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Preface

Have you ever wondered whether there is some underlying the-
ory that unifies all the seemingly ad-hoc techniques that are used
to solve first-order ordinary differential equations (ODEs)? In the
1880s Sophus Lie did [51]. He was able to show that a majority of the
techniques used to integrate ODEs could be explained by a theory
known as Lie group analysis, where the symmetries of a differential
equation could be found and exploited.

This is a self-contained introductory textbook on Lie group
analysis, intended for advanced undergraduates and beginning
graduate students, or anyone in the science and engineering fields
wishing to learn about the use of symmetry methods in solving
differential equations. This book has many detailed examples, from
the very basic to the more advanced, guiding one through the
method of symmetry analysis used for differential equations. The
methods presented in this book are very algorithmic in nature, and
the author encourages the reader to become familiar with one of
the computer algebra packages, such as MapleTM or MathematicaⓇ

to help with the calculations, as they can get extremely long and
tedious.

The material presented in this book is based on lectures given
by the author over the last 12 years at the University of Central
Arkansas (UCA). This book consists of four chapters. In Chapter 1,
the reader is introduced to the idea of a symmetry and how these
symmetries can leave objects invariant and, in particular, differential
equations.

Chapter 2 concentrates on constructing and exploiting sym-
metries of ordinary differential equations. In particular, the focus
is on standard techniques for integrating first-order ODEs: lin-
ear, Bernoulli, homogeneous, exact, and Riccati equations are
considered. This chapter then considers symmetry methods for
second-order equations, higher order equations, and systems of
ordinary differential equations.

xi



xii Preface

Chapter 3 extends the ideas to partial differential equations
(PDEs). This chapter starts with first-order PDEs and then gradu-
ates to second-order PDEs. The power of the method is seen in this
chapter, where the heat equation with a source term is considered.
This chapter then moves to higher order PDEs and systems of
PDEs, where several of the examples (and exercises) have been
chosen from various fields of science and engineering.

The last chapter, Chapter 4, starts with a discussion of the non-
classical method–a generalization of Lie’s “classical method” and
then shows its connection with compatibility. Finally, this chapter
ends with a very brief discussion what’s beyond.

Each chapter has a number of exercises; some are routine while
others are more difficult. The latter are denoted by ∗. Many of the
answers are given, and for some of the harder or more elaborate
problems, a reference to the literature is given.

The material presented in Chapters 1–3 is more than enough for
a one-semester course and has been the basis of the course given here
at UCA over the last 12 years.

Lastly, for further information and details, including available
programs, it is encouraged that you please visit the book’s accompa-
nying website at symmetrydes.com.
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CHAPTER 1

An Introduction

1.1 WHAT IS A SYMMETRY?

What is a symmetry? A symmetry is a transformation that leaves
an object unchanged or “invariant.” For example, if we start with
a basic equilateral triangle with the vertices labeled as 1, 2, and 3
(Figure 1.1), then a reflection through any one of three different
bisection axes (Figure 1.2) or rotations through angles of 2𝜋

3
and 4𝜋

3
(Figure 1.3) leaves the triangle invariant.

Another example is the rotation of a disk through an angle 𝜀.
Consider the points (x, y) and (x, y), on the circumference of a circle
of radius r (Figure 1.4). We can write these in terms of the radius and
the angles 𝜃 (a reference angle) and 𝜃 + 𝜀, (after rotation), that is,

These then become

x = r cos 𝜃, x = r cos(𝜃 + 𝜀), (1.1a)

y = r sin 𝜃, y = r sin(𝜃 + 𝜀), (1.1b)

or, after eliminating 𝜃

x = x cos 𝜀 − y sin 𝜀 (1.2a)

y = y cos 𝜀 + x sin 𝜀. (1.2b)

Symmetry Analysis of Differential Equations: An Introduction,
First Edition. Daniel J. Arrigo.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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1 2

3

FIGURE 1.1 An equilateral triangle.
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FIGURE 1.2 Reflections of an equilateral triangle.
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FIGURE 1.3 Rotations of an equilateral triangle through
2𝜋
3

and
4𝜋
3

.
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(x,y)
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θ + ε

( x, y)

FIGURE 1.4 Rotation of a circle.
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–1

–1 0 1

1

2

y

x2 3

(x, y)

(x,y)

FIGURE 1.5 Invariance of the line y = 1
2

x.

To show invariance of the circle under (1.2) is to show that x 2 + y 2 =
r2 if x2 + y2 = r2. Therefore,

x 2 + y 2 = (x cos 𝜀 − y sin 𝜀)2 + (y cos 𝜀 + x sin 𝜀)2

= x2 cos2 𝜀 − 2xy sin 𝜀 cos 𝜀 + y2 sin2 𝜀

+x2 sin2 𝜀 + 2xy sin 𝜀 cos 𝜀 + y2 cos2 𝜀

= x2 + y2

= r2.

As a third example, consider the line y = 1
2

x and the transformation

x = e𝜀x y = e𝜀y. (1.3)

The line is invariant under (1.3) as (Figure 1.5)

y = 1
2

x then e𝜀y = 1
2
e𝜀x if y = 1

2
x.

EXAMPLE 1.1

Show the equation

x2y2 − xy2 + 2xy − y2 − y + 1 = 0 (1.4)
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is invariant under
x = x + 𝜀, y =

y
1 − 𝜀y

. (1.5)

For this example, it is actually easier to rewrite (1.4) as

(
x + 1

y

)2

−
(

x + 1
y

)
− 1 = 0. (1.6)

Under the transformation (1.5), the term x + 1
y

becomes

x + 1
y
= x + 𝜀 +

1 − 𝜀y
y

= x + 𝜀 + 1
y
− 𝜀 = x + 1

y
(1.7)

and invariance of (1.6) readily follows.
It is important to realize that not all equations are invariant under

all transformations. Consider y − 1 = 3(x − 1) and the transformation (1.3)
again. If this were invariant, then

y − 1 = 3
(
x − 1

)
if y − 1 = 3(x − 1).

Upon substitution, we have e𝜀y − 1 = 3(e𝜀x − 1), which is clearly not
the original line and hence not invariant under (1.3).

The transformations (1.2), (1.3), and (1.5) are very special and are
referred to as Lie transformation groups or just Lie groups. ■

1.2 LIE GROUPS

In general, we consider transformations

xi = fi(xj, 𝜀), i, j = 1, 2, 3, · · · n.

These are called a one-parameter Lie group, where 𝜀 is the parame-
ter. First and foremost, they form a group. That is, they satisfy the
following axioms, where G is the group and 𝜙(a, b) the law of com-
position.

1. Closure. If a, b ∈ G, then 𝜙(a, b) ∈ G.

2. Associative. If a, b, c ∈ G, then 𝜙(a, 𝜙(b, c)) = 𝜙(𝜙(a, b), c).
3. Identity. If a ∈ G, then there exists an e ∈ G such that
𝜙(a, e) = 𝜙(e, a) = a.
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4. Inverse. If a ∈ G, then there exists a unique element a−1 ∈ G
such that 𝜙(a, a−1) = 𝜙(a−1, a) = e.

Second, they further satisfy the following properties:

1. fi is a smooth function of the variables xj.

2. fi is analytic function in the parameter 𝜀, that is, a function
with a convergent Taylor series in 𝜀.

3. 𝜀 = 0 can always be chosen to correspond with the identity
element e.

4. the law of composition can be taken as 𝜙(a, b) = a + b.

Our focus is on transformation groups, so our discussion is con-
fined to these types of groups.

EXAMPLE 1.2

Consider (Figure 1.6)
x = ax, a ∈ ℝ∖{0}. (1.8)

1. Closure. If x = ax and x̃ = bx, then x̃ = abx. In this example, the
law of composition is 𝜙(a, b) = ab.

2. Associative. As 𝜙(a, b) = ab, then 𝜙(a, 𝜙(b, c)) = a(bc) = (ab)c =
𝜙(𝜙(a, b), c).

3. Identity. In this case, e = 1 as 𝜙(a, 1) = a1 = a.

4. Inverse. Here a−1 = 1
a

as 𝜙(a, 1
a
) = 1.

a

ab

x x x

b

~

FIGURE 1.6 Scaling group x = ax and its composition.

We note that if we reparameterize the group by letting a = e𝜀, then the
group becomes a Lie group. ■
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EXAMPLE 1.3

Consider
x =

xy
y − 𝜀

, y = y − 𝜀, 𝜀 ∈ ℝ. (1.9)

1. Closure. If
x =

xy
y − a

and y = y − a

and if

x̃ =
xy

y − b
and ỹ = y − b,

then

x̃ =

xy
y − a

⋅ (y − a)

y − a − b
=

xy
y − (a + b)

and
ỹ = y − (a + b).

In this example, the law of composition is 𝜙(a, b) = a + b.

2. Associative. As 𝜙(a, b) = a + b, then 𝜙(a, 𝜙(b, c)) = a + (b + c) =
(a + b) + c = 𝜙(𝜙(a, b), c).

3. Identity. In this case, e = 0 .

4. Inverse. Here a−1 = −𝜀 as 𝜙(𝜀,−𝜀) = 0.

This is an example of a Lie group. It is an easy matter to show that xy = 1
is invariant under (1.9). Figure 1.7 illustrates the composition of two suc-
cessive transformations ■

1.3 INVARIANCE OF DIFFERENTIAL EQUATIONS

We are starting to discover that equations can be invariant under a
Lie group. This leads us to the following question: Can differential
equations be invariant under Lie groups? The following examples
illustrate an answer to that question. Consider the simple differential
equation

dy
dx

= xy3, (1.10)
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3

2

1

0
0 1 2 3

(x,y)

(x,y)

(x,y)~ ~

a

a + b

b

FIGURE 1.7 Equation xy = 1 and the composition of two transformations of (1.9).

and the Lie group
x = e𝜀x, y = e−𝜀y. (1.11)

Is the ODE (1.10) invariant under (1.11)? It is an easy matter to cal-
culate

dy

dx
= e−2𝜀 dy

dx
and xy3 = e−2𝜀xy3 (1.12a)

and clearly, under (1.11), (1.10) is invariant, as from (1.12) we see
that

dy

dx
= x y3 since

dy
dx

= xy3.

EXAMPLE 1.4

Show
dy
dx

=
(xy + 1)3

x5
+ 1

x2
(1.13)

is invariant under
x = x

1 + 𝜀x
, y = y − 𝜀. (1.14)
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We first calculate
dy

dx
by the chain rule

dy

dx
=

dy
dx

∕dx
dx

=
dy
dx

(1 + 𝜀x)2. (1.15)

Next, we focus on the first term on the right-hand side of (1.13). So

(x y + 1)3

x 5
=

( x
1 + 𝜀x

⋅ (y − 𝜀) + 1
)3

( x
1 + 𝜀x

)5

=

(
xy + 1
1 + 𝜀x

)3

( x
1 + 𝜀x

)5

=
(xy + 1)3

x5
(1 + 𝜀x)2.

Thus, the entire right-hand side of (1.13) becomes

(x y + 1)3

x 5
+ 1

x2
=

(xy + 1)3

x5
(1 + 𝜀x)2 + (1 + 𝜀x)2

x2
. (1.16)

To show invariance is to show that

dy

dx
=

(x y + 1)3

x 5
+ 1

x2
if

dy
dx

=
(xy + 1)3

x5
+ 1

x2
. (1.17)

Using (1.15) and (1.16) in (1.17) shows (1.17) to be true.
We will now turn our attention to solving some differential

equations. ■

1.4 SOME ORDINARY DIFFERENTIAL EQUATIONS

Consider the Riccati equation

dy
dx

= y2 −
y
x
− 1

x2
. (1.18)
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Typically, to solve this ODE, we need one solution. It is an easy mat-

ter to show that if we guess a solution of the form y = k
x

, then

k = ±1.

If we choose
y1 = 1

x

and let
y = 1

u
+ 1

x
, (1.19)

where u = u(x), then substituting into equation (1.18) and simplify-
ing gives

u′ + u
x
= −1,

which is linear. The integrating factor 𝜇 is

𝜇 = e∫
dx
x = x,

and so the linear equation is easily integrated, giving

u = c − x2

2x
,

where c is an arbitrary constant of integration. Substituting this into
(1.19) gives

y = 2x
c − x2

+ 1
x
. (1.20)

We find that the procedure is long and we do need one solution to
find the general solution of (1.18). However, if we let

x = es, y = re−s, (1.21)

where s = s(r), then substituting into (1.18) gives

e−s − re−ss′

ess′
= r2e−2s − re−2s − e−2s
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and solving for s′ gives

ds
dr

= 1
r2 − 1

, (1.22)

an equation which is separable and independent of s! This is easily
integrated and using (1.21) gives rise to the solution (1.20).

Consider
dy
dx

=
y
x
+ x2

x + y
. (1.23)

Unfortunately, there is no simple way to solve this ODE. However,
if we let

x = s, y = rs, (1.24)

where again s = s(r), then (1.23) becomes

ds
dr

= r + 1, (1.25)

an equation which is also separable and independent of s! Again, it
is easily integrated, giving

s = 1
2

r2 + r + c, (1.26)

and using (1.24) gives rise to the solution of (1.23)

x = 1
2

y2

x2
+

y
x
+ c. (1.27)

Finally, we consider

dy
dx

=
2y3(x − y − xy)

x(x − y)2
. (1.28)

This is a complicated ODE without a standard way of solving it.
However, under the change of variables

x = 1
r + s

, y = 1
s
, (1.29)

(1.28) becomes
ds
dr

= − 2(r + 1)
r2 + 2r + 2

, (1.30)
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again, an equation which is separable and independent of s! Inte-
grating (1.30) gives

s = − ln |r2 + 2r + 2| + c (1.31)

and via (1.29) gives

1
y
= − ln

|||||
(

1
x
− 1

y

)2

+ 2
(

1
x
− 1

y

)
+ 2

||||| + c, (1.32)

the exact solution of (1.28).
In summary, we have considered three different ODEs and have

shown that by introducing new variables, these ODEs can be reduced
to new ODEs (Table 1.1) that are separable and independent of s.

We are naturally led to the following questions:

1. What do these three seemingly different ODEs have in com-
mon?

2. How did I know to pick the new coordinates (r, s) (if they
even exist) so that the original equation reduces to one that is
separable and independent of s?

The answer to the first question is that all of the ODEs are invariant
under some Lie group. The first ODE

dy
dx

= y2 −
y
x
− 1

x2
(1.33)

TABLE 1.1
Equation (1.18), (1.23) and (1.28) and their separability

Equation Transformation New Equation

dy
dx

= y2 −
y
x
− 1

x2
x = es, y = re−s ds

dr
= 1

r2 − 1
dy
dx

=
y
x
+ x2

x + y
x = s, y = rs

ds
dr

= r + 1

dy
dx

=
2y3(x − y − xy)

x(x − y)2
x = 1

r + s
, y = 1

s
ds
dr

= − 2(r + 1)
r2 + 2r + 2
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is invariant under
x = e𝜀x, y = e−𝜀y, (1.34)

the second ODE
dy
dx

=
y
x
+ x2

x + y
(1.35)

is invariant under

x = x + 𝜀, y =
(x + 𝜀) y

x
, (1.36)

and the third ODE

dy
dx

=
2y3(x − y − xy)

x(x − y)2
(1.37)

is invariant under

x = x
1 + 𝜀x

, y =
y

1 + 𝜀y
. (1.38)

The answer to the second question will be revealed in Chapter 2!

EXERCISES

1. Show that the following are Lie groups:

(i) x = e𝜀x,

(ii) x =
√

x2 + 𝜀,

(iii) x =
(y + 𝜀)x

y
, y = y + 𝜀,

(i𝑣) x = x
1 + 𝜀x

, y =
y

1 + 𝜀y
.

2. Show that the following equations are invariant under the given Lie
group

(i) x2y2 + exy = 1 + xy, x = e𝜀x, y = e−𝜀y,

(ii) y4 + 2xy2 + x2 + 2y2 + 2x = 0, x = x − 𝜀, y =
√

y2 + 𝜀,

(iii) x2 − y2 − 2xy sin
y
x
= 0, x = x

1 + 𝜀x
, y =

y
1 + 𝜀x

.
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3. Find functions a(𝜀), b(𝜀), c(𝜀), and d(𝜀) such that

y − y0 = m(x − x0) (1.39)

is invariant under

x = a(𝜀)x + b(𝜀), y = c(𝜀)y + d(𝜀). (1.40)

Does this form a Lie group? If not, find the form of (1.40) that not only
leaves (1.39) invariant but also forms a Lie group.

4. Show that the following ODEs are invariant under the given Lie groups

(i)
dy
dx

= 2y2 + xy3, x = e𝜀x, y = e−𝜀y,

(ii)
dy
dx

=
x2y

x3 + xy + y2
, x = x

1 + 𝜀y
, y =

y
1 + 𝜀y

,

(iii)
dy
dx

=
y2

x2
F
(

1
x
− 1

y

)
, x = x

1 + 𝜀x
, y =

y
1 + 𝜀y

.

5. Find the constants a and b such that the ODE

dy
dx

=
3xy + 2y3

x2 + 3xy2
,

is invariant under the Lie group of transformations

x = ea𝜀x, y = eb𝜀y.

6. (i) Show that
dy
dx

=
1 − y − 2xy2

x(2xy + 1)

is invariant under
x = x + 𝜀, y =

xy
x + 𝜀

.

(ii) Show that under the change of variables

r = xy, s = x,

the original equation becomes

ds
dr

= 2r + 1.
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7. (i) Show that
dy
dx

=
y2 + (x − 2x2)y − x3

x(x + y)

is invariant under
x = x + 𝜀, y =

(x + 𝜀)y
x

.

(ii) Show that under the change of variables

r =
y
x
, s = x,

the original equation becomes

ds
dr

= − r + 1
2r + 1

.

8. (i) Show that
dy
dx

= F(x) (1.41)

is invariant under
x = x, y = y + 𝜀. (1.42)

(ii) Prove that the only ordinary differential equation of the form

dy
dx

= F(x, y)

that is invariant under (1.42) is of the form of (1.41).



CHAPTER 2

Ordinary Differential

Equations

In this chapter, we focus on the symmetries of ordinary differential
equations. At the close of Chapter 1, we saw three different ODEs,
(1.18), (1.23), and (1.28), which were all transformed to equations
that were separable and independent of s. We also stated that each
was invariant under some Lie group (see Table 2.1).

We now ask, where did these transformations come from and
how do they relate to Lie groups? In an attempt to answer this ques-
tion, we consider these transformations in detail.

EXAMPLE 2.1

The ODE
dy
dx

= y2 −
y
x
− 1

x2
(2.1)

is invariant under
x = e𝜀x, y = e−𝜀y, (2.2)

as

dy

dx
= y 2 −

y

x
− 1

x 2

Symmetry Analysis of Differential Equations: An Introduction,
First Edition. Daniel J. Arrigo.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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TABLE 2.1
Invariance of equations (1.18), (1.23) and (1.28)

Equation Transformation Lie Group

dy
dx

= y2 −
y
x
− 1

x2
x = es, y = re−s x = e𝜀x, y = e−𝜀y

dy
dx

=
y
x
+ x2

x + y
x = s, y = rs x = x + 𝜀, y =

(x + 𝜀) y
x

dy
dx

=
2y3(x − y − xy)

x(x − y)2
x = 1

r + s
, y = 1

s
x = x

1 + 𝜀x
, y =

y
1 + 𝜀y

e−2𝜀 dy
dx

= e−2𝜀
(

y2 −
y
x
− 1

x2

)
dy
dx

= y2 −
y
x
− 1

x2
.

Further, under the change of variables

x = es, y = re−s (2.3)

then (2.1) becomes
ds
dr

= 1
r2 + 1

, (2.4)

noting that (2.4), as with all equations of the form
ds
dr

= G(r) is invariant
under

r = r, s = s + 𝜀, (2.5)

(cf. Exercise Chapter 1, #8). It is interesting to note that the transformation
(2.3) is invariant under the combined use of (2.2) and (2.5). To see this

x = es y = r e−s

e𝜀x = es+𝜀 e−𝜀y = r e−(s+𝜀)

e𝜀x = ese𝜀 e−𝜀y = r e−se−𝜀

x = es y = r e−s. ■

EXAMPLE 2.2

From the previous chapter, we saw that

dy
dx

=
y
x
+ x2

x + y
(2.6)
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was invariant under

x = x + 𝜀, y =
(x + 𝜀) y

x
, (2.7)

and under the change of variables

x = s, y = rs, (2.8)

(2.6) was transformed into
ds
dr

= r + 1.

It is an easy matter to verify that (2.8) is invariant under (2.7) and (2.5) as

x = s y = r s

x + 𝜀 = s + 𝜀
(x + 𝜀) y

x
= r (s + 𝜀) (2.9)

x = s y = r s,

noting that we used x = s in the second column of (2.9). ■

EXAMPLE 2.3

Finally, we recall from the previous chapter that

dy
dx

=
2y3(x − y − xy)

x(x − y)2
(2.10)

was invariant under the Lie group

x = x
1 + 𝜀x

, y =
y

1 + 𝜀y
, (2.11)

and under the change of variables

x = 1
r + s

, y = 1
s

(2.12)

(2.10) was transformed to

ds
dr

= − 2r + 2
r2 + 2r + 1

.
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We leave it to the reader to show that the transformation (2.12) itself is also
invariant under (2.11) and (2.5).

This suggests that if we had a Lie group that left a particular differential
equation invariant, say

x = f (x, y, 𝜀), y = g(x, y, 𝜀), (2.13)

then the change of variables

x = A(r, s), y = B(r, s), (2.14)

would lead to a separable equation that would be invariant under (2.13)
and (2.5), that is,

x = A(r, s), y = B(r, s) (2.15)

if (2.14) holds. Combining (2.5), (2.13), and (2.15) gives

f (x, y, 𝜀) = A(r, s + 𝜀), g(x, y, 𝜀) = B(r, s + 𝜀) (2.16)

and further, using (2.14) gives (2.16) as

f (A(r, s),B(r, s), 𝜀) = A(r, s + 𝜀), (2.17a)

g(A(r, s),B(r, s), 𝜀) = B(r, s + 𝜀), (2.17b)

two functional equations for A and B. However, solving (2.17) really hinges
on the fact that we have the Lie group that leaves our differential invariant.
If we require our differential equation

dy
dx

= F(x, y)

to be invariant under (2.13) then

dy

dx
= F(x, y) ⇒

gx + gyF(x, y)
fx + fyF(x, y)

= F(f (x, y, 𝜀), g(x, y, 𝜀)),

a nonlinear PDE for f and g that is really too hard to solve! So at this
point it seems rather hopeless. However, Lie considered not the Lie group
itself but an expanded form of the Lie group which are called infinitesimal
transformations. ■
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2.1 INFINITESIMAL TRANSFORMATIONS

Consider
x = f (x, y, 𝜀), y = g(x, y, 𝜀), (2.18)

with
f (x, y, 0) = x and g(x, y, 0) = y. (2.19)

If we assume that 𝜀 is small, then we construct a Taylor series of
(2.18) about 𝜀 = 0. Thus,

x = f (x, y, 0) +
𝜕f
𝜕𝜀

||||𝜀=0
𝜀 + O(𝜀2), (2.20a)

y = g(x, y, 0) +
𝜕g
𝜕𝜀

||||𝜀=0
𝜀 + O(𝜀2). (2.20b)

If we let
𝜕f
𝜕𝜀

||||𝜀=0
= X (x, y),

𝜕g
𝜕𝜀

||||𝜀=0
= Y (x, y) (2.21)

and use (2.19), then (2.20) becomes

x = x + X (x, y)𝜀 + O(𝜀2), y = y + Y (x, y)𝜀 + O(𝜀2). (2.22)

These are referred to as infinitesimal transformations and X and Y
as simply infinitesimals.

Here we consider two examples where the infinitesimals are
obtained from the Lie group.

EXAMPLE 2.4

Consider the Lie group

x = e𝜀x, y = e−𝜀y.

Therefore,

𝜕x
𝜕𝜀

= e𝜀x so
𝜕x
𝜕𝜀

||||𝜀=0
= x,

𝜕y
𝜕𝜀

= −e−𝜀y so
𝜕y
𝜕𝜀

|||||𝜀=0

= −y,
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and
X (x, y) = x, Y (x, y) = −y. (2.23)

■

EXAMPLE 2.5

Consider the Lie group

x = x cos 𝜀 − y sin 𝜀, y = y cos 𝜀 + x sin 𝜀.

Therefore,

𝜕x
𝜕𝜀

= −x sin 𝜀 − y cos 𝜀 so
𝜕x
𝜕𝜀

||||𝜀=0
= −y,

𝜕y
𝜕𝜀

= −y sin 𝜀 + x cos 𝜀 so
𝜕y
𝜕𝜀

|||||𝜀=0

= x.

Thus,
X (x, y) = −y, Y (x, y) = x.

If we had the infinitesimals X and Y , we could recover the Lie group from
which they came. We would solve the system of differential equations

dx
d𝜀

= X (x, y), x|𝜀=0 = x, (2.24a)

dy
d𝜀

= Y (x, y), y|𝜀=0 = y, (2.24b)

(see Bluman and Kumei [1] for the proof). The following examples illustrate
this. ■

EXAMPLE 2.6

Consider X = 1 and Y = 2x. From (2.24) we are required to solve

dx
d𝜀

= 1,
dy
d𝜀

= 2x, (2.25)

subject to the initial conditions given in (2.24). The solution of the first is

x = 𝜀 + c(x, y),



2.1 Infinitesimal Transformations 21

where c is an arbitrary function of its arguments. If we impose the initial
condition x = x when 𝜀 = 0 gives c(x, y) = x, leads to

x = x + 𝜀. (2.26)

Using (2.26) in the second equation of (2.25) gives

dy
d𝜀

= 2(x + 𝜀),

and integrating leads to

y = 2x𝜀 + 𝜀2 + c(x, y), (2.27)

where again c is an arbitrary function of its arguments. Imposing the initial
condition y = y when 𝜀 = 0 gives c(x, y) = y gives

y = y + 2x𝜀 + 𝜀2.
■

EXAMPLE 2.7

Consider X = x2 and Y = y2. From (2.24) we are required to solve

dx
d𝜀

= x 2
,

dy
d𝜀

= y 2
, (2.28)

subject to the initial conditions given in (2.24). The solution of the first is

−1
x
= 𝜀 + c(x, y),

and imposing the initial condition x = x when 𝜀 = 0 gives c(x, y) = −1∕x.
This leads to

−1
x
= 𝜀 − 1

x
,

or
x = x

1 − 𝜀x
.

As the second differential equation in (2.28) is the same form as the first,
its solution is easily obtained, giving

y =
y

1 − 𝜀y
. (2.29)



22 CHAPTER 2 Ordinary Differential Equations

At this point we discover, if we had the infinitesimals X and Y , we
could construct a transformation that would lead to a separable equation
involving r and s. Consider

r = r(x, y), s = s(x, y) (2.30)

and require that (2.30) be invariant, that is,

r = r(x, y), s = s(x, y). (2.31)

Differentiating (2.31) with respect to 𝜀 gives

𝜕r
𝜕𝜀

= 𝜕r
𝜕x
𝜕x
𝜕𝜀

+ 𝜕r
𝜕y

𝜕y
𝜕𝜀
,

𝜕s
𝜕𝜀

= 𝜕s
𝜕x
𝜕x
𝜕𝜀

+ 𝜕s
𝜕y

𝜕y
𝜕𝜀
. (2.32)

We also note from (2.5) that

𝜕r
𝜕𝜀

= 0,
𝜕s
𝜕𝜀

= 1. (2.33)

Setting 𝜀 = 0 in (2.32) and using (2.33) and (2.21) gives

X (x, y) 𝜕r
𝜕x

+ Y (x, y) 𝜕r
𝜕y

= 0, X (x, y) 𝜕s
𝜕x

+ Y (x, y) 𝜕s
𝜕y

= 1. (2.34)

Thus, if we have the infinitesimals X and Y , solving (2.34) would give rise
to the transformation that will separate the given ODE. ■

EXAMPLE 2.8

Recall that (2.2) left (2.1) invariant and we obtained the infinitesimals X
and Y in (2.23). Then we need to solve

xrx − yry = 0, xsx − ysy = 1, (2.35)

from (2.34). By the method of characteristics, we obtain the solutions of
(2.35) as

r = R (xy) , s = ln x + S (xy) , (2.36)

where R and S are arbitrary functions of their arguments. Choosing R and
S in (2.36) such that r = xy and s = ln x gives x = es and y = re−s, recover-
ing the change of variables (2.3). ■
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EXAMPLE 2.9

Recall that (2.7) left (2.6) invariant. The infinitesimals associated with (2.7)
are X = 1 and Y = y∕x. From (2.34), we need to solve

rx +
y
x

ry = 0, sx +
y
x

sy = 1. (2.37)

By the method of characteristics, we obtain the solution of (2.37) as

r = R
(y

x

)
, s = x + S

(y
x

)
, (2.38)

where R and S are arbitrary functions of their arguments. Choosing R and
S in (2.38) such that r =

y
x

and s = x gives rise to the transformation (2.8).
At this point, we are ready to answer the question: How do we find the
infinitesimals X and Y? ■

2.2 LIE’S INVARIANCE CONDITION

We have seen that given the infinitesimals X and Y , we can construct
a change of variables leading to a separable equation; we now show
how these infinitesimals are obtained. We wish to seek invariance of

dy
dx

= F(x, y) (2.39)

under the infinitesimal transformation

x = x + X (x, y)𝜀 + O(𝜀2), y = y + Y (x, y)𝜀 + O(𝜀2). (2.40)

In doing so, it is necessary to know how derivatives transform under
the infinitesimal transformations (2.40). Under (2.40), we obtain

dy

dx
=

d
dx

(
y + Y (x, y)𝜀 + O(𝜀2)

)
d
dx

(
x + X (x, y)𝜀 + O(𝜀2)

)

=

dy
dx

+ [Yx + Yyy′]𝜀 + O(𝜀2)

1 + [Xx + Xyy′]𝜀 + O(𝜀2)
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=
(
dy
dx

+ [Yx + Yyy′]𝜀 + O(𝜀2)
)(

1 − [Xx + Xyy′]𝜀 + O(𝜀2)
)

=
dy
dx

+
(
Yx + [Yy − Xx]y′ − Xyy′2) 𝜀 + O(𝜀2). (2.41)

We now consider the following ODE

dy

dx
= F

(
x, y

)
. (2.42)

Substituting the infinitesimal transformations (2.40) and first-order
derivative transformation (2.41) into (2.42) yields

dy
dx

+
(
Yx + [Yy − Xx]y′ − Xyy′2) 𝜀 + O

(
𝜀2)

= F
(
x + X (x, y)𝜀 + O

(
𝜀2) , y + Y (x, y)𝜀 + O

(
𝜀2)) .

Expanding to order O(𝜀2) gives

dy
dx

+
(
Yx + [Yy − Xx]y′ − Xyy′2

)
𝜀 + O

(
𝜀2)

= F(x, y) + (XFx + YFy)𝜀 + O
(
𝜀2) , (2.43)

and imposing
dy
dx

= F(x, y)

shows that equation (2.43) is satisfied to O(𝜀2) if

Yx +
(
Yy − Xx

)
F − XyF2 = XFx + YFy. (2.44)

This is known as Lie’s Invariance Condition. For a given F(x, y),
any functions X (x, y) and Y (x, y) that solve equation (2.44) are the
infinitesimals that we seek.

Let’s reexamine the preceding examples.

EXAMPLE 2.10

Consider
dy
dx

= y2 −
y
x
− 1

x2
,
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which was found in Example 2.1 to be invariant under

x = e𝜀x, y = e−𝜀y.

We found in Example 2.4 the corresponding infinitesimals to be

X = x, Y = −y. (2.45)

Lie’s invariance condition (2.44) becomes

Yx +
(
Yy − Xx

) (
y2 −

y
x
− 1

x2

)
− Xy

(
y2 −

y
x
− 1

x2

)2

= X
( y

x2
+ 2

x3

)
+ Y

(
2y − 1

x

)
. (2.46)

Substituting the infinitesimals (2.45) into (2.46) gives

(−2)
(

y2 −
y
x
− 1

x2

)
= x

( y

x2
+ 2

x3

)
− y

(
2y − 1

x

)
,

which, upon simplification shows, it’s identically satisfied. Thus, X (x, y) = x
and Y (x, y) = −y are solutions of Lie’s invariance condition (2.46). ■

EXAMPLE 2.11

Consider
dy
dx

=
y
x
+ x2

x + y
.

We saw at the beginning of this chapter that this ODE is invariant under

x = x + 𝜀, y =
(x + 𝜀) y

x
,

with the associated infinitesimals

X = 1, Y =
y
x
. (2.47)

Lie’s invariance condition becomes

Yx +
(
Yy − Xx

)(y
x
+ x2

x + y

)
− Xy

(
y
x
+ x2

x + y

)2

= X
(
−

y

x2
+

x2 + 2xy

(x + y)2

)
+ Y

(
1
x
− x2

(x + y)2

)
. (2.48)
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The reader can verify that X and Y given in (2.47) satisfies (2.48) but instead
we will try and deduce these particular X and Y . As (2.48) is difficult to
solve for X (x, y) and Y (x, y) in general, we will seek special solutions of the
form

X = A(x), Y = B(x)y. (2.49)

Substituting (2.49) into equation (2.48), simplifying and collecting coeffi-
cients of the numerator with respect to y gives(

A − A′x + B′x2) y3 + 2
(
A − A′x + B′x2) xy2 (2.50)

+
(
A − (2A + A′)x + (2B − A′ + B′)x2) x2y − (A − Bx + A′x)x4 = 0.

As this must be satisfied for all y, then the coefficients must be identically
zero, giving rise to the following equations for A and B:

A − A′x + B′x2 = 0, (2.51a)

A − (2A + A′)x + (2B − A′ + B′)x2 = 0, (2.51b)

−A + Bx − A′x = 0. (2.51c)

Solving (2.51c) for B gives

B = A′ + A
x

(2.52)

and substituting into the remaining equations of (2.51) gives

A′′ = 0, A′′ + A′ = 0,

from which it is easy to deduce that A = c1. From (2.52), B = c
x

, where c is
an arbitrary constant. Thus, from (2.49), we find the infinitesimals X and
Y to be

X = c, Y = cx
y
,

and setting c = 1 gives exactly those infinitesimals given in (2.47).
In finding the infinitesimals X and Y in (2.48), it was necessary to guess

a simplified form, namely (2.49). This is often the case. We usually try the
following forms (see the exercises):

(i) X =A(x), Y = B(x)y + C(x),

(ii) X =A(y), Y = B(y)x + C(y),

(iii) X =A(x), Y = B(y),

(iv) X =A(y), Y = B(x). ■
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EXERCISES

1. For the given Lie group, find the corresponding infinitesimals X and
Y .

(i) x = cosh 𝜀x + sinh 𝜀y, y = cosh 𝜀y + sinh 𝜀x

(ii) x =
√

x2 − 2y + 2ye𝜀, y = y e𝜀,

(iii) x = x√
1 + 2𝜀y2

, y =
y√

1 + 2𝜀y2
.

2. For the given infinitesimals X and Y , find the corresponding Lie group.

(i) X = xy, Y = 1

(ii) X = x + y, Y = y,

(iii) X = x2 − x, Y = y2 + y.

3. Find infinitesimal transformations leaving the following ODEs invari-
ant. Use these to find a change of variables and reduce the original
ODE to one that is separable and solve the equation.

(i)
dy
dx

= xy +
y
x
+ ex2

xy

(ii)
dy
dx

=
3y
x

+ x5

2y + x3

(iii)
dy
dx

=
y + y3

x + (x + 1)y2

Hints: Try:
1. X = A(x), Y = B(x)y,
2. X = A(x), Y = B(y),
3. X = A(y), Y = B(x).

4*. If we introduce the change of variables given in (2.34), namely

X
𝜕r
𝜕x

+ Y
𝜕r
𝜕y

= 0,
𝜕s
𝜕x

+ Y
𝜕s
𝜕y

= 1,

such that the differential equation

dy
dx

= F(x, y)



28 CHAPTER 2 Ordinary Differential Equations

is transformed to one that is independent of s, prove that X , Y , and F
satisfy Lie’ invariance condition (2.44).

2.3 STANDARD INTEGRATION TECHNIQUES

When one first learns the standard techniques for solving first-order
ordinary differential equations, one creates a cookbook on how to
solve a wide variety of equations: linear, Bernoulli, homogeneous,
exact, Riccati, etc. A natural question would be: Do these equations
have anything in common? The answer is yes—they are all invariant
under some infinitesimal transformation.

2.3.1 Linear Equations

The general form of a linear ODE is

dy
dx

+ P(x)y = Q(x). (2.53)

This is invariant under the Lie group

x = x, y = y + 𝜀e− ∫ P(x)dx (2.54)

as
dy

dx
=

dy
dx

+ 𝜀
(
−P(x)e− ∫ P(x)dx

)

and
dy

dx
+ P(x)y = Q(x)

gives

dy
dx

+ 𝜀
(
−P(x)e− ∫ P(x)dx

)
+ P(x)

(
y + 𝜀e− ∫ P(x)dx

)
= Q(x). (2.55)

Expanding (2.55) gives

dy
dx

+ P(x)y = Q(x).
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From the Lie group (2.54), we obtain the infinitesimals X = 0 and
Y = e− ∫ P(x)dx. The change of variables are obtained by solving
(2.34), so

e− ∫ P(x)dxry = 0, e− ∫ P(x)dxsy = 1. (2.56)

Thus,

ry = 0 ⇒ r = R(x),

sy = e∫ P(x)dx ⇒ s = e∫ P(x)dxy + S(x),

where R(x) and S(x) are arbitrary functions. Choosing R = x and
S = 0 gives

x = r, y = e− ∫ P(r)drs.

Calculating
dy
dx

gives

dy
dx

= e− ∫ P(r)dr ds
dr

− P(r)e− ∫ P(r)drs

and substituting into (2.53) and simplifying gives

ds
dr

= e∫ P(r)drQ(r),

which is a separable equation.

EXAMPLE 2.12

Consider
y′ + y = x. (2.57)

Here P(x) = 1, so
Y = e− ∫ P(x)dx = e−x.

Thus, from (2.56), we need to solve

ry = 0, e−xsy = 1.

This gives
r = R(x), s = exy + S(x),
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where R and S are arbitrary, and choosing R(x) = x and S(x) = 0 gives

r = x, s = exy.

Under this change of variables, the linear equation (2.57) becomes

ds
dr

= rer,

which is separable. ■

2.3.2 Bernoulli Equation

Equations of the form

dy
dx

+ P(x)y = Q(x)yn, n ≠ 0, 1

are called Bernoulli equations. Assuming X = 0, Lie’s invariance
condition (2.44) becomes

Yx + Yy (Q(x)yn − P(x)y) = Y
(
nQ(x)yn−1 − P(x)

)
. (2.58)

The reader can verify that

Y = e(n−1) ∫ P(x)dxyn

satisfies (2.58). To obtain a change of variables, it is necessary to
solve

e(n−1) ∫ P(x)dxynry = 0, e(n−1) ∫ P(x)dxynsy = 1. (2.59)

We best show this via an example.

EXAMPLE 2.13

Consider
y′ +

y
x
= xy3. (2.60)

Here P(x) = 1
x

and n = 3, so

Y = e(n−1) ∫ P(x)dxyn = e2 ln xy3 = x2y3.
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We need to solve (2.59), that is,

ry = 0, x2y3sy = 1.

This gives

r = R(x), s = S(x) + −1
2x2y2

,

and choosing R = x and S = 0 gives

r = x, s = −1
2x2y2

.

The Bernoulli equation (2.60) then becomes

ds
dr

= − 1
4r
,

which is separable. ■

2.3.3 Homogeneous Equations

Equations that are homogeneous are of the form

dy
dx

= F
(y

x

)
. (2.61)

Equation (2.61) is invariant under the Lie group

x = e𝜀x, y = e𝜀y, (2.62)

and expanding (2.62) gives

x = x + 𝜀x + O(𝜀2),

y = y + 𝜀y + O(𝜀2),

giving the infinitesimals X = x and Y = y. Therefore, the change of
variables is obtained by solving

xrx + yry = 0, xsx + ysy = 1,

which has solutions

r = R
(y

x

)
, s = ln x + S

(y
x

)
, (2.63)
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with R and S arbitrary functions of their arguments. Choosing R
and S such that

r =
y
x
, s = ln x

gives
x = es and y = esr (2.64)

and

dy
dx

=

d
dr

(res)

d
dr
es

= es + ress′

ess′
= 1 + rs′

s′
. (2.65)

By substituting (2.64) and (2.65) into (2.61), we obtain

1 + rs′

s′
= F(r),

or
s′ = 1

F(r) − r
,

a separable ODE. We further note that in the case F(r) = r, the orig-
inal equation is separable!

EXAMPLE 2.14

Consider

y′ =
y +

√
x2 + y2

x
. (2.66)

As this ODE is invariant under (2.62), we use the change of variables given
in (2.64). In doing so, our homogeneous ODE (2.66) becomes

ds
dr

= 1√
r2 + 1

,

which is separable. ■

2.3.4 Exact Equations

The equation
dy
dx

= F(x, y) (2.67)
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can be rewritten as
F(x, y)dx − dy = 0

or
M(x, y)dx + N(x, y)dy = 0. (2.68)

Equation (2.68) is said to be exact if

𝜕M
𝜕y

= 𝜕N
𝜕x
. (2.69)

If (2.69) holds, there exists a function 𝜙 such that

𝜕𝜙

𝜕x
= M,

𝜕𝜙

𝜕y
= N,

whose solution is
𝜙(x, y) = C,

which is the solution of the ODE (2.68). This is rarely the case. Some-
times, we look for an integrating factor 𝜇 such that

𝜇Mdx + 𝜇Ndy = 0

is exact. That is,
𝜕

𝜕y
(𝜇M) = 𝜕

𝜕x
(𝜇N) . (2.70)

This is still a hard problem, as we now have a PDE for 𝜇. Suppose
that we knew that equation (2.68) was invariant under the infinites-
imal transformation

x = x + 𝜀X (x, y) + O(𝜀2)

y = y + 𝜀Y (x, y) + O(𝜀2),

then an integrating factor for (2.68) is given by

𝜇 = 1
MX + NY

. (2.71)
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This result is actually due to Lie himself [2].
From (2.70) with 𝜇 given in (2.71), we get

𝜕

𝜕y

( M
MX + NY

)
= 𝜕

𝜕x

( N
MX + NY

)
. (2.72)

From the original ODE (2.67) we can identify that M = −FN and
substituting into (2.72) gives

𝜕

𝜕y

( −F
Y − FX

)
= 𝜕

𝜕x

( 1
Y − FX

)
.

Expanding gives

−Fy(Y − FX ) + F(Yy − FyX − FXy)
(Y − FX )2

= −
Yx − FxX − FXx

(Y − FX )2

and simplifying gives

Yx + (Yy − Xx)F − XyF2 = XFx + YFy

which is exactly Lie’s invariance condition (2.44).

EXAMPLE 2.15

Consider (
2x4y + y4)dx +

(
x5 − 2xy3)dy = 0. (2.73)

Here M and N are given by

M = 2x4 + y4, N = x5 − 2xy3,

so
𝜕M
𝜕y

= 2x4 + 4y3,
𝜕N
𝜕x

= 5x4 − 2y3.

These are clearly not equal so the ODE in not exact. Equation (2.73) is
invariant under

x = e3𝜀x, y = e4𝜀y,

so we obtain the infinitesimals X and Y as

X = 3x, Y = 4y.
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From (2.71), we obtain 𝜇 as

𝜇 = 1
3x(2x4y + y4) + 4y(x5 − 2xy3)

= 1
5xy(2x4 − y3)

.

Therefore,

𝜕𝜙

𝜕x
= 𝜇M =

y(2x4 + y3)
5xy(2x4 − y3)

,
𝜕𝜙

𝜕y
= 𝜇N =

x(x4 − 2y3)
5xy(2x4 − y3)

. (2.74)

Note that the constant 5 will be omitted as this will not change the final
result. Integrating the first equation of (2.74) gives

𝜙 = − ln |x| + 1
2

ln |2x4 − y3| + F(y),

where F is an arbitrary function of integration. Substitution into the second
equation of (2.74) and expanding gives

F ′(y) = 1
2y

⇒ F(y) = 1
2

ln |y| + c.

Therefore,
𝜙 = − ln |x| + 1

2
ln |2x4 − y3| + 1

2
ln |y| + c.

The solution of the ODE (2.73) is therefore given by 𝜙 = 𝜙0 (constant) and
after simplification gives

(2x4 − y3)y
x2

= k,

where k is an arbitrary constant. ■

2.3.5 Riccati Equations

The general form of a Riccati ODE is

dy
dx

= P(x)y2 + Q(x)y + R(x). (2.75)

Our goal is to find X and Y that satisfies Lie’s invariance condition
(2.44). As with both linear and Bernoulli equations, we will assume
X = 0, giving Lie’s invariance condition as

Yx +
(
P(x)y2 + Q(x)y + R(x)

)
Yy = (2P(x)y + Q(x))Y . (2.76)
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One solution of (2.76) is

Y =
(
y − y1

)2
F(x),

where y1 is one solution to (2.75) and F satisfies

F ′ +
(
2Py1 + Q

)
F = 0. (2.77)

In order to solve for the canonical variables r and s, it is necessary
to solve

(
y − y1

)2
F(x)ry = 0,

(
y − y1

)2
F(x)sy = 1,

from which we obtain

r = R(x), s = S(x) − 1
(y − y1)F

,

where R and S are arbitrary functions. Setting R(x) = x and S(x) = 0
yields

x = r, y = y1 −
1

sF(r)
, (2.78)

thereby transforming the original Riccati equation (2.75) to

ds
dr

= a(r)
F(r)

.

It is interesting that the usual linearizing transformation is recovered
using Lie’s method.

EXAMPLE 2.16

Consider

y′ =
y2

ex
+ 2y − 2ex.

One solution of this Riccati equation is y1 = ex. From (2.77), we see that F
satisfies

F ′ + 4F = 0,
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from which we obtain the solution F = e−4x, noting that the constant of
integration can be set to one without the loss of generality. Thus, under the
change of variables given in (2.78), namely

x = r, y = er − e4r

s
, (2.79)

the original ODE becomes
ds
dr

= e3r.
■

EXERCISES

1. Find infinitesimal transformations leaving the following ODEs invariant
and use these to separate the following

(i)
dy
dx

= ex

x3
−

3y
x
, (ii)

dy
dx

= 2y + x

(iii)
dy
dx

= 2y + xy2, (iv)
dy
dx

= x3

y
− xy,

(v)
dy
dx

=
x3 + y3

x2y
, (vi)

dy
dx

= ln y − ln x,

(vii)
dy
dx

=
y − 2xy2

x + 2x2y
, (viii)

dy
dx

= −
3xy + 2y3

x2 + 3xy2
,

(ix)
dy
dx

=
y2

x2
− 2

y
x
+ 2, (x)

dy
dx

= exy2 + y − 3e−x,

y1 = x y1 = e−x.

2. Consider (
2xy2 + 3x2) dx +

(
2x2y − 4

)
dy = 0,

which is already in exact form as My = Nx. Show from (2.71) that X and
Y satisfy (

2xy2 + 3x2)X +
(
2x2y − 4

)
Y = 1.

Further show that this satisfies Lies’ invariance condition (2.44). This
illustrates that first-order ODEs have an infinite number of symmetries.
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3. Consider the ODE

2 y dx +
(
x + 5y2) dy = 0. (2.80)

Show Lie’s invariance condition (2.44) for this ODE admits the solutions

X = 2x, Y = y, and X = x

y2
√

y
, Y = − 2

y
√

y
.

Further show from (2.71) that the integrating factors are (to within a
multiplicative constant)

𝜇 = 1
xy + y3

, and 𝜇 = 1√
y
,

thus illustrating that integrating factors are not unique.

2.4 INFINITESIMAL OPERATOR AND HIGHER
ORDER EQUATIONS

So far, we have considered infinitesimal transformations of the form

x = x + 𝜀X (x, y) + O(𝜀2) (2.81a)

y = y + 𝜀Y (x, y) + O(𝜀2) (2.81b)

with

dy

dx
=

dy
dx

+ 𝜀
[
Yx +

(
Yy − Xx

)
y′ − Xyy′2] + O(𝜀2). (2.82)

In order to extend the method to higher order equations, it is useful
to introduce a more compact notation.

2.4.1 The Infinitesimal Operator

We define the infinitesimal operator as

Γ = X
𝜕

𝜕x
+ Y

𝜕

𝜕y
. (2.83)
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As an example of the usefulness of this notation, consider F(x, y).
We can write

F(x, y) = F
(
x + 𝜀X + O(𝜀2), y + 𝜀Y + O(𝜀2)

)
,

= F(x, y) + 𝜀
(
XFx + YFy

)
+ O(𝜀2),

= F(x, y) + 𝜀ΓF + O(𝜀2),

where

ΓF =
(

X
𝜕

𝜕x
+ Y

𝜕

𝜕y

)
F .

2.4.2 The Extended Operator

The invariance of
dy
dx

= F(x, y) leads to

Yx +
(
Yy − Xx

)
y′ − Xyy′2 = XFx + YFy. (2.84)

As we have introduced an infinitesimal operator in (2.83), we now
introduce the extended operator

Γ(1) = X
𝜕

𝜕x
+ Y

𝜕

𝜕y
+ Y[x]

𝜕

𝜕y′ . (2.85)

If we define Δ such that

Δ =
dy
dx

− F(x, y) = 0,

then

Γ(1)Δ = Y[x] − XFx − YFy = 0. (2.86)

Comparing (2.84) and (2.86) shows that we can define Y[x] as

Y[x] = Yx +
(
Yy − Xx

)
y′ − Xyy′2.

When we substitute y′ = F into

Γ(1)Δ = 0,
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we get Lie’s invariance condition. Thus,

Γ(1)Δ|||Δ=0
= 0

is a convenient way to write the invariance condition.

2.4.3 Extension to Higher Orders

It is now time to reexamine the infinitesimal Y[x]. From (2.82) and
2.87, we see that we can write

dy

dx
=

dy
dx

+ Y[x]𝜀 + O(𝜀2),

where
Y[x] = Yx +

(
Yy − Xx

)
y′ − Xyy′2.

This suggests that we could write higher derivatives as

d2y

dx2
=

d2y
dx2

+ Y[xx]𝜀 + O(𝜀2),

and
d3y

dx3
=

d3y
dx3

+ Y[xxx]𝜀 + O(𝜀2),

and so on.

2.4.4 First-Order Infinitesimals (revisited)

Before we look at the extension to higher orders, consider

Y[x] = Yx + Yyy′ − Xxy′ − Xyy′2

= Yx + Yyy′ − (Xx + Xyy′)y′. (2.87)

If we define the total differential operator as

Dx = 𝜕

𝜕x
+ y′ 𝜕

𝜕y
,

then
Y[x] = Dx(Y ) − Dx(X )y′.
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We call Y[x] an extended infinitesimal .

Consider
dy

dx
using the total differential operator D. Therefore,

dy

dx
=

d
dx

(
y + 𝜀Y + O(𝜀2)

)
d
dx

(
x + 𝜀X + O(𝜀2)

)

=

dy
dx

+ 𝜀Dx(Y ) + O(𝜀2)

1 + 𝜀Dx(X ) + O(𝜀2)

=
(
dy
dx

+ 𝜀Dx(Y ) + O(𝜀2)
)(

1 − 𝜀Dx(X ) + O(𝜀2)
)

=
dy
dx

+
(
Dx(Y ) − Dx(X )y′) + O(𝜀2)

=
dy
dx

+ Y[x]𝜀 + O(𝜀2).

2.4.5 Second-Order Infinitesimals

We now consider second-order extended infinitesimals:

d2y

dx2
= d
dx

(
dy

dx

)

= d
dx

(
dy

dx

)
∕dx
dx

=

d
dx

[
dy
dx

+
[
Dx(Y ) − Dx(X )y′] 𝜀 + O(𝜀2)

]
1 + 𝜀Dx(X ) + O(𝜀2)

=
(
d2y
dx2

+ Dx(Y[x])𝜀 + O(𝜀2)
)(

1 − 𝜀Dx(X ) + O(𝜀2)
)

=
d2y
dx2

+
(
Dx(Y[x]) − Dx(X )y′′) 𝜀 + O(𝜀2),

so
Y[xx] = Dx(Y[x]) − y′′Dx(X ).
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As Y[x] contains x, y, and y′, we need to extend the definition of Dx,
so

Dx = 𝜕

𝜕x
+ y′

𝜕

𝜕y
+ y′′

𝜕

𝜕y′ + y′′′
𝜕

𝜕y′′ + · · ·

and expanding Y[xx] gives

Y[xx] = Dx(Yx + (Yy − Xx)y′ − Xyy′2) − y′′Dx(X )

= Yxx + (2Yxy − Xxx)y′ + (Yyy − 2Xxy)y′ − Xyyy′3,

−(Yy − 2Xx)y′′ − 3Xyy′y′′.

2.4.6 The Invariance of Second-Order Equations

We consider
d2y

dx2
= F

(
x, y,

dy

dx

)
,

so

d2y
dx2

+ 𝜀Y[xx] + O(𝜀2) = F
(
x + 𝜀X + O(𝜀2), y + 𝜀Y + O(𝜀2),

dy
dx

+ 𝜀Y[x] + O(𝜀2)
)
,

that, upon expansion, gives

d2y
dx2

+ 𝜀Y[xx] + O(𝜀2) = F
(
x, y,

dy
dx

)
+ 𝜀(XFx + YFy + Y[x]Fy′ ) + O(𝜀2). (2.88)

If
d2y
dx2

= F
(

x, y,
dy
dx

)

then (2.88) becomes

Y[xx] = XFx + YFy + Y[x]Fy′ . (2.89)

In terms of the extended operator Γ(1), (2.89) becomes

Y[xx] = Γ(1)F .
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It is therefore natural to define a second extension to Γ:

Γ(2) = X
𝜕

𝜕x
+ Y

𝜕

𝜕y
+ Y[x]

𝜕

𝜕y′ + Y[xx]
𝜕

𝜕y′′ .

If we denote our ODE as Δ,

Δ = y′′ − f (x, y, y′),

then the invariance condition is

Γ(2)Δ|||Δ=0
= 0.

2.4.7 Equations of arbitrary order

In general, if we define the nth order extension to Γ as

Γ(n) = X
𝜕

𝜕x
+ Y

𝜕

𝜕y
+ Y[x]

𝜕

𝜕y′ + Y[xx]
𝜕

𝜕y′′ + · · · + Y[nx]
𝜕

𝜕y(n) + · · · ,

where the infinitesimals are given by

Y[(n)x] = Dx

(
Y[(n−1)x]

)
− y(n)Dx(X ).

Then, invariance of the differential equation

Δ
(
x, y, y′,… , y(n)) = 0

is given by
Γ(n)Δ|||Δ=0

= 0.

2.5 SECOND-ORDER EQUATIONS

In this section, we consider three examples to demonstrate the pro-
cedure of Lie’s invariance condition for second-order ODEs. The
first example is y′′ = 0. As this ODE is trivial to integrate, we view
this example solely to understand the algorithmic nature of Lie’s
method.
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EXAMPLE 2.17

Consider the following ODE

y′′ = 0.

If we denote this equation by

Δ = y′′ = 0,

then Lie’s invariance condition is

Γ(2)Δ|||Δ=0
= 0,

Γ(2)(y′′)|||y′′=0
= 0, (2.90)

Y[xx]
|||y′′=0

= 0.

Substituting the extended infinitesimals transformations

Y[x] = Dx(Y ) − y′Dx(X )

Y[xx] = Dx(Y[x]) − y′′Dx(X )

into equation (2.90) and expanding gives

Yxx + (2Yxy − Xxx)y′ + (Yyy − 2Xxy)y′2 − Xyyy′3

+ (Yy − 2Xx)y′′ − 3Xyy′y′′ = 0. (2.91)

Substituting y′′ = 0 into equation (2.91) gives

Yxx + (2Yxy − Xxx)y′ + (Yyy − 2Xxy)y′2 − Xyyy′3 = 0.

When we set the coefficients of y′, y′2, and y′3 to zero in (2.17), we get

Yxx = 0, (2.92a)

2Yxy − Xxx = 0, (2.92b)

Yyy − 2Xxy = 0, (2.92c)

Xyy = 0, (2.92d)
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an over-determined system of equations for the unknowns X and Y . Inte-
grating equation (2.92d) gives

X (x, y) = a(x)y + b(x), (2.93)

where a and b are arbitrary functions. Substituting into (2.92c) and inte-
grating gives

Yyy = 2Xxy = 2a′(x)

Yy = 2a′(x)y + p(x)

Y = a′(x)y2 + p(x)y + q(x), (2.94)

where p and q are further arbitrary functions. Substituting (2.93) and (2.94)
into equation (2.92b) gives

4a′′(x)y + 2p′(x) − a′′(x)y − b′′(x) = 0.

When we set the coefficients of y to zero, we obtain

a′′(x) = 0, (2.95a)

2p′(x) − b′′(x) = 0. (2.95b)

Substituting (2.93) and (2.94) into equation (2.92a) gives

a′′′(x)y2 + p′′(x)y + q′′(x) = 0,

from which we obtain

p′′(x) = 0, (2.96a)

q′′(x) = 0. (2.96b)

The solutions of (2.95) and (2.96) are given simply as

a(x) = a1x + a2,

p(x) = p1x + p2,

q(x) = q1x + q2,

where a1, a2, p1, p2, q1, and q2 are constant. The remaining function b(x) is
obtained from equation (2.95b), that is,
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b′′(x) = 2p1,

b′(x) = 2p1x + b1,

b(x) = p1x2 + b1x + b2,

where b1 and b2 are further constants. This leads to the infinitesimals X and
Y as

X = (a1x + a2)y + p1x2 + b1x + b2,

Y = a1y2 + (p1x + p2)y + q1x + q2. ■

EXAMPLE 2.18

Consider the following ODE

y′′ + yy′ + xy4 = 0. (2.97)

If we denote (2.97) by

Δ = y′′ + yy′ + xy4 = 0, (2.98)

then Lie’s invariance condition is

Γ(2)Δ|||Δ=0
= 0,

or in terms of the extended infinitesimals

Y[xx] + Yy′ + yY[x] + Xy4 + 4xy3Y = 0. (2.99)

Substituting the extended infinitesimal transformations

Y[x] = Dx(Y ) − y′Dx(X )

Y[xx] = Dx(Y[x]) − y′′Dx(X )

into equation (2.99) and expanding gives

Yxx + (2Yxy − Xxx)y′ + (Yyy − 2Xxy)y′2 − Xyyy′3

+ (Yy − 2Xx)y′′ − 3Xyy′y′′ + Yy′

+ y[Yx + (Yy − Xx)y′ − Xyy′2] + Xy4 + 4xy3Y = 0. (2.100)
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Substituting y′′ = −yy′ − xy4 into equation (2.100) gives

Yxx + (2Yxy − Xxx)y′ + (Yyy − 2Xxy)y′2 − Xyyy′3

+ (Yy − 2Xx)(−yy′ − xy4) − 3Xyy′(−yy′ − xy4) + Yy′

+ y[Yx + (Yy − Xx)y′ − Xyy′2] + Xy4 + 4xy3Y = 0. (2.101)

Setting the coefficients of y′, y′2, and y′3 gives

Yxx − xy4(Yy − 2Xx) + yYx + Xy4 + 4xy3Y = 0, (2.102a)

2Yxy − Xxx + yXx + 3xy4Xy + Y = 0, (2.102b)

Yyy − 2Xxy + 2yXy = 0, (2.102c)

Xyy = 0, (2.102d)

an over-determined system of equations for the unknowns X and Y . Inte-
grating equation (2.102d) gives

X (x, y) = a(x)y + b(x). (2.103)

Substituting into (2.102c) gives

Yyy = 2Xxy − 2yXy = 2a′(x) − 2a(x)y,

Yy = −a(x)y2 + 2a′(x)y + p(x),

Y = −1
3

a(x)y3 + a′(x)y2 + p(x)y + q(x). (2.104)

Substituting (2.103) and (2.104) into equation (2.102b) and regrouping
gives

3xa(x)y4 − 1
3

a(x)y3 + (3a′′(x) + b′(x) + p(x))y

+ 2p′(x) − b′′(x) + q(x) = 0. (2.105)

When we set the coefficients of the various powers of y in (2.105) to zero,
we obtain

a(x) = 0, (2.106a)

3a′′(x) + b′(x) + p(x) = 0, (2.106b)

2p′(x) − b′′(x) + q(x) = 0. (2.106c)
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From (2.106a) we see that a(x) = 0, which leads to

X = b(x), Y = p(x)y + q(x). (2.107)

Substituting (2.103) and (2.104) into equation (2.102a) and reorganizing
gives

(2xb′ + b + 3xp)y4 + 4xqy3 + p′y2

+ (q′ + p′′)y + q′′ = 0. (2.108)

When we set the coefficients of the various powers of y to zero, we get

q = 0, p′ = 0, 2xb′(x) + b(x) + 3xp = 0. (2.109)

The solution of the over-determined system (2.106) and (2.109) is

b(x) = cx, p(x) = −c, q(x) = 0, (2.110)

where c is constant. This leads to the infinitesimals X and Y as

X = cx, Y = −cy. (2.111)

Now we find the change of variable that will lead to an equation indepen-
dent of s. Setting c = 1 and solving

xrx − yry = 0, xsx − ysy = 1, (2.112)

leads to
r = xy, s = ln x,

or
x = es, y = re−s. (2.113)

In terms of these new variables, equation (2.97) becomes

srr = (r4 − r2 + 2r)s3
r + (r − 3)s2

r ,

a second-order equation independent of s. We note that introducing q = sr
gives

qr = (r4 − r2 + 2r)q3 + (r − 3)q2, (2.114)

a first-order ODE in q.
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So far in this section, we have considered two examples. The first was
y′′ = 0 to demonstrate the algorithmic nature of Lie’s method. The second
ODE was

y′′ + yy′ + xy4 = 0,

where the infinitesimals

X = c1x, Y = −c1y

were obtained. We naturally wonder how sophisticated the infinitesimals X
and Y can be. The next example gives us the answer to that question. ■

EXAMPLE 2.19

Consider the following ODE:

y′′ + 3yy′ + y3 = 0. (2.115)

If we denote this equation by Δ, then

Δ = y′′ + 3yy′ + y3 = 0,

and Lie’s invariance condition is

Γ(2)(Δ)|||Δ=0
= 0,

Γ(2)(y′′ + 3yy′ + y3)|||y′′+3yy′+y3=0
= 0, (2.116)

Y[xx] + 3Yy′ + 3yY[x] + 3y2Y |||y′′+3yy′+y3=0
= 0.

Substituting the extended infinitesimal transformations

Y[x] = Dx(Y ) − y′Dx(X )

Y[xx] = Dx(Y[x]) − y′′Dx(X )

into equation (2.116) and expanding gives

Yxx + (2Yxy − Xxx)y′ + (Yyy − 2Xxy)y′2 − Xyyy′3

+ (Yy − 2Xx)y′′ − 3Xyy′y′′ + 3Yy′ (2.117)

+ 3y(Yx + (Yy − Xx)y′ − Xyy′2) + 3y2Y = 0.
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Substituting y′′ = −3yy′ − y3 into (2.117) gives

Yxx + (2Yxy − Xxx)y′ + (Yyy − 2Xxy)y′2 − Xyyy′3

+ (Yy − 2Xx)(−3yy′ − y3) − 3Xyy′(−3yy′ − y3) + 3Yy′ (2.118)

+ 3y(Yx + (Yy − Xx)y′ − Xyy′2) + 3y2Y = 0.

Setting the coefficients of y′, y′2, and y′3 in (2.118) to zero gives

Yxx + 2y3Xx + 3y2Y + 3yYx − y3Yy = 0, (2.119a)

2Yxy − Xxx + 3yXx + 3y3Xy + 3Y = 0, (2.119b)

Yyy − 2Xxy + 6yXy = 0, (2.119c)

Xyy = 0, (2.119d)

an over-determined system of equations for the unknowns X and Y . Inte-
grating equation (2.119d) gives

X (x, y) = a(x)y + b(x). (2.120)

Substituting into (2.119c) gives

Yyy = 2Xxy = 2a′(x) − 6a(x)y,

Yy = −3a(x)y2 + 2a′(x)y + p(x),

Y = −a(x)y3 + a′(x)y2 + p(x)y + q(x). (2.121)

Substituting (2.120) and (2.121) into equation (2.119b) and regrouping
gives

3(a′′(x) + b′(x) + p(x))y −
(
b′′(x) − 2p′(x) − 3q(x)

)
.

When we set the coefficients of y to zero, we obtain

a′′(x) + b′(x) + p(x) = 0, (2.122a)

b′′(x) − 2p′(x) − 3q(x) = 0. (2.122b)

Substituting (2.120) and (2.121) into equation (2.119a) gives

2(a′′(x) + b′(x) + p(x))y3 + (a′′′(x) + 3p′(x) + 3q(x))y2

+ (p′′(x) + 3q′(x))y + q′′(x) = 0.
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Setting the coefficients of y and powers of y to zero gives

a′′(x) + b′(x) + p(x) = 0, (2.123a)

a′′′(x) + 3p′(x) + 3q(x) = 0, (2.123b)

p′′(x) + 3q′(x) = 0, (2.123c)

q′′(x) = 0. (2.123d)

The solution of (2.123d) is given simply as

q(x) = q1x + q2. (2.124)

When we substitute (2.124) into equation (2.123c) and integrate, we obtain

p(x) = −3
2

q1x2 + p1x + p2. (2.125)

Substituting (2.124) and (2.125) into equation (2.122b) leads to

b′′(x) = −3q1x + 2p1 + 3q2,

which, upon integration, gives

b(x) = −1
2

q1x3 + 1
2
(2p1 + 3q2)x2 + b1x + b2. (2.126)

This only leaves equations (2.122a), (2.123a), and (2.123b), and the first two
are identical. Equation (2.122a) gives

a′′(x) = q1x2 − 3(p1 + q2)x − (b1 + p2),

which, upon integration, gives

a(x) = 1
4

q1x4 − 1
2
(p1 + q2)x3 − 1

2
(b1 + p2)x2 + a1x + a2. (2.127)

The remaining equation (2.123b) is shown to be automatically satisfied.
With a, b, p, and q given in equations (2.124)–(2.127), the infinitesimals
X and Y are obtained through (2.120) and (2.121). For simplicity, we will
reset the constants as follows:

a1 = c2, a2 = c1, b1 = c7, b2 = c6,

p1 = −6c4 − 2c8, p2 = −c7 − 2c3,

q1 = 4c5, q2 = 4c4 + 2c8.
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This gives the following eight-parameter family of infinitesimals:

X = (c1 + c2x + c3x2 + c4x3 + c5x4)y

+c6 + c7x + c8x2 − 2c5x3,

Y = −(c1 + c2x + c3x2 + c4x3 + c5x4)y3

+(c2 + 2c3x + 3c4x2 + 4c5x3)y2

−(2c3 + c7 + (6c4 + 2c8)x + 6c5x2)y

+4c4 + 2c8 + 4c5x,

where c1 − c8 are arbitrary constants. For several constants, we will con-
struct associated infinitesimal operators and for each a change of variables
will be obtained. These infinitesimal operators will be denoted by Γi, where
the coefficients of the operator are obtained by setting ci = 1 and all other
constants to zero in X and Y . This gives

Γ1 = y
𝜕

𝜕x
− y3 𝜕

𝜕y
,

Γ2 = xy
𝜕

𝜕x
+ (y2 − xy3) 𝜕

𝜕y
,

Γ3 = x2y
𝜕

𝜕x
+ (−x2y3 + 2xy2 − 2y) 𝜕

𝜕y
,

Γ4 = x3y
𝜕

𝜕x
+ (−x3y3 + 3x2y2 − 6xy + 4) 𝜕

𝜕y
,

Γ5 = (x4y − 2x3) 𝜕
𝜕x

+ (−x4y3 + 4x3y2 − 6x2y + 4x) 𝜕
𝜕y
,

Γ6 =
𝜕

𝜕x
,

Γ7 = x
𝜕

𝜕x
− y

𝜕

𝜕y
,

Γ8 = x2 𝜕

𝜕x
+ (2 − 2xy) 𝜕

𝜕y
.

We now find a change of variables for some of the infinitesimal operators
shown earlier. These are constructed by solving (2.34) or in terms of the
infinitesimal operator Γ

Γr = 0, Γs = 1. (2.128)

In particular, we will consider Γ1, Γ2, Γ6, and Γ7, as these are probably the
easiest to solve
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𝚪𝟏 = 𝐲 𝛛
𝛛𝐱

− 𝐲𝟑 𝛛
𝛛𝐲
.

In this case, we need to solve

yrx − y3ry = 0,

ysx − y3sy = 1.

This leads to
r = x − 1

y
, s = 1

2y2
,

or
x = r +

√
2s, y = 1√

2s
. (2.129)

Under the change of variables (2.129), equation (2.115) becomes

srr = 1,

a second-order equation independent of s

𝚪𝟐 = 𝐱𝐲 𝛛
𝛛𝐱

+ (𝐲𝟐 − 𝐱𝐲𝟑) 𝛛
𝛛𝐲
.

In this case, we need to solve

xyrx + (y2 − xy3)ry = 0,

xysx + (y2 − xy3)sy = 1.

This leads to
r = x

y
− 1

2
x2, s = x − 1

y
,

or
x = s +

√
2r + s2, y = 1√

2r + s2
. (2.130)

Under the change of variables (2.130), equation (2.115) becomes

srr = 0,

which is trivially solved.

𝚪𝟔 =
𝛛
𝛛𝐱
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In this case, we need to solve

rx = 0, sx = 1.

This leads to
r = y, s = x,

or
x = s, y = r. (2.131)

Under the change of variables (2.131), equation (2.115) becomes

srr = r3s3
r + 3rs2

r ,

a second-order equation independent of s. Therefore, introducing q = sr
gives

qr = r3q3 + 3rq2,

a first-order ODE in q.

𝚪𝟕 = 𝐱 𝛛
𝛛𝐱

− 𝐲 𝛛
𝛛𝐲
.

In this case, we need to solve

xrx − yry = 0, xsx − ysy = 1.

This leads to
r = xy, s = ln x,

or
x = es, y = re−s. (2.132)

Under the change of variables (2.132), equation (2.115) becomes

srr = (r − 1)(r2 − 2r)s3
r + 3(r − 1)s2

r ,

a second order equation independent of s. Therefore, introducing q = sr
gives

qr = (r − 1)(r2 − 2r)q3 + 3(r − 1)q2,

a first-order ODE in q. ■
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EXERCISES

1. Find constants a and b such that

d2y

dx2
+ n

x
dy
dx

+ y
dy
dx

= 0, n = 0, 1, and 2,

is invariant under the Lie group of transformations

x = ea 𝜀x, y = eb 𝜀y.

Calculate the infinitesimal transformations associated with this Lie
group. Find the canonical coordinates that will reduce this ODE to
one that is independent of s and then further reduce the order.

2. Calculate the eight-parameter family of infinitesimals, leaving

y2y′′ + 2xy′3 = 0

invariant. Choose any three and show that they lead to new variables
that reduce the original equation to one that is of lower dimension.
Solve any of the equations.

3. Find the infinitesimals X and Y , leaving the following ODEs invariant

(i)
d2y

dx2
=

yn

x2
, n ∈ ℝ∕{0, 1}

(ii)
d2y

dx2
+ n

x
dy
dx

= ey.

For each, reduce to first order. (Be careful, there might be special cases
for n.)

4*. Determine the symmetries of the linear ODE

d2y

dx2
+ f (x)y = 0.

5*. Determine the forms of F(x) and the associated infinitesimals X and
Y , leaving the following ODE invariant

d2y

dx2
= F(x)

y2
.
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Note: If you get an equation of the form

F ′

F
=

c4x + c5

c1x2 + c2x + c3
,

then there are several cases that must be considered: c1 = 0 and c1 ≠ 0.
Within the latter, does the quadratic equation in x have real distinct
roots, repeated roots or complex roots? These cases will give different
forms of F .

6*. Classify the symmetries of the ODE

2
d
dx

(
K(y)

dy
dx

)
+ x

dy
dx

= 0,

according to the form of K(y). This ODE arises from a seeking invari-
ance of a nonlinear heat equation (Bluman and Reid [3]).

2.6 HIGHER ORDER EQUATIONS

As we become more comfortable with Lie’s method of symmetry
analysis, it is natural to extend the method to higher order equations.
After a few examples, one gets the idea that computer algebra sys-
tems could be a valuable tool in manipulating and solving the deter-
mining equations (those equations that define the infinitesimals X
and Y ). This becomes clear with the following example.

EXAMPLE 2.20

Consider
y′′′ + yy′′ = 0. (2.133)

This ODE is known as Blasius’s equation and appears in the study of steady
2 − D boundary layers in fluid mechanics. If we denote (2.133) by Δ, then

Δ = y′′′ + yy′′ = 0.

Lie’s invariance condition is

Γ(3)(Δ)|||Δ=0
= 0,

Γ(3)(y′′′ + yy′′)|||y′′′+yy′′=0
= 0, (2.134)

Y[xxx] + Yy′′ + yY [xx]|||y′′′+yy′′=0
= 0.
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Substituting the extended infinitesimal transformations

Y[x] = Dx(Y ) − y′Dx(X )

Y[xx] = Dx(Y[x]) − y′′Dx(X )

Y[xxx] = Dx(Y[xx]) − y′′′Dx(X )

into equation (2.134) and expanding gives

Yxxx + (3Yxxy − Xxxx)y′ + 3(Yxyy − Xxxy)y′2

+ (Yyyy − 3Xxyy)y′3 − Xyyyy′4 + 3(Yxy − Xxx)y′′

+ 3(Yyy − 3Xxy)y′y′′ − 6Xyyy′2y′′ − 3Xyy′′2

+ (Yy − 3Xx)y′′′ − 4Xyy′y′′′ (2.135)

+ yYxx + y(2Yxy − Xxx)y′ + y(Yyy − 2Xxy)y′2 − yXyyy′3

+ y(Yy − 2Xx)y′′ − 3yXyy′y′′ + Yy′′ = 0.

Substituting y′′′ = −yy′′ into (2.135) gives

Yxxx + (3Yxxy − Xxxx)y′ + 3(Yxyy − Xxxy)y′2

+ (Yyyy − 3Xxyy)y′3 − Xyyyy′4 + 3(Yxy − Xxx)y′′

+ 3(Yyy − 3Xxy)y′y′′ − 6Xyyy′2y′′ − 3Xyy′′2

− (Yy − 3Xx)yy′′ + 4Xyyy′y′′ (2.136)

+ yYxx + y(2Yxy − Xxx)y′ + y(Yyy − 2Xxy)y′2 − yXyyy′3

+ y(Yy − 2Xx)y′′ − 3yXyy′y′′ + Yy′′ = 0.

note the appearance of derivatives y′ and y′′ in (2.136).
When we set the coefficients of y′, y′2, y′3, y′4, y′′, y′y′′, y′2y′′, and y′′2

to zero, it gives

3Yxxy − Xxxx + y(2Yxy − Xxx) = 0, (2.137a)

3(Yxyy − Xxxy) + y(Yyy − 2Xxy) = 0, (2.137b)

Yyyy − 3Xxyy − yXyy = 0, (2.137c)

−Xyyy = 0, (2.137d)

3(Yxy − Xxx) + yXx + Y = 0, (2.137e)

3(Yyy − 3Xxy) + yXy = 0, (2.137f)
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−6Xyy = 0, (2.137g)

−3Xy = 0, (2.137h)

Yxxx + yYxx = 0. (2.137i)

This is an over-determined system of equations for the unknowns X and
Y . Equation (2.137h) gives

X (x, y) = a(x), (2.138)

where a is arbitrary. From (2.137h) and (2.137f), we see that

Yyy = 0, (2.139)

from which we obtain

Y (x, y) = b(x)y + c(x), (2.140)

where b and c are arbitrary. Substituting (2.138) and (2.140) into equation
(2.137e) gives (

a′ + b
)
y − 3a′′ + 3b′ + c = 0,

from which we obtain

a′ + b = 0, (2.141a)

−3a′′ + 3b′ + c = 0. (2.141b)

From equation (2.137a), we get(
2b′ − a′′

)
y + 3b′′ − a′′′ = 0, (2.142)

from which we obtain

2b′ − a′′ = 0, (2.143a)

3b′′ − a′′′ = 0. (2.143b)

From (2.141) and (2.143), we deduce

a′′ = 0, b′ = 0,

from which we obtain

a(x) = c1x + c2, b(x) = −c1,
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where c1 and c2 are arbitrary constants. From equation (2.141b)

c(x) = 0,

thus giving the infinitesimals X and Y as

X (x, y) = c1x + c2, (2.144a)

Y (x, y) = −c1y. (2.144b)

Substitution of (2.144a) into the remaining equations in (2.137) shows that
they are automatically satisfied. The infinitesimal operator for each con-
stant is

Γ1 = x
𝜕

𝜕x
− y

𝜕

𝜕y
, Γ2 = 𝜕

𝜕x
.

Now we find new variables r and s for each infinitesimal operator shown
earlier. These are constructed by solving

Γr = 0, Γs = 1.

We will consider each separately.

𝚪𝟏 = 𝐱 𝛛
𝛛𝐱

− 𝐲 𝛛
𝛛𝐲
.

In this case, we need to solve

xrx − yry = 0, xsx − ysy = 1.

This leads to
r = xy, s = ln x

or
x = es, y = re−s.

In terms of these new coordinates, equation (2.133) becomes

srsrrr + rs2
r srr − 3s2

rr = 0, (2.145)

a second-order equation independent of s. Setting q = sr in (2.145) gives

qqrr + rq2qr − 3q2
r = 0. (2.146)
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We note that equation (2.146) admits the Lie Group

r = ea𝜀r, q = e−2a𝜀q,

and hence the infinitesimal operator

Γ = r
𝜕

𝜕r
− 2q

𝜕

𝜕q
.

Thus, we can reduce (2.146) further. Solving

rtx − 2qty = 0, rux − 2quy = 1,

leads to
r = eu, t − r2q

or
r = eu, q = te−2u.

In terms of these new variables, equation (2.146) becomes

tutt + (2t3 + 6t2)u3
t − (t2 + 7t)u2

t + 3ut = 0,

which is reduced to a first-order equation if 𝑣 = ut.

𝚪𝟐 =
𝛛
𝛛𝐱
.

In this case, we need to solve

rx = 0, sx = 1.

This leads to
r = y, s = x,

or
x = s, y = r.

In terms of these new variables, equation (2.133) becomes

srsrrr − 3s2
rr + (r − 6)s2

r srr + (3r − 11)s4
r − (2r2 − 6r)s5

r = 0,

which, under the substitution 𝑣 = sr, gives an equation that is second order
but still quite difficult to solve in general. ■
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EXERCISES

1. Find the infinitesimals X and Y , leaving the following ODEs invariant

(i) y′′′ + yy′′ − y′2 = 0,

(ii) y′′′ + 4yy′′ + 3y′2 + 6y2y′ + y4 = 0.

(iii) y′′′ = y−3.

For each, reduce to one that is second order.

2. Calculate the symmetries of the Chazy equation (see Clarkson and
Olver [4])

y′′′ = 2yy′′ − 3y′2.

3. Calculate the symmetries of the equation

(
yy′

(
y
y′

)′′)′

= 0.

which arises from the symmetries of the wave equation (see Bluman and
Kumei [5]).

2.7 ODE SYSTEMS

In this section, methods for the solution of ODEs using Lie symme-
tries are extended to systems of ODEs.

2.7.1 First Order Systems

Consider

ẋ = f (t, x, y), (2.147a)

ẏ = g(t, x, y), (2.147b)

where an overdot denotes d( )
dt
. We consider invariance of this system

under the infinitesimal transformations

t = t + 𝜀T(t, x, y) + O(𝜀2), (2.148a)

x = x + 𝜀X (t, x, y) + O(𝜀2), (2.148b)

y = y + 𝜀Y (t, x, y) + O(𝜀2). (2.148c)
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By extension of our previous work on single equations, the invari-
ance of the system (2.147) under the transformations (2.148) leads
to Lie’s invariance condition

Γ(1)Δ|||Δ=0
= 0,

where Δ refers to the system (2.147). For systems like (2.147), the
infinitesimal operator Γ is defined as

Γ = T
𝜕

𝜕t
+ X

𝜕

𝜕x
+ Y

𝜕

𝜕y
(2.149)

with the first extension defined as

Γ(1) = Γ + X[t]
𝜕

𝜕ẋ
+ Y[t]

𝜕

𝜕ẏ
. (2.150)

Higher order extensions are defined similarly. For example, the sec-
ond extension is

Γ(2) = Γ(1) + X[tt]
𝜕

𝜕ẍ
+ Y[tt]

𝜕

𝜕ÿ
.

In (2.150), the extended infinitesimal transformations are

X[t] = Dt(X ) − ẋDt(T), (2.151a)

Y[t] = Dt(Y ) − ẏDt(T), (2.151b)

where the total differential operator Dt is defined as

Dt =
𝜕

𝜕t
+ ẋ

𝜕

𝜕x
+ ẏ

𝜕

𝜕y
+ ẍ

𝜕

𝜕ẋ
+ ÿ

𝜕

𝜕ẏ
+ · · · .

The second extended infinitesimal transformations are

X[tt] = Dt

(
X[t]

)
− ẍDt(T),

Y[tt] = Dt

(
Y[t]

)
− ÿDt(T).
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Once the infinitesimals T , X , and Y have been found, we must solve

Trt + Xrx + Yry = 0,

Tut + Xux + Yuy = 0,

T𝑣t + X𝑣x + Y𝑣y = 1.

This will then give a set of new variables that will transform the given
system to one that is independent of 𝑣.

EXAMPLE 2.21

Consider the system

ẋ = 2xy, (2.152a)

ẏ = x2 + y2. (2.152b)

Examination of this system shows that it could easily be rewritten as

dy
dx

=
x2 + y2

2xy
,

which is both homogeneous and of Bernoulli type, and so can be solved by
standard methods. Symmetry methods are usually used for equations which
are not amenable to the standard methods. Thus, the system of equations
(2.152a) is solved here using symmetry methods in order to demonstrate
Lie’s method.
Applying (2.149) and (2.150) to the system (2.152a) yields

X[t] = 2Xy + 2xY (2.153a)

Y[t] = 2xX + 2yY , (2.153b)

and substituting the extended transformations (2.151) yields

Xt + ẋXx + ẏYy − ẋ(Tt + ẋTx + ẏTy) = 2yX + 2xY (2.154a)

Yt + ẋYx + ẏYy − ẏ(Tt + ẋTx + ẏTy) = 2xX + 2yY . (2.154b)

Substituting (2.152) into (2.154) finally yields

Xt + (Xx − Tt)2xy + (x2 + y2)Xy − (2xy)2Tx

− 2xy(x2 + y2)Ty = 2Xy + 2xY (2.155a)



64 CHAPTER 2 Ordinary Differential Equations

Yt + 2xyYx + (x2 + y2)(Yy − Tt) − 2xy(x2 + y2)Tx

+ (x2 + y2)2Ty = 2xX + 2yY . (2.155b)

As the system (2.155) is difficult to solve in general, we seek special solu-
tions by assuming that

T = T(t), X = X (x), Y = Y (y). (2.156)

We note that these are chosen only to reduce the complexity of (2.155) and
other choices could be made. Under the assumptions in (2.156), equation
(2.155) becomes

2xy
(
Xx − Tt

)
= 2yX + 2xY , (2.157a)

(x2 + y2)(Yy − Tt) = 2xX + 2yY , (2.157b)

which is obviously much simpler. We now need some nontrivial infinitesi-
mals (those that are not identically zero). If we take the partial derivative
of (2.157a) with respect to t, we find

−2xyTtt = 0 ⇒ Ttt = 0.

Thus,
T(t) = at + b, (2.158)

where a and b are constant. Inserting (2.158) into (2.157), we find

2xy
(
Xx − a

)
= 2yX + 2xY , (2.159a)

(x2 + y2)(Yy − a) = 2xX + 2yY . (2.159b)

Partially differentiating (2.159a) with respect to y twice yields

Y ′′(y) = 0.

Thus,
Y (y) = py + q, (2.160)

where p and q are constant.
In the process of annihilating (2.159a) by differentiating, it is possible

that we introduced additional information into the solution. Therefore, we
insert (2.160) into our starting point (2.159a), yielding

2xy(Xx − a) = 2yX + 2x(py + q),
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or
(2xXx − 2ax − 2X − 2px)y − 2xq = 0. (2.161)

As (2.161) must be satisfied for all values of y, we immediately see that

xXx − ax − X − px = 0, (2.162a)

q = 0. (2.162b)

Using q = 0, we find from (2.160) that Y = py. In other words, our simplifi-
cations introduced an additional constant that should not have been there.
Inserting this result into (2.159b) yields

(p − a)(x2 + y2) = 2xX + 2py2.

Grouping like terms in powers of y gives

(−p − a)y2 + (p − a)x2 − 2xX = 0.

As this equation must be satisfied for all values of y and the fact that X is
independent of y, then

p + a = 0,

(p − a)x2 − 2xX = 0,

which leads to p = −a and X = ax, noting that (2.162a) is automatically
satisfied. Therefore, the infinitesimals are in the given equation:

T = at + b, X = −ax, Y = −ay. (2.163)

Of course, other infinitesimals could be found. In fact, there is an infinite
set of infinitesimals.

Our next task is to find a change of variables. For convenience, we set
a = 1 and b = 0 in (2.163) and solve

trt − xrx − yry = 0,

tut − xux − yuy = 0,

t𝑣t − x𝑣x − y𝑣y = 1.

The solution of these linear partial differential equations is

r = R(tx, ty), u = U(tx, ty), 𝑣 = ln t + V (tx, ty).

As we have some flexibility in our choice of R, U , and V , we consider two
different choices.
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Choice 1 If we choose

r = tx, u = ty, 𝑣 = ln t,

then
t = e𝑣, y = u

t
= ue−𝑣, x = r

t
= re−𝑣,

and (2.152) becomes

ur =
u2 + u + 2r2

(2u + 1)r
, 𝑣r =

1
r(1 + 2u)

.

We see the system decouples; however, we need the solution for u to find the
solution for 𝑣. A different choice of variables could lead to an even simpler
set of equations to solve as the next example illustrates.

Choice 2 If we choose

r =
y
x
, u = tx, 𝑣 = − ln x, (2.164)

then
t = ue𝑣, x = e−𝑣, y = re−𝑣,

and (2.152) becomes

ur = −1 + 2ru
r2 − 1

, 𝑣r =
2r

r2 − 1
.

The solution of each is easily obtained giving

u =
−r + c1

r2 − 1
, 𝑣 = ln |||r2 − 1||| + c2. (2.165)

Now all that remains is to transform back to our original variables (2.164).
Substituting (2.164) into (2.165) gives

tx =
−

y
x
+ c1(y

x

)2
− 1

, ln x = ln
|||||
y2

x2
− 1

||||| + c2 , (2.166)

and solving (2.166) for x and y gives

x = a
(at + b)2 − 1

and y = −a(at + b)
(at + b)2 − 1

,

where we have set c1 = −b and c2 = − ln a. ■
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2.7.2 Higher Order Systems

In this section, we consider the symmetries of higher order systems
of ordinary differential equations. In particular, we will consider
second-order systems but the analysis is not restricted to only this.
Consider

ẍ = P(x, y), Py ≠ 0, (2.167a)

ÿ = Q(x, y), Qx ≠ 0. (2.167b)

Note that in this example, P and Q are independent of t, ẋ, and ẏ.
In general, these terms could be included. Invariance of (2.167) is
conveniently written as

Γ(2)Δ|||Δ=0
= 0, (2.168)

where Δ is the system (2.167). The operator Γ is defined as before
(see (2.149))

Γ = T
𝜕

𝜕t
+ X

𝜕

𝜕x
+ Y

𝜕

𝜕y
, (2.169)

and Γ(1) and Γ(2) are extensions to the operator Γ in (2.169), namely

Γ(1) = Γ + X[t]
𝜕

𝜕ẋ
+ Y[t]

𝜕

𝜕ẏ
,

Γ(2) = Γ(1) + X[tt]
𝜕

𝜕ẍ
+ Y[tt]

𝜕

𝜕ÿ
.

The invariance condition (2.168) is given by

X[tt] = PxX + PyY , (2.170a)

Y[tt] = QxX + QyY , (2.170b)

where the extended transformations are given by

X[tt] = Dt(X[t]) − ẍDt(T), (2.171a)

Y[tt] = Dt(Y[t]) − ÿDt(T), (2.171b)
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and the total differential operator Dt is given by

Dt =
𝜕

𝜕t
+ ẋ

𝜕

𝜕x
+ ẏ

𝜕

𝜕y
+ ẍ

𝜕

𝜕ẋ
+ ÿ

𝜕

𝜕ẏ
+… .

Substituting (2.171) into (2.170) and expanding gives

Xtt +
(
2Xtx − Ttt

)
ẋ + 2Xtyẏ +

(
Xxx − 2Ttx

)
ẋ2

+ 2
(
Xxy − Tty

)
ẋẏ + Xyyẏ2 − Txxẋ3 − 2Txyẋ2ẏ (2.172)

− Tyyẋẏ2 +
(
Xx − 2Tt

)
ẍ + Xyÿ − 3Txẋẍ

− 2Tyẏẍ − Tyẋÿ = XPx + YPy

and

Ytt + +2Ytyẋ +
(
2Yty − Ttt

)
ẏ + Yxxẋ2

+ 2
(
Yxy − Ttx

)
ẋẏ +

(
Yyy − 2Tty

)
ẏ2 + Txxẋ2ẏ (2.173)

− 2Txyẋẏ2 − Tyyẏ3 + Yxẍ +
(
Yy − 2Tt

)
ÿ

− 2Txẋÿ − Txẏẍ − 3Tyẏÿ = XQx + YQy.

Substituting ẍ = P(x, y) and ÿ = Q(x, y) into (2.172) and (2.173)
gives two expressions involving multinomials in ẋ and ẏ, namely ẋ,
ẏ, ẋ2, ẋẏ, ẏ2, ẋ3, etc. Setting the coefficient of each to zero gives the
following set of determining equations for T , X and Y :

Xtt +
(
Xx − 2Tt

)
P + XyQ = XPx + YPy, (2.174a)

2Xtx − Ttt − 3TxP − TyQ = 0, (2.174b)

Xty − TyP = 0, (2.174c)

Xxx − 2Ttx = 0, (2.174d)

Xxy − Tty = 0, (2.174e)

Xyy = 0, (2.174f)

Txx = 0, (2.174g)

Txy = 0, (2.174h)

Tyy = 0, (2.174i)
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and

Ytt + YxP +
(
Yy − 2Tt

)
Q = XQx + YQy, (2.175a)

2Yty − Ttt − TxP − 3TyQ = 0, (2.175b)

Ytx − TxQ = 0, (2.175c)

Yxx = 0, (2.175d)

Yxy − Ttx = 0, (2.175e)

Yyy − 2Tty = 0, (2.175f)

Txx = 0, (2.175g)

Txy = 0, (2.175h)

Tyy = 0. (2.175i)

Note that the last three equations of each set are identical. Before
we consider a particular example involving a particular P and Q,
we find that we can actually perform quite a bit of analysis on the
system of equations (2.174) and (2.175).

Differentiating (2.174c) with respect to y gives

Xtyy − TyyP − TyPy = 0, (2.176)

while differentiating (2.175c) with respect to x gives

Ytxx − TxxQ − TxQx = 0. (2.177)

By virtue of (2.174f), (2.175d), and the last three equations of either
(2.174) or (2.175), we arrive at

Tx = 0, Ty = 0, ⇒ T = T(t). (2.178)

This results in the fact that the equations (2.174c)−(2.174i) and
(2.175c)−(2.175i) are easy to simplify and solve. Thus,

X = a(t)x + by + c(t), (2.179a)

Y = px + q(t)y + r(t). (2.179b)

Note that the constants b and p arise due to (2.174c) and (2.175c).
From (2.174b), (2.175b) gives
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2a′(t) = T ′′(t), 2q′(t) = T ′′(t), (2.180)

which, upon integration, gives

a(t) = 1
2

T ′(t) + c1, q(t) = 1
2

T ′(t) + c2, (2.181)

where c1 and c2 are arbitrary constants. Thus,

X =
(1

2
T ′(t) + c1

)
x + by + c(t), (2.182a)

Y = px +
(1

2
T ′(t) + c2

)
y + r(t). (2.182b)

We now have only equations (2.174a) and (2.175a) left which explic-
itly involve P and Q. At this point, we consider a particular example.

EXAMPLE 2.22

Consider the following system

ẍ = x
(x2 + y2)2

, ÿ =
y

(x2 + y2)2
. (2.183)

We identify P and Q in this system as

P = x
(x2 + y2)2

, Q =
y

(x2 + y2)2
.

From (2.174a) and (2.175a), we set the coefficients of multinomials involv-
ing x and y to zero and obtain

c1 = 0, c2 = 0, b + p = 0, c(t) = 0, r(t) = 0, T ′′′(t) = 0, (2.184)

from which we obtain

T = k2t2 + 2k1t + k0, (2.185)

where k0, k1, and k2 are arbitrary constants. From (2.182), (2.184), and
(2.185), we find the infinitesimals

T = k2t2 + 2k1t + k0,

X =
(
k2t + k1

)
x + k3y, (2.186)

Y = −k3x +
(
k2t + k1

)
y.
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For a particular example, we consider the case when k0 = 0, k1 = 0, k2 = 0,
and k3 = 1. We introduce new coordinates r, u, and 𝑣 such that

yrx − xry = 0, yux − xuy = 0, y𝑣x − x𝑣y = 1. (2.187)

Solving (2.187) gives

r = R
(
t, x2 + y2) , u = U

(
t, x2 + y2) , 𝑣 = tan−1 y

x
+ V

(
t, x2 + y2) .

(2.188)
where R, U and V are arbitrary. Choosing these arbitrary functions such
that

r = t, u =
√

x2 + y2, 𝑣 = tan−1 y
x

(2.189)

transforms the system (2.183) to the new system

urr =
u4𝑣2

r + 1

u3
, 𝑣rr = −

2ur𝑣r

u
, (2.190)

a system independent of the variable 𝑣. ■

EXERCISES

1. Calculate the scaling symmetries for the following system of ODEs aris-
ing in modeling the formation of polymers (see Sediawan and Megawati
[6])

ẋ = −2x2 − xy − xz,

ẏ = x2 − xy − 2y2 − yz,

ż = xy − xz − yz − 2z2.

2. Calculate the symmetries for the following system of ODEs:

ẍ = ẋ
√

ẋ2 + ẏ2,

ÿ = ẏ
√

ẋ2 + ẏ2.

3. Calculate the symmetries for the following system of ODEs arising from
a reduction of the cubic Schrodinger equation

ẍ − ẏ + x(x2 + y2) = 0,

ÿ + ẋ + y(x2 + y2) = 0.
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4. Calculate the symmetries for the following system of ODEs (a and b are
nonzero constants):

(
a2 + b2) ẍ = (ax + by) ẋ + ẏ,(
a2 + b2) ÿ = ẋ + (ax + by) ẏ.

5. Calculate the symmetries for the following system of ODEs arising from
a reduction of the Burgers’ system (see Arrigo et al. [7]):

yẍ + xyẋ − x2ẏ = 0,

xÿ + xyẏ − y2ẋ = 0.



CHAPTER 3

Partial Differential

Equations

In this chapter, we switch our focus to the symmetry analysis of par-
tial differential equation (PDEs). We start with first-order equations.

3.1 FIRST-ORDER EQUATIONS

Consider equations of the form

F(t, x, u, ut, ux) = 0. (3.1)

Extending transformations to PDEs, we seek invariance of equation
(3.1) under the Lie group of infinitesimal transformations

t = t + 𝜀T(t, x, u) + O(𝜀2),

x = x + 𝜀X (t, x, u) + O(𝜀2), (3.2)

u = u + 𝜀U(t, x, u) + O(𝜀2).

As the PDE (3.1) contains first-order derivatives ut and ux, it is nec-
essary to obtain extended transformations for these. In analogy with

Symmetry Analysis of Differential Equations: An Introduction,
First Edition. Daniel J. Arrigo.
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ordinary differential equations we define ut and ux as

ut = ut + 𝜀U[t] + O(𝜀2), (3.3a)

ux = ux + 𝜀U[x] + O(𝜀2). (3.3b)

Similarly, we introduce the total differential operators Dt and Dx
where

Dt =
𝜕

𝜕t
+ ut

𝜕

𝜕u
+ utt

𝜕

𝜕ut
+ utx

𝜕

𝜕ux
+ · · · , (3.4a)

Dx = 𝜕

𝜕x
+ ux

𝜕

𝜕u
+ utx

𝜕

𝜕ut
+ uxx

𝜕

𝜕ux
+ · · · . (3.4b)

For the derivation of (3.3), we only consider the construction of the
extended transformation for ut as the analysis for ux follows simi-
larly. Therefore,

ut =
𝜕(u,x)
𝜕(t, x)

= 𝜕(u, x)
𝜕(t, x)

/ 𝜕(t, x)
𝜕(t, x)

=
|||| ut ux

xt xx

||||
/ |||||

tt tx
xt xx

|||||

=

|||| ut + 𝜀Dt(U) + O(𝜀2) ux + 𝜀Dx(U) + O(𝜀2)
𝜀Dt(X ) + O(𝜀2) 1 + 𝜀Dx(X ) + O(𝜀2)

|||||||| 1 + 𝜀Dt(T) + O(𝜀2) 𝜀Dx(T) + O(𝜀2)
𝜀Dt(X ) + O(𝜀2) 1 + 𝜀Dx(X ) + O(𝜀2)

||||
=

ut + 𝜀
[
Dt(U) + utDx(X ) − uxDt(X )

]
+ O(𝜀2)

1 + 𝜀
[
Dt(T) + Dx(X )

]
+ O(𝜀2)

= ut + 𝜀
[
Dt(U) − utDt(T) − uxDt(X )

]
+ O(𝜀2).

Thus, we define U[t] and U[x] as

U[t] = Dt(U) − utDt(T) − uxDt(X ), (3.5a)

U[x] = Dx(U) − utDx(T) − uxDx(X ). (3.5b)

For the invariance of equation (3.1), we again introduce the infinites-
imal operator Γ as
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Γ = T
𝜕

𝜕t
+ X

𝜕

𝜕x
+ U

𝜕

𝜕u
(3.6)

with its first extension as

Γ(1) = Γ + U[t]
𝜕

𝜕ut
+ U[x]

𝜕

𝜕ux
.

For PDEs in the form (3.1), if we denote Δ as

Δ = F(t, x, u, ut, ux) = 0,

then Lie’s invariance condition becomes

Γ(1)Δ|||Δ=0
= 0 (3.7)

as we have seen for ordinary differential equations. At this point, we
are ready to consider an example.

EXAMPLE 3.1

We now consider the equation

ut = u2
x. (3.8)

We define Δ as
Δ = ut − u2

x.

Lie’s invariance condition (3.7) therefore becomes

U[t] − 2uxU[x] = 0. (3.9)

Substituting the extensions (3.5) into (3.9) gives rise to

Ut + utUu − ut(Tt + utTu) − ux(Xt + utXu)

− 2ux

(
Ux + uxUu − ut(Tx + uxTu) − ux(Xx + uxXu)

)
= 0.

Substituting the original equation (3.8) and in particular eliminating ut
gives

Ut −
(
Xt + 2Ux

)
ux +

(
2Xx − Tt − Uu

)
u2

x (3.10)

+
(
Xu + 2Tx

)
u3

x + Tuu4
x = 0.

Since T ,X , and U are only functions of t, x, and u, then for equation (3.10)
to be satisfied requires setting the coefficients of ux to zero. This gives rise
to the following determining equations
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Ut = 0, (3.11a)

Tu = 0, (3.11b)

Xt + 2Ux = 0, (3.11c)

Xu + 2Tx = 0, (3.11d)

2Xx − Tt − Uu = 0. (3.11e)

From (3.11b), we obtain
T = A(t, x), (3.12)

where A is an arbitrary function. Substituting (3.12) into (3.11d) and inte-
grating gives

X = −2Axu + B. (3.13)

where B = B(t, x) is another arbitrary function. Substitution into (3.11e)
gives

Uu + At + 4Axxu − 2Bx = 0,

which integrates to give

U = −2Axxu2 +
(
2Bx − At

)
u + C, (3.14)

where C = C(t, x) is again an arbitrary function. Substituting (3.12), (3.13),
and (3.14) into the remaining equations of (3.11) and isolating the coeffi-
cients of u gives rise to

Axxx = 0, Atx − Bxx = 0, Bt + 2Cx = 0,
Atxx = 0, Att − 2Btx = 0, Ct = 0. (3.15)

Solving the system of equations (3.15) gives rise to

A = c1x2 + (2c2t + c3)x + 4c4t2 + c5t + c6

B = c2x2 + (4c4t + c7)x + 2c8t + c9

C = −c4x2 − c8x + c10,

which in turn give rise to the infinitesimals T , X , and U . These are given
by

T = c1x2 + (2c2t + c3)x + 4c4t2 + c5t + c6,

X = −2(2c1x + 2c2t + c3)u + c2x2 + (4c4t + c7)x + 2c8t + c9, (3.16)

U = −4c1u2 + (2c2x − c5 + 2c7)u − c4x2 − c8x + c10,
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where c1 − c10 are arbitrary constants. The natural question is now: what
do we do with these infinitesimals? With ordinary differential equations, we
introduced new variables, r and s, such that the original equation reduced to
a new ordinary differential equation that was separable equation and inde-
pendent of the variable s. Do these ideas also apply to partial differential
equations? ■

3.1.1 What Do We Do with the Symmetries of PDEs?

With ordinary differential equations invariant under the transfor-
mation

x = x + 𝜀X (x, y) + O(𝜀2),

y = y + 𝜀Y (x, y) + O(𝜀2), (3.17)

we found a change of variables by solving the system of equations

Xrx + Yry = 0, Xsx + Ysy = 1. (3.18)

With the introduction of these new variables r and s, the original
equation is transformed to one that is independent of s. To illustrate
this fact further, consider the infinitesimal operatorΓ associated with
(3.17)

Γ = X
𝜕

𝜕x
+ Y

𝜕

𝜕y
. (3.19)

Under a change of variables (x, y) → (r, s), the operator (3.19)
becomes

Γ = X
𝜕

𝜕x
+ Y

𝜕

𝜕y

= X
(

rx
𝜕

𝜕r
+ sx

𝜕

𝜕s

)
+ Y

(
ry
𝜕

𝜕r
+ sy

𝜕

𝜕s

)
=
(
Xrx + Yry

) 𝜕
𝜕r

+
(
Xsx + Ysy

) 𝜕
𝜕s

and imposing the condition (3.18) gives

Γ = 𝜕

𝜕s
,

which represents that the new ODE admits translation in the variable
s, that is, the new ODE is independent of s.
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We now attempt to extend these ideas to PDEs. Consider the
infinitesimal operator associated with the infinitesimal transforma-
tions (3.2)

Γ = T
𝜕

𝜕t
+ X

𝜕

𝜕x
+ U

𝜕

𝜕u
. (3.20)

If we introduce new independent variables r and s and a new depen-
dent variable 𝑣 such that

r = r(t, x, u), s = s(t, x, u), 𝑣 = 𝑣(t, x, u),

then under a change of variables (t, x, u) → (r, s, 𝑣), the operator
(3.20) becomes

Γ = T
𝜕

𝜕t
+ X

𝜕

𝜕x
+ U

𝜕

𝜕u
,

= T
(

rt
𝜕

𝜕r
+ st

𝜕

𝜕s
+ 𝑣t

𝜕

𝜕𝑣

)
+ X

(
rx
𝜕

𝜕r
+ sx

𝜕

𝜕s
+ 𝑣x

𝜕

𝜕𝑣

)
+U

(
ru
𝜕

𝜕r
+ su

𝜕

𝜕s
+ 𝑣u

𝜕

𝜕𝑣

)
=
(
Trt + Xrx + Uru

) 𝜕
𝜕r

+
(
Tst + Xsx + Usu

) 𝜕
𝜕s

+
(
T𝑣t + X𝑣x + U𝑣u

) 𝜕

𝜕𝑣
, (3.21)

which, upon choosing

Trt + Xrx + Uru = 0,

Tst + Xsx + Usu = 1, (3.22)

T𝑣t + X𝑣x + U𝑣u = 0,

in (3.21) gives

Γ = 𝜕

𝜕s
.

This says that after a change of variables, the transformed equation
will be independent of s. So what does this mean? If the original
equation has the form

F(t, x, u, ut, ux) = 0,

then the transformed equation will be of the form

G(r, 𝑣, 𝑣r, 𝑣s) = 0. (3.23)
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The transformed equation is still a PDE; however, if we assume that
we are only interested in solutions of the form 𝑣 = 𝑣(r), then (3.23)
becomes

H(r, 𝑣, 𝑣r) = 0,

an ODE!

EXAMPLE 3.2

We again revisit equation (3.8) where we constructed the symmetries of

ut = u2
x.

These were obtained in (3.16). As a particular example, consider the case
where c5 = 1 and c7 = 1 with the remaining constants zero. This gives

T = t, X = x, U = u.

The change of variable equations (3.22) for the new variables r, s, and 𝑣 is

trt + xrx + uru = 0,
tst + xsx + usu = 1,

t𝑣t + x𝑣x + u𝑣u = 0.

The solution is given by

r = R
(x

t
,

u
t

)
, s = ln t + S

(x
t
,

u
t

)
, 𝑣 = V

(x
t
,

u
t

)
,

where R, S, and T are arbitrary functions of their arguments. If we choose
these to give

r = x
t
, s = ln t, 𝑣 = u

t
, (3.24)

then transforming the original equation (3.8) gives rise to

𝑣 + 𝑣s − r𝑣r = 𝑣2
r .

Setting the term 𝑣s = 0 and simplifying gives1

𝑣2
r + r𝑣r − 𝑣 = 0,

1
This particular ODE is known as Clairaut equation whose general form is

y = xy′ + f
(
y′) .
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whose general solution is

𝑣 = −1
4

r2, 𝑣 = cr + c2.

where c is an arbitrary constant. Passing through the transformation (3.24)
gives rise to the following exact solutions to (3.8)

u = −1
4

x2

t
, u = cx + c2t.

By choosing different constants in the infinitesimals (3.16), we undoubtedly
will obtain new transformed PDEs, from which we would obtain ODEs to
solve which could lead to new exact solutions to the original equation. A
natural question is: can we bypass the stage of introducing the new variables
r, s, and 𝑣 and go directly to the ODE? ■

3.1.2 Direct Reductions

In the previous section, we considered the invariance of

Δ = ut − u2
x,

and we obtained infinitesimals T , X , and U leaving the original
equation invariant. We introduced new variables r, s, and 𝑣 trans-
forming the equation to a new equation independent of s. Setting
𝑣s = 0 gave rise to an ODE which we solved giving rise to an exact
solution to the original PDE. In this section, we show that we can
go directly to the ODE without the intermediate step of introducing
new variables r, s, and 𝑣. Recall that the new variables were found
by solving

Trt + Xrx + Uru = 0,

Tst + Xsx + Usu = 1,

T𝑣t + X𝑣x + U𝑣u = 0.

Solving by the method of characteristics give

dt
T

= dx
X

= du
U

; dr = 0,

dt
T

= dx
X

= du
U

= ds
1
,

dt
T

= dx
X

= du
U

; d𝑣 = 0.
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From the characteristic equations, it suffices to only choose

dt
T

= dx
X

= du
U
. (3.25)

Once this is solved, this will give the solution form or “ansatz” and
upon substitution into the original equation, we will obtain an ODE
that will then need to be solved. The following example illustrates.

EXAMPLE 3.3

In Example 3.2, we considered the PDE

ut = u2
x,

in which we calculated the infinitesimals T , X , and U given in (3.16). One
particular example was

T = t, X = x, U = u.

To go directly to the solution ansatz, we solve (3.25), namely

dt
t
= dx

x
= du

u
.

The solution is given by
u = tF

(x
t

)
. (3.26)

Substituting (3.26) into (3.8) gives

F − rF ′ = F ′2,

where F = F(r) and r = x
t
. This is exactly the ODE we obtained in the pre-

vious section. Let us consider another example. ■

EXAMPLE 3.4

Choosing
T = x2, X = −4xu, U = −4u2,

the characteristic equation (3.25) becomes

dt
x2

= dx
−4xu

= du
−4u2

.
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The solution is given by

x + 4tu
x

= F
(u

x

)
(3.27)

noting that in this case, the solution is implicit. Substituting (3.27) into (3.8)
(with r = u∕x) gives

(rF ′(r) − F(r))2 = 0, or rF ′ − F = 0,

which remarkably is linear! Solving gives

F(r) = kr,

where k is an arbitrary constant. This leads, via equation (3.27) to

x + 4tu
x

= k
u
x

which we solve for u leads to

u = x2

k − 4t
. ■

EXAMPLE 3.5

Choosing the constants in the infinitesimals (3.16)

c6 = 1, c8 = −3,

and the rest zero gives rise to

T = 1, X = −6t, U = 3x.

Solving the characteristic equation (3.25) with these infinitesimals

dt
1

= dx
−6t

= du
3x

gives the solution
u = 3xt + 6t3 + F

(
x + 3t2) .

Substituting into (3.8) gives
F ′2 = 3r,
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where r = x + 3t2. Solving gives

F(r) =
2
√

3
3

r3∕2 + c,

where c is an arbitrary constant. This leads to the exact solution

u = 3xt + 6t3 +
2
√

3
3

(x + 3t2)3∕2 + c. ■

3.1.3 The Invariant Surface Condition

We have seen that we can go directly to the solution ansatz by solving
the characteristics equation

dt
T

= dx
X

= du
U
.

With this, we can associate the first-order PDE

Tut + Xux = U . (3.28)

This is usually referred to as the “invariant surface condition.” The
reason for this name is because the solution surface remains invari-
ant under the infinitesimal transformation. To demonstrate, con-
sider the solution

u = u(t, x).

If we consider
u = u(t,x) (3.29)

then under the infinitesimal transformations

t = t + 𝜀T(t, x, u) + O(𝜀2),

x = x + 𝜀X (t, x, u) + O(𝜀2),

u = u + 𝜀U(t, x, u) + O(𝜀2).

Equation (3.29) becomes

u + 𝜀U(t, x, u) + O(𝜀2) = u(t + 𝜀T(t, x, u) + O(𝜀2), x

+ 𝜀X (t, x, u) + O(𝜀2)),
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and expanding gives

u + 𝜀U(t, x, u) + O(𝜀2) = u(t, x) + 𝜀
(
T(t, x, u)ut + X (t, x, u)ux

)
+ O(𝜀2).

If u = u(t, x), then to order 𝜀, we obtain

Tut + Xux = U ,

the invariant surface condition (equation (3.28)).

EXERCISE

1. Calculate the symmetries for the the first-order PDEs (c ∈ ℝ)

(i) ut + cux = 0

(ii) ut + uux = 0

(iii) ut + u2
x + u = 0

(iv) xuxuy + yu2
y = 1.

Use a particular symmetry to reduce the PDE to an ODE and solve if
possible.

3.2 SECOND-ORDER PDEs

3.2.1 Heat Equation

In this section, we consider constructing the symmetries of the heat
equation

ut = uxx. (3.30)

In analogy with second-order ODEs, we define the second extension
Γ(2) of the operator Γ. If Γ is given by

Γ = T
𝜕

𝜕t
+ X

𝜕

𝜕x
+ U

𝜕

𝜕u
,

then the first and second extensions are given by

Γ(1) = Γ + U[t]
𝜕

𝜕ut
+ U[x]

𝜕

𝜕ux
, (3.31a)
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Γ(2) = Γ(1) + U[tt]
𝜕

𝜕utt
+ U[tx]

𝜕

𝜕utx
+ U[xx]

𝜕

𝜕uxx
, (3.31b)

respectively. The extended transformations are given as

U[t] = Dt(U) − utDt(T) − uxDt(X ), (3.32a)

U[x] = Dx(U) − utDx(T) − uxDx(X ), (3.32b)

U[tt] = Dt(U[t]) − uttDt(T) − utxDt(X ), (3.32c)

U[tx] = Dt(U[x]) − utxDt(T) − uxxDt(X ), (3.32d)

= Dx(U[t]) − uttDx(T) − utxDx(X ),

U[xx] = Dx(U[x]) − utxDx(T) − uxxDx(X ), (3.32e)

where Dt and Dx are given in (3.4). We expand only U[xx] to demon-
strate

U[xx] = Uxx − Txxut +
(
2Uxu − Xxx

)
ux − 2Txuutux

+
(
Uuu − 2Xxu

)
u2

x − Tuuutu
2
x − Xuuu3

x

−2Txutx +
(
Uu − 2Xx

)
uxx − 2Tuuxutx

−Tuutuxx − 3Xuuxuxx.

If we denote the heat equation (3.30) as Δ, then

Δ = ut − uxx.

As with second-order ODEs, Lie’s invariance condition is

Γ(2)Δ|||Δ=0
= 0,

however, we use the extended operator as given in (3.31). This, in
turn, gives

U[t] − U[xx] = 0. (3.33)

Substituting the extended transformations (3.32a) and (3.32e) into
(3.33) gives rise to

Ut +
(
Uu − Tt

)
ut − Xtux − Tuu2

t − Xuutux

− Uxx + Txxut −
(
2Uxu − Xxx

)
ux + 2Txuutux

−
(
Uuu − 2Xxu

)
u2

x + Tuuutu
2
x + Xuuu3

x
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+ 2Txutx −
(
Uu − 2Xx

)
uxx + 2Tuuxutx

+ Tuutuxx + 3Xuuxuxx = 0.

Using the heat equation to eliminate uxx and isolating coefficients
involving ut, ux, and utx and products give rise to the following set
of determining equations:

Ut − Uxx = 0, (3.34a)

−Xt − 2Uxu + Xxx = 0, (3.34b)

−Uuu + 2Xxu = 0, (3.34c)

Xuu = 0, (3.34d)

−Tt + Txx + 2Xx = 0, (3.34e)

2Xu + 2Txu = 0, (3.34f)

Tuu = 0, (3.34g)

2Tx = 0, (3.34h)

2Tu = 0. (3.34i)

We find immediately from (3.34) that

Tx = 0, Tu = 0, Xu = 0, Uuu = 0, (3.35)

leaving

2Xx − Tt = 0, (3.36a)

−2Uxu + Xxx − Xt = 0, (3.36b)

Ut − Uxx = 0. (3.36c)

From (3.35) and (3.36a) that

X = 1
2

T ′(t)x + A(t), (3.37a)

U = B(t, x)u + C(t, x), (3.37b)

where A, B, and C are arbitrary functions. Substituting (3.37) into
(3.36b) gives

2Bx +
1
2

T ′′x + A′ = 0,
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which integrates to give

B = −1
8

T ′′(t)x2 − 1
2

A′(t)x + D(t), (3.38)

where D is a function of integration. Finally, substitution of (3.37b)
and (3.38) into (3.36c) gives

(
−1

8
T ′′′(t)x2 − 1

2
A′′(t)x + D′(t) + 1

4
T ′′(t)

)
u + Ct − Cxx = 0.

Isolating coefficients of x and u gives

T ′′′ = 0, A′′ = 0, D′ + 1
4

T ′′ = 0, Ct − Cxx = 0.

Solving gives the following infinitesimals:

T = c0 + 2c1t + 4c2t2,

X = c3 + 2c4t + c1x + 4c2tx, (3.39)

U =
(
c5 − 2c2t − c4x − c2x2) u + C(t, x),

where c1 − c5 are constant and C satisfies the heat equation.

Reductions of the Heat Equation

In this section, we construct exact solutions of the heat equation via
symmetry analysis. To do this, we consider the invariant surface con-
dition (3.28) introduced in an earlier section

Tut + Xux = U . (3.40)

As there are a total of five arbitrary constants in addition to an arbi-
trary function in (3.39), we only consider a few examples.

EXAMPLE 3.6

If we choose c1 = 1 and ci = 0 otherwise and C(t, x) = 0 gives

T = 2t, X = x, U = 0.
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This, in turn, leads us to consider the invariant surface (3.40) condition

2tut + xux = 0,

whose solution is given by

u = F

(
x√

t

)
.

Substituting into the heat equation gives

− r
2

F ′(r) = F ′′(r), r = x√
t
.

Integrating once gives
F ′(r) = k1e−r2∕4

and further integration, we obtain

F(r) = k1erf(r) + k2,

where k1 and k2 are arbitrary constants and erf(x) is the error function
as defined by erf(x) = ∫

x
−∞ e−𝜉2∕4d𝜉. In terms of the original variables, this

gives rise to the exact solution

u = k1erf

(
x√

t

)
+ k2. ■

EXAMPLE 3.7

If we choose c2 = 1 and ci = 0 otherwise and C(t, x) = 0 gives the invariant
surface condition (3.40)

4t2ut + 4txux = −(2t + x2)u,

whose solution is given by

u = e−x2∕4t√
t

F
(x

t

)
.

Substituting into the heat equation gives

F ′′(r) = 0, r = x√
t
.
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Integrating gives
F(r) = k1r + k2,

where k1 and k2 are arbitrary constants. This gives rise to the exact solution

u = k1
x

t
√

t
e−x2∕4t + k2

1√
t
e−x2∕4t.

■

EXAMPLE 3.8

If we choose c4 = 1 and ci = 0 otherwise and C(t, x) = 0 gives the invariant
surface condition (3.40)

2tux = −xu,

whose solution is given by

u = e−x2∕4tF(t).

Substituting into the heat equation gives

F ′ + F
2t

= 0.

Integrating gives

F(t) =
k1√

t

giving rise to the exact solution

u = k1
e−x2∕4t√

t
.

It is important to point out that this solution was also obtained in the pre-
vious case demonstrating that different symmetries may lead to the same
solution. ■

Generating New Solutions

In the preceding three examples, we set C(t, x) = 0 and used spe-
cial cases of the infinitesimals to obtain exact solutions through
symmetry reduction. If we consider the case where C(t, x) ≠ 0, then
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the invariant surface condition is

Tut + Xux = Bu + C.

If we isolate C, then we have

C = Tut + Xux − Bu.

It is an easy matter to verify that

Ct = Cxx,

if u satisfies the heat equation and T , X , and B are

T = c0 + 2c1t + 4c2t2,

X = c3 + 2c4t + c1x + 4c2tx,

B = c5 − 2c2t − c4x − c2x2.

This means that it is possible to generate a hierarchy of exact solu-
tions given a “seed” solution. For example, if we consider

C = 4t2ut + 4txux + (2t + x2)u, (3.41)

the infinitesimals used in Example 3.7 and use the exact solution

u = erf

(
x

2
√

t

)

as obtained in Example 3.6, then from (3.41) we obtain the new exact
solution

u =
(
x2 + 2t

)
erf

(
x

2
√

t

)
+

2x
√

t√
𝜋

e−x2∕4t.

We could easily choose different seed solutions or repeat the process
to obtain an entire hierarchy of exact solutions.
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3.2.2 Laplace’s Equation

In this section, we consider the invariance of Laplace’s equation

uxx + uyy = 0. (3.42)

For this equation, Lie’s invariance condition becomes

U[xx] + U[yy] = 0, (3.43)

where the extended transformations are given as

U[x] = Dx(U) − uxDx(X ) − uyDx(Y ),

U[y] = Dy(U) − uxDy(X ) − uyDy(Y ),

U[xx] = Dx(U[x]) − uxxDx(X ) − uxyDx(Y ),

U[yy] = Dy(U[y]) − uxyDy(X ) − uyyDy(Y ).

Expanding Lie’s invariance condition (3.43) gives

Uxx + Uyy + (2Uxu − Xxx − Xyy)ux + (2Uyu − Yxx − Yyy)uy

+(Uuu − 2Xxu)u2
x − 2(Xyu + Yxu)uxuy + (Uuu − 2Yyu)u2

y

−Xuuu3
x − Yuuu2

xuy − Xuuuxu2
y − Yuuu3

y + (Uu − 2Xx)uxx

−2(Xy + Yx)uxy + (Uu − 2Yy)uyy − 3Xuuxuxx − Yuuyuxx

−2Yuuxuxy − 2Xuuyuxy − Xuuxuyy − 3Yuuyuyy = 0.

Substituting in the original equation uxx = −uyy (or uyy = −uxx) and
setting the coefficients to zero of the terms that involve ux, uy, uxy
and uyy (or uxx) and various products gives

Uxx + Uyy = 0, (3.44a)

2Uxu − Xxx − Xyy = 0, (3.44b)

2Uyu − Yxx − Yyy = 0, (3.44c)

Uuu − 2Xxu = 0, (3.44d)

Xyu + Yxu = 0, (3.44e)

Uuu − 2Yyu = 0, (3.44f)

Xuu = Yuu = 0, (3.44g)
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Yy − Xx = 0, (3.44h)

Xy + Yx = 0, (3.44i)

Xu = Yu = 0. (3.44j)

As Xu = 0 and Yu = 0 then Uuu = 0, giving

X = A(x, y), Y = B(x, y), U = P(x, y)u + Q(x, y),

where A,B,P and Q are arbitrary functions. From (3.44h) and
(3.44i), A and B satisfy

Ax − By = 0, Ay + Bx = 0. (3.45)

Furthermore, from (3.44b) and (3.44c), we see that

Px = 0, Py = 0,

from which it follows that

P(x, y) = p,

where p is an arbitrary constant. Finally, from (3.44a) we have that
Q satisfies

Qxx + Qyy = 0. (3.46)

This gives the infinitesimals as

X = A(x, y), Y = B(x, y), U = p u + Q(x, y),

where A and B satisfy (3.45) and Q Laplace’s equation (3.46). We
now construct some exact solutions using these infinitesimals.

EXAMPLE 3.9

A particular solution to the equations (3.45) and (3.46) is

A = x, B = y, Q = 0.

The associated invariant surface condition is

xux + yuy = pu,
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TABLE 3.1
Real solutions of equation (3.48) for some integer values of p

p F1 F2 p F1 F2

1 1 r −1
1

r2 + 1
r

r2 + 1

2 r r2 − 1 −2
r

(r2 + 1)2
r2 − 1

(r2 + 1)2

3 3r2 − 1 r3 − 3r −3
3r2 − 1
(r2 + 1)3

r3 − 3r
(r2 + 1)3

4 r3 + r r4 − 6r2 + 1 −4
r3 + r

(r2 + 1)4
r4 − 6r2 + 1
(r2 + 1)4

which is easily solved giving

u = xpF
(y

x

)
, (3.47)

where F is arbitrary. Substitution of (3.47) into Laplace’s equation (3.42)
gives

(r2 + 1)F ′′ − 2(p − 1)rF ′ + (p2 − p)F = 0, r =
y
x
. (3.48)

This can be integrated exactly giving

F =
⎧⎪⎨⎪⎩

c1 tan−1 r + c2, if p = 0

c1(r − i)p + c2(r + i)p if p ≠ 0
,

where i =
√
−1. If p ≠ 0, Table 3.1 presents two independent real solutions

F1 and F2 for a variety of integer powers p
If p = 0, then we obtain the exact solution

u = c1 tan−1 y
x
+ c2.

If p ≠ 0, exact solutions are then given by

u = xp
[
c1F1

(y
x

)
+ c2F2

(y
x

)]
.

where F1 and F2 are real solutions of (3.48) and c1 and c2 new constants.■
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EXAMPLE 3.10

Another particular solution to the equations (3.45) and (3.46) is

A = y, B = −x, P = Q = 0.

The associated invariant surface condition is

yux − xuy = 0,

which is easily solved giving

u = F
(
x2 + y2) ,

where F is arbitrary. Substitution into Laplaces equation gives

rF ′′ + F ′ = 0, r = x2 + y2,

which is easily solved giving

F = c1 ln r + c2,

leading to the exact solution

u = c1 ln
(
x2 + y2) + c2. ■

3.2.3 Burgers’ Equation and a Relative

In this section, we consider constructing the symmetries of Burgers’
equation

ut + uux = uxx (3.49)

and its relative, the potential Burgers’ equation

𝑣t +
1
2
𝑣2

x = 𝑣xx. (3.50)

These two equations are linked by u = 𝑣x. We consider the symmetry
analysis of each separately.
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Burgers’ Equation

Lie’s invariance condition (3.49) leads to

U[t] + uU[x] + Uux = U[xx].

Substituting the appropriate extended transformations eventually
leads to the following set of determining equations:

Tx = 0, Tu = 0, Xu = 0, Uuu = 0,

2Xx − Tt = 0, Ut + uUx − Uxx = 0, (3.51)

Xt − Xxx − uXx − U + 2Uxu = 0.

Solving the first 5 equations of (3.51) gives

X = 1
2

T ′(t)x + A(t), (3.52a)

U = B(t, x)u + C(t, x), (3.52b)

where A(t), B(t, x) and C(t, x) are arbitrary functions. Substituting
(3.52) into the remaining two equations of (3.51), isolating coeffi-
cients with respect to u and solving gives the infinitesimals:

T = c0 + 2c1t + c2t2,

X = c3 + c4t + c1x + c2tx, (3.53)

U =−
(
c2t + c1

)
u + c2x + c4,

where c1, c2, c3 and c4 are arbitrary constants.

Potential Burgers’ Equation

Lie’s invariance condition of (3.50) leads to

V[t] + 𝑣xV[x] = V[xx],

which substituting the appropriate extended transformations even-
tually leads to the following set of determining equations:

Tx = 0, T𝑣 = 0, X𝑣 = 0,

2Xx − Tt = 0, Vt − Vxx = 0, V𝑣𝑣 −
1
2

V𝑣 = 0,

Xt − Xxx − Vx + 2Vx𝑣 = 0.
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Again, these are readily solved giving the infinitesimals:

T = c0 + 2c1t + c2t2,

X = c3 + c4t + c1x + c2tx, (3.54)

V = P(t, x)e𝑣∕2 + 1
2

c2x2 + c4x + c2t + c5.

where c1, c2, c3, c4 and c5 are arbitrary constants and P(t, x) satisfies
the heat equation Pt = Pxx.

Reductions

In this section, we consider examples of reductions of both Burgers’
equation and the potential Burgers’ equation.

EXAMPLE 3.11 c1 = 1, ci = 0, i ≠ 1

In the case of Burgers’ equation with (3.53), the invariant surface condition
is

2tut + xux = −u,

which is easily solved giving

u = 1√
t
F

(
x√

t

)
.

Substitution into (3.49) gives the reduction

−1
2

F(r) − 1
2

rF ′(r) + F(r)F ′(r) − F ′′(r) = 0,

which we find integrates once to give the Ricatti equation

−1
2

rF + F2 − F ′ = c1,

where c1 is a constant of integration. In the case of the Potential Burgers’
equation with (3.54), the invariant surface condition is

2t𝑣t + x𝑣x = 0,
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which is easily solved giving

𝑣 = F

(
x√

t

)
.

Substitution into (3.50) gives the reduction

−1
2

rF ′(r) + 1
2

F ′2(r) − F ′′(r) = 0,

whose solution is given by

F(r) = −2 ln
(
c1 erf(r∕2) + c2

)
This, in turn, leads to the exact solution

𝑣 = −2 ln
(

c1 erf(x∕2
√

t) + c2

)
. ■

EXAMPLE 3.12 c2 = 1, ci = 0, i ≠ 2

In the case of Burgers’ equation with (3.53), the invariant surface condition
is

t2ut + xtux = −tu + x,

which is easily solved giving

u = x
t
+ 1

t
F
(x

t

)
.

Substitution into (3.49) gives the reduction

F(r)F ′(r) − F ′′(r) = 0,

which integrates once to give

F ′(r) = 1
2

F2 + k,

which gives three solutions depending whether k > 0, k = 0, or k < 0.
In the case of the potential Burgers’ equation with (3.54), the invariant sur-
face condition is

t2𝑣t + xt𝑣x = 1
2

x2 + t,
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which is easily solved giving

𝑣 = x2

2t
+ ln t + F

(x
t

)
.

Substitution into (3.50) gives the reduction

1
2

F ′2(r) − F ′′(r) = 0,

whose solution is given by

F(r) = −2 ln
(
c1r + c2

)
This, in turn, leads to the exact solution

𝑣 = x2

2t
+ ln t − 2 ln

||||c1
x
t
+ c2

|||| . ■

Linearization of the Potential Burgers’ Equation

In constructing the infinitesimals for both the potential Burgers’
equation and the heat equation, each possessed an arbitrary func-
tion that satisfied the heat equation. This suggests that the two sets
of determining equations might be linked. Below these are listed
side-by-side. We have chosen to use the variable 𝑤 for the heat
equation as to avoid confusion with Burgers’ equation.

Heat equation Potential Burgers’ equation

Tx = T𝑤 = X𝑤 = 0 Tx = T𝑣 = X𝑣 = 0 (3.55a)

2Xx − Tt = 0 2Xx − Tt = 0 (3.55b)

Wt − Wxx = 0 Vt − Vxx = 0 (3.55c)

2Wx𝑤 + Xt − Xxx = 0 2Vx𝑣 − Vx + Xt − Xxx = 0 (3.55d)

W𝑤𝑤 = 0 V𝑣𝑣 −
1
2

V𝑣 = 0. (3.55e)

If there existed a transformation connecting the equations (heat and
Potential Burgers’), this same transformation would connect their
symmetries. Let us assume that this transformation is of the form

𝑤 = F(𝑣) (3.56)
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thus,
W = F ′(𝑣)V . (3.57)

It is a simple matter to deduce that(
Wt − Wxx

)
= F ′(𝑣)

(
Vt − Vxx

)
thus connecting (3.55c). Furthermore, from (3.56), we find that

𝜕

𝜕𝑤
= 1

F ′(𝑣)
𝜕

𝜕𝑣
. (3.58)

Thus, combining (3.57) and (3.58)

W𝑤 = 1
F ′

(
F ′(𝑣)V

)
𝑣

= V𝑣 +
F ′′

F ′ V , (3.59)

which further gives

Wx𝑤 = Vx𝑣 +
F ′′

F ′ Vx. (3.60)

In order to connect (3.55d), we would require that

2F ′′

F ′ = −1. (3.61)

Applying the chain rule (3.58) to (3.59) gives

W𝑤𝑤 = 1
F ′

(
V𝑣 +

F ′′

F ′ V
)
𝑣

= 1
F ′

(
V𝑣𝑣 +

F ′′

F ′ V𝑣 +
(

F ′′

F ′

)′

V
)

(3.62)

however from (3.61), (3.62) becomes

W𝑤𝑤 = 1
F ′

(
V𝑣𝑣 −

1
2

V𝑣

)
,

and therefore we see that (3.55e) is connected. Therefore, to connect
the determining equations (3.55), we only need to solve (3.61), which
is easily solved giving

F = e−𝑣∕2
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noting that we have suppressed the constants of integration. There-
fore, the transformation connecting the determining equations is

𝑤 = e−𝑣∕2,

and this is precisely the same transformation that connects the
equations. Further, substitution into u = 𝑣x gives rise to

u = −2
𝑤x

𝑤
,

the famous Hopf–Cole transformation known to link solutions of
the heat equation to Burgers’ equation (see Hopf [8] and Cole [9]).

3.2.4 Heat Equation with a Source

The power of symmetry analysis becomes evident when we attempt
to construct exact solutions to general classes of nonlinear PDE
important in modeling a wide variety of phenomena. For example,
the heat equation with a source term

ut = uxx + F(u), F ′′
≠ 0 (3.63)

has a number of applications including temperature variations due
to microwave heating. Here, we will perform a symmetry analysis on
this equation. We will present cases for F where the equation admits
special symmetries (see Dorodnitsyn [10]). We will further consider
these symmetries where reduction to ODEs will be performed.

We define Δ such that

Δ = ut − uxx − F(u).

Lie’s invariance is
Γ(2)Δ|||Δ=0

= 0.

This, in turn, gives

U[t] − U[xx] − F ′(u)U = 0.

Substitution of the extension’s U[t] and U[xx] gives

Ut +
(
Uu − Tt

)
ut − Xtux − Tuu2

t − Xuutux

− Uxx − Txxut −
(
2Uxu − Xxx

)
ux − 2Txuutux
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−
(
Uuu − 2Xxu

)
u2

x − Tuuutu
2
x − Xuuu3

x

− 2Txutx −
(
Uu − 2Xx

)
uxx − 2Tuuxutx

− Tuutuxx − 3Xuuxuxx − F ′(u)U = 0.

Eliminating uxx where appropriate using (3.63) and isolating coeffi-
cients involving ut, ux and utx and various products gives rise to the
following set of determining equations:

Ut − Uxx +
(
Uu − 2Xx

)
F(u) − F ′(u)U = 0, (3.64a)

Txx − Tt + 2Xx − F(u)Tu = 0, (3.64b)

Xxx − Xt − 2Uxu − 3XuF(u) = 0, (3.64c)

Txu + Xu = 0, (3.64d)

2Xxu − Uuu = 0, (3.64e)

Tuu = 0, (3.64f)

Xuu = 0, (3.64g)

Tx = 0, (3.64h)

Tu = 0. (3.64i)

From (3.64), we immediately find that

Tx = 0, Tu = 0, Xu = 0, Uuu = 0, (3.65)

leaving

Ut − Uxx +
(
Uu − 2Xx

)
F(u) − F ′(u)U = 0, (3.66a)

2Xx − Tt = 0, (3.66b)

Xxx − Xt − 2Uxu = 0. (3.66c)

From (3.65), we have that

T = A(t), X = B(t, x), U = P(t, x)u + Q(t, x),

where A, B, P and Q are arbitrary functions. With these assignments,
equation (3.66) becomes

(Pu + Q)F ′(u) +
(
2Bx − P

)
F(u) =

(
Pt − Pxx

)
u + Qt − Qxx,

(3.67a)
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2Bx − At = 0, (3.67b)

Bxx − Bt − 2Px = 0. (3.67c)

From (3.67a), we see four cases arise:

(i) P = 0, Q = 0,
(ii) P = 0, Q ≠ 0,
(iii) P ≠ 0, Q = 0,
(iv) P ≠ 0, Q ≠ 0.

Case (i) P = 0, Q = 0
In this case, equation (3.67a) becomes

2BxF(u) = 0,

from which we deduce that Bx = 0 as F ≠ 0. Further, from (3.67c),
Bt = 0 giving that B is a constant. Finally, from (3.67b), At = 0, but
since A = A(t) gives that A is also a constant. Therefore, we have the
following: in the case of arbitrary F(u), the only symmetry that is
admitted is

T = c1, X = c2, U = 0, (3.68)

where here, and hereinafter ci, i = 1, 2, 3,… are constant.

Case (ii) P = 0, Q ≠ 0
In this case, equation (3.67a) becomes

QF ′(u) + 2BxF(u) = Qt − Qxx,

which dividing through by Q gives

F ′(u) +
2Bx

Q
F(u) =

Qt − Qxx

Q
. (3.69)

By differentiating (3.69) with respect to t, x and u, it is an easy matter
to deduce that

2Bx

Q
= m,

Qt − Qxx

Q
= k1, (3.70)

where m and k1 are arbitrary constants. With these assignments,
(3.69) becomes

F ′(u) + mF(u) = k1,
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which is easily solved giving

F(u) =
k1

m
+ k2 e−mu,

where k2 is an additional arbitrary constant. We note that if m = 0,
then from (3.69) F ′′ = 0, which is not of interest. From (3.67), we
have

2Bx − At = 0,

Bxx − Bt = 0,

from which we can deduce Bxx = 0 so Bt = 0 and A′′ = 0. This then
leads to

A = 2c1t + c0, B = c1x + c2,

and, in turn, leads to

Q =
2c1

m
,

giving k1 = 0 from (3.70). Therefore, we have the following: If

F(u) = k2 e−mu

the infinitesimal transformations T , X and U are

T = 2c1t + c0, X = c1x + c2, U =
2c1

m
. (3.71)

Case (iii) P ≠ 0, Q = 0
In this case, equation (3.67a) becomes

PuF ′(u) +
(
2Bx − P

)
F(u) =

(
Pt − Pxx

)
u,

which dividing through by P gives

uF ′(u) +
2Bx − P

P
F(u) =

Pt − Pxx

P
u. (3.72)

Again, from (3.72), it is an easy matter to find that

2Bx − P

P
= m,

Pt − Pxx

P
= k1, (3.73)

where m and k1 are arbitrary constants. With these assignments,
(3.72) becomes
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uF ′(u) + mF(u) = k1u,

which is easily solved giving

F(u) =
⎧⎪⎨⎪⎩

(
k1 ln u + k2

)
u, if m = −1

−
k1u

m + 1
+ k2 u−m, if m ≠ −1

,

where k2 is an additional arbitrary constant. As the case m = −1
presents itself as special, we consider it first. From (3.73) and (3.67b),
we see that

Bx = 0, At = 0,

which must be solved in conjunction with the second of (3.73) and
(3.67c). These are easily solved giving

A = c1, B = c2ek1t + c2, P =
(
−1

2
k1c2x + c4

)
ek1t

This then gives the following: If

F(u) =
(
k1 ln u + k2

)
u,

the infinitesimal transformations T , X , and U are

T = c1, X = c2ek1t + c3, U =
(
−1

2
k1c2x + c4

)
ek1t u. (3.74)

If m ≠ −1, then from (3.73), we find

P =
2Bx

m + 1
. (3.75)

From (3.67c), we have
2Bx − At = 0,

from which we can deduce Bxx = 0 and thus from (3.75) Px = 0. This
then leads to (from (3.67c)) Bt = 0 and thus

A = 2c1t + c0, B = c1x + c2, P =
2c1

m + 1

giving k1 = 0 from (3.73). Therefore, we have the following: If
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F(u) = k2 u−m

the infinitesimal transformations T , X and U are

T = 2c1t + c0, X = c1x + c2, U =
2c1

m + 1
u. (3.76)

Case (iv) P ≠ 0, Q ≠ 0
In this case, equation (3.67a) becomes

(Pu + Q)F ′(u) −
(
P − 2Bx

)
F(u) =

(
Pt − Pxx

)
u + Qt − Qxx,

which dividing through by P gives(
u +

Q
P

)
F ′(u) +

2Bx − P

P
F(u) =

Pt − Pxx

P
u +

Qt − Qxx

P
. (3.77)

From (3.77), we can deduce that

Q
P

= a,
2Bx − P

P
= m,

Pt − Pxx

P
= k1,

Qt − Qxx

P
= k2, (3.78)

where a, m, k1, and k2 are arbitrary constants. With these assign-
ments, we can deduce from (3.78) that k2 = ak1 giving (3.77)
becomes

(u + a)F ′(u) + mF(u) = k1(u + a). (3.79)

Comparing (3.79) and (3.2.4) shows that they are the same if we let
u + a → u and thus cases (iii) and (iv) become one in the same. There-
fore, the results for case (iv) are obtained by merely replacing u by
u + a in case (iii).

Reductions

Here, we focus our attention to a class of equation for exponential,
logarithmic and power law type source terms.

EXAMPLE 3.13 Exponential Source Terms

We found that the heat equation with an exponential source term

ut = uxx + k1emu (3.80)
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led to the symmetries given in (3.71). For this example, we will choose c1 = 1
with all other c′i s zero. We will also choose k2 = 1 and m = −1 as scaling of
t. The invariant surface condition is

2tut + xux = −2,

which has the solution

u = − ln t + f

(
x√

t

)
.

Upon substitution into (3.80) leads to

− r
2

f ′ − 1 = f ′′ + ef ,

where r = x∕
√

t. This is a nonlinear ODE in f that needs to be solved. ■

EXAMPLE 3.14 Logarithmic Source Terms

We found that the heat equation with an logarithmic source term

ut = uxx +
(
k1 ln u + k2

)
u (3.81)

led to the symmetries given in (3.74). For this example, we will choose
c1 = 1, c2 = −2, c3 = 0, c4 = 0, k1 = 1 and k2 = 0. The invariant surface
condition is

ut − 2etux = xetu,

which has the solution

u = e−x2∕4f
(
x + 2et) . (3.82)

Upon substitution into (3.81) leads to

rf ′ = f ′′ + f ln f ,

where r = x + 2et. ■

EXAMPLE 3.15 Power Law Source Terms

We found that the heat equation with a power law source term

ut = uxx + k2u−m (3.83)
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led to the symmetries given in (3.76). For this example, we will choose c1 = 1
with all other c′i s zero. We will also choose k2 = 1. The invariant surface
condition is

2tut + xux = 2u
m + 1

,

which has the solution

u = t
1

m+1 f

(
x√

t

)
.

Upon substitution into (3.83) leads to

1
m + 1

f − r
2

f ′ = f ′′ + f −m,

where r = x∕
√

t. ■

EXAMPLE 3.16 Arbitrary Source Terms

We found that the heat equation with an arbitrary source term led to the
symmetries given in (3.68). The invariant surface condition is

c1ut + c2ux = 0,

and if we set c2 = c1c, then this becomes

ut + cux = 0,

which has the solution
u = f (x − ct).

Upon substitution into (3.63) leads to

−cf ′ = f ′′ + F(f ). ■

EXERCISES

1. Calculate the symmetries for the the Folker–Planck equation

ut = uxx + (xu)x.

2. Calculate the symmetries for the the nonlinear diffusion equation

ut =
uxx

u2
x

.
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Compare these with the symmetries of the heat equation and derive a
transformation that linearizes this equation.

3. Calculate the symmetries for the the nonlinear diffusion equation and
its potential form

ut =
(

ux

u2 + 1

)
x
, ut =

uxx

u2
x + 1

.

and compare their symmetries.

4. Calculate the symmetries for the the nonlinear wave equation

utt = uuxx.

Use a particular symmetry to reduce the PDE to an ODE.

5. Calculate the symmetries for the the Fisher’s equation

ut = uxx + u(1 − u).

Use a particular symmetry to reduce the PDE to an ODE.

6. Calculate the symmetries for the the Fitzhugh–Nagumo equation

ut = uxx + u(1 − u)(u − a).

Use a particular symmetry to reduce the PDE to an ODE.

7. Calculate the symmetries of the minimal surface equation(
1 + u2

y

)
uxx − 2uxuyuxy +

(
1 + u2

x

)
uyy = 0.

Use a particular symmetry to reduce the PDE to an ODE.

*8. Classify the symmetries of the Schrodinger equation

ut = uxx + V (x)u.

*9. Classify the symmetries of the nonlinear diffusion equation

ut =
(
D(u)ux

)
x ,

(see Ovsjannikov [11] and Bluman [12]).

*10. Classify the symmetries of the nonlinear diffusion–convection
equation

ut =
(
D(u)ux

)
x − K ′(u)ux,

(see Edwards [13]).
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*11. Classify the symmetries of nonlinear wave equation

utt =
(
c2(u)ux

)
x ,

and the linear wave equation

utt = c2(x)uxx

(see Ames et al. [14] and Bluman and Kumei [5]).

3.3 HIGHER ORDER PDEs

Previously, we constructed the symmetries of second-order PDEs.
We now extend symmetries to higher order equations. Consider the
general nth order PDE

Δ
(
t, x, u, ut, ux, utt, utx, uxx,… , ut(n), · · · , ut(n−i)x(i), · · · ux(n)

)
= 0,

where for convenience, we have denoted ut(n−i)x(i) = 𝜕n−i
t 𝜕i

xu. We again
introduce the infinitesimal operator Γ as

Γ = T
𝜕

𝜕t
+ X

𝜕

𝜕x
+ U

𝜕

𝜕u
,

where T = T(t, x, u),X = X (t, x, u) and U = U(t, x, u) are to be
determined. We define the nth extension to the operator Γ as Γ(n),
given recursively by

Γ(n) = Γ(n−1) +
n∑

i=0

U[t(n−i)x(i)]
𝜕n

𝜕tn−i𝜕xi
.

Lie’s invariance condition becomes

Γ(n)Δ|||Δ=0
= 0, (3.84)

where the extended transformations are given as

U[t] = Dt(U) − utDt(T) − uxDt(X ),

U[x] = Dx(U) − utDx(T) − uxDx(X ),

⋮

U[t(n−i)x(i)] = Dt(U[t(n−i−1)x(i)]) − u[t(n−i)x(i)]Dt(T)

−u[t(n−i−1)x(i+1)]Dt(X ) or,
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= Dx(U[t(n−i)x(i−1)]) − u[t(n−i+1)x(i−1)]Dx(T)

−u[t(n−i)x(i)]Dx(X ).

The total derivative operators are given by

Dt =
𝜕

𝜕t
+ ut

𝜕

𝜕u
+ · · · + ut(i+1)x(j)

𝜕i+j

𝜕ut(i)x(j)
,

Dx = 𝜕

𝜕x
+ ux

𝜕

𝜕u
+ · · · + ut(i)x(j+1)

𝜕i+j

𝜕ut(i)x(j)
.

For example, U[ttx] is given by

U[ttx] = Dt(U[tx]) − uttxDt(T) − utxxDt(X ), or

= Dx(U[tt]) − utttDx(T) − uttxDx(X ).

EXAMPLE 3.17 Korteweg–DeVries Equation

To illustrate, we consider the KdV (Korteweg-de Vries equation

ut + uux + uxxx = 0. (3.85)

Expanding Lie’s invariance condition (3.84) gives

U[t] + uU[x] + Uux + U[xxx] = 0.

In this case, we will need the first extensions U[t], U[x] and the third exten-
sion U[xxx], namely

U[t] = Dt(U) − utDt(T) − uxDt(X ),

U[x] = Dx(U) − utDx(T) − uxDx(X ),

U[xxx] = Dx(U[xx]) − utxxDx(T) − uxxxDx(X ),

noting that U[xx] will be needed. As we have seen previously, we
expand Lie’s invariance condition and substitute the original equation,
uxxx = −ut − uux and isolate coefficients involving ut, ux, utx, uxx, uttt, uttx
and utxx and various products. This gives

Ut + uUx + Uxxx = 0, (3.86a)

Tt + uTx − 3Xx + Txxx = 0, (3.86b)

Xt − 2uXx + Xxxx − 3Uxxu − U = 0, (3.86c)
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Xu − Txxu = 0, (3.86d)

uXu − Xxxu + Uxuu = 0, (3.86e)

Txuu = 0, Uuuu − 3Xxuu = 0, Tuuu = 0, (3.86f)

Xuuu = 0, Txx = 0, Uxu − Xxx = 0, (3.86g)

Txu = 0, Uuu − Xxu = 0, Xuu = 0, (3.86h)

Tx = 0, Tu = 0. (3.86i)

From (3.86), we have

Tx = 0, Tu = 0, Xu = 0, Uuu = 0,

from which it follows that

T = A(t), X = B(t, x), U = P(t, x)u + Q(t, x),

where A = A(t), B = B(t, x), P = P(t, x) and Q = Q(t, x) are arbitrary func-
tions. Thus, from (3.86), we have the following(

Ptu + Qt

)
+
(
Pxu + Qx

)
u + Pxxxu + Qxxx = 0, (3.87a)

Bt − 2uBx + Bxxx − 3Pxx − Pu − Q = 0, (3.87b)

At − 3Bx = 0, (3.87c)

Px − Bxx = 0. (3.87d)

Isolating the coefficients of u in (3.87a) and (3.87b) gives the following final
set of determining equations to solve:

At − 3Bx = 0, (3.88a)

Px − Bxx = 0, (3.88b)

P + 2Bx = 0, (3.88c)

Px = 0, (3.88d)

Qt + Qxxx = 0, (3.88e)

Pt + Qx + Pxxx = 0, (3.88f)

3Pxx − Bt − Bxx + Q = 0. (3.88g)

Solving (3.88) gives

T = 3c1t + c0, X = c3t + c1x + c2, U = −2c1u + c3. (3.89)



112 CHAPTER 3 Partial Differential Equations

We now use these to obtain a symmetry reduction of the original PDE. We
will consider two examples. ■

EXAMPLE 3.17a Symmetry Reduction 1

If we set
c0 = 1, c1 = 0, c2 = c, c3 = 0,

in (3.89) where c is an arbitrary constant, then we obtain the invariant sur-
face condition

ut + cux = 0.

By the method of characteristics, we obtain the solution as

u = f (x − ct).

Substitution into the original equation (3.85) gives rise to the ODE

f ′′′ + ff ′ − cf ′ = 0,

where the argument r is defined as r = x − ct. Integrating once and sup-
pressing the constant of integration gives

f ′′ + 1
2

f 2 − cf = 0. (3.90)

One particular solution of (3.90) is

f = 12p2sechpx,

where the constant c is chosen as c = 4p2. This solution is commonly known
as the “one soliton” solution. ■

EXAMPLE 3.17b Symmetry Reduction 2

If we set
c0 = 0, c1 = 1, c2 = 0, c3 = 0,

in (3.89), then we obtain the invariant surface condition

3tut + xux = −2u.
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By the method of characteristics, we obtain the solution as

u = t−2∕3f
( x

t1∕3

)
.

Substitution into the original equation (3.85) gives rise to the ODE

f ′′′ + ff ′ − 1
3

rf ′ − 2
3

f = 0,

where r = x∕t
1
3 . Solutions of this would then lead to exact solution of the

KdV equation. ■

EXAMPLE 3.18

Here we calculate the symmetries of the Boussinesq equation

utt + uuxx + u2
x + uxxxx = 0. (3.91)

Expanding Lie’s invariance condition gives

U[tt] + Uuxx + uU[xx] + 2uxU[x] + U[xxxx] = 0. (3.92)

In this case. we will need the extensions U[x], U[tt], U[xx] and U[xxxx] given
by

U[x] = Dx(U) − utDx(T) − uxDx(X ),

U[tt] = Dt(U[t]) − uttDt(T) − utxDt(X ),

U[xx] = Dx(U[x]) − utxDx(T) − uxxDx(X ),

U[xxxx] = Dx(U[xxx]) − utxxxDx(T) − uxxxxDx(X ).

Expanding (3.92) and imposing the original equation uxxxx = −utt − uuxx −
u2

x gives on isolating the coefficients of the derivatives of u

Tx = 0, Tu = 0, (3.93a)

Xt = 0, Xu = 0, (3.93b)

Uuu = 0, (3.93c)

2Xx − Tt = 0, (3.93d)

Uu + 2Xx = 0, (3.93e)

2Utu − Ttt = 0, (3.93f)

2Uxu − 3Xxx = 0, (3.93g)
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U + 6Uxxu + 2uXx − 4Xxxx = 0, (3.93h)

4Uxxxu + 2Ux + 2uUxu − Xxxxx − uXxx = 0, (3.93i)

Utt + uUxx + Uxxxx = 0. (3.93j)

From (3.93a), (3.93b) and (3.93c) give

T = T(t), X = X (x), U = P(t, x)u + Q(t, x).

Further, differentiating (3.93d) with respect to t and x gives

Ttt = 0, Xxx = 0,

which leads to, in conjunction with (3.93d)

T = 2c1t + c2, X = c1x + c3.

From (3.93f) and (3.93g), we find that

Utu = 0, Uxu = 0,

which from (3.93e) gives

U = −2c1u + Q(t, x).

Finally, substitution into the remaining equations of (3.93) gives Q = 0.
Thus, the infinitesimals are

T = 2c1t + c2, X = c1x + c3, U = −2c1u. (3.94)

As an exemplary reduction ,we set c1 = 1 and c2 = c3 = 0 in (3.94). The
associated invariant surface condition is

2tut + xux = −2u,

noting that we can cancel the arbitrary constant c1. Solving this gives

u = 1
t

f

(
x√

t

)

and substitution into (3.93) gives

f (4) +
(

f + r2

4

)
f ′′ + f ′ 2 + 7

4
rf ′ + 2f = 0,

where r = xt−1∕2. ■
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EXERCISES

1. Calculate the symmetries for the modified KdV and potential KdV and
Harry–Dym equations

ut − u2ux + uxxx = 0,

ut + u2
x + uxxx = 0,

ut − u3uxxx = 0,

2. Calculate the symmetries for the following appearing in Boundary Layer
theory

uxuyy − uyuxy = uyyy. (3.95)

3. Calculate the symmetries for the thin film equation

ht =
(
hnhxxx

)
x . (3.96)

(Gandarias and Medina [15])

4. Calculate the symmetries for the following appearing in the growth of
grain boundaries

ut =
[
u−1 (u−3ux

)
x

]
xx

(3.97)

(Broadbridge and Tritscher [16]).

3.4 SYSTEMS OF PDEs

In this section, we consider the symmetries of systems of partial
differential equations. In particular, we consider a system of two
equations and two independent variables but the analysis easily
extends to more equations and more independent variables.

3.4.1 First-Order Systems

Consider

F
(
t, x, u, 𝑣, ut, 𝑣t, ux, 𝑣x

)
= 0, (3.98a)

G
(
t, x, u, 𝑣, ut, 𝑣t, ux, 𝑣x

)
= 0. (3.98b)
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Invariance of (3.98) is conveniently written as

Γ(1)F|||F=0,G=0
= 0, Γ(1)G|||F=0,G=0

= 0,

where Γ is defined as

Γ = T
𝜕

𝜕t
+ X

𝜕

𝜕x
+ U

𝜕

𝜕U
+ V

𝜕

𝜕V
(3.99)

and Γ(1) is the extension to the operator Γ in (3.99), namely

Γ(1) = Γ + U[t]
𝜕

𝜕ut
+ U[x]

𝜕

𝜕ux
+ V[t]

𝜕

𝜕𝑣t
+ V[x]

𝜕

𝜕𝑣x
.

The extended transformations are given by

U[t] = Dt(U) − utDt(T) − uxDt(X ), (3.100a)

U[x] = Dx(U) − utDx(T) − uxDx(X ), (3.100b)

V[t] = Dt(V ) − 𝑣tDt(T) − 𝑣xDt(X ), (3.100c)

V[x] = Dx(V ) − 𝑣tDx(T) − 𝑣xDx(X ). (3.100d)

The total differential operators Dt and Dx are given, respectively, by

Dt =
𝜕

𝜕t
+ ut

𝜕

𝜕u
+ utt

𝜕

𝜕ut
+ utx

𝜕

𝜕ux
+ · · ·

+ 𝑣t
𝜕

𝜕𝑣
+ 𝑣tt

𝜕

𝜕𝑣t
+ 𝑣tx

𝜕

𝜕𝑣x
+ · · · .

Dx = 𝜕

𝜕x
+ ux

𝜕

𝜕u
+ utx

𝜕

𝜕ut
+ uxx

𝜕

𝜕ux
+ · · ·

+ 𝑣x
𝜕

𝜕𝑣
+ 𝑣tx

𝜕

𝜕𝑣t
+ 𝑣xx

𝜕

𝜕𝑣x
+ · · · .

Once the infinitesimals T , X , U , and V have been found, the associ-
ated invariant surface conditions are

Tut + Xux = U , T𝑣t + X𝑣x = V . (3.101)
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EXAMPLE 3.19

Here we calculate the symmetries of the system of equations

𝑣x = u, 𝑣t =
ux

1 + u2
, (3.102)

that is equivalent to the heat equation

ut =
(

ux

1 + u2

)
x
.

Lie’s invariance condition for (3.102) is

V[x] = U , V[t] =
U[x]

1 + u2
− 2u U

(1 + u2)2
ux. (3.103)

The extensions U[x], V[t] and V[x] are given in (3.100). Expanding (3.103)
and imposing the original system equation (3.102) gives on isolating the
coefficients of ut and 𝑣t

Tu = 0, (3.104a)

(1 + u2)Vu − u(1 + u2)Xu − Tx − uT𝑣 = 0 (3.104b)

Vx + (V𝑣 − Xx)u − u2X𝑣 − U = 0, (3.104c)

(1 + u2)Xu − T𝑣 = 0, (3.104d)

(1 + u2)Vt − Ux − uU𝑣 − u(1 + u2)Xt = 0, (3.104e)

Tx + uT𝑣 − u(1 + u2)Xu + (1 + u2)Vu = 0, (3.104f)

(1 + u2)(V𝑣 − Uu + Xx − Tt) + 2uU = 0. (3.104g)

Adding and subtracting (3.104b) and (3.104f) gives

Vu − uXu = 0, Tx + uT𝑣 = 0. (3.105)

From (3.105) and (3.104a) give that

T = T(t).

From (3.104d) gives that Xu = 0 which further from (3.105) gives Vu = 0.
From (3.104c), we solve for U giving

U = Vx + (V𝑣 − Xx)u − X𝑣u
2. (3.106)
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As T , X and V are independent of u and U is quadratic is u, substitution
of (3.106) into (3.104c) and (3.104g) and isolating coefficients of u gives

2Xx − Tt = 0, (3.107a)

2V𝑣 − Tt = 0, (3.107b)

X𝑣 + Vx = 0, (3.107c)

Vt − Vxx = 0, (3.107d)

Xt − X𝑣𝑣 = 0, (3.107e)

Xt − Xxx + 2Vx𝑣 = 0, (3.107f)

Vt − V𝑣𝑣 + 2Xx𝑣 = 0. (3.107g)

Differentiating (3.107a) and (3.107b) with respect to t and 𝑣, we have

Xxx = 0, Xx𝑣 = 0, Vx𝑣 = 0, V𝑣𝑣 = 0.

Thus from (3.107f) and (3.107g)

Xt = 0, Vt = 0.

From either (3.107a) or (3.107b) we deduce that

Ttt = 0 ⇒ T = 2c1t + c0, (3.108)

noting that the factor of 2 becomes apparent in a moment. From (3.107a)
and (3.107b) with T given in (3.108) we have

2Xx − 2c1 = 0, 2V𝑣 − 2c1 = 0,

which integrates yielding

X = c1x + A(𝑣), V = c1𝑣 + B(x), (3.109)

where A and B are arbitrary functions of integration. Substituting (3.109)
into (3.107d) and (3.107e) gives

A′′(𝑣) = 0, B′′(x) = 0,

leading to (subject to (3.107c))

A(𝑣) = c2𝑣 + c3, B(x) = −c2x + c4.



3.4 Systems of PDEs 119

The entire system (3.104) has now been solved leading to

T = 2c1t + c0, X = c1x + c2𝑣 + c3,

U = −c2(1 + u2), V = −c2x + c1𝑣 + c4. (3.110)

We now consider two reductions associated with the constants c1
and c2. ■

EXAMPLE 3.19a Reduction 1

The invariant surface condition (3.101) associated with c1 in (3.110) is

2tut + xux = 0, 2t𝑣t + x𝑣x = 𝑣.

The solution of these is

u = f

(
x√

t

)
, 𝑣 =

√
tg

(
x√

t

)
,

and substitution into the original system (3.102) gives

g′ = f ,
1
2
(g − rg′) =

f ′

1 + f 2
,

where r = x∕
√

t. ■

EXAMPLE 3.19b Reduction 2

The invariant surface condition (3.101) associated with c0 = 1 and c2 = 1
with the rest zero in (3.110) is

ut + 𝑣ux = −(1 + u2), 𝑣t + 𝑣𝑣x = −x. (3.111)

The solution of the second is

tan−1
(
𝑣

x

)
+ t = F

(
x2 + 𝑣2) . (3.112)

As it is impossible to isolate 𝑣 to solve the first invariant surface condition
in (3.111), we proceed in a different direction. From the original system
(3.102), we have 𝑣x = u, then upon elimination of u in the original equation
(3.102), we obtain

𝑣t =
𝑣xx

1 + 𝑣2
x

(3.113)
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and substitution of (3.112) into (3.113) gives

4rF ′′ + 8r2F ′ 3 + 4r2F ′ 2 + 6F ′ + 1 = 0,

which is clearly difficult. Therefore, we will take an alternate route. Elimi-
nating 𝑣t from (3.111) and (3.102) and ux gives

ux

1 + u2
+ 𝑣𝑣x + x = 0,

ut

1 + u2
+ 𝑣𝑣t + 1 = 0. (3.114)

Integrating each equation, respectively, in (3.114) gives

tan−1 u + 1
2
(𝑣2 + x2) + f (t) = 0, tan−1 u + 1

2
𝑣2 + t + g(x) = 0,

where f (t) and g(x) are arbitrary functions of integration. As these must be
the same give the final solution as

tan−1 u + 1
2
(𝑣2 + x2) + t = c, (3.115)

noting that we can set the arbitrary constant c to zero without the loss of
generality. Replacing u = 𝑣x in (3.115) and using (3.112) gives

F ′ = − 1
2r

tan
(

F + r
2

)
,

where r = x2 + 𝑣2. ■

3.4.2 Second-Order Systems

Consider

F
(
x, y, u, 𝑣, ux, 𝑣x, uy, 𝑣y, uxx,… 𝑣yy

)
= 0, (3.116a)

G
(
x, y, u, 𝑣, ux, 𝑣x, uy, 𝑣y, uxx,… 𝑣yy

)
= 0. (3.116b)

Invariance of (3.116) is conveniently written as

Γ(2)F|||F=0,G=0
= 0, Γ(2)G|||F=0,G=0

= 0,

where Γ is defined as

Γ = X
𝜕

𝜕x
+ Y

𝜕

𝜕y
+ U

𝜕

𝜕U
+ V

𝜕

𝜕V
, (3.117)
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and Γ(1) and Γ(2) are extensions to the operator Γ in (3.117), namely

Γ(1) = Γ + U[x]
𝜕

𝜕ux
+ U[y]

𝜕

𝜕uy
+ V[x]

𝜕

𝜕𝑣x
+ V[y]

𝜕

𝜕𝑣y
,

Γ(2) = Γ(1) + U[xx]
𝜕

𝜕uxx
+ U[xy]

𝜕

𝜕uxy
+ U[yy]

𝜕

𝜕uyy

+ V[xx]
𝜕

𝜕𝑣xx
+ V[xy]

𝜕

𝜕𝑣xy
+ V[yy]

𝜕

𝜕𝑣yy
.

The extended transformations are given by

U[x] = Dx(U) − uxDx(X ) − uyDx(Y ), (3.118a)

U[y] = Dy(U) − uxDy(X ) − uyDy(Y ), (3.118b)

V[x] = Dx(V ) − 𝑣xDx(X ) − 𝑣yDx(Y ), (3.118c)

V[y] = Dy(V ) − 𝑣xDy(X ) − 𝑣yDy(Y ), (3.118d)

and

U[xx] = Dx(U[x]) − uxxDx(X ) − uxyDx(Y ), (3.119a)

U[xy] = Dx(U[y]) − uxyDx(X ) − uyyDx(Y ), (3.119b)

U[yy] = Dy(U[y]) − uxyDy(X ) − uyyDy(Y ), (3.119c)

V[xx] = Dx(V[x]) − 𝑣xxDx(X ) − 𝑣xyDx(Y ), (3.119d)

V[xy] = Dx(V[y]) − 𝑣xyDx(X ) − 𝑣yyDx(Y ), (3.119e)

V[yy] = Dy(V[y]) − 𝑣xyDy(X ) − 𝑣yyDy(Y ). (3.119f)

The total differential operators Dx and Dy are given by

Dx = 𝜕

𝜕x
+ ux

𝜕

𝜕u
+ uxx

𝜕

𝜕ux
+ uxy

𝜕

𝜕uy
+ · · · + 𝑣x

𝜕

𝜕𝑣
+ 𝑣xx

𝜕

𝜕𝑣x

+ 𝑣xy
𝜕

𝜕𝑣y
+ · · ·

Dy = 𝜕

𝜕y
+ uy

𝜕

𝜕u
+ uxy

𝜕

𝜕ux
+ uyy

𝜕

𝜕uy
+ · · · + 𝑣y

𝜕

𝜕𝑣
+ 𝑣xy

𝜕

𝜕𝑣x

+ 𝑣yy
𝜕

𝜕𝑣y
+ · · · .
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EXAMPLE 3.20

Consider the boundary layer equations from fluid mechanics

ux + 𝑣y = 0, (3.120a)

uux + 𝑣uy = uyy. (3.120b)

The invariance condition for each is given by

U[x] + V[y] = 0, (3.121a)

uU[x] + 𝑣U[y] + Uux + Vuy = U[yy]. (3.121b)

Substitution of the extended transformations (3.118) and (3.119) into both
invariance conditions (3.121) gives subject first to both original equations
being satisfied (plus differential consequences) the following set of deter-
mining equations:

Ux + Vy = 0, U𝑣 − Xy = 0, (3.122a)

Xu + Y𝑣 = 0, Vu − Yx = 0 (3.122b)

Uu − V𝑣 + Yy − Xx = 0, (3.122c)

and

X𝑣 = 0, Y𝑣 = 0, U𝑣 = 0, Yuu = 0, (3.123a)

2Xu − Y𝑣 = 0, U𝑣 + 2Xy = 0, Xuu − 2Yu𝑣 = 0, (3.123b)

uUx + 𝑣Uy − Uyy = 0 2𝑣Yu + 2Yyu − Uuu = 0, (3.123c)

−2uY𝑣 + 𝑣X𝑣 − U𝑣𝑣 − 2Xy𝑣 = 0, (3.123d)

Yyy − 2Uyu − uYx + 𝑣Yy + V = 0, (3.123e)

2uYu + 2Xyu + 2Uu𝑣 − 2Yy𝑣 − 𝑣Y𝑣 = 0, (3.123f)

Xyy − 𝑣Xy − 𝑣U𝑣 − uXx + U + 2uYy + 2Uy𝑣 = 0. (3.123g)

From (3.123a), (3.123b), and (3.123f), we have

Xu = 0, Xy = 0, Yu = 0,

which reduces (3.123) to

uUx + 𝑣Uy − Uyy = 0, (3.124a)

−uYx − 2Uyu + Yyy + V + 𝑣Yy = 0, (3.124b)
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U + 2uYy − uXx = 0. (3.124c)

From (3.124b) and (3.124c), we obtain

U =
(
Xx − 2Yy

)
u, V = uYx − 𝑣Yy − 5Yyy.

From (3.122a) and (3.124a)

Xxx = 0, Yxy = 0, Yyy = 0,

thus leading to
X = c1x + c2, Y = c3y + a(x), (3.125)

where a(x) is an arbitrary function. This in turn gives

U =
(
c1 − 2c3

)
u, V = a′(x)u − c3𝑣, (3.126)

■

EXAMPLE 3.20a A Reduction

We now consider a reduction of the boundary layer system (3.120). How-
ever, we will proceed in a slightly different direction. If we introduce a
potential 𝑤 = 𝑤(x, y) such that

u = 𝑤y, 𝑣 = −𝑤x, (3.127)

then (3.120a) is automatically satisfied, whereas (3.120b) becomes

𝑤y𝑤xy −𝑤x𝑤yy = 𝑤yyy. (3.128)

The associated invariant surface conditions associated with (3.120) (using
(3.125) and (3.126) are

(
c1x + c2

)
ux +

(
c3y + a(x)

)
uy =

(
c1 − 2c3

)
u,(

c1x + c2

)
𝑣x +

(
c3y + a(x)

)
𝑣y = a′(x)u − c3𝑣,

which becomes

(
c1x + c2

)
𝑤xy +

(
c3y + a(x)

)
𝑤yy =

(
c1 − 2c3

)
𝑤y, (3.129)

−
(
c1x + c2

)
𝑤xx −

(
c3y + a(x)

)
𝑤xy = a′(x)𝑤y + c3𝑤x,
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on using (3.127). Integrating (3.129) gives(
c1x + c2

)
𝑤x +

(
c3y + a(x)

)
𝑤y =

(
c1 − c3

)
𝑤 + c4, (3.130)

where c4 is a constant of integration. We consider two cases. If c1 = 0 and
c2 ≠ 0, then (3.130) integrating to give

𝑤 = emxF
(
emxy + b(x)

)
, (3.131)

where c3∕c2 = −m and b′(x) = −a(x)emx∕c2. Substituting (3.131) into
(3.128) gives

F ′′′ + mFF ′′ − 2mF ′2 = 0,

where F = F(r) and r = emxy + b(x). If c1 ≠ 0, we can set c2 = 0 without
the loss of generality. The invariant surface condition (3.130) integrating
to give

𝑤 = xmF
(
xmy + b(x),

)
(3.132)

where c3∕c1 = −m and b′(x) = −xma(x)∕c1x. Substituting (3.132) into
(3.128) gives

F ′′′ + (m + 1)FF ′′ − (2m + 1)F ′2 = 0,

where F = F(r) and r = xmy + b(x). ■

EXERCISES

1. The nonlinear cubic Schrodinger equation is

i𝜓t + 𝜓xx + k𝜓|𝜓|2 = 0

or if 𝜓 = u + i𝑣

ut + 𝑣xx + k𝑣
(
u2 + 𝑣2) = 0,

𝑣t − uxx − ku
(
u2 + 𝑣2) = 0.

Calculate the symmetries of this system.

2. Calculate the symmetries for the following system equivalent to Burg-
ers equation

𝑣x = 2u, 𝑣t = 2ux − u2

(Vinogradov and Krasil’shchik [17]).
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3*. Calculate the symmetries for the nonlinear diffusion system

𝑣x = u, 𝑣t = K(u)ux

(Bluman and Kumei [1]).

4*. Calculate the symmetries for the nonlinear wave equation system

ut = 𝑣x, 𝑣t = f (u)ux.

5. Calculate the symmetries for the one-dimensional unsteady gasdynam-
ics equations

𝜌t + (𝜌u) = 0,

ut + uux +
Px

𝜌
= 0,

P = P(𝜌)

(see Cantwell [18] and the references within).

6. Calculate the symmetries for the two-dimensional steady Navier–
Stokes equations

ux + 𝑣y = 0,

uux + 𝑣uy = −
px

𝜌
+ uxx + uyy,

u𝑣x + 𝑣𝑣y = −
py

𝜌
+ 𝑣xx + 𝑣yy.

and compare these with the unsteady version

ux + 𝑣y = 0,

ut + uux + 𝑣uy = −
px

𝜌
+ uxx + uyy,

𝑣t + u𝑣x + 𝑣𝑣y = −
py

𝜌
+ 𝑣xx + 𝑣yy.

(see Cantwell [18] and the references within)

7. Calculate the symmetries for the two-dimensional steady boundary
layer equations

ux + 𝑣y = 0,

ut + uux + 𝑣uy = Ut + UUx + uyy,

where U = U(t, x) is to be determined (Ma and Hui [19]).
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3.5 HIGHER DIMENSIONAL PDEs

We now consider the symmetries of higher dimensional PDEs. In
particular, we will consider second-order equations in three inde-
pendent variables but the analysis is not restricted to only these.
Consider

F
(
t, x, y, u, ut, ux, uy, utt, utx, uty · · · uyy

)
= 0. (3.133)

Invariance of (3.133) is conveniently written as

Γ(2)F|||F=0
= 0,

where Γ is defined as

Γ = T
𝜕

𝜕t
+ X

𝜕

𝜕x
+ Y

𝜕

𝜕y
+ U

𝜕

𝜕U
, (3.134)

and Γ(1) and Γ(2) are extensions to the operator Γ in (3.134), namely

Γ(1) = Γ + U[t]
𝜕

𝜕ut
+ U[x]

𝜕

𝜕ux
+ U[y]

𝜕

𝜕uy
,

Γ(2) = Γ(1) + U[tt]
𝜕

𝜕utt
+ U[tx]

𝜕

𝜕utx
+ U[ty]

𝜕

𝜕uty

+ U[xx]
𝜕

𝜕uxx
+ U[xy]

𝜕

𝜕uxy
+ U[yy]

𝜕

𝜕uyy
.

The extended transformations are given by

U[t] = Dt(U) − utDt(T) − uxDt(X ) − uyDt(Y ), (3.135a)

U[x] = Dx(U) − utDx(T) − uxDx(X ) − uyDx(Y ), (3.135b)

U[y] = Dy(U) − utDy(T) − uxDy(X ) − uyDy(Y ), (3.135c)

and

U[tt] = Dt(U[t]) − uttDt(T) − utxDt(X ) − utyDt(Y ), (3.136a)

U[tx] = Dx(U[t]) − uttDx(T) − utxDx(X ) − utyDx(Y ), (3.136b)

U[ty] = Dy(U[t]) − uttDy(T) − utxDy(X ) − utyDy(Y ), (3.136c)

U[xx] = Dx(U[x]) − utxDx(T) − uxxDx(X ) − uxyDx(Y ), (3.136d)
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U[xy] = Dx(U[y]) − utyDx(T) − uxyDx(X ) − uyyDx(Y ), (3.136e)

U[yy] = Dy(U[y]) − utyDy(T) − uxyDy(X ) − uyyDy(Y ). (3.136f)

The total differential operators Dt , Dx and Dy are given by

Dt =
𝜕

𝜕t
+ ut

𝜕

𝜕u
+ utt

𝜕

𝜕ut
+ utx

𝜕

𝜕ux
+ uty

𝜕

𝜕uy
+ uttt

𝜕

𝜕utt
· · ·

Dx = 𝜕

𝜕x
+ ux

𝜕

𝜕u
+ utx

𝜕

𝜕ut
+ uxx

𝜕

𝜕ux
+ uxy

𝜕

𝜕uy
+ uttx

𝜕

𝜕utt
· · ·

Dy = 𝜕

𝜕y
+ uy

𝜕

𝜕u
+ uty

𝜕

𝜕ut
+ uxy

𝜕

𝜕ux
+ uyy

𝜕

𝜕uy
+ utty

𝜕

𝜕utt
· · · .

The associated invariant surfce condition is

Tut + Xux + Yuy = U . (3.137)

At this point, we will consider a particular example.

EXAMPLE 3.21

Consider the nonlinear diffusion equation

ut =
(
uux

)
x +

(
uuy

)
y
. (3.138)

The invariance condition of (3.138) is

U[t] = uU[xx] + Uuxx + uU[yy] + Uuyy + 2uxU[x] + 2uyU[y]. (3.139)

Substitution of the extended transformations (3.135) and (3.136) into the
invariance conditions (3.139) gives, subject to the original equation gives
the following set of determining equations:

Tx = 0, Ty = 0, Tu = 0, Xu = 0, Yu = 0, (3.140a)

Xx − Yy = 0, Xy + Yx = 0, (3.140b)

U +
(
Tt − 2Xx

)
u = 0, (3.140c)

u2Uuu + uUu − U = 0, (3.140d)

Ut − uUxx − uUyy = 0, (3.140e)

2Ux + Xt + 2uUxu − uXxx − uXyy = 0, (3.140f)

2Uy + Yt + 2uUyu − uYxx − uYyy = 0. (3.140g)



128 CHAPTER 3 Partial Differential Equations

From (3.140b), we see that X and Y satisfy

Xxx + Xyy = 0, Yxx + Yyy = 0.

Isolating U from (3.140c) gives

U =
(
2Xx − Tt

)
u, (3.141)

from which it follows from (3.140e), (3.140f) and (3.140g) that

Xt = 0, Yt = 0, Xxx = 0, Xxy = 0 Ut = 0, (3.142)

and from (3.141) and the last equation in (3.142) Ttt = 0. Thus, solving
(3.140b) and (3.142) we are lead to the following:

T = c1t + c2, X = c3x + c4y + c5,

Y = −c4x + c3y + c6, U = (2c3 − c1)u. (3.143)

We now consider three separate reductions of the nonlinear diffusion
equation (3.138). ■

EXAMPLE 3.21a Reduction 1 c1 = 1, ci = 0 ∀ i ≠ 1

In this case, the invariant surface condition (3.137) becomes

tut = −u

whose solution is
u =

f (x, y)
t

.

Substitution in the original equation (3.138) gives(
ffx

)
x +

(
ffy

)
y
+ f = 0,

noting that we have reduced the number of independent variables. ■

EXAMPLE 3.21b Reduction 2 c1 = 2c3. The remaining ci = 0.

In this case, the invariant surface condition (3.137) becomes

2tut + xux + yuy = 0,
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whose solution is

u = f

(
x√

t
,

y√
t

)
.

Substitution in the original equation (3.138) gives

(
ffr

)
r +

(
ffs

)
s +

1
2

rfr +
1
2

sfs = 0,

where r = x∕
√

t and s = y∕
√

t.
■

EXAMPLE 3.21c Reduction 3 c3 = 1, ci = 0,∀ i ≠ 3

In this case, the invariant surface condition (3.137) becomes

−yux + xuy = 0,

whose solution is
u = f

(
x2 + y2, t

)
.

Substitution in the original equation (3.138) gives

ft − 4ffr − 4rffrr − 4rf 2
r = 0,

where r = x2 + y2. ■

EXAMPLE 3.22

Here we calculate the symmetries of the equation

uxx + uyy +
(
eu)

zz = 0, (3.144)

which appears in quantum gravity (see Drewet al. [20] and the references
within). Lie’s invariance condition for (3.144) is (noting the new variables
x, y and z)

U[xx] + U[yy] + eu (U[zz] + 2uzU[z]
)
+ eu (uxx + u2

z

)
U = 0. (3.145)

The first- and second-order extensions are given by

U[x] = Dx(U) − uxDx(X ) − uyDx(Y ) − uzDx(Z),

U[y] = Dy(U) − uxDy(X ) − uyDy(Y ) − uzDy(Z),
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U[z] = Dz(U) − uxDz(X ) − uyDz(Y ) − uzDz(Z),

U[xx] = Dx(U[x]) − uxxDx(X ) − uxyDx(Y ) − uxzDx(Z),

U[yy] = Dy(U[y]) − uxyDy(X ) − uyyDy(Y ) − uyzDy(Z),

U[zz] = Dz(U[z]) − uxzDz(X ) − uyzDz(Y ) − uzzDz(Z).

Expanding (3.145) and imposing the original system equation, that is, uxx =
−uyy − eu

(
uzz + u2

z

)
gives on isolating the coefficients of ux, uy, uz and all

second-order derivatives gives

Xz = 0, Xu = 0, Yz = 0, Yu = 0, (3.146a)

Zx = 0, Zy = 0, Zu = 0, Uuu = 0, (3.146b)

Xx − Yy = 0, Xy + Yx = 0, (3.146c)

U + 2Xx − 2Zz = 0, (3.146d)

Uu + U + 2Xx − 2Zz = 0, (3.146e)

2Uxu − Xxx − Xyy = 0, (3.146f)

2Uyu − Yxx − Yyy = 0, (3.146g)

2Uzu + 2Uz − Zzz = 0, (3.146h)

Uxx + Uyy + euUzz = 0, (3.146i)

Upon introducing a potential function f (x, y) such that

X = fy, Y = fx, (3.147)

shows that (3.146c) becomes

fxx + fyy = 0. (3.148)

From (3.146d), we obtain U directly giving

U = 2Zz − 2fxy. (3.149)

Substitution of (3.147) and (3.149) into the remaining determining
equations (3.146) noting (3.148) gives

Z′′ = 0,

which easily integrates giving

Z = c1z + c0.
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Thus, the infinitesimals for (3.144) are

X = fy, Y = fx, Z = c1z + c0, U = 2c1 − 2fxy, (3.150)

where f satisfies (3.148). ■

EXAMPLE 3.22a Reduction 1

If we choose f = xy and c1 = 1 in (3.150), then the invariant surface condi-
tion is

xux + yuy + zuz = 0.

The solution of this is
u = f

(x
z
,

y
z

)
,

and substitution into the original equation (3.144) gives

Frr + Fss + eF (
r2Frr + 2rsFrs + s2Fss + (rFr + sFs)2 + 2rFr + 2sFs

)
= 0,

where r = x∕z and s = y∕z. ■

EXAMPLE 3.22b Reduction 2

If we choose f = y2 − x2 and c1 = 1 in (3.150), then the invariant surface
condition is

yux − xuy + zuz = 2.

The solution of this is

u = 2 tan−1 y
x
+ f

(
x2 + y2, ze− tan−1 y

x

)
,

and substitution into the original equation (3.144) gives

4r2Frr +
(
reF + s2)Fss + 4rFr + reF F2

s + sFs = 0,

where r = x2 + y2 and s = zetan−1 y
x . ■
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EXERCISES

1. Calculate the symmetries for the Lin–Tsien equation

2utx + uxuxx − uyy = 0,

(Ames and Nucci [21])

2. Calculate the symmetries for the Zabolotskaya–Khokhlov equation

utx − uuxx − u2
x − uyy = 0.

3. Calculate the symmetries for the Kadomtsev–Petviashvilli equation

(
ut + uux + uxxx

)
x + uyy = 0.

Use a particular symmetry to reduce the PDE to an ODE.

4*. Classify the symmetries for the nonlinear diffusion equation

ut =
(
f (u)ux

)
x +

(
g(u)uy

)
y
.

(Dorodnitsyn et al. [22])

5*. Classify the symmetries for the nonlinear wave equation

utt =
(
f (u)ux

)
x +

(
g(u)uy

)
y
.

6*. Classify the symmetries for the nonlinear diffusion equation

ut = ∇ ⋅ (D(u)∇u) − K′(u)uz.

(Edwards and Broadbridge [23])

7*. Classify the symmetries for the nonlinear diffusion equation

ut = uxx + uyy + Q
(
u, ux, uy

)
.

(Arrigo et al. [24])



CHAPTER 4

Nonclassical Symmetries

and Compatibility

4.1 NONCLASSICAL SYMMETRIES

In Chapter 3, we constructed the symmetries of the Boussinesq
equation

utt + uuxx + u2
x + uxxxx = 0 (4.1)

and found that they were

T = 2c1t + c2, X = c1x + c3, U = −2c1u.

The invariant surface condition is(
2c1t + c2

)
ut + (c1x + c3)ux = −2c1u, (4.2)

and if c1 ≠ 0, then c2 and c3 can be set to zero without loss of gen-
erality as these constants just represent translation in t and x. This
gives

2tut + xux = −2u, (4.3)

which has as its solution

u = 1
t

f

(
x√

t

)
. (4.4)

Symmetry Analysis of Differential Equations: An Introduction,
First Edition. Daniel J. Arrigo.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Substituting (4.4) into the original equation (4.1) gives rise to the
ODE

f (4) +
(

f + r2

4

)
f ′′ + f ′ 2 + 7

4
rf ′ + 2f = 0,

where r = x∕
√

t.

We now consider the following first-order PDE

ut + tux = −2t, (4.5)

noting that this cannot be obtained from (4.2). The solution of (4.5)
is

u = −t2 + f
(

x − t2

2

)
(4.6)

and substitution of (4.6) into the Boussinesq equation (4.1) gives

f (4) + ff ′′ + f ′ 2 − f ′ − 2 = 0,

another ODE! We have seen throughout Chapter 3 that a symmetry
of a PDE can be used to reduce a PDE (in two independent vari-
ables) to an ODE. Therefore, it is natural to ask whether there is
a symmetry explanation to this reduction. Before trying to answer
this question, let us return back to the definition of a symmetry.
A symmetry is a transformation that leaves a differential equation
invariant. So, let us construct the Lie transformation group corre-
sponding to (4.3) and (4.5). Recall, to obtain these transformations
associated with the infinitesimals T , X and U , we need to solve

dt
d𝜀

= T
(
t,x, u

)
,

dx
d𝜀

= X
(
t,x, u

)
,

du
d𝜀

= U
(
t,x, u

)
,

subject to t = t, x = x and u = u when 𝜀 = 0. In the case of (4.3), we
have

dt
d𝜀

= 2t,
dx
d𝜀

= x,
du
d𝜀

= −2u,

which is easily solved giving

t = e2𝜀t, x = e𝜀x, u = e−2𝜀u.
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A quick calculation shows that the Boussinesq equation is left invari-
ant under this transformation. In the case of (4.5), we need to solve

dt
d𝜀

= 1,
dx
d𝜀

= t,
du
d𝜀

= −2t,

again subject to t = t, x = x, and u = u when 𝜀 = 0. The solution is
given by

t = t + 𝜀, x = x + t𝜀 + 1
2
𝜀2, u = u − 2t𝜀 − 𝜀2. (4.7)

Under the transformation (4.7), the original equation

ut t + u ux x + u2
x + ux x x x = 0

becomes

utt + uuxx + u2
x + uxxxx − 2

(
utx + tuxx

)
𝜀 = 0,

which is clearly not the original equation (4.1). However, if we
impose the invariant surface condition (4.5), or more specifically, a
differential consequence, we do get our original equation!

We now ask, can we seek the invariant of a particular PDE where
not only do we impose the original equation but also the invariant
surface condition. This idea was first proposed by Bluman [12] (see
also Bluman and Cole [25]) and has been termed the “nonclassical
method.” It is important to note that the transformations associated
with this method are not in fact symmetries at all but we use the term
nonclassical symmetries loosely to be consistent with the literature.

Before proceeding, it is important to consider the invariance of
the invariant surface condition.

4.1.1 Invariance of the Invariant Surface Condition

We consider the invariant surface condition

T(t, x, u)ut + X (t, x, u)ux = U(t, x, u) (4.8)

and seek invariance under the infinitesimal transformations

t = t + 𝜀T(t, x, u) + O(𝜀2),
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x = x + 𝜀X (t, x, u) + O(𝜀2), (4.9)

u = u + 𝜀U(t, x, u) + O(𝜀2).

As usual, if we denote (4.8) by Δ, then invariance is given by

Γ(1)Δ|Δ=0 = 0,

where Γ is the infinitesimal operator associated with (4.9) and Γ(1) its
first extension. Thus, invariance is given by

(
TTt + XTx + UTu

)
ut + TU[t]

+
(
TXt + XXx + UXu

)
ux + XU[x] = TUt + XUx + UUu,

and substituting U[t] and U[x] from Chapter 3 gives

(
TTt + XTx + UTu

)
ut + T

(
Ut + utUu − ut(Tt + utTu)

−ux(Xt + utXu)
)
+
(
TXt + XXx + UXu

)
ux

+ X
(
Ux + uxUu − ut(Tx + uxTu) − ux(Xx + uxXu)

)
= TUt + XUx + UUu.

After cancellation

(
��TTt +��XTx + UTu

)
ut + T

(
��Ut + utUu −��utTt − u2

t Tu −���uxXt − utuxXu

)
+
(
��TXt +���XXx + UXu

)
ux + X

(
��Ux + uxUu −���utTx − utuxTu −���uxXx − u2

xXu

)
=��TUt +���XUx + UUu,

and rearrangement gives

(
U − Tut − Xux

)
utTu +

(
U − Tut − Xux

)
uxXu +

(
Tut + Xux − U

)
Uu = 0,

which is identically satisfied by virtue of the invariant surface condi-
tion (4.8).
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4.1.2 The Nonclassical Method

We now seek invariance of the system

T(t, x, u)ut + X (t, x, u)ux = U(t, x, u), (4.10a)

F(t, x, u, ut, ux,…) = 0. (4.10b)

If we denote each equation in (4.10) by Δ1 and Δ2, then invariance
is given by

Γ(1)Δ1|Δ1=0,Δ2=0 = 0, (4.11a)

Γ(n)Δ2|Δ1=0,Δ2=0 = 0, (4.11b)

but already established in the previous section, the first condition
(4.11a) is identically satisfied and thus, we only consider the second
condition (4.11b). Before we proceed, we find that some simplifica-
tion can be made. If T ≠ 0, then we can set T = 1 without loss of
generality. The reason is that by imposing the invariant surface con-
dition, we have at our disposal that the fact that

(k Γ)(n) = k Γ(n). (4.12)

It is clear from (4.12) that is true for n = 0. Here we show that this is
true for n = 1 and leave it as an exercise for the reader to prove this
for n > 1.

(k Γ)(1) = k Γ + (k U)[t]
𝜕

𝜕ut
+ (k U)[x]

𝜕

𝜕ux

= k Γ +
(
Dt(k U) − utDt(k T) − uxDt(k X )

) 𝜕

𝜕ut

+
(
Dt(k U) − utDt(k T) − uxDt(k X )

) 𝜕

𝜕ux

= k Γ + k
(
Dt(U) − utDt(T) − uxDt(X )

) 𝜕

𝜕ut

+
���������� 0(

U − Tut − Xux

)
Dt(k)

𝜕

𝜕ut

+ k
(
Dt(U) − utDt(T) − uxDt(X )

) 𝜕

𝜕ux
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+
���������� 0(

U − Tut − Xux

)
Dx(k)

𝜕

𝜕ux

= k Γ + k
(
Dt(U) − utDt(T) − uxDt(X )

) 𝜕

𝜕ut

+ k
(
Dt(U) − utDt(T) − uxDt(X )

) 𝜕

𝜕ux

= k Γ(1).

Now, because of this result, we can choose k as we wish. Here we
choose k = 1∕T and rename X and U such that X∕T → X and
U∕T → U .

EXAMPLE 4.1

We first consider the heat equation originally considered by Bluman [12].
Lie’s invariance condition for ut = uxx is U[t] = U[xx] or, with U[t] and U[xx]
defined previously

Ut +
(
Uu − Tt

)
ut − Xtux − Tuu2

t − Xuutux

− Uxx + Txxut −
(
2Uxu − Xxx

)
ux + 2Txuutux

−
(
Uuu − 2Xxu

)
u2

x + Tuuutu
2
x + Xuuu3

x (4.13)

+ 2Txutx −
(
Uu − 2Xx

)
uxx + 2Tuuxutx

+ Tuutuxx + 3Xuuxuxx = 0.

As we have the flexibility of setting T = 1, we do so giving (4.13) as

Ut + Uuut − Xtux − Xuutux − Uxx −
(
2Uxu − Xxx

)
ux

−
(
Uuu − 2Xxu

)
u2

x + Xuuu3
x −

(
Uu − 2Xx

)
uxx

+ 3Xuuxuxx = 0. (4.14)

This is subject to both the original equation ut = uxx and the invariant sur-
face condition (4.8) (with T = 1). Thus, we use

ut = U − Xux, uxx = ut = U − Xux. (4.15)
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Substitution of (4.15) into (4.14) gives

Ut − Uxx + 2UXx +
(
Xxx − 2Uxu − Xt + 2UXu − 2XXx

)
ux

+
(
2Xxu − Uuu − 2XXu

)
u2

x + Xuuu3
x = 0. (4.16)

As before, the coefficients of the various powers of ux in (4.16) are set to
zero giving the determining equations

Xuu = 0, (4.17a)

2Xxu − Uuu − 2XXu = 0, (4.17b)

Xxx − 2Uxu − Xt + 2UXu − 2XXx = 0, (4.17c)

Ut − Uxx + 2UXx = 0. (4.17d)

From (4.17a), we find

X = A(t, x)u + B(t, x), (4.18)

where A and B are arbitrary functions of their arguments. Substituting
(4.18) into (4.17b) and integrating gives

U = −1
3

A2u3 +
(
Ax − AB

)
u2 + Pu + Q, (4.19)

where P and Q are further arbitrary functions of t and x. Substituting (4.18)
and (4.19) into (4.17c) and isolating coefficients of u gives

−2
3

A3 = 0, (4.20a)

4AAx − 2A2B = 0, (4.20b)

2AP + 2BAx + 2ABx − At − 3Axx = 0, (4.20c)

Bxx − Bt − 2BBx + 2AQ − 2Px = 0, (4.20d)

from which we see that A = 0. This then leaves the entire system (4.20) as a
single equation

Bt + 2BBx − Bxx + 2Px = 0. (4.21)

Substituting (4.18) and (4.19) (with A = 0) into (4.17d) and isolating coef-
ficients of u gives

Pt + 2PBx − Pxx = 0, (4.22a)

Qt + 2QBx − Qxx = 0. (4.22b)
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Thus, (4.21) and (4.22) constitute three determining equations for the
infinitesimals X and U given by

X = B(t, x), U = P(t, x)u + Q(t, x).

Close observation with these determining equations shows that they
are nonlinear and coupled! In fact, they were first obtained in 1967 by
Bluman [12] and despite the many attempts to solve them in general, they
remained unsolved for 30 years. In 1999, Mansfield [26] was the first to
give the general solution of these equations, and later in 2002, Arrigo and
Hickling [27] were able to show that the equations could be written as a
matrix Burgers equation and hence linearizable via a matrix Hopf–Cole
transformation. However, an earlier reference to their solution is given by
Fushchych et al. [28].

So, at first sight, it appears that the nonclassical method has severe
limitations. However, as we will see, that this in fact is not the case. ■

EXAMPLE 4.2

Consider the nonlinear heat equation

ut = uxx − 2u3. (4.23)

From the results from Chapter 3, this particular equation only admits a
scaling and translational symmetry, that is,

T = 2c1t + c2, X = c1x + c3, U = −c1u.

Lie’s invariance condition gives

U[t] − U[xx] + 6u2U = 0. (4.24)

Substituting the appropriate extended transformations U[t] and U[xx] into
(4.24) and both equation (4.23) and the invariant surface condition (4.8)
gives rise to the following determining equations:

Xuu = 0, (4.25a)

Uuu − 2Xxu + 2XXu = 0, (4.25b)

Xxx − 2Uxu − Xt + 2UXu − 2XXx + 6u3Xu = 0, (4.25c)

Ut − Uxx + 2UXx − 2u3Uu + 4u3Uu + 4u3Xx + 6u2U = 0. (4.25d)
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From the first two equations of (4.25), we find that

X = Au + B, u = −1
3

A3u2 +
(
Ax − AB

)
u + Pu + Q, (4.26)

where A, B, P, and Q are functions of t and x. Substituting (4.26) into
(4.25c) and isolating coefficients with respect to u gives

−2
3

A (A − 3) (A + 3) = 0, (4.27a)

2A
(
2Ax − AB

)
= 0, (4.27b)

−At − 3Axx + 2BAx + 2ABx + 2AP = 0, (4.27c)

−Bt + Bxx − 2px − 2BBx + 2AQ = 0, (4.27d)

From (4.27a), we have three cases: A = 0, A = 3, and A = −3. The first case
leads to the classical symmetries and will not be considered here. We focus
on the second case and leave the third case to the reader. From (4.27b), we
conclude that B = 0, from (4.27c), we then conclude that P = 0 and from
(4.27d), we conclude that Q = 0. With these choices, the last determining
equation (4.25d) is automatically satisfied. Thus, the infinitesimals are

X = 3u, U = −3u3.

The associated invariant surface condition is

ut + 3uux = −3u3,

whose solution is
x + 1

u
= F

(
6t − 1

u2

)
, (4.28)

where F is an arbitrary function. Substitution of (4.28) into the original
equation (4.23) gives the ODE

F ′′(r) − 2F ′(r)3 = 0,

where r = 6t − 1∕u2, which is easily solved giving

F(r) = c1 ±
√

c2 − r,

where c1 and c2 are constants of integration. Thus, we end with the solution

x + 1
u
= c2 ±

√
c1 − 6t + 1

u2
. (4.29)
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As it turns out, we can solve (4.29) explicitly for u giving

u =
2
(
x − c2

)
c1 − 6t −

(
x − c2

)2
. (4.30)

We note that from the classical symmetry analysis of (4.23) we can obtain
the solution ansätz

u = 1√
t
F

(
x√

t

)
,

which reduces the original PDE (4.23) to

2F ′′(r) + rF ′(r) + F(r) − 4F3(r) = 0, (4.31)

where r = x∕
√

t. However, it would be very difficult to obtain from (4.31)
the solution

F(r) = 2r
r2 + 6

which corresponds to the solution (4.30) that we obtained from the non-
classical method. ■

EXAMPLE 4.3

Consider the Burgers’ system

ut = uxx + uux − u2

𝑣
𝑣x, (4.32a)

𝑣t = 𝑣xx + 𝑣𝑣x − 𝑣2

u
ux. (4.32b)

Applying the nonclassical method to the Burgers’ system (4.32) we have the
following determining equations:

Xuu = X𝑣u = X𝑣𝑣 = 0, (4.33a)

2Xxu − 2uXu +
𝑣2

u
X𝑣 − Uuu − 2XuX = 0, (4.33b)

+2
u2

𝑣
Xu − 𝑣X𝑣 − uX𝑣 + 2Xx𝑣 − 2U𝑣u − 2X𝑣X = 0, (4.33c)

−u2

𝑣
X𝑣 + U𝑣𝑣 = 0, (4.33d)

−𝑣
2

u
Xu + Vuu = 0, (4.33e)
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2Xxu − uXu − 𝑣Xu − 2V𝑣u + 2
𝑣2

u
X𝑣 − 2XuX = 0, (4.33f)

2Xx𝑣 − 2X𝑣X + u2

𝑣
Xu − 2𝑣X𝑣 − V𝑣𝑣 = 0, (4.33g)

Ut +
u2

𝑣
Vx + 2UXx − Uxx − uUx = 0, (4.33h)

Vt +
𝑣2

u
Ux − 𝑣Vx + 2VXx − Vxx = 0, (4.33i)

−U + Xxx − uXx + 2XuU − 𝑣2

u
U𝑣 +

u2

𝑣
Vu

−2Uxu − Xt − 2XXx = 0, (4.33j)

−V + Xxx − 𝑣Xx + 2X𝑣V − u2

𝑣
Vu +

𝑣2

u
U𝑣

−2Vx𝑣 − Xt − 2XXx = 0. (4.33k)

−2Ux𝑣 + 2UX𝑣 + (𝑣 − u)U𝑣 +
u2

𝑣

(
Xx − Uu + V𝑣

)
+ u
𝑣2

(2𝑣U − uV ) = 0, (4.33l)

−2Vxu + 2VX𝑣 + (u − 𝑣)Vu +
𝑣2

u

(
Xx + Uu − V𝑣

)
+ 𝑣

u2

(2uV − 𝑣U) = 0. (4.33m)

From (4.33a), we find that

X = A(t, x)u + B(t, x)𝑣 + C(t, x), (4.34)

where A, B, and C are arbitrary smooth functions of t and x. Eliminating
U from (4.33b)–(4.33c) using (4.34) gives

4𝑣
u

B − 4u
𝑣

A − 2AB + B = 0

which must be satisfied for all u and 𝑣. Thus, A = B = 0. From (4.33b) and
(4.33g), we see that

Uuu = Uu𝑣 = U𝑣𝑣 = Vuu = Vu𝑣 = V𝑣𝑣 = 0

giving that U and V are linear in u and 𝑣. Therefore,

U = P1(t, x)u + P2(t, x)𝑣 + P3(t, x), (4.35a)

V = Q1(t, x)u + Q2(t, x)𝑣 + Q3(t, x), (4.35b)
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where Pi and Qi, i = 1, 2, 3 are arbitrary smooth functions of t and x. With
these, (4.35) and (4.33l) and (4.33m) become

−2P2x + P2u + P2𝑣 + 2P3
u
𝑣
+
(
P1 + Cx

) u2

𝑣
− Q3

u2

𝑣2
− Q1

u3

𝑣2
= 0,

(4.36a)

−2Q1x + Q1u + Q1𝑣 + 2Q3
𝑣

u
+
(
Q2 + Cx

) 𝑣2

u
− P3

𝑣2

u2
− P2

𝑣3

u2
= 0

(4.36b)

and since (4.36) must also be satisfied for all u and 𝑣 gives

P1 = Q2 = −Cx, P2 = P3 = Q1 = Q3 = 0.

Thus, the entire system (4.33) reduces to the following

Ct + 2CCx − 3Cxx = 0, (4.37a)

Ctx + 2C2
x − Cxxx = 0. (4.37b)

Here, we find solutions to the overdetermined system (4.37). Eliminating
the t derivative between (4.37a) and (4.37b) gives

Cxxx − CCxx = 0. (4.38)

Further requiring the compatibility of (4.37a) and (4.38) by calculating(
Ct

)
xxx and

(
Cxxx

)
t gives

Cxxxxx − CCtxx − 4CxCxxx − 4C2
xx − CtCxx = 0, (4.39)

and using (4.37a) and (4.38) to eliminate Ct and Cxxx and their differential
consequences in (4.39) gives

Cxx

(
3Cxx − 2CCx

)
= 0.

This gives rise to two cases: Cxx = 0 or 3Cxx − 2CCx = 0.

Case (1) Cxx = 0

In this case we solve Cxx = 0 giving C = a(t)x + b(t) where a and b are
arbitrary functions of integration. Substituting into (4.37a) and isolating
coefficients with respect to x gives

ȧ + 2a2 = 0, ḃ + 2ab = 0,
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each of which are easily solved giving

a =
c1

2c1t + c0
, b =

c2

2c1t + c0
,

where c0, c1, and c2 are arbitrary constants. This leads to

C =
c1x + c2

2c1t + c0
,

and via (4.34) and (4.35) we obtain

X =
c1x + c2

2c1t + c0
, U = −

c1

2c1t + c0
, V = −

c1

2c1t + c0
.

These would have risen from a classical symmetry analysis of our system
(4.32) and hence are not true nonclassical symmetries.

Case (2) 3Cxx − 2CCx = 0

In this case, we see from (4.37a) that Ct = 0. Thus, we are required to find
the common solution of

3Cxx − 2CCx = 0, Cxxx − 2C2
x = 0. (4.40)

Eliminating Cxxx between the two equations in (4.40) and further simplify-
ing gives

Cx

(
3Cx − C2) = 0.

We omit the case where Cx = 0 as this would leave to a special case of Case
(1) and thus focus on the second case 3Cx − C2 = 0 This is easily solve giv-
ing rise to

C = − 3
x + c

,

where c is an arbitrary constant that we can set to zero without loss of
generality. This, in turn, gives rise from (4.34) and (4.35) to the following
nonclassical symmetries

X = −3
x
, U = −3u

x2
, V = −3𝑣

x2
. (4.41)

Further, integrating the invariant surface conditions

ut + Xux = U , 𝑣t + X𝑣x = V ,
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with X , U , and V given in (4.41) gives

u = xP
(
x2 + 6t

)
, 𝑣 = xQ

(
x2 + 6t

)
, (4.42)

and substitution of (4.42) into the original system (4.32) reduces it to

2QP′′ + PQP′ − P2Q′ = 0, 2PQ′′ + PQQ′ − Q2P′ = 0. (4.43)

Although no attempt will be made here to solve this system, any solution
of (4.43) via (4.42) would give rise to a solution of (4.32). We note that the
more general version of

ut = uxx + uux + F(u, 𝑣)𝑣x,

𝑣t = 𝑣xx + 𝑣𝑣x + G(u, 𝑣)ux,

was consider by Cherniha and Serov [29] and Arrigo et al. [7] and we refer
the reader there for further details.

4.2 NONCLASSICAL SYMMETRY ANALYSIS AND
COMPATIBILITY

For the nonclassical method, we seek invariance of both the original
equations together with the invariant surface condition. For the previous
example of the heat equation, if we let the invariant surface condition with
T = 1 be Δ1 and the heat equation be Δ2, then

Δ1 = ut + Xux − U , (4.44a)

Δ2 = ut − uxx. (4.44b)

We now reexamine the nonclassical method for the heat equation and show
that the invariance condition

U[t] = U[xx] (4.45)

arises naturally from a condition of compatibility. From (3.5) (with T = 1),
we see that

U[t] = DtU − uxDtX = Dt

(
U − Xux

)
+ Xutx,

U[x] = DxU − uxDxX = Dx

(
U − Xux

)
+ Xuxx,

U[xx] = DxU[x] − uxxDxX = D2
x

(
U − Xux

)
+ Xuxxx,
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so that (4.45) becomes

Dt

(
U − Xux

)
− D2

x

(
U − Xux

)
+ Xutx − Xuxxx = 0,

which, by virtue of the heat equation, becomes

Dt

(
U − Xux

)
− D2

x

(
U − Xux

)
= 0. (4.46)

Rewriting the heat equation and the invariant surface condition equations,
(4.44a) and (4.44b), as

uxx = U − Xux, (4.47a)

ut = U − Xux, (4.47b)

and imposing the compatibility condition

Dt

(
uxx

)
− D2

x

(
ut

)
= 0,

gives rise to (4.46) naturally (see [30–33] for further details).

4.3 BEYOND SYMMETRIES ANALYSIS—GENERAL
COMPATIBILITY

While both the classical and nonclassical symmetry methods have had
tremendous success when applied to a wide variety of physically important
nonlinear differential equations, there exist exact solutions to certain
partial differential equations that cannot be explained using classical and
nonclassical symmetry analyses. For example, Galaktionov [34] showed
that the PDE

ut = uxx + u2
x + u2 (4.48)

admits the solution
u = a(t) cos x + b(t), (4.49)

where a(t) and b(t) satisfy the system of ODEs

ȧ = −a + 2ab, ḃ = a2 + b2. (4.50)

A classical symmetry analysis of equation (4.48) leads to the determining
equations

Tx = 0, Tu = 0, Xu = 0, (4.51a)
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2Xx − Tt = 0, Uuu + Uu = 0, (4.51b)

Ut − Uxx + u2Uu − 2u2Xx − 2uU = 0, (4.51c)

Xt − Xxx + 2Uxu + 2Ux = 0. (4.51d)

A nonclassical symmetry analysis (with T = 1) of (4.48) leads to the system

Xuu − Xu = 0, (4.52a)

Uuu + Uu − 2Xxu + 2XXu = 0, (4.52b)

2Uxu − 2UXu + 3u2Xu + 2XXu + Xt − Xxx + 2Ux = 0, (4.52c)

Ut − Uxx + u2Uu + 2UXx − 2u2Xx − 2uU = 0. (4.52d)

Solving each system, (4.51) and (4.52), gives rise to

T = a, X = b, U = 0, (4.53)

and
X = c, U = 0, (4.54)

respectively, where a, b, and c are arbitrary constants. These are the same
results as the associated invariant surface conditions for each are

aut + bux = 0, ut + cux = 0, (4.55)

respectively, and scaling the first by a gives the second with c = b∕a. How-
ever, this invariant surface condition will not give rise to the solution (4.49)
illustrating that there are exact solutions of PDEs that cannot be obtained
through classical and nonclassical symmetry analyses.

Despite the large number of success stories of both the classical and
nonclassical symmetry methods, much effort has been spent trying to devise
symmetry type methods to explain the construction of exact solutions to
nonlinear PDEs such as the Galationov solution (4.49) for the diffusion
equation (4.48). Olver [35] was the first to be able to obtain the Galationov
solution by the method of differential constraints. He was able to show that
by appending (4.48) with

uxx − cot x ux = 0, (4.56)

the Galationov solution could be obtained.
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4.3.1 Compatibility with First-Order
PDEs—Charpit’s Method

The following is a derivation of Charpit’s method. Consider the compati-
bility of the following first-order PDEs

F(x, y, u, p, q) = 0,

G(x, y, u, p, q) = 0,

where p = ux and q = uy. Calculating second-order derivatives gives

Fx + pFu + uxxFp + uxyFq = 0,

Fy + qFu + uxyFp + uyyFq = 0, (4.57)

Gx + pGu + uxxGp + uxyGq = 0,

Gy + qGu + uxyGp + uyyGq = 0.

Solving the first three equations in (4.57) for uxx, uxy and uyy gives

uxx =
−Fx Gq − p Fu Gq + Fq Gx + p Fq Gu

Fp Gq − Fq Gp
,

uxy =
−Fp Gx − p Fp Gu + Fx Gp + p Fu Gp

Fp Gq − Fq Gp
,

uyy =

F2
p Gx + p F2

p Gu − Fy Fp Gq − q Fu Fp Gq

+ q Fu Fq Gp − Fx Fp Gp − p Fu Fp Gp + Fy Fq Gp

Fp Gq − Fq Gp
.

Substitution into the last equation in (4.57) gives

Fp Gx + Fq Gy + (p Fp + q Fq)Gu − (Fx + p Fu)Gp − (Fy + q Fu)Gq = 0,

or conveniently written as

|||||
DxF Fp
DxG Gp

||||| +
|||||

DyF Fq
DyG Gq

||||| = 0,

where Dx F = Fx + p Fu and Dy F = Fy + q Fu. ■

EXAMPLE 4.4

Consider
ut = u2

x. (4.58)
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This is the example we considered already in Chapter 3 (Examples 3.1 and
3.2); however, now we will determine all classes of equations that are com-
patible with this one. Denoting

G = ut − u2
x = p − q2,

where p = ut and q = ux, then

Gt = 0, Gx = 0, Gu = 0, Gp = 1, Gq = −2q,

and the Charpit equations are

|||||
DtF Fp

0 1

||||| +
|||||

DxF Fq
0 −2q

||||| = 0,

or, after expansion

Ft − 2qFx +
(
p − 2q2)Fu = 0,

noting that the third term can be replaced by −pFu do to the original
equation. Solving this linear PDE by the method of characteristics gives
the solution as

F = F(x + 2tux, u + tut, ut, ux). (4.59)

In Example 3.2, we found the invariant surface condition

t ut + x ux = u. (4.60)

If we set F in (4.59) as

F(a, b, c, d) = ad − b,

and consider
F + 2t

(
ut − u2

x

)
= 0,

we obtain (4.60). From (4.59), we undoubtedly can an infinite number of
compatible equations. ■

EXAMPLE 4.5

Consider
u2

x + u2
y = u2. (4.61)
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Denoting p = ux and q = uy, then

G = u2
x + u2

y − u2 = p2 + q2 − u2.

Thus,
Gx = 0, Gy = 0, Gu = 2u, Gp = 2p, Gq = 2q,

and the Charpit equations are

|||||
DxF Fp
−2pu 2p

||||| +
|||||

DyF Fq
−2qu 2q

||||| = 0,

or, after expansion

pFx + qFy +
(
p2 + q2)Fu + puFp + quFq = 0, (4.62)

noting that the third term can be replaced by u2Fu do to the original
equation. Solving (4.62), a linear PDE, by the method of characteristics
gives the solution as

F = F
(

x −
p
u

ln u, y −
q
u

ln u,
p
u
,

q
u

)
.

Consider the following particular example

x −
p
u

ln u + y −
q
u

ln u = 0,

or
ux + uy = (x + y) u

ln u
.

If we let u = e
√
𝑣, then this becomes

𝑣x + 𝑣y = 2(x + y),

which has the solution

𝑣 = 1
2
(x + y)2 + f (x − y).

This, in turn, gives the solution for u as

u = e
√

1
2
(x+y)2 + f (x−y).
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Substitution into the original equation (4.61) gives the following ODE

f ′(r)2 − 2f (r) = 0, r = x − y.

Once this ODE is solved, then it can be used to construct an exact solution
of the original PDE, (4.61).

It is interesting to note that when we substitute the solution of the com-
patible equation into the original it reduces to an ODE. A natural question
is, does this always happen? This was addressed by Arrigo [36].

So just how complicated can things get when we try and generalize
by seeking some fairly general compatibility. Our next example illustrates
this. ■

EXAMPLE 4.6 General Compatibility of the Heat Equation

We seek compatibility of

ut = uxx, (4.63a)

ut = F
(
t, x, u, ux

)
, (4.63b)

or
ut = F

(
t, x, u, ux

)
, uxx = F

(
t, x, u, ux

)
, (4.64)

where F is a function to be determined. Imposing compatibility
(
ut

)
xx =(

uxx

)
t, expanding and imposing both equations in (4.64) gives

Fxx + 2pFxu + 2FFxp + p2Fuu + 2pFFup + F2Fpp − Ft = 0, (4.65)

where p = ux. Clearly, (4.65) is complicated and nonlinear showing that
compatibility might lead to a harder problem than the one we start with.
However, any solution could be of possible use. For example, if we let F =
f (u)p2, then (4.65) becomes

f ′′ + 4ff ′ + 2f 3 = 0,

from which we see the general solution as

u =
∫

et√
c1t + c2

dt, f = e−t
√

c1t + c2.



4.3 Beyond Symmetries Analysis—General Compatibility 153

However, by choosing c1 = 0 and c2 = 1, we obtain explicitly

f = 1
u
.

Thus,

ut = uxx, ut =
u2

x

u

are compatible. ■

EXAMPLE 4.7

In this example, we consider the compatibility between the (2 + 1) dimen-
sional reaction—diffusion equation (see Arrigo and Suazo [37])

ut = uxx + uyy + Q(u, ux, uy), (4.66)

and the first-order partial differential equation

ut = F
(
t, x, y, u, ux, uy

)
. (4.67)

We will assume that

(Fpp,Fpq,Fqq) ≠ (0, 0, 0), (4.68)

where p = ux and q = uy as equality would give rise to the nonclassical
method and we are trying to seek more general compatibility. We refer the
reader to Arrigo et al. [24] for details on the classical and nonclassical sym-
metry analyses of (4.66).
Imposing compatibility

(
ut

)
xx +

(
ut

)
yy =

(
uxx + uyy

)
t

between (4.66) and
(4.67) gives rise to the compatibility equations

Fpp + Fqq = 0, (4.69a)

Fxp − Fyq + pFup − qFuq + (F − Q)Fpp = 0, (4.69b)

Fxq + Fyp + qFup + pFuq + (F − Q)Fpq = 0, (4.69c)

−Ft + Fxx + Fyy + 2pFxu + 2qFyu + 2(F − Q)Fyq

+
(
p2 + q2)Fuu + 2q(F − Q)Fuq + (F − Q)2 Fqq (4.69d)

+ QpFx + QqFy +
(
pQp + qQq − Q

)
Fu − pQuFp − qQuFq + FQu = 0.
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Eliminating the x and y derivatives in (4.69b) and (4.69c) by (i) cross dif-
ferentiation and (ii) imposing (4.69a) gives

2Fup + (Fp − Qp)Fpp + (Fq − Qq)Fpq = 0, (4.70a)

2Fuq + (Fp − Qp)Fpq + (Fq − Qq)Fqq = 0. (4.70b)

Further, eliminating Fup and Fuq by again (i) cross differentiation and (ii)
imposing (4.69a) gives rise to

(2Fpp − Qpp + Qqq)Fpp + 2(Fpq − Qpq)Fpq = 0, (4.71a)

(Qpp − Qqq)Fpq + 2QpqFqq = 0. (4.71b)

Solving (4.69a), (4.71a) and (4.71b) for Fpp, Fpq, and Fqq, respectively, gives
rise to two cases:

(i) Fpp = Fpq = Fqq = 0, (4.72a)

(ii) Fpp = 1
2
(Qpp − Qqq), Fpq = Qpq, Fqq = 1

2
(Qqq − Qpp). (4.72b)

As we are primarily interested in compatible equations that are more gen-
eral than quasilinear, we omit the first case. It is interesting to note that if

Qpq = 0, Qpp − Qqq = 0, (4.73)

then the second case becomes the first case. The solution of the overdeter-
mined system (4.73) is

Q = Q3(u)(p2 + q2) + Q2(u)p + Q1(u)q + Q0(u), (4.74)

for arbitrary functions Q0 − Q3. So, we will require that both equations in
(4.73) are not satisfied.

If we require that the three equations in (4.72b) be compatible, we
obtain

Qppp + Qpqq = 0, Qppq + Qqqq = 0, (4.75)

which integrates to give

Qpp + Qqq = 4a(u), (4.76)
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where a is an arbitrary function. However, under the transformation,
Q = Q̃ + a(u)

(
p2 + q2

)
shows that Q̃ satisfies (4.76) with a = 0 and fur-

thermore, to within equivalence transformation (a transformation of the
original equation under u = 𝜙(ũ)) shows that we can set a = 0 without loss
of generality. Thus, Q satisfies

Qpp + Qqq = 0. (4.77)

Using (4.77), we find that (4.72b) becomes

Fpp = Qpp, Fpq = Qpq, Fqq = Qqq, (4.78)

from which we find that

F = Q(u, p, q) + X (t, x, y, u)p + Y (t, x, y, u)q + U(t, x, y, u), (4.79)

where X , Y , and U are arbitrary functions of their arguments. Substituting
(4.79) into (4.70a) and (4.70b) gives

2Qup + XQpp + YQpq + 2Xu = 0, (4.80a)

2Quq + XQpq + YQqq + 2Yu = 0, (4.80b)

while (4.69b) and (4.69c) become (using (4.77) and (4.80))

(Xp + Yq + 2U)Qpp + (Xq − Yp)Qpq + 2
(
Xx − Yy

)
= 0, (4.81a)

(Xq − Yp)Qpp − (Xp + Yq + 2U)Qpq − 2
(
Xy + Yx

)
= 0. (4.81b)

If we differentiate (4.80a) and (4.80b) with respect to x and y, we obtain

XxQpp + YxQpq + 2Xxu = 0, XxQpq + YxQqq + 2Yxu = 0, (4.82a)

XyQpp + YyQpq + 2Xyu = 0, XyQpq + YyQqq + 2Yyu = 0. (4.82b)

If X2
x + Y2

x ≠ 0, then solving (4.77) and (4.82a) for Qpp, Qpq, and Qqq gives

Qpp = −Qqq =
2
(
YxYxu − XxXxu

)
X2

x + Y 2
x

, Qpq = −
2
(
XxYxu + YxXxu

)
X2

x + Y2
x

.

If X2
y + Y 2

y ≠ 0, then solving (4.77) and (4.82b) for Qpp, Qpq, and Qqq gives

Qpp = −Qqq =
2
(
YyYyu − XyXyu

)
X2

y + Y2
y

, Qpq = −
2
(
XyYyu + YyXyu

)
X2

y + Y 2
y

.
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In any case, this shows that Qpp, Qpq, and Qqq are at most functions of u
only. Thus, if we let

Qpp = −Qqq = 2g1(u), Qpq = g2(u),

for arbitrary functions g1 and g2, then Q has the form

Q = g1(u)
(
p2 − q2) + g2(u)p q + g3(u)p + g4(u)q + g5(u), (4.83)

where g3 − g5 are further arbitrary functions. Substituting (4.83) into (4.81)
gives

2 (Xp + Yq + 2U) g1 + (Xq − Yp) g2 + 2
(
Xx − Yy

)
= 0, (4.84a)

2 (Xq − Yp) g1 − (Xp + Yq + 2U) g2 − 2
(
Xy + Yx

)
= 0. (4.84b)

As both equations in (4.84) must be satisfied for all p and q, this requires
that each coefficient of p and q must vanish. This leads to

2g1X − g2Y = 0, g2X + 2g1Y= 0, (4.85a)

2g1U + Xx − Yy = 0, g2U + Xy + Yx = 0. (4.85b)

From (4.85a) we see that either g1 = g2 = 0 or X = Y = 0. If g1 = g2 = 0,
then Q is quasilinear giving that F is quasilinear that violates our nonquasi-
linearity condition (4.68). If X = Y = 0, we are lead to a contradiction as
we imposed X2

x + Y 2
x ≠ 0 or X2

y + Y2
y ≠ 0. Thus, it follows that

X2
x + Y 2

x = 0, X2
y + Y 2

y = 0,

or

Xx = 0, Xy = 0, Yx = 0, Yy = 0.

As Q is not quasilinear then from (4.81) we deduce that

(Xp + Yq + 2U)2 + (Xq − Yp)2 = 0,

from which we obtain X = Y = U = 0. With this assignment, we see from
(4.79) that F = Q and from (4.80) that Q satisfies

Qup = 0, Quq = 0, (4.86)
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which has the solution

Q = G(p, q) + H(u), (4.87)

for arbitrary functions G and H. From (4.77), we find that G satisfies Gpp +
Gqq = 0, whereas from (4.69d), we find that H satisfies H′′ = 0 giving that
H = cu where c is an arbitrary constant noting that we have suppressed the
second constant of integration due to translational freedom. This leads to
our main result: equations of the form

ut = uxx + uyy + cu + G
(
ux, uy

)
,

are compatible with the first-order equations

ut = cu + G
(
ux, uy

)
.

■

4.3.2 Compatibility of Systems

Consider the nonlinear Schrodinger equation

i𝜓t + 𝜓xx + 𝜓|𝜓|2 = 0. (4.88)

If 𝜙 = u + i𝑣, then equating real and imaginary parts, we obtain the
system

ut + 𝑣xx + 𝑣
(
u2 + 𝑣2) = 0, (4.89a)

−𝑣t + uxx + u
(
u2 + 𝑣2) = 0. (4.89b)

For the nonclassical method, we would seek compatibility with
(4.89) and the first-order equations

ut + Xux = U , 𝑣t + X𝑣x = V (4.90)

where X ,U , and V are functions of t, x, u, and 𝑣 to be deter-
mined. However, one may ask whether more general compatibility
equations may exist. For example, it is possible that equations of
the form

ut + Aux + B𝑣x = U , 𝑣t + Cux + D𝑣x = V (4.91)
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(where A,B,C,D,U , and V are functions of t, x, u and 𝑣) exist such
that (4.89) and (4.91) are compatible? Clearly, setting A = D and
B = C = 0 would lead to the nonclassical method but are there
cases when A ≠ D and/or B ≠ C. Trying to list here the determining
equations and their subsequent analysis would be pointless as it
would take pages and pages to complete. We however give the
following two results. The first result is that if

A = D =
c1x + 2c2t + c3

2c1t + c0
, B = C = 0

U =
−c1u +

(
−c2x + c5

)
𝑣

2c1t + c0
, V =

(
c2x − c5

)
u − c1𝑣

2c1t + c0
,

where c0 − c2 are constant, then (4.91) becomes

ut +
c1x + 2c2t + c3

2c1t + c0
ux =

−c1u +
(
−c2x + c5

)
𝑣

2c1t + c0

𝑣t +
c1x + 2c2t + c3

2c1t + c0
𝑣x =

(
c2x − c5

)
u − c1𝑣

2c1t + c0
(4.92)

and (4.89) and (4.92) are compatible. This is nothing more than
the nonclassical method. The second result is more interesting. If
A,B,C, and D have the form

A = c0𝑣
2 + c1t + c2,B = −c0u𝑣,

C = −c0u𝑣, D = c0u2 + c1t + c2,

U = −1
2

c0

(
c1t + c2

)
𝑣
(
u2 + 𝑣2) − 1

2

(
c1x + c3

)
𝑣,

V = 1
2

c0

(
c1t + c2

)
u
(
u2 + 𝑣2) + 1

2

(
c1x + c3

)
u,

then (4.91) becomes

ut +
(
c0𝑣

2 + c1t + c2

)
ux − c0u𝑣𝑣x =−1

2
c0

(
c1t + c2

)
𝑣
(
u2 + 𝑣2)

− 1
2

(
c1x + c3

)
𝑣
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𝑣t − c0u𝑣ux +
(
c0u2 + c1t + c2

)
𝑣x =

1
2

c0

(
c1t + c2

)
u
(
u2 + 𝑣2)

+ 1
2

(
c1x + c3

)
u

and these are compatible with (4.89). Although no attempt to solve
these equations in general is presented, we note that by introduc-
ing polar coordinates x = r cos 𝜃 and y = r sin 𝜃, the two first-order
compatible equations become

rt +
(
c1t + c2

)
rx = 0

𝜃t + (c0r2 + c1t + c2)𝜃x = 1
2
c0(c1t + c2)r2 + 1

2
(c1x + c3)

with the first one being linear.

4.3.3 Compatibility of the Nonlinear Heat Equation

We end this chapter with a question. Consider the nonlinear heat
equation

ut =
(
D(u)ux

)
x (4.93)

or the system equivalent

𝑣t = D(u)ux, (4.94a)

𝑣x = u, (4.94b)

then the nonclassical symmetries would be found by appending to
this system the invariant surface conditions

ut + Xux = U , (4.95a)

𝑣t + X𝑣x = V . (4.95b)

If we let
U = XP + Q, V = uX + DP, (4.96)

then solving (4.94) and (4.95) for the first derivatives gives

ut = Q, ux = P, (4.97a)

𝑣t = DP, 𝑣x = u, (4.97b)
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and compatibility then gives rise to

Pt − Qx + QPu − PQu + DPP𝑣 − uQ𝑣 = 0, (4.98a)

DPx + DPPu + uDP𝑣 + D′P2 − Q = 0. (4.98b)

Would a symmetry analysis of this set of equation give rise to new
classes of D? If we eliminate Q and obtain a second-order PDE,
could again, new classes of D exist? These are interesting questions
and require further study.

EXERCISES

1. Using the Charpit’s method, find compatible equation with the follow-
ing

(i) uxuy = y

(ii) ux + uu2
y = 0

(iii) u + u2
x + uy = 0.

2. Calculate the nonclassical symmetries for the Burgers’ equation

ut + 2uux = uxx. (4.99)

3. Calculate the nonclassical symmetries for the Boussinesq equation

utt + uuxx + u2
x + uxxxx = 0 (4.100)

(see Levi and Winternitz [38]).

4. Calculate the nonclassical symmetries for nonlinear heat equation

ut = uxx + 2u2

x2
(1 − u) (4.101)

(see Bradshaw-Hajek et al. [39]).

5. Calculate the nonclassical symmetries for boundary layer equation

uyuxy − uxuyy − uyyy = 0 (4.102)

(see Naz et al. [40]).
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6. Calculate the nonclassical symmetries for the Burgers system

ut = uxx + uux + (u + a)𝑣x

𝑣t = 𝑣xx + 𝑣𝑣x + (𝑣 + b)ux,

where a and b are constants (see Arrigo et al. [7]).

7. Classify the nonclassical symmetries for the following

ut = uxx + Q(u)

ut =
(
euux

)
x + Q(u)

ut =
(
unux

)
x + Q(u)

(see Arrigo et al. [41], Arrigo and Hill [42] and Clarkson and Mansfield
[43]).

8. Classify the nonclassical symmetries for the following

ut = ∇ ⋅ (D(u)∇u) + Q(u) (4.103)

(see Goard and Broadbridge [44]).

4.4 CONCLUDING REMARKS

We are now at the end of our journey. This journey has introduced
the reader to the method of symmetry analysis of differential
equations and invariance. These symmetries have been shown to
reduce their equations (ordinary and partial) to simpler ones. This
chapter deals primarily with the nonclassical method and what’s
beyond—a light introduction to compatibility. So, are we really at
the end of our journey or just the beginning? For the interested
reader (which I hope), there are several places to go. First, as
many may find, there are several more advanced books on the
subject. We only mention a few. There are the books by Bluman
and his collaborators: Bluman and Anco [45], Bluman et al. [46]
and Bluman and Kumei [1]. The book by Cantwell, Cantwell [18]
covering a lot of material from fluid mechanics, and the book by
Olver [47]. Each book has its own strengths and should appeal to
a lot of those wishing to learn more. I would also like to mention
the three volume set, the CRC Handbook of Lie Group Analysis of
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Differential Equations edited by Ibragimov [48–50]. It contains a
vast amount of information in both materials and references.

So at this point, I bid you farewell and wish you well on the next
part of your journey.



Solutions

Section 1.5

5. a = 2b

Section 2.2.1

1.(i) X = y, Y = x,

1.(ii) X =
y
x
, Y = y,

1.(iii) X = −xy2, Y = −y3.

2.(i) x = xey 𝜀+ 1
2
𝜀2
, y = y + 𝜀,

2.(ii) x = xe𝜀 + y𝜀e𝜀, y = ye𝜀,

2.(iii) x = x
x − (x − 1)e𝜀

, y =
y

−y + (y + 1)e−𝜀
.

3.(i) X = c1x3 + c2x, Y =
(
c1x2 + c1 + c2

)
x2y

with c1 = 0, c2 = 1, r = ex2

y2
, s = ln x, s′ = − 1

2r(r + 1)
,

3.(ii) X = c1x, Y = 3c1y

with c1 = 1, r = x3y−1, s = ln x, s′ = −r + 2
r3

,

3.(iii) X = c1y, Y = 0

with c1 = 1, r = y, s = x
y
, s′ = 1

r2 + 1
.

Symmetry Analysis of Differential Equations: An Introduction,
First Edition. Daniel J. Arrigo.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Section 2.3.6

1.(i) X = 0, Y = 1
x3
, x = r, y = s

r3
,

ds
dr

= er,

1.(ii) X = 0, Y = e2x, x = r, y = e2rs,
ds
dr

= re−2r,

1.(iii) X = 0, Y = e−2xy2, x = r, y = −e2r∕s,
ds
dr

= re2r,

1.(iv) X = 0, Y = e−x2∕y, x = r, y2 = 2e−r2
s,

ds
dr

= r3er2
,

1.(v) X = x, Y = y, x = es, y = res,
ds
dr

= r
r3 − r2 + 1

,

1.(vi) X = x, Y = y, x = es, y = res,
ds
dr

= 1
ln r − r

,

1.(vii) X =−x, Y = y, 𝜇 = 1
2xy

,

1.(viii) X = 2x, Y = y, 𝜇 = 1
7x2y + 7xy3

,

1.(ix) X = 0, Y = (y − x)2, x = r, y = r − 1
s
,

ds
dr

= 1
r2
,

1.(x) X = 0, Y = (y − e−x)2e−3x, x = r,

y = e−r − e3r

s
,

ds
dr

= e4r.

Section 2.5.1

1. a = −b,X = x, Y = −y, x = es, y = re−s,

s′′ +
(
r2 + (n − 2)r

)
s′3 + (3 − r − n) s′2 = 0.

2. X =
(

2c1y +
c2

y2

)
x2 +

(
2c3y3 +

c4

y3
+ c5

)
x + c6y2 +

c7

y

Y =
(

c1y2 −
c2

y

)
x + c3y4 + c8y −

c4

y2

from c2 = −1 x =
(

r2

3s

)1∕3

, y = (3rs)1∕3 rs′′ + 2s′ = 0
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from c5 = 1 x = es, y = r r2s′′ + r2s′2 − 2 = 0

from c8 = 1 x = r, y = es s′′ + 2rs′3 + s′2 = 0.

3.(i) n = −1,X = c1x2 + c2x, Y = c1xy, x = 1
s
, y = r

s
,

rs′′ + s′3 = 0

n ≠ −1,X = c2x,Y = 0, x = es, y = r, s′′ + rns′3 + s′2 = 0.

3.(ii) n = 1,X = c1x + c2x ln x, Y = −2(c1 + c2) − 2c2 ln x

x = ees
, y = r − 2es − 2s, s′′ + (er − 2)s′3 + s′2 = 0

n ≠ 1,X = c1x,Y = −2c1, x = es, y = r − 2s,

s′′ + (er + 2n − 2)s′3 − (n − 1)s′2 = 0.

4. X =
(
c1y1 + c2y2

)
y + c3y2

1 + c4y2
2 + c5,

Y =
(
c1y′1 + c2y′

2

)
y2 +

(
c3y1y′

1 + c4y2y′2 + c6

)
y + c7y1 + c8y2

where y1 and y2 are two independent solutions of y′′ + f (x)y = 0.

Section 2.6.1

1.(i) X = c1x + c2, Y = c1y, if c1 = 1, c2 = 0, then x = es,

y = re−s, s′s′′′ − 3s′′2 + (r − 6)s′2s′′ + (6r − r2)s′5

+ (r − 11)s′4 + s′3 = 0.

1.(ii) X = c2x2 + c1x + c0, Y = −
(
2c2x + c1

)
y + 3c2,

if X = x2,Y = 3 − 2xy, then x = 1
s
, y = rs2 + 3s,

s′s′′′ − 3s′′2 − 4rs′2s′′ + r4s′5 − 6r2s′4 + 3s′3 = 0

if X = −x,Y = −y, then x = es, y = re−s,

s′s′′′ − 3s′′2 + (4r − 6)s′2s′′ − r(r − 1)(r − 2)(r − 3)s′5

−(6r2 − 18r + 11)s′4 − 3s′3 = 0.

1.(iii) X = 4c1x + c2, Y = 3c1y, if c1 = 1, c2 = 0, then x = e4s,

y = r1∕4e3s,−16r2s′s′′′ + 48r2s′′2 + 48r2s′2s′′ + 36rs′s′′

+64(15r + 64)r2s′5 − 208r2s′4 + 36rs′3 + 21s′2 = 0



166 Solutions

2. X = c2x2 + c1x + c0, Y = −(2c2x + c1)y − 6c2.

3. X = c1x + c2, Y = c3y.

Section 2.7.3

1. T = −ct, X = cx, Y = cy, Z = cz

2. T = −c1t + c2, X = c3y + c4, Y = −c3x + c5,

3. T = c1, X = c2y, Y = −c2x,

4. T = c1, X = ac2x − bc2y + bc3, Y = ac2y − bc2x − ac3,

5. T = c1t + c2, X = −c1x, Y = −c1y.

where in 4, c1(a2 − b2) = 0.

Section 3.1.4

(T ,F ,G are arbitrary)

1.(i) T = T(t, x, u), X = F(x − ct, u) + cT(t, x, u),

U = G(x − ct, u),

1.(ii) T = T(t, x, u), X = F(x − ut, u) + tG(x − ut, u)

+ uT(t, x, u), U = G(x − ut, u),

1.(iii) T =
(
c1 x2 + c2 x + c3

)
et + c6 + 2 c5 x + 4 c4 e−t,

X = 2
(
2 c1 x + c2

)
uet +

(
−4 c4 x + 2 c7

)
e−t

+ 4 c5 u − c5 x2 + c9 x + c10

U =
(
4 c1u2 −

(
c1 x2 + c2 x + c3

)
u
)
et −

(
4 c4 u − c4 x2

+ c7 x − c8

)
e−t −

(
4 c5 x − 2 c9

)
u

1.(iv) X = c1u2 +
(
2 c2 x + c3

)
u + 4c4 x2 + c5x + c6,

Y =
(

c1
y
x
+ c4x

)
u2 +

(
c3

y
x
+ 4c2y + c7x

)
u + 4c1

y2

x

+ c6
y
x
+ 4c4xy + c8x + 2c9y
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U = c2u2 +
(

4c1y
x

+ 4c4x + c9

)
u + 2c3

y
x
+ 2c7x

+ 4c2y + c10.

Section 3.2.5

1. T = c1 + c2e2t + c3e−2t

X =
(
c2e2t − c3e−2t) x + c4et + c5e−t

U = −
(
c2e2tx2 − c3e−2t + c4etx + c6

)
u + Q(t, x),Qt = Qxx

+ (xQ)x.

2. T = 4c1t2 + 2c2t + c3

X = (−c1u2 − c4u − 2c1t + c5)x + Q(t, u),Qt = Quu

U = (4c1t + c2)u + 2c4t + c6.

3.(i) T = 2c1t + c2, X = c1x + c3, U = 0

3.(ii) T = 2c1t + c2, X = c1x − c3u + c4, U = c1u + c3x + c5.

4. T = c1t + c2, X = c3x + c4, U = 2(c3 − c1)u.

5. T = c1, X = c2, U = 0.

6. T = c1, X = c2, U = 0

7. X = c1x + c2y + c3u + c5

Y = −c2x + c1y + c4u + c6

U = −c3x − c4y + c1u + c7.

Section 3.3.1

1.(i) T = 3c1t + c2, X = c1x + c3, U = −c1u

1.(ii) T = 3c1t + c2, X = c1x + 2c3t + c4, U = −c1u + c3x + c5

1.(iii) T = 3c1t + c2, X = c3x2 + c4x + c5, U = (2c3x + c4 − c1)u.
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2. X = c1x + c2, Y = (c1 − c3)y + f (x), U = c3u + c4.

3. T = c1t + c2, X = c3x + c4, U = (4c3 − c1)
u
n
.

4. T = c1t + c2, X = c3x + c4, U = (c1 − 4c3)
u
4
.

Section 3.4.3

1. T = 2c1t + c2, X = c1x + 2c3t + c4,

U = −c1u + (−c3x + c5)𝑣, V = (c3x − c5)u − c1𝑣.

2. T = c1t2 + 2c2t + c3, X = (c1t + c2)x + c4t + c5,

U =
(
Fu + 2Fx

)
e𝑣∕4 − (c1t + c2)u + c1x + c4

V = 4Fe𝑣∕4 + c1x2 + 2c4x + 2c1t + c6,

where F satisfies Ft = Fxx.

Section 3.5.1

1. T = 9a, X = (3a′ + 2c1)x + 3a′′y2 + 3b′y + c,

Y = (6a′ + c1)y + 3b

U = (−3a′ + 4c1)u + a(4)y4 + 2b′′′y3 + 6a′′′xy2 + 3a′′x2 + 6b′′xy

+ 2c′′y2 + 2c′x + dy + e,

where a, b, c, d, and e are arbitrary functions of t.

2. T = 6a, X = a′′y2 + 2(a′ + c1)x + b′y + c,Y = (4a′ + c1)y + 2b

U = 2(c1 − 2a′)u − a′′′y2 − 2a′′x − b′′y − c′,

where a, b, and b are arbitrary functions of t.

3. T = 6a, X = 2a′x − a′′y2 − b′y + c,Y = 4a′y + 2b

U = −4a′u − a′′′y2 + 2a′′x − b′′y + c′,

where a, b, and c are arbitrary functions of t.
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Section 4.4

1. (i) F
(

ux, 2xux − u, u2
y − 2x, uxuy − y

)
= 0,

(ii) F

(
2x − 1

u2
y

,
ux

uy
, uuy, y − u

uy

)
= 0,

(iii) F
(

2ux + x, ln uy + y,
ux

uy
, u + u2

x + uy

)
= 0.

2. (i) X = 2u, U = 0,

(ii) X =
(2c2t + c1)x + 2c3t + c4

2c2t2 + 2c1t + c0
, U =

c2x + c3 − (2c2t + c1)u
2c2t2 + 2c1t + c0

,

(iii) X = −u + A(t, x), Y = −u3 + A(t, x)u2 + B(t, x)u + C(t, x),

where A,B, and C satisfy the following system

At + 2AAx − Axx + 2Bx = 0,

Bt + 2BAx − Bxx + 2Cx = 0,

Ct + 2CAx − Cxx = 0.

3. X = ax + b,

U = −2au − 2a(ȧ + 2a2)x2 − 2(aḃ + bȧ + 4a2b)x − 2b(ḃ + 2ab),

where a = a(t) and b = b(t) satisfy ä + 2aȧ − 4a3 = 0, b̈ + 2aḃ −
4a2b = 0

4. (i) X =
c1x

2c1t + c0
, U = 0 (classical)

(ii) X = 3(u − 1)
x

, U = −3u(u − 1)2

x2
.

5. Y = g′(x), U = F(y − g(x)),

where F ′′′ + FF ′′ − F ′2 = 0. The rest are classical.

6. X = u + 𝑣
2

+ A,
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U =−1
4
(u + a) (u + 𝑣)2 − b − a

4
u2 − A

2
u(u + 𝑣) +

(
B − ab

4

)

u − aA
2
𝑣 + C,

V =−1
4
(𝑣 + b) (u + 𝑣)2 − a − b

4
𝑣2 − A

2
𝑣(u + 𝑣) − bA

2
u

+
(

B − ab
4

)
𝑣 + D,

where A,B,C, and D satisfy the following system of equations:

At + 2AAx + 2Bx − Axx = 0,

Bt + 2BAx − Cx − Dx − Bxx = 0,

Ct + 2CAx − aDx − Cxx = 0,

Dt + 2DAx − bCx − Dxx = 0.
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exact, 33
Fisher’s, 108
Fitzhugh-Nagumo, 108
Folker-Planck, 107
general linear, 55
Harry Dym, 115
heat, 84, 138
heat equation with a source, 100
homogenous, 31
Kadomtsev Petviashvilli (KP), 132
Korteweg-de Vries (KdV), 110
Laplace’s, 91
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linear ODE, 28
minimal surface, 108
modified KdV, 115
Navier-Stokes, 125
nonlinear diffusion, 107, 108
nonlinear diffusion convection,
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nonlinear diffusion system, 125
nonlinear heat, 140
nonlinear wave, 108, 109
nonlinear wave system, 125
polymers, 71
potential Burgers, 95
potential KdV, 115
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Schrodinger, 108
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equation(s) (Continued)
thin film, 115
Zabolotskaya-Khokhlov, 132

Euler’s equations (fluid mechanics), 125
exact equation, 33
extended infinitesimals, 41
extended operator, 39

F
Fisher’s equation, 108
Fitzhugh-Nagumo equation, 108
Folker-Planck equation, 107

H
Harry Dym equation, 115
heat equation

generating new solutions, 89
nonclassical symmetries, 138
reductions, 87
symmetries, 84

heat equation with a source, 100
homogenous equation, 31
Hopf-Cole transformation, 100

I
infinitesimal operator, 38
infinitesimal transformations, 19
infinitesimals, 19

extended, 41
invariant surface condition, 83, 135

K
Kadomtsev Petviashvilli (KP)

equation, 132
Korteweg-de Vries (KdV) equation,

110

L
Laplace’s equation

reductions, 92
symmetries, 91

Lie group, 4
Lie’s invariance condition, 24
Lin-Tsien equation, 132
linear ODE, 28
linearization-Burgers equation, 98

M
minimal surface equation, 108
modified KdV equation, 115

N
Navier-Stokes equation, 125
nonclassical symmetries

boundary layer equation, 160
Boussinesq equation, 160
Burger’s equation, 160
Burger’s system, 161
heat equation, 138
nonlinear heat equation, 160, 161

nonlinear diffusion convection
equation, 108

nonlinear diffusion equation, 107, 108
nonlinear diffusion system, 125
nonlinear heat equation, 140
nonlinear wave equation, 108, 109
nonlinear wave system, 125

O
operator

extended, 39
infinitesimal, 38

P
potential Burgers equation, 95

R
Riccati, 8
Riccati equation, 35

S
Schrodinger equation, 108
symmetry, 1

circle, 1
line, 3
nonclassical, 135
triangle, 1

T
thin film equation, 115

Z
Zabolotskaya-Khokhlov equation,
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