)=x,
Let

ui(x) = X3, ur(x) = x2.

A=1

235
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Then

Po(x) = x°,
2

¢1(x) = x* +x /) do(y) Ay
(

2
=x2+x/ y3Ay

0
v [

=x>+ Exy
_pe. 16
=x? 15x

y=0

2

$2(x) = x /0 1) Ay

B 2 16 A

_x/o (}’ +B)’) y

: 1 3A A
x/ (7( ) (y))
(/(3) y+5/<y> )

4P=2 16 2)—2
x(?y =0t 25” y_o)

8+64
= X — —_—
7 45

808
:—x’
315
2
$3(x) = x / $2(y) Ay
0
808 /2 B
= —x
3157 ), 7
808 (7 , 4
=26 A
945)6/0 (")~ Ay
808 2‘y=2
= 045" |y
3232

X,
945
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2
$a(x) = x /0 $3(3) Ay

3232 /2 A
a5 ), MY

3232,
Seac XY
2835
12928

X.
2835

y=2

y=0

Exercise 2 Let .7 = 3" U {0}. Consider the equation

3

(x) =1+x+x/* Y (y)Ay.

0
Setu;(x) = x, uz(x) = 1. Using MDM, find ¢ (x), ¢1(x), ¢2(x), ¢3(x), P4 (x).

Answer
Po(x) =x, ¢1(x) =1+ Zx, $y(x) = By,

by = 4T (D) x, gux) = LT (T

5.1.3 The Noise Terms Phenomenon

It was shown that a proper choice of ©; (x) and u;(x) is essential to use the modified
decomposition method. In Chap. 3 the noise terms phenomenon was introduced and
it demonstrates a fast convergence of the solution. The noise terms as defined before
are the identical terms with opposite signs that appear between the components ¢ (x)
and ¢; (x). Other noise terms may appear between other components. By canceling
the noise terms between ¢ (x) and ¢; (x), even though ¢, (x) contains further terms,
the remaining non-canceled terms of ¢ (x) may give the exact solution of the given
generalized Fredholm integral equation of the second kind. The appearance of the
noise terms between ¢ (x) and ¢;(x) is not always sufficient to obtain the exact
solution by cancelling these noise terms. Therefore, it is necessary to show that
the non-cancelled terms of ¢o(x) satisfy the given generalized Fredholm integral
equation of the second kind.

Example 7 Let = 2. Consider the equation

2
S0r) = x — 2+2/0 $() Ay,

Here
cx)=x+1, x€7, ux)y=x-2, K(kx,y)=2.
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Then

$o(x) = u(x)

=x -2,

2
@u>=24‘mwvw

2
=2 [ -2
0

=2 “(Lyrya ! 2) A
= /o(z(y) —5—) y

2
=A(@%A—$Ay

2 2
=/R@5AAy—5/)Ay
0 0

The noise term here is 2. Therefore we have to show that ¢ (x) = x is a solution to
the considered equation.
Really, we have

2 2 1 1
x—2+2/ yAy:x—2+2/ ~(H* =< ) Ay
0 0 2 2

2
=x—z+/X@%A—DAy
0

2 2
=x—2+/fffAy—/lm
0 0

) y=2 y=2
=x—2+4y -y
y=0 y=0
—x—2+4-2
=X
= ¢ (x).

Consequently, ¢ (x) = x is a solution to the considered equation.

Example 8 Let T = 2% U {0}. Consider the equation
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4
$(x) = x> — 256 + 15/ yo (y)Ay.
0

Here
o(x)=2x, xe.7, u(x)=x>-25, K(x,y)=15y.
Then
$o(x) = u(x)
= x? — 256,

4
#10) =15 [ 30002
0
4
= 15/ y(y* —256) Ay
0

4
= 15/ (y* —256y)Ay
0

_ YL aa 256 54
_15/0 (E(” —T@))Ay

4 4
_ / ()4 Ay — 1280 / ()4 Ay
0 0

y=4
y=

=4
- y4(’ —1280)?
y=0

= 256 — 20480.

The noise term is 256. Therefore we have to show that ¢ (x) = x2 is a solution to the
given equation.
Really,

4 4
x2 —256 + 15/ yo(y) Ay =x2—256~|—15/ ¥ Ay
0 0
4
=x2—256+/ Ay
0

y=4
= x> 256 + |
y=0

= x2 — 256 4+ 256
:xz

= ¢(x).

Consequentl x) = x? is a solution to the given equation.
q y g q
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Example 9 Let 7 = 2. Consider the equation

2
¢(x) =2x> —x +x/0 ¢ (y)Ay.

Here
cx)=x+1, xe.7, ux)=2x*—x, K, y)=nx.
Then
$o(x) = u(x)
= 2x?2 — X,

2
$1(x) = X/O ¢o(y)Ay
2
= x/ (2y* — y) Ay
0

272 1 1 1
x/ (3@3)“ S 5<y2>A + —) Ay
0

3 2

_ (2 34 3. 94,5
—X/O (5()’) —5()’)+6)Ay

2 3‘>—2 3 ,p=2 5 p=2

3y y=0 Zy y=0 6y y=0
16 5
=x(——-6+=
3 +3)

The noise term here is x. We have to check if ¢ (x) = 2x? is a solution of the
considered equation.
We have

2 2
2x2—x+x/ ¢(y)Ay=2x2—x+2x/ y2 Ay
0 0
=2x2—x+2x/2 1(y3)A—l(y2)A+1 Ay
o \3 2 6

e 1
=2 —x+x (—(y3)A -4+ —) Ay
, \3 3

2 2 2 1 2
=2x2—X+x(—/ (y3)AAy—/ (yz)AAer—/ Ay)
3 Jo 0 3 Jo
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2 2 =2 L,p=2 o1 =2

=2x"—x+x(|=y -y +-y
3 y=0 y=0 3 y=0
16 2

= 2x2 — — 44 =

X xX+x ( 3 + 3)

=2x% —x +2x

=2x>+x

# ¢ (x).

Consequently ¢ (x) = 2x? is not a solution of the considered equation.

Exercise 3 Let .7 = % . Using the noise terms phenomenon, find a solution of the
following generalized Fredholm integral equation of the second kind.

4
d(x) =x>+x—20 +/ #(y)Ay.
0

Answer
¢(x) = x>+ x.

5.1.4 The Direct Computation Method

The direct computation method(DCM) will be applied for solving the generalized
Fredholm integral equations. The method gives the solution in an exact form and not
in a series form. Note that this method will be applied for the degenerate or separable
kernels of the form

K(x,y) = fi0)g). (5.4)

=1

We substitute (5.4) in (5.1) and we get

b n
¢ (x) = u(x) + / > Ao ()Ay,
=1

a

or equivalently

n b
¢ (x) =u(x)+kaz(X)/ g (y)Ay.
=1 ¢

We set .
o =/ gMe(MAy, 1=1,2,...,n. (5.5)
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Then .
$() = u() + 1D o fix). (5.6)

=1

Using (5.6), the solution ¢ (x) will be determined if the constants ¢, 1 <1 < n, are
determined. We substitute (5.6) in (5.5) and we obtain

b n
o = / gi1(y) (u(y) +2>] amfm(y)) Ay

m=1

b n b
= / (MU Ay +1 D"y / 2() fu (1) Ay
a m=1 a

b n b
= [Caoumartr X an [ oy

m=1,m#l

b
+/\a1/ g finAay, 1=1,2,...,n,

whereupon
b b
/ g (Mu(y)Ay = (1 - k/ gz(y)fz(y)Ay)

n b
=3 am/ g fn (DAY, 1=1.2,....n.

m=1,m#l

Consequently we go to a system of n algebraic equations that can be solved to
determine the constants ¢;, 1 <[ < n. Using the obtained numerical values of o;
into (5.6), the solution ¢ (x) of the generalized Fredholm integral equation of the
second kind (5.1) is readily obtained.

Example 10 Let 7 = % . Consider the equation
2
b =1+ [ 4y rasmay,
0
We can rewrite the given equation in the form

2 2
¢ (x) =1+X/0 ¢(y)Ay+(X+l)/0 yo(y)Ay.

Let 5 5
ou=/0 P(y)Ay, Olz=/0 Yo (y)Ay. (5.7)
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Then
dx)=14a1x +oa(x +1). (5.8)

‘We substitute (5.8) into (5.7) and we find

2
o = / (I+ary +ox(y+1)Ay
0

2 2 2
=/Ay+a1/ yAy+a2/(y+l)Ay
0 0 0

=2+ /2 Loys D) ay 4 /2 Lona—L i) a

= (23] o 2)’ ) y a2 o 2)’ 3 y
1 2 - 1 2 1 2 - 1 2

=24a |z ONAy—5 | Ay)+oea|5 | ONAy+- [ Ay
2 Jo 2 Jo 2 Jo 2 Jo

o I ,p=2 1 p=2 n 1, )f:2+1 y=2
o “ 2y y=0 2y y=0 “2 2y y=0 2y y=0
=24 o) + 3wy,
whereupon
2
o =—z (5.9)
and

2
% =/0 y(I +oary +ax(y +1))Ay
2 2 2
=/ yAy+rx1/ ysz+az/(y2+y)Ay
0 0 0
2 2
1 2\A 1 / 1 3\A 1 2\ A 1
= - ——)a - - “)a
/0(2(y) 2) y+oa A (3(y) 2(y) +6 y
2
1 3\A 1 2\ A 1 1 2\ A 1
SHA -2 S4Z —Z)a
+a2/0 (3(y> 093424509 = ) Ay
1/2(2>AA 1/2A+ (1/2< Haa 1/2(2>AA +1/2A)
= — N ar | — N —
2 ), 0%y =3 | Avter(g [ OD%ay -7 [ 0M%ay+ o | Ay

1 2 A 1 2
tor\Z | O)TAy— 5 [ Ay
3Jo 3Jo

I =2 1 p=2 I =2 1 ,p=2 1 p=2
- Ey y=0_§y y=0+al(§y y=0_§y y=0+8y y=())
1 5p=2 1 p=2
o (gy _\':O_gy y:())
=1+ + 2,

from where, using (5.9),
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1

Consequently

1 2 2
=1l—-=x—-—=-x—=
3 3
1
= - —X.
3

Example 11 Let 7 = 27 U {0}. Consider the equation

2
() = x +/0 (x + )6 () Ay.

We can rewrite the given equation in the form

2 2
¢><x>=x+x/0 ¢<y>Ay+/0 Yo () Ay,

Let 5 5
a1=/ () Ay, Olz=/ yo(y)Ay. (5.10)
0 0

Then
d(x) =ar+ (1 +opx. (5.11)

We substitute (5.11) into (5.10) and we get

2
o = / (@2 + (1 +a)y) Ay
0

2 2
=012/ Ay—i—(l—i—al)/ yAy
0 0

=21 g 204
+—<1+a1>/ (DA 4y
0o 3 0

oy
y=

20 4 1(1 +any?|

(0%} 3 o y 50
4

=2a2+§(1+a1)

4 4
=2052+§+§011,
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whereupon

from where

az

1 ) 4
——a) — 20 = =,
391 2

3

2
/ vy + (1 +ay)y)Ay
0

2 2
az/ yAy+(1+a1)/ y2Ay
0 0

3

1 , V=2 11 4[7=2
5052)7 y:0+§( +061)y ‘y:O
Yot (4
30(2 7 (3]
4. .88
—ar + = + oy,
32ty
8 1 8
——o] — Doy = -
R

From the last equation and from (5.12) we obtain the system

Consequently

% — -] — 60(2 =4
laz =3 —240[1 — 70[2 =24

oy = —4 — 6wy ial——}?g
-7 - _ 12
®2 = T3 ®2 = "137-

72 116
b = — = ¢ (1 - —)x

137 137
__m . 2
BT ANEY R

1 2 1 2
—0!2/ <y2>AAy+7<1+a1>/ ()3 Ay
0 0

=

Exercise 4 Let .7 = Z. Using DCM, find a solution to the equation

Answer ¢ (x) = x.

2
¢(x) = -1 +/ (x + )¢ (y)Ay.
0

245

(5.12)
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5.1.5 The Successive Approximations Method

The successive approximations method(SAM) or Picard iteration method was intro-
duced in Chap. 3. This method provides a scheme for solving initial value problems
or generalized integral equations.

For given generalized Fredholm integral equation (5.1), the successive approxima-
tions method introduce the recurrence relation

¢o(x) = any selective real —valued function,
Gui1(¥) = u(x) + 4 [} K(x, 9)ga (N Ay, n e .

The question of convergence of ¢, (x) is justified by Theorem7 in Chap. 3. At the
limit, the solution is determined by using the limit

$)(x) = lim ¢, (x).

We will point out the difference between the successive approximations method and
the Adomian decomposition method.

1. The successive approximations method gives successive approximations of the
solution ¢ (x), whereas the Adomian decomposition method gives successive
components of the solution ¢ (x).

2. The successive approximations method admits to use of a selective real-valued
function for the zeroth approximation ¢(x), whereas the Adomian decomposi-
tion method uses all terms that are not inside the integral sign. Recall that this
assignment was modified when we use the modified decomposition method.

3. The successive approximations method gives the exact solution, if it exists by

lim ¢,(x).

The Adomian decomposition method gives the solution as infinite series of com-
ponents by

P(x) =D dulx).

n=0
This series converges rapidly to the exact solution if such a solution exists.

Example 12 Let = 2. Consider the equation

2
¢ (x) = x* +/0 xyp(y)Ay.
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Let ¢o(x) = 0. Then

$1(x) = x?,
2
$a(x) = x> +x /0 yo1(y) Ay
2
=x2+x/ y3Ay
0

=x2+x/(() (y)+(y))
x2+x( / (% Ay — / Ay 4+ / (WAy)
y= 2)

y2

y=0 2 ‘ y=0
2
$3(x) = x> +x / Yo (y) Ay
0
2
=x2+x/ y(»* + y) Ay
0
2
=x2+x/ O’ +yH Ay
0

1
()4

2
_ .2 Loga bosa  booa 134
—x+x/0(—(y) 0N+ 2007 43007 - 3

2 1 1 1
= x? +x/ ( OohH? - (y3)A —~ —(y2)A - 6) Ay

6

247

+ l)Ay

1 (2 1 [?
=x2+X( /( )44 /(y) —/(y2>AAy+5/ Ay)
0
_ .2 _4 _ 217
_x+x(4yy0 y‘ —06‘ )
4 1
I o _
X +x(4 3 l+3)
= x? 4 2x,

2
¢a(x) = x* +x / yé3(y) Ay
0
2
=x2+x/ y(y* +2y)Ay
0

2
— 2 4x / (O +2y%) Ay
0
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ma  bosa booa 2 34 o4, 1
/( Y92 =200+ 3008 43072 - 012+ 5) s

1 3 1
( ohH2 + g(y%A - Z(y%ﬂ - 5) Ay

4\ A 1 23A 3 22A 1 .
Ay + = Ay — = Ay+= [ A
/ ) y+6/0(y) y 4/O(y) y+3/0 y)

4>|~\

I yp=2 1 5p=2 3 ,p=2 1 p=2
_ .2 L4 1.3 ) =
= +x(4y )y:() 6y ‘y:O 4y ‘y:O y’ )
=x?+x 4—|—A—L—3~I-2
B 3 3

= x2 + 3x.

Example 13 Let .7 = 2% U {0}. Consider the equation

2
¢ (x) = x + x* +/0 yé () Ay.

Let ¢o(x) = 0. Then

¢1(x) = x + x°,
2

62(0) = x 42 + / Vi () Ay
0

2
=X+x2+/ y(y +y) Ay
0
2
=x+x2+/ 0% +yH)Ay
0
2
1 1
=x+x? +/ (—(y3)A + —(y“)A) Ay

— x4t - /(y VA Ay + — /(y“)AAy

ik

=X+x +§y‘ +Ey

. +8+16
. 16
15
. +z3z
IR T

y=0
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2
b =45+ [ 00y
0
+x7+ / 2 L4224
=x+x —
y y 105 y
+x7+ / 2 22 a
=x+x —
A y y 105)’ y
2
1 232
=x +a? +/ (—(y%ﬂ + —<y4)A + —(yz)A) A

A 4A 2A
=x+x*+ = /(y)Ay+15/(y) +315/(y)

)2 232 ,p=2
=x+x +7y ‘y=o ‘ T
8 16 928
=x+x° +—+E+m
1624
SRR TS

2
¢4<x)=x+x2+/ y3(») Ay
0
_x+x2+/2 L2y 1624
- AR G YT
+ 2+/2 Ly 102N 4
=X X —_—
i Y4y 35 ) Ay
2 1624
2 354 4N A 2\A
= - — — A
x+x +/0 (7(y> +15<y) oo () )

1 [? 1 /2
2 3\A 4\ A 2\A
x+x+7/0(Y) y—l-ls/o(y) Y+945/() y
1 =2 y=2 1624 ,y=2
:x+x2+7y3‘ = 4‘ — 2’

945 7 =0
8 16 6496
=x+x>+- +E+%
8584
=x+x? +m

Example 14 Let 7 = 4% . Consider the equation

8
o(x) =1 +X/0 P (y)Ay.
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Let ¢o(x) = 1. Then

8
¢1(x) = 1+X/0 ¢o(y)Ay

8
=1+x/ Ay
0

=1+ 8x,

8
$2(x) = 1 +x/ 1) Ay
0

8
= l+x/ (1+8y)Ay
0

8 8
=1+x/ Ay+8x/ yAy
0 0
8
1 24
=148x+ 8x E(y) —-2) Ay
0

8 8
:1+8x+4x/ (yZ)AAy—16x/ Ay
0 0

y=8
=14 8x +4xy2’ 0—16xy‘
y=

=14 8x +256x — 128x
=1+ 136x,

8
¢3(x) = 1+x/0 2 (y)Ay
8
=1 +x/ (1+136y)Ay
0

8 8
=1+x/ Ay+136x/ yAy
0 0

(1 24
=1+ 8x + 136x z(y) —2) Ay
0

8 8
= 1+8x+68x/ (yz)AAy—272x/ Ay
0 0
=1+ 8x +4352x — 2176x
= 1+ 2184,

8
$a(x) = 1+x/ () Ay
0

8
= 1+x/ (1+2184y)Ay
0
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8 8
=1+x/ Ay+2184x/ yAy
0 0
8
1 24
=1+ 8x +2184x E(y) —2) Ay
0

8 8
= 1+8x+1092x/ (yz)AAy—4368x/ Ay
0 0

=8
—34944x

y=0

=14 8x 4 69888x — 34944x
=14 34952x.

y
=1+ 8x + 1092xy?

Exercise 5 Using SAM, find ¢y (x), ¢1(x), ¢2(x), ¢3(x) and ¢4(x) for the following
equations.

L. ¢><x>=1+x/02y2¢(ymy, T =2,

2. $() =—3+z/04y¢(y>Ay, 7=,

3. ¢(x)=1~|—x+/04y¢(y)Ay, T =%,

4. ¢(x)=x+/04y2¢<ymy, T =27 u{0},

5. ¢(x)=3x3+(x—1>/09y¢<ymy, T =37 U0y,
6. ¢<x>=1—x+/04y¢(ymy, T = N,

7. d)(x)=1+x+x2+/04(x+y)¢>(y)Ay, T =,

4
yo(»ay, 7 =2,
2

8. ¢(x)=1—2x+/

9
9. ¢(x)=x2+x/ d(y)Ay, T =3"U{0)}.
0

5.2 Homogeneous Generalized Fredholm Integral
Equations of the Second Kind

Substituting u (x) = 0 into the generalized Fredholm integral equation of the second
kind (5.1) we get

b
() = x/ K (x. )¢ () Ay. (5.13)
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Definition 1 The Eq.(5.13) is called homogeneous generalized Fredholm integral
equation of the second kind.

In this section we will focus our attention on the Eq.(5.13) for separable kernel
K (x, y) only. The main goal is to find nontrivial solution, because the trivial solution
¢ (x) is a solution to this equation. Moreover, the Adomian decomposition method is
not applicable here because it depends on assigning a non-zero value for the zeroth
component ¢(x), and in this kind of equations u(x) = 0. Based on this, the direct
computation method will be used for this kind of equations.

Assume that

K(x,y) =D il0)a). (5.14)

=1

The direct computation method can be applied as follows.

1. We first substitute (5.14) into the Eq. (5.13).
2. This substitution leads to

P(x) =1 / Z [0 () Ay

=1 Z filx) / 2 (NP () Ay
=1 @

or

b b

800 =110 [ 01006012y + 150 [ 29604y
b
k10 [ 00may.
3. Each integral at the right side is equivalent to a constant. Setting
b
Otz=/ g(ye(»Ay, 1=1,2,...,n, (5.15)

we obtain the equation

@ (x) = Ay fi(x) + Aaa fo(x) + -+ + Aoty fr(X). (5.16)

4. Substituting (5.16) in (5.15) gives

b n
o = / 2(») D fu(AY

m=1
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or
b n b
a(1=1 [T e fimar) -1 D [ at)famiay =0
a m=1,m#l a
I =1,2,...,n. In this way we obtain a system of n—simultaneous algebraic

equations that can be solved to determine the constants «;, 1 <[ < n. Using the
obtained numerical values of oy, 1 <[ < n, into (5.16), the solution ¢ (x) of the
homogeneous generalized Fredholm integral equation of the second kind (5.13)
follows immediately.

Example 15 Let 7 = % . Consider the equation

4
¢ (x) =M/0 yo(y)Ay.

Set .
az/o Yo (y)Ay. (5.17)

Then
¢ (x) = rax. (5.18)

Substituting (5.18) into the Eq.(5.17) we get

4
a= / y(hay)Ay
0

4
=)\a/y2Ay
0
A /4 1<3>A 1(2)A+1 A
o (1 _1 1
, 3V 2V 6)
A (1/4(*)% 1/4(2)% +1/4A
a p— ~ —_— p—
30)’ y 20)’ y 6/ y

Y 1 3‘y=4 1 2y=4+1 ‘y=4
= 3y y=0 2y y=0 6y y=0

= rx(22 —8)
= 14\ a,



254 5 Generalized Fredholm Integral Equations

whereupon
a(l —14x) = 0.

1
Then, if A = 7R we obtain that

d(x) = 1a—4x, o = const,

is a solution to the considered equation.

Example 16 Let = 2. Consider the equation

2
$(x) = A /O (14 1)p(») Ay.

The given equation we can rewrite in the following form

2 2
¢<x>=x(/0 ¢>(y>Ay+/0 y¢>(y>Ay).

2 2
ot1=/0 P(y)Ay, Olz=/0 Yo (y)Ay.

Let

Then
¢ (x) = AMay + az).

We set (5.20) into (5.19) and we obtain
2
o = / Aar +a2)Ay
0

2
= Aoy +052)/ Ay
0
= 2A(a; + a2),

whereupon
@2r — Doy + 2hay =0,

2
ay =/ y(A(a +az))Ay
0

2
= Aoy +052)/ yAy
0

(5.19)

(5.20)
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= Moy + @) / 2 (1(y2)A - l) Ay
0o \2 2

1 [? 1 [?
2\ A
= Moy + a2) —/(y) Ay——/ Ay
2 Jo 2 Jo
— (e + ) I =2 1 p=2
= (041 (0%) 2y =0

y:O_Ey
= Mo +a2)(2-1)
= Aoy + ),

from where
rxp+ (A — Doy =0.

For a, o, and A we get the following system

@2r = Doy +2ra, =0
M+ (A — Doy =0.
If A = 1, then
o]+ 20 =0 o =0
a; =0 © a =0,

from here we obtain the trivial solution ¢ (x) = 0.
Let A # 1. Then

I
= —25

[m— Do 42k =0 _ [(2,\— Day — 220y =0
r—1

A
=5

A
2= T

I(zx—l—j—ﬁj)alzo
o

Hence,
242

A—1

Cr—DOr—1D)=-222=0 =
“3A+1=0 =

1
A==
3

255
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Consequently

¢ (x) = Aoy + a2)

N A
=Ala — o
A

—A
= arp,
A—1
1
= -] o] = const,
2

is a solution to the given equation.

Example 17 Let 7 = 2% U {0}. Consider the equation

2
() = 2 /O (x + 1)p (1) Ay.

The considered equation we can rewrite in the following form.

2 2
6(x) = “/o 6 () Ay + A/O Yo () Ay.

‘We set 5 5
oy =/ d(y)Ay, az=/ Yo (y)Ay. (5.21)
0 0

Then
¢(x) = Ao x + Aas. (5.22)

We substitute (5.22) in (5.21) and we find

2
aj =/ (Aay + dap) Ay
0

2 2
=Aa1/ yAy—l—)»az/ Ay
0 0

1 2 o =2
= —alk/ )" Ay +)\0tzy‘
3 0 y=0

LY 2‘y:2+2)\
= 3061 y 30 (05

4
= gal)» + 2A07,
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whereupon
4
(g)\. — 1) oy +2xar =0,
2
a2=/ y(rary + Aaz) Ay
0
2 2
:Aoq/ ysz+)»ot2/ yAy
0 0
1 : 3\4 1 g 204
= i [ 028y + i [ 0708
7 0 3 0
1)L 3‘y=2+ 1 oy y=2
=3 oy =03 oy =0
8A +4/\
= — Al — AU
A R
or
8A + 4/\ 1 0
— AN —A — oy = V.
7703 :

We obtain for «;, , and A the following system
(34— 1) + 242 =0
%Aal + (%A — 1) ar = 0.

3
If A = —, then
4
o] = 0
a, =0,
i.e., we get the trivial solution ¢ (x) = 0.

3
Let A # 7 Then
[(g‘x— 1) o + 210, =0
45

2 = —7a 3%
whereupon
4% -3 4812 o —
e
4y -3 4822
=

3 7(@4r—3)

T(4r —3)> — 14402 =0 =

257
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3202+ 1680 — 63 =0 =—>

—21+97
l2=—75—"—.
8
Consequently
¢(x) = hopx + Aoy
2422
=l x — —
T(4r —3)
24 —21 497
=Ax—-— ), A=——-——,
T4 — 3) 8

«) = const, is a solution to the given equation.

Exercise 6 Find a solution to the following equation

2
6 (x) = Ax> /0 b(NAy, T =2

Answer A = 1, ¢(x) = ax?, o = const.

5.3 Fredholm Alternative Theorem

b pb
5.3.1 The Case When f f |K(x, Y)*AXAY <1
a Ja
For the sake of simplicity, we take A = 1 in (5.1) and we consider the equation

b
¢ (x) —/ K(x, y)¢(y)Ay = u(x), (5.23)

where u(x) is a continuous function on the interval [a, b].

Definition 2 An equation, in the unknown v (y), of the form

b
v(y) —/ K (x, ) (x)Ax = v(y), (5.24)

v(y) being a given continuous function on the interval [a, b], is called the conjugate
equation of the Eq. (5.23).
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1 1
Lemmal Leto,B > 0. For p > 1and — + — =1, we have
P 4q

S

<=
=
IA

(5.25)

SR
_ ™

Proof Since

i 1 1
e iy < —e¢"+—¢ for all x,y e X,

for x = logw and y = log B, we get the inequality (5.25).

Theorem 1 (Holder’s Inequality) Leta, b € .7, a < b. For rd-continuous functions
f, g :[a, b] —> Z we have

1

b b : b .
/lf(l)g(l)lAlS(/ |f(f)|pAl) (/ |g(l)|qu) ,

1 1
where p > 1 and — + — = 1.
P q

Proof Without loss of generality we suppose that

b b
(/ If(t)lpAt) (/ Ig(t)lth);éO.

SOF i gy — 1801
118 At

Applying (5.25) to

alt) = —————
TG

we get

|f (g )] L [f®l” +1 g

S_

(1@’ (P lswiar)’ P L1SOPAd [goran

The obtained inequality we integrate between a and b, and we obtain

b - b s b
/ If()e®)] 1 Lforr At+l/ lg) At

1 1 Ar = N
(1rora)’ (Pewpa)’ Pl lrorars s a e fFisopar
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or
Jy 1 (g0 At _ LI @rar 1 isolar
(17w ar) (JPswiear)’  Pl1f@rac 4 [igola
1 1
= — —|— —
P q
=1

This directly gives Holder’s inequality.

The special case p = g = 2 yields the Cauchy-Schwartz inequality.

Theorem 2 (Cauchy-Schwartz Inequality) Leta, b € 7, a < b. For rd-continuous
functions f, g : T ——> X we have

b b b
/ If(t)g(t)lAtf\/(/ If(t)IZAt) (/ |g(r>|2Ar).

Theorem 3 Let K : [a, b] x [a, b] —> Z be continuous. Under the assumption

b b
//|K(x,y)|2AxAy<l, (5.26)

the Eqs.(5.23) (5.24) admits one and only one solution ¢ (x) (¥ (y)) for any con-
tinuous function u(x)(v(y)) on [a, b]. In particular, ¢ (x) =0 (Y (y) = 0) for the
corresponding homogeneous equation

b b
¢(X)—/ K(x, y)¢p(y)Ay =0 (Wy)—/ K(x, y)¢(x)Ax =0)-

Proof Starting with the kernel K (x, y), we define the iterated kernels KV (x, y),
K(Z)(x, ), ..., K(”)(x, y), ..., as follows

KWV (x,y) =K(x,y),
K@@, y) = [T K, DKV, y)Ar,

K™, y) = [P K, DK™ D@, y)At, n=3.

Observe that
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b
K<2>(x,y)=/ K (x.)K D, y) At
a
b
=/ K(x,)K(t, y) At
a
b
:/ KWV (x, K (t, y)At,
a
b
K<3>(x,y)=/ K(x. 0K, y) At
a
b b
:/ K(x,t)/ KWV, 2)K (z, y) Az At
a a
b b
:/ (/ K(x,t)K(l)(t,z)At)K(z,y)Az
a a
b
=/ K®(x,2)K (z, y)Az.
a
Let for some n € A4, n > 3, we have
b
K" D(x, y)= / K" 2 (x,)K (1, y) At.
a
Then
b
K™ (x,y) = / K(x. DK™ V(1. ) At
a
b b
_ / K(x.1) / K21, K (2, ) Az Al
a a
b b
=/ (/ K(x,t)K("_z)(t,z)At) K(z,y)Az
a a
b
=/ K" V(x,2)K(z, y)Az.
a

By the Cauchy-Schwartz inequality we have (for n > 2)

b
IK™ (x, y)| = / K@, )K"V, y)At
a

b
5/ K (e 0[K "2, y)| At

b 3 b 3
5(/ |K<x,t)|2m) (/ |K<"1><r,y>|2m) ,

261
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whereupon

b b
|K™ (x, y)* < (/ |K(x,t>|2Ar) (/ |K<"“<t,y>|2m).

The obtained inequality we integrate over [a, b] X [a, b] and we find

b rb b rb b b
//|K(">(x,y)2AxAy5(/ / |K(x,t)2AtAx)(/ / K<"1>(t,y)|2AtAy).

Repeating this procedure, we finally obtain

b b b b n
//|K(”)(x,y)|2AxAy§(/ / |K(x,y)|2AxAy). (5.27)

Note that for n > 3 we have
b
K™ (x, ) =/ K(x, )K"=V (¢, y)Ay
a
b b
=/ K (x, z)/ K, r)K" 2 (r, y)Ar At
a a
b b
=/ / K(x, )K" 2, r)K (r, y)Ar At.
a a
Hence by the Cauchy-Schwartz inequality we have

IK®(x, y)? < (ff I |K("*2)(t,r)|2AtAr) (fab [P 1K G DK, y)|2ArAz).
From here and from (5.27) we obtain

KO = ([7 1K@ P aran) (f2 K npar) (21K Par)

b b
Note that (/ |K (x, t)|2At) (/ |K (r, y)|2Ar) is continuous on the domain
a a

a <x <b,a <y <b. Hence this term is bounded. Therefore, according to the
assumption (5.26), the series

M,y =Y K", y) (5.28)
n=1

converges uniformly on the domaina <x <b,a <y <b.
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Also,
i, y) =K,y + > K™, y)
n=2
x  p
— Ko+ Y [ KoKV A
n=2"4
b [e 9]
= K(x,y)+/ K(xe,0) D K"V, y) Ay
a n=2
b
=K<x,y>+/ K(x, 0 (t, y)At,
ie.,

b
I'x,y)=K(x,y) +/ K(x,t)[(t, y)At. (5.29)

As in above, we obtain the equation

b
Fxy) = K(x,y>+/ F(x. DK (1, y)At.

Now we can prove that

b
$(0) = u(x) + / I, yyu(y) Ay (530)

satisfies (5.23).
In fact, substituting (5.30) into (5.23), we have

$@) — [] K. o)Ay = u@) + [I I, yu(y)Ay

— 7Ky (1) + 7 T s)ues)As) Ay

=u() + [ TG umAy = [V K@ yumAy = [2 [2 K@, )T (v, $)us) As Ay
= u(@) + [} T As = [ K osu)As = [7 ([7 K )T, 9 Ay) u(s)As
=ulx)+ fab (F(x, s)— K(x,s) — fab K(x, y)I(y, s)Ay) u(s)As

= u(x).

Remark 1 Accordingly, we see that (5.23) is equivalent to (5.30). Similarly, we can
prove that the conjugate equation (5.24) is equivalent to the equation

b
Y (y) =v(y)+/ I'(x, y)v(x)Ax.

Definition 3 The series (5.28) is called the Neumann series for the kernel K (x, y).
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5.3.2 The General Case

Theorem 4 Let K (x, y) be continuous on [a, b] X [a, b]. Then there exist two sets
of linearly independent continuous functions

@), o), o a0, g1(0), &2, s gm(Y),

defined on the interval [a, b], such that

b b m )
| [ ke =3 aea| avay <1. (531
a a =1

Proof Let ¢ > 0 be arbitrarily chosen. Then, using that K (x, y) is continuous on
[a, b] X [a, b], there exists a division {7,}_, of the interval [a, b] such that

sup |[K(x,y1) — K(x,y)| <e¢

a<x<b

for any pair of points y; and y; ineach I,, v=1,2,...,m.
Lety, € I,,v=1,2,...,m,and I C I, be such that y, € I,.
Define the functions g,(y), v =1, 2, ..., m, as follows

0 outside of 1,
gV(y)_[l on 1
such that the functions g,(y) are continuous and |g,(y)| < 1 on [a, b].
‘We now set
Srx) =K, y), v=12,...,m.

Let also,
L(x,y) = |K(x,y) = > fu()g,0)|.
v=1
We have
L(x,y) = |K(x,y) = > K(x, 3)8(0)|-
v=1

For y € 1) we have that g/(y) =0,/ =1,2,...,m, [ #v, g,(y) = | and hence,
using the definition of 7,

Lx,y)=|K(x,y) — K(x, y)| <e.

Fory € IV\I; we have that g;(y) =0,1=1,2,...,m,l #v,and |g,(y)| < 1, and
hence
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IL(x, )| = |K(x,y) — K(x, y»)gv ()]
<KX, )|+ Kx, »)gv(y)]
= |K(x, y)| + [K(x, y»)llgv(y)]
< [K(x, »)| + [K(x, y)l
<2M,

where
M= sup [K(x,y)|

a<x,y<bh

Since ¢ > 0 and the sum of lengths of 7,\1] are both arbitrary, we can choose the
values of them so small that

b b

N
Note that g1(y), g2(y), ..., gn(y) are linearly independent. Hence, if f;(x), f>(x),
..+, fm(x) are linearly independent, then our proof is completed. Assume that fi(x),

fo2(x), ..., fm(x) are linearly dependent. Without loss of generality we suppose that
fm(x) is written as a linear combination of f(x), f2(x), ..., fm—1(x), i.e.,

m 2
K(x,y) =D fux)gu(y)| AxAy < 1.
v=1

Snx) =1 filx) +or fo(x) + -+ o1 fu—1(x), x € [a,b],
where oy, / = 1,2, ..., m — 1, are constants and
(@, a2, ...,0,-1) #(0,0,...,0).

Hence,

R(x, y) = D" fit)gi(y)

=1

m—1
=D H@&G) + fu()gn(y)

=1

m—1
=D A0 + (@ fitx) + o for(x) + -+ ot o1 (X))@ ()
=1

m—1
= > HE@G) + g ().

=1

‘We set
"M =g +agay), 1=1,2,....m—1.
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Then

m—1
R(x,y) =D fitr)g" ().
=1

If gil)(y), gél)(y), ey g,(nl)_l(y) are linearly independent, then by setting gl(l)(y) =

g1(y), the number m is diminished. If otherwise, say g,(ﬂ1 11 (y) is alinear combination
f (1) (1) (1) .

of g, (¥, & (), -+, gua(¥), e,

g ) = 818" () + B285" () + - + Buagl 5 (),

where B;, 1 =1, ..., m — 2, are constants and

Brs s Bu—2) #(0,...,0).

Then

R(x,y) = > fi)g ()
=1

m—1
=> fz(X)gl(l)(y)
=1
m—2
= > @)+ fum1 @) )
=1

m—2

= > [0 O+ fum1 @B )+ B285 )+ 4 Bu2gl ()
=1
m—2

= > @ + B fw—1g N )
=1

m—2
=> PogP o,
=1

where

[P0 = i)+ Bifuar ), 1=1,2,...,m—1.

Repeating this argument alternatively for f and g, we finally obtain two sets of
linearly independent functions f,(k) (x) and g,(k) (y) in terms of which R(x, y) is
written as

R, = [P g
=1
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provided that K (x, y) # 0 and R(x, y) # 0. Then by setting f;(x) = f*(x) and
a(y) = g,(k) (y), the proof is completed.

Below we suppose that K (x, y) is continuous on [a, b] X [a, b]. Let also, fi(x),

L), ooy f(x), g1(3),8203), ..., gn(y) be two sets of linearly independent
continuous functions on [a, b] such that (5.31) holds.
We now set

Ki(x,y) = K(x,y) = > filt0)g(y)

=1

and denote the resolvent kernel of K;(x, y) by

M, y) = > K{"(x, ).
n=1

Then the Eq. (5.23) takes the form

b m
¢ (x) — / (Kl(x,w +Zfz<x>gl(y>)¢<ymy = u(x)

=1
or

b p m
o - [ K nemay =uw + [ 3 s 01604y,

a =1

Hence, using (5.30), we get

GO = u(x) + [ 30 [ (e Ay

+ 7 1) (w0 + [ S fi0)8i6)6(6)4s) Ay

=u() + [ 30 HEa»)$() Ay

+ PG ) Ay + [P TG y) [P0 AO0)&i(8)e(s) As Ay
=u() + [ 3 /@08 ()b () Ay

+ [P e, u) Ay + [T 0 T y) S fi)gi(s)¢(s) As Ay
—u) + [P0 HEOaMSM Ay + [7 T, yyu(y) Ay

+ [0 T ) S fi0)gi()b(s) Ay As

=u() + [I 30 gAY + [T Ti(x, y)u(y) Ay
7P MG) S fi9)a (e () As Ay

=u() + [0 gAY + [T (x, y)u(y) Ay

+ 7 2 (J) e ) i) As) @i (md () Ay

= u) + [ S (00 + [} T, 9) 1) 45) 1) () Ay
+ J TG yu(y) Ay
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or
00 = [ X0 (/i) + [J TG 9) /i) As) @1(m@ () Ay

> (5.32)
=u(x) + [, T(x, y)u(y)Ay.

From this follows the fact that to solve the Eq. (5.23) is equivalent to finding a solution
¢ (x) of the Eq. (5.32) with the kernel given by

m

b
K'(x,y)=>_ (fz(x) - / Ii(x, s)fz(s)As) 2(y)

=1

and the right side the given function

b
u(x) +/ Ii(x, y)u(y)Ay.

Theorem S The functions

b
fl(x)—i—/ N, y) oAy, 1=1,2,...,m, (5.33)

are linearly independent on [a, b].

Proof Assume that (5.33) are linearly dependent on [a, b]. Then there exist constants
C1,C2, ..., Cy Such that

(c1,¢2,...,¢cn) #(0,0,...,0)

and
m

b
o (ﬁ(x) + / n(x,ym(ymy) —o. (5.34)

=1
Let .,
$1(x) =D e fix), x €la,bl.

=1

Hence, using (5.34), we obtain

m m

b
Safito+Xa [ Iiwsimay =0
=1 =1

a

or
m

b
Safito+ [ Nien Y asi;ay =o.
=1

=1 a

m
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or

b
61(x) + / (e, )1 (n) Ay = 0,

or

b
1) = — / [1(x, V)1 () Ay.

From here, using (5.30), we obtain

b
¢1(x) =0 —/ I'(x,y).04y =0,

ie.,

chﬁ(x)=0 on |a,b],
=1

which is a contradiction because { f;(x)};_, are linearly independent.

Let ,
Otz=/ gye(»Ay, 1=1,2,...,m. (5.35)

Then the Eq. (5.32) takes the form

m b b
$0) = a (ﬁ(x>+/ mx,s)ﬁ(s)As) +u<x>+/ Iy, yu(y) Ay.
=1 a a

(5.36)
We substitute (5.36) in (5.35) and we get
b m b
w= [ a(Xa(ro+ [ nossea)
a =1 a

b
)+ [ Lo as)ay
m b ’ b
=>u [ am(fo+ [ o neas)ay
= b b
+ [ am(um+ [ nosueas)ay

or



270 5 Generalized Fredholm Integral Equations

(1= L7 a0 () + [} 0.9 fit)As) Ay)

=S e [L a0 (FO)+ [ TG fis)45) Ay (5.37)

=72 (u(y) + [V Iy, s)u(s)As) Ay, 1=1,2,....m.
Substituting the solutions (¢, o, . .., &) of (5.37) in (5.36) we obtain the solutions
of (5.23).

Similarly, we see that to solve the Eq. (5.24) is equivalent to solving the following
linear equations in the unknowns (&}, 3, ..., o.,),

(1= L & Ay = [} [ T )@ fit) Avas) o
—Scvia e ([l e i0ay + [0 [ Do, 980 fit)avas)  (5:38)
= [} WAy + [] [T T i) Avas, 1=1,2,.m,

and the solution ¥ (y) of the system (5.24) is given by
V)=o) + J} TG ) Ax + 37 e (100 + [} T a0 Ax)

where (&}, &, ..., a,,) are the solutions of (5.38).
Let A be the matrix of the equations (5.37), in the unknowns «, and A" be the
matrix of the equations (5.38), in the unknowns o’. Then

A’ is the transposed matrix of A.

Hence,
detA" #0 if and only if detA #0.

We first consider the case when detA # 0, and hence, detA’ # 0. In this case the

system (5.37) (5.38) admits a unique solution ¢ (x)(y(y)). In particular, if u(x) = 0
(v(y) =0), then

hence ¢ (x) = 0(y(y) = 0).
We next consider the case when detA = 0, and hence detA’ = 0. For the sake of
simplicity, we write (5.37) and (5.38) as follows

al—ch,-aizu/, [=1,2,...,m, (5.39)
i=1

a,’—Zcila;:vl, I=1,2,...,m, (5.40)
i=1
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respectively. Here

cp=1- fab 8i(y) (fl(y) + fab Iy, S)fl(s)As) A,

ai = [ @0 (O + [I 09 fi9)As) Ay, i=1,.m,i £,
0= Lb 2 (u(y) + L}’ Ii(y, S)M(S)As) Ay,

v =[] SO+ [ [ TG e Ayas, T=1,.m.

The matrices A and A’ are written as
A= —ci), A= (u—ci)
where 8§;; = Ofori Alandd; =1,i,[=1,2,...,m.

For the case when detA = detA’ = 0, the associated systems of linear homoge-
neous equations

a,—zcl,-a,:o, i=1,2,....m, (5.41)
i=1

o = > e} =0, I=12,....m, (5.42)
i=1

admit a number r, r > 1, of linearly independent solutions

a(l) = (o1, 12, -+ -5 Apm),s

(1) = (01, 02y v vy Op),s
and

o/ (1) = (afy, g, - -+, ),

o' (r)= (o, 0, ..., 00,),

respectively. The inhomogeneous system (5.39) admits a solution for given u;, us,
..., Uy if and only if

Due) =0, 1=12,....m (5.43)
i=1

In other words, for the general solution of (5.42),

r r r r

Iy 7 ! )
E cja'(j) = E cjoy, E Cjtlin, e, E cio, |
Jj=1 Jj=1 Jj=1 Jj=1
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which contains a number r of arbitrary constants c;, ¢, ..., ¢, there hold the
following relation

Zul cha}l = ch (Z ula}l) =0. (5.44)
1=1 j=1 j=1 =1

If the condition (5.44) is satisfied, then the general solution of the Eq. (5.39) is given
by the sum of a particular solution

az(ahaZ""?am)

of (5.39) and the general solution ZC ja(j) of (5.41), that is by the following

j=1
expression containing » arbitrary constants ¢y, ¢3, ..., Cr,

a=a+2"_ cja())

_ - _ ’ _ ’ 5.45
:(oq+ijlcjaj1,a2+Zj:10jaj2,...,am—}—zj:lcjajm). (5.45)
Similarly, the equations (5.40) admit a solution for given vy, vy, ..., v, if and only
if the following relation

r

Zv“ chaj/l =0 (546)
n=1

j=1

holds, and, under the condition (5.46), the general solution of (5.40) is given by the
sum of a particular solution

@ =@, T, ..., @,

of the Eq. (5.40) and the general solution Z c;ja'(j) of the equations (5.42), that is
j=1
by the following expression containing r arbitrary constants cy, ¢z, ..., Cr,

o =a + 30 e ()) (5.4
= (@ + Xy s T+ Xy e T+ D ct))
Accordingly, substituting the solution « given by (5.46) in the equations (5.36) we
obtain the general solution ¢ (x) of (5.23). The solution ¢ (x) contains r arbitrary

constants. In fact, if
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m b r

0=Z(ﬁ<x>+/ Fl(x,ym(yMy) > e
a j=1

=1

then, by Theorem 5,

0=> cjaj, 1=12,....m,
j=1

whichis a contradiction since @ (1), @ (2), . .., a(r) are linearly independent solutions
of (5.41). We can also substitute (5.47) in (5.38), to obtain the general solution v/ (y)
of (5.24) which contains a number r of arbitrary constants.

Finally, we shall reduce the solvability condition (5.43) to a more readable and
useful form as follows. Using the definition of the functions u;, we can rewrite (5.43)
in the following form

0= Za,/iu,-
i=1
m b b
= Zal’i/ (gi(y)—i-/ Fn(s,y)gi(s)As) u(y)Ay
i=1 4

a

b m b
=/ |:Zoz,’,- (gi(y)-l-/ F](s,y)gi(s)As)} u(y)Ay.
a Li=1 “

We observe that
m b
> a (g,-(y) + / NG5, y)gi (s)As) (5.48)
i=1 a

is a solution to the equation

b
() —/ Kx, ¥ (x)Ax = 0. (5.49)

On the other hand the general solution of (5.49) is given by a linear combinations
of the functions (5.48). Therefore the condition (5.43) is equivalent to the following.
For every solution ¥ (y) of (5.49),

b
/ U)W () Ay = 0.
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Similarly, we see that the condition (5.46) is equivalent to the following. For every
solution ¢ (x) of the equation

o) — [P K(x, () Ay =0,
[P o)Ay =0.

5.3.3 Fredholm’s Alternative Theorem

The results obtained in the previous two sections are known as Fredholm’s alternative
theorem concerning a continuous kernel K (x, y). The theorem reads as follows.

Theorem 6 (Fredholm’s Alternative Theorem) Either the generalized integral
equation of the second kind

b
u(x) = p(x) — A / K(x. )¢ () Ay (5.50)

with fixed A, admits a unique continuous solution ¢ (x) for any continuous function
u(x), in particular ¢ (x) = 0 for u(x) = 0, or the associative homogeneous equation

b
e =A/ K (x, )p () Ay (5.51)
admits anumberr, r > 1, of linearly independent continuous solutions ¢;(x),l = 1,
2, ..., r. In the first case the conjugate equation
b
V() =¥ () — / K (x, ) (x) Ax (5.52)

also admits a unique continuous solution \ (y) for any continuous function v(y). In
the second case, the associated homogeneous equation

b
v(y) = ?»/ K(x, y)yr(x)Ax (5.53)

admits a number r of linearly independent continuous solutions 1 (y), ¥2(y), ...,
Y, (y). In the second case, Eq.(5.50) admits solution if and only if

b
/ uX)Yy(x)Ax =0, I =1,2,...,r (5.54)

Ifthe condition (5.54) is satisfied, the general solution ¢ (x) of the Eq. (5.50) is written
as
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$(x) =)+ D ¢ (x)

j=1

by means of a particular solution ¢V (x) of (5.50) and r arbitrary constants ¢y, c2,
..., ¢y. Similarly, the conjugate equation (5.52) admits a solution if and only if

>

b
/ vV (MAYy =0, i=12,..., (5.55)

If the condition (5.55) is satisfied, the general solution of the Eq. (5.52) is written as

v =vV0) + D i)

Jj=1

by means of a particular solution 'V (y) of (5.51) and r arbitrary constants ¢, ¢,
ey Cr

Definition 4 Every A € € for which the Eq.(5.51) or (5.53) has a nontrivial solu-
tion ¢ (x) or ¥ (x), respectively, will be called eigenvalue corresponding to the kernel
K (x, y). The solution ¢ (x) is called eigenfunction belonging to the eigenvalue A. If
the maximal number of linearly independent eigenfunctions belonging to the eigen-
value A is k, we will say that the multiplicity of A is k.

Remark 2 Fredholm’s alternative theorem shows that the unique solution of (5.50)
exists for any continuous function u(x) if and only if A is not an eigenvalue.

5.4 The Schmidth Expansion Theorem and the Mercer
Expansion Theorem

5.4.1 Operator-Theoretical Notations

Assume that K(x,y) is a complex-valued continuous function on the region
a <x <b,a <y <b.By K we denote the operator

b
Kfx)= / K(x,y)f(y)Ay
which transforms every continuous function f(x) on the interval [a, b] into a con-
tinuous function (K f)(x).

Definition 5 Let L(x, y) be a complex-valued continuous function. Then the kernel
M (x, y) defined by



276 5 Generalized Fredholm Integral Equations

b
M(x,y) =/ K(x,r)L(r, y)Ar

is said to be the composition of the kernels K (x, y) and L(x, y).
If the operator M is defined by M (x, y), then

b b
Mf(X)=/ (/ K(x,V)L(V,y)Ar) F(nAy

b b
:/ K(x,r)(/ L(ny)f(y)Ay)Ar

b
=/ K(x,r)L(f)(r)Ar
= K(Lf)(x)

for any continuous function f(x) on [a, b]. Consequently
M=KL.

Definition 6 For a pair of continuous functions f(x) and g(x) on [a, b] we define
inner product by

b
(f.g) = / f(x)g(x)Ax. (5.56)

Exercise 7 Prove that (5.56) satisfies all axioms for inner product.

Definition 7 For a continuous function f(x) on [a, b] we define norm by

FIl = (f, £)2. (5.57)

Exercise 8 Prove that (5.57) satisfies the axioms for norm.
Definition 8 The number

IIK[l = sup [[Kf]|
/=1

will be called the norm of the operator K.

Exercise 9 Prove

KL < KA

for every f € €(la, b]).

Remark 3 1In fact we have

1Kl = sup [(Kf, f)I.
lLflI=1
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Definition 9 We define the transposed conjugate kernel K*(x, y) of the kernel

K(x,y) by
K*(x,y) = K(y, x).

Theorem 7 For every continuous functions f, g on [a, b] we have

(Kf.g)=(f.K"g).

Proof We have

b
(Kf.g) = / Kf(x)g(x)Ax

b b
=/ (/ K(m)f(ymy)mm
ab ’ b _
=/ fo) (/ K(x,y)gmAx)A
/ o ( / K* (y,x)g(xMx)
b
= / f(y)( / K*(y,x)g(xm)c)Ay

b
= / FO(K*g)(y)Ay

= (f. K"g).

Theorem 8 We have the following relation
(KL)* = L*K*. (5.58)
Proof Forevery f, g € € ([a, b]) we have
(KLf, g) = (f. (KL)"g). (5.59)
Also,

(KLf,g) = (Lf, K"g)
= (f,L*K"g).
Hence and (5.59) we obtain (5.58).

Theorem 9 We have
(K*)* =K.



278 5 Generalized Fredholm Integral Equations
Proof Forevery f, g € € ([a, b]) we have

(K" f.8) = (f. K"g)
= (Kf’ g>7
which completes the proof.

Definition 10 The complex-valued function K (x, y), definedona < x, y < b, will
be called Hermitian symmetric if

K(x,y)=K(y,x)

for all x,y e [a,b]. In other words, K(x,y) is Hermitian symmetric if
K(x,y) = K"(x,y).

Exercise 10 Let K(x,y) be Hermitian symmetric, defined and symmetric on
a <x,y < b. Prove that

(Kf,8)=(f.Kg)
forall f, g € €(la, b]).

Lemma 2 Ler K (x, y) be continuous and Hermitian symmetric on a < x,y < b.
Then
(Kf. f)eZ#

for every f € €(la, b)).

Proof Since K (x, y) is continuous and Hermitian symmetric ona < x,y < b, we
have that K = K*. Hence, for f € € ([a, b]), we obtain

(Kf. f)=(/.K"f)
= (. Kf)
= (K[, 1),

which completes the proof.

Theorem 10 Let K (x, y) be continuous and Hermitian symmetric on [a, b] X [a, b].

1 1
Let also, ||K|| # 0. Then either —— or —
K] K|

is an eigenvalue of the operator K .
Proof By Lemma 2 we have that (K f, f) € Z for every f € ¥ ([a, b]). Since

IIK[l = sup [(Kf, f)I,
I1£11=1

there exists a sequence { f;,},,_, of elements of € ([a, b]) such that
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I[fmll =1 and
(Kfms fn) —>m—oe 1K 0 (Kfn, fn) —>m—oo —IIK]l.

Suppose that

By Ascoli-Arzela theorem it follows that the sequence {K f,(x)}o-_, contains a
subsequence which converges to a continuous function ¢ (x) uniformly on the interval
[a, b]. We may assume without loss of generality that {(K f,,) (x)} o, itself converges
uniformly to the function ¢ (x). Then

K for = UK finl > = (K o = K| fons K fon = || finll)
= (K fo, Kf = K| fr) = UK frs K fon = IK1] fin)
= (K fo, Kfn) = (K s WK fin) — WK fins K for) + UK fons K] fon)
= IK ful > = WK IKK fs ) = WK fons K fin) + UK Fns fin)
= [|Kfull> = 20K (K frns fr) + UK foul 1P
(5.60)
Hence, using that K f,, (x) —> 100 ¢ (x), We get
0 < lI¢lI> = 21IKII* + [IKII* = lI$lI* — [IK|I,

whereupon
lloll = [IK]l > 0.

Now, from (5.60), using that
K full < KA Sl
we get

K for = KW ful P < UKIPH Sl P = 20K (K fins fi) + KNI
= 2K 1> = 21IKI(K fns fn) —>m—oo 2IKI* = 2/IK|]* = 0.

Thus
Kfn — K| fn —>m—c0 0.

Hence, using that
K (K fi) = IKIIK fil| < WK K fir = 1K finl] —>m—00 0,

we obtain
NK(Kfm) — IKIIKfnll —>m—s00 0

or
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l1K¢ —[IK]|¢]| =0,
ie.,

b
/ |Kp(x) — 11Kl (x)]*Ax =0,

whereupon
K¢ (x) =[IK||p(x).

If (Kfn, fn) —m—o00 —||K]||, applying the same arguments to the operator —K,

we see that

of K

is an eigenvalue of — K. Hence, in this case, —

K]l ’ T OIK]|

is an eigenvalue

Definition 11 The method of the proof of Theorem 10 is called maximal method.

Definition 12 Let f, g € € ([a, b]). When

(f.8)=0

f(x) is said to be orthogonal to g(x), and this fact is indicated by writing f L g.
Clearly, the orthogonality relation is reflexive, that is, if f 1 g, then g L f.

Definition 13 We say that the system

fl(-x)v fz(x)1 AR ] fm(x)s LRC N

of continuous functions on [a, b], satisfy the orthonormality relations if

(f/v fm) =4

|1 for I=m
"0 for I #m.

Definition 14 We say that a continuous function f(x) on [a, b] is normalized if

I =1.

Theorem 11 (Bessel Inequality) Let f € € ([a, b]) and {¢n }o_, be an orthonormal
system. Then

ILfI1P = Z (f b . (5.61)

Proof Letl € ./ be arbitrarily chosen. Set

1
fi=f =D f bu)bm.
m=1
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Then, from the orthonormality of the system {¢,,}°"_,, we have

m=1>

0 <Al = (fi. f)

= (f = bm)bm. | — Sk b))

= (. f) = (. ke (Fr )bk — (b (s bm) b £) + Xy o (s ) (f 1) (P 1)
=112 = ey WL 0102 = ey 1 01+ iy 1S 0012

=112 = Zhey U 00012

i.e.,

1
AP = D1 el
k=1

Because [ € ./ was arbitrarily chosen, we get (5.61).

Definition 15 The numbers

(f7¢k)a k:1,2,...7

in (5.61) are called the Fourier coefficients of f(x) with respect to the orthonormal
system {¢, }or_ ;.
Theorem 12 Let K (x, y) be continuous and Hermitian symmetricona < x,y < b.

1. All eigenvalues of the operator K are real.
2. Two eigenfunctions, corresponding to different eigenvalues, are orthogonal.

Proof 1. Let A be an eigenvalue of the operator K and ¢ be the corresponding
1
eigenfunction, that is, K¢ = X(}ﬁ. Then
1 1
(K¢.9) =(50.0) = —(¢. ). (5.62)
By Lemma 2 we have that (K¢, ¢) € #Z. Hence, using that (¢, ¢) € # and

(5.62), we conclude that A € Z.

2. Let A and p are two eigenvalues of the operator K and ¢ and i are the corre-
sponding eigenfunctions, respectively. Then

K¢ = %¢ and K = iw.

A
Assume that A # p. Then — # 1 and
"
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(9. V) = (AK@, V)
MK, ¥)
Mo, Ky)

1
Mo, =)
n

A
m

From here we obtain that

(9. ¥) =0,
which completes the proof.

Definition 16 An orthonormal system {¢,,(x)}o-_, of elements of € ([a, b]) will
be called complete orthonormal system in €' ([«, b]) if for every f € € ([a, b]) the
following representation

f) =D catbu(x), co = const,

holds.

Definition 17 Let f (x) be continuous function on [a, ] and K (x, y) be continuous
on the rectangle a < x, y < b. Let also, {¢;} be complete orthonormal system of

eigenfunctions of K. Then
oo

Z (Kf.$,)¢;(x)

will be called the Fourier expansion of (K f)(x) with respect to the system {¢;}.

5.4.2 The Schmidt Expansion Theorem

We start with the following theorem.

Theorem 13 Let K (x, y) # 0 be continuous on a < x,y < b. Then the operators
A=KK"* and B =K*K

are Hermitian symmetric and have the same eigenvalues with the same multiplicity.
Further, their eigenvalues are all positive.



5.4 The Schmidth Expansion Theorem and the Mercer Expansion Theorem 283

Proof Note that
A* = (KK*)* = (K*)*K* = KK* = A,
B* = (K*K)* = K*(K*)* = K*K = B,

i.e., the operators A and B are Hermitian symmetric.
For x € [a, b] we have

b
KK*(x,x) =/ K(x, y)K*(y, x)Ay
ab -
=/ K(x,y)K(x,y)Ay
ab
— [ IKGppay
# 0.
Therefore (K K*)(x, y) = A(x, y) # 0, and similarly B(x, y) # 0. By Theorem 10

the operators A and B have eigenvalues.
Let A be an eigenvalue of A, that is,

Ao =¢, ¢(x) #0.
Then

0

A

(9. 9)

= (AKK"¢, ¢)
(KK*¢, $)
(K*¢, K*¢).

A
=A
Since (K*¢, K*¢) > 0, we conclude that A > 0, i.e., all the eigenvalues of A are
positive. The proof for the operator B is carried out in the same way.

We write the eigenvalues of A and the corresponding orthonormal system of eigen-

functions as follows.
M<M<... <A<

¢17 ¢27 st ¢I’La

Let us set
LK ;=

Then
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MBY; = VKK,
= M K*K (L K*¢;))
= 1, K* (W KK*¢;))
= 1, K*(\;Ad))
=1 K*¢;
=Vj

i.e.,
2
AiBY =Y.

Thus k? is also an eigenvalue of B, and v/; the corresponding eigenfunction.
Note that (¢, ¢;) = §;; and

Wi, ¥j) = (MK, AjK* ;)
(M jK i, K ;)
(

rikiKK* i, ;)

>

= LOIKK* ¢, b))

(A A¢i, ¢;)

R

|2

(@i, Pj)

Xl

Il
(=]

ij-

Hence, we see that the eigenfunctions {1/} of the operator B satisfy the orthonor-
mality relations.

Now we will prove that the system {v;} exhaust all eigenfunctions of the operator
B. To see this we will show that

if MBYy =1, ¥(x)#0, then
©KY = ¢ satisfies M Ad = ¢.

Let the eigenvalues of B and the corresponding orthonormal system of eigenfunctions
are given by
M<M<... <A<

1//1’ 1/’2, RN lﬂn,

Then we have

2
AiBY; =1
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or

2

AjK*ij =,
or

AiK*(AjK) =,

or

LK ;= ;.
Hence,

MAg; = AKK*¢;
=1 KK 9;)
=1 Ky,
= ¢j-
Thus the proof is completed.

The Schmidt expansion theorem reads as follows.

285

Theorem 14 Let f(x) be continuous function on [a, b] and K (x, y) be continuous
function on [a, b] x [a, b]. Then (K f)(x) and (K* f)(x) can be expanded in Fourier
series with respect to {¢;} and {;}, respectively, that converge absolutely and

uniformly on the intervala < x < b.

Proof We have

(Kf.¢j) = (Kf. 1;A¢;)
= (Kf. M KK*¢;)
= (K*Kf, M K*¢))
= (Bf. };K*¢;)

= (A;Bf, };K*$;)

= A(Bf, ¥j)
= Ai(f, BYj)

1
:)\J‘(f’pwj)
J

1
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By the Cauchy-Schwartz inequality we obtain

2
m

>

Jj=n

2

@;(x)
Aj

(f, ¥))

<D HAEYHED,
j=n j=n

@;(x)
Aj

forn < m.
By the Bessel inequality we have

AJ

b 0 ) 2 00
/ K (e, »IPAy = > '¢’(f)' AP = DA
a j=1 j j=1

Hence, the series
o0

D AN
j=1
converges absolutely and uniformly on the interval a < x < b. In other words, the

Fourier expansion of (K f)(x) is absolutely and uniformly convergent on [a, b].

Let now
n

(Kn f)(x) = (Kf)(x) = D (. w,»>%.
J

j=1
We have
(Ku )(0) = (K@) = X5 (o 5-97)9;
= (K@) = X5 ((f. K p))0; (5.63)
= (Kf)x) = 25 (Kf. 6))0;-

Since the system {¢, } is an orthonormal system, we have

(Knfs ¢m) = (Kf = D (Kf, $;)0;, bm)

j=1

- <Kfa ¢m> - (Kf’ ¢m)
=0

forn < m.

Therefore, if f is an eigenfunction of the operator K, corresponding to an eigenvalue
i, then for m < n we have

1
(ana ¢m> = _<f7 ¢m> =0,
"
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and hence, using (5.63), we obtain

1
K.f =Kf = ;f

This means that p is also an eigenvalue of the operator K and the corresponding
eigenfunction is f.

Accordingly, f must be written as a linear combination of eigenfunctions ¢;
corresponding to the eigenvalue A; = w, namely

f=> Bio;.

Aj=p

where B; = (f, ¢;), from which we derive that 8; = 0 for j < n. Hence we see that
every eigenvalue p of the operator K, satisfies

Il = |Anl.

Therefore
K|l <

An]

and then || K, || = 0asn — oo because |A,,| — oo asn — 00. Thus we obtain that
the uniform limit

lim (K, f)(x),
n— o0
which as was shown does exist, satisfies
|| im K, f|| =0. (5.64)
n—oQ

On the other hand, (K f)(x) is, together with f(x), continuous, and

b
62 (0) = n / K (x. £)n (§) AE

is, together with K (x, &), continuous. Hence, (K, f)(x) is continuous, so that its
uniform limit lim (K, f)(x) is also continuous. From here and (5.64), we obtain
n—0o0

that
lim (an)(x) =0.

The proof for (K* f)(x) is carried out in analogous manner.
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5.4.3 Application to Generalized Fredholm Integral Equation
of the First Kind

Here we consider the equation

b
u(x) = / K(x. y)p(») Ay (5.65)

with a continuous kernel K (x, y) on the rectangle [a, b] X [a, b], u(x) being given
continuous function on [a, b].

Theorem 15 If the Eq.(5.65) admits a continuous solution ¢ (x) for given u(x),
then u(x) can be expanded in a Fourier series

u(x) =D Big;(x) (5.66)
j=1

with respect to the orthonormal system of the eigenfunctions {¢;} of A = KK*,
which converges uniformly and absolutely on the interval [a, b].
Conversely, if u(x) is of the form of (5.66), and if the series

> Bk ). (5.67)
j=1

where y;(x) are the eigenfunctions of B = K*K so that B>y = k;zw j, converges
uniformly and absolutely on the interval a < x < b, then Eq. (5.65) admits a solution
¢ (x) which is given by (5.67).

Proof The proof follows immediately from Theorem 14 for u(x) = (K¢)(x).

Remark 4 In general, Eq. (5.65) can not be solved. Furthermore, the uniqueness of
the solution ¢ (x) of the Eq. (5.65), if any, is equivalent to the following property of
the kernel: if a continuous function v(x) satisfies

b
/ K (x. y)u(y) Ay = 0,

then v(y) = 0. A kernel K (x, y) which possesses such a property is called a closed
kernel.
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5.4.4 Positive Definite Kernels. Mercer’s Expansion Theorem

Definition 18 A complex-valued continuous kernel K (x, y) defined on [a, b] X
[a, b] is called a positive definite kernel, when K (x, y) satisfies

b b
/ / K(x.9) f ) ) AxAy = (Kf. f) = 0 (5.68)

for any continuous function f(x) on [a, b].
Example 18 Consider A = KK*. Then

b b
Ax,y) = / K, )K*(t, y)At = / K(x, y)K(y,t)At.
Hence,

P A FEFO)AyAx = [7f7 (fab K(x, t)mAt) FO)FO) Ay Ax
=, (ff K(x, t)f(X)Ax) ( [P RE DT Ax) Al

= (f“b K, t)f(x)Ax) (fab K(x, l)f(X)Ax) At

= I K. y)f()C)Ax‘2 Ay >0

for any continuous function f(x) on [a, b]. Therefore A(x, y) is a positive definite
kernel.

Exercise 11 Prove that B = K*K is a positive definite kernel.

Theorem 16 [n order that K (x, y) is positive definite, it is necessary and sufficient
that, for any finite number of arbitrary points {x;}, a < x; < x2 < ... <X, <b,
and arbitrary complex numbers &1, &, ..., &,, the following relation

Z K(xi,x))EE; >0
ij=1
holds.

Proof The sufficiency follows from the definition of the integral (5.68).
Now we will prove the necessity. Suppose that there exist {x;} and {£;} so that

> K(xix)EE < —a <0
ij=1

for some positive «. If (a, b) contains only right-scattered points, the assertion is
trivial. Otherwise, we divide the interval [a, b] of subintervals every one of which
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contains only right-dense points. Without loss of generality we assume that (a, b)
contains only right-dense points of %. Leta < ¢ < b, ¢ € %. We choose suffi-
ciently small numbers ¢ and 7 such that

a<c—e—n<cH+e+n<b.

For such ¢, € and n, we define 6, ,(x, c) as follows.

0 for a<x<c—e—n, c+e+n=<x<b>b

Ocn = 1 for c—n<x<c+n

and in the rest of the interval [a, b], the function 6, ,(x, c¢) is linear of x. Clearly,
0c.,(x, ¢) is a continuous function of x on the interval [a, b].
Now we choose ¢ > 0 and n > 0 so small that no pair of the intervals
(e —n+xi,xi+¢e+n)
have a common point and

a<—¢e¢—n+x<xi+e+n<b>b.

For such ¢ and n, we define 0 , (x, x;) as in above and we set

O0(x) = D Ei6e(x, X))
i=1

Set further .
Lo(x,y) = D K(xi +x, 3 + 0&E;.

i,j=1

Then, using the definition of the integral, we have

noorn n
(K8, 0) :/ / L,(x,y)AxAy + Z // K(x, y)0(x)0(y)AxAy,
—nJ—n

ij=1 4ij
where ¢;; is the region between the square
Xi—e—n=<x=xi+e+n xj—e—n=y=xjte+tn

and the square
Xi—=n=x=xi+n XxX;—n=y=x;+1.

Furthermore, for any point (x, y) in the region ¢g;;, we have
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00| < |&E.

Hence,

n n 2
> / / K (x, y)8(x)8(y) Ax Ay 54Ms<2n+e)(2|si|) ,
qij

ij=1 i=1
where
M= sup [K(x,y)|.

a<x,y<b

Using our assumption, we have L, (0, 0) = —a < 0, hence we can choose n > 0 so
small that

1
Ln ) - A
(x,y) < 7Y

whenever |x| < n and |y| < 7.
Then for such an n, we have

nopn
/ / L,(x, y)Ax Ay < —2an>.
=nJ—n

Hence, we get that

n 2
(K6,0) < —2an® +4Me(2n + &) (Z |§i|) .

i=I
Since

2
n
—2an® +4Me2n + ¢) (Z |g,»|) 0 =200,

i=1
we can choose 7 and & small so that
(K6,60) <0

holds. This is a contradiction.

Theorem 17 If a kernel K (x,y) is positive definite, then K (x,x) > 0 for any
x € [a, b].

Proof By Theorem 16 for any point x € (a, b) and any complex number & we have
K (x, 0)|E* 2 0,

whereupon K (x, x) > 0.
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If a isright-dense and b is left-dense, using the continuity of K (x, y), we conclude
that
K(x,x)>0

for any x € [a, b].

Let a be right-scattered. Then we take a continuous function f(x), defined
on [a, b] such that 0 < f(x) <1 for any x € [a,0(a)] and f(x) =0 for any
x € [o(a), b]. Hence,

b b . o(a) ro(a) .
//K(x,y>f<x)f<y)AyAx=/ / K, ) f () FO) Ax Ay

= K(a,a)f(a)f(a)(n(a))?
= K(a,a)|f(@*(n@]* >0,

from where K (a, a) > 0.
Similarly, K (b, b) > 0 when b is left-scattered.

Theorem 18 If a kernel K (x, y) is positive definite, then

1. itis Hermitian symmetric on [a, b] whenever a is right-dense and b is left-dense,

2. it is Hermitian symmetric on (a, b) whenever a is right-scattered and b is left-
scattered,

3. it is Hermitian symmetric on [a,b) whenever a is right-dense and b is left-
scattered,

4. it is Hermitian symmetric on (a, b] whenever a is right-scattered and b is left-
dense.

Proof By Theorem 16, for any points xg, x; € (a, b) and two complex numbers &,
and &, we have

K (x0, x0)6080 + K (x1, X0)8081 + K (xo, x1)50E1 + K (x1, x1)E181 = 0.
Because K (xg, x0)|$0|2 + K (x1, x1)|& |2 > 0, we conclude that
K (x0, x1)€081 + K (x1, x0)é081 € Z.
Then, setting &, = &, = 1, we obtain
K (x0, x1) + K(x1,x0) € Z.
By setting & = 1 and &, = i, we get

—K (xg, x1)i + K (x1, x0)i € Z.
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In this way we get the system

K(x0, x1) + K(x1,x0) € Z
—K()C(),xl)i + K(X],X())i €.

Therefore
K (x0, x1) = K(x1, x0).

Therefore K (x, y) is Hermitian symmetric on (a, b). Also,

1. if a isright-dense and b is left-dense, using the continuity of K (x, y), we conclude
that K (x, y) is Hermitian symmetric on [a, b].

2. if a is right-dense and b is left-scattered, using the continuity of K (x, y), we
conclude that K (x, y) is Hermitian symmetric on [a, b).

3. if a is right-scattered and b is left-dense, using the continuity of K (x, y), we
conclude that K (x, y) is Hermitian symmetric on (a, b].

Theorem 19 (Mercer Expansion Theorem) A positive definite and Hermitian sym-
metric kernel K (x, y) on [a, b] X [a, b] can be expanded in a series

K(x.y)= > 27'0;(0)$;(y)

j=1
which converges absolutely and uniformly on the domaina < x,y < b.

Proof Let f € € ([a, b]). The Fourier expansion of (K f)(x) is given by

D AKF b))h;(x) = D (f. K)o (x)

j=1 j=1

Z 0, (x).

Let .
Ko(x,y) = K(x,y) = D 276,06,

j=1

Then for each n € .4 we have
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b
(Knf)(x) = / K, (x, y) f(y) Ay

b n -

= [ (kwn = 34100800 | r0ray
“ j=1
b n b

= / Ko, ) f() Ay = D27 i (x) / F0$; Ay
a j=1 a

= (Kf)(x) = D 25", (f, ;)

j=1

= > 371, (0(f. ¢)) ZA ¢, ) {f. b))

j=1 j=I1
= D> 290 (x).
j=n+1
Hence,
(Knfo £) =D 27 0)05. f)
j=n+1
= > ANUfeNe f)
j=n+1
= > NUf e e
j=n+1
= Z W e =0
j=n+1

Because f was arbitrarily chosen continuous function on [a, b], we conclude that
K, (x, y) is positive definite on [a, b].
By Theorem 17 we have that

K, (x,x) = K(x,x) = D 37'9;(x);(x) = 0.
j=1

Hence, the series

> 0P
j=1
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converges and
D518 = K(x, x), (5.69)
j=1
Let o
S, y) =D 476,08, ().

j=1
Then, using the Cauchy-Schwartz and Bessel inequalities, we obtain

2
m

D e e | = D a5 e DA g 00
j=n Jj=n j=n

<> 36, WPK (L ). n<m.

j=n

From here, the series S(x, y) converges absolutely and uniformly with respect to y
for x fixed and also with respect to x for y fixed.
Now we set

R(x’ }’) = K(X, )’) - S(x’ y)

Then for any continuous function f(x) on [a, b], we have

b b b
/ K(x,y)f(y)Ay=/ S(x,y)f(y)Ay+/ R(x,y) f(y)Ay (5.70)

or

Kf(x) =Sf(x)+ Rf(x).

Accordingly to the Schmidt expansion theorem, we have that (K f)(x) can be
expanded in a series

2L (K, ¢j)¢j(X) =22 f. K¢j)¢;(x)

(5.71)
= 3% AT )¢ ().

On the other hand, since the series S(x, y) converges uniformly with respect to y,
we have

(SHx) = Z)» (f,9j)j(x). (5.72)
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Hence, using (5.70), (5.71) and (5.72), we get

Zx (f. ¢))0j(x) = Zx (f. $)0;(x) + (Rf)(x),

j=1

whereupon (Rf)(x) = 0.

Since the series S(x, y) converges uniformly with respect to y for x fixed, then
R(x, y) is a continuous function of y for any fixed x. Hence, using that (Rf)(x) =0
and by setting f(y) = R(x, y), we obtain that R (x, y) isidentically zero as a function
of y for any fixed x. Therefore R(x, y) = 0. Thus we obtain that

K(x,y) =D 276,006,

j=1

We will prove that this series converges uniformly. We note that K (x, x) = Zjozl A;l

| (017

Note that for any ¢ > 0 and any given x, there is a n = n(x() such that

&> K(xo,%0) — >_ 17" |¢p(x0)* = 0.

j=1

n
Furthermore, since K (x, x) and Z )\]Tl [ (x) |? are both continuous, we can find an
j=1
open set U (xg) containing the point xg such that

n(xo)
26 = K(x,x) = > 27 1¢;(0) =0 (5.73)
j=1

whenever x € U (xp).

On the other hand, the interval [a, b] can be covered completely by a finite number
of opensets U (x1), U(x2), ..., U(x). Therefore every point x € [a, b] is contained
in some U (x;). Now we set

ng = 1T?§kn(xj)'

Hence and (5.73), we obtain that for every x € [a, b]

26 > K(x,x) = > 2 1¢;(0) =0

Jj=1

whenever n > ny.
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oo

Therefore the series Z A;l l; (x)|2 converges absolutely to K (x, x) and uniformly
j=1

in x. By making use of the Cauchy-Schwartz inequality, we have

2
D Mo @e | = D801 DA g, n < m.
Jj=n j=n

j=n

[e.¢]
Therefore Z A;l¢ i(x)@;(y) converges absolutely and uniformly for x and y.
j=1

Remark 5 For any continuous kernel K (x, y), the kernels A(x, y) and B(x, y),
A, y) = [P K@, DK*(t,y)At, B(x,y) = [} K*x. DK (1, y) At

are both positive definite and Hermitian symmetric. Hence and Theorem 19, the
kernels A(x, y) and B(x, y) can be expanded in absolutely and uniformly convergent
series

A, y) =252, 2776, (),
B(x,y) =202, A0, () (),

with respect to the eigenfunctions {¢;} and {1/, }.
As a consequence we have the following theorem.

Theorem 20 The necessary and sufficient conditions that A and B have the same
eigenvalues, together with the corresponding eigenfunctions, is that A = B.

Definition 19 A kernel K (x, y) defined on [a, b] x [a.b] will be called a normal
kernel if
KK* = K*K.

Definition 20 A kernel K (x, y) defined on [a, b] X [a, b] will be called Hermitian
skew-symmetric kernel if
K(x,y) =—K(y, x).

Evidently every Hermitian symmetric kernels and Hermitian skew-symmetric
kernels are normal kernels.

Theorem 21 Let K (x, y) is continuous and Hermitian skew-symmetric on [a, b] X
[a, b]. Let also K(x,y) # 0 on [a, b] x [a, b]. Then the eigenvalues of K are all
purely imaginary numbers.
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Proof Let L(x,y) =iK(x,y).
Then

K*(x,y) =iK(y,x)
= _lK(yv x)
=iK(x,y)
= L(x,y).
Therefore L(x, y) is Hermitian symmetric and continuous on [a, b] X [a, b]. Hence

and Theorem 12 we have that all eigenvalues of L are real. Therefore all eigenvalues
of K are purely imaginary numbers.

5.5 Advanced Practical Exercises

Problem 1 Using ADM, find ¢ (x), ¢1(x), p2(x), ¢3(x) and ¢4(x) for the equation

3
() = x — 2/0 yo Ay, T =3% U0},

Answer

po(x) =x, ¢i(x) =—3, . .
pr(x) =18 (3) | pa(x) = (=B (2)7, ¢alx) = (—2)218 (3)".

Problem 2 Let 7 =2% U {0}. Consider the equation
2
P) =1+x° +/ P () Ay.
0

Set u1(x) = x°, us(x) = 1. Using MDM, find ¢ (x), ¢1(x), ¢2(x), ¢3(x), pa(x).

Answer
do(x) =x3, ¢1(x) =31, p(x) =%, ) =12, gx) =22,

Problem 3 Let.7 = 3% U {0}. Using the noise terms phenomenon, find a solution
of the following generalized Fredholm integral equation of the second kind.

79 o
P(x) = —7x+2x | d(y)Ay.

Answer ¢ (x) = x.
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Problem 4 Let .7 =27 U {0}. Using DCM, find a solution to the equation

¢<x>=x2—§x—1—6+/2<x+y>¢(ymy
AT A '

Answer ¢ (x) = x2.

Problem 5 Using SAM, find ¢o(x), ¢1(x), ¢2(x), ¢3(x) and ¢p4(x) for the following
equations.

1. ¢(x)=1+2x +x2+x/02y2¢(y)Ay, T =37,

2. ¢(x)=2x—3+2/04y¢(y)Ay, T =27,

3. ¢(X)=1+/04y¢>(y)Ay, T =47,

4. ¢>(x)=x+x2—x3+/04y2qb(y)Ay, T =27 U0},

5. ¢)(x)=1+2x+3x3+(x—1)/08y¢>(y)Ay, 7 =2 U0},
6. ¢(x) =1 +/016y2¢(ymy, T =M,

7. ¢(x)=1+x+ 1(x+y)¢(y)Ay, T =%,

8 ¢>(x>=—2x+/04y¢<ymy, 7=,

9
9. ¢(x)=—1+2x+x2+/ () Ay, T =3" U0}
0

Problem 6 Find a solution to the following equation

2
() =xx2/ o)Ay, T =2%U(0).
0

7 7 5
Answer A = 3’ d(x) = gax , o0 = const.



Chapter 6
Hilbert-Schmidt Theory of Generalized
Integral Equations with Symmetric Kernels

Assume that K (x, y) is continuous and Hermitian symmetric on [a, b] X [a, b]. By
Theorem 10 in Chap. 5, we have that either K|~ or —||K]||~" is an eigenvalue of
the operator K. By Theorem 12 in Chap. 5, all eigenvalues of the operator K are real
and two eigenfunctions corresponding to different eigenvalues are orthogonal.

6.1 Schmidt’s Orthogonalization Process

Theorem 1 Let ¢y (x), ¢a(x), ..., ¢pu(x), ..., be linearly independent. Let also,

_ i)
Vi) = T

_ ()= (2, Y1) VY1 (x)
Y20 = T g,

b0 ()= 2521 (Y05 ()
NI AR

1//n ()C) =

’

Then ¥ (x), Y2 (x), ..., ¥n(x), ..., satisfy the orthonormality relations.

Proof Assume that

$2(x) = (@2, Y1)Y1(x) =0 on [a,b].
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Then, using the definition of ¥,
$2(x) = (P2, Y1) Y1 (x)

¢1(x)
el

= (¢2, Y1)
i.e., ¢1(x) and ¢, (x) are linearly dependent, which is a contradiction. Therefore

$2(x) — (@2, Y1)Y1(x)#0 on [a, D]

and ¥, (x) is well-defined.
Since v, is a linear combination of ¢, and v/, then ¢s, V|, v, are linearly indepen-
dent. Hence,

$3(x) — (3, Y1)Y1(x) — (@3, Y2)Ya(x) £0 on [a,b],

so we can divide it by its norm and 3 (x) is well-defined.

Suppose that ¥, (x) is well-defined.

Since 1, (x) is a linear combination of ¢, (x), ¥ (x), ¥2(x), ..., ¥,_1(x), then
Ppi1(x), Y1(x), ..., ¥,(x) are linearly independent. From here,

Gni1(¥) = D (Bui1, Y)Y () 0 on [a,b]

j=1

and we can divide it by its norm. Consequently ¥, (x) is well-defined.
In this way we can define

vi(x), Y2(x), ..., Yu(x), ...,

successively. Clearly, ¥, (x) is normalized, i.e., ||, || = 1.
Now we will prove that {,} satisfies the orthonormality relations.
By the definition of ¥, (x) we have

(Y2, Y1) = (@2 — (D2, Y1) V1, Y1)
= (¢2, Y1) — (b2, Y1) {¥1, Y1)

= (¢2, Y1) — (P2, Y1)

=0.
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Thus, by

(Y3, Y1) = (@3 — (@3, Y)Yt — (@3, V2) V2, Y1)
= {¢3, Y1) — (&3, Y1)¥1, Y1) — (B3, ¥2) 2, Yry)
= (¢3, Y1) — (@3, Y1) (U1, Y1) — (@3, V¥2) (Y2, Y1)

= (¢3, Y1) — (¥3, Y1)

=0.
Similarly, we see, starting with (3, ¥») = 0, that

(1”4, 1//2> = O’ <w5’ l/j2> = O» R ((bn: I/fZ) = 07

Repeating this procedure, we finally obtain that {3;} satisfies the orthonormality
relations.

Corollary 1 Let {¢;} and {j} be as in Theorem 1. Then every \r, can be written
as a linear combination of {¢;}, and moreover, every ¢, can be written as a linear
combination of {{;}.

Theorem 2 The operator K has at most denumerable many eigenvalues. The set of
all eigenvalues has no limiting point except 00.

Proof By Theorem 12 in Chap. 5, we have that the eigenfunctions corresponding to
different eigenvalues are orthogonal.

Assume that there exists a finite limiting point of the eigenvalues of the operator K.
Then we have an orthonormal system {¢;} for which

K¢j=27"¢;, j=12.3,...,
k;1—>k_' as j — oo.

Since
K(pj— ) =Ko — Kb =27"'dj — 2 ' bes (), 1) = S

we obtain that, for sufficiently large j and k, j # k,
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1K (¢; — poI> = ||Kp; — Kbl
=(K¢; — K¢r, Ko — Ki)
=0l = AT — )
= (71007 05) — 1By A dk) — O e A1) 4 (e Ay k)
=275, b)) — A5 M By ) — A7 A (e d7) + A (e b

-2 -2
=27+

llp; — dull> = (dj — b, dj — i)
= <¢]’ ¢k> - (¢k’ ¢]> - <¢]7 ¢k) + <¢k’ ¢k>

=2,

which is a contradiction.

Therefore the number of eigenvalues A satisfying n < |A| <n 4 1 is finite, n =
0,1,2,....

Consequently the set of all eigenvalues consists of at most denumerable many points
and has no limiting points except for 00, which completes the proof.

Theorem 3 The multiplicity of every eigenvalue A of the operator K is finite.

Proof We note that if
Kp=2"'¢ and Ky =r"'y,

then
K@+v)=2r""+v).

Therefore any linear combination of eigenfunctions corresponding to the same eigen-
value is either an eigenfunction corresponding to the same eigenvalue or identically
zero. Consequently, for any eigenvalue A, there exists a set of eigenfunctions, cor-
responding to the eigenvalue X, such that they are linearly independent and every
eigenfunction corresponding to this eigenvalue is their linear combination. Sup-
pose a set of eigenfunctions contains denumerably many functions ¢;. By Schmidt’s
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orthogonalization process, there exists an orthonormal system {v}, satisfying the
conclusion of Corollary 1. Since

K = 2"y,

we have

KW=y =Ky — Ky = 27"y — 271y,
(W), i) = 8k
Hence, if j +# k,
1K (Y = yoll> = |IKy; — Kyl
= (K — K. K — K
= A7y = A AT Y = A )
= A7 A ) = M A7) — (s AT ) + O, AT )
=AWy W) — AT, W) — AT ) AT (Y W)
=212
while

W) — Wll> = (¥ — Ve, ¥ — )

= (V. i) — (W i) — (Y, i) + (Vs i)

=2,

which is a contradiction.

Remark 1 By Theorems 2 and 3, if the operator K has infinitely many eigenvalues,
then we can write its eigenvalues and eigenfunctions as

Dl < ol < ooy limye 1] = 00,
Kpj=27"¢;, j=12,.... (6. =6
so that every eigenvalue A of K is equal to some A; and every eigenfunction cor-

responding to the eigenvalue A is written as a linear combination of finitely many
eigenfunction ¢; corresponding to the eigenvalue A; = A.
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Definition 1 A Hermitian symmetric kernel K (x, y) which is of the form
K, y) = fi0)gk)
i=1
is called a degenerated kernel.

Theorem 4 A degenerated kernel has only a finite number of eigenvalues.

Proof Let
b
s =1 [ K@»smay.
Then
b n -
b= [ 3 HwEtI#)Ay
4 =1
n b
=1 filx) / g (NG (y)Ay.
i=l ¢
Let ,
ci :/ g4y, i=1,2,...,n. (6.1)
Then .
¢(x) =2 cifi(x). (6.2)

i=1

We substitute (6.2) in (6.1) and we get

b n
¢ = x/ g D e fimAy, i=12...n,

j=1

or
b L n b
1—A/ fHiMgMAy Jei —x > c,-/ 8 fj(MAy =0, i=12,....n.
¢ j=lj#
The last system has a solution cy, ¢z, ..., ¢, if its determinant is equal to zero.

Therefore A must be a root of an algebraic equation of degree n. Consequently the
number of all eigenvalues in question is at most 7.
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6.2 Approximations of Eigenvalues

Let ¢, be an orthonormal system and let

[e¢]

f) =D (), ) =D duu(x)
n=1

n=I1

be the Fourier expansions which converge absolutely and uniformly on the interval
[a, b]. Then

Z Catns Z )

n=1

= Z Cnns de¢n1)

n=1 m=1

Me b

Cn{Pns Z A Pm)

n=1
00 00

= ch ¢m’ d ¢m
n=1 m=1

Z (b bm)

Cndy.

HM8 ﬁME%

In particular, if f(x) = g(x) on [a, b], then

IfI1P = chcn = Z|cn|2. (6.3)

n=1

Definition 2 The relation (6.3) is called the Parseval completeness relation.
We note that

(D eidi) = (O ey, > cii)

i=1 i=1

n

j=l
z ¢jvzcl¢l
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=D > cjldj. citn)

j=1 i=1

=D > cici(¢j. bi)

j=1i=1
n

2

=> il
i=1

foreveryn € N
Theorem 5 We have

timlr - eso =0
j=1

that is,

hm/ ‘f(x) qub](x)’ Ax = 0.
Proof Using the Parseval completeness relation, we get

[V S| VRS SN S

=(fi f=2ioici9)) = (Xioicidj [ —2o1¢i9))

= — (£ 2 oeity) — i ity 1)+ (2o by, 20 cidi)
= IF1P = 2o leil? = 2oy e P+ 20y e

= AP = Xy 16jP —>mec O,

which completes the proof.

Theorem 6 Suppose that every eigenvalue of the operator K is positive. Let
go(x) #0, g1(x) = (Kgo)(x) #0,

@ =Kg =K%, g =Kg=K4g =Kg, ...,

and
||gn|| _ (gnJrl’gn)

Bn = , Oy =
l1&n-+11l llgn+1ll.

Then
0<a, <,
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and {B, )2, is monotone decreasing. Further, there exists an eigenvalue . of K such
that the sequences {o, oo and {B,}02, tend to . as n — oo and A, > X.

Proof Let K¢p; = A;lqb_,-, j =1,2,....By the expansion theorem, every g, can be
expanded as follows.

g (x) = (K" 'g1)(x)

(K"'g1,0,)¢;(x)

I
M8

~.
Il
—-

(gla K" ¢j>¢j(-x)

Mg T[Mz2

(1.4 V)b (x)

~.
Il
-

(81, )" V(0

I
NE

~.
Il

(1. 902"V (),

Mg

J=Jo

where jj is at least j for which (g, ¢;) # 0. If we suppose that such j, does not
exist, then
(81.¢0;) =0 for all jeN.

Hence and Theorem 14 in Chap. 5, we conclude that

o0

g1(x) =D (g1, 9;);(x) =0,

=1
which is a contradiction with the assumption g; (x) # 0. Consequently jy exists and

o0

gn(x) = D (81,912, (x). (6.4)

J=Jo

As in above,
o0

gui1(X) = D (g1, $)%; " (x).

J=Jo


http://dx.doi.org/10.2991/978-94-6239-228-1_5
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Therefore
o0
(8ni1s 8n) = D (g1, 0;) (g1 602, " a"
J=Jo
o0
= > 27" (g 6P
J=Jo
and

lgnetll> = 2252 (g1, @) (g1, ;)2 "A;"
(6.5)
=202 A g ¢ 1
Hence, by the assumption

O< A <A< =<...

we obtain that
YA e )P
> e o)
_ e )P+ 2 A e 69
A @i P+ 25 A g )17

L Hg )P+ 3 () T (g 9)
" g @) P4 25 a2 (g )1

o, =

and
Aj

0 = O,

ie.,
[(g1: @i) > + 202 it A D72 (g1, ) 12

|(glv ¢]0>|2 + z;ij(ﬂ—l()\-j)";ol)_an(gl’ ¢]>|2 '

Ajp S ap = 4j,

By the Cauchy-Schwartz inequality we have

[(gn+1. &)l = [lgn+1ll118nll-
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Therefore
. [{(&n+1> &n)l
| |gn+1 | |2

- IIgn+1I|||s;nI|
l1gn-t1ll

_ izl
g1

Using the Cauchy-Schwartz inequality, we see that

[(gn+1: gn-1)1 = llgn+1ll11&n-1ll

and since

I(ng-lv gn—l)' = |(Kgnv gn—l)'
= |(gnaKgn—l)|
= |(gn, &)l

2
= llgnll"

we obtain that
2
gnll” < l1gns1llllgn-1ll,

EA llgnlI?

lgn—-1ll  1lgnllllgn—1ll

_ llgn+1lll1gn—1ll
l1gnlll1gn—1ll

i
l1gall.

ie.,

/3n =< ﬁnfl-
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Therefore the sequence {B,}5 | is monotone decreasing. Hence hm B, does exist.

For the sequence {||g,||}7, of positive numbers, the following 1nequahtles hold

[1gnll

lim, ol < lim, g,

- _1 T
< hmn—)oo“gn" n < hm”—“?O —
[lgn+1ll-

By (6.5) we have

MnrtlP = 3355 457" g1 )
W35 g 6P

1 00 Lo 2n B
= v 2z () Nl

Hence, using that ; > A for j > jo,

00 2n
- n/ e — Aj
hmn—>oo A ||gn+l||2 = hmn—)oo)‘-jol Z (i) |<gla¢j>|2

— \ Aj
J=Jo ]

o0

=< mn—)oo)‘-;ol n Z 81, ¢]

00
N .
5)‘-1'0 hHln—)oo2 § gl, j

_1._
= )Ljo hmn—)oo zvn ||gl||2
.
- )Ljo :

Also, from (6.7), we obtain

lim, o V/11gns111? = Lim, 22"V 1(g1. ¢),) 2

-1
> A
= A

Consequently

n —1
lim ¥/lgai|? = 47,
o0 “

(6.6)

(6.7)
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whereupon
1
. L -1
lim |[[gu41[[=1 = )Ljo .
n—o00
Hence and (6.6), we obtain
lim o, = lim B, = A7 ".
n—00 n—00 Jo

Theorem 7 Suppose that every eigenvalue of the operator K is positive. Let o, and
Bn be as in Theorem 6. Then, for each n, there exists an eigenvalue X of K such

lhat
/ R2 2 — X
‘B os > oy j > 0

and for sufficiently large n, X; = Aj,.
Proof Note that
|1gn — engns1ll* = (8n — Cngni1s &n — En&ni1)
= (&n: &n — n&n+1) — (Xn8nt1. &n — An&n+1)
= (8ns 8n) — (8n: n&n+1) — (n8nt1, &n) + (n&nt1, An&n1)
= 118nll* — @ {8+ 8nt1) — X (Gns1. &n) + Xp(Gns1, nv1)

= ||gn||2 — 200, (8n» gny1) + Oly2,||gn+1||2

2 ull? 1280 2
= llgne P (el — 20, S22 4 a2)

= lIgns1l1* (B7 — 207 + )

= llgnr1lP(B; — o).

Hence and (6.4), we get
B — oy = rpllgn — angasi |
2
= o | 252 (81, @02 TV () — e DU (g 604" (x)H

32 (577 — et ") e o0 )|

l1gn+111?
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Now using the Parseval relation, we obtain
g—at= 3 (5 — ) e g)P
n n | gal? i=jo \J n/j 81,9

= e 2o Ay G = an)?[gn, )1

We set
in(h; —a,)? = (A, —an)’
J=Jo "
Then .
2
2 2 (A, —ow) -2 2
Br—a, > ||]g—1||2 > a7 gn o)
T =

Hence and (6.5), we obtain
Bl —ap = (hj, — ).

Since

lim B, = lim o, =4,
n—oQ n—0oQ

we obtain that A ; = A, for sufficiently large n, which completes the proof.

6.3 Inhomogeneous Generalized Integral Equations

Here we will consider the equation

b
ux) =¢x) — )»/ K(x,y)p(y)Ay, (6.8)

where K (x, y) is continuous and Hermitian symmetric on [a, b] X [a, b], u(x) is
continuous on [a, b].
We denote by {A;} the eigenvalues of the associated homogeneous equation

b
0=¢<x)—A/ K(x, )¢ () Ay, 69)

and by {¢;(x)} the corresponding complete orthonormal system of eigenfunctions.

We have that
Al <A < S A = -
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and
K¢j =27 (). ) =Sk

First case. A is different from any of the eigenvalues A ;.
Suppose that ¢ (x) is a solution to the Eq. (6.8). Then

b
$(0) — u(x) =X/ K(x, )¢ () Ay.

Hence, by the expansion theorem, ¢ (x) — u(x) can be expanded in a Fourier series,
which converges absolutely and uniformly on the interval [a, b], with respect to the
orthonormal system {¢; (x)}. Let

ci= (¢ —u,d;).

Then

cj = (AKe, )
=MK¢, ¢))
= Mo, Ko;)
= (¢, 2; ')
= e, 8))
=M —utu. )
=7 (@ —u, 0)) + (1, ¢))
=M (e + (. ¢)

= k)\;l(Cj +uj),

where u; = (u, ¢;).
Hence, we obtain that
cj(1 =" = a5 u;
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or
M uj
Cj =T
I—A)Lj

—1
. )»)\J I/lj

=17
A0y =)

Consequently
Px) —ux) = D c¢;p;(x)

)\.Mj
A — A

¢;(x)

j=1
o0
j=1

oo
u;
=23 0
=1

or
uj
Aj— A

) =u@)+1ry b (x). (6.10)
j=1

Theorem 8 The series (6.10) converges absolutely and uniformly on the interval
[a, b] and satisfies the Eq. (6.8).

Proof By Bessel inequality we have

Dl < fah lu(x)|>Ax < oo,

Z?il )\]2|¢](-x)|2 S j;l |K(_x, y)|2Ay S Supxe[a,b] f;l |K(_x’ y)|2Ay < 00.
Hence,

(S i) = Z2r S5 i 9ywr

2
AN —
oD ATIE> d eI
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Let
AL

C=s .
=

Jj=1

We note that C exists and C < oo because lim |A;| = coand A; # A. Consequently
] =00

2
(Z3 [ui0s00|) = 5w 22, 0519001

b b
< C? [ |u(x)*Ax sup, g [, 1K (x, »)[*Ay.

Therefore the series (6.10) converges absolutely and uniformly on the interval [a, b].
Now we substitute (6.10) in (6.8) and integrate term by term. We get that the right
side is equal to

F) = u() + T2, 70,0 = 3 J) K@ pum Ay
(6.11)

+ 3% g [ K@ )e 4y ].

On the other hand, by the expansion theorem, we have

b
/ K (x, y)u(y)Ay (Ku ¢j)¢;j(x)

M8 Mz

(u, K¢j)p;(x)

~.
Il

I
M8

(u, 27" )5 (x)

8 T

= > 17w, )0 (x)

j=1

A5 ().

I
M8

~.
Il
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Hence,
F(x) = u() + X7 5h5u¢; ()

—[Z?il MG () + 325 %A;‘uj¢j(x)]
= u(x) + 2720 huidi(0) = XX puidi (0 = ux),

which completes the proof.

Second case. A = A, for some jy. Suppose that ¢ (x) is a solution of the equation

b
u(x) =¢(X)—)»jo/ K(x, y)p(y)Ay. (6.12)

We multiply both sides of (6.12) by ¢;(x) and then we integrate from a to b, we
obtain

uj = (u, ¢;)
= (¢ — 1Ko, ;)
= (4. 9;) — (1)Ko, ¢))
= (}, ;) — Aj (¢, Koj)
= (¢, $)) — 1p(#, 2" ¢))

= (. ¢;) — 2jph; (D, b))

Hence,
wp=0 if rj=2" (6.13)

If u(x) satisfies the condition (6.13), then as in the first case, we have that

A
PO =u@) + D i (x)
Aj#E Xy !

converges absolutely and uniformly on [a, b] and satisfies the Eq. (6.12).
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Let now ¢ (x) and &£ (x) be two solutions of the Eq. (6.12). We set

V(x) =@ @) —§0).

We have that v (x) satisfies the equation

b
0=1vy(x) — )\jo/ K(x, y)¥(y)Ay.
a
Hence, v (x) can be written as a linear combination

D> cigi(x)

Aj :)‘/0

of the eigenfunctions ¢;(x) corresponding to the eigenvalue A; = A ;. Here c; are
arbitrary constants.
Then

A
u(x) + Z mujcbj(x)-i- Z ci¢j(x)

Aj#hj ! Aj=hjo

is the general solution of the Eq. (6.12).



Chapter 7
The Laplace Transform Method

This chapter is devoted on applications of the Laplace transform on time scales to
dynamic equations, generalized Volterra integral equations and generalized Volterra
integro-differential equations.

7.1 The Laplace Transform

7.1.1 Definition and Examples

Throughout this chapter we assume that the time scale .7 is such that

0€ 9% and sup Fh = .

Definition 1 Letf : 9 —— % is regulated. We define the set

2{f} = {Ze%: 14+zu() #0 forall te€ 9 and
the improper integral fooof(y)e‘éz(y, 0)Ay exists}.

Remark 1 For z € € such that 1 + zu(¢) # 0 for all ¢ € .9 we have

Z Zp (1) 1
Oz=———— and 1+6zu@) =1-— = 0
14 zu(t) (o 14+ zu() 14 zu() #
© Atlantis Press and the author(s) 2016 321
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for all t € 7. Therefore eq,(y, 0) is well defined on .%. In this case we have

ec:(y, 0) = el maloe(+EmAr

Y1 1
— ej(l mLOgqu(r)Ar

— o I molog(+zp() Az

and o)
o - —mLog(l+zu(r)) At
el (y,0)=e¢ o .

Definition 2 Assume that f : J — % is a regulated function. Then the Laplace
transform of f is defined by

LF)@) = /0 FOEL (. 0) Ay

for z € Z{f}.

Example 1 Let 9 = 2%y {0}. Let also, x[1.22; be the characteristic function on
FyN[1,2%]. Then o () = 2¢ and u(t) = t, t € Fp. Also,

00
X(X[I,ZZ])(Z) = ‘/0 X[0,22]€@Z(0 »),0)Ay

22
= /1 eoz(0(y), 0)Ay

22
=/ o Oa(y) M(lr)Log(l-l-Z;/.(‘L’))AtAy
1

22
_ / P 2 sel0.0() ﬁLCg(l—&—ZM(S))M(S)Ay
1

22
= /1 e;[z():,g(y))LOg(l +zu(s)) Ay

22
:/ e_zse[o,rr(y»LOg(HSZ)Ay
1

22 1
A
/1 H + sz Y

s€[0,0(y)) !

1 1
H 1+s w+ H 1+SZM(2)

s€[0,0 (1)) < s€[0,0(2))

1 1
[l —ro+ [] ——r®
145z 1 ,
s€[0,2) M 5€[0,22) o

1 1
H 1+ +2 H 1+sz°

V4
5€[0,2) 5€[0,22)
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Example 2 Let % =h%Z, h>0.Theno(t) =t+h, u(t) =h, te J%.Hence,
Z(1)(z) =/ eo:(0(y), 0)Ay
0
oo 70 _L1 o0(14 A
=/ o J7 s Log(i+zu(s) As
0

o0
_ / ¢~ Toctooy ity LOBIHREOME 7
0

¢}
/ 2 sel0.0(yy Log(1+h2) Ay
0

o0
A
/0 hzy

s€[0, a(y))

[e¢]

> 0

t=0 s€[0,0 (1))

=h2 ( 1+ hz
2(1—!—}%)

1=
) is convergent if and only if

t

Note that Z (

t=0

If D(a, r) C € denotes the closed ball of radius r about the point a, then the region

11
of convergence is ¢’ \D ( 7 h) ie.,

11
P{1} = C\D (_E’E)‘

Example 3 Let 9 = 4. Suppose that f : I —> Z is regulated and |f(r)] <M
forallt € %. Theno(r) =t + 1, u(t) = 1, t € Z%. Hence,
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o0
200 = [ F0)eso0). 04y

0
* — 7Y L Log(14zu(1)) At

=/ FO)e o tosanenar ay
0
o0 1

— / f()/)€7 ng[o,g(y)) mLog(1+ZIL(5))M(S)Ay
0

o0
:/ f(y)e_ZJELO.y+|)LOg(1+Z)Ay
0

o 1
=/0 o I =

se[0,y+1)

o0 1 y+1
/Of(y)(—1+z) Ay
_ ! /°° NN

14+zJo (4+2)y
1l fO
n 1+ZZ(1+Z)rM(t)

t=0
_ i f@
l+z4 (142"

Since |f(¢)| < M for all t € 9, we have that £ (f)(z) is convergent if and only if

1
e <1 =
[1+z > 1.

Lemma 1 Suppose that the time scale 9 is such that u(t) < M forallt € Fyandfor
some positive constant M. Let also, f : Iy —> €,z € € be suchthat 1 + zu(t) #0
forallt € %, and

lim f(es:(0(1). 0) = 0.

Then
lim f(#)eg.(¢,0) =0.
—> 00
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Proof Using the properties of the exponential function, we have

ee:(0 (1), 0) = (1 + ©2(D) (1)) e (t, 0)
_ (1 _ ﬂ) een(t.0)

14 zu(r)
1
= mé@z(t, 0)
Hence,
0= l@wf(f)eez(ff(f), 0) = ZE)“OO %eez(l, 0).

Because (1) < M for all t € .7, then
lim f(t)eg;(t,0) = 0.
—>00
Remark 2 Note that the Laplace transform maps functions defined on time scales to
functions defined on some subsets of complex numbers. The region of convergence

of the transform, Z{f}, varies not only with the function f but also with the time
scale.

7.1.2 Properties of the Laplace Transform

Theorem 1 Let f and g be regulated functions on J and let o, B € €. Then

ZLef +B2) () =aZ(f)(2) + BL(g)(2)
forall z € 2{f} N D{g}.

Proof Letz € 2{f} N Z{g} be arbitrarily chosen. Then £ (f)(z) and £ (g)(z) exist.
Hence .2 (f)(z) and B.Z(g)(z) exist, from where a.Z(f)(z) + B-ZL(g)(z) exists.
Also, using the properties of the improper integral, we have

o0 o0
« L)@+ BLEE) = a /0 FOec: (@), 0)Ay + /0 40z (0 (). 0) Ay
o0 o0
- /O af ()eas (o (). 0) Ay + /0 Bs(yec: (0 (). 0) Ay
~ OO
- /O (@f D)eas(e (). 0) + Bg(ea:(o (). 0) Ay

oo
2/0 (af ) + Bg()eoz(a(y), 0) Ay
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o0
= /o (af + Bg) ez (o (), 0)Ay
= Z(af + ) ().

Theorem 2 Let f : Ty —> € be such that f* is regulated. Then

L@ =22 @) —f(0) + lim f(¥)ee: (v, 0)

Sfor all D{f} such that the limit exists.

Proof Using integration by parts, we obtain

fWea:.0 = /0 @) r. 0 Ay + /0 FAMee(@ (), 0) Ay

or
1im F0)e 0.0 = e 0.0 = [~ 72 0eci(o0). 03y
+ [T ron©20es0. 04y,
or
| 0e@m.0ay = lim foecc0.0) - 0)
- /0 Oof M (©2)(ee:(y, 0)Ay,
or

LN = lim f(ee: (v, 0) —f(0) — /0 FM(©Dee:(y,0)Ay.  (7.1)

We note that

—(O2)eg; (v, 0) = 1 +ZM(y)eeZ(y’ 0)
= Zeez(a(y), O)

Hence and (7.1), we get

L(HR) = )}Lrgof@)eez@, 0) —£(0) —/0 F(zea: (0 (), 0)Ay
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= Z/O fOee:(0 (1), 0)Ay —f(0) + lim f(y)ee:(y, 0)
=2Z(N@ —f(0) + lim f()ee:(y, 0),

which completes the proof.
Corollary 1 Letf : Fy —> € be such that f*" is regulated for some n € N . Then

n—1

L)) =L@ - D A0 (7.2)

=0

for those z € D{f} such that

lim %' (y)ee:(5,0) =0, 0<l<n—1.
y—>00

Proof We will use mathematical induction.

1. n = 1. The assertion follows from Theorem 2.
2. Assume that (7.2) is true for some n € 4.
3. We will prove that

n

L@ =L @) - D)

=0

for those z € Z{f} for which

lim f%ec,(y,0) =0, 0<l<n,
y—>00

and f A g regulated.
Really, applying (7.2), we obtain

L@ = 2PN )
=22 ) ) — ¥ (0)

n—1
= (z”.i”(f) @ — > (0)) )
=0
n—1
=L@ = D A0 - 4 (0)

1=0
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=2 @) = D0 = 4 0)
1=1

=2 = D),

1=0
which completes the proof.

Theorem 3 Assume f : Ty —> € is regulated. If

F) = /0 FO) Ay

forx € 9, then
1
ZL(F)(2) = E«i”(f)(z)

for those z € 2{f}\{0} satisfying
tim (eecx0) [ roay) =0,
Proof Using integration by parts, we get
ZL(F)(z) = /OOO F(yes:(a(y), 0)Ay

Z/O F)(1+ 6zu(y)es: (v, 0)Ay

& 1
A (y)l‘i‘zld;(y)eGZ(y’ ) Yy
1 [ —

Z
Z/o (y)1+zu(y)691(y’ 0y

1 o0
- /0 F(y) © 2()ee(y, 0) Ay
1 o0
- __/ F(y)es. (v, 0)Ay
Z.Jo
= —% (hm F(y)eez(y’ O) - F(O)eez(ov O))
y—>00

1 o0
+Z/ FA()ee (o (y), 0) Ay
0
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1 o0
- / Fes (o (y),0)Ay
ZJo

1
-Z(f)(2),
Z

which completes the proof.

Theorem 4 For all n € ) we have

1
Lx.0)@) = Sy, x€ T,

for those z € €\{0} such that 1 + zu(x) %0, x € %, and
lim (h,(x, 0)eg;(x, 0)) = 0.
X—>00

Proof We note that (7.4) implies

lim (h;(x, 0)eg;(x,0) =0 for all 0<I<n.
X—> 00

To prove our assertion we will use mathematical induction.

1. n = 0. We have that sy(x, 0) = 1 and
1
L) = =

2. Assume that (7.3) holds for some n € 4.
3. We will prove that

L (M1 (x,0)(2) = )
for those z € €\{0} such that 1 + zuu(x) # 0, x € P, and

lim (A,;4+1(x, 0)eg;(x,0)) = 0.
X—> 00

Really,

L (hy41(x,0))(2) =/ hui1 (, O)eg: (0 (), 0) Ay
0

_ / h ( / e 0>Ar) ee.(c (1), 0) Ay.
0 0

From here, using Theorem 3 and (7.3), we obtain

329

(7.3)

(7.4)
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1
L (hpt1(x,0))(2) = Eéf(hn(x, 0))(@)
1 1
s
1

which completes the proof.

Theorem 5 Lera € € and 1 + ap(x) # 0 for x € F. Then

Llea, 0)@) = ——, xe %,
Z— o

provided
lim ey, (x,0) = 0.
X—>00

Proof We have
L(ea(x,0)(2) = / e (¥, 0)eg (0(y),0) Ay
0
_ /0 e, 0) (1 + (©)MRO)) eer(y. 0) Ay

e 1
= T _ .\ Ca 10 Z 90
/0 T+’ 0, Oee:(y, 0) Ay

o 1
= —ey, ,0)0A
/0 1+ 210y o (y Yy

_ 1 /OO PTL (3 0)A
Ta—z)o THau(y e
i.e.,
1 ® a—z
_ Ay. .
L. 0@ = — [ e, 04y 7.5)

we note that

aBz=a®(O2)
= o+ (02) + a(e)u(y)
o Z o azu(y)
L+zu@y) 14zu@)
o —Z
14+ zu(y)
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Hence and (7.5), we obtain

Z(ea(x,0)(2) =

331

o —Z

1 o0
o—z /0 1+ zu@y)
/ a ©z(y)eqs:(y, 0) Ay

eve: (¥, 0) Ay

od—2Jo
—/ e 0,00
e )
@ —2Jo ez Y
1
(lim exo; (v, 0) — eqo, (0, 0))
o —Z y—>00
1
I—o
Corollary 2 We have
z
]. j o ,O = 55>
(cosy (x, 0))(x) 2 &F“Z
2. L(sing(x, 0 =
(sing (x, 0))(2) 21 a2

provided that

lim ejpe,(x, 0) = lim e_jpe.(x, 0) = 0.
xX—00 X—00

Proof 1. From the definition for cos, (x, 0) we have

COSy (x,0) =

Hence,

ZL(cosy(x,0)(2) = ,,2”(

ejq (X, 0) 4+ e_ia (.X, 0)
> .

ei(x,0) + e_j (x, 0)
2

_ %z(% %, 0) + e (¥, 0)(2)

1
=3 (L (€ia(x,0))(2) + L (e—ia(x, 0))(2))

1( 1 1 )
== — + ;
2\z—ia z+ia

lz—ix+z+ix

2 (z — ia)(z + i)
_z
2+ a2
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2. From the definition for sin, (x, 0) we have

eia(x» 0) - e—ia(xa 0)
2i '

sing (x, 0) =

Hence,

eio(x,0) — e_jg (x, 0))

Z(sing (x, 0))(2) = j( 2i

= %i’(eia (x,0) — e_ia(x,0))(2)

1
=5 (ZL(ein(x,0))(z) — ZL(e—ia(x,0))(2))

1 1 1
T 2i\z—ia  z+4ia

1l z4+ i —z+4+ia

2i (z — ia)(z + iat)
o

2 +a?

Definition 3 Let f : A —> % and let z € #. Then the 2 —transform is defined
by
Q)

20 =2

=0
provided the series converges.

Theorem 6 Let Fy = N. Then

L@ =2
foreveryf : S —> % and every z € D{f}.

Proof Fory € 9 N[0, oo) we have

ee:(0(¥),0) = (1 + (©2)u(y))ee: (v, 0)

(@O
_(1 1+zu(y))eeZ(y’0)

1
= (9,0
1 + ZM(Y) e@z(y )

eq. (v, 0
T4z (3, 0)
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_ L dstee@anonay

1+z
1

— oJo Logiiz Ay
1+z

()
14z \1+47

1
(1 4+t

Hence,

o,
(I +2)r*!

_ i @
“— (1 + 7)1

= 2Z()(2).

$®@=A

Exercise 1 Let o > 0. Prove that

1

Y=

for every z € 2{a'} such that |z + 1| > «.

Exercise 2 Letf : Ay —> Z. Prove that

1. Z(f)2) =+ 1DZE)E) —f0),
25WW=Q+N5®@—@tW®—ﬂu

.2 @ =G+ D' ZNH@ -2 @+ D . le

k=0

for every z € Z{f}.

7.1.3 Convolution and Shifting Properties of Special
Functions

333

The usual convolution of two functions f and g on the real interval [0, co) is defined

by
(f*g)(x):/of(x—y)g(y)ds for x>0.

However, this definition does not work for general time scales because x,y € %

does not imply that x —y € Z.
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Definition 4 Assume that f is one of the functions e, (x, 0), sinh,(x, 0), cosh,

(x,0), cosy(x,0), sing(x, 0), or i (x,0), k € A5. If g is a regulated function on
2, then we define the convolution of f with g by

(F % g)(x) = /0 Foro0NgWAy for xe T,

Theorem 7 (Convolution Theorem) Assume that @ € X% andf is one of the functions
eq (x, 0), sinh, (x, 0), cosh, (x, 0), cos, (x, 0), sing (x, 0), or i (x,0), k € . If g is
a regulated function on % such that

lim eg(x, 0)(f * &)(x) = 0,

then
L xg) @) =2()2)ZL()®. (7.6)

Proof 1. f(x,0) = ey(x,0). Consider the initial value problem for the dynamic
equation
14 —al=g(x), 1(0)=0. (7.7)

The solution of this problem is given by
I(x) =/ e (x, 0 (y)g(») Ay,
0

which can be rewritten in the form

I(x) = (ea(x, 0(y) * ) (x).
Now we apply the Laplace transform to both sides of the Eq.(7.7) to get

Z (14 —al) @) = Z())

or
ZLUNH@ —aZD) = 2@,
or
2Z (D@ —aZ(D)(@) = ZL(8)(2),
whereupon

1
ZD) = Z—a«i”(g)(Z)-
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Since

1
Z(ea(x,0)(2) = —,
i—«

we conclude that

L)@ =2 @)L ()

or we get (7.6).
2. Letf(x, 0) = cosh,(x, 0). We have

eq(x,0) +e_y(x,0)

coshg (x, 0) = 5

Then
(f *g)(x) :/0 coshy (x, o (¥)g(y) Ay
1 X
= 5/0 (ea(x,0(y) +e_olx,0()) g(y)Ay

1 o
-1 / e s (NS Ay + 3 / e_alr. 0 ()8 () Ay
0 0

1 1
= 5 (€a(x, o) * &) X) + S (e—alx, 0 () * &) (X).

From here,

1 1
L(fxge)) =2 (E(ea(x, o) *x) + E(efa(x, a(y)) * g)(X)) ()
1 1
= Eff(ea (x,0() *8)(2) + Eff(e—a (x,0(») * &) (@)
1 1
= E«ff(ea (x,o(NRZL(9)(2) + Eo?(e—a (x, o (MNR@-ZL(9)(2)

1 1 1 1
= Ez—iag(g)(z) + Emg(g)(z)

1 1 1
== ( + ).ﬁf(g)(Z)

2\z—a z+4a«a

- ﬁf(g)(z)
= Z(coshy (x, 0))(2)L(g)(z)
=2() @)L ).

3. Letf(x, 0) = sinh,(x, 0). Then

o 70 - C—q sO
sinhy (x, 0) = %% )ze 0
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and
(f * )x) = /0 *sinh, (x, 0 ())g(0) Ay
= %/OX (ea(x,0(y)) —e—a(x,0(y)) g Ay
-3 / el o 0MEMAY 3 / e, 00N Ay
= Lt 000 * ) — 3l 00) * ).
Hence,

1 1
Z(*)) =2 (E(Ea(x, o)) *8)X) — S(e—alx, o () *g)(x)) (2)
1 1
= 5L (€alx, 0 () *8)(@) — 5 L (e—alx. 0(y) *8)()

1 1

= 5 Z(ear, 0N LR — 3L (e, 0 RL ()R
11 11

= 2 WO 3 @0

_ ! ( !

T 2\z—« B Z+ o

o

= Zz_70[2“2”(&7)(@

= Z(sinhy (x, 0))(2).Z(g)(z)

= 2(NRLQ)Q).

).i”(g)(z)

4. Let f(x,0) = cosy(x, 0). We have

eia(x, 0) +e_iu(x, 0)

COSy (x,0) = 5

Then
(f*g)x) =/0 cosq(x,0(y)g(y) Ay

1 X

=5 /0 (e, (1)) + eia (6, 5 (0))) 80) Ay
1 1

= 5/ eig(x,0()g(y)Ay + 5/ e_io(x,0(y)g(y)Ay

0 0

1 |

= E(Eia(xa o) *xg)(x) + E(e_m(x, o) x g)(x).
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From here,

1 1
Lfrxe)2) =2 (E(eia (x,0(y) *g)(x) + E(efia (x,0(y)) * g)(X)) ()

1 1
= Eg(eia (x.o() * g + Eg(efia (x,0(y) *8)(2)

1 1
= Ef(eia(x o(MN@Z()() + *-i”(efia(x, oc(MN@Z(9)()

1 1
= 527.,2”( )@ + fT.i”(g)(z)

101 1
- E(z—ia it )f(g)(Z)

2+ 52(8)(2)

= Z(cosy (x,0))(2)ZL(g)(2)
=2 ()L () ().

5. Letf(x, 0) = siny(x, 0). Then

eiq(x,0) — e_j(x, 0)
2i ’

sing (x, 0) =
and
(F*2)() = /O " sing (x. 0 ())g () Ay
- /0 (a5, 00)) — eoiax. 5 (0)) 80 Ay
- /0 eulr o 0DE0AY 1 /0 a0 ()80 Ay
= S eu(r 00D ¥ D) — 3 (e i, T 1) * )
Hence,
L(fxg)) =2 (%(Eia (x,0(y) xg)(x) — zli(e—ia (x,0(y)) » 8)(X)) (2)
= %Z(@ia(x, o(y) xg)(z) — zll.iﬂ(e—ia()f, o(y) *g)(2)

1 1
= Zi”(eia(x o(MN@ZL()(2) — *-i”(efia(x, oc(MN@Z(9)()

1
Z( )(2) — STg(g)(Z)

T 2iz—
1
5( v )3(8)(2)
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o
= mg(g)(Z)

= Z(sing (x, 0))(2)-Z(g)(z)
= Z()(2)ZL(g)(2).

6. f(x,0) = h(x,0), k € M. Consider the initial value problem for the dynamic
equation »
M) =g, 1Y0)=0, j=0,1,... k. (7.8)

The solution of the equation (7.8) is given by

l(X)=/0 hi(x, 0 () g(») Ay

or

[(x) = (i (x, 0 () * &) (x).

Taking the Laplace transform of both sides of (7.8), gives

2 (") 0 = 2@,

whereupon

M2 (z) = L) ()
or

1
L) = Fg(g)(Z)

= ZL(h(x,0)(2)Z(8)(2)
= Z(N)Z Q).

Theorem 8 Assume f and g are each one of the functions ey (x, 0), coshy(x, 0),
sinhy (x, 0), cos, (x, 0), sing (x, 0), or hi(x, 0), not both hi(x, 0). Then

frg=gx*f.
Proof 1. Letf(x,0) = e,(x,0) and g(x, 0) = eg(x, 0). Let also,
p(x) = ey (x,0) xepg(x,0) and q(x) = ep(x,0) xey(x,0).

Note that
p(0) = ¢q(0) = 0.
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Also, p(x) and g(x) are solutions to the initial value problems

p? —ap =eg(x,0), p(0) =0,

and
q* — Bq = ex(x,0), q(0) =0,

respectively.

Then
pA(0) = ap(0) +€5(0,0) = 1,
g*(0) = Bq(0) +¢4(0,0) = 1.

We claim that p(x) and g(x) are solutions to the initial value problem
mA — (@ +Bm? +apm=0, m@©0) =0, m*©0) =1 (7.9

‘We have
p? = ap+es(x,0),

from where, after differentiating, we obtain

A =ap® + Bep(x,0).

Hence,

Y — (@ + P)p? +app = ap® + Pes(x,0) — (a + B)p” + afp
= Bep(x,0) — Bp* +afp

= Beg(x,0) — Blap + ep(x, 0)) + afp

= Bep(x,0) —afp — Beg(x,0) + afp

=0.

Also,
q* = Bq + eq(x,0),

whereupon, differentiating, we obtain

2
q” = Bq” + aey(x,0).
Hence,

g¥ — (@ + B)g* + aBg = Bg” + aeq(x,0) — (@ + B)g* + aBq
= aeq(x,0) —ag? + afq

=aey(x,0) —a(Bq + e (x, 0)) + afg

= aey(x,0) —aBq — aey(x, 0) + afq

=0.
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Since the problem (7.9) has unique solution, we conclude that
p(x) = q(x).

2. Next we consider

eg(x,0) +e_g(x,0)
2

eq(x,0) x (eg(x,0) + e_g(x, 0)))

eq(x, 0) x coshg(x, 0) = e, (x, 0) »

0 l\)l'dl\)l'—*l\-)l'—‘l\)l

S

(e (x, 0) x eg(x, 0) + eq (x, 0) x e_g(x, O))
(es(x,0) x eq(x, 0) + e_p(x, 0) * ey (x, 0))
(

ep(x,0) + e_p(x, 0)) * eq(x, 0)
oshg(x, 0) x e, (x, 0).

3. Let
z7(x) = eq(x,0) x A (x,0) and q(x) = hi(x, 0) x ey (x, 0).

We have that z(x) is the solution to the initial value problem
2 (1) — @z(x) = I (x,0), z(0) =0.
Differentiating this equation i times gives
() — 0zt () = (6, 0), i=1.2,... k.

Also, .
A

A0=0 0<i<k 270)=1.
Thus we get that z(x) is the solution to the initial value problem

A7) — ez () =0,
20)=0, 0<i<k, 270 =1.

Since 74 (0,0) =0, k > 0, we obtain that
A _ .
g7 (0)=0, 0<i<k.
Also, g is the solution of the initial value problem

¢ () = e, (x,0), ¢¥(0)=0, 0<i<k.
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Hence, differentiating the last equation, we obtain

" (x) = €2 (x,0)
= aey(x, 0)

k+1
)

and »
g~ (0) = €4(0,0) = 1.

Consequently g(x) is the solution of the initial value problem
¢ —ag” =0, ¢ =0, ¢ O=1 0zizk

Therefore z(x) and g(x) are solutions to the same initial value problem. Hence,
they must be equal.

Exercise 3 Prove that

PN R WL

o

10.
11.
12.
13.
14.
15.
16.
17.

eq(x, 0) x sinhg(x, 0) = sinhg(x, 0) x e, (x, 0),

ey (x,0) x cosg(x, 0) = cosg(x, 0) * e, (x, 0),

ey (x, 0) % sing (x, 0) = sing(x, 0) * e, (x, 0),

coshy (x, 0) * coshg (x, 0) = coshg(x, 0)  cosh, (x, 0),
coshg (x, 0) » sinhg (x, 0) = sinhg(x, 0) * cosh, (x, 0),
coshy (x, 0) * cosg(x, 0) = cosg(x, 0) x cosh, (x, 0),
coshg (x, 0)  sing (x, 0) = sing(x, 0) » cosh, (x, 0),
coshg (x, 0) % Ay (x, 0) = hi(x, 0) x coshy (x, 0),

sinh, (x, 0) * sinhg(x, 0) = sinhg(x, 0) % sinh, (x, 0),
sinhg (x, 0) * cosg(x, 0) = cosg(x, 0) x sinh, (x, 0),
sinhg (x, 0) * sing (x, 0) = sing(x, 0) % sinh, (x, 0),
sinhg, (x, 0) * i (x, 0) = hyi(x, 0) » sinh, (x, 0),

€08y (x, 0) *x cosg(x, 0) = cosg(x, 0) » cos, (x, 0),
cosy (x, 0) * sing (x, 0) = sing(x, 0) * cosy (x, 0),
€08y (x, 0) * hi(x, 0) = Iy (x, 0) * cosy (x, 0),

sing (x, 0) * sing(x, 0) = sing(x, 0) * siny (x, 0),

sing (x, 0) * A (x, 0) = hi(x, 0) % sing (x, 0).

Theorem 9 Leta, 8 € Zand 1 +au(x) #0, 1+ Bu(x) #O0forallx € . Then

< (ea(x, 0)sin s (x, ())) () = (Z_a,;%ﬂz

provided

A
lim e, (x, 0)sin s (x,0) =0 and lim ey(x, 0) (sin 5 (x, 0)) —0.
X—00 I+pa X—00 1+pa



342 7 The Laplace Transform Method

Proof Let
px) = eq(x,0) sin%(x, 0).

Then

pA(x) = €2 (x,0) sin%(x, 0) + ey (0 (x), 0)sin?, (x,0)

I+pa

= aey(x, 0) sin%(x, 0) + (1 +apu(x))ey(x, 0)#@ cos%(x, 0)
= aey(x, 0) sinli(x, 0) + Bey(x,0) cosli(x, 0).
Fra +ue

We differentiate the last equation and we get

P (0 = el (v, 0)sin_p_(x,0) + ey (o (x), 0) sin®, (x,0)
E e
+,Be(f‘ (x,0) cos%(x, 0) 4+ Bey(o(x), 0) cosAﬂ (x,0)

T

= a?e,(x,0) sinﬁ x,0) + (1 + ap(x))eq(x, 0)1++u(x) COSﬁ(x, 0)
+afea(x. 0)cos o (x,0) — Bl +ap())eq(r, 0)#@ sin_s_(x,0)
= e, (x,0) sinﬁ(x, 0) + aBey(x, 0) COSﬁ(x, 0)
+ aBey(x, 0) COSﬁ(x, 0) — B%eq(x, 0) sinﬁ(x, 0)

= (a? — ﬂz)p(x) + 2aBe, (x, 0) cos]%(x, 0).

In this way we obtain the system

PA(x) = ap(x) + Pea(x, 0) cos s_(x,0)

P (x) = (@® = B)p(x) + 20Beq (x, 0) cos_#_(x,0).

Hence, ,
P () = 20p? (x) = —(@* + BHp ()
or s
p* () + 20p” (x) + (& + B*)p(x) = 0.
Also,

p(0) = €4 (0,0)sin_s_(0,0) =0,
P*(0) = ey (0, 0) sin_s(0,0) + Bea(0,0) cos &+ (0,0) = B.
i +ua

Consequently we obtain the following initial value problem

[pﬂz () = 20p* () + (@ + fA)p(x) =0 (7.10)

p0) =0, p*(0) =4
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Now we apply the Laplace transform to both sides of the dynamic equation (7.10)
and we obtain

2 (p* 0 = 2ap (0 + @ + () (1) =0

or

& (pm (x)) @) =202 (p* ) (@) + (@ + BHZL (p())(2) = 0,

or

2L P) (@) = p0) — 2p(0) — 2022 (p)(2) + 2ap(0) + (& + )L (p)(z) = 0,

" ZLP)) — B — 2022 (p)@) + (@ + )L (p)(2) =0
or
(& —2az+ 0+ B%) Z(p)(2) = B.
whereupon
L)) = (z—<x’++ﬂz’

which completes the proof.
Exercise 4 Leta, 8 € Zand 1+ au(x) #0, 1+ Bu(x) #Oforall x € . Prove

that
I—a

R4 (ea(x, 0)cos_s_(x, 0)) (@) = M—z+/32’

I4an
provided that

lim e, (x,0)cos_s (x,0) = lim e, (x,0) cos?, (x,0) = 0.
X—00 Tau X—>00 THar

Definition 5 Leta € 9, a > 0. Define the step function u, by

)0 if xe HN(—o0,a)
=110 xe Bynla, 00).

Theorem 10 Leta € 7, a > 0. Then
eq,(a, 0)
L (Ua(0))(2) = GT

for those z € P{u,} such that

lim eg, (x, 0) = 0.
X—> 00



344 7 The Laplace Transform Method
Proof We have
L (ua(x))(2) = / Ua(y)eez (0 (y), 0)Ay
0
o0
=/ ec:(0(y), 0)Ay
a

=/ (1 + 11 6 Deas(y. 0) Ay

R |
= e ,OA
/a 1+MZGZ(y ) Ay
00

1 -z
= —— e ,0)A
Z/a 1+ pz o:(y, 0) Ay

1 o0
= ——/ Ozeg (v, 0) Ay
< Ja

L[,
= ——/ eez(y, 0)Ay
< Ja

=00

1
= __eez(yv O)
Z

y
y=a

Z

1
= —— (lim eo:(y, 0) — eg(a, 0))
y—00
1
= —eez(a, O)
z

Theorem 11 Let a € 9, a > 0. Assume that f is one of the functions ey (x, 0),
cosy (x, 0), sing (x, @), sinhg (x, 0), coshy (x,0). If 1 +zuu(x) #0, 1 +aux) #0
forall x € %, and

lim eye,(x,a) = lim ejyq,(x,a) = lim e_j,q,(x,a) =0,
X—>00 X—>0Q X—>00

then
ZL(ua(0)f (x, @) = eg;(a, 0)L(f (x, @) (2)-

Proof 1. Letf(x,a) = ey(x, a). Then

eq(x, a)egz(0(x), 0) = (I + pu(x) © 2)eq (x, a)eg:(x, 0)

= ——e,(x,a)eg, (x O)M
Tt T Ve (0. a)

T T Y600
1
= T < o ’ Z 9 O
TN e (X, @)ece(a, 0)
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L o (x, a)es:(a, 0)
= ——eqo.(x, a)eg,(a,
Ol—Zl-i-Z/L()C) oz oz

(a © Z)eaez(x7 a)eez(aa 0)
o —Z

1 A
= Eeaez(x, a)er(a, 0)

Thus

(o]
L (ua(X)f (x)) =/0 ug(0)f (x, a)eez (0 (x), 0) Ax

00
=/ eq(x, a)egz(0(x), 0)Ax

o0
eez(a,O)/ efez(x, a)Ax
o—2z a

xX=00
cx(a, 0)eqer (x, )|
o —Z x=a

Teex(@0) ((Jim caez(r. a) — eupcla. )

eoz(a, 0)
-«

= egz(a, 0)-L(eq (x, 0))(2).

2. Letf(x, a) = cosq(x, @). Then

1
fx,a) = 3 (eix(x,a) +e_x(x,a)).
Hence,

Lu,0)f (x, ) = &L (uq(x, d)%(eia(X, a) + e_(x, @))) (2)
=2 (Jua(®eig (x, a) + Jua(De_io (x, @) (2)

= 1L (U (V)eia (x, @)(2) + 3L (Ua(X)e—io (x, 2))(2)

= 3¢0:(a,0).Z (¢ia(x, 0)) + 3ee:(a, 0).L (e_ia(x, 0)(2)
ee:(a,0).Z (3eia(x, 0)) + es.(a,0).L (Fe—ia(x, 0)) (2)
= ee:(a,0).Z (5 (eia(x,0) + e_iu(x,0))) (2)

= eg(a, 0).Z(cosy (x, 0))(2).

Definition 6 Leta, b, € 7 andf : . ——> Z be continuous. If §,(x), x € .7,
satisfies the following conditions

, .
_|f@ if aclab
/Qf(x)Sa(x)Ax— [0 otherwise,

then &, (x) will be called Dirac delta function.
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Theorem 12 Leto € 9, o > 0. Then
Z(80(x))(2) = €g,(, 0).

Proof We have

ZBa(x)(2) = /0 8o (y)ee:(o (), 0)Ay
= ec:(0(), 0).

Exercise 5 Prove the following relations.

1. Ifa # B, then

eq(x,0) xeg(x,0) = ! (eg(x,0) — ey (x, 0)).
-«

B

ey (x,0) x e, (x,0) = e, (x, 0)/ Ay.

1 +au(y)
3. Ifa® + B* #0, then

Beq(x,0) — asing(x, 0) — B cosg(x, 0)
o 4 p2.

eq(x,0) xsing(x, 0) =

4. fa #0, o # B, then

—p sing (x 0) + o sing (x, O)
— B2

€084 (x, 0) % cosg(x, 0) =

5. If o # 0, then
1 . 1
€08y (x, 0) * cosy (x, 0) = — sing (x, 0) + Ex coSy (x, 0).
o

6. If k > 0, then

sing (x, 0) * Ay (x, 0)
(— 1)u+1)<k+7> L cos, (x, 0) + z]z 0( 1)Jh" 251(31 0) if k iseven

(k+1)(k+2) ) (k+2)

(1) L sing (x, 0)+z] (- 1y 2380 e ks odd.
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7.2 Applications to Dynamic Equations

The Laplace transform method for solving dynamic equations can be summarized
by the following steps.

1. Take the Laplace transform of both sides of the equation. This result in what is
called the transformed equation.
2. Obtain the equation

ZL($)(2) =F(2),

where F(z) is an algebraic expression in the variable z.
3. Finding the solution ¢ of the considered equation using the algebraic expression
F(z) and the properties of the Laplace transform.

Note that the initial conditions of the problem are absorbed into the method, unlike
other approaches to problems of this type, i.e., the method of variation of parameters
or undetermined coefficients.

Example 4 We consider the initial value problem

[ % (X) + 562 (x) + 6 (x) =0,
$(0) =1, ¢2(0) = —5.

The, using the properties of the Laplace transform, we have

L@*) @) = 2L $)(2) — $*(0) — 2¢(0)
=222 +5-z,

L) (2) = 22(9)(2) — $(0)
=22 — 1.

Hence, taking tha Laplace transform of both sides of the given equation, we get
L@* +5¢" +6¢)(2) = Z(0)(2)
or

0= 2% () + 52" ) + 6.2) ()
=2L(P)2) —2+5+5@L D)) — 1) +6L(p)(2)
=P +524+6Z2P) () -z
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whereupon

Z

2+52+6
z

- (z+2)(z+3)
3 2

=z+3_z+2
=32L(e3(x,0))(2) — 2L (e_2(x,0))(2)

= Z(3e_3(x,0) — 2e_»(x, 0))(2).

L)) =

Therefore
¢(x) =3e_3(x,0) —2e_5(x,0), xe 5.

Example 5 Consider the initial value problem

[¢42—4¢A+13¢=o
p0) =1, ¢4(0) =1.

Using the properties of the Laplace transform, we have

L@ @) = 2L B) (@) — $*(0) — 2¢(0)
=7ZL@P)) —1-z,

L) (@) = 22()(2) — $(0)
=22@)(2) — 1

Taking the Laplace transform of both sides of the given equation, we obtain

L@ — 46 + 13)(2) = Z(0)(2)

or
L)) — 4L (@) +13.L$)(2) =0,
or
L@@ — 1 —z2—4@ZL@)) — 1)+ 13L($)(z) =0,
or
LG — 1 —z2—42L(P) () +4+ 13L()(2) = 0,
or

(2 =42+ 13) L) (z) =z — 3,
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or
z—3
& == -
@@= 37773
_ z—3
@22 +9
R 2—1
T @—-22+9
_ z—12 1
T zZ=224+9 (z—-2%+9
_ z—2 1 3
T zZ=2249 3(z—22+49
1 )
> (ez(x, 0)cos - _(x, 0)) @ —32 (ez(x, 0)sin - (x, 0)) @)
1 )
=Y (ez(x, 0) cos s (x,0) — gez(x, 0) sin_s__ (x, 0)) (2).
Therefore

1 .
¢ (x) = ex(x,0) cos s _ (x,0) — 562(x, 0) sin e (x, 0).
Example 6 Consider the initial value problem

oY +2¢% -3¢ =0
$0) =5, ¢2(0) =1

Using the properties of the Laplace transform, we have

L@*) @) = 2L $)(2) — $*(0) — 2¢(0)
=222 (z) — 1 -5z,

L) (2) = 22(9)(2) — (0)
=zZ(¢)(2) - 5.

Taking the Laplace transform of both sides of the given equation, we get
Z (% +26% =39) ) = 2O

or
L@ + 22 (2) —3L@) () =0,

or

ZL@P)R) —1-524+2cL @) ) - 5) —3L@)(2) =0,
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or
2L — 1 -5+ 222 ($)(2) — 10 = 3L($)(2) = 0,
or
(22427 —3).L@P)(z) =5z + 11,
or
. 5zl
L(P)(z) = o P—
_ 5z+ 11
@+ 1D?2-2
_ S+ 1)+6
T @+ D22
_ z+1 n 6
z+D2=2 (@+1D2-2
_5 z+1 N 6 V2
G+ = (2?2 V2@+1)?-(W2)?
= o] + 342 V2
@+ 12— (2)? @+ 12— (2)?
=5 (e_l(x, 0)cosh 5 (x, O)) (@) +3v2.2 (e_l(x, 0)sinh 5 (x, 0)) (2)
T—p(x) T—p(x)
=7 (56—1 (x,0)cosh 5 (x,0)+ 3ﬁe,|(x, 0)sinh 5 (x, 0)) (2).
T—p(x) T—(x)
Therefore

d(x) = 5e_ (x,0)cosh 5 (x,0) +3v2e_;(x,0)sinh & (x,0).

T—p(x) T—p(x)

Example 7 Consider the initial value problem

% + ¢ =ei(x,0)
#(0) = p2(0) = p2°(0) = 0.

Using the properties of the Laplace transform, we have

L@*)@) = 2L @) (@) — 6> (0) — 262 (0) — 22¢(0)
=2L() ),

L)) = 22() () — $(0)
=2($)(2),

1
Le(x,0)(2) = —.
z—1
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Taking the Laplace transform of both sides of the given equation, we get

Z (¢ +96*) @ = Z(e1x, )@

or

3 1
L@ + L)) = T

or
1
SLP)R) + 2.2 @) ) = p—t
or 1
@ +L @) ) = —

or

L)) = —D@+2

1
@ -9@+ D
1 z 1 1 z 1 1
S Tig T TaZ+1 2241
1 1 1 1 z 1 1
221 @1 2241 272+1
1 1 1 1 1 z 1 1
2e-1 =1 2 2@+l 221
1 1 1 1 z 1 1

1 1

592”(61 (x, 0)(@) = Z(ho(x,0)(2) + 53(0051 (x, 0))(z)
1

—zf(Sim(x, 0))(z)

1 1 1.
= (Eel(x, 0) — ho(x,0) + 3 cosy(x, 0) — 3 sing (x, O)) (2).

Therefore : . :
¢(x) = Eel(x, 0)—1+ zcosl(x, 0) — 2 siny (x, 0).

Exercise 6 Use the Laplace transform to solve the following initial value problems.

1.
[¢A2—6¢A+13¢=0
#(0) = ¢4(0) = 1.
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2.
{ #* + 4¢ = cosy(x, 0)
$(0) =¢2(0) = 1.
3. ,
I¢>A —4¢“ +204 =0
d(0)=1, ¢2(0) =2.
Answer
1.
¢ (x) = e3(x, 0) cos_2 (x,0) — e3(x,0) Sin1+32‘(x> (x,0).
2. . .
¢d(x) = 7 cos;(x, 0) » siny (x, 0) 4+ cosy(x, 0) + 7 sin, (x, 0).
3.

¢ (x) = ez(x, 0) cos (x, 0).

4
1424 (x)

7.3 Generalized Volterra Integral Equations
of the Second Kind

Consider the generalized Volterra integral equation of the second kind

() = u(x) + /0 K(r, 1) () Ay, (7.11)

where K(x,y) is ey (x, 0(y)), coshy(x, o (y)), sinhy(x, o(y)), cosy(x, o (y)), sing
(x, 0()), or hy(x, 0 (y)), u : Jp —> Z is a given continuous function, A is a para-
meter.

The Eq.(7.11) we can rewrite in the following form

¢ @) = ux) + A(K x ¢)(x).
Taking the Laplace transform of both sides of the last equation, we get
L)) = Lu)(2) + 1L (K x $)(2),
whereupon, applying the convolution theorem for the Laplace transform, we obtain

ZL(@)(2) = Zu)(2) + 2L (K) ()L ($)(2).
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Hence,

(1 = 2Z(K)(2)Z(P)(2) = L w)(2)
or

Zw)(2)

L)) = T2 K@

Example 8 Consider the equation

dpx) =1 +2/0 ex,y+ Domay, FH=2%.

Here
cx)=x+1, ux)=1, xe %,
Kx,o(y) =ex(x,y+ 1), ux)=1, r=2.
The given equation we can rewrite in the following form
¢ (x) =142 (e2(x,0) x 9 (x)).
We take the Laplace transform of both sides of the given equation and we find
L(P)(2) = L(D)(2) + 22 (e2(x,0) *x p(x)) (2)
1
=z +2ZL(ex(x, 0)(2)Z(9)(2)

1 2
=-+—2 (),
z z—2

whereupon
2 1
(1 - —) L)) = -,
z—2 z
of 2-2 1
S 2o = -
z—2 Z
o 4 1
) = -,
z7—2 Z
or
z—2
g =
(@)(2) ST—
11 1 1

2z 2z—4
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1 1
= Eéf(ho(x, 0)@ + —$(64(x, 0)(2)

= .,2”( ho(x, 0) + e4(x O)) (2).

Consequently
1
P(x) = —ho(x 0) + e4(x 0).

Example 9 Consider the equation

() = e3(x, 0) — / cosha(x, 206 () Ay, T = 27 U {0).
0

Here
ox)=2x, ukx)=x, xe€%p,
u(x) = es3(x,0), K(x,o(@)) =coshy(x,2y), A=-—1.

Then the given equation can be rewritten in the following form
¢ (x) = e3(x, 0) — (coshy(x, 0) * ¢ (x)) .
We take the Laplace transform of both sides of the last equation and we get

Z(P)(2) = L(e3(x,0))(z) — Z(cosha(x, 0) x ¢ (x))(2)
1
=3 Z(coshy(x, 0))(2)Z () (2)

z—
_ 1
z-3
whereupon
z
(1 + 22—_4) L)) = 3
or
_l’_ —
Z—Zz(qs)(z) —
or
2 —4
< - v
PO =@ Te- 9
5 1 gZ + j

T 8z-3 24z-4
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5.1 3ty 5 1
R e e
51, 3 z+} N
TR TR T G E
Consequently
3 5417
P(x) = —es(x 0)+—e 36 e_1(x,0)sinh g .
2—x

Example 10 Consider the equation

¢ (x) = siny(x, 0) +/ cosy(x, 3 () Ay, F = 3y {0}.
0

Here
n(x) =2x, xe %,

o(x) = 3x,
K(x,0(y)) = cosy(x, 3y),

u(x) = sin,(x, 0), A =1.

The given equation we can rewrite in the following form.
¢ (x) = sina(x, 0) + cosz(x, 0) * ¢ (x).
We take the Laplace transform of both sides of the last equation and we find

ZL(siny (x, 0) 4+ cosy(x, 0) * ¢ (x))(2)

L(P)2) =
= Z(sim(x, 0))(2) + Z(cosz(x, 0))(2)-Z (¢)(2)
2
=Frat Ert 0o,
or
(1 ) ZL(P)2) = >
I z e
or
2
ﬂf@)(@ e

or

355
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2
< =
D@ = 5=
B 2
R
_2 P
=—= 5
2 @- 1)+ (F)
44/15 :
-7 (e%(x, 0)sin s (x, 0)) @
Consequently
44/15 .
¢ = e1(x, 0)sin s (x, 0).
15 2 22x

Exercise 7 Solve each of the following equations.
1. ¢(x) =ex(x,0) + 4/ P (s)As,
0
2 9 =34 [ (-o()e0AY
0

Answer
L ¢x) = Tez(x, 0) + 2e4(x, 0),
2. ¢p(x) = 2 sinh, (x, 0).

Remark 3 Consider the generalized Volterra integral equation of the second kind

¢(x) = u(x) + )»/Ox ¢ (y)Ay. (7.12)
We can rewrite this equation in the form
¢(x) = u(x) + A(1 x ¢)(x).
Taking the Laplace transform of both sides of the last equation, we get

L)) =L@ +rZL(1x¢)(2)
=2 +rZ21)(@)ZL(P)()
1
=2 (z) + k;i”(qﬁ)(Z)

or

1
(1 - AZ) L)) = LW (). (7.13)



7.3 Generalized Volterra Integral Equations of the Second Kind 357

If we use that

X 1
z(ﬁ¢@m)@=szmx

taking the Laplace transform of both sides of (7.12) we obtain (7.13).

7.4 Generalized Volterra Integral Equations
of the First Kind

Here we consider the equation

X
u(x) = ?»/ Kx,a()¢(»)Ay, (7.14)
0
where K (x, 0) is e, (x, 0), cosh, (x, 0), sinh, (x, 0), cos, (x, 0), sing (x, 0), or A (x, 0),
u: I —> Z is a given continuous function, A is a parameter.
We can rewrite the Eq. (7.14) in the following form
u(x) = AK(x,0) x p(x). (7.15)
We take the Laplace transform of both sides of (7.15) and we obtain
L) (2) = 2Z(K(x, 0) * ¢ (x))(2).

Now applying the convolution theorem for the Laplace transform, we obtain

L) (2) = 1L (K)(2)ZL($)(2).

Example 11 Consider the equation

sin, (x, 0) :/ es3(x,y+ DopMMAy, H=2%.
0

Here
c)=x+1, ux)=1, xe 5.

The given equation we can rewrite in the form

mmLm=Ae4w6wM@My

or
siny (x, 0) = e_3(x, 0) x ¢ (x).
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We take the Laplace transform of both sides of the last equation and we get

Z(sinz(x, 0))(z) = ZL(e-3(x,0) x ¢ (x))(2)
= ZL(e-3(x,0)()Z($)(2)

1
= m«iﬂ(d’) (),
whereupon
> ! Z(@)(2)
2+4 743 -
Hence,
z+3
L)) = Zm
LT
T2 4+4 0 T2+ 4
=22 (cosy(x,0))(2) + 3L (sinz(x, 0))(z)
= Z(2cosy(x, 0) 4 3siny(x, 0))(2).
Consequently

¢ (x) = 2cosy(x, 0) 4+ 3siny(x, 0).

Example 12 Consider the equation

sinh; (x, 0) = 2/x es(x, 20d (M Ay, T =2 U0}
0

Here
o(x)=2x, ux)=x, xe 9.

Then the given equation we can rewrite in the following form

sinhs (x., 0) = 2 /0 e3(x. o (1)p (3) Ay

or
sinh; (x, 0) = 2(e3(x, 0) x ¢ (x)).

We take the Laplace transform of both sides of the last equation and we obtain
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Z(sinhz(x, 0))(z) = .Z 2(e3(x, 0) x p(x))) (2)
=22L(e3(x,0) x 9 (x))(2)
=22(e3(x,0))(2)-L(9)(2)

1
=2——2(9)(2),
z—3

whereupon
3 1
29" 2ZT3$(¢)(Z)-
Hence,
L)) = S
P =513
3
= 55(6—3()6, 0)()
3
=9 (56(_3)()(, 0)) (Z)
Consequently

¢x) = %efs(x, 0).

Example 13 Consider the equation

cos, (x, 0) » sinh;(x, 0) = /x es(x,c())o(Ay, FHh=%.
0

Here
c)=x+1, pux)=1, xe 5.

The given equation we can rewrite in the following form

cosz(x, 0) x sinhz(x, 0) = /x e3(x, 0 () () Ay
0

or
cos, (x, 0) x sinh3(x, 0) = e3(x, 0) x ¢ (x).

We take the Laplace transform of both sides of the last equation and we obtain
Z(cosy(x, 0) » sinh3(x, 0))(z) = ZL(e3(x, 0) x ¢ (x))(2)

or

Z(cosy(x, 0))(2)Z (sinh3(x, 0))(z) = Z(e3(x, 0)(2)-Z($)(2),
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whereupon
z 3 1
= £ .
?+422-9 z-3 @)@
Hence,
3z
<z =
PO = e
9 1 %z+%
 13z43 0 244
9 1 n 9 z n 6 2
T 13z43 1372244 137244
9 9 6 .
— _Eg(e(_S) (x,0))(z) + E.,i”(cosz(x, 0)(z) + E.Z(smz(x, 0)(2)
= 2 (— o0 0) + — cosy(x, 0) + - siny(x, 0)
= 136(_3) X, 13 COSy (X, 13 SNy (X, .
Consequently

P(x) = —%6(,3)()«?, 0) + % cos(x, 0) + % sinj (x, 0).
Exercise 8 Use the Laplace transform to solve the following equations.
L0 = [ aneman %=2.
2. coshy(x,0) = /Ox &5 (x, P AY, Fp=2""U{0},
3. sinha(x, 0) = /0 CcoshI(n 6 Ay, To = s,
4. e3(x,0) xex(x,0) = /Ox es(x, oMo Ay, FHh=Z,
5. e1(x,0) xe7(x,0) = 4/x coshy(x, o ()P () Ay, F = Z,

0
6. sinh,(x, 0) x cos_3(x, 0) = 2/ sinhy(x, c ()P () Ay, Fp=Z.
0

7.5 Generalized Volterra Integro-Differential Equations
of the Second Kind

Here we consider the generalized Volterra integro-differential equation of the second
kind

6% (0) = ulx) + / KoM Ay, xe T, (7.16)
0
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p©0) =do, 2O =¢1, ..., ¢*©0) =1, (7.17)

where K (x, 0)is ey (x, 0), cosh, (x, 0), sinh, (x, 0), cos, (x, 0), sin, (x, 0), or A (x, 0),
u: 9% —> % be a given continuous function, ¢,,, 0 < m < n — 1, are given con-
stants.

The Eq.(7.16) we can rewrite in the following form

¢ () = —ux) + K(x,0) » p (x).
We take the Laplace transform of both sides of the last equation and we get

L)) = Lux) + K (x,0) % $(x))(2)
= LW () + LK, 0) % $(x)(2)
= LW (2) + LK) L () (2),

whereupon

n—1

TL@E) - D Y0 = L)) + LK) L))

=0
Hence, using (7.17), we obtain

n—1

"= ZEK)2))ZL(P)(z) = L)) + Zz’¢A""” (0)
=0

n—1

=LW@+ D u1s

1=0

Example 14 Consider the equation

PY () = —1— [ferlx,y+ DM Ay, Fo=Z,
p(0) =1, ¢2(0) =—1.

Here
cx)=x+1, ux)=1, xe 5.

Then the given equation we can rewrite in the form

A (x) = —1 — /0 es(x, 0 (y)¢ () Ay

or

2 (X) = —1 — ex(x, 0) * p ().
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We take the Laplace transform of both sides of the last equation and we get
L@ (2) = L(—1 — er(x,0) * p(1)) (2)
= Z (1)) — ZL(ea(x,0) * $(x))(2)
1
=—C- Z(ex(x,0)(2)L () (2)

1 1
=——-——=2(¢)().
z z—2

Hence, | )
2L (@)@ — ¢*(0) — 2¢(0) = - Z_—23(¢)(Z),
or | |
PLG@)Fl—z=— — —— L)),
z z—2
or .
(z —l——).i”(d))(z)—z—l—g
o 2 1 z2 1
—Z+5f(¢)<z) =
o 1)(z> 1 2 1
D& 22D gy = L2
z—2
or |
7 —
z—_2$(¢)(1) =-
or
z—2
L(P)(2) = -1
_2_ 1
Tz oz—-1
=22L(hy(x,0))(z) — ZL(e1(x,0))(2)
=22 —ei(x,0)().
Consequently

¢(x) =2 —ei(x,0).

Example 15 Consider the equation
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¢2(x) = hi(x, 0) + /Ox hi(x, 0 ()P Ay, ¢(0) =0.
The given equation we can rewrite in the form
¢ (x) = hi(x, 0) + Ry (x, 0) * p(x).
We take the Laplace transform of both sides of the last equation and we obtain

L) = L(hi(x,0) + hi(x, 0) * (X)) (2)
= L)) + L (x,0) x P () (2)

= Z(h)@) + Z(h)(2)Z () ()

1 1
=2 + 2—23(45)(2)

Hence, . |
2L ($)(z) — ¢ (0) = = + Z—zf(@(z),
or | |
2Z(P)(2) = = + Z—z.i”(@(z),
or | |
(Z - Z—2) L(P)(z) = 2

or R |

L@@ =
or

L(P)(z) =

2 -1

_ 1

T @-DE@+z+1)
111 z42
T 3z-1 324741

1 1 Z+2
=2 0@)—s——————35
3 3 2 ’
@+ +(4)
| | 4143
= 3Z((x.0)() - 52122—2\62
(Z + j) + (T)
i+ 5

1 1 1

= zZei1(x,0)@ - 3 -5
3 3 2 22 2 2
1)+ (F) e+ + (%)
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1 1 241
= 1L, 0)@) — s ——— s —
3 3 2
C+4)7+ (2)

IS

1
2B 12, (B
T (z+3) +(§)
1 1 +3
= gf(el(x,o))(z)—g 122 2 2 g 1 s3)?
Cra'+ (7). e (y)
- %.z(el(x, 0)) — %i” (q@s 0)cos s )

2—p(x)
3
—i.ﬁf (e_l(x, 0)sin 5 (x, 0))
3 2 2—p)

o3

(9S)
—
“lus
S

= ,Sf(;el(x, 0) — le 1(x 0)cos 5 (x,0) — ée 1(x 0)sin 5 (x, 0)).

3 72 ”—/L(r) 2—p(x)

Consequently

¢ (x) = —el(x 0) — le (x, 0)cos 5 (x,0) — ?e_é(x, 0)sin 5 (x,0).

2—p(x) 2—p(x)

Example 16 Consider the equation

P4 (x) = ea(x, 0) + 4/: e3(x, 0 ()P () Ay, ¢(0) =0,
The given equation we can rewrite in the form
¢°(x) = ex(x, 0) 4 4e3(x, 0) * ¢ (x).
We take the Laplace transform of both sides of the last equation and we get

LM (2) = L(ea(x,0) + des(x, 0) x ¢ (x))(2)
= Z(er(x,0))(z) +4.2L(e3(x,0) x p(x))(2)
1
= +4.Z(e3(x,0)(2) L ($)(2)
1

4
= P + Z_—3=2ﬁ(¢)(Z)-

Hence,

1
Z(P)2) = i —3(45)(2)

or

4
(z - z_) L)) =

or
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Z2

—3z—4
LR ) = ——
z—3

2’
* C— D+ I
z—4)(z
0@ =
or
z—3
&z =
PO = e+ D
B z—2-—1
T @=-DE—-He+ D
B 1 3 1
S @D+ @-2@—-HE+ D
LY L N Y S
T 5\z—4  z+1 z—2
11 _1 1 _1 1
C5z—4 5z4+1 5@E@—-4Hz-2)
l 1 1
5z+1z-2
_1 1 1 1 _i 1 3 1
5z—4 5z+1 10 -4 z-=-2
s
5\z—2 z+
RN R L1
5z—4 5z4+41 10z—4 10z-2
i 1 _i 1
15z—-2 15z+1
1 1 1 1 4 1
= — + - - —
10z—4 6z—2 15z+1
1 1 4
= 53(640@ 0)(2) + —i”(ez(x, 0)(z) — Ef(eq(x, 0))(2)
=% ! 0)+ = 0 4 0
= Eﬂ(xa ) ez(x ) — 56 1(x,0) ) (2).
Consequently

1 1 4
$(x) = 75ea(x. 0) + zea(x, 0) — e (x, 0).

365
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Exercise 9 Use the Laplace transform to solve the following equations.

1.
I¢>A2(X) =e1(x,0) + f5 7 (x, 0 () () Ay
¢(0) =920 =1,

I 2 (x) = hi(x, 0) + [ e7(x, 0 (1) (y) Ay
$(0) =0, ¢20) =1,

{(PAz(x) = =142 [{ h3(x, 0 ()P () Ay
¢(0) = ¢2(0) = 0.

7.6 Generalized Volterra Integro-Differential Equations
of the First Kind

Here we consider

X

u(x) = Ay / Ky (x. 0 (0)¢ () Ay + A / Ka(r. oY )4y, (1.18)
0 0

0 =¢o, $2O0) =¢1, ¢V (0) =1, (7.19)

where Kj(x,0) and K,(x,0) are ey(x,0), coshy(x,0), sinh,(x,0), cos,(x,0),
sing (x, 0) or Iy (x, 0), u : JH —> % be a given continuous function, A and A, are
parameters.

The Eq. (7.18) we can rewrite in the following form.

u(x) = 1K1 (x, 0) x p(x) + 2K (x, 0) % ¢ (),
We take the Laplace transform of both sides of the last equation and we find

L)) = LMK (x, 0) x ¢ (x) + AaKa(x, 0) x ¢ (x))(2)
= M LK (x,0) x ¢ (x))(2) + 2L (Ka(x, 0) % 2" (1)) (2)
= ML K) ()L ($)(2) + 1L (K) ()L (") (2)

n—1
= ML (K)ZL()(@) + 1L (K) () (z”i”(fb)(z) >l <0>)
=0
= ML KDDL (D)) + "ML (K) ()L ($)(2)
n—1

— 1L (K)(@) D 1,

i=0
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whereupon
n—1
(ML EKDE) + "ML (K@) L)) = L) @) + LK) @) D dbu1-
=0

Example 17 Consider the equation

coshy (x, 0) = —3/ es(x,U(V))fiﬁ(y)Aer/ es(x, a () (M Ay, ¢(0) =0.
0 0

The given equation we can rewrite in the following form
coshy (x, 0) = —3e3(x, 0) * ¢ (x) + e3(x, 0) x ¢2 (x).
We take the Laplace transform of both sides of the last equation and we get

Z(coshy(x, 0))(2) = L(=3e3(x,0) x p () + e3(x, 0) x 6 (1)) (2)
= Z(=3e3(x,0) x 9 (1)) (2) + L (e3(x, 0) » 9 (1)) (2)
= —3.Z(e3(x,0) x 9 (1)) (2) + L (e3(x, 0).L (9% (1)) (2)

1
= —3Z(e3(x,0))(2).L () (2) + 3 (zZ (@) (2) — ¢ (0))

3
= L)+ ——L D))
z—3 z—3

== §$(¢)(z)
= L))
ie.,
Z($)(2) = Z(coshy(x, 0))(2).
Consequently

¢ (x) = coshy(x, 0).
Example 18 Consider the equation

h(x,0) = [Yp0) Ay + 4 [F ha(x, 0 (1)) (y) Ay
¢(0) = ¢2(0) = 0.

The given equation we can rewrite in the following form

hi(x, 0) = ho(x, 0) % (x) + 4y (x, 0) * ¢ (x).
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We take the Laplace transform of both sides of the last equation and we find

L (x,00)() = L (ho(x, 0) * §(x) + 4hy(x, 0) % $*" (1)) (2)
= L(hy(x. 0) % $())(2) + 4L (hy(x. 0) * $* (1)) (2)
= L(ho(x,0)(2)-Z($) (@) + 4L (o (x, 0) ()L (™) (2)

1 1
=E$wmn4;wzwmww%m—w©)

1 4
= 25(45)(1) + Ef(cb)(z)

5
= -Z(#) ().
Z
Hence, s )
L@ = 5.
Z Z
whereupon
11
L)) = 52
Z
1
= gf (1 (2).
Consequently
600 = ¢

Example 19 Consider the equation

h(x,0) = —/ ¢(y)Ay+2/ h(x, 0 ()¢ () Ay, ¢(0) = 1.
0 0
The given equation we can rewrite in the following form
hi(x,0) = —ho(x, 0) * ¢ (x) + 2h1 (x, 0) * ¢ (x).

We take the Laplace transform of both sides of the last equation and we find
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L (x,0))(2) = L(=ho(x, 0) % p(x) + 2k (x, 0) % ¢* (1)) (2)
= —ZL(ho(x,0) % p(x))(2) + 2L (hy (x, 0) x p* (x))(2)
= —L(hy(x,0)ZL($)(2) + 2L (h1 (x,0)(2) L () (2)

1 2
= LOE) + 5L~ 0)
1 2 2
=2+ -LP ) - 5
Z Z Z

1 2
=L - 5.
Z V4

whereupon
1 2 1
Ziﬂ(tﬁ)(z) —ZT 2
or | 3
~L@B)@) = 3,
Z Z
or
3
L)) = -.
b4
Consequently
¢(x) =3.

Because ¢ (0) = 1 the considered problem has no solution.

Exercise 10 Use the Laplace transform to solve the following equations.

1.
[ coshs(x, 0) = [ e1(x, 0 ()P Ay — 3 [i ea(x, 0 ()™ () Ay
¢(0) = $2(0) =0,
2. ,
[ sinh3(x,0) = [ @Ay + [, coss3(x, o (3))p? (y) Ay
p(0) =1, ¢4(0) =0,
3.

’64(16, 0) = -2 [y e-1(x, s Ay + [y ex(x, 0 (1))p™ () Ay
$(0) = ¢4(0) = 1.
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7.7 Advanced Practical Exercises

Problem 1 Leto, 8 € Zand 1 + au(x) #0, 1 4+ Bu(x) # 0forallx € 7. Prove
that 5

<z (ea(x, 0) sinh%w (x, 0)) (@) = m

whenever

lim ey (x, 0) smh £ (x 0) = hm eq(x, 0)sinh?, (x,0) = 0.

X—>00 l+mu

Problem 2 Letw, 8 € Zand 1 + au(x) #0, 1 + Bu(x) # Oforall x € 7. Prove
that
I—«o

(ea (x,0)cosh_s_ (x 0)) (@) = G-y —p

whenever

lim e, (x, 0) cosh £ (x 0) = hm eq(x,0)cosh?; (x,0) = 0.

X—> 00 1+u/¢

Problem 3 Prove the following relations.

1. If o # 0, then

k

1 1
eq(x, 0) % I (x, 0) = —realn 0)->" — — i, 0).
j=0

2. Ifa® 4 B2 #0, then

aey(x,0) + Bsing(x, 0) — a cosg(x, O)
a2+ p?

ey (x,0) x cosg(x,0) =

3. Ifaa #0, o # B, then

o sing (x, O) B sing (x, O)
—p2

sing (x, 0) * sing (x, 0) =

4. fa #0, a # B, then

acosg(x, 0) — a cosy(x,0)

sing (x, 0) * cosg(x, 0) = 52

5. If o # 0, then
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sing (x, 0) * siny (x, 0) = — sin, (x, 0) — Ex COSq (x, 0).
o

6. If k > 0, then

cosy (x, 0) *hk(x 0)

k(k+|) hi—2j—1(x,0)

(=D aw sing (x, 0) + ZJ 0(—1)’T if k is even
k(k+l)

(=" L cosa (v, 0)+Z 21yl 2100t kis odd.

Problem 4 Use Laplace transform to solve the following initial value problem

Y + 9¢ = sins(x, 0)
$(0) = p4(0) = 1.

Answer

ox) == s1n3 (x, 0) % sin3(x, 0) + %smg(x 0) + cos3(x, 0).

Problem 5 Solve the equation

$() = 2e5(x,0) — 5 /0 es(x, (1)) (1) Ay.

Answer
Px) = —e 1(x,0) — —es(x,O)-

Problem 6 Use the Laplace transform to solve the following equations.
1 es(x,0) +e»(x,0) = / S, NpMAy, H=Z
0
2. sinhy(r, 0) % e_s(x, 0) = / 0 PM Ay, T =27 U0},
0

X
3. sinh,(x, 0) * coshs (x, 0) =/ coshf (x, oAy, T = M,
0

4. e3(x,0) x e_»(x, 0) + coshy (x, 0)=/ ei(x,c()p(MAy, FH=2,
0

5. e3(r.0) + e_s(x, 0) = 4 / coss(xr. (PO Ay, To =
0

6. sinha(x, 0) + cosy (x, 0) = 2 / sinh; (x, o ()P (N Ay, T = Z.
0

371
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7. e_3(x,0) + hy(x, 0) x e_»(x, 0) 4+ coshy(x, 0) = / es(x, () (y)Ay,
T =2, '

8. e_3(x,0) + es(x, 0) x sinh; (x, 0) = /X cosh3(x, c () () Ay, =%,
0

9. sing(x, 0) x e_>(x, 0) + cosh_» (x, O):/ sinh; (x, c ()P () Ay, F=2Z.
0

Problem 7 Use the Laplace transform to solve the following equations.

1.
[wﬂm=qwm—3ﬁama®m@My
$(0) =¢2(0) = 1,
2. ,
H&co=mmm—4ﬁmewWWMy
$(0) =1, ¢2(0) =2,
3. )
{¢*m=—mawm+2ﬁme@w@My
$(0) = ¢2(0) = 0.
4.

{¢”@=@w®—3ﬁmmeW@My
#(0) = $2(0) = ¢4 (0) = 0.

Problem 8 Use the Laplace transform to solve the following equations.

1.

[coshz(x, 0) = —4 [ sinh; (x, s (MNP (N Ay — [ e2(x, 0 ()™ (v) Ay
$(0) =0, ¢40) =1,

2.
[e—a(x, 0) = — fo siny (x, 0 ()P Ay + [ coshs(x, 0 (1)) () Ay
P(0) =1, ¢4(0)=2,
3. i
{Sinh4(x, 0) =2 5 es(x, o (P Ay =2 [ er(x, o ()¢ (y) Ay
¢(0) = ¢*(0) =0,
4.

{Sinh1(x, 0) = foxsin%(x, (P21 Ay =2 [ e1(x, 0 (1)p* () Ay
$(0) =¢2(0) = 9% (0) =1,
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5.
H e3(x,0) =5 ] es(x, oAy + Jo e1(x, 0 (A’ (1) Ay
$(0) =¢%(0) =0, ¢%(0) =1,

Icosh4(x, 0) = [ sinh3(x,2(r(y))¢(y)Ay +2 [ el(x, o (1)) (v) Ay
$(0) = ¢4(0) =0, ¢*(0) =-3.



Chapter 8
The Series Solution Method

In this chapter we describe the series solution method for generalized Volterra integral
equations and generalized Volterra integro-differential equations.

8.1 Generalized Volterra Integral Equations
of the Second Kind

Definition 1 A real function u(x) is called analytic if it has delta derivative of all
orders such that the Taylor series at any point « in its domain

g(0) = > fA (@hi(x. )

k=0
converges to f(x) in a neighbourhood of «.

For simplicity, the generic form of Taylor series at x = 0 can be written as

) =D fuhn(x,0). 8.1)

n=0

In this section we will present a useful method for solving generalized Volterra
integral equations of the second kind.

We will assume that the solution ¢ (x) of the generalized Volterra integral equation
of the second kind

¢(x) = fx)+ k/ K(x,y)p(y)Ay (8.2)

© Atlantis Press and the author(s) 2016 375
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is analytic, and therefore possesses a Taylor series of the form given by

P(x) = D ayhy(x.0), (8.3)

n=0

where the coefficients a,, n > 0, will be determined recurrently. Also, we assume
that f(x) is of the form given by (8.1).
Substituting (8.1) and (8.3) in (8.2) gives

D (x,0) =" fila(x,0) +A/ K(x,y) (Zhn(y, 0)) Ay.
n=0

n=0 0 n=0

Next we equate the coefficients of 4, (x, 0) to obtain a recurrence relation in a,,,
n > 0. Solving the recurrence relation will lead to a complete determination of the
coefficients a,, n > 0. Having determined the coefficients a,,, n > 0, the series solu-
tion follows immediately upon substituting the derived coefficients into (8.3). The
exact solution may be obtained if such an exact solution exists. If an exact solution
is not obtainable, then the obtained series can be used for numerical purposes.

Example 1 Consider the equation

¢ (x) :1+/0 P (y)Ay.

We have -
$(x) = D a,hy(x,0)
n=0
and
o0 X o0
S a0 =14 [ 3 ahur. 04y
n=0 0 n=0
S X
=143 a [ m0.04y
n=0 0
o0
=14 ayhy1(x,0),
n=0
whereupon

apho(x,0) +arh1(x,0) +arhy(x,0) + - - = ho(x,0) + agh1(x,0) +arhy(x,0) +--- .
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Hence,

ap = 1

ay = ap

a =da

apr1 =ay, n>2.
Therefore

a, =1, n=>0.
Consequently

¢(x) = ho(x,0) +hi(x,0) + -+ hy(x,0) + - -
= e1(x,0).
Example 2 Consider the equation
¢ (x) = sinh;(x, 0) + 2/ o (y)Ay.
0

We have

sinh; (x, 0) = Zh2n+1(x,0) and ¢(x) = Zanhn(x,O).
n=0

n=0

Then

o0 o) ¥
> aha(6,0) = S a0 +2 [ 3 arh(3.0)4y
n=0 n=0 0 n=0

o0 o0 X
= > 0423 a [ (.02
n=0 0

n=0

(&) [e¢]
= D s (6, 0) +2 D anhyga (x, 0),

n=0 n=0
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Hence,

apho(x,0) 4+ ajh(x, 0) + axhy(x, 0) + azhs(x, 0) + agha(x,0) + - -

= hi(x,0) + h3(x,0) + hs(x,0) + - -

+2aph(x, 0) + 2a1ha(x, 0) 4+ 2axh3(x, 0) 4+ 2azha(x,0) + - - - .

Therefore )
ap = 0
a; =14 2ay
a) = 2(11
az =14 2a,
ag = 2(13
Ay = 2(/1211—1
Apt1 = 1+ 2a2n-
From here,
ag = 0
ay = 1
a; = 2
az =1+ 22=35
as = 10
and

¢(x) = hi(x,0) + 2hy(x, 0) 4+ Sh3(x,0) + 10h4(x,0) + - - - .

Example 3 Consider the equation

¢><x>=2+e1<x,0>—3/0 $()Ay.
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We have N N
e1(x,0) = D hy(x,0) and $(x) =D a,h(x.0).

n=0

Substituting them in the given equation, we get

Zanh (x,0) —2+Zh (x, 0)—3/ Zanh (x,0)Ax

n=0

o0 o0 X
=2+Zh,,(x,0)—32an/0 ha(y, 0)Ay
n=0 n=0

[o¢] [o¢]
= 2ho(x,0) + D ha(x,0) =3 > ayhupi(x, 0).

n=0 n=0

Hence,
agho(x,0) +ajhi(x,0) + axha(x, 0) + azhs(x, 0) + azhs(x,0) + - - -
= 2ho(x,0) + ho(x,0) + h1(x,0) + ha(x,0) + h3(x, 0) + ha(x,0) + - --

—3aphi(x,0) — 3ahy(x, 0) — 3arh3(x, 0) — 3azhs(x,0) —

Therefore
ap = 3
a) = 1-— 3610
a, =1 —3a
az=1—-3a,
a,=1—-3a,_1, n>4,
ie.,
ap=3
ap = -8
ap =25

ay = —T74
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and
¢(x) =3 —8hi(x,0) + 25h3(x,0) — 74h3(x,0) + --- .

Exercise 1 Find a solution ¢ (x) = Z anh,(x, 0) of the following equations.
n=0

1. 20(x) =3 —ex(x,0) +e1(x,0) —4‘/0x¢(y)Ay,

2. $(x) = 3cos (x, 0) — 2sina(x, 0) +/0X¢<y>Ay,

3. $() = e_1(x. 0) + 2coshy (x, 0) —4/Ox¢<y>Ay,

4. ¢(x) = 3 cosh, (x, 0) — 2 sinhy (x, 0) +/0X b (1) Ay,

5. ¢(x) = 4coshy(x, 0) — 3e_ (x, 0) + e_; (x, 0) +2/0x¢(y)Ay,
6. $(x) = 1 - 3c0s_3(x, 0) +/0x¢(ymy,

7. $(x) = 2e_(x, 0) — 3e;(x, 0) +2+/0x¢(y)Ay,

8. p(r) = 1 —3e_4(x,0) — /0 T 604y,

9. 6(x) =2cosh1(x,0)+3sinh2(x,0)+2/ox¢(y)Ay.

Lemma 1 Foreveryk,l € N we have

hiy1(x, 0) =/ hi—i(x, o (s)hi(s, 0)As
0

= /x hi_1(x,o(s))h(s,0)As.
0

Proof Note that
1
hit(x, 0) = hy(x,0),
h,0,0)=0, 0<i<I—1.

Therefore hy;(x, 0) is given by

hiy1(x, 0) =/ hi—1(x, 0 ($)hi(s, 0)As.
0
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Also,
k
hkA+]('x’ 0) = hl(-xa 0)5

h,0,00=0, 0<i<k—1I.

Consequently
X
hiti(x, 0) =/ hi—1(x, 0 (s))hi(s, 0)As,
0

which completes the proof.

Example 4 Let 7 = 2. Consider the equation

¢(x) = cos(x,0) + 2/0 ha(x, y + Do (y)Ay.

Here
oc(x)=x+1, xe 7.

Then the given equation we can rewrite in the following form
B0 = cos1(.0)+2 | (s ()64,
0

Let N
$(x) = D ayhy(x.0).
n=0

Then

S auha(6,0) = S -1)"h2, 5,0 2 [ hae, o) D anha (3,018
n=0

n=0 0 n=0

=D (=)' (x,00+2> a, / ha(x, 0 (9))ha(y, 0)Ay
n=0 n=0 0

= D (D hou(x,0) +2 D anhyss(x, 0).

n=0 n=0
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aoho(x, 0) + a1hi(x, 0) + azha(x, 0) + azhs(x, 0) + ashs(x,0) + - --

= ho(x,0) — hy(x,0) + hy(x,0) —---

+2aph3(x, 0) + 2arha(x, 0) + 2a2h5(x,0) + - - - .

Then

and

ag =1

a =0

a = —1

az = 2ay

as = 14 2a4 or
as = 2a,

az, = (=1)" + 2as,_3,

g1 = 20202, n >3,

ag =1
a =0
a = —1
a3 =2
as =1
as = —2

¢ (x) = ho(x, 0) — hy(x,0) + 2h3(x, 0) + hye(x,0) — 2h5(x,0) +--- .

Example 5 Let T = 2%y {0}. Consider the equation

Here

3
¢ (x) =thn<x,0)+

S 211+l _

n=0

o(x)=2x, x€ 7.

/0 71 (%, 2)6 (1) Ay.

Then the given equation we can rewrite in the following form

3
¢ (x) =thn(x,0>+

X AHnt+l _

n=0

/0 7Gx, 6 () () Ay.
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Then
o0
P(x) = D anhy(x,0).
n=0
Hence,

n+1

Zanh (x,0) =

3 o0
L] 0)+/ I, o) S (v, 0) Ay

n=0

Z 2
n=0
© ontl _ 3 .
= Z 3 hn(x 0)+Zan/ hl(xsa(y))hn(y,O)Ay
n=0 0
i ontl _ 3
= Z 3n 4 4n h ()C 0) + Zaﬂ n+2(x O)
n=0 n=0
& 2n+1 3
= Z 3 4]1 ]’l ()C 0) + Zan 2hn(x O)
n=0 n=2
1 1 > n+l __ 3
= _EhO(x’ 0) + 5}11(3@ 0) + Z (an—z + A ) h,(x,0),

n=2

whereupon

— 1 1
aoho(x, 0) +arhi(x,0) + D anha(x, 0) = == ho(x, 0) + i (x, 0)

n=2
2n+l -3
+n2;(a,, 2+W)h (x 0)
Therefore 1
ap = —3
a) = %

ontl_3
anza,1,2+w, nZZ

o0
Exercise 2 Find a solution ¢ (x) = Z a,h,(x, 0) of the following equations.
n=0

L. ¢(x)=€2(x,0)+€1(3€70)+/ h3(x,y +3)p(y)Ay, T =3Z,
0

2. ¢(x)=COSz(x,0)+4sin3(x,0)+/ ha(x,y + Dop(»)Ay, T =2,
0
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X

3. ¢(x) =e1(x,0) +2 4+ cosh;(x,0) + es(x,y+ Dop(y)Ay, T =2,

S

=

4. ¢(x) = coshz(x, 0) + sinh,(x, 0) ~|—/ hi(x,2y)p(y)Ay, T = 2% U {0},
0

5. ¢(x) = coshi(x,0) + e;(x,0) + e_;(x,0) + [ hio(x,30)p(NAy, T =
3% U {0},

6. B(x) = 10x+7—30082(x,0)+/x ha(x, 290604y, T =27 U {0},
0
7. ¢><x>=2e_2i<x,o>+ei<x,o>+2+/ ha(x,y + DAy, T =%,
0

X

5. 90 = o (6,0) ~ 3es(x,0) = [ halx,y + D90, T =2,
0
9. ¢(x) = coshs(x, 0) +sinh_,(x,0) +2 fox hg(x,2y)p(y)Ay, T = 24U {0}.

8.2 Generalized Volterra Integral Equations
of the First Kind

Here we consider the generalized Volterra integral equation of the first kind

Flx) = /0 K(x. 1)$() Ay, 84)

where the kernel K (x, y) and the function f(x) are given real-valued functions.
As in the previous section, we will consider the solution ¢ (x) to be analytic, where
it has derivatives of all orders, and it possesses Taylor series at x = 0 of the form

o0

$(x) = D ahy(x,0), 8.5)

n=0
where the coefficients a, will be determined recurrently. Suppose that
o0
FG) =D fuha(x,0). (8.6)
n=0
Substituting (8.5) and (8.6) into (8.4) gives
o) x [
> A0 = [ K 2 ash(r. 014y,
n=0 0 n=0

We next equate the coefficients of 4, (x,0), n > 0, in both sides of the resulting
equation to obtain a recurrence relation ina,, n > 0.
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Example 6 Consider the equation

er(x,0) -1 :/0 ¢ (y)Ay.

Let
oo
$(x) =D aphy(x,0).
n=0
Then
Zh co-1= [ Zanh (.00 4y
o X
=>a [ 002
n=0 0
oo
=D anhyi1(x,0),
n=0
whereupon
D ha(x.0) =D dyhysi (x,0).
n=1 n=0
Hence,
h1(x,0) + ho(x,0) + h3(x,0) 4+ - - = aghi(x,0) + arha(x,0) + arh3(x,0) +--- .

Therefore a, = 1 for all n € 4 and

P(x) =D ha(x,0) = e (x,0).

n=0
Example 7 Let = 2. Consider the equation

[e¢]

23y x,0) = [ e,y + D004y,

n=4
Here 0(x) = x + 1, x € 7. Then the given equation can be rewritten in the form

o0

3 32, x,0) = /O hs(x, 0 ()P () Ay.

n=4
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Let
oo
P(x) = D anhy(x,0).
n=0
Then
00 X 00
>3 0 = [ G a0) X004y
n=4 0 n=0
o X
=S a [ hate oD G0y
n=0 0
oo
= D duhya(x,0)
n=0
oo
=D dnshy(x,0).
n=4
Consequently
a,_4=3"% n>4,
or
a, =3"" n>0.
From here,
o0
$(x) = D 3", (x,0).
n=0

Example 8 Let 7 = 2% U {0}. Consider the equation
0 X
2(3" — 4 h,(x,0) = 2/ ha(x, 2y)¢(y)Ay.
n=0 0

Hereo (x) = 2x, x € .7.Thenthe given equation can be rewritten in the following
form

2(3" — 4", (x,0) = 2/0 ha(x, 0 (y)$(y)Ay.
n=0

Let N
P(x) = D ahy(x,0). 8.7)

n=0
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Then
o] x [e 9]
D 3" =4, (x,0) =2 / ha(x,0(3) D anha(y, 0) Ay
n=0 0 n=0
o X
=23 a, [ hatr. o (k3,012
n=0 0
oo
=2 dphuys(x,0).
n=0
Hence,

3% —4N(x,00 =0, @' —4Hh(x,00=0, 3> —4)hy(x,00=0 on 7,

which is a contradiction.
Therefore the considered equation has not any solution of the form (8.7).

o0
Exercise 3 Find a solution ¢ (x) = Z anh,(x, 0) of the following equations.
n=0

1. sinhy(x, 0) =2/ oAy, T =%,
0

2. coshl(x,O)—i—el(x,O):/ hi(x,y+ Do(y)Ay, T =%,
0

3, sinh_l(x,O)z/xd)(y)Ay, 7 =2/% U o).
0

8.3 Generalized Volterra Integro-Differential Equations
of the Second Kind

We will assume that the solution ¢ (x) of the generalized Volterra integro-differential
equation of the second kind

¢“"(x)=f(x)+k/ K. )00y, d*O) = 0<k<n—1, 8.8)
0

is in the form

$(x) =D aphy(x,0). (8.9)
n=0

Here K : I X T +—— %, f: T > Z are given continuous functions, A is a
parameter.
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The first few coefficients a;, 0 < k < n — 1, can be determined by using the initial
conditions so that
¢ (0) = ap = oo,

¢2(0) = a1 = ¢,

2" (0) = a,_1 = 1.

The remaining coefficients a; of (8.9) will be determined by applying the series solu-
tion method to the generalized Volterra integro-differential equations of the second
kind. Substituting (8.9) into (8.8) gives

[e 9] A x [e9)
(Zakhk(x, 0)) = u(x) + A/O K(x,y) D axhi(y, 0)Ay.
k=0

k=0

We next equate the coefficients of 4, (x, 0) into both sides of the resulting equa-
tion to determine a recurrence relation in a;, k > 0. Solving the recurrence relation
will lead to a complete determination of the coefficients a;, kK > 0, where some of
these coefficients will be used from the initial conditions. Having determined the
coefficients a,,, n > 0, the series solution follows immediately upon substituting the
derived coefficients into (8.9). The exact solution may be obtained if such an exact
solution exists. If an exact solution is not obtainable, then the obtained series can be
used for numerical purposes.

Example 9 Consider the equation

¢ (x) =1 ~I—/0 P(NAY, $(0) = ¢2(0) = 1.

We will search a solution in the form
o0
P(x) = D ayhy(x,0).
n=0

Then, using the initial data,

¢0) =ap =1,

00 A
¢°(x) = (Z anhy (x, 0))
n=0
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o0
= a,h; (x,0)
n=0

= zanhnfl(-xs 0)9
n=I1

$%(0) =a; =1,

00 A
¢ (x) = (Z i (x, 0>)
n=1

oo
= > a,h (x.0)
n=I

o]

= D duhya(x,0)

n=2

9]
=D a2l (x, 0).

n=0
We substitute in the given equation and we find

o0 X o0
S a0 =14 [ ahn .08y

n=0 0 n=0

o X
— 140 [ 02
n=0 0

00
=1 + Zanhn+l(xv O)
n=0

Hence,
azho(x,0) + azhi(x,0) + asha(x,0) + ashz(x,0) + - - -

= ho(x,0) +aohi(x,0) + ajhy(x,0) + axh3(x,0) + - - .
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Therefore
as =1
as = ap
as = aq
as = ap
| an = a,—3, n>6.

Consequently a, = 1 for all n € .4 and

¢ (x) = ho(x,0) 4+ hi(x,0) 4+ ha(x,0) + h3(x,0) + - --

= e1(x,0).
Example 10 Consider the equation
¢4 (x) = ha(x,0) +2 [) p(y) Ay

p(0)=1, ¢2(0)=—1, ¢$*(0)=0.
We will search a solution of the form
o0
$(x) =D ayhy(x,0).
n=0

Using the initial conditions, we obtain

¢0) =ap =1,

00 A
¢°(x) = (Z anhy (x, 0>)

n=0

= ianhf(x, 0)

n=0

00
= :E:anhn—l(xao)»

n=1



8.3 Generalized Volterra Integro-Differential Equations of the Second Kind

$4(0) = a; = —1,

00 A
¢* (x) = (Z anha— (x, 0>)
n=1

anhf_l (.X, 0)

I
Mz

3
I

I
Nk

aﬂhn—2('x’ 0)7

=
Il
)

2 (0) = ar = 0.

Also,

¢ (x)

Il
o

3
1
S}

A
anhn72(xv 0))

a,h® ,(x,0)

I
Mz

3
Il
0

I
Mz

anhn—S (X ) 0) .

3
Il
w

We substitute in the given equation and we find

n=3

0 X
=0 +23 0 [ h0.04y
n=0 0

o0
= hy(x,0) 2 ayhps(x,0).
n=0

00 x 0
Zanhn73(-xa 0) = hz(x, 0) + 2/ Zanhn(ys O)Ay
0 n=0

391
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From here,
azho(x, 0) + ash(x, 0) + asha(x, 0) + ashsz(x, 0) + azha(x,0) + - -

= 2aph(x,0) + 2a; + Dhy(x, 0) + 2a2h3(x, 0) 4+ 2azhs(x,0) + - - - .

Therefore )
az =0
as = 2ay
as = 2a; + 1
ag = 2a,
a; = 2az
a, =2a,_4, n >3,
whereupon
a3 =0
ag =72
as = —1
ag =0
a;=0
ag =4
ag =0
Hence,

¢(x) = ho(x,0) — hi(x, 0) + 2h4(x,0) — hs(x,0) +4hg(x,0) +--- .
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o0
Exercise 4 Find a solution ¢ (x) = Z a,h,(x, 0) of the following equations.

=0
" ¢4 (1) = 20(x) = 1 +2 [ p() Ay
[¢(0> =¢2(0) = ¢’ (0) = 1,
2.
Y (x) — ¢A(x) — p(x) =3 [ p(n) Ay
[¢>(0> =¢2(0) =1,
3.

[ Y () + 50 (x) =302 (x) + [ ha(x, o (y)p(y) Ay
¢(0) = ¢*(0) = 2.



Chapter 9
Non-linear Generalized Integral Equations

The generalized Volterra integral equation

$(x) —A/' K(x. )$() Ay = u(x)

and the generalized Fredholm integral equation

b
() — A/ K. )¢ () Ay = u(x)

with which we were concerned in the previous chapters, are both linear with respect
to the unknown function ¢ (x).

In this chapter we shall give a brief sketch of several results for non-linear generalized
integral equations.

9.1 Non-linear Generalized Volterra Integral Equations

We consider the equation

¢ (x) +/ F(x,s,¢(s)As = u(x). 9.1)

We make the following assumptions. The function F(x, y, z) is continuous on a
domain D defined by

x| <b, |yl <b, |zl <c, b>a,
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and satisfies the Lipschitz condition with respect to z
|F(x,y,z1) — F(x,y,22)| < Lilz1 — 22].
The function u(x) is continuous for |x| < b, vanishes for x = a and satisfies the
Lipschitz condition

[u(x1) —u(x2)| < Lalx; — xa2f.

Let D’ be a domain given by

b
x| <d, a =min{b, ———)}, M =sup|F(x,V,2)|.
x| { L2+M} DP| (x,y,2)l

Then we can define on D' the successive approximations
$o(x) = u(x)
P1(x) = u(x) — [F F(x,s, go(s))As
$2(x) = u(x) — [V F(x,s, ¢1(s)As

Gu(x) = u(x) — [ F(x,5, $o-1(s)As, n=>3.

We can prove that {¢, (x)}2 , is uniformly convergent on D’ and the limit
lim ¢, (x) = ¢(x)
n—o00

is a unique solution of the Eq. (9.1).

9.2 Non-linear Generalized Fredholm Integral Equations

We consider the equation

b
d(x) + A/ F(x,s,¢(s)As = u(x) 9.2)

in the unknown function ¢ (x). We make the following assumptions. The function
F(x, y, z) is continuous on a domain D defined by

x| <a, lyl=b, lzl=c
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and satisfies the Lipschitz condition with respect to z
[F(x,y,z1) — F(x,y,22)| < Lilz1 — 22|

in D.
The function u(x) is continuous fora < x < b and

sup |u(x)|=u <c.
a<x<b

Let

cC—Uu
AM < ——, M=sup|F(x,y,2)|.
AR v up F(x, 2|

Then, for such A, we can define the successive approximations
$o(x) = u(x)
$100) = u(x) = 1 [} F(x, 5, do(s) As
$2(r) = u(x) = [ F(x,5,¢1(s) As

b (x) = u(x) — & [ F(x, s, $uo1()As, n > 3.

We can prove that the sequence {¢, (x)} -, is uniformly convergent on [a, b] and
lim ¢, (x) = ¢(x)
n—0o0

is a unique solution of the Eq.(9.2).
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