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Preface

This book deals with the analysis, the identification and the control of
a special class of systems with hysteresis. This nonlinear behaviour is
encountered in a wide variety of processes in which the input–output
dynamicrelationsbetweenvariables involvememoryeffects.Examples
are found in biology, optics, electronics, ferroelectricity, magnetism,
mechanics and structures, among other areas. In mechanical and struc-
tural systems, hysteresis appears as a natural mechanism of materials
to supply restoring forces against movements and dissipate energy.
In these systems, hysteresis refers to the memory nature of inelastic
behaviour where the restoring force depends not only on the instanta-
neous deformation but also on the history of the deformation.

The detailed modelling of these systems using the laws of physics is
an arduous task, and the obtained models are often too complex to be
used in practical applications involving characterization of systems,
identification or control. For this reason, alternative models of these
complex systems have been proposed. These models do not come, in
general, from the detailed analysis of the physical behaviour of the
systems with hysteresis. Instead, they combine some physical under-
standing of the hysteretic system along with some kind of black-box
modelling. For this reason, some authors have called these models
‘semi-physical’.

Within this context, a hysteretic semi-physical model was proposed
initially by Bouc early in 1971 and subsequently generalized by Wen
in 1976. Since then, it is known as the Bouc–Wen model and has
been extensively used in the current literature to describe mathemat-
ical components and devices with hysteretic behaviours, particularly
within the areas of civil and mechanical engineering. The model
essentially consists of a first-order nonlinear differential equation
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that relates the input displacement to the output restoring force in
a hysteretic way. By choosing a set of parameters appropriately, it
is possible to accommodate the response of the model to the real
hysteresis loops. This is why the main efforts reported in the litera-
ture have been devoted to the tuning of the parameters for specific
applications.

This book is the result of a research effort that was initiated by
the first author (Prof. Fayçal Ikhouane) in 2002 when he joined the
research group on Control, Dynamics and Applications (CoDAlab)
in the Department of Applied Mathematics III at the Technical
University of Catalonia in Barcelona (Spain). During the last five
years, the authors have explored various issues related to this model
as an analysis of some physical properties of the model, and the
parameteric identification and control of systems that include the
Bouc–Wen model.

The book has been written to compile the results of this research
effort in a comprehensive and self-contained organized body. Part of
these results have been published in scientific journals and presented
in international conferences within the last three years as well as in
lectures and seminars for graduate students. The contents cover four
topics:

1. Analysis of the compatibility of the model with some laws of
physics.

2. Relationship between the model parameters and the
hysteresis loop.

3. Identification of the model parameters.
4. Control of systems that include a Bouc–Wen hysteresis.

Although mathematical rigour has been the main pursued feature,
the authors have also tried to make the book attractive for, say,
end users of the model. Thus, the mathematical developments are
completed with practical remarks and illustrated with examples.
Their final goal is that the analytical studies and results give a solid
framework for a systematic and well-supported practical use of the
Bouc–Wen model. It is their hope that this has been achieved and that
the book might be of interest to researchers, engineers, professors
and students involved in the design and development of smart struc-
tures and materials, vibration control, mechatronics, smart actuators
and related issues in engineering areas such as civil, mechanical,
automotive, aerospace and aeronautics.
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1
Introduction

1.1 OBJECTIVE AND CONTENTS OF THE BOOK

Hysteresis is a nonlinear phenomenon exhibited by systems stemming
from various science and engineering areas: under a low-frequency
periodic excitation, the relationship between the system’s input and
output is not the same for loading and unloading. More precisely,
consider a single-input single-output (SISO) system excited by a peri-
odic signal that has a loading–unloading shape. Then, hysteretic
systems often present a periodic response that has the same frequency
of the input. When this frequency goes to zero, the quasi-static
response of the system has an output versus input plot that is a cycle
(not a line as would be the case for linear systems).

A fundamental theory allowing a general mathematical frame-
work for modelling hysteresis has not been developed up to now.
For specific problems, models describing hysteretic systems can be
derived from an understanding of physical laws. Usually this is an
arduous task and the resulting models are too complex to be used
in practical applications. In general, engineering practice seeks for
alternative more simple models which, although not giving the ‘best’
description of the physical behaviour of the system, do keep relevant
input–output features and are useful for characterization, design and
control purposes. These models are referred to as phenomenological
or semi-physical models.

Systems with Hysteresis: Analysis, Identification and Control using the Bouc–Wen Model
F. Ikhouane and J. Rodellar © 2007 John Wiley & Sons, Ltd
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In this context, several mathematical models have been proposed
to describe the behaviour of hysteretic processes [1]. The Duhem
model [2] uses the property that a hysteretic system’s output
changes its character when the input changes direction; the Ishlinskii
hysteresis operator has been proposed as a model for plasticity–
elasticity [3] and the Preisach model has been used for modelling
electromagnetic hysteresis [4]. A survey of mathematical models for
hysteresis may be found in [5]. In the areas of smart structures
and civil engineering, another model has been used extensively to
describe the hysteresis phenomenon: the so-called Bouc–Wen model
[6,7]. It consists of a first-order nonlinear differential equation that
relates the input displacement to the output restoring force in a
rate-independent hysteretic way. The parameters that appear in the
differential equation can be tuned to match the hysteresis loop of the
system under study.

The current literature devoted to the Bouc–Wen model is extensive
and focuses mainly on:

1. Tuning the model parameters to obtain a reasonable matching of
the physical hysteretic system under consideration.

2. Use of the obtained tuned model for simulation and control
purposes.

It is known that most works on this model have been practically
oriented. In general, rigorous mathematical justifications of the tech-
niques associated with the use of the model have been missing. To
give an example, while many papers have been devoted to tuning
the Bouc–Wen model parameters (that is the identification problem),
rigorous proofs on the convergence of the identified model param-
eters to their true counterparts are still lacking. Most works rely
mainly on numerical simulations to show this convergence.

The objective of this book is to contribute to fill this gap by
providing the reader with a rigorous treatment of this model. This
book is based on original works by the authors that have been
published in scientific journals within the last three years. It includes
a mathematical treatment of the subject along with several numerical
simulation examples. The book covers basically four topics:

1. Analysis of the compatibility of the model with some laws of
physics.
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2. Relationship between the model parameters and the hysteresis
loop.

3. Identification of the model parameters.
4. Control of systems that include a hysteretic part described by the

Bouc–Wen model.

The first topic is about checking whether the semi-physical Bouc–
Wen model is consistent with some general laws of physics. In partic-
ular, the conditions are given under which the model is input–output
stable and passive. These conditions translate into inequalities that
have to be satisfied by the Bouc–Wen model parameters in order
to comply with the stability and the passivity properties. Also cited
is a parallel work by other authors that checks the thermodynam-
ical admissibility of the Bouc–Wen model [8]. The techniques used
in this part of the book include Lyapunov techniques for checking
the stability of the model and passivity methods for the analysis of
energy dissipation. The result of this analysis is a set of inequalities to
be held by the Bouc–Wen model parameters. These inequalities will
prove to be fundamental in deriving a new form of the Bouc–Wen
model that can be called the normalized one. This new form will be
used extensively in the rest of the book. This first topic is the subject
of Chapter 2.

The second topic is the subject of Chapters 3 and 4. Chapter 3 is
devoted to the analytical description of the hysteresis loop. Indeed,
it is well known that, under loading and unloading, physical systems
with hysteresis do not follow the same path, which results in a
hysteresis loop. Due to the nonlinearity of the Bouc–Wen model, the
hysteresis loop has never been described analytically in an explicit
way. This lack of knowledge has impeded analytical studies on the
relationship between the model parameters and the shape and size of
the hysteresis loop. Chapter 3 presents a novel result of the authors
where, using a simple but rigorous mathematical framework, the
hysteresis loop is described analytically using some explicit functions
that can be computed numerically in an easy way. This analytical
description is illustrated and commented upon by means of a numer-
ical simulation example.

Chapter 4 uses the analytical description of Chapter 3 to study
the behaviour of the hysteresis loop when the Bouc–Wen model
parameters change. This chapter is basically divided into two parts.
The first part is focused on the variation of a given point of the
hysteresis loop along the axes of abscissas and ordinates when the
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parameters of the normalized Bouc–Wen model vary. The results of
this part are summarized in tables to facilitate their use. In the second
part of Chapter 4, the hysteresis loop of the Bouc–Wen model is
divided into four regions: the linear region, the plastic region and
two regions of transition. The points that define each region are
defined rigorously, which allows an analysis of the behaviour of the
different regions with respect to the normalized Bouc–Wen model
parameters. These regions are illustrated by means of several figures.

The third topic is the subject of Chapter 5. Identification of the
parameters of the Bouc–Wen model is a crucial issue and a technical
challenge for its practical use. This issue has been treated in the
literature using numerical simulations, and, to the best of the authors’
knowledge, no currently available method ensures analytically that
the identified parameters converge to their true counterparts. In this
chapter, a new identification technique is presented that uses the
results of Chapter 3 to identify in an exact way the parameters of the
normalized Bouc–Wen model. The technique consists of imposing
two specific input displacement functions that are wave-periodic; this
means that the displacements have a loading–unloading shape, and
are periodic in time. Then the two obtained limit cycles are used to
identify the Bouc–Wen model parameters. Chapter 5 is divided into
two parts:

1. The first part presents the identification methodology and analyses
its robustness with respect to external disturbances.

2. The second part of the chapter consists in applying this method-
ology to a magnetorheological (MR) damper, which is described
by a model that includes a Bouc–Wen hysteresis. The values of
the parameters of the model are taken from the literature and are
unknown to the identification algorithm. Numerical simulations
are carried out to illustrate the applicability of the identification
method.

The fourth topic is the subject of Chapter 6. It consists of the
control of a mechanical/structural system containing a hysteresis
described by the Bouc–Wen model, and represents a base-isolated
structure. The system parameters are not known exactly but they lie
in known intervals. The control objective is to regulate the system
around zero while maintaining the boundedness of the closed-loop
signals. The control law is a simple proportional-integral-derivative
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(PID) whose parameters are to be tuned in a specific way to guar-
antee the boundedness of all the closed-loop signals. Furthermore,
the controller ensures the asymptotic convergence to zero of the mass
displacement and velocity. The interest of this chapter is to show that
a linear controller may ensure the control objective in the presence
of a Bouc–Wen hysteresis.

1.2 THE BOUC–WEN MODEL: ORIGIN AND
LITERATURE REVIEW

The starting point of the so-called Bouc–Wen model is the early
paper by Bouc [6], where a functional that describes the hysteresis
phenomenon was proposed. Consider Figure 1.1, where � is a force
and x a displacement. Four values of � correspond to the single
point x = x0, which means that � is not a function. If it is considered
that x is a function of time, then the value of the force at the instant
time t will depend not only on the value of the displacement x at the
time t, but also on the past values of x. The following simplifying
assumption is made in Reference [6].

Assumption 1. The graph of Figure 1.1 remains the same for all
increasing functions x�·� between 0 and x1, for all decreasing functions
x�·� between the values x1 and x2, etc.

A2

A 0

A4

0

x0

x2 x3 xx1

M

x4

A1

A3

�

Figure 1.1 Graph force versus displacement for a hysteresis functional.
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Assumption 1 is what, in the current literature, is called the
rate-independent property [1]. To define the form of the func-
tional � , Reference [6] elaborates on previous works to propose the
following form:

d�
dt

= g

(
x�� � sign

(
dx

dt

))
dx

dt
(1.1)

Consider the equation

d2x

dt2
+� �t� = p�t� (1.2)

for some given input p�t� and initial conditions

dx

dt
�t0�� x�t0� and � �t0�

at the initial time instant t0. Equations (1.1) and (1.2) describe
completely a hysteretic oscillator.

Paper [6] notes that it is difficult to give explicitly the solution
of Equation (1.1) due to the nonlinearity of the function g. For
this reason, the author proposes the use of a variant of the Stieltjes
integral to define the functional � :

� �t� = �2x�t�+
∫ t

�
F �V t

s �dx�s� (1.3)

where � ∈ �−��+�� is the time instant after which the displacement
and force are defined. The term V t

s is the total variation of x in
the time interval [s� t]. The function F is chosen in such a way
that it satisfies some mathematical properties compatible with the
hysteresis property. The following is an example of this choice given
in Reference [6] so that these mathematical properties are satisfied:

F �u� =
N∑

i=1

Aie
−�iu with �i > 0 (1.4)

Equations (1.2) to (1.4) can then be written in the form

d2x

dt2
+�2x+

N∑

i=1

Zi = p�t� (1.5)
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dZi

dt
+�i

∣
∣
∣
∣
dx

dt

∣
∣
∣
∣Zi −Ai

dx

dt
= 0� i = 1� 	 	 	 �N (1.6)

Equations (1.5) and (1.6) are what is now known as the Bouc
model. The derivation of these equations is detailed in Reference [6].
The objective here is not to enter in these details, but only to give
a short idea of the origin of the model. Equation (1.6) has been
extended in Reference [7] to describe restoring forces with hysteresis
in the following form:

ż = −��ẋ�zn −�ẋ�zn�+Aẋ for n odd (1.7)

ż = −��ẋ�zn−1�z�−�ẋzn +Aẋ for n even (1.8)

Equations (1.7) and (1.8) constitute the earliest version of what is
now called the Bouc–Wen model. The shape of the hysteresis loop is
given in Reference [7] for different values of the model parameters.
Some subsequent works have proposed different modifications of the
model to take into account some physical properties observed exper-
imentally in some hysteretic systems. In Reference [9], the authors
consider the modelling of degradation in civil engineering struc-
tures. A multidegree of freedom shear beam structure is modelled in
the form

mi

(
i∑

j=1

üj + 
̈B

)

+qi −qi+1 = 0 for i = 1� 	 	 	 �n (1.9)

in which mi is the mass of the ith floor, 
̈B is the ground acceleration
and qi is the ith restoring force, including viscous damping. The
quantities ui are the relative displacement of the ith and the �i+1�th
stories, and qi is given as

qi = ciu̇i +�ikiui + �1−�i�kizi for i = 1� 	 	 	 �n (1.10)

in which ci is the viscous damping, ki controls the initial tangent
stiffness, �i controls the ratio of post-yield to pre-yield stiffness and
zi is the ith hysteresis which obeys the equation

żi = Aiu̇i −�i

(
�i�u̇i��zi�ni−1zi +�iu̇i�zi�ni

)

i

for i = 1� 	 	 	 �n

(1.11)
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where Ai� �i� �i� �i� i and ni are parameters that control the
hysteresis shape and the degradation of the system. System degrada-
tion is introduced into the model for zi by allowing the parameters of
the model to vary as a function of the response duration and severity.
Pinching has been considered in Reference [10] by modifying the
Bouc–Wen model in the form

ż = h�z�
u̇−�

(
��u̇��z�n−1z+�u̇�z�n)


(1.12)

where h�z� is the function that describes pinching. A discussion on
how to choose this function for wood systems is given in Refer-
ence [11]. Other modifications of the Bouc–Wen model include ones
to describe a soft soil [12], an asymmetric response as observed
in shape memory alloys [13], the response of steel buildings under
earthquakes [14], the drift observed under a zero-mean, broad-band,
stationary-random load [15] and the behaviour of low yield strength
steel [16]. In a parallel research line, extensions of the Bouc or
Bouc–Wen models to the multivariate case have been done in Refer-
ences [17] and [18].

Figure 1.2 illustrates that the literature on the Bouc–Wen model
has increased rapidly during the last few years. It quantifies the
number of papers published in journal papers, most of which are
quoted in the references given at the end of the book.

One of the main issues in the literature devoted to the Bouc–
Wen model is parameter identification. Several techniques have been
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Figure 1.2 Evolution of the Bouc–Wen model literature.
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used to deal with this problem. In Reference [19], a nonrecur-
sive least error minimization algorithm is used. A recursive least-
squares algorithm has been used in Reference [20], along with
the Newton method and the extended Kalman filtering technique.
More recent works that use some version of the least-squares algo-
rithm include References [21] to [25]. For example, Reference [21]
considers a second-order single-degree-of-freedom system which is
a mass subject to a nonlinear restoring force and an external exci-
tation. The restoring force is represented as a Bouc–Wen hysteresis
whose input is the velocity of the mass. When the mass is exactly
known, the restoring force can be calculated knowing the instanta-
neous external excitation and the acceleration of the mass. In this
case, all the Bouc–Wen model parameters appear linearly except
the exponent of the differential equation. This nonlinearity is coped
with by assuming knowledge of an upper bound on the exponent
and writing the Bouc–Wen differential equation as a sum of terms
whose number is the upper bound. Then, a first-order filter is used
to write the nonlinear system in a way that allows the use of the
least-squares algorithm to identify the system parameters. The case
of unknown mass is treated similarly by using an on-line estimation
of the restoring force.

Genetic-type algorithms for the determination of the Bouc–Wen
model parameters have been used in References [26] to [29]. For
example, Reference [27] uses a differential evolution algorithm
whose main difference with conventional genetic algorithms is in the
way the mechanisms of mutations and crossover are performed using
real floating point numbers instead of long strings of zeros and ones.
This algorithm starts with an initial pool of 15 three-dimensional
vectors drawn from uniform probability distributions. The differen-
tial evolution mutates a randomly selected number of the featured
generation with vector differentials. Each differential is the difference
between two randomly selected vectors, scaled with a parameter.
This process generates a new mutated vector. Natural selection is
implemented via a comparison process between the cost of the trial
vector and the cost of the target vector. The differential evolution
algorithm generates a new set of 15 three-dimensional vectors, which
is a new generation with improved characteristics.

Methods that use the frequency domain have been utilized in Refer-
ences [30] to [33]. For example, Reference [30] considers a second-
order system coupled with a Bouc hysteresis. The nonlinear system
is excited with a periodic input and the Bouc model parameters
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are determined by using a first harmonic approximation. A higher
number of harmonics is considered in Reference [31].

Neural networks have been used in Reference [34]. In this work, an
inverse model for a magnetorheological damper has been developed
using a multilayer perception network and system identification-
based ARX model.

Bayesian parameter estimation is used in References [35] to [38].
For example, Reference [35] uses a modified version of the extended
Kalman filter and the particle filter to determine the parameters of a
second-order Bouc–Wen hysteresis.

A nonparametric identification method has been proposed in
Reference [39]. The nonlinear hysteresis part of the system is written
as a linear combination of polynomial functions with unknown coef-
ficients. These coefficients are determined using a least-squares algo-
rithm.

Other proposed identification techniques are included in Refer-
ences [40] to [48].

Control of mechanical systems and structures with Bouc–Wen
hysteretic behaviour has also spurred much effort in the current liter-
ature. In this sense, it may be useful to distinguish between active
and semi-active control. A control law is said to be active when the
control signal directly feeds an actuator that applies the desired feed-
back control force. With an active control scheme, energy is injected
into the closed-loop system. A control law is semi-active when the
corresponding actuator does not pour energy into the closed loop.
Instead, the control signal is generated by the controller to modify
the characteristics of an adaptive passive-like actuator. Examples of
semi-active actuators are the devices based on smart materials, in
particular the magnetorheological dampers.

Now a brief overview of the recent control literature related to
the Bouc–Wen model is given. Active control is described in Refer-
ences [49] to [58]. In Reference [49] fuzzy control is used for a
structure modelled as a second-order single-degree-of-freedom struc-
tural system that includes a Bouc–Wen hysteresis. In Reference [51],
an H� controller is proposed to cope with the presence of uncertain-
ties. In the other references nonlinear controllers based on Lyapunov
techniques are used to ensure stability and some degree of perfor-
mance in spite of the uncertainties.

Semi-active control is often used in relation to MR dampers.
Reference [59] gives a state-of-the-art review of semi-active control
systems for the seismic protection of structures. Recent references
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include [53] and [60] to [72]. For example, Reference [60] considers
several semi-active control strategies using MR dampers for the
control of a six-storey building. These control algorithms include a
Lyapunov controller, decentralized bang-bang controller, modulated
homogeneous friction algorithm and a clipped optimal controller.
Each algorithm uses measurements of the absolute acceleration and
device displacements for determining the control action to ensure
that the algorithms would be implementable on a physical structure.
The performance of the algorithms is compared through a numerical
example, and the advantages of each algorithm are discussed.

The Bouc–Wen model has been extensively used for modelling
hysteresis in structural and mechanical systems [44, 62, 73–95].
For example, Reference [88] considers an MR damper for which a
dynamic model is to be developed. The damper force is written as
the sum of several terms:

1. The damper friction due to seals and measurement bias.
2. The product of the equivalent mass which represents the MR fluid

stiction phenomenon and inertial effect, and the acceleration of
the piston.

3. The product of the piston velocity and the post-yield plastic
damping coefficient.

4. The product of the piston position and the factor that accounts
for the accumulator stiffness and the MR fluid compressibility.

5. A hysteretic term.

The hysteresis part of the model is assumed to follow a Bouc–
Wen equation. Experiments are carried out to verify the validity of
the model.

There are other works that have used the Bouc–Wen model [8,
96–123]. These works are difficult to classify into a single homo-
geneous group as their research subjects are diverse. However, they
mostly deal with the analysis of some properties of systems that
include a Bouc–Wen hysteresis. For example, Reference [107] anal-
yses the influence of hysteresis dissipation on chaotic responses,
Reference [113] studies the nonlinear response of a Bouc–Wen
hysteretic oscillator under evolutionary excitation and Refer-
ence [110] addresses strategies for finding the design point in
nonlinear finite element reliability analysis.

This book treats the univariate basic Bouc–Wen model, that is
the one that has one input and one output, and describes only
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the hysteresis phenomenon regardless of other types of nonlinear
behaviours (like pinching and others). This choice is motivated by the
fact that most references treat only this basic Bouc–Wen model. The
extension of the results of this book to the multivariate model, which
may include other types of nonlinearities, is still an open problem
and a possible subject for future research.



2
Physical Consistency of the
Bouc–Wen Model

2.1 INTRODUCTION

In the current literature, the Bouc–Wen model is mostly used within
the following black-box approach: given a set of experimental input–
output data, how can the Bouc–Wen model parameters be adjusted so
that the output of the model matches the experimental data? The use
of system identification techniques is one practical way to perform
this task. Once an identification method has been applied to tune the
Bouc–Wen model parameters, the resulting model is considered as a
‘good’ approximation of the true hysteresis when the error between
the experimental data and the output of the model is small enough.
Then this model is used to study the behaviour of the true hysteresis
under different excitations.

By doing this, it is important to consider the following remark.
It may happen that a Bouc–Wen model presents a good matching
with the experimental real data for a specific input, but does not
necessarily keep significant physical properties that are inherent to
the real data, independently of the exciting input. In this chapter
attention is drawn to this issue, with particular focus on the following
two properties, which are shared by most of the hysteretic mechanical
and structural systems.

Property 1. Conceptualize a nonlinear hysteretic behaviour as a
map x�t� �→ �s�x��t�, where x represents the time history of an

Systems with Hysteresis: Analysis, Identification and Control using the Bouc–Wen Model
F. Ikhouane and J. Rodellar © 2007 John Wiley & Sons, Ltd
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input variable and �s�x� describes the time history of the hysteretic
output variable. For any bounded input x, the output of the true
hysteresis �s�x� is bounded. This bounded input–bounded output
(BIBO) stability property stems from the fact that mechanical and
structural systems are being dealt with, which are stable in the
open loop.

Property 2. Consider that x is the displacement of a one-degree-
of-freedom mechanical system connected to an element or device
that supplies a hysteretic restoring force �s�x� to the system. The
hysteretic element or device contributes to dissipate the mechanical
energy of the system as usually observed in practice. The Bouc–Wen
model has to reproduce this energy dissipation property in order to
represent adequately the physical behaviour of real systems.

Figure 2.1 shows an example of a typical hysteretic loop �x���
obtained by the Bouc–Wen model for a specific set of parameters
and for the signal x�t� = sin�t�. However, Example 1 shows that other
different bounded time histories x exist for which this Bouc–Wen
model delivers unbounded responses ��x�, which means that this
model is not BIBO stable.
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1

2
α = 0.5; k = 1; D = 1; A = 1; β = 0.5; γ = −1.5; n = 2
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Figure 2.1 Example of a Bouc–Wen model that is unstable.
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Example 1. Consider the Bouc–Wen model of Equations (2.4) and
(2.5) given by the following parameters: D = 1� A = 1� � = 0�5� � =
−1�5 and n = 2. Take z�0� = 0 and define the bounded input signal
x�t� = �	/2� sin�t�. The corresponding derivative is ẋ�t� = �	/2� cos�t�,
which is also bounded. For 0 ≤ t ≤ 	/2, then ẋ�t� ≥ 0. This implies that,
during the time interval 
0�	/2�, the Bouc–Wen model (2.5) can take
only one of the two forms:

ż = ẋ
(
1+z2

)
for z ≥ 0 (2.1)

ż = ẋ
(
1+2z2

)
for z ≤ 0 (2.2)

In both cases (2.1) and (2.2), ż ≥ 0 for 0 ≤ t ≤ 	/2, which implies that
z�t� is a nondecreasing function. Since z�0� = 0, this means that z�t� ≥ 0,
so that ż is given by (2.1). Integrating (2.1) gives

∫ dz

1+z2
=
∫

dx (2.3)

which gives arctan�z� = x, since z�0� = 0 and x�0� = 0. This implies
that z�t� = tan 
x�t��. Observe that limt→	/2 z�t� = +�. Thus the bounded
input signal x�t� has given rise to an unbounded hysteretic output. A
similar construction can be done for any initial condition z�0� �= 0.

In a similar vein, the Bouc–Wen model illustrated in Figure 2.2
is BIBO stable. However, it can be shown that it does not dissi-
pate the mechanical energy of the system as considered above
in Property 2. These two examples highlight the fact that, while
these models may give a good approximation of a true hysteresis
loop for a specific input excitation used with parametric identifi-
cation or tuning purposes, they may not be appropriate to repre-
sent the behaviour of a true hysteretic system under general input
excitations.

This chapter presents an analytical study with the aim of giving
the conditions on the Bouc–Wen model so that it holds the above
BIBO stability and dissipation properties. The study uses mathemat-
ical tools related to system analysis, such as differential equations,
stability theory and passivity. Some of these tools are summarized in
the Appendix at the end of the book.
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A = −2; α = 0.5; β = 0.5; γ = 0.1; n = 1.1

Figure 2.2 Example of a Bouc–Wen model that does not dissipate energy.

2.2 BIBO STABILITY OF THE BOUC–WEN MODEL

2.2.1 The Model

Consider a physical system with a hysteretic component that can
be represented by a map x�t� �→ �s�x��t�, which is referred to as the
‘true’ hysteresis. The so-called Bouc–Wen model represents the true
hysteresis in the form

�BW�x��t� = �kx�t�+ �1−��Dkz�t� (2.4)

ż = D−1
(
Aẋ−��ẋ� �z�n−1z−�ẋ�z�n) (2.5)

where ż denotes the time derivative, n > 1� D > 0� k > 0 and 0 <
� < 1 (the limit cases n = 1� � = 0� � = 1 are treated in Section 2.5).
It is also considered that �+� �= 0, the singular case �+� = 0 being
treated in Section 2.5.

2.2.2 Problem Statement

This study lies in the experimentally based premise that a true phys-
ical hysteretic element is BIBO stable, which means that, for any
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bounded input signal x�t�, the hysteretic response is also bounded.
Thus the Bouc–Wen model �BW should keep the BIBO stability prop-
erty in order to be considered an adequate candidate to model real
physical systems. Example 1 gives an example of a set of parameters
A� �� �� n such that, for a particular bounded input x�t�, the corre-
sponding output �BW�x��t� given by the Bouc–Wen model (2.4)–(2.5)
is unbounded. Thus, this set of parameters does not correspond to
the description of a hysteretic physical element. This motivates the
following problem:

Given the parameters 0 < � < 1� k > 0� D > 0� A� �� � with
� + � �= 0 and n > 1, find the set of initial conditions z�0� for
which the Bouc–Wen model (2.4)–(2.5) is BIBO stable.

Note that when this set is empty, this means that the Bouc–Wen
model is not BIBO stable. The solution to this problem will enable
different sets of parameters and initial conditions to be classified
and, additionally, to determine explicit bounds for the hysteretic
variable z�t�.

2.2.3 Classification of the BIBO-Stable Bouc–Wen Models

The following set is introduced:

��k�D�A�����n = {
z�0� ∈ R such that �BW is BIBO stable for all
C1 input signals x�t� with fixed values (2.6)
of the parameters ��k�D�A�����n

}

If the set ��k�D�A�����n is empty, then, for any initial condition
z�0�, there exists a bounded signal x�t� such that the corresponding
hysteretic output �BW�t� is unbounded; that is the set of parameters
���k�D�A�����n� does not correspond to a BIBO-stable Bouc–Wen
model. The emptiness of the set ��k�D�A�����n is thus equivalent to the
instability of the Bouc–Wen model, and for this reason the rest of
the analysis is devoted to determining explicitly the set ��k�D�A�����n

as a function of the Bouc–Wen model parameters.
Let z�0� be an element of ��k�D�A�����n. Then, for any bounded

C1 input x�t�, the output �BW�x��t� is bounded. This implies by
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Equation (2.4) that the output z�t� of the differential equation (2.5)
should be bounded. This means that the set1

A�����n = �z�0� ∈ � such that z�t� is bounded for any
C1 bounded input signal x�t� with fixed
values of the parameters A�����n�

(2.7)

is such that ��k�D�A�����n ⊂ A�����n. The inclusion in the other way
is immediate, which shows that ��k�D�A�����n = A�����n. The impor-
tance of this equality stems for the fact that it is easier to determine
the set A�����n. Note that an empty set A�����n means that, with
the chosen parameters A� �� �� n, the Bouc–Wen model does not
represent adequately the behaviour of a real hysteretic system �s (see
Example 1). The following set is also defined:

�
A�����n = �z�0� ∈ � such that z�t� is bounded for any C1 input signal

x�t� with fixed values of the parameters A�����n�

(2.8)

Note that �
A�����n ⊂ A�����n. With the notation introduced above,

the main results of this section are given in the following theorem.

Theorem 1. Let x�t�� t ∈ 
0��� be a C1 input signal and

z0 �
n

√
A

�+�
and z1 �

n

√
A

� −�
(2.9)

Then, the BIBO-stable Bouc–Wen models are identified in Table 2.1
Moreover,

�
A�����n = A�����n �  (2.10)

Proof. First a check is made to see whether the differential equa-
tion (2.5) has a unique solution. Equation (2.5) may be seen as a
nonautonomous locally Lipschitz system where the dependence on
time is continuous. The local Lipschitz property is due to the fact

1 The correct notation would be A�����n�D. However, it will be seen later that this set
does not depend on the parameter D.
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Table 2.1 Classification of the BIBO-stable Bouc–Wen models

Case  Upper bound on �z�t�� Class

A > 0 �+� > 0 and �−� ≥ 0 � max ��z �0�� � z0� I
�−� < 0 and � ≥ 0 
−z1� z1� max ��z �0�� � z0� II

A < 0 �−� > 0 and �+� ≥ 0 � max ��z �0�� � z1� III
�+� < 0 and � ≥ 0 
−z0� z0� max ��z �0�� � z1� IV

A = 0 �+� > 0 and �−� ≥ 0 � �z �0�� V
All other cases ∅

that n > 1. The time-dependent part of Equation (2.5) is the term
ẋ, which is continuous as x�t� has been assumed to be C1. Thus,
by Theorem 8 in the Appendix, a unique solution of Equation (2.5)
does exist on some time interval 
0� t0�. Note that for 0 ≤ n < 1, the
differential equation (2.5) does not verify the local Lipschitz property
and thus the solutions may not be unique.

According to Table 2.1, the following three cases are considered:
A > 0� A < 0 and A = 0. The proof is developed in detail only for
the case A > 0. The other two cases can be treated in a similar way.

Assuming A > 0, consider the following four possibilities:

P1 � �+� > 0 and �−� ≥ 0
P21 � �+� > 0� �−� < 0 and � ≥ 0
P22 � �+� > 0� �−� < 0 and � < 0
P3 � �+� < 0

Note that the case P21 can be reduced to �−� < 0 and � ≥ 0 since
�+� > 0 is implied by the other two inequalities.

Case P1

The Lyapunov function candidate V�t� = z�t�2/2 is considered. Its
derivative takes different forms depending on the signs of ẋ and z.
Then, consider the following sets:

Q1 = �ẋ ≥ 0 and z ≥ 0�

Q2 = �ẋ ≥ 0 and z ≤ 0�

Q3 = �ẋ ≤ 0 and z ≥ 0�

Q4 = �ẋ ≤ 0 and z ≤ 0�
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Denoting V̇�Q1
as the expression of the derivative of the function

V over the set Q1, then V̇�Q1
= zẋD−1 
A− ��+�� zn�. Thus V̇�Q1

≤
0 for z ≥ z0. Also, V̇�Q2

= zẋD−1 
A+ ��−�� �z�n�. In this case,
V̇�Q2

≤ 0 for all values of z. The same conclusion is drawn in
the case of Q3, since V̇�Q3

= zẋD−1 
A+ ��−�� zn�. Finally, V̇�Q4
=

zẋD−1 
A− ��+�� �z�n�. Thus, V̇�Q4
≤ 0 for �z� ≥ z0.

It is then concluded that, for all the possibilities of the signs of ẋ
and z, then V̇ ≤ 0 for all �z� ≥ z0. By Theorem 12 in the Appendix
it is concluded that z�t� is bounded for every continuous function
ẋ�t� and every initial condition z�0�. This means that �

A�����n = �.
Since �

A�����n ⊂ A�����n, this implies that �
A�����n = A�����n =�. The

bounds on z�t� can be derived from Theorem 12 as follows:

1. If the initial condition of z is such that �z�0�� ≤ z0 then �z�t�� ≤ z0

for all t ≥ 0.
2. If the initial condition of z is such that �z�0�� ≥ z0 then �z�t�� ≤ �z�0��

for all t ≥ 0.

So far, class I of Table 2.1 has been identified.

Case P21

Again, the derivative of V�t� depends on the signs of ẋ and z. Indeed,
V̇ ≤ 0 in the following regions:

�ẋ ≥ 0 and z ≥ 0 and z ≥ z0� (2.11)

�ẋ ≥ 0 and z ≤ 0 and �z� ≤ z1� (2.12)

�ẋ ≤ 0 and z ≥ 0 and z ≤ z1� (2.13)

�ẋ ≤ 0 and z ≤ 0 and �z� ≥ z0� (2.14)

The condition � ≥ 0 leads to z1 ≥ z0. From regions (2.11) to (2.14)
it is concluded that V̇ ≤ 0 for every z0 ≤ �z� ≤ z1 independently of the
sign of ẋ. By Theorem 12 in the Appendix it is concluded that z�t� is
bounded for every continuous function ẋ�t� and any initial state z�0�
such that �z�0�� ≤ z1. This means that 
−z1� z1� ⊂ �

A�����n.
Now, take z�0� � 
−z1� z1�; it is claimed that a bounded C1 signal

x�t� exists such that the corresponding signal z�t� is unbounded. The
construction of such a signal is done in Lemma 1, which means that
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z�0� � A�����n. This implies that A�����n ⊂ 
−z1� z1�. Since �
A�����n ⊂

A�����n, then �
A�����n = A�����n = 
−z1� z1�. Using Theorem 12 again,

the following bound can be obtained: �z�t�� ≤ max ��z�0��� z0�.

Lemma 1. Take z�0� � 
−z1� z1�; then a bounded C1 signal x�t� exists
such that the corresponding signal z�t� is unbounded.

Proof. Assume that � − � < 0� � ≥ 0 and assume that the initial
condition z�0� is such that �z�0�� > z1. Take z�0� > z1 (the construction
is similar in the case z�0� < −z1) and define the signal

ẋ = D

A+ ��−��zn
(2.15)

Since z�0� > z1 > 0, then A+ ��−��z�0�n < 0, which means that the
solution z�t� of the differential equation (2.5) is well defined, at
least during a maximal time interval 
0� t1� in which z�t� > z1. For
0 ≤ t < t1, then z > 0 and ẋ < 0. Thus Equation (2.5) reduces to

ż = D−1ẋ 
A+ ��−�� zn� (2.16)

Combining Equations (2.15) and (2.16), it follows that

ż = 1 (2.17)

Integrating Equation (2.17) gives, for 0 ≤ t < t1,

z�t� = t +z�0� (2.18)

ẋ�t� = D

A+ ��−�� 
t +z�0��
n (2.19)

as the function z�t� is increasing, the conditions of existence of ẋ in
Equations (2.15) and (2.19) are satisfied for any t ≥ 0. This means
that t1 = �; that is ẋ is well defined for all t ≥ 0 and a solution of
the differential equation (2.5) (given by Equation (2.18)) exists over
t ∈ �+. From Equation (2.19), it follows that ẋ ∈ L1 as n > 1. This
implies by Lemma 13 (see the Appendix) that x�t� goes to a finite
limit as t goes to infinity, which means that x�t� is bounded. Thus
a bounded C1 signal x�t� has been constructed with an unbounded
corresponding signal z�t�.
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It has therefore been proved that, for �−� < 0 and � ≥ 0, then
�

A�����n = A�����n = 
−z1� z1� and �z�t�� ≤ max ��z�0��� z0�. This means
that class II of Table 2.1 has been identified.

Case P22

For � < 0 define

z1 < z2 �
n

√
A

� −�/2
< z0

and consider that the initial condition z�0� ≥ 0 is such that z�0� ≤ z2

(the case z�0� ≤ 0 can be treated in a similar way). Take ẋ�t� = a for
some positive constant a. Then, from Equation (2.5) and from the
fact that � < 0, then z�t� ≥ 0 in a maximal time interval 
0� t3� so
that in 
0� t3� it is found that

ż ≥ aD−1 �A−��z�n� ≥ aD−1 �A−�zn
2� = aD−1A

(
1− �

� −�/2

)
� b>0

(2.20)

Equation (2.20) shows that z�t� will increase and reach the value z2

in a finite time t2 and that t3 ≥ t2. At this point, the expression in
Equation (2.15) with � = t−t2 and z�0� = z2 is chosen for ẋ���, which
gives the conditions of Lemma 1. This means that for any initial
condition z�0� ≤ z2, it is possible to construct a bounded C1 signal
x�t� such that the corresponding signal z�t� is unbounded. For initial
conditions such that z�0� ≥ z2, then z�0� > z1, which again gives the
conditions of Lemma 1. Therefore the expression in Equation (2.15)
is chosen for ẋ�t�.

It has thus been proved that, for � < 0, then A�����n = ∅. Since
�

A�����n ⊂ A�����n, this implies that �
A�����n = A�����n = ∅.

Case P3

Assume that z�0� ≥ 0 (a similar analysis can be done for the case
z�0� ≤ 0) and define

k1 = −�+�

D
� k2 = A

�+�
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By choosing ẋ > 0 it is found from Equation (2.5) that

ż = k1ẋ �k2 +zn� (2.21)

On the other hand, since n > 1, the quantity

S =
∫ �

z�0�

du

k2 +un
> 0

is finite. Choosing for the signal x�t� any increasing function such that
x�0� = 0 and limt→� x�t� = S/k1, it follows from Equation (2.21) that

lim
t→�

∫ z�t�

z�0�

du

k2 +un
= S (2.22)

Equation (2.22) shows that limt→� z�t� = �, so a bounded signal
x�t� with an unbounded output z�t� has been constructed for every
initial condition z�0�. This means that A�����n = ∅, which implies
that �

A�����n = A�����n = ∅.
The proof for the case with A > 0 is now concluded with the

characterization of classes I and II. The cases A < 0 and A = 0 can
be treated in a similar way to identify classes III to V, thus ending
the proof of Theorem 1.

2.2.4 Practical Remarks

Table 2.1 shows that classes I to V are BIBO stable. A class is
composed of a range for the Bouc–Wen model parameters and a
range for the initial condition z�0� of the hysteretic part of the model.

The fact that �
A�����n = A�����n � means that, for all classes, the

boundedness of the hysteretic signal z�t�:

(a) depends only on the parameters A� �� � and n;
(b) is independent of the boundedness of the input signal x�t�: for

every input signal x�t� (under the only assumption that it is C1),
the output z�t� is always bounded if the set  is nonempty, and
if z�0� ∈ .

Property (b) is particularly important for system control theory:
indeed, when x�t� is a closed-loop signal, it cannot be assumed a
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priori that it is bounded. This property of the Bouc–Wen model
will be exploited in Chapter 6 to develop control strategies. Prop-
erty (b) also shows that the solution z�t� is defined for all t ≥ 0 (see
Theorem 10 in the Appendix).

Note that, for Class V, z�t� = 0 for all t ≥ 0 if z�0� = 0. Since the
Bouc–Wen model is often used with an initial condition z�0� = 0, this
means that the class V corresponds, in this case, to a linear behaviour
and is thus irrelevant from the point of view of the description of
hysteretic systems.

Finally, it can be noted that, in all cases where a nonempty set 
exists, the parameter � is nonnegative.

2.3 FREE MOTION OF A HYSTERETIC
STRUCTURAL SYSTEM

Section 2.2 has analysed the stability properties of the Bouc–Wen
model. It has shown that, for the Bouc–Wen model to be BIBO
stable, it should belong to classes I to V of Table 2.1. Class V has
been shown to be irrelevant as, in practice, it corresponds to the
description of a linear behaviour. For this reason, only classes I to
IV are considered in the present section.

2.3.1 Problem Statement

As a prototype system, a structural isolation scheme is considered,
as illustrated in Figure 2.3. It is modelled as one-degree-of-freedom
system with mass m > 0 and viscous damping c > 0 plus a restoring
force � characterizing a hysteretic behaviour of the isolator material.

This system is described by the second-order differential equation

mẍ+ cẋ+��x��t� = f�t� (2.23)

Earthquake

Isolator Foundation

c

m

(b)

Φ

f (t) = –ma (t)
Base

(a)

Figure 2.3 Base isolation device (a) and its physical model (b).
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with initial conditions x�0� and ẋ�0� and excited by a force f�t�, like
the one of the form −ma�t� in the case of an earthquake with ground
acceleration a�t�. The restoring force is assumed to be described by
the Bouc–Wen model:

��x��t� = �kx�t�+ �1−��Dkz�t� (2.24)

ż = D−1
(
Aẋ−��ẋ��z�n−1z−�ẋ�z�n) (2.25)

where n > 1� D > 0� k > 0� 0 < � < 1 and �+� �= 0. The purpose
of this section is to study the free motion of system (2.23)–(2.25),
that is with f�t� = 0, in order to analyse its asymptotic trajectories.

In real applications, the base-isolation devices are designed to dissi-
pate the energy introduced in the structure by external perturbations.
In the absence of disturbances, the structure is in free motion so that,
when its initial conditions are not zero, the structure dissipates the
energy due to the initial conditions and goes to rest asymptotically.
Base-isolation devices have been often modelled by the Bouc–Wen
model (see Chapter 1 for detailed references), so this model has to
reproduce some general physical properties of these devices indepen-
dently of the exciting input. In particular, for the Bouc–Wen based
model (2.23)–(2.25) that is supposed to reproduce the behaviour of
a base-isolation device, it is desirable that the velocity ẋ of the mass
goes asymptotically to zero and that its position x goes to a constant.
The next section shows that this is the case for classes I and II.

2.3.2 Asymptotic Trajectories

In this section, the asymptotic behaviour is analysed of the system
defined by Equations (2.23) to (2.25) in the absence of an external
excitation. The main result of this section is given in the following
theorem.

Theorem 2. For every initial conditions x�0� ∈�� ẋ�0� ∈� and z�0� ∈
 �= ∅, the following holds:

(a) For all classes I to IV of Table 2.1, the signals x�t�� ẋ�t� and z�t�
are bounded and C1.

(b) Assume that the Bouc–Wen model belongs to classes I or II. Then,
constants x� and z� exist that depend on the Bouc–Wen model
parameters (��D�k�A�����n), the system parameters (m�c) and
the initial conditions �x�0�� ẋ�0�� z�0��, and a constant c̄ exists that
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depends on the parameters m� k� A� �� �� � such that, for all
c ≥ c̄,

lim
t→�

x�t� = x� (2.26)

lim
t→�

z�t� = z� (2.27)

�x� + �1−��Dz� = 0 (2.28)

Furthermore,

ẋ ∈ L1 �
0���� and lim
t→�

ẋ�t� = 0 (2.29)

Proof. First, part (a) is addressed. A state–space system realization
of Equations (2.23) to (2.25) is

ẋ1 = x2 (2.30)

ẋ2 = m−1 
−cx2 −�kx1 − �1−��kDz� (2.31)

ż = D−1
(
Ax2 −��x2� �z�n−1z−�x2�z�n

)
(2.32)

where x1 = x. Since Equations (2.30) to (2.32) is locally Lipschitz,
then a C1 solution �x1�t�� x2�t�� z�t�� exists over some time interval

0� t0�. It has been seen (Theorem 1 in Section 2.2.3) that z�t� given
by Equation (2.25) is bounded for every C1 signal x (bounded or
not) once z�0� belongs to  �= ∅. Thus Equation (2.23) can be written
in the form

mẍ+ cẋ+�kx = −�1−��Dkz (2.33)

which may be seen as an exponentially stable second-order linear
system excited by a bounded external input signal −�1 − ��Dkz.
This implies that the signals x1�t�� x2�t� and z�t� are bounded (by
Lemma 12 in the Appendix) and thus t0 = �. This proves part (a) of
Theorem 2.

Let us move to part (b) of Theorem 2 and proceed in two steps:

1. It will be shown that ẋ belongs to L1.
2. This property will be used to complete the proof of the theorem.
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Proof of step 1. The following two cases are considered:

P1: �z�t�� > z0 for all t ≥ 0
P2: There exists some t0 < � such that �z�t0�� ≤ z0

The case P1 is treated first. Using the results of Section 2.2 it follows
that the time function z�t�2 is nonincreasing. Since it is bounded, it goes
to a limit z2

� ≥ z2
0. Consider the case where z�0� > 0 (the analysis is

similar in the case z�0� < 0). By continuity of z, then z�t� ≥ z� ≥ z0 > 0
for all t ≥ 0. Take � > 0; then some t1 < � exists such that

zn
� ≤ z�t�n ≤ zn

� +� for all t ≥ t1 (2.34)

Multiplying by x2 and integrating both parts of Equation (2.34), the
following is obtained for any T ≥ 0:

zn
�
∫ t1+T

t1

x2�t�dt −�
∫ t1+T

t1

�x2�t��dt ≤
∫ t1+T

t1

x2�t�z�t�ndt

≤ zn
�
∫ t1+T

t1

x2�t�dt +�
∫ t1+T

t1

�x2�t��
(2.35)

On the other hand, using the fact that � ≥ 0 (see Section 2.2.4), the
following is obtained from Equations (2.32) and (2.34):

� �x2�zn
� ≤ � �x2�zn = −Dż+Ax2 −�x2z

n (2.36)

Here two subcases need to be discussed:

P11: � > 0
P12: � = 0

Let us focus first on the subcase P11. Integrating both parts of
inequality (2.36) and using Equation (2.35), it follows that

∫ t1+T

t1

�x2�t��dt ≤ − D

�zn�

z�t1 +T �−z�t1��

+
(

A

�zn�
− �

�

)

x1�t1 +T �−x1�t1��

+ ����
�zn�

∫ t1+T

t1

�x2�t��dt (2.37)
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If � = 0, then using part (a) of Theorem 2, it follows from Equa-
tion (2.37) that x2 ∈ L1 as T is arbitrary. If � �= 0, choosing � =
�zn

�/�2���� in Equation (2.37) shows that x2 ∈ L1.
The subcase P12 is now considered. Note that the parameter �

can be zero only for class II. In this case, Table 2.1 shows that
� > 0. By assumption P1� z�t� > z0 for all t ≥ 0; thus it follows that
zn > zn

0 = A/� or equivalently A−�zn < 0.
Using Equation (2.32) with � = 0 leads to

x2 = Dż

A−�zn

Since z is nonincreasing, ż ≤ 0, which implies that x2�t� ≥ 0 for all
t ≥ 0. Then

∫ t

0
�x2����d� =

∫ t

0
x2���d� = x1�t�−x1�0�

which, using part (a) of Theorem 2, shows that x2 ∈ L1.
Case P2 will now be treated. Taking the derivative of Equa-

tion (2.31) gives

�2ẍ2 +�1ẋ2 +�0x2 = −ż (2.38)

where

�2 = m

�1−��Dk
� �1 = c

�1−��Dk
� �0 = �

�1−��D
(2.39)

By assumption P2� �z�t0�� ≤ z0. Using the bound on �z�t�� of Table 2.1
for A > 0, it follows that �z�t�� ≤ z0 for all t ≥ t0. From Equa-
tion (2.32), for all t ≥ t0,

0 ≤ Dżx2 = 
A− ��+�� �z�n� x2
2 ≤ Ax2

2 for zx2 ≥ 0

Ax2
2 ≤ Dżx2 = 
A+ ��−�� �z�n� x2

2 ≤ 2A�

�+�
x2

2 for zx2 ≤ 0

(class I Bouc–Wen model)

2A�

�+�
x2

2 ≤ Dżx2 = 
A+ ��−�� �z�n� x2
2 ≤ Ax2

2 for zx2 ≤ 0

(class II Bouc–Wen model)
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G (s)

Bouc-Wen
x2z

.

–

ur = 0 y

Figure 2.4 Equivalent description of system (2.30)–(2.32).

Consequently, the following holds in all cases:

0 ≤ żx2 ≤ �x2
2 (2.40)

where � = �A/D�max �
1�2�/��+���.
In order to conclude the proof of case P2, stability issues presented

in the Appendix (Sections A.3.3 and A.3.4) are invoked.
First note that the system (2.30)–(2.32) can be viewed under the

feedback connection illustrated in Figure 2.4, where the reference
signal is r = 0, the input signal is u = −ż, the output signal is y = x2

and the transfer function G�s� is given by

G�s� = 1
�2s

2 +�1s +�0

By Equation (2.40), the nonlinearity that represents the Bouc–
Wen model belongs to the sector 
0� �� (see Section A.3.3 in the
Appendix). The idea is to use this fact to prove that the feedback
connection is such that the state �x2� ẋ2� goes exponentially to zero
using Theorem 13 in the Appendix. It is to be noted that the Bouc–
Wen nonlinearity is not memoryless in this case. However, since
it is known that z is bounded, it can be checked easily that the
stability proof of the feedback connection is exactly the same as in
Theorem 13. In the following, the simplified version of Theorem 13
given in Theorem 14 is used. Then the conditions under which
Re 
1+�G�j��� > 0 for all � ∈ �−���� need to be checked. This is
equivalent to checking the conditions under which

f��� = �2
2�

2 +�
(−2�0�2 +�2

1 −��2

)+�2
0 +��0 > 0 for all � = �2

(2.41)
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Equation (2.41) is a second-order algebraic equation in the variable
�. If its discriminant � is negative, then the function f��� is always
positive. If � ≥ 0, then f��� = 0 has real roots �1 and �2 that have
the same sign. If �1 < 0 and �2 < 0, then f��� > 0 for all values of
� = �2 ≥ 0. The only case where f��� < 0 with � ≥ 0 occurs when
the sum of roots is positive. This condition can be written as

c <

√

mk

[
A�1−��max

(
1�

2�

�+�

)
+2�

]
� c̄ (2.42)

Thus, it has finally been proved that c ≥ c̄ implies that
Re 
1+�G�j��� > 0 for all � ∈ �−����. Then, using Theorem 13, it
follows that the state x2 goes exponentially to zero. This implies that
x2 = ẋ ∈ L1. It has therefore been shown that, in both cases P1 and
P2� ẋ ∈ L1, thus concluding step 1 of the proof.

Proof of step 2. The fact that x2 ∈ L1, along with Equation (2.30),
shows that x1 = x goes to a finite limit (Lemma 13 in the Appendix),
which establishes Equation (2.26). Since x2 is bounded and ẋ2 is
bounded (by Equation (2.31) and x2 ∈ L1, then the Barbalat lemma
(Lemma 14 in the Appendix) can be used to ensure that

lim
t→�

x2�t� = 0

Now, taking the derivative of Equation (2.31) gives

mẍ2 + cẋ2 +�kx2 = −�1−��kDż (2.43)

which may be seen as a stable second-order system excited by the
input −�1−��kDż.

Since x2 ∈ L1, it follows that ż ∈ L1⋂L� by using part (a) of
Theorem 2 and Equation (2.32). From Equation (2.43) it is then
concluded that ẋ2 ∈ L1 (Lemma 12 in the Appendix). Thus ẋ2 is
bounded (by Equation (2.31), ẍ2 is bounded (by Equation (2.43) and
ẋ2 ∈ L1. By application of Barbalat’s lemma, it follows that

lim
t→�

ẋ2�t� = 0
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Using this property in Equation (2.31) along with Equation (2.29)
gives

lim
t→�


�kx1�t�+ �1−��kDz�t�� = 0 (2.44)

Since x1 goes to a finite limit, the expression (2.44) establishes Equa-
tions (2.27) and (2.28). This completes the proof of Theorem 2.

2.3.3 Practical Remarks

Theorem 2 shows that, for classes I and II of Table 2.1, the states x�t�
and z�t� go asymptotically to constant values and that the velocity
ẋ goes to zero. This means that both classes are good candidates
for the description of the real physical behaviour of a base-isolation
device. Crucial to the proof of the theorem is the fact that ẋ ∈ L1. It
is to be noted that the condition c ≥ c̄ is only a sufficient condition
for the validity of Theorem 2. Numerical simulations show that this
condition is not necessary.

Theorem 2 demonstrates that the Bouc–Wen based model (2.23)–
(2.25) behaves in accordance with observed experiments for real
base-isolation devices when the model belongs to classes I and II. This
is not the case for classes III and IV. Indeed, consider class III Bouc–
Wen based model (2.23)–(2.25) given by the following parameters:

� = 0�5� k = 2�D = 1�A = −2�� = 1�� = 0�n = 1�1�m = 1� c = 1

Figure 2.5 gives the solution of the differential equations (2.23)
to (2.25) with initial conditions x�0� = 0, ẋ�0� = 0�1 and z�0� = 0.
It is observed that, after a transient, a limit cycle occurs. In fact, it
can be checked using numerical simulations that, for a large number
of values of A < 0 (that is for classes III and IV) and for arbitrary
small initial conditions, limit cycles are observed. A mathematical
proof of this property is difficult. Such a behaviour has not been
observed for real systems like base-isolation devices. For this reason,
it is considered that the negative values of the parameter A do not
correspond to a physical behaviour of the Bouc–Wen model.

The conclusion that can be drawn from this section is that, from
classes I to IV of Table 2.1, only the two classes I and II are relevant
from the point of view of a description of physical phenomena. The
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Figure 2.5 Limit cycles for a class III Bouc–Wen model.

rest of the classes of Table 2.1, that is classes III, IV and V, are
irrelevant in practice.

2.4 PASSIVITY OF THE BOUC–WEN MODEL

In this section, the class I Bouc–Wen model is shown to be passive.
In electric networks, passivity means that the network contains only
passive elements so that the network does not generate energy.
In mechanics, passivity is also related to energy dissipation (see
Section A.3.1 in the Appendix). The Bouc–Wen model has been
used mostly to describe passive devices in civil and mechanical engi-
neering. This implies that this model has to be passive in order to
represent adequately the physical elements that it describes.

The model (2.4)–(2.5) can be written in the form

ẋ = u (2.45)

ż = D−1
(
Au−��u� �z�n−1z−�u�z�n) (2.46)
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y = �kx+ �1−��Dkz (2.47)

The Bouc–Wen model is seen as a nonlinear system whose input is the
velocity ẋ�t� = u�t� and whose output is y�t� = �BW�x��t�. The displace-
ment x�t� and the variable z�t� are seen as state variables. Combining
Equation (2.46) along with the definition of class I (Table 2.1)
results in

Dżz = Azẋ−��ẋ� �z�n+1 −�ẋ�z�n z ≤ Azẋ+ ����−�� �ẋ� �z�n+1 ≤ Azẋ
(2.48)

On the other hand, from Equations (2.45) and (2.47),

zẋ = zu = y −�kx

�1−��Dk
u (2.49)

Using Equations (2.48) and (2.49) gives

yu ≥ 2l1zż+2l2xẋ = Ẇ (2.50)

where

l1 = �1−��D2k

2A
> 0

l2 = �k

2
> 0

W�x�z� = l1z
2 + l2x

2 (2.51)

Equations (2.50) and (2.51) show that the Bouc–Wen model is
passive with respect to the storage function W�x�z�.

2.5 LIMIT CASES

In this section the following limit cases are analysed for the Bouc–
Wen model parameters: n = 1� � = 0� � = 1� �+� = 0.

2.5.1 The Limit Case n = 1

The differential equation (2.5) remains locally Lipschitz for n = 1.
However, the signal ẋ constructed in Lemma 1 is no longer in L1
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so that the result of that lemma does not hold. This means that in
Table 2.1 the expressions given for  are only subsets of the whole
set . With this observation, Table 2.1 holds also for the case n = 1.
For example, for class II, a subset of  is given by 
−z1� z1� and for
z�0� ∈ 
−z1� z1�, an upper bound on �z�t�� is given by max ��z �0�� � z0�,
as indicated in Table 2.1. Theorem 2 holds for n = 1 with the only
modification that z�0� should belong to the subset of  given by
Table 2.1 (and not to the whole set ).

2.5.2 The Limit Case � = 1

For � = 1 the hysteretic part in Equation (2.4) is zero so that
the system (2.4) and (2.5) is linear and thus does not represent a
hysteretic nonlinearity.

2.5.3 The Limit Case � = 0

Table 2.1 holds for the case � = 0. However, Theorem 2 does
not hold necessarily as the linear system mẍ + cẋ +�kx = 0, which
appears in Equation (2.33), is not exponentially stable and thus is
not BIBO stable. This implies that the bounded input −�1 −��Dkz
may not give rise to a bounded output x.

2.5.4 The Limit Case �+� = 0

In this case, the upper bound on the variable z�t� may depend on
the input x�t�. Thus the Bouc–Wen model loses interest for control
purposes as there is no longer a hysteretic output z�t� that is bounded
irrespective of the boundedness of the input x�t�.

2.6 CONCLUSION

This chapter has presented a classification of the possible Bouc–Wen
models in terms of their bounded input–bounded output (BIBO)
stability properties. It has been shown that only five classes I to V of
Bouc–Wen models are BIBO stable. One of them (class V) has been
shown to be irrelevant in practice since the hysteretic part of the
model remains equal to zero when the initial condition is z�0� = 0.
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The chapter has also analysed the asymptotic behaviour of a one-
degree-of-freedom mechanical (structural) system with a hysteretic
restoring force represented by the Bouc–Wen model. It has been
shown that, for all classes, the displacement of the mass and its
velocity are bounded. Furthermore, for classes I and II, the displace-
ment of the mass goes asymptotically to a constant, the restoring
force goes to zero and the velocity of the mass is in L1 and goes to zero
asymptotically. This behaviour is in accordance with experimental
observations for real structures. On the other hand, numerical simu-
lations have shown that classes III and IV do not describe adequately
the behavior of real structures as the solution of the related differ-
ential equations lead to limit cycles that have not been observed
experimentally.

Finally, it has been shown that class I is passive. This passivity
property is related to the energy dissipation observed experimen-
tally in devices described by the Bouc–Wen model. In a parallel
work [8], the study of the thermodynamic admissibility of the Bouc–
Wen model within the context of the endochronic theory led to the
following result: the conditions A > 0 and −� ≤ � ≤ � are necessary
and sufficient for the thermodynamic admissibility of the Bouc–Wen
model. This means that classes II to V are not consistent with the
laws of thermodynamics, while class I is consistent. Hence, class I is
the only one that is BIBO stable, is compatible with the free motion
of the real systems described by the Bouc–Wen model, is passive
and is compatible with the laws of thermodynamics. For this reason,
class I is dealt with exclusively in the rest of the book.





3
Forced Limit Cycle
Characterization of the
Bouc–Wen Model

3.1 INTRODUCTION

In this chapter, the input signal x�t� is considered to be periodic
with a loading–unloading shape. Such a signal is often used for
identification purposes. The aim of the chapter is to show that the
hysteretic output of the Bouc–Wen model goes asymptotically to a
periodic solution and to give the analytic expression of this solution.
More precisely, the chapter treats the following points:

1. It proves analytically that the response of the Bouc–Wen model to
a class of T -periodic inputs is asymptotically T -periodic. Indeed,
the fact that periodic inputs lead to periodic outputs (asymp-
totically) is well established for stable linear systems. However,
for nonlinear systems this is not always the case; for example a
Duffing oscillator may present chaotic behaviour as a response
to a sine wave [124, page 614]. A good theorem that shows
the existence of periodic solutions to periodic excitations in the
general context of nondifferentiable systems (which is the case of
the Bouc-Wen model) is given in Theorem 3 of Reference [125,
page 148]. However, this theorem necessitates knowledge of a
Lyapunov-like function, which is very difficult to find in the

Systems with Hysteresis: Analysis, Identification and Control using the Bouc–Wen Model
F. Ikhouane and J. Rodellar © 2007 John Wiley & Sons, Ltd
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context of nonlinear systems, and for this reason this theorem has
not been used in this chapter.

2. The chapter gives an exact and explicit analytic expression of the
limit cycle. Indeed, even though Theorem 3 of Reference [125]
demonstrates the existence of periodic solutions to periodic inputs,
it does not give an explicit analytic expression of the limit cycle.
The exact description of limit cycles for nonlinear systems remains
largely an open problem, even though nonrigorous approximate
methods do exist (the harmonic balance principle for example)
along with the well-known Poincaré maps [124]. The last tech-
nique requires some knowledge of the geometric structure of the
phase space of the differential equation, knowledge that is lacking
in the current literature devoted to the Bouc–Wen model and thus
inhibiting the use of the Poincaré maps method in the present case.

The analytic expression of the limit cycle that is derived in this
chapter will be used in Chapter 4 to determine the way in which
the Bouc–Wen model parameters shape the limit cycle and in
Chapter 5 to obtain an identification method for the Bouc–Wen
model parameters.

3.2 PROBLEM STATEMENT

3.2.1 The Class of Inputs

In this chapter the input signal x�t� is considered to be continuous on
the time interval �0�+�� and periodic of period T > 0. Furthermore,
a specific structure is assumed for this function, which is illustrated
in Figure 3.1 and detailed as follows:

• A scalar 0 < T + < T exists such that the signal x is C1 on both
intervals �0�T +� and �T +�T � with the time derivative ẋ��� > 0 for
� ∈ �0�T +� and ẋ��� < 0 for � ∈ �T +�T �.

• Xmin = x�0� and Xmax = x�T +� > Xmin are denoted as the minimal
and maximal values of the input signal respectively.

• For a given integer m, the following time instants and intervals are
defined:

tm = mT and t+
m = tm +T +

I+
m = �tm� t+

m� and I−
m = �t+

m� tm+1�
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Figure 3.1 Illustration of the notation related to the input signal.

This class of inputs is very common in identification procedures
for hysteretic systems [31] and include sine waves with or without
offset, triangular inputs, etc. Due to the particular shape of this type
of signal, they will be said to be wave T-periodic.

3.2.2 Problem Statement

Consider a T -periodic input signal x�t� given as in Section 3.2.1 and
the Bouc–Wen model (2.4)–(2.5). The problem under study is stated
as follows:

1. Show that the hysteretic output converges asymptotically to a
T -periodic solution.

2. Give an explicit analytic description of the periodic solution.

3.3 THE NORMALIZED BOUC–WEN MODEL

This section introduces a new form of the Bouc–Wen model:
the normalized one. The motivation of this form is due to the
following lemma.
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Lemma 2. Consider two Bouc–Wen models (2.4)–(2.5) whose param-
eters are such that

n2 = n1 = n� A2 = A1� �2 = 	n�1� 
2 = 	n
1�

D2 = 	D1� �2 = �1� k2 = k1

where 	 is a positive constant, and with the initial conditions z2�0� =
z1�0� = 0. Then both models belong to the same class, and for any input
signal x�t� they deliver exactly the same output �BW�x��t�.

Proof. The fact that both models belong to the same class follows
directly from Table 2.1. Now consider a C1 input signal x�t�. Then
the corresponding hysteretic outputs are given by

�BW1�x��t� = �1k1x�t�+ �1−�1�D1k1z1�t� (3.1)

ż1 = D−1
1

(
A1ẋ−�1�ẋ� �z1�n−1z1 −
1ẋ�z1�n

)
(3.2)

and

�BW2�x��t� = �2k2x�t�+ �1−�2�D2k2z2�t� (3.3)

ż2 = D−1
2

(
A2ẋ−�2�ẋ� �z2�n−1z2 −
2ẋ�z2�n

)
(3.4)

From Equation (3.4), it follows that

ż2 = 	−1D−1
1

(
A1ẋ−	n�1�ẋ� �z2�n−1z2 −	n
1ẋ�z2�n

)
(3.5)

Introducing the variable z	�t� = 	z2�t�, Equation (3.5) gives

ż	 = D−1
1

(
A1ẋ−�1�ẋ� �z	�n−1z	 −
1ẋ�z	�n

)
(3.6)

Note that Equations (3.2) and (3.6) are exactly the same. Since they
have the same initial state �z	�0� = z1�0� = 0�, then z	�t� = z1�t� for
all t ≥ 0 due to the uniqueness of the solutions. Using the fact that
z	�t� = 	z2�t�, it follows that z2�t� = 	−1z1�t�. Combining this equality
with Equation (3.3), it follows that

�BW2�x��t� = �1k1x�t�+ �1−�1��	D1�k1�	
−1z1��t� (3.7)

Equations (3.1) and (3.7) show that �BW2�x��t� = �BW1�x��t� for all
t ≥ 0, which completes the proof.
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Lemma 2 means that the input–output behaviour of a Bouc–
Wen model is not described by a unique set of parameters
��k�D�A���
�n�. A drawback to this property is that identifica-
tion procedures that use input–output data cannot determine the
parameters of the Bouc–Wen model. To cope with this problem,
users of the Bouc–Wen model often fix some parameters to arbitrary
values. For example, in Reference [31] the coefficient �1 −��Dk of
z�t� in Equation (2.4) has been set to one and the parameter D has
also been set to one. Other authors compare the shape of the limit
cycle instead of comparing the identified parameters with their true
values, as in Reference [92]. This fact makes it difficult to compare
results of different identification methods by comparing the identi-
fied parameters. Thus it is necessary to elaborate some equivalent
‘normalized’ model whose parameters define in a unique way the
input–output behaviour of the model, allowing a parametric-based
comparison of identification methods for this hysteretic model. To
this end, define

w�t� = z�t�

z0
(3.8)

so that the model (2.4)–(2.5) can be written in the form

�BW�x��t� = �xx�t�+�ww�t� (3.9)

ẇ�t� = �
(
ẋ−��ẋ�t�� �w�t��n−1w�t�+ �� −1�ẋ�t��w�t��n) (3.10)

where

� = A

Dz0
> 0� � = �

�+

≥ 0�

�x = �k > 0� �w = �1−��Dkz0 > 0 (3.11)

Equations (3.9) and (3.10) define the so-called normalized form
of the Bouc–Wen model. Note that if the initial condition w�0� is
such that �w�0�� ≤ 1 then, by Theorem 1, �w�t�� ≤ 1 for all t ≥ 0.
This means that the variable z�t� has been scaled to unity. The fact
that the normalized form of the Bouc–Wen model defines a bijective
relationship between the input–output behaviour of the model and its
parameters is demonstrated in Chapter 5. The normalized form has
the advantage of having only five parameters to identify instead of
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Table 3.1 Classification of the BIBO, passive
and thermodynamically consistent normalized
Bouc–Wen models

Case � Upper bound on �w�t�� Class

� ≥ 1
2 � max ��w �0�� �1� I

the seven parameters for the standard form. Note that the normalized
form of the Bouc–Wen model is exactly equivalent to its standard
form. Indeed, for any input x�t�, both forms deliver exactly the same
output �BW�t� taking into account that w�0� = z�0�/z0.

The classification of the normalized Bouc–Wen models is given in
Table 3.1. It can be seen that a single parameter � is needed for
this classification. Using this notation the following can be obtained
from Equation (3.10):

For w�t� ≥ 0 and ẋ�t� ≥ 0 � ẇ�t� = � �1−w�t�n� ẋ�t� (3.12)

For w�t� ≤ 0 and ẋ�t� ≥ 0 � ẇ�t� = � �1+ �2� −1� �−w�t��
n
� ẋ�t�

(3.13)

For w�t� ≥ 0 and ẋ�t� ≤ 0 � ẇ�t� = � �1+ �2� −1�w�t�n� ẋ�t� (3.14)

For w�t� ≤ 0 and ẋ�t� ≤ 0 � ẇ�t� = � �1− �−w�t��
n
� ẋ�t� (3.15)

For notational convenience, w�tm� = wm and w�t+
m� = w+

m.

3.4 INSTRUMENTAL FUNCTIONS

In this section the case � ≥ 1
2 is considered. The following func-

tions �−
��n� �+

��n and ���n are defined, which will be helpful for the
integration of Equation (3.10):

�−
��n�w� =

∫ w

0

du

1+��u�n−1u+ �� −1��u�n (3.16)

�+
��n�w� =

∫ w

0

du

1−��u�n−1u+ �� −1��u�n (3.17)

���n�w� = �+
��n�w�+�−

��n�w� (3.18)
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for any scalar w ∈ �−1�1�. In this section and in the rest of the book
the solution of the differential Equation (3.10) is denoted as w�t�,
while the notation w without an argument is used for a given scalar.
Note that for w ≥ 0,

�−
��n�w� =

∫ w

0

du

1+ �2� −1�un
(3.19)

�+
��n�w� =

∫ w

0

du

1−un
(3.20)

���n�w� =
∫ w

0

du

1+ �2� −1�un
+
∫ w

0

du

1−un
(3.21)

and for w ≤ 0,

�−
��n�w� =

∫ w

0

du

1− �−u�n
(3.22)

�+
��n�w� =

∫ w

0

du

1+ �2� −1��−u�n
(3.23)

���n�w� =
∫ w

0

du

1− �−u�n
+
∫ w

0

du

1+ �2� −1��−u�n
(3.24)

In the remainder of this section, some features of these functions
and their respective inverse functions are presented. First, a check is
made to ensure that the function �+

��n is well defined, C� and strictly
increasing on the interval �−1�1�. Consider the change of variable
v = un. Then, for w ≥ 0�5,

�+
��n�w� = �+

��n�0�5�+ 1
n

∫ wn

0�5n
v1/n−1 dv

1−v

≥ �+
��n�0�5�+ 0�51/n−1

n

∫ wn

0�5n

dv

1−v
(3.25)

From Equation (3.25), the following limit property is drawn:

lim
w→1

�+
��n�w� = +� (3.26)

All the attributes of the function �+
��n stated above show that it is a

bijection from �−1�1� to ��+
��n�−1��+��. It is thus possible to define

its inverse function



44 FORCED LIMIT CYCLE OF THE BOUC–WEN MODEL

�+
��n � ��+

��n�−1��+��� �→ �−1�1� (3.27)

On the other hand, the function �−
��n is well defined, C� and strictly

increasing on �−1�1�. An analysis similar to that of Equation (3.25)
shows that

lim
w→−1

�−
��n�w� = −� (3.28)

Therefore, the function �−
��n is a bijection from �−1�1� to

�−���−
��n�1��. Then it is possible to define its inverse

�−
��n � �−�� �−

��n�1�� �→ �−1�1� (3.29)

It can be checked that

�−
��n�w� = −�+

��n�−w� and �−
��n�w� = −�+

��n�−w� (3.30)

Furthermore, the function �+
��n is convex, while the function �−

��n is
concave.

For u ∈ �0�1�,

1
1+ �2� −1�un

<
1

1−un
(3.31)

Using this inequality in the integrals (3.19) and (3.20) gives

�+
��n�w� > �−

��n�w� for w ∈ �0�1� (3.32)

A similar analysis for the case of the integrals (3.22) and (3.23)
shows that

�+
��n�w� > �−

��n�w� for w ∈ �−1�0� (3.33)

For the case of the function ���n, it can be checked that it is strictly
increasing on the interval �−1�1� from −� to +�, so that ���n is
a bijection from the interval �−1�1� to �. Its inverse function is
denoted as

���n � � �→ �−1�1� (3.34)
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Note that, from Equation (3.20), the restriction of the function
�+

��n to the interval �0�1� is independent of the parameter �. For this
reason, this restriction is denoted as �+

n � �0�1� → �+ with �+
n �w� =

�+
��n�w�. Its inverse function is denoted as �+

n � �+ → �0�1�. Similarly,
it can be seen from Equation (3.22) that the restriction of the function
�−

��n to the interval �−1�0� is independent of the parameter �. For
this reason, this restriction is denoted as �−

n � �−1�0� → �− with
�−

n �w� = �−
��n�w�. Its inverse function is denoted as �−

n ��− → �−1�0�.
These restrictions are defined by the equations

�+
n �w� = �+

��n�w� for w ≥ 0 (3.35)

�+
n ��� = �+

��n��� for � ≥ 0 (3.36)

�−
n �w� = �−

��n�w� for w ≤ 0 (3.37)

�−
n ��� = �−

��n��� for � ≤ 0 (3.38)

It can be remarked that, like the usual logarithm function, which
is defined by an integral or its inverse, the exponential function, all
the functions �−

��n� �+
��n� ���n� �−

��n� �+
��n� ���n are defined explicitly.
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Figure 3.2 Functions �+
��n�w� (dash-dot), �−

��n�w� (dashed) and ���n�w� (solid),
with the values � = 2 and n = 2.



46 FORCED LIMIT CYCLE OF THE BOUC–WEN MODEL

−5 0 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

µ

Figure 3.3 Functions �+
��n��� (dash-dot), �−

��n��� (dashed) and ���n��� (solid),
with the values � = 2 and n = 2.

For example, to compute the function �+
��n numerically proceed as

follows: given an argument w ∈ �−1�1� and the values of the parame-
ters � ≥ 1

2 and n ≥ 1, the integrals (3.20) and (3.23) can be determined
with the (in general very good) precision allowed by the computer.
This means that for a given pair of parameters ���n� the function �+

��n

can be tabulated for a series of values wi ∈ �−1�1�� i = 0�1�2� � � � , as
a series of pairs

(
wi��+

��n�wi�
)
. Then the function �+

��n is tabulated by
the pairs

(
�+

��n�wi��wi

)
� i = 0�1�2� � � � . Intermediate values between

two consecutive points i� i+1 are obtained by a linear interpolation.
Examples of these functions are given in Figures 3.2 and 3.3.

3.5 CHARACTERIZATION OF THE ASYMPTOTIC
BEHAVIOUR OF THE HYSTERETIC OUTPUT

In this section the normalized Bouc–Wen model (3.9)–(3.10) is
considered to be excited by a wave periodic signal x. It is shown that
the hysteretic output �BW�x� converges asymptotically to a periodic
function. The main result of this section is given in the following
theorem.
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Theorem 3. Consider the system (3.9)–(3.10) with an initial condition
w�0�, where the input signal x is wave T -periodic (see Section 3.2.1).
Define the functions �m and �m for any nonnegative integer m as follows:

�m��� = w�tm + �� for � ∈ �0�T � (3.39)

�m��� = �xx���+�w�m��� for � ∈ �0�T � (3.40)

These give the following:

(a) The sequences of functions �m�m≥0 and �m�m≥0 converge uniformly
on the interval �0�T � to the continuous functions �̄BW and w̄ defined
in the form

�̄BW��� =�xx���+�ww̄��� for � ∈ �0�T � (3.41)

w̄��� =�+
��n

(
�+

��n

[−���n �� �Xmax −Xmin��
]+� �x���−Xmin�

)

for � ∈ �0�T +� (3.42)

w̄��� =−�+
��n

(
�+

��n

[−���n �� �Xmax −Xmin��
]−� �x���−Xmax�

)

for � ∈ �T +�T � (3.43)

(b) For all � ∈ �0�T �,

−1 < −���n �� �Xmax −Xmin�� ≤ w̄��� ≤ ���n �� �Xmax −Xmin�� < 1
(3.44)

the lower and upper bounds of w̄��� being attained at � = 0 and
� = T + respectively.

The lengthy proof of this theorem is given in Sections 3.5.1
and 3.5.2. Section 3.5.1 presents some technical lemmas that are
used in the proof of Theorem 3. Section 3.5.2 presents the proof of
Theorem 3 using the lemmas of Section 3.5.1.

Some comments are now given regarding Theorem 3. Define the
time function �̄BW as �̄BW�t� = �̄BW��� where the time t ∈ �0�+��
is written as t = mT + � for all integers m = 0�1�2� � � � and all
real numbers 0 ≤ � < T . Loosely speaking, Theorem 3 says that
the time function hysteretic output �BW�x��t� of the Bouc–Wen
model approaches asymptotically the T -periodic function �̄BW�t�.
The limit cycle is the graph

(
x���� �̄BW���

)
parameterized by the



48 FORCED LIMIT CYCLE OF THE BOUC–WEN MODEL

variable 0 ≤ � ≤ T . Equations (3.41) and (3.42) correspond to the
so-called loading, that is to an increasing input x��� with 0 ≤ � ≤ T +.
Equations (3.41) and (3.43) correspond to the unloading, that is to
a decreasing input x��� with T + ≤ � ≤ T .

The equations of the limit cycle are given in terms of the variable
�. However, what is of interests is the relation �̄BW�x� where the
variable � is eliminated. To see this elimination process, consider the
following example.

Example 2. Consider the curve �x���� y���� which is parameterized by
the variable � such that

x��� = �

2
+3 (3.45)

y��� = �3 (3.46)

To find the equation of the curve in the plane �x� y�, proceed as
follows. Equation (3.45) gives � = 2 �x−3� while Equation (3.46) gives
� = 3

√
y. Equating both quantities gives 3

√
y = 2 �x−3�, which is the

desired equation of the curve in the �x� y� plane.

Let us first consider Equations (3.41) and (3.42) which describe
the loading. In the interval �0�T +�, the input displacement is an
increasing function of the variable �; that is x = f��� for some function
f . Since the function f is increasing, it is invertible so that � = f −1�x�,
where f −1 is the inverse function of f . Now, consider the function g
defined as

g�u� = �+
��n

(
�+

��n

[−���n �� �Xmax −Xmin��
]+� �u−Xmin�

)
(3.47)

for u ∈ �Xmin�Xmax�. The term �+
��n

[−���n �� �Xmax −Xmin��
]

is inde-
pendent of u so that the function g�u� is increasing with u. This is
due to the fact that the function �+

��n�·� is increasing with its argu-
ment (Section 3.4). The fact that the function g is increasing implies
that it is invertible. Now, combining Equations (3.42) and (3.47), it
follows that

w̄��� = g �f���� = �g 
 f � ��� (3.48)

Since both f and g are invertible, from Equation (3.48) it is found that
� = �g 
 f �

−1
�w̄�. The equation of the loading part of the limit cycle
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is obtained by equating both expressions of � so that �g 
 f �
−1

�w̄� =
f −1�x�, which leads to w̄ = g�x�. Similarly, it can be shown that
�̄BW = �xx +�wg�x�. Thus, the loading equations (3.41) and (3.42)
can be rewritten as

�̄l
BW�x� = �xx+�ww̄l�x� (3.49)

w̄l�x� = �+
��n

(
�+

��n

[−���n �� �Xmax −Xmin��
]+� �x−Xmin�

)
(3.50)

where the superscript ‘l’ refers to loading. In Equations (3.49) and
(3.50), �̄l

BW�x� and w̄l�x� are functions of the input signal x.
Similarly, unloading is described by the equations

�̄u
BW�x� = �xx+�ww̄u�x� (3.51)

w̄u�x� = −�+
��n

(
�+

��n

[−���n �� �Xmax −Xmin��
]−� �x−Xmax�

)
(3.52)

where the superscript ‘u’ refers to unloading.
Consequently, seen as a function of x ∈ �Xmin�Xmax�, loading and

unloading are described respectively by the functions

�̄l
BW�x� = �xx+�w�+

��n

(
�+

��n

[−���n �� �Xmax −Xmin��
]+� �x−Xmin�

)

(3.53)

�̄u
BW�x� = �xx−�w�+

��n

(
�+

��n

[−���n �� �Xmax −Xmin��
]−� �x−Xmax�

)

(3.54)

The functions �̄l
BW and �̄u

BW describe completely the limit cycle,
which are C� on the interval �Xmin�Xmax�. It can be seen from Equa-
tions (3.53) and (3.54) that the functions �̄l

BW and �̄u
BW are indepen-

dent of the period T and the initial state w�0�. The fact that the limit
cycle is independent of the frequency of the input signal is called the
‘rate-independent’ property and is an inherent property of the phys-
ical hysteretic systems (at least for low frequencies) [126, page xiv].
A by-product of Theorem 3 is the fact that the Bouc–Wen model is
rate independent for all frequencies.

3.5.1 Technical Lemmas

Section 3.4 has presented the functions �−
��n� �+

��n� ���n and it was
seen that they are all well defined on the interval �−1�1�. These
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functions will be shown to be extremely useful for integrating Equa-
tion (3.10)and describing the forced limit cycles of the hysteretic
Bouc–Wen model. However, to be used, the argument of these func-
tions should belong to the interval �−1�1�. The following lemma is
instrumental in guaranteeing such a condition.

Lemma 3. For any initial condition w�0� ∈ �, a finite time instant
t�w�<1 exists such that for every t ≥ t�w�<1 then �w�t�� < 1.

Proof. The proof is done in two steps:

1. First the existence of a time instant t�w�≤1 such that is established
�w�t�� ≤ 1 for all t ≥ t�w�≤1.

2. Then it is shown that some integer m0 with tm0
≥ t�w�≤1 exists for

which �wm0
� < 1, and that t�w�<1 = tm0

can be taken.

Proof of step 1. Assume that w�t� > 1 for all t ≥ 0 (a similar
analysis can be done in the case w�t� < −1). From Equation (3.8), it
follows that

w2�t� = 2
V�t�

z2
0

where V�t� = z2�t�

2

On the other hand, it has been demonstrated in Section 2.2.3 that
the time function V�t� is nonincreasing for a class I Bouc–Wen model
(which is the present case) whenever z2�t� ≥ z2

0. This fact implies that
the function w�t�2 is nonincreasing. Since it is bounded from below
as w�t� > 1, it goes to a limit � ≥ 1.

Assume now that this limit is � > 1. Then on the intervals I+
m� m ≥ 0

(see Figure 3.1), ẋ ≥ 0, so that Equation (3.10) reduces to Equa-
tion (3.12). Integrating Equation (3.12) from tm to t+

m gives

∫ w+
m

wm

du

un −1
= −� (3.55)

where

� = � �Xmax −Xmin� > 0 (3.56)

Since limt→� w�t� = limm→� wm = limm→� w+
m = �, then taking the

limit in the left-hand side of Equation (3.55) gives � = 0, which
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contradicts Equation (3.56). This means that it is not possible to
have � > 1. Since � ≥ 1, then � = 1.

Now, for the limit � = 1, take � > 0. Then some time �� exists such
that for all t ≥ ��

1−� ≤ w�t�n ≤ 1+� (3.57)

An interval I−
m (see Figure 3.1) can be considered such that t+

m ≥ ��

and Equation (3.14) used as w�t� ≥ 0 and ẋ ≤ 0. Integrating Equa-
tion (3.14) between t+

m and tm+1 and using (3.57) gives

wm+1 −w+
m ≤ � �Xmin −Xmax� �2� −��2� −1�� < 0 (3.58)

Since the difference wm+1 −w+
m goes to 0 as m go to �, for any � suffi-

ciently small it will be a value of m for which the expression (3.58)
will be violated, thus giving a contradiction.

Therefore it has been proved that it is impossible to have �w�t�� > 1
for all t ≥ 0. This means that for any initial condition w�0� ∈ �, some
finite time t�w�≤1 for which we have

∣
∣w
(
t�w�≤1

)∣∣ ≤ 1. From Table 3.1
it follows that for all t ≥ t�w�≤1 we have �w�t�� ≤ 1.

Proof of step 2. Two cases are considered:

1. For all t ≥ t�w�≤1, then �w�t�� < 1.
2. A time instant t�w�=1 ≥ t�w�≤1 exists such that

∣
∣w
(
t�w�=1

)∣∣= 1.

In the first case, Lemma 3 follows by taking t�w�<1 = t�w�≤1. In the
second case, take for example w

(
t�w�=1

)= 1 (the same analysis holds
for w

(
t�w�=1

)= −1). Then two subcases are to be discussed:

(a) t�w�=1 ∈ �tp� t+
p � for some integer p.

(b) t�w�=1 ∈ �t+
p � tp+1� for some integer p.

In the subcase (a), w�t� = 1 for all t ∈ �t�w�=1� t+
p � as the point defined

by w�t� = 1 and ẇ�t� = 0 is an equilibrium point for Equation (3.10).
Integrating Equation (3.10) on I+

p results in

�−
��n

(
wp+1

)= �−
��n�1�−� (3.59)

From Equation (3.59) it follows that the value �−
��n

(
wp+1

)
is finite;

this means that −1 < wp+1 ≤ 1. Furthermore, �−
��n

(
wp+1

)
< �−

��n�1�
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by Equation (3.59). Thus it is concluded that �wp+1� < 1. The same
inequality can be obtained for the subcase (b).

It has therefore been proved that an integer m0 = p + 1 exists such
that �wm0

� < 1. Assume now that for some integer m ≥ m0 then
�wm� < 1. The objective of the following analysis is to demonstrate
that for all t ∈ �tm� tm+1� then �w�t�� < 1. To this end, note that for
t ∈ I+

m then, from Equation (3.10),

�+
��n �w�t�� = �+

��n�wm�+� �x�t�−Xmin� (3.60)

Equation (3.60) shows that the value �+
��n �w�t�� is finite, which

implies that

−1 < wm ≤ w�t� ≤ w+
m < 1 for t ∈ I+

m

Now, on the interval I−
m, from equation (3.10),

�−
��n �w�t�� = �−

��n �w+
m�+� �x�t�−Xmax� (3.61)

Again, Equation (3.61) shows that the value �−
��n �w�t�� is finite, which

implies that

−1 < wm+1 ≤ w�t� ≤ w+
m < 1 for t ∈ I−

m

Thus it has been proved that, for all t ∈ �tm� tm+1�, then �w�t�� < 1.
By taking t�w�<1 = tm0

, Lemma 3 is finally proved.

Since we are interested only in asymptotic behaviour, it is enough
to ensure that w�t� will belong to the interval �−1�1� for t sufficiently
large. Lemma 3 shows that for all t ≥ t�w�<1 the argument w�t� of the
functions �−

��n� �+
��n� ���n belongs to their domain of definition. This

will allow the analysis of the asymptotic behaviour of w�t� in the
remainder of this section.

Lemma 4. For any initial condition w�0� ∈ �, let t�w�<1 be the time
instant of Lemma 3. Then, some time instant tw=0 ≥ t�w�<1 exists for which
w�tw=0� = 0.

Proof. Assume that w�t� > 0 for all t ≥ t�w�<1 (the analysis is similar
for w�t� < 0 for all t ≥ t�w�<1) and let m0 be an integer such that tm0

≥
t�w�<1. Then, for all integer m such that m ≥ m0 the following holds:

�+
��n�w

+
m� = �+

��n�wm�+� (3.62)
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�−
��n�wm+1� = �−

��n�w
+
m�−� (3.63)

The real sequence wm�m≥m0
is bounded, so that a convergent subse-

quence wmp
�p≥0 can be extracted from it. The real sequence w+

mp
�p≥0

is bounded, so that a convergent subsequence w+
mpk

�k≥0 can be
extracted. Denote

lim
k→�

wmpk
= wa and lim

k→�
w+

mpk
= wb

Then, by the continuity of the functions �+
��n and �−

��n,

�+
��n�wb� = �+

��n�wa�+� (3.64)

�−
��n�wa� = �−

��n�wb�−� (3.65)

From Equation (3.65) it follows that 0 ≤ wa < wb ≤ 1, so that �+
��n�wa�

is finite. This also implies by Equation (3.64) that �+
��n�wb� is finite,

so that wb < 1.
Note that it is not possible to have wa = 0 as this would mean from

Equations (3.64) and (3.65) that �+
��n�wb� = �−

��n�wb�. This cannot
happen as wb > 0 and � > 0. This means that 0 < wa < wb < 1. Now,
from Equations (3.64) and (3.65), from the convexity of �+

��n and
the concavity of �−

��n,

1
1−wn

a

=
[

d�+
��n�w�

dw

]

w=wa

<
�+

��n�wb�−�+
��n�wa�

wb −wa

= �

wb −wa

(3.66)

�−
��n�wb�−�−

��n�wa�

wb −wa

= �

wb −wa

≤
[

d�−
��n�w�

dw

]

w=wa

= 1
1+ �2� −1�wn

a

(3.67)

From Equations (3.66) and (3.67),

wa +� �1+ �2� −1�wn
a� ≤ wb < wa +� �1−wn

a� (3.68)

This gives a contradiction as wa > 0 and � ≥ 1/2, which means
that for a class I Bouc–Wen model there cannot be w�t� > 0 for all
t ≥ t�w�<1.
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Lemma 5. For any initial condition w�0� ∈ �, let t�w�<1 be the time
instant of Lemma 3. Let m0 be an integer such that tm0

≥ t�w�<1. Then for
all integers m ≥ m0, the following holds: in any time interval �tm� t+

m� or
�t+

m� tm+1�, the equation w�t� = 0 has at most one solution.

Proof. Assume that this is not the case, so that w��1� = w��2� = 0,
where tm ≤ �1 < �2 < t+

m. Then some �1 < �3 < �2 would exist such
that ẇ��3� = 0. Since ẇ�t� is given by Equation (3.10) and since
tm < �3 < t+

m, then ẋ��3� > 0 so that

1−��w��3��n−1w��3�+ �� −1��w��3��n = 0 (3.69)

It can be checked that no solution �w��3�� < 1 of Equation (3.69)
exists. The same can be said for the interval �t+

m� tm+1�.

Lemma 6. For any initial condition w�0� ∈ �, let t�w�<1 be the time
instant of Lemma 3. Let m1 be an integer such that tm1

≥ t�w�<1. If
−� < �−

��n�wm1
� < 0 then −� < �−

��n�wm� < 0 and 0 < �+
��n�w

+
m� < � for

each integer m ≥ m1. Furthermore, the equation w�t� = 0 has exactly
one solution in each interval �tm� t+

m� and �t+
m� tm+1�.

Proof. Assume that for some m ≥ m1 then −� < �−
��n�wm� < 0. For

t ∈ I+
m, the following is found by integrating Equation (3.10):

�+
��n �w�t��−�+

��n�wm� = � �x�t�−Xmin� (3.70)

From Equation (3.70) and that fact that the function x�t� is strictly
increasing on the interval I+

m, it follows that the time function w�t� is
strictly increasing from wm < 0 to w+

m, and

0 < �−
��n�wm�+� < �+

��n�wm�+� = �+
��n �w+

m� < � (3.71)

Equation (3.71) implies that w+
m > 0 and that a unique solution exists

to the equation w�t� = 0 in the interval �tm� t+
m� as w�t� is continuous.

Now, integrating Equation (3.10) on the interval I−
m gives

�−
��n �w�t��−�−

��n�w
+
m� = � �x�t�−Xmax� (3.72)

Here the time function w�t� is strictly decreasing from w+
m > 0 to

wm+1 < 0 such that

−� < �−
��n �wm+1� = �−

��n�w
+
m�−� < �+

��n�w
+
m�−� < 0
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This means that wm+1 < 0 and that a unique solution exists to the
equation w�t� = 0 in the interval �t+

m� tm+1�, which proves Lemma 6.

Lemma 7. For any initial condition w�0� ∈ � let t�w�<1 be the time
instant of Lemma 3. Some finite integer m1 ≥ 0 exists such that for all
integers m ≥ m1 the following holds:

(a) The equation w�t� = 0 has exactly one solution in each interval
�tm� t+

m�. Denote it by t+
m�w=0.

(b) The equation w�t� = 0 has exactly one solution in each interval
�t+

m� tm+1�. Denote it by t−
m�w=0.

(c) Define

−1 < �min = �−
��n �−�� < 0 and 0 < �max = �+

��n��� < 1

Then

�min < w�t� < 0 for t ∈ �tm� t+
m�w=0�

0 < w�t� < �max for t ∈ �t+
m� t−

m�w=0�

0 < w�t� < �max for t ∈ �t+
m�w=0� t+

m�

�min < w�t� < 0 for t ∈ �t−
m�w=0� tm+1�

Proof. It is known by Lemma 4 that some time instant tw=0 ≥ t�w�<1

exists for which w�tw=0� = 0. There are two possibilities:

1. tw=0 ∈ �tm� t+
m� for some m ≥ m0, where tm0

≥ t�w�<1.
2. tw=0 ∈ �t+

m� tm+1�.

Consider the first case. Then

ẇ�t� = �
(
1−��w�t��n−1w�t�+ �� −1��w�t��n) ẋ�t� for t ∈ I+

m

For sufficiently small �, then ẇ�t� > 0 for t ∈ �tw=0� tw=0 +��, so that
by Lemma 5 and by the continuity of w�t�

w�t� ≤ 0 for tm ≤ t ≤ tw=0

and

w�t� > 0 for tw=0 < t ≤ t+
m
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This means in particular that w+
m > 0 and wm ≤ 0. Integrating Equa-

tion (3.10) in the time interval �tm� tw=0� and taking into account the
fact that x �tw=0� < Xmax gives

−� < �+
��n�wm� = � �Xmin −x �tw=0�� ≤ 0 (3.73)

Integrating Equation (3.10) in the time interval �tw=0� t+
m� gives

�+
��n�w

+
m� = � �Xmax −x �tw=0�� ≥ 0 (3.74)

Since w+
m > 0 and x �tw=0� ≥ Xmin, then 0 < �+

��n�w
+
m� ≤ � from Equa-

tion (3.74). Now, integrating Equation (3.10) in the time interval
�t+

m� tm+1� gives

�−
��n�wm+1� = �−

��n�w
+
m�−� (3.75)

Since �−
��n�w

+
m� < �+

��n�w
+
m� ≤ �, then �−

��n�wm+1� < 0 by Equa-
tion (3.75). On the other hand, since w+

m > 0, then �−
��n�w

+
m� > 0

so that, by Equation (3.75), −� < �−
��n�wm+1� < 0 is obtained. This

gives the conditions of Lemma 6 by taking m1 = m0 +1, from which
Lemma 7 follows.

Case 2 is treated similarly.

3.5.2 Analytic Description of the Forced Limit Cycles for
the Bouc–Wen Model

This section uses the technical lemmas of Section 3.5.1 to demon-
strate Theorem 3.

Proof. Let m1 be an integer as in Lemma 7. Fix some � ∈ �0�T +� and
take m ≥ m1. Then, by integrating Equation (3.10) in the appropriate
intervals, the following from Lemma 7 is obtained:

�+
��n�w

+
m�−�+

��n �w�tm + ��� = � �Xmax −x���� (3.76)

�−
��n�wm+1�−�−

��n �w+
m� = −� (3.77)

�+
��n �w�tm+1 + ���−�+

��n �wm+1� = � �x���−Xmin� (3.78)
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From Equation (3.76), it follows that

w+
m = �+

��n

[
�+

��n �w�tm + ���+� �Xmax −x����
]
� g1 �w�tm + ��� (3.79)

Since the variable � has been fixed, g1 is a function of the variable
w�tm +�� (this variable changes with m). The function g1 is increasing
as the functions �+

��n and �+
��n are also increasing.

From Equation (3.77), it follows that

wm+1 = �−
��n

[
�−

��n �w+
m�−�

]
� g2�w

+
m� (3.80)

The function g2 is increasing as the functions �−
��n and �−

��n are also
increasing.

From Equation (3.78), it follows that

w �tm+1 + �� = �+
��n

[
�+

��n �wm+1�+� �x���−Xmin�
]
� g3�wm+1� (3.81)

Since the variable � has been fixed, g3 is a function of the variable
wm+1 (this variable changes with m). The function g3 is increasing
as the functions �+

��n and �+
��n are also increasing.

From Equations (3.79), (3.80) and (3.81), it follows that

w �tm+1 + �� = �g3 
g2 
g1� �w�tm + ��� � f �w�tm + ��� (3.82)

The function f is increasing as the functions g1� g2 and g3 are also
increasing.

Let us now consider the two cases:

1. w�tm1 +1 + �� ≥ w�tm1
+ ��.

2. w�tm1 +1 + �� ≤ w�tm1
+ ��.

First case 1 is treated. Since the function f is increasing, then

f
(
w�tm1 +1 + ��

)≥ f
(
w�tm1

+ ��
)

This implies that

w�tm1 +2 + �� ≥ w�tm1 +1 + ��

Thus, by induction, it follows that, for all integers m ≥ m1,

w�tm+1 + �� ≥ w�tm + ��
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Thus the real sequence w�tm + ���m≥m1
is monotonic. The same

conclusion (monotonicity of the sequence w�tm + ���m≥m1
) is

obtained for case 2. This implies that, in all cases, the real sequence
w�tm +���m≥m1

is monotonic. Since this sequence is bounded, it goes
to a limit w̄��� which, by Lemma 7, verifies

−1 < �min ≤ w̄��� ≤ �max < 1

Taking � = 0 in Equations (3.76) to (3.78) gives

�+
��n �w̄�T +��−�+

��n �w̄�0�� = � (3.83)

�−
��n �w̄�T +��−�−

��n �w̄�0�� = � (3.84)

From Lemma 7, it follows that

w̄�0� ≤ 0 ≤ w̄�T +� < 1

From Equations (3.83) and (3.84) it follows that

−1 < w̄�0� < w̄�T +� < 1

Denoting

g�·� = �+
��n�·�−�−

��n�·�

gives g �w̄�T +�� = g �w̄�0�� from Equations (3.83) and (3.84). It
can be shown easily that g�·� is strictly increasing on the interval
(0,1), strictly decreasing on the interval �−1�0� and is even on the
interval �−1�1�, so that necessarily w̄�0� = −w̄�T +�. Equations (3.83)
and (3.84) then reduce to the single relation

�+
��n �w̄�T +��+�−

��n �w̄�T +�� = ���n �w̄�T +�� = � (3.85)

Then from Equation (3.85),

w̄�T +� = ���n��� and w̄�0� = −���n���

Now, fixing � ∈ �T +�T � gives the following equations:

�−
��n�wm+1�−�−

��n �w�tm + ��� = � �Xmin −x���� (3.86)
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�+
��n�w

+
m+1�−�+

��n �wm+1� = � (3.87)

�−
��n �w�tm+1 + ���−�−

��n

(
w+

m+1

)= � �x���−Xmax� (3.88)

Similar to the analysis above, it is conclude that the real sequence
w�tm +���m≥m1

goes to a limit w̄��� which, again by Lemma 7, verifies

−1 < �min ≤ w̄��� ≤ �max < 1

Equations (3.42) and (3.43) of Theorem 3 follow by taking m → +�
in Equations (3.76) to (3.78) and Equations (3.86) to (3.88). It can
be checked that w̄�0� = w̄�T � and that the expressions of w̄�T +� given
by Equations (3.42) and (3.43) are equal so that the function w̄��� is
continuous.

The analysis above has shown that the sequence of functions
�m�m≥m1

is monotonic and converges pointwise to the contin-
uous function w̄ on the compact interval �0�T �. Thus, by Dini’s
theorem [127, page 122], it follows that the convergence is uniform.

3.6 SIMULATION EXAMPLE

In this section a class I normalized Bouc–Wen model is considered,
given by the following parameters:

�x = 2� �w = 2� � = 3� n = 1�5� � = 1

A T -periodic triangular signal is chosen whose maximal amplitude
is Xmax = −Xmin = 0�2. T = 1 and T + = T/2 are taken. This signal is
given in Figure 3.4 (upper left) on a one period of time.

Figure 3.4 (lower) gives two functions:

1. The function �̄BW�t� (solid) defined in Section 3.5.2 has been
obtained using the analytical expressions (3.53) and (3.54) of the
limit cycle.

2. The function �BW�x��t� (dashed) has been obtained by solving the
differential equations (3.9) and (3.10) of the normalized Bouc–
Wen model with an initial condition w�0� = 0.

It can be seen that the output �BW�x��t� approaches asymptotically
the T -periodic function �̄BW�t� as predicted by Theorem 3.
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Figure 3.4 (upper right) gives two functions:

1. The set of points �x�t���BW�x��t�� is obtained by solving the differ-
ential equations (3.9) and (3.10) of the normalized Bouc–Wen
model (dashed).

2. The limit cycle is predicted by Equations (3.53) and (3.54) (solid).

It can be seen that the graph �x�t���BW�x��t�� approaches the limit
cycle asymptotically as predicted by Theorem 3.
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the graph �x�t���BW�t�� for t ∈ �0�5T �; solid, the graph of the limit cycle(
x���� �̄BW���

)
for 0 ≤ � ≤ T . Lower: dashed, the Bouc–Wen model output

�BW�x��t�; solid, the limit function �̄BW�t� both for t ∈ �0�5T �.
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3.7 CONCLUSION

This chapter has dealt with the problem of characterizing analytically
the periodic response of the Bouc–Wen model. Instead of using the
standard form of this model, an equivalent form has been introduced:
the normalized one. This normalized form of the Bouc–Wen model
has been shown to be meaningful in the sense that the limit cycle
depends directly on the parameters that appear in the normalized
form, and thus depends only indirectly on the parameters of the
standard form. The obtained expression of the limit cycle is explicit
and exact and paves the way for a rigorous mathematical study of
the relationship between the parameters of the model and the shape
of the hysteretic cycle. This is the subject of the next chapter.





4
Variation of the Hysteresis
Loop with the Bouc–Wen
Model Parameters

4.1 INTRODUCTION

In this chapter, the hysteresis loop obtained for Bouc–Wen hysteresis
is studied analytically. The normalized version of the model along
with the analytical characterization of the limit cycle (Chapter 3) are
the main tools for this study.

The relationship between the Bouc–Wen standard parameters
A� �� �� n� D� k� � and the shape of the hysteresis loop has been
first studied in Reference [128]. In this reference, the value of n = 1
is considered, and the sign of the quantities �+� and � −� has been
recognized to influence the general shape of the hysteresis loop. A
more detailed study has been done in Reference [117] where five
kinds of hysteresis loops have been related to the different combi-
nations of the signs of �+� and � −�. The parameter A has been
shown to control the slope of the hysteresis at z = 0 and the param-
eter n has been recognized to control the transition from the linear to
the nonlinear range. References [128] and [117] have also identified
the quantity

z0 = n

√
A

�+�

Systems with Hysteresis: Analysis, Identification and Control using the Bouc–Wen Model
F. Ikhouane and J. Rodellar © 2007 John Wiley & Sons, Ltd
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as the largest value of the variable z. Other references include [129]
and [130].

It is to be noted that until recently an analytical expression of
the hysteresis loop (that is the limit cycle) was lacking, which has
impeded an analytical study of the relationship between the the
Bouc–Wen model parameters and the shape of the limit cycle. Most
references dealing with this aspect have used numerical simulations
to get more information (see [117] for example). However, numerical
simulations can only give partial information as they use particular
values of the model parameters. The objective of this chapter is
to carry out an analytical study of the way the Bouc–Wen model
parameters influence the shape of the hysteresis loop. This completes
and improves the body of information available in the literature via
numerical simulations.

The present chapter is an application of Theorem 3. An interesting
property arising from this theorem is that the hysteresis loop depends
in a direct way on a new set of parameters (the normalized ones). The
objective of this chapter is to analyse how these parameters influence
the limit cycle.

4.2 BACKGROUND RESULTS AND
METHODOLOGY OF THE ANALYSIS

4.2.1 Background Results

In this chapter, it is considered that the input signal x�t� is T -wave
periodic (see Section 3.2.1). An example of such a signal is given in
Figure 4.1. Without loss of generality, Xmax = −Xmin > 0 is taken so
that it is possible to define a normalized signal

x̄ = x

Xmax
(4.1)

Note that in this case −1 ≤ x̄ ≤ 1.
For this class of inputs, Theorem 3 has been demonstrated in

Chapter 3. This theorem is rewritten below to be used throughout
this chapter.
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Figure 4.1 Example of a wave T -periodic signal.

Theorem 4. For any nonnegative integer m, define the functions �m

and 	m as follows:

�m�
� = w�mT + 
� for 
 ∈ �0�T � (4.2)

	m�
� = xx�
�+w�m�
� for 
 ∈ �0�T � (4.3)

Then the following can be found:

�a� The sequences of functions �	m�m≥0 and ��m�m≥0 converge uniformly
to the continuous functions �̄BW and w̄ defined in the form

�̄BW�
� = xXmaxx̄�
�+ww̄�
� for 
 ∈ �0�T � (4.4)

w̄�
� = �+
��n

[
�+

��n

(−���n���
)+ �

2
�x̄�
�+1�

]

for 
 ∈ �0�T +� (4.5)

w̄�
� = −�+
��n

[
�+

��n

(−���n���
)− �

2
�x̄�
�−1�

]

for 
 ∈ �T +�T � (4.6)

where

� = 2�Xmax (4.7)



66 PARAMETRIC VARIATION OF THE HYSTERESIS LOOP

(b) For all 
 ∈ �0�T �,

−1 < −���n ��� ≤ w̄�
� ≤ ���n ��� < 1 (4.8)

the lower and upper bounds being attained at 
 = 0 and 
 = T +

respectively.

Loosely speaking, Theorem 4 means that the hysteretic outputs
w�t� and �BW�t� converge to T -periodic functions asymptotically.
Since these limit functions are T -periodic, they need to be defined
only on one period of time �0�T �. Theorem 4 gives the expression of
the limit cycle that is obtained for the wave periodic input signal as
an explicit function of the normalized Bouc–Wen model parameters.

The expression of the loading part of the limit cycle is given by
the relations

�̄l
BW�x̄� = xXmaxx̄+ww̄l�x̄� (4.9)

w̄l�x̄� = �+
��n

[
�+

��n

(−���n���
)+ �

2
�x̄+1�

]
(4.10)

Similarly, the expression of the unloading part of the limit cycle is
defined by the relations

�̄u
BW�x̄� = xXmaxx̄+ww̄l�x̄� (4.11)

w̄u�x̄� = −�+
��n

[
�+

��n

(−���n���
)− �

2
�x̄−1�

]
(4.12)

where −1 ≤ x̄ ≤ 1.
From the expression of the limit cycle, it is clear that it depends

in a direct way on the parameters �� � and n. This means that these
parameters are those that shape directly the hysteresis loop and not
the standard parameters A� �� �� n� D whose influence on the loop
is only indirect (via the set of parameters �� �� n).

Consider now two input values x̄1 and x̄2 = −x̄1. Then, from
Equations (4.5) and (4.12),

w̄l�x̄1� = �+
��n

[
�+

��n

(−���n���
)+ �

2
�x̄1 +1�

]

= �+
��n

[
�+

��n

(−���n���
)− �

2
�x̄2 −1�

]
= −w̄u�x̄2� (4.13)
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Figure 4.2 Symmetry property of the hysteresis loop of the Bouc–Wen model.

that is w̄l�x̄1� = −w̄u�x̄2�. This relation, along with Equations (4.9)
and (4.11), leads to �̄l

BW�x̄1� = −�̄u
BW�x̄2�. This means that points M1

and M2 are symmetric with respect to the origin (see Figure 4.2).
This symmetry property of the graph of the limit cycle allows only its
loading or its unloading part to be used for analysing the effect of the
parameters on the shape of the limit cycle. In the rest of the chapter,
only the loading part of the limit cycle will be considered (unless
otherwise specified). Equation (4.9) is linear in x̄ and w̄ so attention
will be concentrated exclusively on Equation (4.5). The superscript
‘l’ for loading will be dropped for ease of notation. In the rest of the
chapter it is considered that n > 1 and � > 1/2 instead of n ≥ 1 and
� ≥ 1/2, so that the intervals for the analysis are open sets.

4.2.2 Methodology of the Analysis

To analyse the influence of the normalized set of parameters ��� �� n�
on the shape of the limit cycle defined as the graph �x̄� w̄�x̄��, three
optics are considered:

1. The variations of the quantity w̄�x̄�, seen as a function of each
parameter �� � and n, are analysed separately for a fixed value of
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the normalized input x̄. This corresponds in Figure 4.3 to studying
the evolution of the point Q along the w̄ axis as the parameters
�� � and n vary. This is done in Section 4.5.

The particular case x̄ = 1 corresponds to the maximal value of
the hysteretic output. Due to the importance of this term, it will
be studied separately in Section 4.3.

2. The second optics consists in an analysis along the x̄ axis. The only
point of interest in this axis is point S in Figure 4.3, which corre-
sponds to w̄�x̄� = 0. This point gives the width of the hysteresis
loop along the x̄ axis. The analysis consists of studying the evolu-
tion of point S along the axis of abscissas when the parameters
�� � and n vary. This is done in Section 4.4.

3. The third way in the analysis consists of defining four regions of
the graph �x̄� w̄�x̄�� as seen in Figure 4.3:

(a) Rl = �Psl� Plt�, which corresponds to the linear behaviour.
(b) Rp = �Ptp� Pp�, which corresponds to the plastic behaviour.
(c) Two regions of transition Rs = �Ps� Psl� and Rt = �Plt� Ptp�.

The analysis consists of studying the evolution of the points that
define each region. This is done in Section 4.6.
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Figure 4.3 Methodologies of the analysis of the variation of w̄�x̄�.
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Note that Figure 4.3 is plotted in the following way:

1. On the axis of abscissas, the normalized input signal x̄ is plotted,
which varies between −1 and 1, both corresponding to the
maximal amplitude (in absolute value) of the input signal x�t�.

2. On the axis of ordinates, there are in fact two plots: the upper
one is that of the loading w̄l�x̄� that corresponds to Equation (4.5)
and the lower one corresponds to the unloading w̄u�x̄� defined by
Equation (4.12).

Since w̄�·� ∈ �−1�1� (see Theorem 4), this means that the plot is
normalized both in the axis of abscissas and the axis of ordinates.
The advantage of this normalization is that the shape of the hysteresis
loop can be quantified in absolute terms while the use of the unnor-
malized variable z leads to hysteresis loops whose shape should
always be reported to the maximal amplitude z0 of the variable z,
and to the maximal amplitude Xmax of the input signal x.

4.3 MAXIMAL VALUE OF THE HYSTERETIC
OUTPUT

By Theorem 4, the maximal value of the hysteretic output w̄�x̄�
is attained for 
 = T + in Equation (4.6). Since x�T +� = Xmax (or
equivalently x̄�T +� = 1), from Equation (4.6) it is found that w̄�T +� =
���n��� as �+

��n is the inverse function of �+
��n. Using the notation of

Equation (4.5), this means that the maximum value of the hysteretic
output w̄�x̄� is ���n��� and is obtained for the normalized input value
x̄ = 1, that is w̄�1� = ���n���.

In this section the variation of the term ���n��� is analysed with
respect to each of the three parameters n� � and �.

4.3.1 Variation with Respect to �

Since ���n is the inverse function of ���n�

[
����n���

��

]

�=�

= 1
[
����n�w�/�w

]
w=���n���

(4.14)
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Note that, since � > 0� w = ���n��� > 0. Now it follows from Equa-
tions (3.18), (3.19) and (3.20) that

����n�w�

�w
= 1

1+ �2� −1�wn
+ 1

1−wn
(4.15)

Combining Equations (4.14) and (4.15) gives

[
����n���

��

]

�=�

= 1
�1/1+ �2� −1����n���n�+ �1/1−���n���n�

(4.16)

By definition of the function ���n, it is known that ���n��� < 1 and
���n��� > 0 as � > 0. Using these two inequalities in Equation (4.16),
together with the fact that � > 1/2, shows that

[
����n���

��

]

�=�

> 0

This means that the function ���n��� is increasing with �.
On the other hand, from Equations (3.16) to (3.18), it follows that

���n�0� = �+
��n�0�+�−

��n�0� = 0 (4.17)

so that ���n�0� = 0. Also, it has been shown in Section 3.4 that

lim
w→1

�+
��n�w� = +�

This implies by Equation (3.18) that

lim
w→1

���n�w� = +�

so that

lim
�→�

���n��� = 1 (4.18)

Figure 4.4 gives a plot of a function ���n.
The property (4.18) means that, by increasing the parameter �,

the maximal value of the hysteretic output reaches unity asymptoti-
cally. Let us now interpret this result in terms of the unnormalized
model (2.4)–(2.5). As seen in Theorem 4, the hysteretic variable z
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Figure 4.4 Variation of the maximal hysteretic output ���n��� with the param-
eter �, for the values of � = 2 and n = 2.

reaches a stationary state when the input signal x is wave periodic.
The obtained limit cycle �x� z� then has a maximal value for

z = zmax = ���n��� z0 and x = Xmax where z0 = n

√
A

�+�

This maximal amplitude zmax of the hysteretic term z may be substan-
tially different from z0 as the term ���n��� can take any value between
0 and 1 for different values of the Bouc–Wen model parameters.
However, the quantity zmax goes asymptotically to z0 as the param-
eter � goes to infinity.

4.3.2 Variation with Respect to �

The function ���n��� may be seen as a function � of the three variables
�� n and �. Similarly, the function ���n�w� may be considered as a
function � of �� n and w. More precisely these functions have the
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following structure:

� � �3 → � � � �3 → �

⎛

⎝
�
n
�

⎞

⎠→ ���n��� and

⎛

⎝
�
n
w

⎞

⎠ → ���n�w�

with the property that

���n

(
���n���

)= � for all � > 1/2� n > 1� � ∈ � (4.19)

Define the function h as follows:

h � �3 → �3
⎛

⎝
�
n
�

⎞

⎠→
⎛

⎝
�
n

���n���

⎞

⎠

Then, Equation (4.19) can be written as

�
[
h ���n���T

]
= � (4.20)

It follows from Equation (4.20) that

J�Jh = �0�0�1� (4.21)

where J� is the Jacobian matrix of the function � evaluated at the
point h ���n���T and Jh is the Jacobian matrix of the function h
evaluated at the point ���n���T. Equation (4.21) can be written more
explicitly as

(
����n�w�

��
�

����n�w�

�n
�

����n�w�

�w

)

w=���n���

×

⎛

⎜
⎜⎜⎜
⎜
⎝

1 0
����n���

��

0 1
����n���

�n
����n���

��

����n���

�n

����n���

��

⎞

⎟⎟
⎟⎟⎟
⎠

= �0�0�1� (4.22)
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Equation (4.22) leads to

[
����n���

��

]

�=�

= −

[
����n�w�

��

]

w=���n���
[

����n�w�

�w

]

w=���n���

(4.23)

From Equation (3.21),
[

����n�w�

��

]

w=���n���

=
[∫ w

0

�

��

[
1

1+ �2� −1�un

]
du

]

w=���n���

= −
∫ ���n���

0

2un

�1+ �2� −1�un�
2 du (4.24)

and
[

����n�w�

�w

]

w=���n���

= 1
1−���n���n

+ 1
1+ �2� −1����n���n

(4.25)

Note that, in Equations (4.24) and (4.25), 0 < ���n��� < 1 and
� > 1/2, so that

[
����n�w�

��

]

w=���n���

< 0 and
[

����n�w�

�w

]

w=���n���

> 0

This means by Equation (4.23) that ����n���/�� > 0 so the func-
tion ���n��� is increasing with the argument �. The value of the
function ���n��� for � = 1/2 is �1/2�n���. To determine the asymp-
totic behaviour of the function ���n��� the behaviour of the function
���n�w� has to be analysed as � → �. Applying Lebesgue’s mono-
tone convergence theorem [131, page 21] it follows from Equa-
tion (3.19) that

lim
�→�

�−
��n�w� = 0 for all 0 ≤ w ≤ 1 and n > 1

On the other hand, using the notation of Equation (3.35) it is found
that, for all 0 ≤ w < 1, ���n�w� = �−

��n�w�+�+
n �w� so that

lim
�→�

���n�w� = lim
�→�

[
�−

��n�w�+�+
n �w�

]= �+
n �w�
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Figure 4.5 Variation of the maximal hysteretic output ���n��� with the param-
eter �, for the values of � = 1 and n = 2 (semi-logarithmic scale). Observe that
for � = 0�5 the corresponding value is �0�5�2�1� = 0�4786 and lim�→� ���2�1� =
0�7610 = �+

2 �1�.

This means that

lim
�→�

���n��� = �+
n ���

Figure 4.5 gives the evolution of the function ���n��� with the
parameter �.

4.3.3 Variation with Respect to n

From Equation (4.22),

[
����n���

�n

]

�=�

= −

[
����n�w�

�n

]

w=���n���
[

����n�w�

�w

]

w=���n���

(4.26)
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Equation (3.21) gives

[
����n�w�

�n

]

w=���n���

=
[∫ w

0

�

�n

[
1

1+ �2� −1�un

]
du

]

w=���n���

+
[∫ w

0

�

�n

(
1

1−un

)
du

]

w=���n���

=
∫ ���n���

0

[
1

�1−un�2
− 2� −1

�1+ �2� −1�un�
2

]

log�u�undu

(4.27)

In order to analyse the sign of the right-hand term of Equation (4.27),
two cases are to be discussed: � ≤ 1 and � > 1.

The Case � ≤ 1

It can be seen that the right-hand term of Equation (4.27) is negative
as 0 < ���n��� < 1. Since, by Equation (4.25),

[
����n�w�

�w

]

w=���n���

> 0

it follows that
[

����n���

�n

]

�=�

> 0

by Equation (4.26). This means that the function ���n��� is increasing
with the variable n. The value of this function for n = 1 is ���1���.
To analyse the asymptotic behaviour of ���n��� the following lemma
is needed.

Lemma 8. For all � > 1/2,

lim
n→�

�+
��n��� = � for � ∈ �−1�1� (4.28)

lim
n→�

�+
��n��� = 1 for � ≥ 1 (4.29)

lim
n→�

�−
��n��� = � for � ∈ �−1�1� (4.30)
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lim
n→�

���n��� = �

2
for � ∈ �−2�2� (4.31)

lim
n→�

���n��� = 1 for � > 2 (4.32)

Proof. Using the Lebesgue monotone convergence theorem on any
interval �−k�k� with 0 < k < 1, it follows from Equations (3.16) to
(3.18) that

lim
n→�

�+
��n�w� = w for w ∈ �−1�1� (4.33)

lim
n→�

�−
��n�w� = w for w ∈ �−1�1� (4.34)

lim
n→�

���n�w� = 2w for w ∈ �−1�1� (4.35)

Equations (4.28), (4.30) and (4.31) follow from Equations (4.33),
(4.34) and (4.35) respectively. To prove Equation (4.29), take � ≥ 1
and denote wk = �+

��k��� for any positive integer k. It is required that
the sequence �wk� is shown to be increasing. To this end note that,
similar to Equation (4.26),

��+
��n���

�n
= −

[
��+

��n�w�

�n

]

w=�+
��n���

[
��+

��n�w�

�w

]

w=�+
��n���

(4.36)

From Equation (3.17) it follows that
[

��+
��n�w�

�n

]

w=�+
��n���

=
∫ ���n���

0

log�u�un

�1−un�2
du < 0 (4.37)

[
��+

��n�w�

�w

]

w=�+
��n���

= 1
1−�+

��n���n
> 0 (4.38)

The fact that the function �+
��n��� is increasing with n is a direct

consequence of Equations (4.36) to (4.38).
Now, it has been proved that the sequence �wk� is increasing. Since

wk < 1 for all integers k, it follows that a real number � ≤ 1 exists
such that

lim
k→�

wk = �
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Assume that � < 1 and, for any positive integers k, then wk ≤ �, or
equivalently �+

��k��� ≤ �. This implies that � ≤ �+
��k��� for all positive

integers k. Using Equation (4.33) (as 0 ≤ � < 1) it follows that � ≤ �.
This contradicts the fact that if � ≥ 1 then necessarily � = 1. In other
terms, it has been shown that

lim
k→�

wk = lim
k→�

�+
��k��� = � = 1

which demonstrates Equation (4.29). Equation (4.32) follows using
similar arguments.

Lemma 8 shows that

lim
n→�

���n��� = �

2
for � ∈ �0�2� and lim

n→�
���n��� = 1 for � > 2

Figure 4.6 gives the variation of the function ���n��� for � = 0�7 ≤ 1.

The Case � > 1

When � > 1, an analytical description of the variation of ���n��� is
difficult. Numerical simulations show that a value �∗ > 1 exists that
depends on the parameter �, such that

1. If � ≤ �∗, then ���n��� is increasing with n.
2. If � > �∗, then the function ���n��� increases with n, attains a

maximum and then decreases as n → � (see Figure 4.6).

In this case

lim
n→�

���n��� = �

2
for � ∈ �0�2� and lim

n→�
���n��� = 1 for � > 2

Figure 4.6 gives the variation of the maximal value ���n��� with
the parameter n for three values of � and with � = 1�4.

4.3.4 Summary of the Obtained Results

Table 4.1 summarizes the obtained results. For example, the second
row of the table should be read as follows:
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Figure 4.6 Variation of the maximal value ���n��� with the parameter n for
three values of � and with � = 1�4. In this case, we have �∗ � 1�1.

Table 4.1 Variation of the maximal hysteretic
output ���n��� with the Bouc–Wen model parameters
����n

���n��� 0 ↑ 1
� 0 +�
���n��� �1/2�n��� ↑ �+

n ���
� 1/2 +�

���n��� ���1��� ↑
⎧
⎨

⎩

�/2 if � ∈ �0�2�

1 if � > 2
+�

n with � ≤ 1 1

���n��� ���1���

⎧
⎨

⎩

�/2 if � ∈ �0�2�

1 if � > 2
+�

n with � > 1 1

• The first column shows the variation of ���n��� with respect to the
parameter �.

• The second column shows that the term ���n��� is increasing �↑�
from the value �1/2�n��� that corresponds to � = 1/2 to the value
�+

n ��� that corresponds to � = +�.
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In Table 4.1 (and in all other similar tables), only the results that
have been derived analytically are reported. For example, it has not
been possible to derive analytically the growth of ���n��� (that is
whether this term is increasing �↑� or decreasing �↓�) with respect to
n when � > 1 (fourth line of Table 4.1) so this growth has not been
reported in the table.

4.4 VARIATION OF THE ZERO OF THE
HYSTERETIC OUTPUT

In this section the variation of the normalized input value x̄� is anal-
ysed such that w̄ �x̄�� = 0. The value x̄� corresponds to the abscissa
of the point S in Figure 4.3. Using Equation (4.5) it follows that

x̄� = −2
�

�+
��n

[−���n���
]−1 = 2

�
�−

��n

[
���n���

]−1 (4.39)

Since �−
��n�w� < �+

��n�w� for w �= 0, then �−
��n�w� < ���n�w�/2 for w �= 0

so that, taking w = ���n���, this becomes x̄� < 0. Note that the quan-
tity 2x̄� corresponds to the width of the hysteresis loop along the x̄
axis due to the symmetry property of the limit cycle.

4.4.1 Variation with Respect to �

Equation (4.39) gives the following derivative:

�x̄�

��
= 2

�2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�

1+ 1+ �2� −1����n ���n

1−���n ���n

+�+
��n

[−���n���
]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4.40)

The objective of the subsequent analysis is to determine the sign of
the right-hand term in Equation (4.39). Combining Equations (4.16)
and (3.23) this becomes

��+
��n

[−���n���
]

��
= − ����n���

��

[
��+

��n�w�

�w

]

w=−���n���
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= − 1

1+ 1+ �2� −1����n���n

1−���n���n

(4.41)

Define the function

f��� = �+�+
��n

[−���n���
][

1+ 1+ �2� −1����n���n

1−���n���n

]
(4.42)

From Equations (4.41) and (4.16) it follows that

df���

d�
= 2�n�+

��n

[−���n���
]
���n���n

[
1−���n���n

]2
[

1
1+ �2� −1����n���n

+ 1
1−���n���n

] (4.43)

From Equation (4.43), it is clear that

df���

d�
< 0

Since f�0� = 0 by Equation (4.42), this means that f��� < 0 for all
� > 0. Combining Equations (4.40) and (4.42) gives

�x̄�

��
= 2f���

�2

[
1+ 1+ �2� −1����n ���n

1−���n ���n

] (4.44)

Equation (4.44) shows that

�x̄�

��
< 0 for all � > 0

so that the function x̄� is decreasing with the parameter �. The value
of x̄� at � = 0 is determined as

x̄��� = 0� = lim
�→0

2
�

�−
��n

[
���n���

]−1 = 2

(
��−

��n

[
���n���

]

��

)

�=0

−1 = 0

(4.45)
Using the fact that

lim
�→�

���n��� = 1
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Figure 4.7 Variation of x̄� with the parameter � with the values � = 2
and n = 2.

and that the function �−
��n��� is finite at � = 1, from equation (4.39)

it follows that

lim
�→�

x̄���� = −1

Figure 4.7 gives an example of the variation of x̄� with the parameter
� for some given values of the parameters � and n.

4.4.2 Variation with Respect to �

To compute the derivative of the term x̄� with respect to �, a tech-
nique similar to that of Section 4.3.2 is used. Using the composition
rule in Equation (4.39) gives

�x̄�

��
= −2

�

{[
��+

��n�w�

��

]

w=−���n���

−
[

��+
��n�w�

�w

]

w=−���n���

[
����n���

��

]

�=�

}

(4.46)
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Then the terms arising in Equation (4.46) are computed:

[
��+

��n�w�

��

]

w=−���n���

=
∫ ���n���

0

2un

�1+ �2� −1�un�
2 du (4.47)

[
��+

��n�w�

�w

]

w=−���n���

= 1
1+ �2� −1����n���n

(4.48)

Equations (4.46) to (4.48) along with Equations (4.23) to (4.25) give

�x̄�

��
=− 2

�

⎡

⎢⎢⎢
⎣

1− 1

1+ 1+ �2� −1����n ���n

1−���n ���n

⎤

⎥⎥⎥
⎦

×
∫ ���n���

0

2un

�1+ �2� −1�un�
2 du < 0 (4.49)

Equation (4.49) implies that x̄� is a decreasing function of the
parameter �. It can easily be checked that x̄� decreases from the
value

2
�

�1/2�n ���−1

at � = 1/2 to −1 when � → �.
Figure 4.8 gives an example of the variation of x̄� with the param-

eter � for some given values of the parameters � and n.

4.4.3 Variation with Respect to n

From Equation (4.39),

�x̄�

�n
=− 2

�

{[
��+

��n�w�

�n

]

w=−���n���

−
(

��+
��n�w�

�w

)

w=−���n���

[
����n���

�n

]

�=�

}

(4.50)
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Figure 4.8 Variation of x̄� with the parameter � with the values � = 1 and
n = 2.

On the other hand,

[
��+

��n�w�

�n

]

w=−���n���

=
∫ ���n���

0

�2� −1� log�u�un

�1+ �2� −1�un�
2 du (4.51)

Combining Equations (4.50) and (4.51) along with (4.48) and (4.25)
to (4.27) gives

�x̄�

�n
= −2

�

{

�1−� �
∫ ���n���

0

�2� −1� log�u�un

�1+ �2� −1�un�
2 du

+�
∫ ���n���

0

log�u�un

�1−un�2
du

}

> 0 (4.52)

where

� = 1

1+ 1+ �2� −1����n���n

1−���n���n
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Figure 4.9 Variation of x̄� with the parameter n with the values � = 1 and
� = 2.

Equation (4.52) shows that the term x̄� is increasing with the param-
eter n. At n = 1, the value of x̄� is given by taking n = 1 in Equa-
tion (4.39). Since x̄� < 0 for all n ≥ 1 and since it is increasing
with n by Equation (4.52) it goes to a finite limit. Lemma 8 shows
that

lim
n→�

x̄� = 0 for 0 < � ≤ 2 and lim
n→�

x̄� = 2
�

−1 for � > 2

Figure 4.9 gives an example of the variation of x̄� with the param-
eter n for some given values of the parameters � and �.

4.4.4 Summary of the Obtained Results

This section summarizes the obtained results in Table 4.2. For
example, the third row gives the variation of x̄� with the parameter
n in the following form:
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Table 4.2 Variation of the hysteretic zero x̄� with the
Bouc–Wen model parameters ����n

x̄� 0 ↓ -1
� 0 +�
x̄� �2/���1/2�n ���−1 ↓ −1
� 1/2 +�
x̄� �2/���−

��1

[
���1���

]−1 ↑
{

0 if � ∈ �0�2�

2/�−1 if � > 2
n 1 +�

• For n = 1, the corresponding value of x̄� is �2/���−
��1

[
���1���

]−1.
• The symbol ↑ indicates that x̄� is increasing with n. Also, this line

indicates that

lim
n→�

x̄� = 0 if � ∈ �0�2� and lim
n→�

x̄� = 2
�

−1 if � > 2

4.5 VARIATION OF THE HYSTERETIC
OUTPUT WITH THE BOUC–WEN MODEL
PARAMETERS

In this section the quantity w̄�x̄� of Equation (4.5) is considered as
a function of the parameters ��� and n with a fixed value of x̄.
This corresponds to studying the evolution of the point Q along the
axis of ordinates in Figure 4.3. Seen as a function of x̄ with fixed
parameters ��� and n, the function w̄�x̄� is strictly increasing. This
can easily be seen by computing its derivative from Equation (4.5):

dw̄�x̄�

dx̄
= �

2
�1− w̄�x̄�n� for w̄�x̄� ≥ 0 (4.53)

dw̄�x̄�

dx̄
= �

2
�1+ �2� −1� �−w̄�x̄��

n
� for w̄�x̄� ≤ 0 (4.54)

This derivative is always positive due to the fact that −1 < w̄�x̄� < 1
for all −1 ≤ x̄ ≤ 1� � > 1/2 and � > 0.

To see how Equations (4.53) and (4.54) have been obtained, define
the function f as

f�x̄� = �+
��n

[−���n���
]+ �

2
�x̄+1� (4.55)
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Then

�f�x̄�

�x̄
= �

2
(4.56)

Using the fact that the function �+
��n is the inverse of the function

�+
��n gives

��+
��n �f�x̄��

�x̄
= �f�x̄�

�x̄

[
��+

��n���

��

]

�=f�x̄�

= �

2
1

[
��+

��n�v�

�v

]

v=�+
��n�f�x̄��

(4.57)

Using the fact that �+
��n �f�x̄�� = w̄�x� (see Equation (4.5)), it follows

from Equation (4.57) that

�w̄�x̄�

�x̄
= �

2
1

[
��+

��n�v�

�v

]

v=w̄�x̄�

(4.58)

Equations (4.53) and (4.54) follow from Equation (4.58) and Equa-
tions (3.20) and (3.23).

Figure 4.10 shows a typical curve w̄�x̄�:
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Figure 4.10 Variation of w̄�x̄� with the normalized input x̄, with the values
� = 2� � = 2 and n = 2.
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• The lowest value of the function w̄�x̄� is −���n���, which is obtained
for x̄ = −1. This follows from Equation (4.5).

• The largest value of w̄�x̄� is ���n���. It is obtained for x̄ = 1. This
follows from Equation (4.12).

Since the function ���n��� has been studied extensively in
Section 4.3, the variation of w̄�x̄� for x̄ = 1 and x̄ = −1 will not be
treated in this section. In other words, the fact that −1 < x̄ < 1 will
be considered.

4.5.1 Variation with Respect to �

Consider the function

� ���n��� x̄� = �+
��n

[−���n���
]+ �

2
�x̄+1� (4.59)

Note that � ���n��� x̄� is the argument of the function �+
��n�·� in

Equation (4.5). The following may be observed in Equation (4.59):

� ���n�0� x̄� = 0 for � = 0�

lim
�→�

� ���n��� x̄� = ��

Using these two points in Equation (4.5) gives

w̄�x̄� = 0�

lim
�→�

w̄�x̄� = 1�

On the other hand, deriving Equation (4.59) using (4.41) gives

�� ���n��� x̄�

��
= x̄+1

2
− 1

1+ 1+ �2� −1����n ���n

1−���n ���n

(4.60)

Now, two cases need to be discussed: (a) 0 ≤ x̄ < 1 and (b) −1 <
x̄ < 0.
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The Case 0 ≤ x̄ < 1

In this case, it can be checked that

�� ���n��� x̄�

��
> 0 for all � > 0

Since the function �+
��n�·� is increasing with its argument, this means

by Equation (4.5) that w̄�x̄� is increasing with �. This behaviour is
illustrated in Figure 4.11.

The case −1 < x̄ < 0

In this case, it can be checked that the hysteretic output w̄�x̄�, seen as
a function of the parameter �, has a global minimum at �∗ given by

�∗ = ���n

[
n

√
−x̄

� �x̄+1�− x̄

]

(4.61)
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Figure 4.11 Variation of w̄�x̄� with � for x̄ = 0�5� � = 1 and n = 2.
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Figure 4.12 Variation of w̄�x̄� with � for x̄ = −0�5� � = 100 and n = 2.

Figure 4.12 gives in this case the evolution of the hysteretic output
w̄�x̄� as a function of the parameter � for x̄ = −0�5. It can be seen
that the value �∗ = 0�1666 corresponds to a global minimum.

4.5.2 Variation with Respect to �

Given the fact that � ∈ �1/2���, the behaviour of w̄�x̄� is first
analyzed at the points � = 1/2 and � = �. At � = 1/2, the value
of the hysteretic output w̄�x̄� is obtained by putting � = 1/2 in
Equation (4.5). This value is denoted as

w̄�x̄��=1/2

To determine the asymptotic behaviour of w̄�x̄� with the parameter
�, note that, from Section 4.3.2,

lim
�→�

���n��� = �+
n ���

The Lebesgue monotone convergence theorem [131, page 21] in
Equation (3.23) shows that

lim
�→�

�+
��n �−�+

n ���� = 0
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This implies by Equation (4.59) that, for � sufficiently large,
� ���n��� x̄� > 0, so that w̄�x̄� = �+

��n ��� = �+
n ��� (see Equation (3.36)).

As a conclusion, it is found that

lim
�→�

w̄�x̄� = �+
n

(
�

2
�x̄+1�

)

Now attention will be given to the variation of w̄�x̄� with the
parameter �. Using the composition rule in Equation (4.5) gives

�w̄�x̄�

��
=
[

��+
��n���

��

]

�=����n���x̄�

+
[

��+
��n���

��

]

�=����n���x̄�

×
{[

��+
��n�w�

��

]

w=−���n���

−
[

��+
��n�w�

�w

]

w=−���n���

×
[

����n���

��

]

�=�

}

(4.62)

In the following the different terms arising in Equation (4.62) will
be computed:

[
��+

��n���

��

]

�=����n���x̄�

= −

[
��+

��n�w�

��

]

w=w̄�x̄�
[

��+
��n�w�

�w

]

w=w̄�x̄�

(4.63)

[
��+

��n���

��

]

�=����n���x̄�

= 1
[

��+
��n�w�

�w

]

w=w̄�x̄�

(4.64)

where

[
��+

��n�w�

��

]

w=w̄�x̄�

=0 for w̄�x̄� ≥ 0 (4.65)

[
��+

��n�w�

��

]

w=w̄�x̄�

=
∫ −w̄�x̄�

0

2un

�1+ �2� −1�un�
2 du

for w̄�x̄� ≤ 0 (4.66)
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[
��+

��n�w�

�w

]

w=w̄�x̄�

= 1
1− w̄�x̄�n

for w̄�x̄� ≥ 0 (4.67)

[
��+

��n�w�

�w

]

w=w̄�x̄�

= 1
1+ �2� −1� �−w̄�x̄��

n for w̄�x̄� ≤ 0

(4.68)

[
��−

��n�w�

��

]

w=w̄�x̄�

= −
∫ w̄�x̄�

0

2un

�1+ �2� −1�un�
2 du

for w̄�x̄� ≥ 0 (4.69)

[
��−

��n�w�

��

]

w=w̄�x̄�

= 0 for w̄�x̄� ≤ 0 (4.70)

[
��−

��n�w�

�w

]

w=w̄�x̄�

= 1
1+ �2� −1�w̄�x̄�n

for w̄�x̄� ≥ 0 (4.71)

[
��−

��n�w�

�w

]

w=w̄�x̄�

= 1
1− �−w̄�x̄��

n for w̄�x̄� ≤ 0 (4.72)

Combining Equations (4.62) to (4.72) and (4.23) to (4.25) gives
the following result for w̄�x̄� ≥ 0:

�w̄�x̄�

��
= �1− w̄�x̄�n�

⎛

⎜⎜⎜
⎝

1− 1

1+ 1+ �2� −1����n���n

1−���n���n

⎞

⎟⎟⎟
⎠

×
∫ ���n���

0

2un

�1+ �2� −1�un�
2 du > 0 (4.73)

This means that, for w̄�x̄� ≥ 0, the term w̄�x̄� is increasing with �.
Note that the condition w̄�x̄� ≥ 0 is equivalent to x̄ ≥ x̄�. On the other
hand, it was seen in Section 4.4.2 that x̄� is a decreasing function of
the parameter �, which implies that

x̄� is a bijection from � ∈ �1/2��� to
(

−1�
2
�

�1/2�n ���−1
]
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It follows then that two cases need to be discussed: (a) x̄ ≥
�2/���1/2�n ���−1 and (b) x̄ < �2/���1/2�n ���−1.

The Case x̄ ≥ �2/���1/2�n ���−1

In this case, it follows from Equation (4.73) that

�w̄�x̄�

��
> 0 for all x̄ ≥ 2

�
�1/2�n ���−1 and for all � > 1/2

In other words, the function w̄�x̄� is increasing with the parameter �
(see Figure 4.13).

The Case x̄ < �2/���1/2�n ���−1

It has been seen that the function

x̄�is a bijection from � ∈ �1/2��� to
(

−1�
2
�

�1/2�n ���−1
]
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Figure 4.13 Variation of w̄�x̄� with � for x̄ = 0�5� � = 1 and n = 2. In this
case, �2/���1/2�n ���−1 = −0�0429.
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Using Equation (4.39), this implies that a unique value �� exists such
that x̄ = x̄�, that is

2
�

�−
���n

[
����n���

]−1 = x̄ (4.74)

Given numerical values of x̄� � and n, the parameter �� can be found
numerically using standard methods [132]. For � ≥ ��, then x̄� ≤ x̄
as the function x̄� is decreasing with �. This means that w̄�x̄� ≥ 0, so
that, by Equation (4.73),

�w̄�x̄�

��
> 0

Thus, the function w̄�x̄� is increasing with � in the interval ������.
The analysis of the variation of w̄�x̄� in the interval �1/2���� is
difficult analytically, and for this reason numerical simulations are
used to complete the picture. Figure 4.14 shows that a value x̄∗

exists such that: for x̄ ≥ x̄∗ the function w̄�x̄� is increasing with the
parameter � and for −1 < x̄ < x̄∗ the function w̄�x̄� has a global
minimum.
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Figure 4.14 Variation of w̄�x̄� with � for different values of x̄, with � = 1�4
and n = 2. Upper curve, x̄ = −0�8; middle, x̄ = −0�87; lower, x̄ = −0�95. In
this case. �2/���1/2�n ���−1 = −0�0851 and x̄∗ = −0�87.
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4.5.3 Variation with Respect to n

It is difficult to determine analytically the sign of

�w̄�x̄�

�n

For this reason, the variation will be restricted to determining the
limit of w̄�x̄� when n → �. In this case, Lemma 8 shows that two
cases need to be discussed: (a) � ∈ �0�2� and (b) � > 2.

The Case � ∈ �0�2�

In this case,

lim
n→�

w̄�x̄� = �

2
x̄

This means that the hysteretic output w̄�x̄� approaches a linear
behaviour asymptotically as the parameter n increases.

The Case � > 2

In this case, the limit of w̄�x̄� is equal to the function defined by

lim
n→�

w̄�x̄� =

⎧
⎪⎨

⎪⎩

−1+ �

2
�x̄+1� for −1 ≤ x̄ <

4
�

−1

1 for
4
�

−1 ≤ x̄ ≤ 1

This function is represented in Figure 4.15 for the value � = 5. It is
interesting to note that this function is independent of the parameter
� and depends only on the parameter �.

4.5.4 Summary of the Obtained Results

This section summarizes the obtained results in Table 4.3. For
example, the fourth row is to be read as follows:
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Figure 4.15 The limit function limn→� w̄�x̄� for � = 5.

• The first column says that the variation of w̄�x̄� is studied as a
function of the parameter �, in the case where x̄ < �2/���1/2�n

���−1.
• The second column says that for � = 1/2 the corresponding

hysteretic output is w̄�x̄��=1/2 and for � = �� the hysteretic output
is w̄�x̄��=�� . As stated in the previous section, it has not been
possible to determine analytically the growth of the function w̄�x̄�
(whether increasing ↑ or decreasing ↓) when � ∈ �1/2����. For this
reason, this growth is not reported in the table. On the contrary, the
growth of w̄�x̄� has been determined analytically when � ∈ ������
and is reported in the table �↑�. Finally, the fourth line states that

lim
�→�

w̄�x̄� = �+
n

(
�

2
�x̄+1�

)

4.6 THE FOUR REGIONS OF THE BOUC–WEN
MODEL

The linear and plastic behaviour of the hysteretic system is charac-
terized by the derivative
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dw̄�x̄�

dx̄

The value of this derivative is significant and almost constant in
the linear part of the hysteretic limit cycle and is almost constant
and much smaller in the plastic zone. In this section the notions of
linear and plastic response in relation with the Bouc–Wen model are
defined formally. The evolution of these regions are analysed using
the model parameters.

4.6.1 The Linear Region Rl

The limit cycle of the hysteretic Bouc–Wen model is defined by
Equations (4.9) to (4.12). It can also be seen as the unique solution
of the differential equations (4.53) and (4.54) with the condition
w̄�1� = ���n���. The right hand side of Equations (4.53) and (4.54) is
composed of:

• A linear contribution �/2.
• A nonlinear contribution

⎧
⎪⎨

⎪⎩

�

2
�2� −1� �−w̄�x̄��

n for w̄�x̄� ≤ 0

−�

2
w̄�x̄�n for w̄�x̄� ≥ 0

It is thus natural to consider that the linear behaviour of the
hysteretic system corresponds to the linear contribution in Equa-
tions (4.53) and (4.54), while the nonlinear behaviour corresponds
to the nonlinear contribution. Note that the nonlinear contribution
becomes irrelevant for small values of the term w̄�x̄�.

From Equations (4.53) and (4.54), it can be seen that, for these
small values of w̄�x̄�, the derivative of w̄�x̄� is close to

[
dw̄�x̄�

dx̄

]

w̄=0

= �

2

which implies that the linear region is characterized by the main
slope �/2. The formal definition of the linear region in relation with
the Bouc–Wen model is given below.



98 PARAMETRIC VARIATION OF THE HYSTERESIS LOOP

Definition 1. Let 0 < r1 < 1 be a prescribed percentage (for example
r1 = 0�01 = 1%). The linear region Rl is defined as the set of the
points of the limit cycle such that the derivative at these points
differs by no more than r1 with respect to the main slope �/2. More
precisely,

Rl =

⎧
⎪⎪⎨

⎪⎪⎩
P = �x̄� w̄�x̄�� such that

∣
∣
∣
∣
∣
∣
∣
∣

[
dw̄�x̄�

dx̄

]

P

− �

2
�

2

∣
∣
∣
∣
∣
∣
∣
∣

≤ r1

⎫
⎪⎪⎬

⎪⎪⎭
(4.75)

The transition points Psl = �x̄sl� w̄sl� and Plt = �x̄lt� w̄lt� are defined
as the points of the graph �x̄� w̄�x̄��, where the value of the deriva-
tive of w̄�x̄� is different from its value at the point w̄�x̄� = 0 by
r1. The points Psl and Plt in Figure 4.3 correspond to the transi-
tions from the region Rs to the region Rl and from the region Rl

to the region Rt respectively. From Equations (4.53) and (4.54) it
can be checked that these two points are defined by the following
relations:

w̄sl = −n

√
r1

2� −1
(4.76)

w̄lt = n
√

r1 (4.77)

w̄ �x̄sl� = w̄sl (4.78)

w̄ �x̄lt� = w̄lt (4.79)

Analysing the influence of the Bouc–Wen normalized parameters
on the shape of the hysteresis loop includes the analysis of the vari-
ation of the linear region with respect to these parameters. This
analysis is equivalent to studing the evolution of the transition points
Psl = �x̄sl� w̄sl� and Plt = �x̄lt� w̄lt� that define the linear region with
respect to each parameter �� � and n. This means analysing the
variation of the quantities x̄sl� w̄sl� x̄lt and w̄lt.
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The Different Possibilities for the Linear Region

Dependingon thevaluesof theparameters�� n� �and r1, thehysteresis
loop may present some peculiarities. Four cases are possible.

Case 1

The parameters are such that w̄lt > ���n���. Note that the quantity
���n��� corresponds to the largest amplitude of the hysteretic output,
that is ���n��� = w̄�1�. The term w̄lt corresponds to the ordinate of
the transition point Plt from the linear region Rl to the region Rt (see
Figure 4.3). If w̄lt > ���n���, this means that the region of transition
Rt and the plastic region are empty (see Figure 4.16). In this case,
the linear region is defined on the axis of abscissas by the interval
�x̄sl�1� and on the axis of ordinates by the interval �w̄sl����n����. The
hysteresis loop presents at most two regions: the linear region Rl,
and, possibly, the region of transition Rs. The condition w̄lt > ���n���
can be written as

Xmax <
���n

(
n
√

r1

)

2�
� X0 (4.80)
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Figure 4.16 The linear region Rl in the case w̄lt > ���n���.
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Equation (4.80) shows that the specific shape of the hysteresis loop
of Figure 4.16 is due to the small size of the displacement x�t�. This
shape is obtained whenever Xmax < X0, where the quantity X0 depends
on the Bouc–Wen model parameters �� n� � and on the percentage r1.

Case 2

The parameters are such that w̄sl < −���n���. Note that the absolute
value of the quantity −���n��� corresponds to the largest amplitude
of the hysteretic output, that is w̄�−1� = −���n���. The term w̄sl

corresponds to the ordinate of the transition point Psl from the region
linear region Rl to the region Rs (see Figure 4.3). If w̄sl < −���n���,
this means that the region of transition Rs is empty (see Figure 4.17).
In this case, the linear region is defined on the axis of abscissas by
the interval �−1� x̄lt� and on the axis of ordinates by the interval
�−���n���� w̄lt�. The condition w̄sl < −���n��� can be written as

Xmax <

���n

(
n

√
r1

2� −1

)

2�
� X1 (4.81)

Equation (4.81) shows that the specific shape of the hysteresis loop of
Figure 4.17 is due to the small size of the displacement x�t�. This shape
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Figure 4.17 The linear region Rl in the case w̄sl < −���n���.
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Figure 4.18 The linear region Rl in the case w̄sl < −���n��� and w̄lt > ���n���.

is obtained whenever Xmax < X1, where the quantity X1 depends on the
Bouc–Wen model parameters �� n� � and on the percentage r1.

Case 3

The parameters are such that w̄lt > ���n��� and w̄sl < −���n���. This
happens when cases 1 and 2 above occur simultaneously. In this
case, the whole hysteresis loop reduces to the linear region (see
Figure 4.18). The regions Rs� Rt and Rp are empty. In this case, the
linear region is defined on the axis of abscissas by the interval �−1�1�
and on the axis of ordinates by the interval �−���n�������n����. This
happens when

Xmax < min �X0�X1� � X2 (4.82)

Note that the quantity X2 depends on the Bouc–Wen model param-
eters �� n� � and on the percentage r1.

Case 4

The parameters are such that

−���n��� ≤ w̄sl < w̄lt ≤ ���n��� (4.83)
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Figure 4.19 The linear region Rl in the case −���n��� ≤ w̄sl < w̄lt ≤ ���n���.

In this case, the hysteresis loop presents at least three nonempty
regions as shown in Figure 4.19: the linear region Rl and two regions
of transitions Rs and Rt (the plastic region may or may not be empty,
as will be seen in Section 4.6.2). The linear region is then defined
on the axis of abscissas by the interval �x̄sl� x̄lt� and on the axis of
ordinates by the interval �w̄sl� w̄lt�. This happens whenever

Xmax > max �X0�X1� � X3 (4.84)

Implicit in Equation (4.84) is the assumption that both quantities X0

and X1 are finite. This is always the case for X0; however, this is not
always the case for X1. An additional condition for the finiteness of
X1 is

� >
1+ r1

2
(4.85)

which comes as a condition for the argument of ���n in Equa-
tion (4.81) to be less than unity. Inequalities (4.84) and (4.85)
are equivalent to the inequalities in Equation (4.83) and insure
that the regions Rs� Rl and Rt are nonempty. Note that the
quantity X3 in Equation (4.84) depends on the Bouc–Wen model
parameters �� n� � and on the percentage r1. In the rest of the
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section, it will be assumed that both inequalities (4.84) and (4.85)
hold.

Variation of the Region Rl with respect to �

It can be seen from Equations (4.76) and (4.77) that the quantities
w̄sl and w̄lt are independent of the parameter �. This means that the
linear region is independent of the parameter � in the w̄ axis. From
Equations (4.5) and (4.76) to (4.79),

x̄sl = −1+ 2
�

{
�+

��n

(
− n

√
r1

2� −1

)
−�+

��n

[−���n���
}}

(4.86)

x̄lt = −1+ 2
�

{
�+

��n � n
√

r1�−�+
��n

[−���n���
]}

(4.87)

From Equations (4.86) and (4.83), it follows that x̄sl ≥ −1. On the
other hand, Equation (4.78) shows that w̄�x̄sl� < 0. This fact, along
with the increasing growth of w̄�x̄� with respect to x̄, gives x̄sl < x̄� <
0, that is 1 ≤ x̄sl < x̄� < 0.

Now, from Equation (4.87) it follows that

x̄lt ≤ −1+ 2
�

{
�+

��n

[
���n���

]+�−
��n

[
���n���

]}
(4.88)

= −1+ 2
�

{
���n

[
���n���

]}= 1 (4.89)

Moreover, it follows from Equation (4.79) that w̄�x̄lt� > 0, so that
x̄lt > x̄�, that is x̄� < x̄lt ≤ 1.

Note that

lim
�→+�

x̄sl = lim
�→+�

x̄lt = −1

which means that the size of the linear region along the axis of
abscissas goes to zero as the parameter � increases. As a conclusion,
the points Psl and Plt that define the linear region go to the points

(
−1�− n

√
r1

2� −1

)
and �−1� n

√
r1�

respectively, as � → �.



104 PARAMETRIC VARIATION OF THE HYSTERESIS LOOP

Variation of the Region Rl with �

Equations (4.76) and (4.86) show, respectively, that

lim
�→�

w̄sl = 0 and lim
�→�

x̄sl = −1

As � increases, the part of the linear region Rl that corresponds to
the negative ordinates shrinks and goes to the single point �−1�0�.
The quantity w̄lt is independent of �, so that the part of the linear
region that corresponds to the positive ordinates remains constant.
Equation (4.87) shows that

lim
�→�

x̄lt = −1+ 2
�

�+
n � n

√
r1�

As a conclusion, the points Psl and Plt that define the linear region
go to the points

�−1�0� and
(

−1+ 2
�

�+
n � n

√
r1� �

n
√

r1

)

respectively, as � → �.

Variation of the Region Rl with n

As seen in Table 4.3, when n → �, the whole limit cycle becomes
linear for � ∈ �0�2�. For � > 2, the linear region Rl is exactly linear
and corresponds to the interval

[
−1�

4
�

−1
]

on the x̄ axis and to the interval �−1�1� on the w̄ axis.
As a conclusion, for � ∈ �0�2�, the points Psl and Plt that define the

linear region go to the points

(
−1�−�

2

)
and

(
1�

�

2

)
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respectively, as n → �. For � > 2, the points Psl and Plt go to the
points

�−1�−1� and
(

4
�

−1�1
)

respectively, as n → �.

4.6.2 The Plastic Region Rp

The plastic region corresponds to the zone where large variations of
the input induce small variations of the output; this is equivalent to
saying that the derivative

dw̄�x̄�

dx̄

is small with respect to its value in the linear region Rl. The formal
definition of the plastic region in relation to the Bouc–Wen model is
given below.

Definition 2. Let 0 < r2 < 1 be a prescribed percentage (for example
r2 = 1%). The plastic region Rp is defined as the set of the points
of the limit cycle such that the derivative at these points is no more
than r2 with respect to the main slope of the linear region. More
precisely,

Rp =
{

P = �x̄� w̄�x̄�� such that
[

dw̄�x̄�

dx̄

]

P

≤ r2
�

2

}
(4.90)

The plastic region is the part of the limit cycle that lies between
the points Ptp = (

x̄tp� w̄tp

)
and Pp = (

1����n ���
)

(see Figure 4.3). The
point Ptp defines the border between the region of transition Rt and
the plastic region Rp. From Equation (4.53), the coordinates of the
transition point Ptp are given as

w̄tp = n
√

1− r2 (4.91)

x̄tp = −1+ 2
�

{
�+

��n

(
n
√

1− r2

)
−�+

��n

[−���n���
]}

(4.92)
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For the plastic region to be nonempty, the ordinate ���n ��� of the
point Pp should be greater than the ordinate w̄tp of the point Ptp. This
condition can be written as ���n ��� > n

√
1− r2 or equivalently

Xmax >
���n

(
n
√

1− r2

)

2�
� X4 (4.93)

Equation (4.93) means that, for the plastic region to be nonempty,
the amplitude Xmax of the input signal x�t� should be larger than
the quantity X4. Note that X4 depends on the Bouc–Wen model
parameters �� n� � and the prescribed percentage r2.

In the following it is assumed that the inequality (4.93) holds. The
evolution of the point Pp has been studied in Section 4.3, so that we
concentrate solely on the analysis of the variation of the point Ptp.

Variation of the Region Rp with �

The coordinate w̄tp is independent of �. This means that the plastic
region is independent of the parameter � in the w̄ axis. On the other
hand, it can be checked that

x̄� < x̄tp < 1 and lim
�→�

x̄tp = −1

As a conclusion, the points Ptp and Pp that define the plastic region

go to the points
(
−1� n

√
1− r2

)
and �1�1�, respectively, as � → �.

Variation of the Region Rp with �

The coordinate w̄tp is independent of �. This means that the plastic
region is independent of the parameter � in the w̄ axis. On the other
hand, it can be checked that

lim
�→�

x̄tp =−1+ 2
�

�+
n

(
n
√

1− r2

)
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As a conclusion, the points Ptp and Pp go to the points defined by the
coordinates

(
−1+ 2

�
�+

n

(
n
√

1− r2

)
� n
√

1− r2

)
and �1��+

n ����

respectively, as � → �.

Variation of the region Rp with n

As seen in Table 4.3, when n → �, the whole limit cycle becomes
linear for � ∈ �0�2�, so that the plastic region becomes empty. For
� > 2, the points Ptp and Pp go to the points

(
4
�

−1�1
)

and �1�1�

respectively, as n → �.

4.6.3 The Transition Regions Rt and Rs

The region Rs is defined by the points Ps and Psl (see Figure 4.3). The
point Ps is symmetric to Pp whose study has been done in Section 4.3.
The variation of the point Psl has been studied in Section 4.6.1. On
the other hand, the transition region Rt is defined by the points Plt

and Ptp whose evolution has been studied in Sections 4.6.1 and 4.6.2
respectively.

4.7 INTERPRETATION OF THE NORMALIZED
BOUC–WEN MODEL PARAMETERS

4.7.1 The Parameters 	 and �

The shape of the limit cycle depends on the parameter � = 2�Xmax.
This formula shows that the Bouc–Wen model parameter � and the
maximal amplitude Xmax of the periodic wave input signal have the
same effect on the hysteresis loop. On the other hand, it was seen
above that the slope of the linear region is �/2 = �Xmax. Thus, the
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parameter � can be interpreted as being the slope of the linear zone
when the input has a unity maximal size, that is for Xmax = 1.

To derive an interpretation of the parameters from a mechanical
point of view, note that Equation (2.5) leads to

(
dz

dx

)

z=0

= �z0 = A

in the unnormalized coordinates, as � = A/z0 for D = 1. This means
that A is the initial stiffness of the nonlinear component of the Bouc–
Wen model, which is obtained by drawing the tangent to the z curve
at the beginning of the deformation, as illustrated in Figure 4.20. This
tangent crosses the horizontal line of the strength at a point whose
projection on the horizontal axis is commonly called ‘apparent yield
point’. It can be checked that this value is equal to 1/�. Thus, �
can be interpreted as the inverse of the apparent yield point of the
nonlinear component of the Bouc–Wen model.

z

z0

1–ρ
x

Figure 4.20 Interpretation of the parameter �.
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To interpret the parameter �, let us introduce Xy = 1/�, which
means the yield displacement. Thus

� = 2
Xmax

Xy

This indicates that the parameter � measures the ductility of the
model. This is a crucial variable in some applications in which
a strong nonlinear response is expected, such as earthquake engi-
neering.

4.7.2 The Parameter �

Assume that the largest value ���n��� of the hysteretic output is close
to one. Then, for x̄ = −1 in Equation (4.54) it follows that

2� =

[
dw̄�x̄�

dx̄

]

x̄=−1

�/2
(4.94)

Equation (4.94) says that the slope of the hysteresis loop for x̄ = −1 is
2� times the slope of the linear region. This means that the parameter
� characterizes the slope of the limit cycle at the points x̄ = −1 and
x̄ = 1 that correspond to changes in the sign of the velocity.

To derive an interpretation from the mechanical point of view,
note that softening or hardening behaviours of the hysteretic material
depend on whether the curvature of the graph �x̄� w̄�x̄�� is concave of
convex, respectively. To check this character the sign of the second
derivative of w̄�x̄� should be studied. Equations (4.53) and (4.54) give

d2w̄�x̄�

dx̄2
= −n

(
�

2

)2

�1− w̄�x̄�n� w̄�x̄�n−1 for w̄�x̄� ≥ 0 (4.95)

d2w̄�x̄�

dx̄2
=−n�2� −1�

(
�

2

)2

�1+ �2� −1� �−w̄�x̄��
n
� �−w̄�x̄��

n−1

for w̄�x̄� ≤ 0 (4.96)

It can be seen from Equations (4.95) and (4.96) that the parameter
� is the one that shapes the curvature of the graph �x̄� w̄�x̄��. Since
� > 1/2, this graph is concave (decreasing slope). This means that
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class I of the Bouc–Wen model corresponds to softening. As a conse-
quence, it follows that, to have a Bouc–Wen model that describes
the hardening behaviour, this model has to be either unstable or
inconsistent with the laws of thermodynamics.

4.7.3 The Parameter n

This parameter has been investigated in various references by means
of numerical simulations (see References [117] for example). A
general conclusion that stems from these references is that the param-
eter n characterizes the transition from the linear to the plastic
behaviour. In fact, this is only half true. Indeed, as seen above, the
region of transition Rt from linear to plastic behaviour is defined
by the points Plt = �x̄lt� w̄lt� and Ptp = (

x̄tp� w̄tp

)
(see also Figure 4.3).

As seen in Equations (4.77) and (4.91), the ordinates w̄lt and w̄tp

of the points Plt and Ptp depend only on the parameter n (and on
the prescribed percentages r1 and r2). This means that the transition
region Rt is characterized only by the Bouc–Wen model parameter
n along the axis of ordinates. However, Equations (4.87) and (4.92)
show that the abscissas x̄lt and x̄tp of the points Plt and Ptp depend
not only on the parameter n but also on the rest of the parameters
�� � and also on the maximal size Xmax of the input x.

As a conclusion, it follows that it is more precise to say that the
parameter n is the one that characterizes the transition from linear
to plastic behaviour along the axis of ordinates in the map �x̄� w̄�x̄��.

4.8 CONCLUSION

This chapter has focused on analysing the manner in which the
parameters of the normalized Bouc–Wen model influence the shape
of the hysteresis loop. The study is based mainly on the analytical
description of the limit cycle derived in Chapter 3.

The main practical results are summarized in three tables that
describe the variation of some specific features of the hysteretic loop
with the Bouc–Wen model parameters ���� n:

• Table 4.1 gives the variation of the maximum value of the
hysteretic output w̄�x̄�.
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• Table 4.2 describes the variation of the hysteretic zero x̄�, which
is a measure of the hysteretic width �2x̄0�.• Table 4.3 characterizes the variation of the hysteretic output w̄�x̄�.

Additionally, four regions in the hysteretic loop have been identi-
fied, in particular those corresponding to linear and plastic behaviour
respectively. The variation of these regions with respect to the model
parameters has been analysed.

The analytical study of the hysteretic loop has also led to an
interpretation of the parameters of the normalized Bouc–Wen model.





5
Robust Identification of the
Bouc–Wen Model Parameters

5.1 INTRODUCTION

This chapter presents a parametric identification method for the
normalized Bouc–Wen model and analyses its robustness to noise.
Consider Figure 5.1 where the unknown vector � is composed of
the Bouc–Wen model parameters. The objective of any parameter
identification algorithm is to determine an estimate �̂ of the vector
parameter � using only the measurements of the input x�t� and the
output �BW�x��t�. It is assumed that the hysteretic state variable is
not accessible to measurements as this state variable lacks a physical
meaning. There are two types of parametric identification algorithms:
recursive and nonrecursive. In a recursive algorithm, the estimate �̂
is updated at each time instant t, while a nonrecursive algorithm
gives the estimate �̂ without the need for updating. The objective of
a recursive algorithm is to ensure that limt→� �̂�t� = � in the absence
of noise. The objective of a nonrecursive algorithm is to ensure that
�̂ = � in the absence of noise. In this case, it can be said that the
identification algorithm possesses the estimation property.

In the current literature, much attention has been devoted to this
problem. However, in all works that the authors are aware of, there
is no proof that the estimated parameters converge (respectively, are
equal) to the true ones in the case of recursive algorithms (respec-
tively, nonrecursive algorithms); that is the estimation property is not

Systems with Hysteresis: Analysis, Identification and Control using the Bouc–Wen Model
F. Ikhouane and J. Rodellar © 2007 John Wiley & Sons, Ltd
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x (t) Φ BW (x) (t)Bouc–Wen model with
parameter vector θ

Parameter identification
algorithm

θ Parameter estimate
∧

Figure 5.1 Parametric identification algorithm scheme.

established. This point is of crucial importance as the methodology
that is used in these works is as follows:

1. Consider some existing identification technique that guarantees
that the estimated parameters converge (or are equal) to the true
ones, that is they possess the estimation property. This identifica-
tion method is valid, in general, within a given context and under
some assumptions.

2. Modify the identification method so that it fits with the problem of
determining the Bouc–Wen model parameters. The modification
of the method entails a modification of the context or the assump-
tions so that the estimation property is no longer guaranteed.

3. Instead of proving analytically the estimation property of the
modified identification algorithm, the authors use a numerical
simulation to check the validity of the estimation property.

While numerical simulations are useful in treating specific problems,
they are useless for deriving general conclusions. More precisely,
checking with a numerical simulation (or several simulations) the
estimation property of an identification algorithm does not show
that this algorithm does indeed possess that property. The only way
to ensure that the estimation property is obtained for a given identi-
fication algorithm is to demonstrate it analytically.

In this chapter, a parametric nonlinear identification technique is
proposed for the Bouc–Wen model based on the analytical descrip-
tion of Chapter 3. This method provides the exact values of the
model parameters in the absence of disturbances and gives a guar-
anteed relative error between the estimated parameter and the true
ones in the presence of perturbations. The identification technique
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consists in exciting the hysteretic system with two periodic signals
that have a specific shape. The parameters of the Bouc–Wen model
are then obtained from the two limit cycles using a precise algorithm.
Moreover, it is shown that the identification technique is robust with
respect to a class of disturbances of practical interest.

5.2 PARAMETER IDENTIFICATION OF THE
BOUC–WEN MODEL

5.2.1 Class of Inputs

In this chapter, the input signal x�t� is considered to be T -wave
periodic, as presented in Section 3.2.1.

Assume that �w�0�� ≤ 1. Then, by Table 3.1, �w�t�� ≤ 1 for all t ≥ 0.
If a signal x�t� is considered such that

max ��Xmax�� �Xmin�� � �w/�x

then it follows from Equation (3.9) that the largest value

�xmax ��Xmax�� �Xmin��
of the linear term �xx�t� is much larger than the largest value �w of
the nonlinear term �ww�t�. This means that the behaviour of �BW

versus x becomes almost linear for large values of the input x and
that the hysteretic term �ww�t� will have some influence on �BW

only for small values of the input x�t�. In particular, for large values
of the input signal x�t�, the corresponding hysteretic output �BW�t�
will be independent of the sign of the derivative ẋ�t�. This behaviour
has not been reported experimentally for real hysteretic systems. For
this reason, the Bouc–Wen model is not considered to represent a
physical hysteretic behaviour if

max ��Xmax�� �Xmin�� � �w/�x

Based on the above consideration, in this chapter only input signals
such that

max ��Xmax�� �Xmin�� ≤ �w/�x

will be considered.
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5.2.2 Identification Methodology

The hysteretic system under study is assumed to be described
by the normalized Bouc–Wen model (3.9)–(3.10) with parameters
�x��w���	 and n. The loading part of the limit cycle, which corre-
sponds to an increasing input x�t�, can be obtained from Theorem 3
in the form

�̄BW�x� = �xx+�ww̄�x� (5.1)

w̄�x� = 
+
	�n

(
�+

	�n

[−
	�n �� �Xmax −Xmin��
]+� �x−Xmin�

)
(5.2)

In general, the nonlinear state variable w̄�·� is not accessible to
measurement. However, in many cases of practical importance, the
hysteretic limit cycle can be obtained experimentally. Here it is
assumed that the hysteretic system is excited by the above class of
periodic signals and the produced limit cycle is available. This means
that the relation �̄BW�x� resulting from Equations (5.1) and (5.2) is
known. However, the parameters �x��w���	 and n in (5.1) and (5.2)
are unknown. The objective of the proposed identification method
is to determine the values of these parameters.

From Equation (5.2) it follows that (see Section 4.5 for a proof)

dw̄�x�

dx
= � �1− w̄�x�n� for w̄�x� ≥ 0 (5.3)

dw̄�x�

dx
= � �1+ �2	 −1� �−w̄�x�

n
� for w̄�x� ≤ 0 (5.4)

Consider two wave T -periodic signals x�t� and x1�t� such that
x1�t� = x�t�+q for a given constant q. Denoting the corresponding
hysteretic outputs w̄�x� and w̄1�x1�, respectively, it follows from
Equation (5.2) that w̄1�x1� = w̄�x� for all x ∈ �Xmin�Xmax. Then from
Equation (5.1)

�̄BW�1�x1� = �̄BW�x�+�xq

This allows the value of �x to be determined in the form

�x = �̄BW�1�x+q�− �̄BW�x�

q
(5.5)

for any value of x ∈ �Xmin�Xmax.
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Since �x has already been determined, the quantity �ww̄�x� can be
computed from Equation (5.1) as

�ww̄�x� = �̄BW�x�−�xx � ��x� (5.6)

Knowledge of the function ��x� for all x ∈ �Xmin�Xmax will allow the
remaining parameters to be determined, as presented below.

From Equation (5.3) the following may be written:

d��x�

dx
= a−b ��x�n for ��x� ≥ 0 (5.7)

where a = ��w and b = ��−n+1
w . The coefficient a can be computed

from Equation (5.7) as

a =
[

d��x�

dx

]

x=x∗
(5.8)

where x∗ is such that ��x∗� = 0. The existence and uniqueness of this
zero follows from the fact that the function w̄�x� is increasing from
a negative value at x = Xmin to a positive value at x = Xmax.

Now, take two design input values x∗2 > x∗1 > x∗. Evaluating the
expression (5.7) for these two values, the parameter n and the quan-
tity b can be determined as follows:

n =

log

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
d��x�

dx

]

x=x∗2

−a

[
d��x�

dx

]

x=x∗1

−a

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

log
[

��x∗2�

��x∗1�

] (5.9)

b =
a−

[
d��x�

dx

]

x=x∗2

��x∗2�
n

(5.10)

Further, the parameters �w and � are computed as follows:

�w = n

√
a

b
(5.11)
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� = a

�w

(5.12)

Once the parameter �w has been determined, the function w̄�x� can
be computed for all x ∈ �Xmin�Xmax from Equation (5.6) as

w̄�x� = ��x�

�w

(5.13)

For the remaining parameter 	, Equation (5.4) may now be used.
It can then be determined in the form

	 = 1
2

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
dw̄�x�

dx

]

x=x∗3

�
−1

�−w̄�x∗3�
n +1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(5.14)

where x∗3 is a design parameter such that w̄�x∗3� < 0 or equiva-
lently x∗3 < x∗. This identification methodology can be systematically
applied following the steps outlined in Table 5.1.

The identification procedure provides the exact values of the Bouc–
Wen model parameters in the absence of disturbances. A by-product

Table 5.1 Procedure for identification of the Bouc–Wen model parameters

Step 1 Excite the Bouc–Wen model with a wave periodic signal x�t�. The
output will reach a steady state �̄BW�t� as proved in Theorem 3.
Since both input and output are measurable, the relation(
x� �̄BW�x�

)
is known.

Step 2 Choose a constant q and excite the Bouc–Wen model with the
input x1�t� = x�t�+q. The output will reach a steady state
�̄BW�1�t�. The relation

(
x1� �̄BW�1�x1�

)
is known.

Step 3 Compute the coefficient �x using Equation (5.5).
Step 4 Compute the function ��x� using Equation (5.6).
Step 5 Find the zero of ��x�, that is x∗ such that ��x∗� = 0.
Step 6 Compute the parameter a using Equation (5.8).
Step 7 Choose constants x∗1 and x∗2 such that x∗2 > x∗1 > x∗. Compute

parameters n and b using Equations (5.9) and (5.10).
Step 8 Compute parameters �w and � by Equations (5.11) and (5.12).
Step 9 Compute the function w̄�x� using Equation (5.13).
Step 10 Choose a constant x∗3 such that x∗3 < x∗. Compute parameter 	

using Equation (5.14).
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of this result is that, for the normalized form of the Bouc–Wen model,
the relationship between the set of normalized parameters and the
input/output behaviour is a bijection (see Section 3.3).

The next section analyses the robustness of the proposed identi-
fication method with respect to a class of disturbances of practical
interest.

5.2.3 Robustness of the Identification Method

In practice, the T -periodic input signal x�t� excites the hysteretic
system by means of a (generally) linear actuator. Assume that the
most significant frequency contents of the input signal lies within the
bandwidth of this actuator and that the actuator has a static gain
equal to one. Then the output of the actuator, after a transient, will
reach a T -periodic steady state xd�t�, which can be written as

xd�t� = x�t�+d�t�

where the term can be understood as a perturbation produced by the
actuator due to the fact that this actuator filters the high-frequency
components of the input signal x�t�. Notice that d�t� is T -periodic
in the steady state. Moreover, since the static gain of the actuator is
one, the maximum magnitude of d�t� is small in comparison to the
maximum value of the input signal x�t�.

On the other hand, T -periodic measurement disturbances result
from the fact that a sensor has always a limited bandwidth. Thus, the
high-frequency components of the hysteretic output are filtered, so
that in the steady state, the measured output and the real output differ
by a T -periodic function v�t�, as in the case of the input disturbances
discussed in the previous paragraph.

Note that if the input disturbance d�t� is not T -periodic (for
example a random noise), then the limit cycle does not occur. Also, if
the measurement disturbance v�t� is not T -periodic, then even if the
input disturbance d�t� is T -periodic, the limit cycle is not observed.
However, even though the necessity for the disturbances to be T -
periodic constitutes the main theoretical limitation of the present
identification method, experimental evidence shows that in many
cases of practical relevance, limit cycles are indeed observed. This
means that for these cases the most relevant disturbances are indeed
T -periodic.
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In this section it is considered that the input signal is corrupted by
an additive disturbance which is constant or periodic with the same
period as the input signal. More precisely, an unknown disturbance
d�t� is considered to be added to the input signal x�t�, resulting in a
corrupted input signal

xd�t� = x�t�+d�t�

If the signal xd�t� is accessible to measurement, then the analysis
of the identification method is much easier as this is equivalent to
identifying the Bouc–Wen model parameters with a known input
and in the absence of disturbances. This case is included in the more
general case of a signal x�t� that is accessible to measurement and a
signal xd�t� that is not accessible to measurement. This corresponds
to an unknown signal d�t�, which is often the case in practice.

It is also considered that the hysteretic output �̄BW�t� is corrupted
by an additive measurement disturbance v�t� (see Figure 5.2). Note
that it can be assumed without loss of generality that Xmin = −Xmax.
The following assumption is made on the disturbances d�t� and v�t�,
where both are denoted by the generic notation ��t�.

Assumption 2. The unknown disturbance signal ��t� is constant or
periodic of period T and is continuous for all t ≥ 0 and C1 on the interval
�0�T +�

⋃
�T +�T �. Moreover, a constant 0 ≤ � < 1/2 exists such that

������ ≤ �Xmax for � ∈ �0�T  (5.15)
∣
∣
∣�̇���

∣
∣
∣≤ � �ẋ���� for � ∈ �0�T +�

⋃
�T +�T � (5.16)

Clearly the disturbances d and v belong to the class of constant or
small slowly time-varying periodic disturbances. These disturbances
will be called �-small. Note that, in practice, the perturbations may
have high-frequency components that do not verify Assumption 2. In

x (t)

d (t) v (t)

+ +

+

+ Φ BW (x) (t)
Bouc–Wen measured output

Figure 5.2 Identification in a noisy environment.
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this case, a lowpass filter may be designed to eliminate these compo-
nents so that the resulting perturbations comply with Assumption 2.

Under Assumption 2, the corrupted input signal xd�t� belongs to
the class of inputs described in Section 5.2.1, so that limit cycles
occur as described in Chapter 3 (Section 3.5). Denoting Xd�max and
Xd�min the maximal and minimal values of xd gives

Xd�max = Xmax +d�T +� and Xd�min = −Xmax +d�0�

Then x̄��� is considered as the normalized input function which is
accessible to measurement:

−1 ≤ x̄��� = x���

Xmax
≤ 1

The (unknown) normalized disturbance are also considered:

d̄��� = d���

Xmax
and v̄��� = v���

Xmax

Then define

� = 2�Xmax and �d = d̄�T +�− d̄�0�

2

With these considerations, the limit cycle formulated by Theorem 3
(Section 3.5) can be written in the following form:

�̄BW��� =�xXmaxx̄���+�xXmaxd̄���

+�ww̄���+Xmaxv̄��� for � ∈ �0�T 

(5.17)

w̄��� =
+
	�n

(
�+

	�n

[−
	�n �� �1+�d��
]+ �

2

[
x̄���+1+ d̄���− d̄�0�

])

for � ∈ �0�T + (5.18)

w̄��� =−
+
	�n

(
�+

	�n

[−
	�n �� �1+�d��
]− �

2

[
x̄���−1+ d̄���− d̄�T +�

])

for � ∈ �T +�T  (5.19)
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For any normalized Bouc–Wen model parameter p, the identified
one is denoted p
. Let 0 < � < 1/2 be the maximal tolerance allowed
for the identified parameters. This means that for each parameter
p of the Bouc–Wen model and its corresponding identified value
p
, then

∣
∣
∣
∣
p−p


p

∣
∣
∣
∣≤ �

In this section, only the loading part of the hysteretic limit cycle
is considered, that is in Equations (5.17) to (5.19) it is considered
that � ∈ �0�T +. Since the input signal x̄��� is, by assumption, such
that ˙̄x��� > 0 for all � ∈ �0�T +�, the function x̄��� is a bijection from
the time interval �0�T + to �−1�1. Thus it is possible to define its
inverse function from the interval �−1�1 to the time interval �0�T +.
By an abuse of notation, this inverse function is denoted as �.

With these notations, Equations (5.17) and (5.18) can be rewritten
in the form

�̄BW�x̄� = �xXmaxx̄+�xXmaxd̄ ���x̄��+�ww̄�x̄�+Xmaxv̄ ���x̄�� (5.20)

w̄�x̄� = 
+
	�n

(
�+

	�n

[−
	�n �� �1+�d��
]+ �

2

[
x̄+1+ d̄ ���x̄��− d̄�0�

])

(5.21)

where the letter ‘l’ loading is not used for to simplify the notation.
Also used are the notations

q̄ = q

Xmax
and x̄∗i = x∗i

Xmax
for i = 1�2�3

The main result of this section can now be stated.

Theorem 5. Let x̄∗1� x̄∗2 and x̄∗3 be design parameters and let � > 0
be the desired precision on the estimated parameters. A real number
�∗ ��x��w���n�	� q̄� x̄∗1� x̄∗2� x̄∗3� �� > 0 exists, called the robustness
margin, such that

(a) for any �-small disturbances d and v verifying 0 ≤ � ≤ �∗ and
(b) for any parameter p ∈ ��x��w���n�	�,
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The corresponding identified parameter p
 using the methodology of
Section 5.2.2 is such that

∣
∣
∣
∣
p−p


p

∣
∣
∣
∣≤ �

Robustness is a central issue in identification methods. It is not
enough that the method gives the correct parameters in the absence
of perturbations. It is also desirable that a ‘small size’ of disturbances
leads to a ‘small discrepancy’ between the identified parameters and
the true one. Theorem 5 states that, given a maximal tolerance � > 0,
for all �-small disturbances such that 0 ≤ � ≤ �∗, the relative error
between the identified parameters p
 and the true parameters p does
not exceed �. If the quantity �∗ were zero, this would imply that, even
for arbitrarily small disturbances, the identification method could
lead to a large discrepancy between the identified parameters and
the true ones. Theorem 5 guarantees that the robustness margin is
�∗ > 0, so that all �-small disturbances with � ∈ �0��∗ lead to a
relative error in parameters no more than �.

It is to be noted that, in practice, the (often unknown) size of the
disturbance is a data of the problem, which means that � is not a
parameter chosen by a designer, but it is imposed by the physical
process. This means that the identification method of Section 5.2.2
will guarantee that the relative error on the identified parameters is
no larger than � only for those values of � large enough that the
robustness margin �∗ is greater than the value of � imposed by the
physical process. Thus, the relative error on the parameters is, in
practice, a result of the experimental identification and is determined
a posteriori.

Proof. The proof is done in several steps:

1. Determination of the parameter �x.
2. Existence and unicity of the zero of the function �
�x̄�.
3. Determination of the parameter n.
4. Determination of the parameter �w.
5. Determination of the parameter �.
6. Determination of the parameter 	.

Proof of step 1: Determination of the parameter �x. As seen
in Section 5.2.2, determination of the parameter �x involves two
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experiments: the first one consists of obtaining the limit cycle with
the input x and the second one consists of obtaining the limit cycle
with the input x1 = x + q. Both experiments are subject to input
disturbances d and d1 as well as to measurement disturbances v and
v1. All of these perturbations are supposed to satisfy Assumption 2.
The equation of the limit cycle obtained with the input x1 comes
from Theorem 3 in the form

�̄BW�1�x1� = �xXmaxx̄+�xXmaxd̄1 ���x̄��

+�ww̄1�x1�+Xmaxv̄1 ���x̄��+�xXmaxq̄ (5.22)

w̄1�x1� = 
+
	�n

(
�+

	�n

[−
	�n �� �1+�1d��
]

+�

2

[
x̄+1+ d̄1 ���x̄��− d̄1�0�

])
(5.23)

where

�1d = d̄1�T
+�− d̄1�0�

2
� d̄1��� = d1���

Xmax
and v̄1��� = v1���

Xmax

To determine the relative error on the parameter �x, note that

∣
∣�+

	�n

[−
	�n �� �1+�1d��
]−�+

	�n

[−
	�n �� �1+�d��
]∣∣

= ��1d −�d�
∣
∣
∣
∣
∣
��+

	�n

[−
	�n �� �1+���
]

��

∣
∣
∣
∣
∣
�∈��1d��d

(5.24)

On the other hand,

∣
∣
∣
∣
∣
��+

	�n

[−
	�n �� �1+���
]

��

∣
∣
∣
∣
∣
�=�0∈��1d��d

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

�

2
[
1+ 	
	�n �� �1+�0��

n

1−
	�n �� �1+�0��
n

]

∣
∣
∣
∣
∣
∣
∣
∣
∣

(5.25)

By Assumption 2,

��0� ≤ max ���1d� � ��d�� ≤ � <
1
2
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so that 
	�n �� �1+�0�� > 0. This implies by Equation (5.25) that

∣
∣
∣
∣
∣
��+

	�n

[−
	�n �� �1+���
]

��

∣
∣
∣
∣
∣
�=�0∈��1d��d

≤ �

2
(5.26)

Combining Equations (5.24) and (5.26) along with Assumption 2
gives

∣
∣�+

	�n

[−
	�n �� �1+�1d��
]−�+

	�n

[−
	�n �� �1+�d��
]∣∣≤ �� (5.27)

On the other hand, from Equations (5.21) and (5.23) it is found that

�w̄1�x1�− w̄�x̄�� = ��0 − �1�
∣
∣
∣
∣
�
+

	�n���

��

∣
∣
∣
∣
�2∈��0��1

(5.28)

where

�0 = �+
	�n

[−
	�n �� �1+�d��
]+ �

2

[
x̄+1+ d̄ ���x̄��− d̄�0�

]
(5.29)

�1 = �+
	�n

[−
	�n �� �1+�1d��
]+ �

2

[
x̄+1+ d̄1 ���x̄��− d̄1�0�

]
(5.30)

Combining Equations (5.27), (5.29) and (5.30) along with Assump-
tion 2, it follows that

��0 − �1� ≤ 3�� (5.31)

On the other hand, it follows from Equation (3.17) that

∣
∣
∣
∣
�
+

	�n���

��

∣
∣
∣
∣
�2

= 1−
+
	�n��2�

n ≤ 1 for �2 ≥ 0 (5.32)

∣
∣
∣
∣
�
+

	�n���

��

∣
∣
∣
∣
�2

= 1+ �2	 −1�
[−
+

	�n��2�
]n ≤ 2	 for �2 < 0 (5.33)

Using the fact that 	 ≥ 1/2, it follows from Equations (5.28)
and (5.31) to (5.33) that

�w̄1�x1�− w̄�x̄�� ≤ 6�	� (5.34)



126 ROBUST IDENTIFICATION OF BOUC–WEN MODEL PARAMETERS

The estimated parameter �

x is computed from Equation (5.5) as

�

x = �̄BW�1�x1�− �̄BW�x̄�

q
(5.35)

Combining Equations (5.35), (5.20) and (5.22), it follows that the
relative error on the parameter �x is given by

∣
∣
∣
∣
�


x −�x

�x

∣
∣
∣
∣≤

∣
∣
∣d̄1 − d̄

∣
∣
∣

q̄
+ �w

Xmax�xq̄
�w̄1�x1�− w̄�x̄��+ �v̄1 − v̄�

�xq̄
(5.36)

Using Assumption 2, along with Equations (5.34) and (5.36), gives

∣
∣
∣
∣
�


x −�x

�x

∣
∣
∣
∣≤

c1�

q̄
(5.37)

where

c1 = 2+ 2
�x

+ 12	��w

�x

(5.38)

From inequality (5.37) it is clear that it is enough to have � ≤ �q̄/c1

to guarantee

∣
∣
∣
∣
�


x −�x

�x

∣
∣
∣
∣≤ �

The next step is to compute the function � defined by Equa-
tion (5.6). However, the true value of the parameter �x is not known,
but instead its estimate �


x is known. Thus, all that can be computed
is the estimate

�
�x̄� = �̄BW�x̄�−�

xXmaxx̄ (5.39)

Proof of step 2: existence and unicity of the zero of the function �
�x̄�.
As seen in Section 5.2.2, determination of the rest of the parameters
uses the zero of the function �
. The existence of this zero will be
ensured if it can be shown that �
�1� > 0 and �
�−1� < 0, due to
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the continuity of the function �
�x̄�. From Equations (5.39), (5.20)
and (5.19), it is found that

�
�1� = ��x −�

x�Xmax +�xXmaxd̄�T +�+Xmaxv̄�T +�+�w
	�n �� �1+�d��

(5.40)

Using Assumption 2 along with Equations (5.40) and (5.37), it
follows that

�
�1� ≥ −�Xmaxc2 +�w
	�n ��Xmax� (5.41)

where

c2 = c1�x

q̄
+�x +1

The term 
	�n ��Xmax� can be developed in a Taylor series as


	�n ��Xmax� = 1
2

�Xmax +o �Xmax�

Thus, if

� <
��w

2c2
= c3

then, by Equation (5.41),

�
�1� > 0 for all Xmax ∈ �0�A� where A = f ��x��w���	�n� q̄�

To have �
�1� > 0 for all Xmax ∈ �0��w/�x, it is enough to have

� <
�w
	�n ��A�

c2��w/�x�
= c4

Similarly, it can be shown that

�
�−1� < 0 for all Xmax ∈
(

0�
�w

�x

]

for � < c5, where

c5 = f ��x��w���	�n� q̄� > 0
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Therefore, it has been proved that, for � sufficiently small, the
function �
�x̄� has at least one zero. It will now be shown that this
zero is unique. To this end, the function w̄�x̄� is next proved to be
strictly increasing. Indeed, define the map

g�x̄� = �+
	�n

[−
	�n �� �1+�d��
]+ �

2

[
x̄+1+ d̄ ���x̄��− d̄�0�

]
(5.42)

which appears in the right-hand side of Equation (5.21). Then, taking
x̄ ∈ �−1�1� and differentiating with respect to x̄, it follows that

�g�x̄�

�x̄
= �

2

[

1+
˙̄
d���

˙̄x���

]

(5.43)

where ˙̄x and ˙̄
d are set for the time derivatives and ˙̄x��� �= 0 for all

x̄ ∈ �−1�1� as the signal x̄ is wave periodic. From Equation (5.43)
and Assumption 2, it follows that

�g�x̄�

�x̄
≥ �

4
> 0

This means that the function g is strictly increasing on the interval
�−1�1. Since the function 
+

	�n is strictly increasing, this implies
from Equation (5.21) that w̄�x̄� is a strictly increasing function of
the argument x̄.

On the other hand, the relationship between w̄�x̄� and x̄ is given
by Equation (5.21) and it can be checked that

dw̄�x̄�

dx̄
= �

2

[

1+
˙̄
d ���

˙̄x ���

]

�1− w̄�x̄�n for w̄�x̄� ≥ 0 (5.44)

dw̄�x̄�

dx̄
= �

2

[

1+
˙̄
d ���

˙̄x ���

]

�1+ �2	 −1� �−w̄�x̄�
n
� for w̄�x̄� ≤ 0

(5.45)

whenever the time derivative ˙̄x��� is nonzero. Note that since the
signal x̄ is wave periodic, the derivative ˙̄x��� may be zero only at the
points � = 0 and � = T +, which correspond to the values x̄ = −1 and
x̄ = 1, respectively.
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Combining Equations (5.39), (5.20), (5.44) and (5.45), it
follows that

��
�x̄�

�x̄
= �xXmax

[
�x −�


x

�x

+
˙̄
d ���

˙̄x ���
+ ˙̄v ���

�x
˙̄x ���

]

+��wXmax

[

1+
˙̄
d ���

˙̄x ���

]

�1− w̄�x̄�n

for w̄�x̄� ≥ 0 (5.46)

��
�x̄�

�x̄
= �xXmax

[
�x −�


x

�x

+
˙̄
d ���

˙̄x ���
+ ˙̄v ���

�x
˙̄x ���

]

+��wXmax

[

1+
˙̄
d ���

˙̄x ���

]

�1+ �2	 −1� �−w̄�x̄�
n
�

for w̄�x̄� ≤ 0 (5.47)

Using the fact that w̄�1� = 
	�n �� �1+�d�� and that Xmax ≤ �w/�x

(see Section 5.2.1), along with Assumption 2, it follows from Equa-
tions (5.46) and (5.47) that

��
�x̄�

�x̄
≥ Xmax �−�c2 + c6� (5.48)

where

c6 = ��w

2

[
1−
	�n

(
3��w

�x

)n]
> 0 (5.49)

Taking � ≤ c6/�2c2�, the following is obtained from Equation (5.48):

��
�x̄�

�x̄
≥ c6

2
= c7 > 0 (5.50)

From Equation (5.50), it is found that the function �
�x̄� is strictly
increasing, which proves the unicity of its zero, which is denoted x̄


∗.

Proof of step 3: determination of the parameter n. It has been
proved above that the nonlinear function �
�x̄� is strictly increasing
from a negative value at x̄ = −1 to a positive value at x̄ = 1.
Since this function is computable, standard numerical methods



130 ROBUST IDENTIFICATION OF BOUC–WEN MODEL PARAMETERS

can determine its zero x̄

∗ with the (in general good) precision

of the computer. It is to be noted that, by combining Equa-
tions (5.39) and (5.37), together with the fact that �
 �x̄


∗� = 0,
then

�w̄ �x̄

∗�� ≤ c2

�x

� = c8� (5.51)

Now, let

x̄∗1 = x̄

∗ + r1 �1− x̄


∗� where 0 < r1 < 1

is a design parameter. Then, from Equation (5.50), it is found that

�
 �x̄∗1� ≥ c7 �x̄∗1 − x̄

∗� = c7r1 �1− x̄


∗� = c9 (5.52)

Due to the fact that the function �
 is increasing, then �
�x̄� ≥ c9 for
all x̄ ≥ x̄∗1. This fact along with Equations (5.39) and (5.37) and
Assumption 2, gives

w̄�x̄� > 0 for all x̄ ≥ x̄∗1 and � ≤ �xc9

2�wc2

Let x̄∗2 = x̄

∗ + r2 �1− x̄


∗� where 0 < r1 < r2 < 1 is a design param-
eter. An estimate of the parameter n comes from Equation (5.9)
as follows:

n
 =

log

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
d�
�x̄�

dx̄

]

x̄=x̄∗2

−
[

d�
�x̄�

dx̄

]

x̄=x̄
∗[
d�
�x̄�

dx̄

]

x̄=x̄∗1

−
[

d�
�x̄�

dx̄

]

x̄=x̄
∗

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

log
[

�
�x̄∗2�

�
�x̄∗1�

] (5.53)

Define the function

�1�x̄� = �x −�

x

�x

+
˙̄
d ���x̄��

˙̄x ���x̄��
+ ˙̄v ���x̄��

�x
˙̄x ���x̄��

+ ��w

�x

×
˙̄
d ���x̄��

˙̄x ���x̄��
�1− w̄�x̄�n for w̄�x̄� ≥ 0
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�1�x̄� = �x −�

x

�x

+
˙̄
d ���x̄��

˙̄x ���x̄��
+ ˙̄v ���x̄��

�x
˙̄x ���x̄��

+ ��w

�x

×
˙̄
d ���x̄��

˙̄x ���x̄��
�1+ �2	 −1� �−w̄�x̄��

n
� for w̄�x̄� ≤ 0

(5.54)

Then, it can be checked that

��1�x̄�� ≤ 1
�x

�c2 +2��w	�� = c10� (5.55)

On the other hand, the following is obtained for w̄�x̄

∗� ≥ 0:

[
d�
�x̄�

dx̄

]

x̄=x̄∗2

−
[

d�
�x̄�

dx̄

]

x̄=x̄
∗[
d�
�x̄�

dx̄

]

x̄=x̄∗1

−
[

d�
�x̄�

dx̄

]

x̄=x̄
∗

=
�1�x̄∗2�−�1�x̄



∗�+

��w

�x

�w̄�x̄

∗�

n − w̄�x̄∗2�
n�

�1�x̄∗1�−�1�x̄

∗�+

��w

�x

�w̄�x̄
∗�n − w̄�x̄∗1�
n

= w̄�x̄∗2�
n

w̄�x̄∗1�
n

(
1+�f1

1+�f2

)
= w̄�x̄∗2�

n

w̄�x̄∗1�
n
�1+�f3� (5.56)

where
c12 = c11

w̄�x̄∗2�
n

+2
c11

w̄�x̄∗1�
n

+ c2
11

�w̄�x̄∗1�w̄�x̄∗2�
n (5.57)

c11 = 2c10�x

��w

+2	cn
8 (5.58)

�f1� ≤ c11

w̄�x̄∗2�
n

(5.59)

�f2� ≤ c11

w̄�x̄∗1�
n

(5.60)

�f3� ≤ c12 (5.61)

Similar relations are obtained for w̄�x̄

∗� ≤ 0. Define the function

�2�x̄� = �xXmax

[
�x −�


x

�x

+
˙̄
d ���x̄��

˙̄x ���x̄��
+ ˙̄v ���x̄��

�x
˙̄x ���x̄��

]

(5.62)
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Then ��2�x̄�� ≤ c13�, where c13 = �wc2/�x. With these notations the
following equation is obtained in a similar way:

�
�x̄∗2�

�
�x̄∗1�
= �2�x̄∗2�+�ww̄�x̄∗2�

�2�x̄∗1�+�ww̄�x̄∗1�
= w̄�x̄∗2�

w̄�x̄∗1�
�1+�f4� (5.63)

where

�f4� ≤ 3c8 + c2
8 = c14

Combining Equations (5.63), (5.56) and (5.53), it follows that

∣
∣
∣
∣
n
 −n

n

∣
∣
∣
∣=
∣
∣
∣
∣
f5 − f6

1+ f6

∣
∣
∣
∣ (5.64)

f5 = log �1+�f3�

log
[

w̄�x̄∗2�

w̄�x̄∗1�

] (5.65)

f6 = log �1+�f4�

log
[

w̄�x̄∗2�

w̄�x̄∗1�

] (5.66)

It can be checked that Equations (5.64) to (5.66) lead to

∣
∣
∣
∣
n
 −n

n

∣
∣
∣
∣≤ c15� (5.67)

c15 = c12 + c14

log
[

w̄�x̄∗2�

w̄�x̄∗1�

]

⎧
⎪⎪⎨

⎪⎪⎩
1+ c14

log
[

w̄�x̄∗2�

w̄�x̄∗1�

]

⎫
⎪⎪⎬

⎪⎪⎭
> 0 (5.68)

Thus, it is enough to have � ≤ �/c15 to obtain

∣
∣
∣
∣
n
 −n

n

∣
∣
∣
∣≤ �

Proof of step 4: determination of the parameter �w. The next
parameter to identify is �w, using Equation (5.11). An estimate of
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this parameter can be computed from Equation (5.11) using the
following formula:

�

w = �
�x̄∗2�

n


√√
√
√
√
√
√
√

[
d�
�x̄�

dx̄

]

x̄=x̄
∗[
d�
�x̄�

dx̄

]

x̄=x̄
∗
−
[

d�
�x̄�

dx̄

]

x̄=x̄∗2

(5.69)

Using Equations (5.54), (5.46) and (5.47), the following equation is
obtained for w̄�x̄


∗� ≤ 0 (a similar relation is obtained for w̄�x̄

∗� ≥ 0):

[
d�
�x̄�

dx̄

]

x̄=x̄
∗[
d�
�x̄�

dx̄

]

x̄=x̄
∗
−
[

d�
�x̄�

dx̄

]

x̄=x̄∗2

=
�x

��w

�1�x̄


∗�+1+ �2	 −1� �−w̄�x̄


∗�
n

�x

��w

�−�1�x̄∗2�+�1�x̄

∗�+ w̄�x̄∗2�

n + �2	 −1� �−w̄�x̄
∗�
n

= 1
w̄�x̄∗2�

n
�1+�f7� (5.70)

where

�f7� ≤ c16 (5.71)

c16 = c17 +2c18 + c17c18 (5.72)

c17 = c10�x

��w

+2	cn
8 (5.73)

c18 = 1
w̄�x̄∗2�

n

(
2c10�x

��w

+2	cn
8

)
(5.74)

On the other hand, from Equations (5.39) and (5.62) it follows that

�
�x̄∗2� = �2�x̄∗2�+�ww̄�x̄∗2� = �ww̄�x̄∗2� �1+�f8� (5.75)

where

�f8� ≤ c19� (5.76)
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c19 = c2

�xw̄�x̄∗2�
(5.77)

Combining Equations (5.75), (5.70) and (5.69), the following is
obtained through a mathematical analysis:

∣
∣
∣
∣
�


w −�w

�w

∣
∣
∣
∣=
∣
∣w̄�x̄∗2�

f9/�1+f9� × �1+�f8��1+�f7�
1/�n�1+f9� −1

∣
∣

≤ c20� (5.78)

with

�f9� =
∣
∣
∣
∣
n
 −n

n

∣
∣
∣
∣≤ c15�� � ≤ c21

and where c20 and c21 are some positive functions of the parameters

�x� �w� �� 	� n� q̄� x̄∗1� x̄∗2

Therefore, it is enough to have � ≤ �/c20 to obtain
∣
∣
∣
∣
�


w −�w

�w

∣
∣
∣
∣≤ �

Proof of step 5: determination of the parameter �. Identification of
the parameter � is done using Equation (5.12):

�
 =

[
d�
�x̄�

dx̄

]

x̄=x̄
∗
Xmax�



w

(5.79)

From Equations (5.79) and (5.47), the following equation is obtained
for w̄�x̄


∗� ≤ 0 (a similar relation is obtained for w̄�x̄

∗� ≥ 0):

∣
∣
∣
∣
�
 −�

�

∣
∣
∣
∣=
∣
∣
∣
∣

�x

��w�1+ f10�
�1�x̄



∗�−

f10

1+ f10
+ 2	 −1

1+ f10
�−w̄�x̄


∗�
n

∣
∣
∣
∣

≤ c22� (5.80)

where

f10 = �

w −�w

�w

(5.81)
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c22 = 2�xc10

��w

+2c20 +4	c8 (5.82)

Thus, it is enough to have � ≤ �/c22 to obtain

∣
∣
∣
∣
�
 −�

�

∣
∣
∣
∣≤ �

Proof of step 6: determination of the parameter 	. To determine
the parameter 	, the function w̄�x̄� needs to be computed using
Equation (5.13). However, in this equation the parameter �w and the
function � are unknown. Thus the computable function is defined as

w̄
�x̄� = �
�x̄�

�

w

(5.83)

An estimate of the parameter 	 can be computed from Equa-
tion (5.14) as follows:

	
 = 1
2

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

[
dw̄
�x̄�

dx̄

]

x̄=x̄∗3

Xmax�

 −1

�−w̄
�x̄∗3�
n
 +1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

(5.84)

where x̄∗3 is a design parameter such that

w̄
�x̄∗3� <
�
�−1�

2�

w

= r3 < 0

It is to be noted that, due to the relations

�w > 0 and
∣
∣
∣
∣
�


w −�w

�w

∣
∣
∣
∣≤ �

it follows that �

w > 0. On the other hand, it has been shown above

that the function �
 is strictly increasing, so a unique computable
value −1 < x̄∗4 exists such that w̄
�x̄∗4� = r3. Any design parameter
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−1 < x̄∗3 < x̄∗4 is then appropriate. Using Assumption 2 with Equa-
tion (5.83), it can be checked that

w̄�x̄∗3� < 0 for � <
�x�r3�
2c2

Combining Equations (5.83), (5.54) and (5.62) gives

[
dw̄
�x̄�

dx̄

]

x̄=x̄∗3

Xmax�

 −1

�−w̄
�x̄∗3�
n
 = �2	 −1� �−w̄�x̄∗3�

n−n


×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�x�1�x̄∗3�

�
�

w�2	 −1� �−w̄�x̄∗3�

n + ��w/��
�

w�−1

�2	 −1� �−w̄�x̄∗3�
n + ��w

�
�

w[

�2�x̄∗3�

�

ww̄�x̄∗3�

+ �w

�

w

]n


⎫
⎪⎪⎪⎬
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(5.85)

Denote

h = �−w̄�x̄∗3�
n and f11 = hf9 −1

�

where it is recalled that

f9 = n
 −n

n
and �f9� ≤ c15�

Then, it can be checked that �f11� ≤ c26�, where c26 is some positive
function of the parameters

�x� �w� �� 	� n� q̄� x̄∗1� x̄∗2� x̄∗3

On the other hand,

�x�1�x̄∗3�

�
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�
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�

w

]n


= 1+�f12 (5.86)
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where

�f12� ≤ c25

c25 = c23 +2c24 + c23c24

c23 = 4�xc10 +6c20 +4c22

�2	 −1� �−w̄�x̄∗3�
n

+6c20 +4c22

c24 = 4c13

�w �w̄�x̄∗3��
+4c20

From Equations (5.84) to (5.86), it follows that
∣
∣
∣
∣
	
 −	

	

∣
∣
∣
∣≤ c27� (5.87)

c27 = 2�c25 + c26�+ c25c26

4	
(5.88)

Thus, it is enough to have � ≤ �/c27 to obtain
∣
∣
∣
∣
	
 −	

	

∣
∣
∣
∣≤ �

With step 6, the proof of Theorem 5 is ended.

5.2.4 Numerical Simulation Example

In this section the Bouc–Wen model given by the following unknown
parameters is considered:

�x = 2� �w = 2� � = 1� 	 = 3� n = 1�5

The objective is to use the technique presented in the previous
sections to identify its parameters. The 10 steps described in
Section 5.2.2 and summarized in Table 5.1 are followed systemati-
cally, including the robustness issues treated in Section 5.2.3.

Step 1

The first step in the identification procedure is the choice of the
T -periodic input signals. Due to Assumption 2 (Section 5.2.3),

∣
∣
∣�̇���

∣
∣
∣≤ � �ẋ����
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This implies that the derivative �̇��� of the disturbance ���� needs
to be zero whenever the derivative of the input signal x��� is zero.
Thus, a sine wave input signal candidate would impose the condition
that �̇��� should be very small around the time instants 0+mT and
T/2+mT (m is any positive integer), which is unlikely to happen in
practice. For this reason, a good choice is a triangular input signal,
so that the derivative �̇��� needs only to be small with respect to the
slope of the input signal, which is constant (in absolute value).

The next design parameter to be chosen is the frequency of
the input signal. Since the Bouc–Wen model is rate independent
(Section 3.5), its input–output behaviour is independent of the
frequency of the input signal. Therefore T = 1 and T + = T/2 are
taken and Xmax = −Xmin = 0�2 is chosen.

Step 2

In this step, the value q �= 0 must be chosen to obtain a second input
signal x1�t� = x�t�+q. The signals x�t� and x1�t� are given in Figure 5.3
with q = 0�1.
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Figure 5.3 Upper left: solid, input signal x�t�; dashed, input signal x1�t�. Lower
left: solid, output �BW�x��t�; dashed, output �BW�1�x��t�. Right: limit cycles
�x� �̄BW� (solid) and �x1� �̄BW�1� (dashed) that have been obtained for the time
interval �4T�5T .
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In practice, the input and output data are in the form of a finite
number m of samples x�kh�� �̄�kh� where h is the sampling period,
k = 0�1� � � � �m. These samples have to be taken once the output
of the system is in a steady state. Note that, since the identification
technique uses only the loading part of the limit cycle, the time instant
kh = 0 can be chosen such that x�k = 0� corresponds to the lowest
value of x and the time instant mh so that x�k = m� corresponds to
the largest value of x. This implies that the samples that are used for
identification purposes verify

x�i� < x�i+1� for all 0 ≤ i < m

as the loading part of the limit cycle is being considered.

Step 3

The estimate �

x of the coefficient �w is computed from Equa-

tion (5.5) as

�

x = �̄BW�1 �x�0�+q�− �̄BW �x�0��

q
(5.89)

where x�0� is the value of x at the time instant k = 0. In the absence
of noise, then �


x = �w. In the presence of noise, this is no longer the
case; the effect of noise on parameter identification has been studied
in the previous section (see Equation (5.35) and subsequent analysis).

Step 4

An estimate �
�x� of the function ��x� is computed from Equa-
tion (5.6) as

�
 �x�i�� = �̄BW �x�i��−�

xx�i� for i = 0� � � � �m (5.90)

Step 5

It has been shown in the previous section that the estimate �
�x�
is strictly increasing and has a unique zero, that is a unique point
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x∗ exists such that �
�x∗� = 0. Since all the samples x�i� are such
that x�i� < x�i + 1�, then �
 �x�i�� < �
 �x�i+1��. The existence and
unicity of the zero of the function �
 shows that a unique integer r
exists such that �
 �x�r�� ≤ 0 < �
 �x�r +1��. This implies that x�r� ≤
x∗ < x�r + 1�, and a linear interpolation gives an estimate x


∗ of the
zero x∗. A simple computer program can be done to determine the
integer r.

Step 6

An estimate of the parameter a is computed from Equation (5.8) as
follows:

a
 = �
 �x�r +1��−�
 �x�r��

x�r +1�−x�r�
(5.91)

Step 7

Choosing the design parameters

x∗2 = x�l2� > x∗1 = x�l1� > x

∗

the estimates n
 and b
 are computed from Equations (5.9) and (5.10)
as follows:

n
 =

log

⎡

⎢⎢
⎣

�
 �x�l2 +1��−�
 �x�l2��

x�l2 +1�−x�l2�
−a


�
 �x�l1 +1��−�
 �x�l1��

x�l1 +1�−x�l1�
−a


⎤

⎥⎥
⎦

log
[

�
�x∗2�

�
�x∗1�

] (5.92)

b
 =
a
 − �
 �x�l2 +1��−�
 �x�l2��

x�l2 +1�−x�l2�

�
�x∗2�
n
 (5.93)
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Step 8

Estimates of the parameters �w and � are computed from Equa-
tions (5.11) and (5.12) as follows:

�

w = n


√
a


b
 (5.94)

�
 = a


�

w

(5.95)

Step 9

An estimate of the function w̄�x� is computed from Equation (5.13)
in the form

w̄
 �x�i�� = �
 �x�i��

�

w

for i = 0� � � � �m (5.96)

Step 10

Choose a design parameter x∗3 = x�l3� < x

∗. Then an estimate of the

parameter 	 is computed from Equation (5.14) as

	
 = 1
2

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

w̄
 �x�l3 +1��− w̄
 �x�l3��

x�l3 +1�−x�l3�

�
 −1

�−w̄
�x∗3�
n
 +1

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

(5.97)

The numerical simulation gives the final result:

�

x = 2�0000� �


w = 2�0059� �
= 0�9971� n
= 1�4954� 	
= 2�9728
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5.3 MODELLING AND IDENTIFICATION OF A
MAGNETORHEOLOGICAL DAMPER

In this section the case study of a magnetorheological (MR) damper
is considered. The results of the previous chapters are used to gain
insight into some existing models for this nonlinear device. In partic-
ular, the identification technique of the previous sections is appro-
priately modified to determine the parameters of the MR damper.

5.3.1 Some Insights into the Viscous + Bouc–Wen Model
for Shear Mode MR Dampers

In this section the model is analysed of a shear mode MR damper
proposed in Reference [90]. A physical description of this damper
will be done in Section 5.4.1. For the moment, it is viewed as a
nonlinear system whose inputs are the displacement of the damper
x�t� and the voltage v�t� at the level of the coil; and whose output is
the force F �t� applied by the damper (see Figure 5.4).

The output force is related to its input displacement and voltage
as follows:

F �x��t� = k�v�ẋ�t�+��v�z�t� (5.98)

ż = Aẋ−��ẋ� �z�n−1z−�ẋ�z�n (5.99)

where the parameters k and � are voltage dependent. This model
is represented in Figure 5.5 as the sum of a viscous friction term
k�v�ẋ�t� and a hysteresis contribution ��v�z�t�, where the state z�t�
obeys the standard Bouc–Wen differential equation (5.99). Note that
the only difference between the model (5.98)–(5.99) and the model
(2.4)–(2.5) is the term ẋ instead of x in Equation (5.98). It is clear
that the only corresponding changes in Theorem 3 are obtained by
putting ẋ instead of x in Equations (3.40) and (3.41).

Let us first consider that the input voltage is zero (the conclusions
of this section are similar to those for the nonzero voltage input). In

Shear mode MR damper
v

F
x

Figure 5.4 Input–output representation of the MR damper.
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Bouc–Wen

F

x

κ

Figure 5.5 Mechanical model of the MR damper.

this case, the following values have been taken for the Bouc–Wen
model parameters:

A = 120� � = 300cm−1� � = 300cm−1� k = 0�032N · s/cm�

� = 27�3N/cm� n = 1 (5.100)

To check the validity of the model, the same input signal has been
applied to the experimental MR damper and to its model with the
initial condition z�0� = 0. A reasonable matching has been observed
between the force applied by the real MR damper (experimental
data) and the force calculated using Equations (5.98) and (5.99)
(numerically obtained) [90]. In the following some insights into this
model are presented.

It has been observed in Chapter 3 that the standard Bouc–Wen
model is overparametrized, that is the model contains more param-
eters than necessary. In particular, it can be checked that for any
positive scalar a, the Bouc–Wen model given by the set of parameters

k′ = k� �′ = a�� A′ = A/a� �′ = �� �′ = �� n′ = n (5.101)

will have an input–output behaviour equal to that of the model
(5.98)–(5.99) with the set of parameters (5.100). To illustrate this
point, a numerical simulation is used where a = 10. The same input
signal is applied to the model (5.98)–(5.99) with the two sets of
parameters (5.100) and (5.101) and with the initial condition z�0� =
0. Figure 5.6 shows that the obtained forces are exactly equal.
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Figure 5.6 Upper: input signal. Lower: response of the Bouc–Wen model
(5.98)–(5.99) to the two sets of parameters (5.100) and (5.101).

Note that the parameters � and � in (5.100) have been chosen so
that � = �. This choice, common in the Bouc–Wen model literature
(see Reference [62] for example), is often used either to simplify the
determination of the set of parameters �k���A�����n� from exper-
imental data or because of physical considerations [133, page 14].
However, this choice does not eliminate the overparametrization of
the Bouc–Wen model. Indeed, in this case, the set of parameters
that describe the standard model (5.98)–(5.99) is �k���A�� = ��n�,
which has five parameters. On the other hand, Equations (3.11)
show that, with this choice, 	 = �/��+�� = 1/2 so that the corre-
sponding set of normalized parameters is ��x��w���n�, which has
only four parameters. This means that, if the standard Bouc–Wen
model with the condition � = � is used, the rest of the parameters
can be determined from experimental data, and five parameters will
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need to be determined. If instead the normalized Bouc–Wen model
with the equivalent condition 	 = 1/2 is used, only four parameters
will need to be determined. In other words, trying to impose some
relations between the standard Bouc–Wen model parameters does
not necessarily eliminate the overparametrization. To eliminate it, a
sound way is to use the normalized version of the Bouc–Wen model:

F �x��t� = �x�v�ẋ�t�+�w�v�w�t� (5.102)

ẇ�t� = �
(
ẋ�t�−	�ẋ�t���w�t��n−1w�t�+ �	 −1�ẋ�t��w�t��n) (5.103)

where

�x�v� = k�v� and �w�v� = z0��v�

The other normalized Bouc–Wen model parameters are given by the
relations (3.11).

Now, consider the hysteresis loop obtained using the model
(5.98)–(5.99) with the set of parameters (5.100) and with the input

x�t� = sin�t�

The part of the hysteresis loop corresponding to ��v�z�t� is
displayed in Figure 5.7. It shows that, after a transient, the obtained
steady state loop presents a sharp transition at the velocity sign
change. Then, on both loading and unloading, the value of the
hysteresis term of the output force is practically constant. This
behaviour is difficult to predict from the values of the parame-
ters (5.100) due to the lack in the literature of an analytical study
of the relationship between the Bouc–Wen model parameters and
the shape of the hysteresis loop. However, Chapter 4 has used the
normalized version of the Bouc–Wen model to analyse the effect of
the normalized parameters on the limit cycle. Thus, to explain the
shape of the hysteresis loop in Figure 5.7, the normalized model that
corresponds to the standard Bouc–Wen model (5.98)–(5.99) needs
to be determined.

Using the relations (3.11), the set of the corresponding normalized
parameters is

�x = 0�032 N s/cm� �w = 5�46N� � = 600cm−1� 	 = 0�5� n = 1
(5.104)
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Figure 5.7 Hysteresis loop corresponding to the part ��v�z�t� of the Bouc–Wen
model (5.98)–(5.99) with the set of parameters (5.100) to the input displacement
x�t� = sin�t�.

In Reference [90], the input displacement varies typically between
−1cm and 1 cm so that its maximal value is Xmax = 1cm. On the
other hand, Section 4.6 shows that the main slope of the linear region
of the limit cycle is �Xmax = 600. Note that this slope has a large
value (with respect to unity), so that the linear region in Figure 4.3
will be almost vertical, as observed in Figure 5.7.

It will now be demonstrated that the abscissa of the point Ptp of
Figure 4.3, where the plastic region starts, is almost equal to −1.
Combining Equations (4.92) and (4.18) along with the fact that
�Xmax is large with respect to unity, the abscissa of the point Ptp is
obtained as

x̄tp ≈ −1+ 1
�Xmax

[
�+

	�n

(
n
√

1− r2

)
−�+

	�n �−1�
]

(5.105)

In Equation (5.105) the terms between brackets are independent of
�Xmax, so that

lim
�Xmax→�

x̄tp = −1
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This means that, for large values of �Xmax, the abscissa x̄tp of the
point Ptp where the plastic region starts is almost −1. This fact, along
with the symmetry of the Bouc–Wen model hysteresis loop, explains
the sharp transition at the velocity sign change in Figure 5.7 and the
fact that the hysteresis term of the force remains constant during the
loading and unloading.

Note that, in Equation (5.105), the fact that x̄tp → �−1� as � → �
is independent of the particular values of the parameters n and 	.
This suggests that, if �Xmax is large with respect to unity, then for
a wide range of the parameters n and 	, the hysteresis loop of the
corresponding Bouc–Wen model will be similar. To illustrate this
point, consider the following set of normalized parameters:

�x = 0�032 N s/cm� �w = 5�46N� � = 600cm−1� 	 = 10� n = 10
(5.106)

This set is the same as (5.104) except for the values of the parame-
ters n and 	. The corresponding normalized Bouc–Wen models are
excited with a random input signal whose frequency content covers
the interval [0,10 Hz], which is a range of frequencies that is common
for some civil engineering structures. Figure 5.8 gives the obtained
hysteresis terms of the output forces in both cases. It can be seen that
both responses are practically equal.

The conclusion of this analysis is that, for large values of �Xmax,
the values of the parameters n and 	 are practically irrelevant in the
sense that any value of these parameters will lead to almost the same
behaviour of the corresponding Bouc–Wen model.

5.3.2 Alternatives to the Viscous + Bouc–Wen Model for
Shear Mode MR Dampers

The previous section has highlighted two characteristics of the shear
mode MR damper model proposed in Reference [90]:

1. The overparametrization of the associated Bouc–Wen model.
2. The large value of the quantity �Xmax.

The overparametrization of the Bouc–Wen model is due to the
use of this model under its standard form (5.98)–(5.99). This form
uses a set of six parameters �k���A�����n� to describe the relation
between the input displacement and the output restoring force. It has
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Figure 5.8 Response of the normalized Bouc–Wen model (5.102)–(5.103) to
a random input signal with a frequency content within the interval [0,10 Hz]:
solid, set of parameters (5.104); dotted, set of parameters (5.106).

been shown in the previous sections that the standard form of the
Bouc–Wen model is equivalent to its normalized form, which uses
a set of only five parameters ��x��w���	�n�. This means that it is
more appropriate to use the Bouc–Wen model under its normalized
form (5.102)–(5.103).

On the other hand, it has been shown in Reference [90] that the
considered shear mode MR damper is described with a reasonable
precision using the standard Bouc–Wen based model (5.98)–(5.99)
along with the values of the parameters (5.100). The corre-
sponding normalized model (5.102)–(5.103) has been determined
with the corresponding values of the parameters (5.104). It has
been noted that the term �Xmax has a large value with respect to
unity, which implies that the particular values of the parameters n
and 	 are irrelevant. This means that the information about the
behaviour of the MR damper is captured in at most three param-
eters �x� �w and �. In other terms, the initial set �k���A�����n�
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of the standard Bouc–Wen model parameters contains at least
three parameters that are irrelevant for the description of the
damper.

For the reasons explained in the previous paragraphs, there is a
clear need to develop a simplified model for the damper that has
a minimal number of parameters which are all relevant. Figure 5.7
suggests the following model:

F �t� = �x�v�ẋ�t�+�w�v�FC�ẋ� (5.107)

where �x and �w are constants that may be voltage dependent and
FC is the Coulomb model for dry friction defined as [134]

FC�ẋ� = 1 for ẋ > 0 (5.108)

FC�ẋ� = −1 for ẋ < 0 (5.109)

At zero velocity, the Coulomb friction can take any value in the
interval �−1�1. The graph of the Coulomb friction is plotted in
Figure 5.9, and it can be seen that it is a static model when the input is
taken to be the velocity. The graph of the proposed simplified model
(5.107)–(5.109) for the shear MR damper is given in Figure 5.10.
It consists of the sum of a viscous friction contribution and a dry
friction term. This is also a static model when the considered input
is the velocity ẋ. Note that this model has only two parameters �x

Velocity

Force

–1

+1

Figure 5.9 Coulomb model for dry friction.
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Figure 5.10 Viscous + Coulomb model for the shear mode MR damper (also
called the Bingham model [136]).

and �w, which is particularly useful for the analysis of the model
behaviour and for the design of control laws [135].

In the following, the behaviour is compared of the shear mode
MR damper when it is described by the standard Bouc–Wen
model (5.98)–(5.99) with the set of parameters (5.100) (or equiv-
alently the normalized Bouc–Wen model (5.102)–(5.103) with
the set of parameters (5.104)), and when it is described by
the viscous + Coulomb friction model (5.107) with the set of
parameters

�x = 0�032N s/cm� �w = 5�46N (5.110)

Figure 5.11 gives the responses of both models to the same input
signal. It can be seen that there is a reasonable matching between the
obtained forces, which means that the MR damper may be described
by a viscous + Coulomb friction model. This fact leads to a reinter-
pretation of the behaviour of the MR damper.

An MR fluid consists of iron particles suspended in a carrier
liquid and responds to a magnetic field with an important change
in rheological behaviour. At a microscopical level, the reorientation
of the iron particles under the action of the magnetic field induces
a change in the stiffness of the material. Since the phenomenon of
hysteresis often accompanies the magnetic-dependent characteristics
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Figure 5.11 Response to a random input signal with a frequency content that
covers the interval [0,10 Hz]: solid, standard Bouc–Wen model (5.98)–(5.99)
with the set of parameters (5.100); dotted, viscous + Coulomb model (5.107)
with the set of parameters (5.110).

in materials, the hysteresis Bouc–Wen model has often been used to
describe the behaviour of MR dampers [42]. However, what inter-
ests the control engineer and the civil engineer is the macroscopic
behaviour of the damper. The viscous + dry friction model of the
shear mode MR damper shows that it behaves as a frictional device
that has voltage-dependent characteristics of both the viscous and
dry friction.

Now, although the viscous + dry friction model may be useful
as a tool for the analysis and control of systems that use shear
mode MR dampers, it is not appropriate for numerical simulations.
Indeed, due to the discontinuity of the Coulomb model for dry
friction at the zero velocity, a numerical instability results when
the velocity of the damper is close to zero. An alternative to the
Coulomb model for dry friction is the Dahl model [138], which is
widely used in the literature devoted to friction, both for simulation
and control [135,139]. This model consists of a first-order nonlinear
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differential equation that relates the velocity ẋ of the device to the
dry frictional force Fd in the following way:

Fd�t� = 	0zd�t� (5.111)

żd = ẋ− 	0

Fc
zd �ẋ� (5.112)

where 	0 and Fc are constants, and zd is a state variable.
It is to be noted that the Dahl model for dry friction can be

written as a Bouc–Wen model with some appropriate parameters.
Indeed, taking

	 = 1� n = 1� � = 	0

Fc
� �w = Fc� w�t� = 	0

Fc
zd�t� (5.113)

the Dahl model can be written as

Fd�t� = �ww�t� (5.114)

ẇ = � �ẋ−�ẋ�w� (5.115)

Thus, the viscous + dry friction model for the shear mode MR
damper can be taken in the form

F �t� = �x�v�ẋ�t�+�w�v�w�t� (5.116)

ẇ = � �ẋ−�ẋ�w� (5.117)

where the constants �x and �w may be voltage dependent (see
Figure 5.12).

The behaviour of the MR damper standard Bouc–Wen model
(5.98)–(5.99) with the set of parameters (5.100) is now compared
with that of the Dahl model (5.116)–(5.117) with the set of
parameters

�x = 0�032N sec/cm� �w = 5�46N� � = 600cm−1 (5.118)

The set (5.118) is the same as (5.104) except for the value of the
parameter 	 = 1.

Figure 5.13 gives the responses of both models to the same input
signal. It can be seen that the responses are practically equal. This
means that the viscous + Dahl model represents well the behaviour
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Figure 5.12 Viscous + Dahl model for the MR damper.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

0

1
displacement

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−10

0

10
force

time

Figure 5.13 Response to a random input signal with a frequency content
that covers the interval [0,10 Hz]: solid, normalized Bouc–Wen model (5.102)–
(5.103) with the set of parameters (5.104) (or equivalently the standard Bouc–
Wen model (5.98)–(5.99) with the set of parameters (5.100)); dotted, viscous
+ Dahl model (5.116)–(5.117) with the set of parameters (5.118).
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of the shear mode MR damper. The next section describes the appli-
cation of the identification methodology developed in this chapter to
determine the parameters of this model.

5.3.3 Identification Methodology for the Viscous + Dahl
Model

The Dahl model is a particular case of the Bouc–Wen model. This
means that all the results obtained for the Bouc–Wen model are valid
for the Dahl model. In particular, when the displacement input signal
has a loading–unloading shape, the description of the steady state
equations of the output force is given by Theorem 3 in Section 3.5.
The identification method assumes the knowledge of the limit cycle,
that is the graph �x���� F̄ ���� parameterized by the variable � ∈ �0�T.
Thanks to the symmetry property of this graph, only its loading part
will be considered for identification purposes, so that � ∈ �0�T + will
be taken. In this case, the equation of the loading part of the limit
cycle is obtained from Theorem 3, by eliminating the parameter � in
Equation (3.42), in the form

w̄�x� = 
+
	�n

(
�+

	�n

[−
	�n �� �Xmax −Xmin��
]+� �x−Xmin�

)
(5.119)

Then, considering that 	 = 1 and n = 1, the following derivative is
found using Equations (4.53) and (4.54):

dw̄�x�

dx
= � �1− w̄�x�� (5.120)

Since, by Theorem 3, −1 < w̄�x� < 1, it follows from Equa-
tion (5.120) that

dw̄�x�

dx
> 0

so that the function w̄�x� is increasing. Again, Theorem 3 shows that
the minimal value of w̄�x� is obtained for x = Xmin (or equivalently
for � = 0) and the maximal value of w̄�x� is obtained for x = Xmax

(or equivalently for � = T +). These minimal and maximal values are,
respectively,

−
1�1 �� �Xmax −Xmin�� and 
1�1 �� �Xmax −Xmin��
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On the other hand, the steady state output force is given by
Theorem 3 as

F̄ ��� = �xẋ���+�ww̄���� where � ∈ �0�T + (5.121)

Now, consider a wave T -periodic signal x���. Then, the values of
the force at instants � = 0 and � = T + are, respectively,

F̄ �0� = �xẋ�0�−
1�1 �� �Xmax −Xmin��

F̄ �T +� = �xẋ�T +�+
1�1 �� �Xmax −Xmin��

Thus, the constant �x can be determined as

�x = F̄ �0�+ F̄ �T +�

ẋ�0�+ ẋ�T +�
(5.122)

In practice, the input signal has to be chosen in such a way, as to
avoid a division by zero in Equation (5.122).

Since �x has been determined, the quantity �ww̄��� can be
computed from Equation (5.116) in the form

�ww̄��� = F̄ ���−�xẋ��� � ���� (5.123)

Now the function ���� with � ∈ �0�T + is known. Seen as a function
of the variable x, Equation (5.123) shows that � verifies

�ww̄�x� = ��x� (5.124)

Then, Equation (5.120) can be written as

d��x�

dx
= a−���x� (5.125)

where a = ��w. The parameter a is determined as

a =
[

d��x�

dx

]

x=x∗
(5.126)

where x∗ satisfies the relation ��x∗� = 0. The existence and uniqueness
of the zero of the function � comes from Equation (5.124) and the fact
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Table 5.2 Procedure for the identification of the viscous + Dahl model

Step 1 Excite the MR damper with a wave periodic signal x�t�. After a
transient, the output F �t� will have a steady state F̄ ��� as proved in
Theorem 3.

Step 2 Compute the coefficient �x using Equation (5.122).
Step 3 Compute the function � using Equation (5.123) and determine its

zero x∗.
Step 4 Compute the coefficient a using Equation (5.126).
Step 5 Choose a value x∗1 > x∗ and compute the parameters � and �w

using Equations (5.127)) and (5.128)), respectively.

that w̄�x� is increasing from the negative value −
1�1 �� �Xmax −Xmin��
to the positive value 
1�1 �� �Xmax −Xmin��. Now, take some value
x∗1 > x∗ and then the parameter � can be determined from Equa-
tion (5.125) in the form

� =
a−

[
d��x�

dx

]

x=x∗1

� �x∗1�
(5.127)

Then the parameter �w is determined as follows:

�w = a

�
(5.128)

The application of this identification methodology is summarized
in Table 5.2.

5.3.4 Numerical Simulations

The considered MR damper is a prototype device shown schemati-
cally in Figure 5.14. This experimental device was obtained from the
Lord Corporation for testing and evaluation. The device consists of
two steel parallel plates. The dimensions of the device are 4�45cm×
1�9cm×2�5cm. The magnetic field produced in the device is gener-
ated by an electromagnet consisting of a coil at one end of the device.
Forces are generated when the moving plate, coated with a thin foam
saturated with MR fluid, slides between the two parallel plates. The
outer plates of the MR device are 0.635 cm apart, and the force
capacity of the device is dependent on the strength of the fluid and
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Figure 5.14 Shear mode MR damper.

on the size of the gap between the side plates and the centre plate.
Power is supplied to the device by a regulated voltage power supply
driving a DC to pulse-width modulator (PWM).

The experimental investigations presented in Reference [90] were
performed in the Washington University Structural Control and
Earthquake Engineering Laboratory. They have shown that this MR
damper can be described with reasonable precision by the standard
Bouc–Wen model (5.98)–(5.99) with the following set of parameters:

A = 120� � = 300cm−1� � = 300cm−1� ka = 0�032N s/cm�

kb = 0�02N sec/(cm V)� �a = 27�3N/cm�

�b = 26�5N/(cm V)� n = 1 (5.129)

and

��v� = �a +�bv

k�v� = ka +kbv

v̇ = −� �v−u� (5.130)

In this model, the variable u is the command voltage applied to the
PWM circuit and � is a positive constant.
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In this section, the system under consideration is described by
Equations (5.98) and (5.99) along with the relations (5.129) and
(5.130). The measured variables are:

• the voltage v,
• the displacement x�t� of the damper and
• the force F �t� delivered by the MR device.

The objective of this section is to use the viscous + Dahl model to
describe the MR damper and to use the methodology of Section 5.3.3
to determine its parameters.

The new model of the shear mode MR damper is given by Equa-
tions (5.116) and (5.117), where

�x�v� = �xa +�xbv (5.131)

�w�v� = �wa +�wbv (5.132)

v̇ = −� �v−u� (5.133)

The unknown parameters to be identified are the following:

�xa� �xb� �wa� �wb� � and �

Since the system (5.133) is linear, the parameter � can be determined
using standard methods if u is available for measurement. For this
reason, in the following the focus is exclusively on the determination
of the rest of parameters.

Let u be a constant command voltage. Then, in the steady state, it
is clear from Equation (5.133) that u = v. It is considered that v = 0
so that, from Equations (5.131) and (5.132),

�x�v� = �xa and �w�v� = �wa

The same identification technique can be applied for the the case of
nonzero constant command voltage. The identification methodology
of Section 5.3.3 is applied following the five steps of Table 5.2. The
results are given below.

Step 1

The MR damper model (5.98)–(5.99), along with the relations
(5.129) and (5.130), is excited by a displacement input signal that is
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Figure 5.15 Response of the MR damper model.

wave periodic. This signal and the corresponding output force are
given in Figure 5.15. Note that the maximal value of the input
displacement signal is Xmax = 1cm.

Step 2

To compute the parameter �xa, Equation (5.122) is used. The values
of the different terms arising in this equation are

F̄ �0� = −5�4600N� F̄ �T +� = 5�6124N�

ẋ�0� = 1�1000×10−6 cm/s� ẋ �T +� = 4�7614cm/s (5.134)

so that the following value is obtained:

�xa = 0�0320N s/cm

Note that this is equal to the theoretical value obtained in Equa-
tion (5.104).
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Figure 5.16 Function ��x�. The marker corresponds to the point whose
abscissa is x∗1.

Step 3

The function ��x� is computed using Equations (5.123) and (5.124).
This function is shown in Figure 5.16. It can be seen that the zero
x∗ = −0�9985cm of the function � is close to −1.

Step 4

The value of the parameter a is determined from Equation (5.126).
Therefore

a = 3545�5N/cm

Step 5

The value x∗1 = −0�7862cm is chosen to determine the remaining
values of � and �w. Any value of x∗1 > x∗ will lead to the same values
for these parameters. Therefore
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� = 649�18cm−1 and �w = 5�4615N

The theoretical values of � and �w are � = 600cm−1 and �w = 5�46N,
respectively. Note that there is a relative error of 8.2% in the value
of �, while the relative error in the parameter �w is 0.03%. The
following analysis explains this observation.

Note that, in a practical case, there may be some uncertainty on
the parameter a, which is the main slope of the function � in the
region where this function is almost vertical (see Figure 5.16). Next
it is shown that this possible uncertainty on the parameter a has
little influence on the Dahl model. Indeed, Equation (5.125) shows
that

�w =

[
d��x�

dx

]

x∗1

�
+� �x∗1� (5.135)

Since �Xmax has a large value with respect to unity, and since the
derivative

[
d��x�

dx

]

x∗1

is small due to the fact that x∗1 has been chosen in the region where
the function � is almost constant (see Figure 5.16), then

[
d��x�

dx

]

x∗1

�
≈ 0 (5.136)

Combining Equations (5.135) and (5.136), it follows that �w ≈

� �x∗1�, which means that �w is insensitive to the possible uncertainty
on the parameter a.

Alternatively, Equations (5.126) and (5.128) show that the slope
of the function ��x� at the point x∗ is a = �w�. Since the parameter
�w is insensitive to the uncertainty on a, the relative error on a is
equal to the relative error on �. However, a precise determination
of the parameter � is not relevant as the Dahl model is close to the
Coulomb model for dry friction when the quantity �Xmax is large.
This fact is illustrated by considering that the obtained value of the



162 ROBUST IDENTIFICATION OF BOUC–WEN MODEL PARAMETERS

parameter a has an uncertainty between −50% and +100%; that is
the true value of a is a/2 and 2a, respectively, which corresponds to
a = 1750N/cm and a = 7000N/cm. Then the corresponding values
of the Dahl model parameters are obtained as

�w = 5�4615N� � = 320�4cm−1

and

�w = 5�4615N� � = 1281�7 cm−1

respectively.
Figure 5.17 presents the responses of the viscous + Dahl model for

the three values of �. These responses are similar, which means that
the dynamics of the viscous + Dahl model is not sensitive to the
value of � when the quantity �Xmax is large with respect to unity.
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Figure 5.17 Response of the viscous + Dahl model to a random input signal
with a range of frequencies that covers the interval [0,10 Hz]: solid, � =
600cm−1; dashed, � = 320�4cm−1; dotted, � = 1281�7cm−1.



MODELLING AND IDENTIFICATION OF AN MR DAMPER 163

−1 −0.5 0 0.5 1

−1 −0.5 0 0.5 1

−10

0

10
Fo

rc
e

Frequency 1 Hz

−10

0

10

Displacement

Fo
rc

e

Frequency 10 Hz

Figure 5.18 Force in N versus displacement in cm: solid, viscous + Bouc–
Wen; dotted, viscous + Dahl with � = 320�4cm−1; dashed, viscous + Dahl with
� = 1281�7 cm−1; dotted-dashed, viscous + Dahl with � = 649�18cm−1.

Figure 5.18 gives the responses of the viscous + Bouc-Wen
and viscous + Dahl models to the input displacement signal
x�t� = sin�2�ft�. The upper curves correspond to the frequency
f = 1Hz and the lower curves correspond to the frequency
f = 10Hz. The response of the viscous + Bouc–Wen model
corresponds to the MR damper parameters (5.100), while the
response of the viscous + Dahl model corresponds to the three
sets of parameters: �xa = 0�0320N s/cm� �w = 5�4615 with � =
320�4cm−1� � = 649�18cm−1 and � = 1281�7 cm−1. The marker
corresponds to the instant time t = 0. A good agreement is
observed.

The corresponding force versus velocity plot is given in Figure 5.19.
When the identified value of the parameter � is close to its nominal
one �� = 600cm−1�, a good match is observed between the responses.
However, the force/velocity plot shows more sensitivity to an uncer-
tainty on the identified value of � than the force/displacement plot.
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Figure 5.19 Force in N versus velocity in cm/s: solid, viscous + Bouc–Wen;
dotted, viscous + Dahl with � = 320�4cm−1; dashed, viscous + Dahl with
� = 1281�7 cm−1; dotted-dashed, viscous + Dahl with � = 649�18cm−1.

5.4 CONCLUSION

This chapter has presented an identification method for the Bouc–
Wen model that uses the analytical description of the limit cycle for
the Bouc–Wen model. The method consists in exciting the hysteretic
system with two input signals that differ by a constant and use
the obtained limit cycles to derive the parameters of the Bouc–Wen
model. This technique provides the exact values of the parameters in
the absence of disturbances and proves to be robust with respect to
a class of perturbations of practical relevance. The implementation
of the identification methodology has been illustrated by means of
numerical simulation. As an application of the results obtained in
this and previous chapters, a case study of MR dampers has been
analysed. It has been shown that the use of the frictional Dahl model
is sufficient to describe these devices.



6
Control of a System with a
Bouc–Wen Hysteresis

6.1 INTRODUCTION AND PROBLEM
STATEMENT

In this chapter, the second-order mechanical system described by

mẍ+ cẋ+��x��t� = u�t� (6.1)

is considered with initial conditions x�0�� ẋ�0� and excited by a
control input force u�t�. The restoring force � is assumed to be
described by the normalized Bouc–Wen model

��x��t� = �xx�t�+�ww�t� (6.2)

ẇ�t� = �
(
ẋ�t�−��ẋ�t�� �w�t��n−1w�t�+ �� −1�ẋ�t��w�t��n) (6.3)

with an initial condition w�0�. The parameters

n ≥ 1� � > 0� � ≥ 1
2

� �x > 0� �w > 0� m > 0 and c ≥ 0

are unknown. The displacement x�t� and velocity ẋ�t� are available
through measurements, but the signal w�t� is not. The control input
u�t� is to be designed.

Systems with Hysteresis: Analysis, Identification and Control using the Bouc–Wen Model
F. Ikhouane and J. Rodellar © 2007 John Wiley & Sons, Ltd
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Let yr�t� be a (known) smooth and bounded reference signal whose
(known) smooth and bounded derivatives are such that

lim
t→�

yr�t� = lim
t→�

ẏr �t� = lim
t→�

ÿr �t� = lim
t→�

y�3�
r �t� = 0

exponentially. This means that there exists some constants a > 0 and
b > 0 such that

∣
∣y�i�

r �t�
∣
∣≤ ae−bt for t ≥ 0 and i = 0�1�2�3

The control objective is globally and asymptotically to regulate the
displacement x�t� and velocity ẋ�t� to the reference signals yr�t� and
ẏr �t� preserving the global boundedness of all the closed-loop signals,
that is x�t�� ẋ�t�� w�t� and u�t�. Some information on the unknown
parameters is assumed.

Assumption 3. The unknown parameters lie in known intervals; that is
m ∈ 	mmin�mmax
 with mmin > 0� c ∈ 	0� cmax
 � �x ∈ (0��xmax

]
� �w ∈(

0��wmax

]
� � ∈ 	1/2��max
 and � ∈ �0��max
.

Note that the unknown structure parameter n ≥ 1 is not required to
lie in a known interval.

The problem of controlling the system (6.1)–(6.3) has been treated
in Reference [53] using adaptive control to obtain a global bounded-
ness result and a region of ultimate boundedness as small as desired.
The control law of this chapter improves the results of Reference [53]
by showing that, under PID control, the displacement and velocity
errors tend to zero (not to a neighbourhood of the origin) as time
increases, as frequently demanded in applications.

This problem lies within the general context of the regulation
problem of nonlinear systems in the presence of uncertain dynamics
and uncertainties in the parameters. Much attention has been devoted
to this kind of problem in the current literature. In Reference [140]
the nonlinear system is split into two interconnected parts: an unmea-
sured zero dynamics block, which is assumed to be exponentially
stable, and a triangular block with uncertain control gain. Under
reasonable assumptions, an integral action is added to a sliding mode
control law. The sliding mode part drives the tracking error to a
neighbourhood of the origin, and the integral action takes it asymp-
totically to zero. The stability results are semi-global.
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In Reference [141], a nonlinear system with a relative degree of
one is studied under the assumption that the reference signal and
the output disturbances are produced by a Poisson stable system.
Necessary conditions for output regulation are obtained using topo-
logical concepts derived from the notion of Poisson stability. Under
the additional assumption that perfect tracking can be achieved when
the feedforward input signals belong to the set of solutions of a suit-
able differential equation, a systematic method for the design of a
controller that solves the problem of output regulation is obtained.
Asymptotic regulation is achieved provided that the limit set of initial
conditions of the zero dynamics augmented by the dynamic of the
reference is locally exponentially attractive. The stability results are
semi-global.

In Reference [142], the class of nonlinear systems under consid-
eration is composed of unmeasured, input-to-state stable (ISS) zero
dynamics coupled with a block strict-feedback part that is driven by
an unknown function that may depend on measured outputs and the
zero dynamics. Under additional technical assumptions and using the
backstepping technique, a control law design procedure that insures
global stability and asymptotic regulation is derived.

Note that the results of the references above do not allow the
proposed control objective to be achieved, either because of its nature
(semi-global stability in References [140] and [141] instead of the
global stability sought) or because the system under study does not
fulfill the required conditions (the present system does not satisfy
condition A2 in Reference [142], and also the Bouc–Wen model
is not ISS, as demanded by Reference [142]). Some peculiarities of
the Bouc–Wen model are exploited in this chapter to show that
global stability and asymptotic regulation can be obtained under PID
control.

6.2 CONTROL DESIGN AND STABILITY
ANALYSIS

In this section, it is shown that a PID control achieves the regulation
of the displacement x and velocity ẋ to the exponentially decaying
reference signals yr and ẏr respectively. To this end, the following
variables are introduced:

x1�t� = x�t�−yr�t�
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x2�t� = ẋ�t�− ẏr �t�

x0�t� =
∫ t

0
x1���d�

and the PID controller is chosen as a control law:

u�t� = −k0x0�t�−k1x1�t�−k2x2�t� (6.4)

where the ki values are design parameters.
The main result of this chapter is summarized in the following

theorem.

Theorem 6. Consider the closed loop formed by the system (6.1)–(6.3)
and the control law (6.4). Define the following constants:

k2min
=
√

2mmax

(
�max�max�wmax

+�xmax
+k1

)
(6.5)

e1 = �cmax +k2�
3

m2
min

e2 = k2
1

m2
max

(
k2

2 −k2
2min

)

k0max
= min

(
k1k2

mmax
�−e1 +

√
e2

1 +e2

)
(6.6)

and choose the design gains k0� k1 and k2 in the following way:

(a) Take any positive value for k1.
(b) Then, choose k2 such that k2 > k2min

.
(c) Finally, take 0 < k0 < k0max

.

This gives the following two parts:

1. All the closed-loop signals x0� x1� x2� w and the control u are
globally bounded.

2. limt→� x�t� = 0 and limt→� ẋ�t� = 0.

Proof. Part 1 of Theorem 6 is first proved. The closed loop is
described by the four-state system:

ẋ0 =x1 (6.7)
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ẋ1 =x2 (6.8)

ẋ2 = −m−1 	 �c+k2� x2 + ��x +k1� x1 +k0x0�


−m−1 ��ww+mÿr + cẏr +�xyr� (6.9)

ẇ =�
(
x2 + ẏr −��x2 + ẏr � �w�n−1w+ �� −1� �x2 + ẏr � �w�n) (6.10)

Equation (6.9) can be written as

mx
�3�
0 + �c+k2� ẍ0 + ��x +k1� ẋ0 +k0x0 =−�ww−mÿr

− cẏr −�xyr (6.11)

The constants k0� k1 and k2 are chosen so that the linear system in
the left-hand part of Equation (6.11) is exponentially stable. Using
a Routh argument, it is immediately seen that this happens if the
following conditions are satisfied:

c+k2 > 0 (6.12)

0 < k0 <
�c+k2��k1 +�x�

m
(6.13)

Since the parameters c� �x and m are unknown but bounded, as
demanded by Assumption 3, sufficient conditions to satisfy (6.12)
and (6.13) are given by

k1 > 0� k2 > 0 and 0 < k0 <
k1k2

mmax

At this point, a result obtained in Chapter 2 is used.

Theorem 7. Consider the nonlinear differential equation (6.3) as a
continuous time system whose input and output are ẋ�t� and w�t�, respec-
tively. Then, the output signal w�t� is bounded for any initial condi-
tion w�0� and any continuous function ẋ�t� (be it bounded or not).
Furthermore,

�w�t�� ≤ max �1� �w�0��� for all t ≥ 0

A by-product of Theorem 7 is the existence and uniqueness
of the solutions of the system (6.7)–(6.10) over the time interval
	0�+��. Also, due to the boundedness of w�t�, Equation (6.11)
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may be seen as an exponentially stable linear system excited by a
bounded input. This implies that the signals x0�t�� x1�t� and x2�t� are
bounded, which implies the boundedness of the control signal u�t�
(see Equation (6.4)).

Moving now to part 2 of Theorem 6, the key argument of the
proof is to demonstrate that the velocity x2 ∈ L1	0���. This is done
in Lemma 9 below. This fact, along with Equation (6.8), shows that
x1 has a finite limit (see Lemma 13 in the Appendix). This limit
has to be zero, otherwise the state x0 would go to infinity, which
contradicts the above proved boundedness. Since x2 is bounded and
ẋ2 is bounded (by Equation (6.9)) and x2 ∈ L1, then by Barbalat’s
lemma (Lemma 14 in the Appendix) it follows that

lim
t→�

x2�t� = 0

Therefore, it has been shown that a PID control with appropriately
chosen gains ensures that

lim
t→�

	x�t�−yr�t�
 = lim
t→�

x�t� = 0

and

lim
t→�

	ẋ�t�− ẏr �t�
 = lim
t→�

ẋ�t� = 0

along with the boundedness of all the closed-loop signals, that is
x0� x (and x1), ẋ (and x2), w and the control u.

Lemma 9. The velocity x2 belongs to L1	0���.

Proof. Two cases are discussed:

P1: �w�t�� > 1 for all t ≥ 0.
P2: There exists some t0 < � such that �w�t0�� ≤ 1.

The case P1 is treated first. From Chapter 2,

w�t� = z�t�

z0
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which implies that

w2�t� = 2
V�t�

z2
0

where V�t� = z2�t�

2

On the other hand, it has been demonstrated in Chapter 2 that the
time function V�t� is nonincreasing. This fact implies that the function
w�t�2 is nonincreasing. Since it is bounded, it goes to a limit w2

� ≥ 1.
Consider the case where w�0� > 0 (the analysis is similar in the case
w�0� < 0). Then, by the continuity of w,

w�t� ≥ w� ≥ 1 for all t ≥ 0

Take � > 0; then some t1 < � exists such that

wn
� ≤ w�t�n ≤ wn

� +� for all t ≥ t1 (6.14)

Multiplying by x2 + ẏr and integrating both parts of (6.14), the
following is obtained for any T ≥ 0:

wn
�
∫ t1+T

t1

	x2�t�+ ẏr �t�
dt −�
∫ t1+T

t1

�x2�t�+ ẏr �t��dt

≤
∫ t1+T

t1

	x2�t�+ ẏr �t�
w�t�ndt

≤ wn
�
∫ t1+T

t1

	x2�t�+ ẏr �t�
dt +�
∫ t1+T

t1

�x2�t�+ ẏr �t��dt (6.15)

On the other hand, from Equations (6.10) and (6.14) the following
is obtained for all t ≥ t1:

�� �x2 + ẏr �wn
� ≤ �� �x2 + ẏr �wn

= −ẇ+� �x2 + ẏr �+��� −1� �x2 + ẏr �w
n (6.16)

Integrating both parts of inequality (6.16) and using Equation (6.15),
it follows that

∫ t1+T

t1

�x2�t�+ ẏr �t��dt ≤− 1
��wn�

	w�t1 +T�−w�t1�


+
(

1
�wn�

− � −1
�

)
	x1�t1 +T�−x1�t1�
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+yr�t1 +T�−yr�t1�


+ �� −1��
�wn�

∫ t1+T

t1

�x2�t�+ ẏr �t��dt (6.17)

If � = 1, it follows from Equation (6.17) and the boundedness of
the signals x1 and yr that x2 + ẏr ∈ L1 as T is arbitrary. If � �= 1,
choosing

� = �wn
�

2�� −1�
in Equation (6.17) shows that x2 + ẏr ∈ L1. Since it has been assumed
that ẏr goes exponentially to zero, then ẏr ∈ L1. Then, it follows that
x2 ∈ L1.

Now turn to the case P2. Taking the derivative of Equation (6.11)
gives

3x
�3�
1 +2ẍ1 +1ẋ1 +0x1 = −ẇ−� (6.18)

where

3 = m

�w

�2 = c+k2

�w

�1 = �x +k1

�w

�0 = k0

�w

�

��t� = m

�w

y�3�
r �t�+ c

�w

ÿr �t�+
�x

�w

ẏr �t�

(6.19)

By Assumption P2, �w�t0�� ≤ 1. Using Theorem 7, it follows that
�w�t�� ≤ 1 for all t ≥ t0. From Equation (6.10), for all t ≥ t0,

0 ≤ ẇ �x2 + ẏr � = � �1−�w�n� �x2 + ẏr �
2

≤ � �x2 + ẏr �
2 for �x2 + ẏr �w ≥ 0

� �x2 + ẏr �
2 ≤ ẇ �x2 + ẏr � = � �1+ �2� −1��w�n� �x2 + ẏr �

2

≤ 2�� �x2 + ẏr �
2 for �x2 + ẏr �w ≤ 0

where the fact has been used that � ≥ 1
2 . Thus, in all cases,

0 ≤ ẇ �x2 + ẏr � ≤ � �x2 + ẏr �
2 (6.20)

where � = 2��.
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G (s)
ur = 0 x2

κ

w
.

Bouc - Wen
x2 + yr

.

yr
.

+

+ +

+

–

Figure 6.1 Equivalent description of Equation (6.18).

Note that Equation (6.18) can be viewed as a feedback connection
as in Figure 6.1, where the reference is r = 0, the control signal is
u = − �ẇ+�� and

G�s� = s

3s
3 +2s

2 +1s +0

By Equation (6.20), the Bouc–Wen nonlinearity in Figure 6.1,
with input x2 + ẏr and output ẇ, belongs to the sector 	0��
 (see
Section A.3.3 in the Appendix).

The idea is to use this fact to prove that the feedback connection
is such that the state x2 goes exponentially to zero using Theorem 13
(in the Appendix) once it has been proved that the transfer function
1+�G�s� is strictly positive real. It is to be noted that the Bouc–Wen
nonlinearity is not memoryless in the present case. However, w is
bounded by Theorem 7, x2 has been shown to be bounded above and
the variable ẋ2 is bounded as all the quantities in the right-hand side
of Equation (6.9) are bounded. Then, it can easily be checked that
the stability proof of the feedback connection of Figure 6.1 is a small
variation of Theorem 13 taking into account the boundedness of the
states x2 and ẋ2 along with the exponential decay of the reference
signal and its derivatives to zero. Thus, if it can be proved that the
transfer function 1+�G�s� is strictly positive real, it will follow from
the proof of Theorem 13 that the states x2 and ẋ2 go exponentially
to zero (the remaining state w of the closed loop is bounded but does
not necessarily go to zero).

Now, it remains to determine the conditions on the gains k0, k1

and k2 so that the transfer function 1 + �G�s� is strictly positive
real. In the following, the simplified version of Theorem 13 given in
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Theorem 14 (see the Appendix) is used. It should be checked whether
Re 	1+�G�j��
 > 0 for all � ∈ 	−���
; this is equivalent to finding
conditions under which

p��� = �3 +a1�
2 +a2�+a3 > 0 (6.21)

for all � = �2 ≥ 0, where

a1 = −3� +2
2 −213

2
3

� a2 = �1 −202 +2
1

2
3

�

a3 = 2
0

2
3

> 0 (6.22)

It is clear from Equation (6.21) that having p��� > 0 for all � ≥ 0 is
equivalent to the stability of the polynomial p. A Routh argument
gives the following conditions of stability:

2 >
√

�3 +213 (6.23)

2
0 + f10 − f2 < 0 (6.24)

where

f1 = 22

(−3� +2
2 −213

)

2
3

(6.25)

f2 = 1
2

3

(−3� +2
2 −213

) (
�1 +2

1

)
(6.26)

Thus, the gains k0� k1 and k2 will be chosen as follows. For k1

any positive value is taken. Then, k2 > 0 is chosen such that the
inequality (6.23) holds. Since the constants that appear in this equa-
tion are unknown, a sufficient condition to get (6.23) is by choosing

k2 >
√

2mmax

(
�max�max�wmax

+�xmax
+k1

)= k2min
(6.27)

Since the parameters f1 and f2 are uncertain, a sufficient condition
to have (6.24) is by choosing

0 < k0 < −e1 +
√

e2
1 +e2 (6.28)
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where

e1 = �cmax +k2�
3

m2
min

e2 = k2
1

m2
max

(
k2

2 −k2
2min

)
(6.29)

Note that e2 > 0 by Equation (6.27). Recall that

0 < k0 <
k1k2

mmax

to comply with the stability condition in (6.13). Thus, k0 needs to
be chosen so that

0 < k0 < min
(

k1k2

mmax
�−e1 +

√
e2

1 +e2

)
= k0max

(6.30)

It has therefore been proved that the gains k0� k1 and k2 can be
chosen so that the transfer function 1+�G�s� is strictly positive real.
This implies that the exponential decay of x2 goes to zero and thus
that x2 ∈ L1.

It has thus been proved that, in all cases P1 and P2, x2 ∈ L1.

6.3 NUMERICAL SIMULATION

The following numerical simulation illustrates the effectiveness of the
control scheme. The following values for the parameters are taken:

m = 1� c = 1� �x = 1� �w = 1� � = 1� � = 1� n = 1�5

These values are supposed to be unknown, and it is known
instead that m ∈ 	mmin = 0�5�mmax = 2
 and for any parameter p ∈
�c��x��w�����, it is considered that pmax = 2.

The PID design parameters are chosen following Theorem 6:

1. First k1 = 1000 is chosen which gives k2min
= 63�5610.

2. Then, k2 = k2min
+5 is taken, which gives k0max

= 58�7614.
3. Finally, k0 = 0�9k0max

is taken.
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For the reference signal, yr is chosen as the output of the second-
order linear system

�2
0

s2 +2��0s +�2
0

with � = 0�7� �0 = 1 and zero input; that is the linear system is driven
only by the nonzero initial conditions yr�0� = x�0� and ẏr �0� = ẋ�0�.

Figure 6.2 shows the behaviour of the closed loop starting from
the initial conditions: x�0� = 1� ẋ�0� = 1 and w�0� = 0. The regulation
is achieved both for the displacement output and for the velocity.
During the transient, it is observed that the errors have a small
magnitude compared with the size of the initial conditions, with a
seemingly reasonable control effort.

−5

0

5

10
× 10−4 position error

−2

0

2

4
× 10−3 velocity error

0 10
time

91
−1

−0.5

0

0.5
control signal

Figure 6.2 Closed-loop signals.
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6.4 CONCLUSION

This chapter has focused on the problem of regulating the displace-
ment and velocity of a second-order system that includes a dynamic
hysteresis described by the Bouc–Wen model. It has been shown
that the boundedness of all closed loop signals as well as regulation
of the displacement and velocity can be achieved by a simple PID
controller. The closed-loop stability analysis exploits the peculiari-
ties of the Bouc–Wen model dynamics to derive the desired results
analytically. A numerical simulation has shown the effectiveness of
the PID control.





Appendix
Mathematical Background

This appendix presents a brief summary of some results that are
used throughout the book. It is based on References [143], [144]
and [145].

A.1 EXISTENCE AND UNIQUENESS OF
SOLUTIONS

Consider the differential equation

ẋ = f�t� x�� x�t0� = x0 (A.1)

where x�t� ∈ �n is the state vector and n is a positive integer. The
function f is defined from �×�n to �n. A solution of the differential
equation (A.1) on the time interval �t0� t1� is a continuous function
x � �t0� t1� → �n such that ẋ�t� is defined and ẋ�t� = f �t� x�t�� for all
t ∈ �t0� t1�. If f is continuous in �t� x� then the solution x�t� will be
continuously differentiable. It is assumed that f is continuous in x
but only piecewise continuous in t. In this case, the solution can only
be piecewise continuously differentiable.

The existence and uniqueness of solutions of the differential equa-
tion (A.1) is guaranteed when the function f is locally Lipschitz in
x. This means that positive constants L and r exist such that

�f�t� x�− f�t� y�� ≤ L�x−y�
for all x�y ∈ B = �x ∈ �n/��x−x0�� ≤ r	 and for all t ∈ �t0� t1�.

Systems with Hysteresis: Analysis, Identification and Control using the Bouc–Wen Model
F. Ikhouane and J. Rodellar © 2007 John Wiley & Sons, Ltd
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The following theorem states a sufficient condition for the local
existence and uniqueness of solutions of the differential equa-
tion (A.1).

Theorem 8. Assume that the function f is piecewise continuous in t
and locally Lipschitz in x. Then, a positive real 
 exists such that the
differential equation �A�1� has a unique solution on the time interval
�t0� t0 +
�.

Note that it is not necessary to assume the continuity in x of
the function f as this is implied by the Lipschitz condition. The
global existence and uniqueness of solutions is guaranteed when the
Lipschitz condition holds globally.

Theorem 9. Assume that the function f�t� x� is piecewise continuous in
t and globally Lipschitz in x; that is a positive constant L exists such that

�f�t� x�− f�t� y�� ≤ L�x−y�

for all x�y ∈ �n and for all t ∈ �t0� t1�. Then, the differential equa-
tion (A.1) has a unique solution on the time interval �t0� t1�.

In view of the conservative nature of the global Lipschitz condition,
it would be useful to have a global existence and uniqueness theorem
that requires the function f to be only locally Lipschitz. The next
theorem achieves that at the expense of having to know more about
the solution of the system.

Theorem 10. Assume that the function f�t� x� is piecewise continuous
in t and locally Lipschitz in x for all t ≥ t0 and all x in a domain D ⊂�n.
Let W be a compact subset of D� x0 ∈ W , and suppose it is known that
every solution of

ẋ = f�t� x�� x�t0� = x0 (A.2)

lies entirely in W . There is then a unique solution that is defined for
all t ≥ t0.
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A.2 CONCEPTS OF STABILITY

Consider now the differential equation (A.1), where f � �0�+	� ×
D → �n is piecewise continuous in t and locally Lipschitz in x on
�0�+	�×D. The set D ⊂ �n is said to be a domain (that is an open
connected set) that contains the origin x = 0. The origin is said to be
an equilibrium point for (A.1) if f�t�0� = 0 for all t ≥ 0.

Assume that x = 0 is an equilibrium point for (A.1). It is said
that x = 0 is locally uniformly stable if for each � > 0, there is a

 = 
��� > 0 such that ��x�t0��� < 
 ⇒ ��x�t��� < � for all t ≥ t0. The
following result gives a sufficient condition for the uniform stability
of the equilibrium x = 0.

Theorem 11. Let x = 0 be an equilibrium point for (A.1) and D ⊂ �n

be a domain containing x = 0. Let V � �0�	�×D →� be a continuously
differentiable function such that

W1�x� ≤ V�t�x� ≤ W2�x� (A.3)

V

t
+ V

x
f�t�x� ≤ 0 (A.4)

for all t ≥ 0 and for all x ∈ D, where W1�x� and W2�x� are continuous
positive definite functions1 on D. Then x = 0 is uniformly stable.

V is called a Lyapunov function.
A special case of stability is exponential stability.

Definition 3. The equilibrium point x = 0 of (A.1) is exponentially
stable if positive constants c� k, and � exist such that

�x�t�� ≤ k�x�t0��e−��t−t0�� ∀ �x�t0�� < c (A.5)

and globally exponentially stable if (A.5) is satisfied for any initial
state x�t0�.

In some kind of problems, it is not possible to have a Lyapunov
function V whose derivative is always negative. In this case, it is not
possible to guarantee the uniform stability of the system. However,

1 The function W�x� is said to be positive definite if (a) W�x� ≥ 0 for all x ∈ D and (b)
W�x� = 0 is equivalent to x = 0. The function W�x� is said to be positive semi-definite if
condition (a) holds but (b) does not.
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under some conditions, it is possible to show that the state x�t�
remains bounded.

Theorem 12. Let D ⊂ �n be a domain that contains the origin and

V � �0�	�×D → �

be a continuously differentiable function such that

�1��x�� ≤ V�t�x� ≤ �2��x�� (A.6)

V

t
+ V

x
f�t�x� ≤ 0� ∀ �x� ≥ � > 0 (A.7)

for all t ≥ 0 and for all x ∈ D, where ��x�� is the Euclidean norm of the
vector x and �1�·� and �2�·� are increasing continuous functions with
�1�0� = �2�0� = 0.

Take r > 0 such that Br = �x ∈ �/��x�� < r	 ⊂ D and suppose that � <
�−1

2 ��1�r��. Then, for every initial state x�t0� satisfying ��x�� < �−1
2 ��1�r��,

some T ∈ �0�	� exists such that

�x�t�� ≤ �−1
1 ��2�x�t0��� � ∀ t0 ≤ t ≤ t0 +T (A.8)

�x�t�� ≤ �−1
1 ��2���� � ∀ t ≥ t0 +T (A.9)

A.3 PASSIVITY AND ABSOLUTE STABILITY

A.3.1 Passivity in Mechanical Systems

Consider the mechanical system of Figure A.1 with mass m, damping
c�v� ≥ 0 and stiffness k > 0, where x is the displacement of the
mass and v its velocity. This mass is subject to an external force f .
The movement of the mass is described by the following differential
equation:

mv̇ = −c�v�v−kx+ f (A.10)

Assume that the velocity is constant and that k = 0. Then, equa-
tion (A.10) reduces to

f − c�v�v = 0 (A.11)
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c

k

m
f

x

Figure A.1 Equivalent description of system (A.10).

The presence of a minus sign in the term −c�v�v with c�v� ≥ 0 means
that the corresponding viscous friction force opposes the movement
of the mass. Thus, the condition c�v� ≥ 0 translates into a dissipation
of the energy of this mass. If the mass is seen as a system whose
input is the velocity v and output the force f , then the condition
c�v� ≥ 0 is equivalent to vf ≥ 0. In systems theory, when the product
of the input and the output of a nondynamical system is nonnegative,
the system is said to be passive. In mechanical systems, passivity is
related to energy dissipation.

Consider now the dynamical system (A.10). Multiplying both
members of this equation by the velocity v gives

mvv̇+ c�v�v2 +kvx = vf (A.12)

Defining the function

V�t� = 1
2

mv2 + 1
2

kx2 (A.13)

the following is obtained from Equations (A.12) and (A.13):

V̇ �t�+ c�v�v2 = vf (A.14)

The condition c�v� ≥ 0 that corresponds to energy dissipation trans-
lates into v�t�f�t� ≥ V̇ �t�, which is the definition of passivity within
systems theory.

More generally, consider a dynamical system with input u and
output y given by the equations

ḣ = F �h�u� (A.15)

y = G�h�u� (A.16)
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where F � �n ×�→�n is locally Lipschitz, G � �n ×�→� is contin-
uous and F �0�0� = 0� G�0�0� = 0. This system is said to be passive
if a continuously differentiable positive semi-definite function V�x�
(called the storage function) exists such that

uy ≥ V̇ = V

x
F �x�u�� ∀ �x�u� ∈ �n ×� (A.17)

A.3.2 Positive Realness

Definition 4. A rational function H�s� of the complex variable s is said
to be positive real (PR) if

�a� H�s� is real for s real and
�b� Re �H�s�� ≥ 0 for all Re �s� > 0.

Strict positive realness is defined as follows.

Definition 5. A rational function H�s� is strictly positive real (SPR) if
H�s −�� is PR for some � > 0.

The next lemma gives a necessary and sufficient condition for strict
positive realness.

Lemma 10. A proper rational function H�s� is SPR if, and only if,

H�s� is analytic in Re�s� ≥ 0�

Re �H�j��� > 0 for all � ∈ �−	�	� and

lim�2→	�2 Re �H�j��� > 0� when n∗ = 1�

where n∗ is the relative degree of H�s�, that is the number of poles of
H�s� minus the number of zeros of H�S�. If H�s� is proper but not strictly
proper (that is if n∗ = 0), then conditions (a) and (b) are necessary and
sufficient for H�s� to be SPR.

From the definitions of rational PR and SPR functions above, it is
clear that if H�s� is PR, its phase shift for all frequencies lies in the
interval �−�/2��/2�. Hence, n∗ can only be either 0 or 1 if H�s� is
the transfer function of a dynamical system that is causal.
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Lemma 11. (Kalman–Yakubovich–Popov). Let G�s� = C �sI −A�−1

B +D be a transfer function, where �A�B� is controllable and �A�C� is
observable. Then, G�s� is strictly positive real if and only if there exist
matrices P = PT > 0� L and W , and a positive constant � such that

PA+ATP = −LTL−�P

PB = CT −LTW (A.18)

W TW = D+DT

A.3.3 Sector Functions

Definition 6. A memoryless function h � �0�	� ×� → � is said to
belong to the sector

• �0�	� if uh�t�u� ≥ 0;
• �K1�	� if u �h�t�u�−K1u� ≥ 0;
• �0�K2� with K2 > 0 if h�t�u� �h�t�u�−K2� ≤ 0;
• �K1�K2� with K2 > K1 if �h�t�u�−K1u� �h�t�u�−K2u� ≤ 0.

An example of a function that belongs to the sector �K1�K2� is
given in Figure A.2.

y

u

y = K2 u

y = K1 u

h ( t, u )

Figure A.2 Example of a function that belongs to the sector �K1�K2�.
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r u
+

–
G (s)

y

ψ (⋅)

Figure A.3 Equivalent representation of the system (A.19)–(A.21).

A.3.4 Absolute Stability

Consider the feedback connection of Figure A.3. It is assumed that
the external input is r = 0 and study the behaviour of the unforced
system represented by

ẋ = Ax+Bu (A.19)

y = Cx+Du (A.20)

u = −��t� y� (A.21)

where x ∈ �n� u� y ∈ �.
It is assumed that �A�B� is controllable, �A�C� is observable and � �

�0�	�×� → � is a memoryless, possibly time-varying nonlinearity,
which is piecewise continuous in t and locally Lipschitz in y. It is
also assumed that the feedback connection has a well-defined state
model, which is the case when

u = −� �t�Cx+Du� (A.22)

has a unique solution u for every �t� x� in the domain of interest.
This is always the case when D = 0.

The transfer function

G�s� = C �sI −A�−1 B+D (A.23)

of the linear system is proper. The controllability and observability
assumptions ensure that �A�B�C�D	 is a minimal realization of G�s�.
From linear system theory, it is known that for any rational proper
G�s�, a minimal realization always exists. For all nonlinearities ��·�
satisfying the sector condition, the origin x = 0 is an equilibrium
point of the system (A.19)–(A.21). The sector condition may be
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satisfied globally, that is for all y ∈ �, or satisfied only for y ∈ Y , a
subset of � that is an interval containing the origin.

Definition 7. Consider the system (A.19)–(A.21), where � satisfies a
sector condition according to Definition 6. The system is said to be
absolutely stable if the origin is globally uniformly asymptotically stable
for any nonlinearity in the given sector. It is absolutely stable with a
finite domain if the origin is uniformly asymptotically stable.

Theorem 13. The system (A.19)–(A.21) is absolutely stable if

�a� � ∈ �K1�	� and G�s�/�1+K1G�s�� is strictly positive real or
�b� � ∈ �K1�K2� with K2 > K1 and �1+K2G�s��/�1+K1G�s�� is strictly

positive real.

In this case, the origin is globally exponentially stable. If the sector
condition is satisfied only on a set Y ⊂ �, then the foregoing conditions
ensure that the system is absolutely stable with a finite domain. In this
case, the origin is exponentially stable.

Theorem 14. Consider the system (A.19)–(A.21), where �A�B�C�D	
is a minimal realization of G�s� and � ∈ �����. Then, the system is abso-
lutely stable if one of the following conditions is satisfied, as appropriate:

(a) If 0 < � < �, the Nyquist plot of G�j�� does not enter the disc
D����� and encircles it m times in the counterclockwise direction,
where m is the number of poles of G�s� with positive real parts.

(b) If 0 = � < �� G�s� is Hurwitz and the Nyquist plot of G�j�� lies to
the right of the vertical line defined by Re�s� = −1/�.

(c) If � < 0 < �� G�s� is Hurwitz and the Nyquist plot of G�j�� lies in
the interior of the disc D�����.

If the sector condition is satisfied only on an interval [a,b], then the
foregoing conditions ensure that the system is absolutely stable with a
finite domain.



188 APPENDIX

A.4 INPUT–OUTPUT PROPERTIES

Lemma 12. Let H�s� be a stable and strictly proper transfer function,
with an input u and an output y; that is y�s� = H�s�u�s�. Therefore the
following is obtained:

(a) If u ∈ L1, then y ∈ L1 ∩L	� ẏ ∈ L1� y is absolutely continuous and
y�t� → 0 as t → 	.

(b) If u ∈ L	, then y ∈ L	� ẏ ∈ L	 and y is uniformly continuous.

Lemma 13. Let f be a differentiable function such that ḟ ∈ L1. Then

lim
t→	

f�t�

exists and is finite.

Lemma 14. (Barbalat). Consider the function f ��+ →�. If f� ḟ ∈ L	

and f ∈ Lp for some p ∈ �1�	�, then

lim
t→	

f�t� = 0
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