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PREFACE
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Applied mathematicians, chemists, engineers, physicists, and others who
use mathematics sometimes need to solve a differential equation. The related
problem of evaluating an integral is usually simple, since tables of standard
integrals are readily available. A similar tabulation of standard differential
equations might be helpful. The idea is not new. As early as 1889, Professor
William E. Byerly of Harvard University included “A Key to the Solution of
Differential Equations’ in the second edition of his text on integral calculus.
Parenthetically, it is interesting to note that Peirce’s “A Short Table of Inte-
grals” first appeared in the 1881 edition of the same book. More recently, the
well-known German treatise of E. Kamke (1940 and subsequent editions) has
contained a collection of more than a thousand equations with their general
solutions. -

Unfortunately, consideration of the problem shows that it is not easy to
select the standard equations. The value of an integral, in the usual case, can
be presented in terms of parameters, independent of numerical values assigned
to them. On the other hand, a change in sign of some term in a differential
equation, the transfer of a term from numerator to denominator, or some
other simple alteration in its form may convert the equation from one with a
solution by elementary methods into a case with no solution in terms of
known functions. In spite of these obvious difficulties, I was still of the opinion
that it would be useful to have some formal scheme for solving a given equa-
- tion. The result is the compromise offered 1n Parts I and II of thls book. It is
fully explained in the Introduction.

There are no new methods here but the arrangement of the material 18
original. I believe that the rather complete treatment of singular points 1s an
important feature. Reference to the index will show that the book of E. L.
Ince has been a constant source of help to me. In fact, if one were limited to a
‘single book on differential equations, this is the only possible choice. The well-
known books of A. R. Forsyth were also informative. Long out of print, his
six volume “Theory of Differential Equations” is now available in a hand-
somely bound reprint. Finally, I would like to mention the recent book of
E. A. Coddington and N. Levinson. Its discussion of the modern theory makes
it a worthy companion to the two classics just cited. '

i1
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The equations in Part 11 were selected from a much larger number which 1
collected over a period of several years. All of the equations in about fifteen
elementary textbooks or other sources given in the Bibliography were first

recorded on cards. After converting each to a uniform notation, they could
be arranged according to the various types of Part I. In some cases, it was

possible to generalize an equation by the introduction of alternative signs or J}
by the replacement of a numerical constant with a literal one. The final selec- N
tion for Part IT was made more or less arbitrarily. An equation with unusually =

complicated coefficients was often discarded. Others were kept because their
-solution required some ingenious trick, because the solution had a pleasing
form, or for some similar reason. The final set, 2315 in number, includes typr-
cal examples of most methods in Part 1. Twice as many could easily have been
retained, showing how difficult 1t would really be to choose a standard set. It
-was fascinating to note, as the work progressed, that many of the equations
_eould be traced back successively from recent textbooks to the English books
-of the early twentieth century; then to the French or German treatises of the
_pineteenth century; finally to Euler, the Bernoullis, Lagrange, or Laplace,
_who, of course, first showed how to solve them. e
.- I have solved each equation 1n Part II by the methods indicated. This work
-involved several thousand pages of notes. Subsequent transfer of the equation

and solution to the manuscript, the processes of typing, printing, and proef
.reading have certainly introduced errors, although each step was earefully

. - )

_checked. No one knows better than I the annoyance than can result from a
“misprint. I hope that the annoyed reader will let me know when he finds one.
‘Perhaps this is the proper place to make the obvious comment that 1 am a
-chemist by training and profession. 1 make no pretense to mathematical ele-
.gance in the book and I am well aware of 1ts many faults in this respect. 1
-believe, however, that it will help people who want to solve a differential
‘equation. I might add that I have certainly solved more differential equations

than most chemists and more than many mathematicians.

. Writing the last paragraph of a preface is always an agreeable task. The
chores of typing, proof reading, and preparation of the index are completed.
‘The excitement of planning and organizing the book is over and I can only
‘hope that the user will have a little of the pleasure that I have had in working
on it. I have expressed my gratitude to several mathematicians in an earlier
-paragraph. Qimilar comments could be made to the authors of many books
listed in the Bibliography. Let me now thank the publisher and the printer

. for all of the arduous detail requ ired to produce the final product. Special

hanks go to Mr. William R. Minrath of the D. Van Nostrand Company, Inc.,

Adoffier:gennine and sincere thanks to my colleague, Professor Frederick W.

hn formesly in the Department of Mathematics at Washington Square

. -l 2
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College, who was always willing to help me when I had troubles with some
particular equation.

GEORGE M. MURPHY
New York, N. Y.
March 25, 1960
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INTRODUCTION

This book has been written for anyone who wants to solve an ordinary
differential equation. Two alternative procedures are offered.

a. Go to Part I. It contains most of the methods which have been
developed for solving ordinary differential equa.tlons If directions are
followed, it should be possible to classify the given equation as a special
case of one or more general types. When the type has been identified,
details of the method for solving it will also be found.

b. Go to Part II. It contains more than two thousand ordma.ry diff-
erential equations, arranged in a systematic order. A solution of each is
also given or some directions as to a method. References to the general
methods of Part I are included in each case. If the equation to be solved
is contained in this collection, a solution of it is thus found. If the equa-
tion is not in the collection, one of similar form there may suggest a method
that might be tried. Otherwise, it will be necessary *o consult Part I
and seek a general method which is applicable.

The remainder of this section contains some definitions, some general
properties of differential equations, and a description of the symbols

used in the book. It should be read before continuing with either Part I
or Part II.

1. Some Definitions. A differential equation 18 a relation involving
one or more derivatives and an unknown function. The problem of
solving it is a search for that unknown function. The solution of a diff-

erential equation is any relation, free from derivatives, which satisfies
the equation identically.

- . The most general ordinary differential equation is

f(x ?/:y y 5 ese y(ﬂ)) =0 | (1)

Where z is the independent variable, y is the dependent vamable y' = dy/dzx,

= d%yldx?, ¥y’ = dBy[dad, yV = dYy[dat, ..., y™ = dry/dz. Tt will
of ten also contam parameters or literal constants. There are other kinds

- of differential equations involving variables as follows: one dependent

variable, two or more independent variables, and partial differential
eoeﬁcwnts of the dependent variable with respect to one or more of the

1



9 ORDINARY DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

independent variables—a partial differential equation; two or more
dependent variables, a single independent variable which need not appear
explicitly, and differential coefficients with respect to this independent
variable—a total differential equation ; one independent variable, two or
more dependent variables, and two or more simultaneous equations—a
simultaneous system of differential equations; variables, derivatives, and
an unknown function behind an integral sign—an nfegro -differential
equation ; variables, derivatives, and finite differences—a differential-
difference equation. None of these cases are treated in this book. .

" The order of an ordinary differential equation is the order of the highest
differential coefficient which it contains. If the equation is a polynomial
in all of the differential coefficients, the degree of the highest-order
derivative 18 the degree of the differential equation. It is often necessary
to rationalize the equation and to clear it of fractions in order to determine

~ the degree. In some cases, a transcendental function of one or more deri-

vatives may occur. Typical examples are Iny’, siny”, cosh y™. In such
cases, the equation is of infinite degree. -
_'2.' The So_lutiOn of a Diﬁe'r.e-_ntial Equation. Given a function
F(x: Y, Cl: .02: see 9 C‘R«) = 0 | . | (2)

where Cy, Co , w., On are arbitrary constants, differentiate it n times
successively, if this be possible, to get N ' '

oF OF dy
i Wi _ _ 0
2F  &2F dy OF (dy\2 OF d% -
P e (S) 4 -0
- Ox? oxoy dx Oy? \dx dy dax?

onlF ol dry

+ e et ——=0
ox® - oy dxv

Use (2) and the first equation of (3) to eliminate one of the constants Cj.
The result is a differential equation of first order containing (n—1)
arbitrary parameters. A total of » differential equations could be found
in this way, because any one of the constants C; could be selected for
elimination. However, only two of the n equations would be independent

- gince all were formed from two simultaneous equations. |

........

. Continue in this way and use 2, 3, ..., k < n equations from (3) and
got. (2) differential e uations of order k from (2). Each contains (n—k)

L
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Finally, there is only one differential equation (1) of order # and it is
free from arbitrary constants. The reverse of this is also true. Given a
differential equation of order =, the existence of a function (2), containing
n arbitrary constants, is implied. Such a function is the complete primitive
of (1), its general (or complete) solution, its general (or complete) integral,
or its wniegral curves. Some writers use the word integral to designate an

- implicit relation like (2) and restrict the meaning of solution to an explicit

relation for y as a function of z. Others use integral or solution to mean the
result obtained when (1) is solved, reserving the word primitive for (2),
if the differential equation has resulted from it by differentiation. Such
distinctions will not be made here and the words primitive, integral,
solution will mean any function that satisfies the differential equation
identically. -

The n arbitrary constants eliminated from (2) in obtaining (1), or
resulting from the latter when it is solved, are the constants of integration.
It should not be inferred, however, that the process of differentiation and
elimination of these constants is the normal way in which differential
equations are produced. Nevertheless, if the general solution can be found,

‘the differential equation could have resulted from it by the process

described. - _
In many cases, especially in applied mathematics, it is of interest to
find solutions which satisfy certain special conditions required for physical

~reasons. Such conditions are initial values or boundary conditions. The

required solution can usually be obtained by assigning particular values
to one or more of the integration constants in the general solution. The
result, containing less than the full number of arbitrary constants, still
satisfies the differential equation. It is a special (or particular) solution

or special (or particular) integral.

Sometimes a function exists which satisfies the differential equation

'b'ut_ which is not a special case of the general solution. It is a singular
- solution or a singular integral. ' |

3. Existence Theorems. Statements in the preceding section were
based on the assumption that the given differential equation actually has

a unique solution. Elementary methods for finding it are successful
because both the equation and its solution belong to a relatively simple

class of functions. In more general cases, it is not at all obvious that a

solution of the equation exists. Mathematicians, since the time of Cauchy,
‘have been interested in this problem and their conclusions are stated in a
number of existence theorems. The details and proofs of them are lengthy ;

- .

they will not be given here. For suitable references see Ince-1, Coddington

iﬁqd Levinson, or other sources listed in the Bibliography.



4 ORDINARY DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

Existence theorems are usually based on the properties of functions of

a complex variable. For our purposes, they can be briefly summarized In
terms of a real variable. A given function of the variables z, ¥, 2, .-
 is said to be analytic in the neighborhood of arbitrarily assigned constants
L0, Y0, 205 ++- » 10 if it can be developed by Taylor’s theorem as an absolutely

convergent power series in x—xp, Y —Y0, 220, - > t —t;. The existence
theorems prove that a differential equation

y(n) = f(x: Y, y,r ?j”: eee s y(n_l).)

will have a unique solution ¥ = y(z), provided that flx, ¥, ¥’ -5 y 1))
is analytic in the neighborhood of xo, Yo, Yo', Yo 5 -+ > YO m-1), The solution
of the equation will satisfy the conditions y(x0) = Yo, Y (Xo) = Yo s
y' (Xo) = Y0 s - > Yo ™ 1(xo) = yo1). Since, within certain limits, these
n constants are arbitrary, they are the required integration constants of
the general solution. Further comments about existence theorems will
be made later in connection with special kinds of differential equations.

4. Notation. The symbols z, y are used for the independent and
dependent variables respectively in this book. Derivatives are written
as y = dyldx, ¥y = d2yldx2, Yy = d3y(dx3, YV = diy(dat, ..., Y =
— dnyldxr. It is often convenient to let ¥y = p. If a new independent
variable is introduced it 18 called z and there 18 some relation ¢(x,2) = 0
connecting the old and new variables. For clarity, the name of the

dependent variable will also be changed so that y(x) = u(z). Other
variables that may occur are v, w, ¢, tc. They will be defined when they

are used. _ _
The arbitrary constant of integration is C or Cq, Cg, ...’ C,. Other

constants are lower-case letters, such as a, b. ¢, k, g, 7, 8, with subscripts
where needed. The letters m, n mMoan integers In most cases.

’. Functions of one or both variables are f,9,h, F, G H, X, Y, often
| with subscripts; 4, B sometimes are constants but they may be a func-

i tion of the variables. Greek letters have generally been avoided but they

have been used where necessary. .
Primes, double primes, etc., always mean derivatives. A subscript

letter indicates a partial derivative; thus, f, = of|ox, Fgy = 02F | 0x 0y .

A wide variety of symbols is needed in a book such as this and 1t is not
iples just stated will be

always easy to be consistent. The general princ
used, as far as possible. Departures from them will be explained as they

A number in parentheses always refers to an equation. To simplify
the notation, if (3) appears in section 7, for instance, 1t will mean the third
AT .= IR R A g a T .« - . . . -

_equagion 1 }l%g-g _section. If the reference 18 to the third equation in
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section 4, the symbol would be 4(3). If there are subsections, like 7-1,
7-2, 7-2-1, ete., the equations are numbered consecutively throughout.
~ Section numbers are indicated in a similar way but without parentheses.
Thus, the number 4-1 appearing in any part of A1 would mean section
4-1. If it referred to section 4-1 of A2, it would be given as A2-4-1.
When further subdivisions of a section are required they are called a,
b, c, ete. If still another subdivision is wanted, Roman numerals i, ii,
iii, are used.

References to texts or other books are given with the name or names of
the authors. If there are two or more books by the same author a number
is added to the author’s name. Full details, such as the title of the book,
the publisher, date of publication, etec., will be found in the Bibliography.

- gl
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METHODS FOR SOLVING ORDINARY
DIFFERENTIAL EQUATIONS
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ey — L Y I e R ————

- The equé.tion to be solved has the form
S feyyy ey =0
Determine its order and consult the appropriate section.
A. An equation of first order

B. An equation of second order
. C. An equation of order higher than two
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A. THE DIFFERENTIAL EQUATION
IS OF FIRST ORDER

The general equation is
f(x: Y, y’: ay, ag, ..., a’ﬂ) =0

where x is the independent variable, y is the dependent variable,
y' = dy/dz, and a; is a parameter or literal constant. Proceed according

to one of the following directions.
a. The equation is a polynomial in y’. The degree of the polynomia.l
is the degree of the differential equation. There are two cases.
i. The degree of the équation is unity; see Al. _
ii. The degree of the equation is two or greater; see A2.

b. The equation is not a polynomial in 3’. If the equation is algebraic
in y' but not a polynomial or if transcendental functions of 4’ occur, like

cos ¥, In ', ete., refer to A2.




Al. THE EQUATION IS OF FIRST ORDER
' AND OF FIRST DEGREE '

The general equation is

y’ - f(x! Y)

If it is not of this form or cannot be converted to it, refer to A2. When it

18 cleared of fractions, an equivalent and more symmetrical equation,
used in many textbooks, is

Ji(x, y)dx + fo(x, y)dy = 0

Compare the given equation with the cases of the f; ollowing sections.

- As far as practicable, they have been presented in the order of increasing
complexity. Often an equation may be solved by more than one method
but it will usually be true that the one with the smaller type number will
“be simpler. '

- 1t should be noted that the general solution.of the equation may be given

Yy =Jx)Mdz+C

It is then regarded as solved, even though the integral may not be evalua-
 ted in terms of known functions. In this form, it is said that a quadrature
-~ amust be completed in order to obtain an explicit solution y = F(x)+C.
& Thus, the problem has become one of integral calculus, not one of differen-
B tial equations.

. L
.
:
- fur
. . I
b ; )
H pL
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- |; ......
...

e r powni, where f(z, y) becomes infinite or indeterminate, proceed
f =& once to 10. Some general properties of the equation and its solution
f &re also described there.

§5: Sometimes two different solutions for the same equation are found by
fartierent methods ' - -

Fi(x,y) = Cy; Fax, y) = Cz
9




10 ORDINARY DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

If both satisfy the differential equation, they must be equivalent, which

means that
oF 1 oF 2 oF 1 oF 2

oz 3y oy Ox

Alternatively, eliminate one of the variables. The other will usually also

disappear, leaving a relation between C; and Cq.
A related situation occurs when two equations are given

fl(xa Y, y', 031) = (; fz(fl?, Y, y’, az) = 0O

where a;, a2 are constants. If both have arisen from a common primitive,
each can be differentiated and the two constants eliminated to get a
second-order equation containing no constants

By, 9, y") = 0

If the general solution of the latter can be found it will contain two inte-
gration constants, which can be called ay and az. More directly, this
solution would follow by elimination of y between the two first-order

equataons

1 Separable Variables

The general equation is

y = f(x)g(y)

If g(y) = a, see 1-1; if f(x) = a, see 1-3; if neither is a constant, see 1-2.
For a special case, see 1-4.

1-1. Dependent Variable Missing The equation is
y = af(x)

Its _solution 18

y = af f(x)dx+C

1-2. Neither Variable Missing. The equation is
Yy = f(x)g(y)

f ) f f(x)dz+ C

The equatioh is sometimes presented for solutlon as

X(x) Y (y)dx + Xy (x) Y (y)dy = O

The solution is
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In the standard form _
- Jx) = 2 X(2)/Xa(x); glx) = F Yi(y)/Y(y)

Care must be taken not to lose a solution, for the roots of X; = 0 and
Y1 =0 sa.tisfy the new equation but they may not satisfy the equa.tion
written in standard form.

If f(x) and ¢g(y) are the square roots of certain polynom.la,ls see 1-4.

1-3. Independent Variable Missing. The equa.tmn is

¥y = ag(y)

and its solution is
dy
f —— =ax+C
g(y) ' -
1-4. The Euler Equation. One of several equations known by the

name of Euler, see also B1-3-1, has the form

vXy = V7 |
X(x) = ao+a1x+a2x2+a3x3+a4x4
Y(y) = ao+ a1y +azy? + asy® + asy*

o " a. The equation is separable, see 1-2, but evaluation of the integrals
- may cause difficulty; see ¢ and d.

"~ b. Square the equation to get one of the second degree and try the

- methods of A2, which may be successful when some of the a; vanish.

- In most cases, the procedure of ¢ or d will be preferable.

.. The functions X(x) and Y(y) are quadratics so that ag = 0

| Eﬁ the roots of the quadratic are equal integration is simple. If they are

L ',ch functions can be inverted to give an algebraic solution, but see also d
7d. The functions X(x) and Y(y) are of third or fourth degree. The
B resulting integrals define elliptic functions and their properties can be
f msed to secure an algebraic solution of the differential equation. Con-
%ﬁ enient references for elliptic integrals and functions are Erdélyi-1,
- _acrobert, Whittaker and Watson. Elliptic functions can be avoided and
a.flgebraw solution of the equation obtained directly by either of the
wing methods.

i The method of Euler (also attributed to Lagrange).
Btroduce new variables

_:"'r __’.. _;..r. L .
T
- -._.Ir - ."'.- _._-..__ . P . ) |
....-‘ e :.I-‘;___._ ‘_:,"___ ;- - P . |
- .n . :__,.;-.\, . -..-'-..‘:_ -l 3 . /
e | . —
_: . PR T . Lo . E . ] x x
. ﬂ-\; . '- r a. a . - . , el il —— [ ] |
W A R " R . dt
-r o . ' .
S _
“Zin :'.I o

e
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s0 that

d2w 24
—=a aQaW
dtz 3 4

A first integral of this second-order equ&tioh, see B2-2-1, 18

/ dw \2
_— = +aqwl+C
( dt ) asw 1+ a4 J

When the original variables z and y are recovered the solution of the
equation 1s

(VX £ VTR = (2 —yP[C+as(@+y)+aa(x+y))
Alternatively, use new variables u = 1/r and v = 1y so that the
original equation becomes
W@V = +/U
U(u) = as+ agu + asu® + ajud + agut
V(v) = as+ agv+ agv?+ a193 + apvt

Its solution is like the previous one with u, v, U, V instead of z, y, X, Y,
respec twely ‘When the former variables are replaced by the latter, the

result is
(/X £224/Y)? = (x —y)2[Cx2y? + arxy(r +Yy) + ao(z +¥)?]

The two solutions are equivalent since they are linearly dependent. After
some tedious algebra, both can be rationalized. Complete details, includ-
ing the intermediate steps, are given by Ca.yley, Chapter XIV. The final
algebraic solution of the differential equation is

flz, y) = co+2cl(:v+y)+4czxy+ca(x2+y2)+2c4wy(x+y)+csx2y2 = 0 (1)

Its coefficients are

co = @12 —4aoC

c1 = ai(az —C) —2a00a3

o3 = (a9? —a1a3 —C?)[2 —2a004 (2)
c3 = (ag —C)? —

Cq4 = a3(a2 ~C ) — 20104
cs = ag? —4ay(

ii. The method of Cauchy (also called the method of Eu]er). Assume
a solution like (1), where the ¢; are constants to be determined. Such a
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solution can be written in either of the two equivalent symmetric forms
fx,y) = Xo+2Xwy+Xoy2 = Yo+ 2Y 12+ Yor2 = 0 (3)

Xo = co+2c1x+c322; Yo = co+ 2c1y + cay?

X1 = ¢i+2c0x+cax?; Yy = 1+ 2coy + cay?

Xg = cg+2c4x+c522; Yo = c3+ 2¢4y + 592

Differentiate f(x, y) partially with respect to = and eliminate z to get
of|ox; differentiate with respect to y and eliminate y to get of/ 3y The

results are
of of
— = 2( Y42 — Yng)llz; — = 2(X12 -X0X2)1/2
ox oy '
If f(x, y) is to satisfy the differential equation, it is necessary that
- % 0
-——‘id:c + -'f-dy ==
_ _ ox
- Comparison of coefficients shows that
(X12 —XoX2)V2y' + (Y12 — Yo Ya)i/2 = 0 (4)

In order for this differential equation to be the equivalent of ¥’V X =
+1/Y, the corresponding coefficients must be equal, or

X =X2-XoXo: Y = Y2-Y,Yo _ (5)

The left-hand side of these equations contains five constants while the

- right-hand side contains six constants. This means that five ¢; can be
fixed, the sixth one remains arbitrary, and that an infinite number of
polynomials like (1) will satisfy the differential equation. The ¢; in (1)
.could be determined by equating coefficients of equal powers of the two
- variables. The calculations can be simplified by geometric considerations,
-88 shown by Jacobi, and the general integral of the differential equation
can be presented as a fourth-order determinant, as shown by Stieljes.
-The details are given by Goursat.

Obwnously, the coefficients in (2) are also satisfactory. The genera.l
mtegral (1) 18 a family of curves of the fourth degree, with two double
points at infinity on the z and y axes, respectively. The family of curves
has an envelope composed of eight straight lines, four each parallel to

~#he z and y axes. These are singular solutions of the differential equation;

| ﬂee A2-10.
,_ 2 The Linear Equation
The form of the equation is
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Its solution is _
y=Ti+1Te

Y1 = Ce#; Yz = effetf(@)da; () = [g(x)da

The general solution is linear in the integration constant, for y = Ce?+ Yo,
An alternative form of the solution is occasionally useful. Let u = f(x)/g(x)-

The solution 1s '
y = e#(C+ [e%du) —u

There are some special cases.
a. g(x) = 0. See 1-1. _ -
b. f(z) = 0. See 1-2. The solutionislny = [g(x)dz+Cory = Cie?.
c. g(z) = k, a constant. The solution is o

y = Ce*z 4 ¢k | e~%zf(x)dx

d. A special solution, y; is known. The general solution, found with

only one quadrature, 18 )
Yy =Y - 06"5

Sometimes, a special solution can be found by inSpection.
 e. Two special solutions, ¥, and ys, are known. The general solution,
obtained without quadrature, is '

'y = y1+Clyz —)

" f. Three special solutions are known. Call them y; = CiF(z)+ Ye(x);
¢ = 1, 2, 3. Eliminate F(x) and Y(x) to get ' -

Cys-n . O30

= const.
. - yw-nn -G -
~ ¢. The general case, where neither f(x) nor g() vanish. The solution
previously given can be found in several different ways.
" i. The method of Lagrange or variation of parameter. Assume
temporarily that f(x) = 0, so that the equation is case b, but write the
solution as y = ue?. Regard u as a parameter, to be adjusted so that the
equation is satisfied when f(z) # 0. When this result is put into the
original equation, f(x) = efu’, which is now case a In w and z, with solu-
tion u = [e#f(x)z+C. The general solution follows. See also
B1-12-3. - ' - o
" {i. The method of Bernoulli. Assume a solution y = uv and get
vu’ + (v’ — gv)u = f. Determine v(z) so that the term in parentheses
vanishes. This is case b. Now find u(x) from vu’ = f, which is case a.
The general solution follows when » and v are substituted into y = uv.
, iii. The integrating factor. The linear equation may be converted into
an'exact equation, see 7, by means of an integrating factor. Such a factor
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in this case must be a function of x alone. Calling it / (:z:) it is derivable
from the equation of type a, - -

dl '
. _ _ dx a
Its solution is I(x) = e—%, where ¢(x) = [ g(z)dz.

3. The Riccati Equation

There are three different types but the one actually studied by Riccati
(1724) is a special case, cf. 3-2, of the generalized Riccati equation,
cf. 3-1. If the coefficients in these equations have certain special proper-
ties, they can be solved by quadratures. In general, the solutions define
functions more complicated than the elementary transcendental func-
tions; see also B2-7. Such functions are logarithmic, exponential, trigo-

~ nometric, or hyperbolic; and simple combinations of these functions.
- They are obtained by integration of algebraic functions or by rational
processes following such an integration.
 The Riceati equation is introduced at this pomt because its form sug-
~ gests that it is similar to the linear equation, type 2. Actually, it is a more
- difficult equation to solve and it, together with type 4 following, is much
‘more difficult than many of the subsequent cases; see also 11-4.

* 3-1. The Generalized Riccati Equation. The form of the equation is
y' = f(@)+g(x)y +h(z)y’ (1)

It ha.s considerable theoretical interest, see 10-1, since its solutions are
o free from movable branch points and can have only movable poles. It
- is a special case of the Abel equation; see 4-1 and 11-4. There are several
: 8pecla.l cases. |
. :a: f, g, h are constants; see 1-3.

~ b. A(x) = 0. It is linear; see 2.

C. f(x) = 0. The equa.tlon i8 of Bernoulli type; see b.

- d. Other special cases. Compare the given equation with the types of
L 3-2 and 3-3. If it is one of these, proceed as directed. there.
. e, The general equation.” None of the preceding special cases are appllc-

: able. Refer to 3-1-3, in the hope of transforming the equatlon to types
-3-2 or 3-3. If this is not successful, go to 3-1-1.

......

3 3-1 1. The General Solution of the Equation. If one or more
o .; i "al solutions of (1) can be found by inspection or otherwise, the general
""" ion is easy to obtain. When a special solution is not obvious, go to

_“ -2, - where some methods for finding one are presented.

o Ta
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a. A special solution y; is known. The general solution can be found by
quadratures in two different ways. |

i. Let y = y1 + 1/u. Then (1) becomes linear, type 2,
w' () +h(x)+ U@ = 0; Ux) = g+2hyn
The general solution of (1) is
(y —)[C — | Mx)X(x)dx] = X(x);
X(x) = exp[| U(zx)dx]
ii. Let y = y1 Y and get a ‘Bernoulli equation, type 3,
' w'(x) = (9+2hy1)u+hu?

Tts solution is identical with that in i, when y 1s introduced.

b. Two special solutions, y; and y2, are known. The general solution
is found with only one quadrature. Assume

u(y —y2)i= Y —Y1
where y is the general solution of the equation and get
' u'(x) = Myr —y2)u
which is sepa.ra.ble type 1-2. Its solution is Cu = U(x), where
- U(x) = exp[f (yr —yz)dr]
The general solution of (1) becomes
y[C —U(x)] = Cy1 —y2U(x)

c. Three special solutions are known. Let them be ¥, ¥2, Y3 and the
general solution, found without quadrature, is

(y —y1)(y2 —y3) = C(y —y2)(ys —41)

d. Four special equations are known. In this case, their cross-ratio is

constant,
(ys —y2)(ys —1) = Clya —y1)(ys —y2)

e. Transform the equation into one of second order. Change the depen-
dent variable by the transformation

yh(x)u(x)+u'(x) = 0; Inu(r)+ | yh(x)dr = 0
The result is ' '
uw'’'(x) +P(x)u’ + Q(x)u = 0

where Plx) = —(g +h'[h); Q(x) f(x)h(z). It is linear and of seéond_
order; see B1. Such equations have been studied extensively and this
may be the most suitable procedure unless the given first-order equation
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has some special property. If two linearly independent solutions of the
second-order equation are u; and us, then the general solution of the
Riccati equation is

yh(x)[ Cuy +uz]+ Cui’+u's = 0

3-1-2. Special Solutions of the Riccati Equation. Sometimes one
or more special equations can be found by inspection or by a lucky guess.
More formal procedures apply in certain cases. If the present section is
not helpful, try 3-1-1e or some transformation in 3-1-3.

Let y = u(x)/h(x) and, convert (1) into

u'(x) = F(x)+ G(x)u +u2 (2)

‘where F(x) = flx)h(x); GQ(x) = g(x)+h'/h. If both F(x) and G(z) are
- polynomials, see a, b, ¢, in turn. If f(z), g(z), and h(x) are polynomials,
it will not necessarily be true that G(x) is a polynomial ; hence the methods

“of those sections may not apply ; see, however, d for a possible procedure.
a. The equation becomes

u'(x) = F(x)+u? (3)

and F(x) is a polynomial, with G(z) = 0. There are two possibilities.
~ i. The degree of F(x) is odd. There is no polynomial solution of (3);
hence none of (1). _ '
. 1. The degree of F(x) is even. Two possible polynomial solutions
may exist. To find them, first note that if P(z) were a polynomial of even

- degree 2n, then v/ P(z) could be expanded in a series of the form
VP(r) = apz®+an 121+ ... +ag+byjz+bof22+ ...

b

Perform such an expansion on v/ —F(z) but stop the calculation with the
constant term. Call this result X(x); it is a polynomial of degree =, if
- F(@)is of degree 2n. The coefficients in the polynomial could be found by
. asimple modification of the square-root extraction method of elementary
- . algebra, by the method of undetermined coeflicients, or by expansion in
a Maclaurin series. _ -
If the differential equation has special polynomial solutions, they are
E  givenby '

u = + X(x)

B : Test both of them, for both, one, or neither may satisfy the differential
cequation. If neither is a special solution of (3), there are no polynomial
{ solutions of (3) and hence none of (1).

b. G(z) # 0. Let u = w — G(x)/2 and (2) becomes

: R - w'(z) = H(z)+w?
%where 4H(z)+ G?*(x) = 4F(x)+2G'(x). The equation in w(x) is similar

SR N S
S




18 ORDINARY DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

to (3); hence, with slight modifications, the procedure 18 very much like
that in a. Calculate .
Q(zx) = G2 —4F 2@
There are two cases.

 i. The degree of @Q(z) is odd. There is no polynomial solution of
either (2) or (1). |

ii. The degree of Q(x) is even. Expand 4/ Q(x) as in a, again stopping

with the constant term and call the resulting polynomial X(x). There
are two possible polynomial solutions of (2)

u= —(G+X)2

Test both, for neither may satisfy the differential equation. Alternatively,
it is possible to state conditions under which both polynomials are solu-
tions of the differential equation; see C. - |
¢. Q(x) is a constant. This s the necessary and sufficient condition that
both solutions of b satisfy the differential equation. There are two cases.
i. X(x) = k # 0. Introduce a new variable with the relation

u = —(G+k)[2+1/v

‘8o that (2) becomes !
v'(x) = 1+ kv
Tt is separable, type 1-3, with solution v = Cekx +1/k and the cor-
responding solution of (2) is I
y - | 1 -1
u = —(G+k){2+ (Cekﬂ’ + E)

Two special polyno mial solutions of it result with ¢ = 0, . The general
solution of (1) follows. _ - | _

ii. X(z) = k = 0. The equation in v(r) becomes v'(z)+1 =0, which
is separable, type 1-1, with solution v+z = C. The solution of (2) 18

- G 1
" TR0 - .
d. Polynomial coefficients. Suppbse that (1) has the form _
d(x)y = flx)+g(@)y+h(x)y’ (4)

where all of the coefficients are polynomials. Assume it to have a special
polynomial solution ¥ = E(x) and use a new variable ¥y = w+Y1, 80
that it becomes

$(xyu’ = F(zyu+h(x)?

where F(z) = g(z)+ 2h(x)R(x). If there is a polynomial solution of (4),
‘having the form u; = (x—a)™®, m 2 1 then ¢(z) will also contain a

. AL TR el w s = ’
' - .. e et L = e oL s v ! - '
. PO N LA = i . T T
T = LR --,--‘“f:ua{?';.;"-,’*uj.-.ﬂ::a.' (AL T S ' el
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factor (r—a). This property restricts the possible types of polynomial
solutions. Unlike the previous cases, where only two possible polynomials
may exist, the more general equation can have a larger number of such
solutions. See e for further discussion of this case.

~ e. Several polynomial solutions. Given (4), any specified number of
polynomial solutions can be constructed. From 3-1-1b, the general

solution can be taken as
Cfi(x) +f 2(x)

Cfs(x) +fa()

If fifs—fofs # 0, then (1) can be written in the form of (4) with
d(x) = fifa—fafs; flx) = fife' =fi'fe; 9(@) = fafs'—fefa+faft’ —ifd';
k(z) = fafs’ —fsfs’. Now, suppose that the fi(z) are polynomials. Select
fi(x) = 0, choose any polynomials desired as fs(x) and fu(z). Assign n
“special values C1, Cs, ..., O, to the arbitrary constant and require that

fa(@) = (Cifs+fa)(Cafs+fs) ... (Cufs+fa)

The differential equation ( 4) will have (n+1) polynomial solutions,
y = 0and y; = fo/(Cifs+fs),t =1 2,...,n The special solution y = 0
can be avoided and (»+ 1) special 3olut10ns retained if the variables are
transformed with the relation u(x) = y(x) + P(x) Where P(a:) is any
polynomlal -
'The considerations of this section may not be too usefu] in solving a
- Riccati equation. They could, however, be very helpful in constructing
~.. an equation with a predetermmed number of polynomial solutions.
'3-1-3. Some Properties of the Riccati Equation The fo]lomng
= - propertles of (1) sometimes apply in attempting to solve it.
.~ a. Removal of the linear term. The result, which is similar to (3),
‘can be a.ch.leved in three different ways. It might then be treated as in
.3-1-2 but see also b for a special case.
i Let y = 'u,(a:)e¢ #(x) = { g(x)dxr and (1) becomes
o u'(z) = F(z)+ G(r)u? - (5)
~ ihere F(z) = f(z)e~?; G(x) = h(z)e?. '
i. Let y = u(x)— v(:c) ov(x) = g(x)/2h(x). If g, h are differentiable
Md h(z) # 0, the result is again like (5) but now with
F(z) = f+v" —g%/4h; G(zx) = h(z)

- Hi. Let y = u(z)e?; ¢(x) = fg(x)Mdx; 2 = — [ he?dx. In this case,

y :

w'(2) = P(z) —u?(z) - (8)

E -‘._r.!._-,* W
- -".‘.i_-: 2 Ty . .-- . .. .. . . ) . . .
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i

'b. Relations between ‘the coefficients. When certain relations exist
between the coefficients of (1) its solution may be easy to obtain.

i. Look for two constants ¢, b with |a|+[b] > 0 8O that
(a%f +abg +b%h) = O _

If ¢ = 0, then f(x) = 0 and the equation is linear, type 2. If a # O, then
y1 = bla 18 & special solution of (1) and 3-1-1 can be used to get its
general solution. A simple case arises if f+g+h = 0,forthena = b =1
and y1 = 1. _

11, Use a to remove the linear term in (1). Then, if F(x) is propor-
tional to G(x) in (5), the result is separable, type 1-2. In the original vari-
ables and functions, the requirement is f(x) = A2h(z) exp [2 | g(x)dx],
where A is a constant of proportionality. The solution of (1) is then

y = +/flktan (fy/fhdz+C); fh >0
If fh < 0, replace tan by tanh and insert a minus sign under both radicals.
See also 3-3. - -
iii. Assume that a special solution of (1) exists so that

' 2hy, = X(z) —9(x)

where X(z) 18 determined from the relation f(x) = hy2—X (x)y1+y1'
The last equation imposes a severe cestriction on the form of f(¥) but if
it is satisfied, y1 can be found and the general solution of (1) follows from
2_1-1. A few cases that might be tested are : X = 0, 4f = g2[h— 2(glh) ;
X = W[, 4f = 201k’ —2g/hy —hO[RY3+g%lh; X = g—2V/fh, 29 =
sV h+f'[f—NF [k |

3-2. The Riccati Equation. The equation actually studied by
Riccati is

y' +by? = ca™ (7)

Tt is a special case of 3-1 or 3-3. The constant m need not be an integer;

a and ¢ are constants. _
Test the equation for inte grability in finite form by a. If the test is

successful, go to b. Qometimes, it is helpful to transform the equation
into one of second order; see C.

a. Integrable cases. Calculate k from the equation

-a
=g

other_ values of k, the equation is not integrable in finite terms; return to

. ""'d;.-.- |r1LJ}I' - - - -
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i. The sign in (8) is positive. Let y(x) = u(z); d(m+1l)y = clu;
z = xzm*t1l and (7) becomes o |

cz
C (m+1)2

w!(2) +bu?

where n(2k—1)+4k = 0. This equation is (8) with a negative sign.
Go to case ii.
ii. The sign in (8) is negative, or case i has been transformed into

this type. Let yb = z(1—bzu); z = 1/x and (7) becomes
w'(2)+bu’ = czf

with #[2(k—1)+1]+4(k—1) = 0. The equation has been trans-
formed back again into case i, with k decreased by unity. Successive
applications of the transformations in i and ii will eventually reduce &
to zero and (7) will then be separable, type 1-3. The general solution 1n
'such integrable cases is best completed by the method of 3-3.

b. A transformed equation. The equation has been shown to be In-

tegrable by the procedure of a. Let y = w/z, so that (7) becomes
' xw' () —w+bud = cam+2 (9)

This is & special case of 3-3, with @ = 1, n = m+2. Given (7) to solve
‘in an integrable case, transform it to (9) and solve it for w(x), according
to 3-3. This is generally easier than the successive reductions described
in a. |
c. A second-order equation. Let byu(x) = u'(z), so that (7) becomes
'’ (x) —bcxmy = O

- This linear second-order equation can be solved according to B1l. The
- result is often expressed in terms of Bessel functions.

. 3-3. A Special Riccati Equation. This is a special case of the
§  generalized equation of 3-1 .
E vy’ —ay+by* = ca® 10)
B Tt is not necessary that n be an integer; a, b, ¢ are constants. Under cer-
. 'tain conditions, the equation can be integrated in finite form; see a. For
- the relation between (10) and the Riccati equation of 3-2, see b.
£ a. Integrable cases. Examine the equation to see if it satisfies one of
i the following conditions. If it does not, return to 3-1-1.
f . i.If n = 2a, let y = 2%u(z) and (10) becomes separable, type 1-2,
ML can be integrated directly; it becomes exact if the original variable is
f reintroduced and a common factor 1/22¢ is removed; or (10) can be made

¢, ri R
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exact with the integrating factor z¢-1, The exact equation, see 7-1, i8
fz, y)y' +9(z, y) = 0,

with
f(xay) = x“[F
9(z, y) = 2% (1 —ay/F)
F(z, y) = by> —ca®

In any case, the solution of (10) is
y = 4/c/bas tanh (C —+/bczsla); be > O
An equivalent form of the solution 18 R
y(Ce$ —1)4/b = x8(Ce? +1)4/c

where ¢(x) = 2x84/ gc“/a. If be < 0, replace tanh by tan and put a minus
sign under both radicals. _
ii. If (n — 2a)/2n = k, a positive integer, assume successively,

a+(k—1m 2%
y = afb+x®yn, = (@a+n)fc+a®fys, ..., Yp1 = -

el Y

The sjrmbol [bc] is understood to mean that the first letter b is to be used
if the integer k is odd, but the second letter ¢ is to be used if & is even.
" The solution of (10) is a finite continued fraction

a s
J b a4+n e rie
+

- C a+2n
-

The last denominator is yx—1. The differential equation which determines
Yi 18 ' '

+ ...

xy'x —(a +nk)yx +[chblyx? = [bcjxm

It has the same form as the equation of case i and can be solved as direc-
ted there. In the coefficients of the exact equation, and in its solution,
replace a by n/2 and b, ¢ by [¢b], [bc], respectively.

w L

iii. If (n+ 2a) = 2nk, where k is a positive integer, assume

@» @ (n—a) z® - (k-1 —-a 2*
y=— Y1 = —F+ 5 s Y1 = + —
Y1 c Y2 [bc] )
The general solution of the equation i1s a finite continued fraction as in ii.
The last denominator is yx-1 and the differential equation for yi is the
same as that in ii with a replaced by — a. S -
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b. Conversion to type 3-2. Let y = zu(z); z = 2% and (10) becomes
au'(z)+bu? = cz(”-m/“ '

It has the same form a as (7). Given an equa.tlon of that type to solve, con-

vert it to the form of (10) and follow the directions in a. Such a procedure
18 generally simpler than the direct solution of type 3-2.

- 4. The Abel Equation

There are two equations of this type. The first, which contains a term

in 23, is an extension of the Riceati equation; see 4-1. An equation of the

__ second kind is a further generalization; see 4-2. In either case, finite
solutions result only when the equation has certain special properties.
- Some of these cases are described in the two following sections. In the
general case, it may be necessary to use one of thé procedures given in 10.

4-1. Abel Eqilation of the First Kind. Its general form is

y' = fol@) +file)y + fal@)y? +fa(z)y? (1)
- Consult the following special cases and properties of it for possible ways of
~ finding a general solution.

a. fo = f1 = fa = f3 = constant. The equation is separable, type 1-3.

- b. foa = fs = 0. The equation is linear, type 2.

"~ ¢. f3 = 0. A Riccati equation results; see 3.
d. fo =0, fi # 0 and either f3; = 0, f37é00rf2;é0 f3—0 The
< equation 18 of Bernoulli type; see 5.

... €. Reduction to standard form. Provided that f., f3 are both d]ﬂ'eren-
_{ftla,ble and f3 # 0, let y(z) = u(z)v(z)+F(z); v(x) = exp[f( fitfoF)dx];
4 F(x) _f 2/ 3f 35 Z — I f 3‘2}'2(37)dx
- The result is
= | u'(z) = U(x)+ud

Whel'e f3?J3U fo—F'+f1F +2f2F2/3. This can be chosen as the can-
omca.l or standard form of the Abel equation. See also g.

= . fo=0,fa £ 0. The equation can be converted into one of the second
. & order Let .

i y(x) = u(z)v(x); z = [vfedz; v = exp { fidx (2)

. I n the new independent variable,
“* W) = wgend; g(a) = v@filfe

2
R .
.~ o
- -
5. INOW, let
- LR
= T
- wi
=T .
R —
S A __'
v i v

F - 8227(8) +9(2) = 0 (4)

-_-.




94 ORDINARY DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

If (4) can be solved, see B2, then (3) will give u(z) and (2) will give the
general solution of (1). -
g. Separable equations. There are two cases where a separable equa-

tion can be produced by suitable transformation of variables. In both

cases an elliptic integral occurs.
i. Suppose that fo = f1 = 0 and F'(z) = Afs, where F(z) = f3/f2 and
4 is a constant. In that case, let yF(x) = u(x) and get an equation of

t 1-2. | -
TPe F(x)u'(x) = fou(A +u + u?)

ji. In the general case, let y = u(z)v(x)+F(x) and determine v(x),
F(z) to get an equation of type 1-2, -
' u'(z) = X(x)G(u) (5)

It is found that
- fav(x) = UB(x)
3fsF(x)+fa = 0;
Ux) = fofs2+ (f2'fs —fofs’ —fifef3)[3 + 2f2°[27
fsX(x) = U2B(x) '
Gu) = 1 —4u+ud

where 4 is a constant. When (5) has been solved to get u(x), determine 4
- from the Bernoulli equation; see 5,

f3U' () + (f22 —3f1fs —3f3")U = 34UP

Note that the result is similar to that in e and that U(z) in that section
is related to the funetion U(z) in this section. -

In the special case where U(x) = 0, a solution of (1) is y; = F(x).
Use the transformation y = y1+w(x) and get a Bernoulli equation, type
D,

w'(z) = (fr ~fayn)u+fa

Its general solution will give the general solution of (1). |
h. y; is a special solution of (1). An Abel equation of the second kind

results, see 4-2, _ .
uwu' () +F(x)+ Glryu = O (6)

The new functions are determined by the relations
u(y —z) = €

$(x) = [ (3fay12+ 2forn +S1)dx
F(x) = fae?

G(x) = (3fsyr+/2)e?

- 1 ey LI - .. - . . . =" - - - " 0 " - - -
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When G(z) = 0, the special solution is easy to get, for it is y; = —[f2/3fs.
In that case, (6) is separable, type 1-2, and ¥y = y; +u(x) can be used to
get the general solution of (1). The conditions required are

- Jo =" —y(fi+2fey/3)
and then the general solution of (1) is

y = (C =2 | fae2hdx)—1/2¢h + 3,
where k(z) = [ (f1+/fay1)dz.

4-2. Abel Equation of the Second Kind. This is a more complicated
case than 4-1,

[9o() + gl(x)y]y’ = Jo(x) +fr(x)y + fa(x)y® + fa(x)y? (7)

It becomes 4-1,if go = 1, 1, g1 = 0. Try one of the following procedures in
the general case. '

a. y; 18 a special solution. It is necessary that go+g1y1 # 0. Make
the transformation go+giy1 = 1l/u(x). The result is an Abel equation
of the first kind ; see 4-1. The coefficients are rather complicated functions
of fi, g;, and the derivatives of g;. It is assumed that g; # 0 and that
go, g1 are differentiable. '

b. fo = 0. Let y = 1/u and the term in 33 can be removed. The result
is

| (91 +gouyu’' +f3+fou+fru? = 0 (8)
Compa.rlson of (8) with (7) shows that the order of the subscripts has been
< interchanged and that the terms in fi(x) have moved to the other side of
 the equation. These effects are caused by the variable transformation
. and (8) is not misprinted. -

' _C. fa = 0. The general solution of (7) can be found with two quadratures
prowded that go # 0, g1 # 0, and

go(2fe+g1") = g1(f1+90')
. Seek an integrating factor, according to 7-2-3. It is found to be a func-
tion of x alone and it has two equivalent forms
E 9l(z) = eh; gul(z) = et

fff here ¢; = [ (f1/go)dx; 2 = 2 [ ( falg1)dx. When the exact equation is
| tegra.ted the solution of (7) is .
ﬁ - I(®@)[290y + 91%%] = 2 | folx)] (x)dx +C

ﬂ f3 = 0, g1 = 1. The equation can be converted into one of the first
1, see 4-1, or into a simpler equa.tlon of the second kind.

i "Let y+go = 1/u(x). It is necessary that y;+go # 0, where

e AT A T et e . LA R AL . .
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is any special solution of the equation. The resulting equation of the
first kind, see 4-1, 18 | |
o u’+u(F1+F2u+F3u2) = 0

where I = f2, Fg = f1—2f290+90 , g = fo —-flgo +fzgo
ii. To get a simpler equation of the second kind, let y4+go0 = u(x)e?,

H(x) = f fa(x)dxz. The new equation is
uu' () = F(x)+ G(z)u (9)

where F(z) = ( fo—/190 +fag02)e 2%, G(x) = (f1— 2fag0 +go' Je—¢. Note that
F, G here are the same as F3, Fp in i, except for the exponential
factor. This differential equation 1s a specml case of (7), where go = f2
= f3 = 0, g1 = 1. It can be smtlpllﬁed further; see e.

e. go = f2 = fa = 0,91 = 1. In this case, or for (9), let y = u(x)+v(x),
v(x) = | fl(x)dx The new equation lacks a term in the dependent variable

(u+v)u’ = fo(r)

Further mmphﬁcatlon arises, if fo # 0. Let u(x) = w(x), z = j' fo(a:)da:,

and get
(w+v)w'(z) = 1

5. The Bernoulli Equation

The general caseis
y =F (x)y+9(fv)y" - - (1)

‘There are several specml cases.

a. f(z) and g(z) are constants. The equatlon is separable, ty'pe 1-3.
b. k = 0. The equation is linear, type 2. |

c. k = 1. The equation 18 separable type 1-2. .

“d. k is neither zero nor unity; it is not neceesa.rlly an mteger The

solution i1s
yl—" = Y1+ Yz |

Yy = Ceb; Yo = (1-k)e? [etg(a)da; $(z) = (1 -Fk) [f(z)d %)

" This result can be derived in three different ways.

i. Let y1-* = u and get a linear equation, type 2,
. w'(2) = (1 —k)lg(x) +f()u]

' When it 18 solved the result is (2).

ii. An integrating factor of (1), see 7-2 is I{z,y) = y*e%. The
Bolutlon follows with two quadratures. -
iii. Lety ueF F(x) = jf(x)dx and get

% (x) — ukg(x)e(k—l)F
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This equation is separable, type 1-2. Restore y after it has been solved
and the result is equivalent to (2).

6. Equations Linear in the Variables
There are two different types. For some other equations of similar form

see 8-5.

6-1. y’ f a 4+ bx +cy). There are three possibilities; a more general
equa.tlon 1s given in 6-2.
. b = 0,c # 0. The equation is separable, type 1-3.
b b # 0.¢c =0. Itlssepara.ble type 1-1.
C. b ;é 0,c # 0. Let u = a+bxr+cy and get

B (@) = b+cf(w) = Flu)
| '-'Wmch is separable, type 1-3. Its solution is
o _ d’“’
- F(u)

6-2. y' = f(Xi/X), X; = a¢+b¢x +cy. Calcula.te A = bics—bac;.

. There are three possible cases.
~a. A # 0. Introduce new variables u, z with the relations x = k42,
oy = k+u, BA = ciag—caoay, kA = a1bg—azb;. The new equation 18

u'(z) = f(Z1/22), Zi = biz+cqu

=x+0C

. ¢Jt is homogeneous and can be solved by 8-1. From that section, and with
.. _the symbols used here, let u = wz; f(Z1/Z2) = f(w) = f( Wi/Wa2),
Wt = 5; + qw, ¥ (w) f(w)—w. The solution of the equation 1s

L hmE-k-= f o+ C

-
] .
-
-
=

": ._-\::_- ..ﬂ"' } P

. When the mt-egral has been evaluated, restore the orlgmal vanables with

f b A=0 1 %0 Let u@) = Xy; Us=owflcautd); A= cun
- -’“’-_ czal. The equatwn which results is separable, type 1-3.
@) = hi+af(Th)

c. A 0, ca % 0. Let u(z) = Xo; Ua = (6116 —A)feou; A = cjas
' fl 8281, The new equation is separable, type 1-3, |

oo w@) = bat ozf( Us)

N | &

Ry
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7. The Exact Equation and the Integratmg Factor
Given a function

"x

$,y)=C Q)

its perfect, complete, or total di ﬁerential 18 ' |
dp = —dx + —dy = 0 2
¢ ot 5 - (2)

An equivalent form of (2) is _ _
J@, )y +9(x,y) =0 k” -3

Provided that no common factors have been eliminated in the step from
(2) to (3), the equation 1s said to be exact and its complete primitive is (1).

To test a differential equation for exactness, see 7-1, where methods
for finding the primitive are also given. If the test for exactness fails,
it means that common factors have been removed and an integrating
factor is needed. Such factors can always be found, in principle, but not
always easily in practice. When they are known or can be found, the
equation can be made exact and integrated; see 7-2. '

7-1. The Exact Equatlon The given equation to be tested for
_exaetneee 18

J@, 9y +g(x, y) = 0 (3)
It 18 exact if Euler’s criterion holds
offex = dgloy ' (4)

Make this test and proceed as directed. It should be noted that many
textbooks use the standard form M(x, y)dx+ N(x, y)dy = 0, which is
equivalent to (3), with f(z, y) = N(x, y); g(z, ) = M(=z, v).

a. The equation is exact and also homogeneous, with degree k %= —1.
Go to 8, for the solution can be found without quadrature. If exact and
homogeneous with degree k = —1,seeb or use 8-1. '

b. The equation is exact but not homogeneous. The solution can be
found in two equivalent ways.

i. Evaluate either one of the following expressions

x Y
] g9z, yde+ | flao, y)y = C

To Yo
x |

f g(z, yo)dx+ f(-'v y)dy =
Lo Yo

The function which results in either case is the general solution of (3).
It may be difficult to solve for y as an explicit function of x; hence the
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solution can be offered in implicit form as F(z,y, C) = 0. The quantities
9, Yo In the integrals are arbitrary. They are most conveniently chosen
to make the integrations easy, frequently as 0 or 1.

ii. Use either of the equivalent expression

9(z, y)z+ | | f(z, y) 2 9(, y)dx dy =C
f . f [ oy J ]

- - J- f(x, y)dy + f [g(x, Y) --:; f f(z, y)dy}dx s

During the integrations, the second variable is considered to be constant.
Thus, for example, y is taken as constant in evaluating [ g(x, y)dz.

C. The equation is not exact. Proceed to 7-2 in the hope of finding
some function that will make (3) exact so that the methods of this section
can be used. |

7-2. The Integrating Factor. The test for exactness has been made,
it does not hold, and a factor I(z, y) 18 to be sought so that the new
equation -

' I(z, y)[f(2, y)y' +9(x, y)] = 0

meets the requirements of (4) in the form

oF 0@
——=— F=1If Q@=1Ig
o0x oy
Euler and his followers attempted to solve all first-order differential
equations in this way and the integrating factor is often called an Euler
multiplier or Euler factor. A general theory, based on the properties of
continuous transformation groups, shows that an integrating factor can
be found, at least in principle, for a properly classified equation. The
solution of the equation can then be completed by quadratures. The use
of group theory for finding the integrating factor will not be described
 here. For some appropriate references see Cohen, Ince-1, Lie, Page.
~ Since the integrating factor may not always be easy to find, some other :
Procedure may be simpler. One possibility is a suitable variable trans-
. formation, converting the given differential equation to one of the types
-+ - ME previously considered. See also 8 and 9 for further suggestions. If
. the methods of this section are preferred, try 7-2-1 to 7-2-3, in turn.

When an integrating factor has been found, calculate
E F@y) =I@yfey), 6@y = I g, y)
~and use 7-1b, replacing f, g by F, G, respectively, in the equations of that

--;‘\_ﬂ-
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Some useful propertles of the mtegr&tmg factor are stated in the

following.
~a. The number of mtegra,tmg factors. Suppose that v(x, y) Cis the -

‘general solution of an inexact differential equation. Then, the expresslon

F(v)I(x, y) includes all possible integrating factors, where I(x, y) is one .
such factor. Since the function F(v) contains an arbitrary constant, the

" pumber of such functions is infinite and the number of integrating factors

is also mfimte prowded that the unique solution of the equation 1s
v(e, y) =

b. Two mtegra,tmg factors. Let I; and Is be two mdependent factors,
so that one is not a constant multlple of the other. Then, the general

_solutlon of the differential equation is I;i(z, y) = Olz(x, y).

¢. An equation for the mtegratmg factor. It satisfies a first-order
partaal differential equation _ o

gly —flz = I(fz —gy)

where a subscript designates a partial derivative; thus, I, = dl/oy, etec.
Unfortunately, the partial differential equation may not be easy to solve
and, if one must use it to find an integrating factor, another method might
be preferred for solving the given ordinary differential equation. However,
the general solution of the partial differential equation is not needed;
any special solution of it will suffice. In some cases, the partial differential
equation becomes an ordinary differential equation and then it may be
easy to find an mtegra,tmg factor. Some examples are given in 7-2-3.

d. The equation is homogeneous The equation has been made exact
by an integrating factor and it 1s also homogeneous and of degree kb # —1.
The integration may be completed without a quadrature; see 8.

7-2-1. Integratlng Factor by Inspection. In some cases, an inte-
gratmg factor is obvious from the form of the given differential equation
or it is obtainable after a few lucky guesses. In making such guesses,
the following properties may be helpful. If more formal procedures are
preferred, go at once to 7-2-2.

a. If possible, separate the equa,tlon into two parts one of which is

~ exact and the other inexact. It is only necessary to ﬁnd a.n mtegra,tmg_

factor for the single inexact part.

b. Write the inexact part of the functlon descrlbed in a as the product
of two other functions, U(x, y) and V(x, y). Attempt to show that U(z, y)
is the exact differential of another function u(z, ¥). Then, convert V(x, y)
to a function of «. The result is F(u)du, which is an exact differential.

- ¢. Examine the differential equation to see if it contains terms like

- those in Table 1. In more complicated cases, use the methods of a or b.
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7-2-2. Integrating Factors for Special Equations. It is-assumed
that an integrating factor was not apparent by inspection, as suggested
in 7-2-1, and that more formal procedures are wanted. When the equation
18 of some special type, the integrating factor can be given at once, as
shown in this section. Alternatively, certain tests can be made on the
equation and, if they hold, the integrating factor follows. For this case,
see 7-2-3. To some extent, the two procedures duplicate each other.

Proceed with this section or go directly to 7-2-3, as desired. Take the
differential equation in the form '

(@, 9y +9(z, y) =0 .
and calculate M(x, y) = 2g+yf; N(x,y) = xg—yf. There are a number
of special cases. _ - - |

~a. Both M and N cannot vanish. This would be the trivial case of
f(x,y) = g(x, y) = 0. If either vanishes identically, the reciprocal of the
~ other is an integrating factor.

TABLE 1. INTEGRATING FACTORS FOR CERTAIN TERMS
- T IN AN EQUATION

y—zy' | 1/ 1, Uy, 1@ty
f@)+y—zy I/z
y+[f(y)—=ly 1/y?

y(1+f(w)]—z[1—f(w)ly’ | 1/w; w = zy
ly+af (w) ]+ [yf (w) Fly’ Lw; w = 22442

B b The equa.tion i8 homdgeneous. In thm case, see 8, the mtegra.tmg
factor is 1/M. If M = 0, the equation is separable, type 1-2, with solu-
tion y = Czx. The same situation occurs if N = 0, where the solution is

i= ¢ The equation is isobaric. Then, see 8-2,
9(z,y) = —an1F(u)

I(z, y) = 1/(xg +nyf)

- This case is identical with b, when n = 1. If the denominator of I (z, y)
E  vanishes, the equation is separable, type 1-2, and its solution is y = Cx».
d f(x, y) = xF(u), g(x, y) = yG(u), v = zy. The integrating factor is
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I(x,y) = 1/N. When N = 0, the integrating factor is 1/M, but it was
not needed since the differential equation was exact.

e. f(x,y) = zF(z,y), 9z, y) = yG(@®,y); F = ayzmy® + ba'y’, G =
asx™yn + boxry®. This case is a generalization of d. The exponents need
not be integers. An integrating factor is I(z,y) = xPy? where the
constants », q are determined from the simultaneous equations

as(q+n+ 1) = ai{p+m+1)
bo(g+8+1) = bi(p+r+1)

The method fails if ?ngdg = bjjay = k, but then the equation can be

factored into
- (xmy + kxrys)(arxy’ +azy) = O

The second term is separable, type 1-2; the first term gives a special
solution of the differential equation, not always included in the general
solution. ' ' '

f. vF(w)u' +G(w)u = 0, w = uv. Here u, v are any functions of =z
and y. Thus, this case is more general than d. Its integrating factor is
I(z, y) = 1wl — Q). '

g. The equation is linear; see 2. The integrating factor is I(z, y)
= exp [ F(z)dx; F(z)f(x,y) = gy—Jz. _ '
~ h. Exchange of variables. Sometimes a differential equation becomes
linear, see 2, if x is taken as the dependent variable and y as the indepen-
dent variable, instead of the reverse. In that case, I(z, y) = exp | F(y)dy;

EF(y)g(ar, Y) = Jz—9y.

i. fz,y) = (x—yF), gx,y) = —(y+aF), F = F(z2+y?). The integ-
rating factor is I(z, y) = 1/(x%2+¥2). '

7-2-3. Tests for an Integrating Factor. If the given equation,
f(x, y)y' +g(x,y) = 0, is not one of the special types in 7-2-2, the fol-
lowing procedures may be helpful. They partially duplicate those of
7-2-2, but offer an alternative method in the search for an integrating
factor.

Assume I(z, y) = ¢(u), where u is some predetermined function of one
or both variables. A quick test will then show whether or not such an
integrating factor exists. If it does, one quadrature will yield I(z, y).
From the partial differential equation in 7-2c, it follows that '

¢'(w) _ Jz =gy
- P(u) guy —fuz
If the assumed integrating factor exists, the right-hand side of this equa-

tion will be a function of u alone, say A(u).
- To proceed in this way. first select u(z, y) and calculate
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fe—gy

———— = h(u) (5)
guy —fuz

The integrating factor is then given by
InI(z,y) = [ h(u)du (6)

because the partial differential equation, which determines the integrat-
ing factor, has become an ordinary differential equation with separable
variables.

The success of the method depends on the proper choice of u(z,y). A
prominent combination of terms in the differential equation might suggest
something to be tried. Lacking such hints, take simple forms like z, ,
xy, y/z, x + y, 2% + y?, etc. See also Table 1. Some typical examples
follow and others could be found with (5) and (6).

a. The integrating factor depends on only one variable. Calculate
F(z,y) = fzr—gy. If the result is that shown in the first column of
Table 2, the integrating factor is that given in the second column. The
letters @ and k are constants. For a more general case, see b.

b. Calculate F(x,y) = f,—gy. Divide it by the function GQ(x, y),
shown in the first column of Table 3. If the result is some function A(u),
where u is given in the second column, calculate I(z, y) from (6).

TABLE 2. INTEGRATING FACTORS
DEPENDING ON ONE VARIABLE

F(:v; )=/ .—9,| 1z, ¥)
kf ek
—kffx xk
kg/y y*
—af cot ax sin ax
af tan ax COS ax

- TABLE 3. INTEGRATING FACTOR
DEPENDING ON u(x, )

G(z, y) u(z, y)
—f -
g Y
- =—(fF9) zty
~—2(zf F yg) x%ty?
- —(kfFg) kxty
xg—yf zy
2 ly*-1(szg—ryf ) z'y*
—(zg+yf )/y? /Yy
(xg+yf )/x> y/x
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The case u = zy applies to the special equation of 7-2-2d. See, how-
ever, Table 3 for G(z,y) in another form. Similarly, the equation in

7-2-2e is a special case of u = zPy?, where p, g are constants.

When % = y/z, the condition can be generalized ; see C. Correspondmg
equations could be found for v = zfy.

c. v = y/x. The integrating factor, see Table 3, is a homogeneous
function of z and y of degree zero; see 8. The situation can be generalized
by requiring that I(z, y) be homogeneous and of degree k. In that case,

' sz(a: y)+kfx
gy
and the mtegra.tmg factor is given by
I(x,y) = 2%e?; ¢ = | h(u)du

If the dJﬁ'erentlal equation itself is homogeneous, (7) will be satleﬁed
independently of the value assigned to k, provided that its denominator
does not vanish; see 7-2-2b. However, in the exceptional case, the inte-
grating factor is unnecessary since the variables are separable. Advantage
can be taken of the fact that k is unspecified for a homogeneous equation.
Select two different values of k (0 and 1 might be suitable) and find two
different integrating fa ctors. The general solution of the equation follows
from 7-2b.

When the differential equa.tmn itself is not homogeneous, the method of
this section will work if (7) is satisfied for some value of k. When k = 0,
the necessary condition is the same as the last case of Table 3.

h( ): U = y/x | .' (7)

8. Homogeneous Equations and Related Types
The word, homogeneous is used with two different meanings in the study

- of differential equations. Here, consider ¢(z, y) and replace z, y by tz,

ty, respectively, where { is any multlpher whatever. If ¢ can be factored
out of the result in the form

(i, ty) t¥d(x, y) . (1)

then ¢(z, y) i8 homegeneoue and of degree k in z and y. For the second
meaning of homogeneous, see Bl.
A differential equation

Pz, g}y’ + Q(x, y) = 0 (2)

is homogeneous, in the sense of this section, if P(z,y) and Q(x, y) are
homogeneous functions, both of the same. degree The test for homoge-
neity can usually be made by inspection. - -
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If (2) is also exact, see 7-1, and if k¥ # —1, a quadrature is not needed

and the solution is -
@z, y)+yP(x,y) = C

A similar solution exists if (2) is made exact by means of an integrating
factor; see 7-2. If k = —1, a quadrature is usually necessary. In that

case, the methods of 7-1, 7-2, or 8-1 may be used. If the equation is

homogeneous, but not exact, and an integrating factor is not to be sought,
see 8-1. Some related equations are presented in 8-2ff.

8-1. The Homogeneous Equation. The given equation has the
form (2). Introduce a new dépendent variable, v = y/x so that
' Yy = u+zu'(x) -

A common factor x*¥ occurs in both P(z, y) and Q{z, y) so that these two
coefficients become P(z, y) = z*P(1, u), Q(x, y) = 2%¥Q(1, ). The nota-
tion means that x is to be replaced in both P and @ by unity and that y
18 to be replaced by . When the common factor z* is removed, the diff-
erential equation becomes separable, type 1-2, with solution '

R(u) B |

where R(u) = P(1, u), S(u) = Q(1, u).
Alternatively, the equation may be written as

. Y = flyle) = f(u) - (4)
Define F(u) = f(u)—w and the solution of (4) is - '
e dw
b= |32 *¢ - (5)

: _ 1f the denominator of either integrand vanishes, some solutions may be

lost. Thus,y = cx satisfies (4) if ¢ is a root of ¢ = f(c). This solution might
be contained in (5) or it might be a singular solution ; see A2-10.
~ In some cases, polar coordinates are useful. With z = r cos§,
¥ = rsin §, the solution (5) becomes

| ' ' 1+tan @ f(tan 6)
 When the form of the given equation suggests the substitution v = zy,

InCr =

' ‘the resulting integral may be easier to evaluate than for the case with
E ¥ = y/x. When this ocours, y’ = g(zfy) = g(v); Gv) = 1 —vg(v);

[ 9(v) '
G®) dv+C

Iny =
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8-2. The Isobaric Equation. This is sometimes called one—dlmen-
sional, and in German, gleichgradqg,

y' = an1f(y[an) = 21 f(u)

It is not necessary that n be an integer. Generalize the deﬁnition_ of a
homo geneous function, see 8, 80 that

q&(tx: tﬁ"% -ly) = tk¢(x Y, y,

defines an isobaric function of weight w. Assign weights of 1, n, (n—1)
to z, y, y’, respectively. A general term in the differential equation is
xyby’c, with weight w = a+bn + ¢(n—1). If n has the same value
for each term in the equation, let y = ua®. Then, zu'(z) = f(u)—nu
= F(u), which is separable, type 1-2, with solution

' du

mz= [ -2 4
= lrm

8-3. sy’ = xf(x)g(u)+y. Let y = ux and, in the new de_péndent
variable, the equation is separable, type 1-2, zu'(x) = f(x)g(u). Its
solution is

—dx+ C
(u) 7

J‘ du J(x)

8-4. [f(u)+xng(u)ly’ = [h(u)+x71g(u)y]; ¥y = us. It is not neces-
sary that n be an integer. Take z as the dependent variable and u as
the independent variable. The result is a Bernoulli equation, type 5,

z'(u) = F(u)x+ Gu)antl
where F(u) = f(u)/H(u), G(w) = g(u)[H(u), H(u) = h(u)—uf(u).

8-5. The Jacobi Equation. While not strictly of homogeneous type,
the equation is convertible to 8-4,

iz, 9)+2falz, Ol = folo, 9)+ufelzy)  (8)

where fi(z,y) = a;+bix+cyy. A generalization of it is given in 8-6.
For a special case, see a. Otherwise, there are three different ways of
solving (6); see b, ¢, d. '

a. A special case. If a; = a3, the equatlon 18 of type 8-4, with n =1,
y= ux, f(u) = as+by+cru, g(u) = ba+cau, h(u) = bz + (az+cg)u.

b. The general case. When the requirements of a do not hold, the
equation can be converted into type 8-4, with suitable variable transfor-
mations. Let z = X +7, ¥ = ¥ +s and require that

Ayj+rAdAs = 0; A3+3A2 =0
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ek—————

where A; = a;+bgr +¢;3. The new equation has the same form as (6)

| [FI(X: Y)""-XFZ(X: Y)]Y’(X) = F3(X: Y)+ YFz(x! Y)

with | |

Fi = (1 +75)X + (c1+7¢2)Y; Fa = A2+ b X +cY
F3 = (b3+8b2)X + (c3+8c2) Y

Introduce another constant K, which makes the final results more Sym-
metrical

A, =K, A, =rK, Az =sK - (7)

Elimination of r and s from (7) shows that X is a root of a cubic equation
which can be presented as a determinant

ai —K bl C1

The constants r, s can be found as the solution of any pair of the con-
sistent equations ' |
(21 —K)+bir+c8 = 0
a2+ (bg —K)r+css = 0
ag+bgr+ (c3 —K)s =0
With these tranformations, the final result is type 8-4, with n = 1.
The variables are X, %, where ¥ = Xu; f(u) = ag + aou, g(u) = ba+cou,
h(u) = Br1+Bau; a3 = Ag+b1+bar, ag = cr+cor; By = by+bos, P2 =
Az+c3+ces. Finally, take X as the dependent variable and a Bern-
oulli equation is obtained; see 5. - !
C. An alternative method. The Darboux equation, see 8-6, is a generali-
zation of the Jacobi equation. Methods of solving the former can also be

applied to the latter. Equation numbers here refer to those shown in 8-6.
Let three special solutions of the Darboux equation be

Fi(z, y) = Ai+ Bz + Cyy, .i = 1,2 3

80 that Gy(z, y,2) = 4;z + B + Ciy, where the degreeis k; = 1, m = 1,

% = 3. The result corresponding to (8) is '

| _ Big1+ Cig2+ Aigs = K,G; -

bt;t_K; 18 & constant, since its'degree 18 (m—l) = 0. Equating coeffi-
cients of z, y, z in this identity gives |
' Bi(by —K;)+ Chg+ A = 0
Bie1 + Celes —Kg) + Ages = 0
Biay + Cias + Ag(ag —K;) = 0
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These relations can be used to calculate A4¢, B;, C;, after the three valueg of
K; have been found ﬁ'om the determinant | ..

| ok & b
O

a a2 az —K

Noté tl::la.f.' thls 'déterﬁihal.nt is not identi cal- with ﬁha.t of b; it eould be
made identical by suitable permutation of the subscripts.
There are addltlonal eondltmns as shown in (9)

P1+p2+p3 = O
Kipy+ Kspa+ Kapg = 0
There are three cases, depending on the values of Kj. -
i. All K; are different. It is satisfactory to take p; = Kg3— Kj,

ps = Ks—Kj, ps = K1— K. The general solution of the differential

equation becomes
' u(a: y) G G;’z G33+ O :

where G; = Gy(x, y, 1) = Ai+Bia:—l_'-ng.
ii. K1 = Ko # K3. In this case, the solution 18

u(z, y) = CG1+ G3 exp[(K; —Ks) szG;[]
ili K 1 = K s = Kg. The general solution is
- umy) = 261G -G+ 062 -
d. A third method. This one, quite different from b or ¢, depends on
solving three simultaneous equations with constant coefficients. Such
equatmns are not treated in this book but the particular one needed here
is quite simple. Deta.lls can be found In a number of pla.ces, for exa,mple -

Ince-1, Kaplan-1.
Conslder three simultaneous equations with mdependent variable

X'(t)y = G1(X, Y, Z)

Y'(t) = G(X, Y, Z)

Z’(t) = G3(X Y, Z)
where G(X, Y, Z) = aiZ+b X +¢;Y. Let the solution of this system be
U«X, Y, Z,t, K;) = C,;, which is linear and homogeneous in the vari-
- ables X, Y, Z. Its characteristic roots are K; and its arbitrary constants

are Cy. Multiply these simultaneous equations by (YdZ —ZdY ) (ZdX —
XdZ), (XdY — YdX), respectively, and add them to get

(ZG2—YG3)dX +(XG3—ZG1)dY +(YGh —XGe)dZ = 0
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The new variables are X = zZ, Y = yZ, and ehmmatlon of Z will produce
the Jacobi equation in the form -

[fi(z, y) —zfs(z, y) 1y’ '—fz(-'*«' y) —yfs(=, Y)

where, as before, fi(x, y) = a; + bz + c;y. Thus, the solution of the
simultaneous system of equations will also give the solution of the Jacobi
equation. There are three cases. When the variable £ is eliminated, they
will correspond to the three cases of c. _

i. All K; are different. The solution of the eystem is
uy(X, Y, Z)e— K¢ = O

where u; is the previous linear and homogeneous function of X, ¥ y L.

ii. El = Ko 9é K3. The solution of the system is
= Crekit;  (ug —tuy) = Coekit; ug = CgeKst
iii. K; = Kz = K3. In this case, the solution is
= Crekt;  (ug —tuy) = CgeKt;  (ug —tup+ 12u3/2) = Csek!
8-6. The Darboux Equation. This is a generaliza;tion' of 8-5, where

the fi(x, y) are polynomials in 2 and y of maximum degree m and at least
- one of them is actually of degree m.

- LAl y)+zfa(e, Nl = fala, y)+yf2(-"7 y)
It is often written in the equivalent differential form
' Ldy = Mdx+ N (xdy — —ydx)

For purp(mes of symmetry mtroduoe a third variable z and replace z,
y by z/z, y/z, mpectnrely, so that f;(a: y) becomes a homogeneous poly-
nomial of maximum degree m, -

gi(x, y, 2) = Mfi(z/z, y/Z)

If a homogeneous funection of degree zero can be found, u(a: Yy, 2) 80 that
the equation in z, y, 2 is satisfied, then the general solution of the Darboux
equatlon 18 u(x,y,1) = C. Conversely, u(z, y,z) can be found if the

necessary mtegrals of the original equation are known. The required
conditions in the general case were obtained by Darboux. The details

o may be found i in Ince-1 or Goursat. Here, we only state the two condi-

faone which lead to the complete solution of the Darboux equation.

- a, Suppose that n > m(m+1)/2 + 2 special solutions of the Darboux
. equation are known. Let them be Fe(z,y) = 0;¢ =1, 2 . » 1, of degree
- _kg Convert them into homogeneous polynommls

Gi(x Y, Z) = 2k F x|z, y| z)
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and then calculate _
gL—— + ga—— + ga—— = KiGs ' (8)

where K; is a polynomial of degrée (m—1). The function
 ulz,y, 2) = G GRe... G '
i< now to be determined so that it becomes the general solution of the Dar-
boux equation when z = 1. It must be a polynomial of degree zero, satis-
fying the relations - S '
| kipy + kapa+ ... +knpn = 0
K1p1+K2p2+ +Knpﬂ = ()

There are enough relations to determine the parameters p;. The K; can
be found from (8) and the general solution of the differential equation re-

(9)

sults without quadratures. _
b. There are only n = m(m+1)/2+1 special solutions known. Two
cases arise. |

i. The determinant of the coefficients of the p; vanishes. The case
has become equivalent to a.

ii. The determinant Qf the coefﬁc_ients does not ﬁa.nish. Replace (9)

by -
kypy +kepe+ ... +knpa+m+2 =0

0 0 0
Kipy + Kopa + ... + Knpn + —"gi + ——g-z— + __g-i =
_ oxr oY 0z
These equations are sufficient to determine the p;, and the resulting func-
tion u(z, y, 1) is an integrating factor for the Darboux equation.

9. Change of Variable _
When an equation does not fit into one of the previous types, it can
often be made to do so by a suitable transformation of variables. In fact,
some of the preceding methods were based on a variable change. It was
stated in 7-2a that if an equation has a unique solution it will have an
infinite number of integrating factors. Similarly, if it has a unique solu-
tion it can be solved by a change of variable. In practice, it may not al-
ways be easy to find either an integrating factor or the proper new vari-
~ able. Sometimes, one method is preferred; at other times, the second
method is successful. The following sections contain a few suggestions
that might be helpful if one or two new variables are sought. Intuition,
thorough familiarity with the basic principles of calculus, and experience
are probably the mose useful aids. Many examples of this type will be
found in Part II. -« ~
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9-1. New Independent Variable. There are two possibilities.
. a. Interchange x and y. The former becomes the new dependent variable
and the latter, the new independent variable. This is an especially simple
trick for it requires little calculation and it is easy to see whether the
equation is so converted into a known type. Two examples, where this
method was successful, were given; see 7-2-2h and 8-4.

b. Define a new variable z = f(x). For convenience, rename the depen-
dent variable so that y(x) = u(z). It'"foll()ws that

_ dz
y'(z) T (Z)

With the proper choice of z, the transformed equa.tlon may be recognizable
as one of the types of preceding sections.

9-2. New Dependent Variable. No general rules can be given, but
a conspicuous function in the given equation is often suggestive. Three
rather genera.l equations of no previous type, where this procedure works,
are given in b, ¢, d. Some hints are presented in a. It is not necessary that
m and n be integers in this section.

a. The new variable is u(x). Try the following cases.

i. ¥y = f(x)+g(u). If a special solution of the equation is known,
or can be found, call it ;. Then f(x) can often be taken as y;(x). Other-
wise, it might be chosen as some function of x which appears in the
original equation. For g(u), try «, 1/u, ue?®), ed/u, uk, etc. Examples of
this case will be found in 3-1, 4-1, 4-2; see also Part 11. |

- .oy = f(a:)g(u) For f(z), try e?@), x*, F(x), 1/F(x), where F(x) is
- some term in the given differential equation. See iii for some possible
forms of the new variable or take «, 1/u. See also 2, 3-1-2, 3-1-3, 3-2, 3-3,
4-1,7-2-2, 8-1, 8-2, 8-3,8-4, and Part II.
o il uw = f(y) or 4 = g(z, y). In the first case, try y=¥ or tngonometnc
functions like sinay, cosay, tanay, ete. In the second case, test
(@ + bz + cy), (2™ + yn), xmy=®, or some trigonometric function of both
variables. For examples, see 4-2, 5, 6, and Part II.
- b. ¥ = f(x)+g(x)y+h(x)yr. This equation is reminiscent of several
types from other sections. - o
i. If A(x) = 0, it is linear, type 2.
il. If » = 2, it is a Riccati equation; see 3-1.
4iii If n = 3, it i8 a special case of the Abel equation, with fg(x) = 0;
see 4-1.
- iv. When ﬂ:v) = 0, a Bernoulli equation results; see 5.

- V. None of the preceding special cases occur. Let ¥y = uv and assume | )
that v(z) is a solutlon of the linear equation

o) = glx)+ Af(z)
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This means, see 2, that
© o) = #[B+A[f(x)etdz]; $(z) = [g(x)dz

where A, B are constants If they can be determined so that v(a:) (f/R) /5,
it follows that u(z) is the solution of -

f(x)
—dzx+C

J un —Au+1 _ .[v(x)

o cy - f(x)y™ + g(x)yn. This equation, like that of b, is similar to,
but not identical with, several previous types. If m = 1, it is a Bernoulli
_equa.tlon see 5. If m # 1, let u(xr) = y™~1 and get

w(@) = (m—1)f(@)d+(m —1)g(@pr

‘where k(m—1) = (m+n—2). There are several cases.

i. £k = Oor k = 1. 1t is a Riccati equation; see 3-1.
- i, k=2. It is 3epara.ble type 1-2. |
~ iii. &k = 3. It is an Abel equation; see 4-1.
d. 2y’ = yf(:cmy”) Let u(x) = amy® and get a new equation

xu'(x) = nuf(u) +mfu

It is separable, type 1-2, with solutlon
du

noe = fw

9-3. Two New Variables If the new va.nables are deﬁned by the

relatlons
x—ﬂzm y = g(z, u)

it follows tha.t y'(x) = ¢'(2)[f'(z). Thus, given P(z, y)y +Q(z, y) = 0,
suppose that it has been converted to Pi(z, u)u’(z) + Q1(z, u) = 0. If this
equation can be solved to get a general solution F (z u) = C, then the

general solution of the ongmal equation in 2, y is

Flfi(z, 9), g1(=, 9)] =

.Where z = fl(:c y) and u = gi(x, y)
An especm]ly useful case is that of polar coordinates with

z = rcosf, y = rsinf
Y (x)[r (0) —r tan 9] = tan 0[r’ (9) +r cot )
The transformatmn is often more easily made with the fo]lomng relatlons
' xdx+ydy = _rdr xdy—ydx =r2ds
da: cos Gdr —r smﬂcw dy = smﬂdr+r eosﬂde '

and




METHODS FOR SOLVING EQUATIONS OF FIRST ORDER 43

It may be desirable to leave the solution in terms of , 8 and not convert

it back to the original variables x and y. - ' - N
Conspicuous combinations of z, y in the differential equation may

suggest other transformations to try. '

9-3-1. The Legendre Transformation. Given the differential equa-
tiOIl, Whel'e P = dy /dx, . . . | | - -
| flz,y,p) =0 | (1)

take p as a new independent variable, calling it X for symmetry. Also
take a new dependent variable, ¥ = zp—y. A dual relationship exists
between the two sets of variables, provided that dp/dz # 0, '

r = P(X), y=XP—Ii_'
X=p  Y=ap—y
In the new variables, (1) becomes '
- . f®,XP-Y,X)=0 (3)
A solution of (1) will give a solution of.(3) by algebraic processes alone,

and the reverse. Thus, suppose that (3) 18 the easier one of these equations
to solve and that its solution is | | |

FX,Y)=0 | ' )

(2)

Then, by differentiation - _

o - - Fx+FyP =0 ) ~ (5)
Use z and y, as defined by (2), together with (4) and (5) to eliminate
X, Y, P with the result g(z, y) = 0, which is the general solution of (1).
The method of this section is often applicable to equations of degree

- two or higher; see A2.

10. The General Equation of First Order and First Degree
The equation has the form B

If this section has been reached without finding some method for solvi
the equation, no simple solution of it is likely. It is possible to state
necessary restrictions on the form of f(z, y) so that the equations could

be solved by elementary methods alone. The solutions would then all be
E  simple combinations of algebraic or elementary transcendental functions:
§ see 3. Mathematicians, however, have preferred another procedure and
| have sought algebraic differential equations which define new transcen-
E dental functions through their solutions. In doing so, they have studied

i

L certain classes of differential equations which will be presented in the
[ #ppropriate places later in this book. - -

——
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- Given an equation like (1) to solve, there are three common procedures,
if the elementary methods have all failed. o '
~ a. Solution as an infinite series; see 11.

' b. Solution as an integral; see 12.

€. Solution by an approximate method; see 13. _
In the usual case, a will be preferred. The remaining parts of this section
summarize some general properties of (1). They are inserted here for
convenience of reference and can be consulted as needed.

- 10-1. Analytic Functions. According to existence theorems, see
Introduction-3, the differential equation (1) will have a unique solution
y = y(x) provided that f(z, ) is analytic near the point (zy, ¥o0). The
solution will satisfy the condition ¥y = y¢ when z = zp: thus Yo is the
constant of integration, since both xy and y¢ can be chosen arbitrarily,
within certain limits. It is the purpose of this section to consider some
properties of analytic functions as used in the study of differential equa-
tions. For further details and proofs of the statements which follow, see
appropriate references in the Bibliography, for example, Ince-1, Codding-
ton and Levinson. o N -

There is no loss in generality if the point (2, y,) is taken as the origin,
for two new variables 4 = y—yp and x = 2—2x¢ could be used to shift
any given point (xo, yo) to the origin. Similarly, if 2y = oo is of interest,
take z9 = 1/z9 and investigate the behavior at z9 = 0. With these
restrictions, a function f(z, y) is said to be analytic near the origin if it
can be expanded as a Taylor series, or more correctly as a Maclaurin
series, ' ' |

(@, y) = oo+ (Arz+ Any) + (A202® + Agyy + Agoy?)

(2
+ ... +(Apex®+ ... + Aony®) + ... 2)

There are two constants such that |z| < a, ly| < b and the coefficients in
(2) are determined from

1 *f(x, y)
CAp k= - /

- 3
kl(n —k)! dan-koyk |2 = 0, y = 0 )

Convergence and other properties of such series are well-known : for the
details, see references in the Bibliography. -

If a given function f(z, y) cannot be expanded to get a series like (2),
the function is not analytic at the origin. The test for analyticity can be
be made simply, for it is only necessary, according to (3), that the function
and its derivatives exist at the point in question. @~ =
other point is a singular point. According:to:Liouville’s theorem;. every .
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function except a constant possesses at least one singular point. Thus,
y = l/x has a singular point at * = 0 and y = « has a singular point at
x = oo. There are several kinds of singular points.

a. Poles. Suppose that y = f(x) is singular at x = ¢ but that
(x —xo)"f(x) 1s analytic, where n is a positive integer, n> 1. Such a
singularity 1s called a pole of order » or a nonessential singular point.
The misbehavior of the function is effectively avoided by use of the multi-
plicative term. A typical example is the functiony = 1/x(x — a)%(x — b)3,
which has a simple pole at x = 0, a double pole at x = a, and a triple
pole at x = b.

If a circle can be drawn with center at the smgula,r pomt S0 that no
other singular point is enclosed, the singular point is an isolated one. An
example 18 ¥ = csc x, which has an infinite number of isolated simple
poles at x = + nm, with n an integer or zero. A nonisolated singular
point occurs for y = sec 1/z, Whenever ljz = (2n+ 1)m/[2. Thus

xr = 2/m(2n+1)

and the most distant poles are at # = 0 or » = —1. Within a circle of
radius less than 2/, there are an infinite number of poles.

b. Essential singular points. Consider y = sin 1/x. Its series expansion
about x = Oisy = 1jx— 1313+ 1/6lx>—1/7lx7 + ... and no finite value
of » in x” will remove such a singular point. It is seld to be an essential
singular point.

c. Branch pomts If y = f(x) is not smgle—va,lued a branch pomt can
" occur. Consider y2 = z, the plot of which is a parabola extending in the
positive z-direction and with vertex at the origin. There are two branches

ofit,y = + Vzfora given nonzero value of z. At x = 0, there is a branch

point. Note also that the derivative of the function, y’ = 1/24/x is am-
_biguous. for  # 0 and infinite at z = 0. Whatever the order, some
‘derivatives of finite order and all higher ones will be infinite at a branch
‘point. - |

d. leed and movable singular pomts Examination of the coefficients
i ina differential equation will reveal the nature of its singular points, which
£ can be of the kinds described in a, b, ¢. These are the fized or intrinsic
singular points of the differential equation. It does not follow that solu-
,nen:s of the equatlon will also have singular points of the same kind. Thus,
. .consider 2y’ = ay, which has a simple pole at x = 0. Its general solution
f sy = Cz%. Only under special conditions is the origin a singular point
E  1of the eolutlen If a is any finite negative mteger 1t has a pole of finite
i order; if @ = 1/2, it has a branch point; if a is a positive integer, the
i o u R is an ordinary point and the only smgular point for the solution is

1S
X = 00_ -
REL v g -
o -
R - . .
g -
g
-':._‘]_'.' m.\,
';..'-l-"
e
TR
e L
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Now consider the equation yy’' + x = 0, with the general solution
z°+y? = C. If initial values are chosen as y = yo for z = 2o, then
Y = 1/2¢% — 22 + 402 and any point x = z; can be made a branch point
of the solution with the choice of zp, yo 80 that ;2 = 22 + Yo*. Such a
singular point, which moves about as the initial values are varied, is a
movable or parametric singular point. - -

Singular points for linear equations are always fixed. A nonlinear
equation of first order and of first degree can have movable poles and
movable branch points but no movable essential singularities. Nonlinear
equations of second or higher order can have movable singular points of
all kinds. Movable branch points and essential singularities, excluding
poles of finite order, are often called critical points of the differential
equation. - '

11. Series Solution
The equation is

Yy = f(-'v, Y) ' (1)

and a solution of it is wanted as an infinite series in powers of . There
are several cases, depending on the nature of f(z, y). Proceed as follows.
a. f(z, y) is an analytic function ; see 11-1. -
b. f(z, y) is not analytic; see 11-2. _
C. There are certain special forms for f(z, y); see 11-3.

11-1. f(x,y) is Analytic at (x0,y,). It is convenient to take zq =0,
see 10-1, but for symmetry write yo = 4o. Since the latter constant is
arbitrary it will be the constant of integration. Assume as the general
solution of the differential equation

Y = A0+A1‘17+A2332+ oo +Apan+ .- - (2)

There are several methods for finding the coefficients in the series; see
a, b, c. For some comments on convergence, see d.

a. The method of undetermined coefficients. If f(z, y) is a polynomial
or an Infinite series in z, y, substitute (2) for y. If it is some more compli-
cated function of the variables, expand it about z = 0 by Maclaurin’s
theorem, see 10-1, and then use (2). Replace the left-hand side of the
differential equation by the derivative of (2). The result, which no longer
contains y, is an identity in z. Equate coefficients of equal powers of z in
this equation and obtain relations with which 4 1, A2, . . . can be calculated
as functions of 4¢. There are three possibilities. o

‘i. All coefficients after 4; are zero so that (2) 18 & polynomial of

~degree k. The method of this section was not needed for (1) could have
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been solved by one or more of the methods in earlier sections . The present
procedure can, of course, be used in such cases, if desired.

ii. A general law results for the coefficients in terms of 4. In this case,
there is a relation connecting Ay and 4;; and by successive use of this
relation it becomes possible to define 4; in terms of Ap. Such a relation
18 called a two-term recursion formula or a Jirst-order difference equation ;
see also B1-8-1-1. o

iii. There is no general law for the coefficients so that three-term for-
mulas or even more complicated ones occur. This means that A4 x will
usually depend on Ay_1, 435, ete. In fact, it may depend in some rather
involved way on all of the coefficients which precede it and no explicit
solution can be found for 4, as a function of Ap. It will become more and
more laborious to calculate successive coefficients but, nevertheless, such
calculations may be continued as long as desired. Many-term recursion
formulas are linear finite-difference equations. It is often convenient to
study them by such methods; see, for example, Jordan, Milne-1, Milne-
Thompson. _

Frequently, one wishes a series solution so that y can be determined
within some specified limits of error. This will fix the number of coeffi-
cients which must be calculated; see also d. It should be noted that the
‘existence theorems guarantee that the solution is valid but it is not
possible to make tests for convergence, as in ii, since the general term is

unknown. '

Y" = Joot+ 2 nyy +fuy 2+ fy’’ _ 3
YV = froz+ 3frayy’ + zyyy 2+ fyyyy'® + favy' +3fyyy'y’’ +fyy''’

Here, subscripts indicate partial derivatives; thus, fy,, = 23f/02xdy.

It has been required that y = 4, when z — 0; hence y' = f(0, 4o)
when 2 = 0. Use this result, together with Jz and fy, to calculate %"’ in
(3). Continue in this way to find the third derivative and as many more
terms as may be wanted. The general solution of (1) willbe

17’
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Either of the three cases in a may arise. Evaluation of the successive
derivatives can become quite complicated, if it is necessary to use more
than a few terms in the series; see also d.

c. The coefficients by hltegration For an alternative way of deter-
mining the coefficients in the series (2), repeated mtegratwns may be used

rather than differentiations. For the details, see 12.
d. Convergence of the series solution. If the conditions required by the

existence theorem hold, it is certain that (2) is the general solution of (1).
A more exact statement of these conditions may be useful. If further
details and proofs are wanted, other sources must be consulted. Some
suitable references are Coddington and Levinson, Goursat, Ince-1.
‘Suppose that f(z, y) is analytic for |x| < a, [y| < b; see 10-1. Select
appropriate numerical values for these constants and calculate

€00 + €100 + Co1b + C20a° + €11ab +Co2D% + ... +cpoa®+ ... +copd®+ ...

where ¢;; is the absolute value of the coefficient 4;; in (2). Take M equal
to or greater than this sum, so that

If@,9)| < M; |zl < a, |y <b

The solution then holds for any || < r, where
r = a(l —e71/8); s = 2Ma/b

It may converge for larger values of |z| but if |z| < a, |y| < b, it will still
satisfy the differential equation. In general, f(z, y) will be meaningless
for x| > a, |y| > b.

To determine how rapidly the series converges consider the remainder

after n terms
By = y(x) _?/n(x)

where y,(x) is the series (2) ending with the nth term. Then,
I |n+1

R, < F(t
ol < PO o

s 2l <t < r (4)

where
F(t) = b[2+s{|In (1 —t/a)|}1/2]

If a solution of (1) is wanted with a predetermined error less than some
value o, use (4) to calculate the number of terms required in (2). If ¢ is
fixed, the right-hand side of (4) will decrease as |z| decreases. Thus, with
a selected value of || and |Rn| < 8, the same inequality will hold for all

smaller [a:l

11-2. f(x, ¥) Not Analytic at (x9, ¥o0). The quantity f(x, y) and ea.ch
coeflicient in the power series solution would become infinite at (o, yo).
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Thus, (o, yo) is a singular point, see 10-1, and the methods of 11-1 will
not apply. _

It is still possible, in this case, to solve the differential equation. Con-
sider g(x, y) = 1/f(x, y) and write it as

g, y) = Xo()+ Xi(x)y + Xa(x)y2 + ...

Choose both 29 = 0 and y¢ = 0, a restriction with no loss of generality,
for only a simple variable transformation is involved for other initial
values; see 10-1. Since f(z, y) became infinite at the singular point, it
follows that g(z, ¥) vanishes and it is necessary that Xo(0) = 0. There
are two cases. ' ' ' '

a. X1(0) = X5(0) = ... = Xp(0) =...=0. All coefficients vanish
at * = 0, which means that each term in the right-hand member of the
differential equation contains x as a factor. It is then possible to take the
equation as

xy, - F(x: y)
In this case, refer to 11-3.
b. Xl(O) - 12(0) = ... = Xm_l(O) = O; Xm(O) % O, m =2 1. I_nter-
change the variables and get ' '
dx
@ = g(x,y) = ym[xm(x)+XM+1(x)?/+ e ]

‘The methdd of 11-1 now applies to give a solution
_ r = y™1(Ao+ A1y+ Aoy®+ ...); Ay # 0
When this series is inverted,
| y = gUm+ g+ gpl/mid) 4 1; ap s 0

There are thus (m+1) solutions satisfying the given conditions that
o = Yo = 0 and the origin is a branch point; see 10-1.

11-3. The Equation of Briot and Bouquet. This is case a of 11-2.
For a generalization of it, see 11-4. Let the equation be _ -
Y’ = ag0+a10% + G0rY + az02? + a112y + Aoy '

+ .. Fanor®+ ... +aony"+ ...

3 Ifaoo = 0, and z =¥y = 0, the indeterminate form 0/0 results for y’'.
i Nevertheless, assume a solution

Yy = Ayx+ Ao+ ... + Apan+ ... ~ (6)

(5)
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For conv'enienee,_ take ao1 = k and use the method of 11-1. The coeffi-
cients in (6) are found to be
- (1=k)4; = ao

(2 —k)As = asp+anAi +agedq? (7)

(n *k)Aﬂ - ,p‘n(a”{h ses o a’(}‘ﬂ; Al: Aﬂ: vee o An—l)

where p, is a polynomial in its arguments, with positive integers for its
coefficients. There are three possible situations. .

a. kis not a positive integer. Successive values of the 4; are obtained
from (7). The series converges and it is the unique analytic solution of
(5), satisfying the initial conditions z = ¥ = 0. Nonanalytic solutions
may also exist; see ¢. If k is zero or a real negative integer, the analytic
solution is the only one with 2 = y = 0.

b. k is a positive integer. There are two cases.
i. There are relations between & and the coefficients ai; 80 that (7)
can be used to calculate the coefficients 4;. The requirements are

k.-——-l, adipo = 0

= 2, ag —ana+ aga? = 0 (8)

For k = n, the sum involves every aij, (v + j) = n. Since the coefficient
Ay is arbitrary, the series solution is the general solution of (5).

The preceding result can be obtained in another way. Use (5), let
y = ur, and get |

zu' = a0+ (a1 —1)u+ x(a20 + a11% + ag2u?) + ... (9)
Then, if ap; = £ = 1 and a1 = 0, according to (8), the result is
' - u'(x) = ago+anu+agu+ ... (10)

which is analytic at the origin and its general solution can be obtained
according to 11-1.

- Now suppose that o1 = k, a positive integer greater thail unity. Let
Yy =x(d+u); A = a10/(1 — %) and (5) becomes -

xu' = box+ (k — L)+ ¢z, )
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k = 1 and one more change of variable will give an equation like (9) or
(10), which has an analytic solution. _ _

ii. The relations of i do not hold ; for example, k = 1, @19 # 0. There
are no solutions analytic at the origin but there is a general solution con-
taining an arbitrary constant. It is a series in 2 and z In x; 1t approaches
zZero as x approaches zero along a properly chosen path. For references
and further details, see Ince-1.

C. Nonanalytic solutions. Suppose that & is not a positive integer, that
the analytic solution of (5), according to a, is |

u(x) = Awx+ Asx2 + ... +A,an+ ...

and that a nonanalytic solution v(z) also exists. The general solution of
(6) must be ¥y = 4 + v, with -

20'(@) = v(k+bior+bonv+ ...)

Its coefficients by; are polynomials in a;; and A;. Transform again with
v = xkw(x) to get
zw'(x) = w(box + boyx¥w + ...)

and assume a solution

w = E cﬁxﬂ‘f"
t, =0

Its coefficients can be calculated successively with the relation
(¢ +.770)Cij = Pij(brs: Comn)

where py; is a polynomial in its arguments and (m+n) < (¢+3) > 0.
The first coefficient cop is arbitrary. The series approaches zero as x
approaches zero along a properly chosen path. More complete details are
given by Goursat, Ince-1, Valiron. -

11-4. The Generalized Equation of Briot and Bouquet. In a case
more complicated than that of 11-3, let the differential equation be

. , @, y)y' = Pz, y) (11)
Solutions are wanted with y = 0 when z = 0. This means that if
P(0,0) = Q(0,0) = 0, then y' bhas the indeterminate form 0/0. It is
assumed that both P and Q are convergent double series in z and y,
similar to the right-hand member of (5). However, P and @ are not
t  divisible by any power of z or y. Thus, it is possible to take, as a simple
Pz, y) = mixz+biy + fi(x, y)

(12)
R, y) = asr+boy + fo(x, y)

o
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where the f;(x, y) are series beginning with terms of the second degree.
When P(z, y) and @(z, y) have more general forms, the following method
18 also applicable but the steps are more complicated. They are described,

for example, by Ince-1.
- To solve (12), let y = ux and get

zq(x, uyu' = p(z, ) (13)

where '
p(x, u) = (u —uo)F (ug) + xF1(x, u) (i4)
g(x, u) = co+c1(u —up) +xFs(x, u)

In these equations,
' ' F(u) = u(az+bau) — (a1 + byu)

and up is a root of F(u) = 0. The derivative F'(ug) is to be evaluated at
u = uo. Higher-order terms are indicated by F;(x, y). There are three

possible cases. _ -
a. %o 18 a simple root. Take v = (u—wuyg), so that (13) becomes

xv'(x) = ax+kv+ ... (15)

where a, k are constants. The equation is now of type 11-3 and can be

handled further as described there.
b. % is a double root. In this case, (14) becomes

Pl(x: ﬂ’) - xFl(xa u’)

" “and, (15) becomes
’? | xv'(x) = ax+ ...

ThJB differential equation is now that of case a, with & = 0. |
C. %p 18 a common root of F(u) = 0 and ¢(x, ) = 0. In this case, (15)

becomes - |
- rgi(x, v)v' = m(zx, v)

where the coefficients are similar to those in (12)
pilx, v) = Ayx+ Byv+ ...
q1{z, v) = Asx+ Bov+ ...

Provided that B; # 0, let _ | _
- v = x(v1 —41/B) (16)

and get '
2h(x, vi)v1’ = Pi(x, v1) (17)

where

Pl(a:,.-vl) =.B;[2?J1+ oo
i@, v1) = Ao+ BiBaor + ...
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and Ao = AsBy — Aq1B-. There are two cases. If 4y # 0, (17) can be

written as |
221’ = ax+ kv + ... . (18)

If A9 = 0, (18) is indeterminate at the brigin but a finite number of
reductions similar to (16) will finally convert it to

xm-’-l'vm’ == ax"l'kvm‘l' soe (19)

In either case, there is a differential equation like (18) or (19) with m > 1,
a posttive integer. There are two conclusions, both for k£ # 0.
i. m = 1 and (19) is formally satisfied by a series which diverges for

all x > 0.
ii. m > 1 and there is no solution in ascending powers of z. The

origin is an essential singular point; see 10-1.
There are two special cases of interest, which in terms of the original

variables, are as follows.
amtly’ = qx+ by

This is a linear equation, type 2. The second equatlon is of Ricecati type;
see 3-1.

2%’ = a2’ +by?

12. Solution as an Integral Equation
Given

y' = flz, y) IR ¢ ¥

it follows that a solution is |
y = |f(x, y)dz+C (2)

This symbolic solution, however, is not immediately helpful since the
unknown function y(x) occurs under an integral sign. Thus (2) is an
integral equation which should be solved. It is convenient to require that
Y = yo when xz = xy, so that (2) becomes

Y = Yo+ f [z, y)dx ' (3)

This is the general solution of (1), since the a.rbxtrary quantity yo can be
regarded as the constant of integration.
In order to solve (3), let ¥ = yo under the mtegral sign and let 1y be a
ﬁrst approxxmatlon to the general solution of (1) where

ly = yo+ f (x, yo)dx

Zy
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The ilitegra.l can be evaluated, at least in principle, since it involves only
a single variable x and a constant yo. Continue in this way and calculate

X
Yy = ?!o+f Sz, ly)dx
| o

ny = yo+ f f(a, nly)da

The work is stopped with a solution ¥y, which is a sufficiently close approxi-
mation to the exact solution. The procedure may become quite tedious,
since the integrations are usually more and more difficult to perform
With appropriate restrictions, existence theorems show that the successive
integrals converge and that the solution is unique. Suitable references
are Coddington and Levinson, Ince-1, Whittaker and Watson.

- 13. Approximate Methods
Given the differential equation

y’ = f(:l?, ?/)

suppose that all previous methods have failed, or have been unsatis-
factory, for one reason or another. It may then be possible to find an
approximate solution by one of the following means:

a. graphical integration

b. mechanical integration

c. numerical integration
There is an extensive literature of each, there are many variations of
them, and the details are lengthy. For these reasons, we limit the descrip-
tion of them here. Some suitable references are Levy and Baggott
Milne-1, Milne-2, Scarborough, Collatz, and other books cited in the
Blbhogra,phy

a. Graphlcal methods. Considered geometrlca,lly, the differential
equation assigns a slope to every point (x, ) in the x, y-plane. Any point
for which f(z, y) becomes infinite, of course, must be excluded. Draw
short, straight-line segments with slope f(x;, y;) through a number of
points (z;, ¥;). Each will determine a small portion of an mtegra.l curve.
The general shape of that curve will become apparent as the plotting is
continued. A smooth curve with the line segments as tangents will be
the integral curve sought. The final result is a family of curves ¢(zx, y, C),
each member of which has a slope given by the differential equation.

In some cases, the given problem m:ght require only a specla.l solution,
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satisfying the condition that x = 29 when y = yo. This situation is
equivalent to the general solution if x¢ is a constant and Yo 18 a variable
parameter or the constant of integration.

Following these general principles, many ingenious variations have been
devised. As one possibility, 2soclines are first drawn. These are the loci
along which the slope required by the differential equation has a constant
value. When a number of isoclines have been drawn, the integral curves
can then be sketched on the same plot. |

As another possibility, a first approximation to an integral curve could
be drawn and this could be improved by redrawing, until two successive
curves coincide. To compute corrections to the first curve, the Taylor
series method, see 11-1b, or the integral equation method, see 12, could
be used. In other cases, a nomegraph mlght be eonstructed for ealcula.tmg
the corrections.

No high order of precision can be expected by graphlca.l means but the
results may be acceptable for special problems, especially if the graphs are
carefully constructed and of sufficiently large size. Lacking some par-
ticular reason for using this method, one of those in ¢ would usually be
preferred. For more details about the graphical methods, the book of
Levy and Baggott is recommended. -

b. Mechanical methods. Devices for mechanical integration have a
long history. Two such instruments are the integraph and the polar
planimeter. The former, described by Abdank-Abakanowicz in 1889,
contains a tracing point, which moves along a graph of the integrand.
An attached pen draws the integral curve. The polar planimeter, one
model of which was invented by Amsler in 1854, also has a point, which
moves along the integrand curve. A connected scale and vernier indicates
the number of complete or fractional revolutions made in tracing out the
perimeter of the integrand curve. A simple calibration and calculation
give the area under this curve, which, of course, equals the value of the
definite integral. Either of these devices could be used to solve a simple
differential equation in several ways. For example, the integral equation
method, see 12, would give successive approximations to the solution,

When the various integrals had been evaluated mechanically.
A wide variety of more sophisticated instruments has been described
. in the literature and many of them actually constructed. In some cases,
§ the machine has been invented to solve a particular type of equation,
such as that of Riceati, see 3, or of Abel, see 4. In other cases, the machine
mey be more versatile but none of them are simple and all are expensive

o build. For many references and further deecnptlon of such instru-

ents, see Kamke.
. ¥ ' OF great Importance in the development of medem computing methods
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was the Bush differential analyzer. It was based on addition and integra-
tion.  The former was achieved by gear boxes and the latter, by a wheel
and disk mechanism, similar to that of the polar planimeter. Originally,
a curve was followed manually by the user of the machine. Later, photo-
electric curve tracers were added and, eventually, the moving parts were
replaced by electronic components. These developments were a logical
outcome of the Mallock electronic machine, which had been invented for
solving simultaneous equations. The modern versions of these machines
are called analogue computers. For more details, see Johnson, Soroka.
¢. Numerical methods. The methods of 2 and b are based on measure-
ment and on the properties of smooth curves. The somewhat inexact
title of this section suggests that number is now of major importance.
Thus, all operations in these methods are essentially addition or subtrac-
tion. They can be carried out by any of the commercially available desk
calculating machines or by those high-speed devices known as digital

| \eo?nputem

I{\l general, numerical methods are based on slep-by-step integration.
Thus, suppose that y" = f(z, y) is given for solution with specified initial
values (29, ¥0). Graphically, as explained in a, one could draw a short
segment through (xo, y9) with slope f(xo, 9); proceed to a neighboring
point (z1, ¥1) with x; > 2o and calculate f(z;, 1), drawing a segment of
that slope; continue to the next point (x2, ¥2) and so on. The broken-line
curve resulting would be a rough approximation to the integral curve
desired. Obviously, the same procedure could be followed with numbers
as it is certainly not necessary to draw the curves.

Similarly, if successive derivatives of f(x, y) can be found analytically
they could also be calculated numerically. The solution of the differential
equation would follow from the Taylor series method of 11-1b. When the
derivatives are not easy to obtain, the method could be modified by using
interpolation formulas for them. Alternatively, the integral equations
of 12 could be used. First evaluate the integrals, if this is possible, and
then calculate them numerically. If the integration is difficult, use numeri-
cal mtegratlon

A shightly different method is that of Runge and Kutta. Tt is based on
the Gauss method of numerical integration and it reduces to Simpson'’s
rule for integration if ¥’ = f(x), where f(x) is independent of y. In the
usual ease, it may be the most smtable procedure if a desk machine
must be used.

One of these numerical methods may be preferred, even though a com-
plete solution of the differential equation can be found by another method.
Suppose 95(:5' y, C) = 0 is the general solution of the differential equation
and. that it is a relatively complicated transcendental function of x and y.
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e

Especially in some physical problems, solutions may be wanted for par-
ticular values of 2. It may then be easier to solve the differential
equation numerically than to solve the transcendental equation.

Numerical methods are not limited to equations of first order but may
be extended to equations of order two or more and to systems of simul-
taneous equations. For some references where more details can be found,
see Milne-2, Scarborough. If a digital computer is available for solving
the equation, see Wilkes, Wheeler, and Gill. '
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- A2 THE EQUATION IS OF FIRST ORDER AND OF
- - SECOND OR HIGHER DEGREE

il P

It is convenient to use the symbol P, in place of dy/dx or y¥'. The general
equation 1s

f(x:! ?/:P;Pz, ces ,pﬂl) = ()

where the integer m is the highest nonvanishing power of p which occurs
and the degree of the equation. If m = 1, return to Al; if m is greater than
unity, proceed with the various cases of this part, until an appropriate
method can be found. If m is a fraction, it will be necessary to rationalize
the differential equation and clear it of fractions in order to determine the
degree. However, some of the following methods will apply, even if m is
fractional. When transcendental functions of » occur, like In » or cos p;
see 11.

The General Solution of the Equation. Provided that the differen-
tial equation has a solution, it will be some function F(x, y, C) = 0, where
C 1s an arbitrary constant. Because of algebraic difficulties, it may not
always be possible to solve this relation to get an explicit solution
y = ¢(x, (). Thus, alternative forms of the general solution may be
required. They are described in a, b, ¢ and will be called solutions of
types 1, 1I, 111, respectively, in the following sections.

In addition to the general solution, a singular solution may also exist.
It will satisfy the differential equation but it will not be a special case
of the general solution. When it alone is of interest, go directly to 10,
for it may often be obtained without solving the differential equation.
Alternatively, a singular solution may also appear in the methods which
follow, when the general solution of the equation is sought. However, the
singular solution will usually be lost if common factors are eliminated
from both sides of an equation or if they are canceled out in a numerator
and a denominator. -

‘When a series solution of the differential equation is desired, or when the
behavior of such a solution is to be investigated in the nelghborhood of a
mng-ular point, see Al 10-1, proceed at once to 7. -
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a. Solutions of Type I. Suppose that the given differential equation
is of degree m > 1; then there will be m solutions fi(z,y, C) = 0,
1t =1,2, ..,mand _the general solution of the equation is

f@,y, ) = filz, y, Ofal®, 9, O) .. fml®, 3, C) = 0 (1)

There is only one arbitrary constant C, since the equation is of first order,
but if it occurs algebraically in the solution its degree will be m. It does
not need to occur algebraically, however, and in that case, the only re-
quirement is that C be arbitrary.

b. Solutions of Type II. The general solutlon in the form (1) mlght be
a complicated algebraic or transcendental function. In such cases, it
may be more convenient to present the general solution of the equation

fH(z,y,C) =0; folz,y,C)=0; ..; [mlx,y C)=0

- ¢. Solutions of Type III. When the given differential equation can be
written as x = F,(y, p) or y = Fa(z, p), the methods of the following
sections yield relations like y = ¢1(z, p, C) or = = ¢2(y, p, C). If the
algebra is not too compheated p could be eliminated between the two

_ “simultaneous equations in F; and ¢ and the general solution presented
- as in a or b. However, in many cases, such algebraic elimination can be
formidable. It is then much simpler, and just as satisfactory, to regard p
as a parameter. To emphasize this meaning for p, it will be replaced by the
symbol t. Thus, the general solution of the differential equatlon will be
given as either of the simultaneous parametric solutions z = Fi(y, t),
y = ¢1(x, £, C); or, x = ¢2(y,t,0), y = Fo(z,t). A more symmetrical
solution can often be taken as x = F(y, ¢, C), y = Q(x,t,C).

1. Missing Variables

If x, Y, or both are mleemg, there are several procedures. Sometlmee,
one is easier than the others. For an equation of this type, look at all of
the subcases before making a choice of the method to be used.

1-1. Dependent Variable MisSing. The general equation is

‘ _;:5 - ‘Whichever is easier, solve for p or z, and proceed as indicated. If a new
3 variable is suggested see 1-1-3. Conversion of the equation into type 1-2
| 33 sometimes helpful ; see 1-1-4,

' 1-1-1. Solve for P- Since the equatlon is of degree m > 1, there will be
m different first-order equa.tlone L
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—_ e e e - 1—-. —

Each 18 separable type Al 1-1, and there are m solutmns
. ' _fFi(x)dx+C’ B ' (2)

Present the genera.l eolutlon of the equatlon as type Ior type 11, whichever
18 more eonvement

N l_,-172. S_lee Ior x_. Then, differentiate with respeetto y and get

z=Fp) (3)

and dzx/dy = 1/p = F'(p)dp/dy. The last equation is separable, type
Al 1-1, and lntegratlon yleld.e - _
y = [pF'(p)dp+C '- - (4)

An eqmvalent form is y = zp— [F(p)dp+C. There are two possibili-

ties.

a. Eliminate p between (3) and (4) to get qS(a: y, C) = 0 as the general
solution.

b. Replace p by ¢ and take (3), (4) as a parametnc solutlon of type I11.

1- 1-3. Use a New Variable. The form of the given equation
suggests taking p = G(z). The parametric solution is

z = Fu); y=[F(u)Gu)du+C

' 1-1-4. Exchange Variables. The new dependent variable will be
z and 1/p = dx/dy. It is of type 1-2 since the d.lﬁ'erentlal equation has

become F(z, 1/p) = 0.
1-2. Independent Variable Missing. The general equa.tlon is

f@,p) = 0

Whichever is easier: solve for p, see 1-2-1; solve for y, see 1-2-2; introduce
a new varlable see 1-2-3.

1-2-1. Solve for p. There are m different first-order dlﬂ'erentlal

equations
' i = Fily)
but each is separable, type Al1-1-3. The result of integration is
d
= |—+C
Fi(y)

The general solution of the equation is L
r = ‘#l(y!_ C); = =4y, C); .. ;.- z = ¢m(y, C)
which is of type II. It can also be given as g(z, y, () = O, which is type I.

P T - . . o LT PR .. .o .
e A= L. . . - r L : PR . : .
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1-2-2 ~Solve for y. Then, differentiate with respect to x and get
' y = F(p) (5)
dyldz = p = F’(p)dp/da: The last equatlon 18 separable, type Al-1- 3

and its solution is
Ff. .
T = f (P)dp +
P

(6)

An equivalent form is

F
z = y/p+f—(£)d49+0

There are two cases. ' |
a. Eliminate p between (5) and (6) to get ¢(x; y, C) = 0.
b. Replace p by ¢; use (5) and (6) as a parametric solution of type 111.

1-2-3. Use a New Variable. If the form of the equation suggests
-~ p = G(u), the parametric solution is |

_— F(u)
y = Fu); z= IWﬂ+C

- 1-3. Both Variables Missing. The form of the equation is f(p) = 0.
Factor it, if possible, to get

(p —r1)(p —?"2) e (p—1m) = 0

where r; is a root of the polynomial in . The individual factors can be
integrated since the variables are separated in each. The result will be
y = rg¢ + C, and the general solution of the equation will be

(y —r1z+ C)y —roz+0) ... (y ~rmz+C) = 0
- It ma.y be desirable to glve the solution as type 11.

: 2 No Missing Variables
[ The general form of the equation is
f,y,p) = 0
._ !t can be solved readﬂy for p, , or y, refer to 2-1, 2-2, 2-3, respectively.
Docasionally, the method of 2-4 Imght be usefu] Consult 3, 4, 5 6 also,
tramformatlon see A1-9-3-1 will be helpful
~ Solve for p. The result is _
(» —F1)(p —F) ... P —Fm) =0

—T
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where F; = Fy(z, y). Since each factor is of first degree, the methods of
A1l can be used. Suppose that gi(x, y, C) = 01s a solution of p = Fy(z, y);

then the general solutmn of the differential equation is
' 91z, y, C)ga(, ¥, O) ... gm(2, y, C) = 0

A solution of type II may be preferred Some further mformatlon on
equations of this case will be found in 8.

2-2. Solve for x. The result,

z = F(y, p) (1)

can be treated in either of the following ways. -
a. Differentiate with respect to y. A first-order equation in y and p 1s
obtained but z is missing. Solve it by a method of Al a.nd get '

Gy,p, C) =0 2)

Then, whichever 18 easier: -
i. Eliminate p» between (1) and (2) to get an exphelt solution,

y = $(z) + C.
ii. Retain both (1) and (2) as a parametric solution in terms of the
parameter {, which has replaced p. Thus, the solution is type 111.

b. Regard y as a function of p. Calculate
dy _ P
~dp  1-pFy
Here, the subscripts designate partial derivatives: Fp = oF [dp, etc.
Solve the first-order equation by a method of Al. The result is

Y= Y(p) ' (3)

Then, whichever is easier:

i. Eliminate p between (1) and (3) to get y = ¢(x) + C.

ii. Keep (1) and (3) as a parametric solution of type 111, replacing
p by the parameter ¢&. _

2-3. Solve for y. Treat the result

y = F(z, p) - (4)
according to either a or b, but see also c. '
a. Differentiate with respect to x. The dependent va.rla.ble is eliminated
and the result is .
gz, p, =0
Solve this first-order equation by a method of Al 1f poemble Suppose '

that 1te eolutlon 18 | |
_ . Qa@,p,C)=0 - R (5)
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Choose the easier one of the following:

i. Eliminate p between (4) and (5) to get an expholt 3olut10n,
y = ¢(x) + C.

ii. Call p a variable parameter, rename it £, and give the solution as
type III, with both (4) and (5)

b. Calculate
dx Fy
dp .P —Fz x I
where the subscripts mean partial derwatwes see 2-2b. Solve it, if
possible, by a method of Al to get

z=Xp B

o

There are two possibi htles

i. Eliminate p between (4) and (6) to get an exphclt solution,
y=¢=x)+0.

ii. Use both (4) and (6) as a parametric eolutlon of type I11, with
p replaced by ¢.

c. Special cases.

i. If the given differential equatlon is ]mea.r mn y, with a constant
for its coefficient, the differentiation in a or b can be carried out at once;
1t is not necessary to solve for y.

{ - il. Refer to 4. Equations of the special type described there can be
solved very easﬂy

3 Homogeneous Equations and Related Types

For the meaning of the word homogeneous, as used here, see Al-8.
There are several different kinds of equations.

3-1. xnf(y/x,p) = 0. Let y = uzx, so that the equa.tlon becomes
J(%, p) = 0, after the factor 2® has been removed. Proceed in one of the
following ways, whichever seems the easiest.

. -3<1-1, Solve for P. The result, p = F(u)is homogeneous and of first
erder see Al -8-1 Its aolutlon is
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“‘

If p can be eliminated without difficulty, the solution is ¢(z, ¥, C) = 0.

Otherwise, let p be a parameter, renamed ¢, and give a solution of type 111.

3-1-3. Solve for ¥. Use 2-2. The equation has become z = yG(p)
and its solutmn is

_ [pG'(p)
Iny = fl _dep+C

When the integration has been completed, the final result is ¢(z, y, C),

provided that p can be eliminated. As another possibility, replace p by ¢
and give a parametric solution of type I11.

3-1-4. Introduce a New Variable. The form of the equation may
suggest the appropriate transformation. There are two cases.
a. Let y/x = F(v), p = G(v). Then, whichever seems easier:

i. Solve for  and proceed according to b.
ii. Solve for y. The result, y = a:F(v) can be further treated according
to 2-3. That method yields

[ )
Inx = J‘ _G(v) “F ) dv+ C

When the quadrature has been completed, it may be possible to restore
the original variables so that the final solution is ¢(x,y,C) = 0. If
algebraic difficulties are severe, replace v by the parameter { and give a

solution of type 11I.
b. Take x = yFi1(v), p = G1(v). The method of 2-2 is apphcable S0

that

Restore the original variables or give a parametric solution as in a.

3-2. The Isobaric Equation. The form of the equation is

fy, zp) = O
It has been called homogeneous, one-dimensional and, in German, gleich-

gradig; see Al1-8-2. Take 1, n, (n—1) for the dimensions of z, ¥y, p,

respectively. A general term in the equation is x%yPp¢ and its weight is
w = a+bn+c(n—1). If n is the same for each term in the differential
equation, let y = z%u(z); z = In . Then, p = e®12[4'(z)+nu] and
the new equation in %(z) does not contain z. It is type 1-2 and its solution |
can be found by a method of that section. ' ]

3-3. The Equation has the Form 9yf(x,p/y) = 0. Let y = ¢,

¢ = fu(z)dz, and get e?f(x, u) = 0. Delete the exponentla.l factor, solve
f(z, u) = O for u, and integrate to get ¢(z). -
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4. Clairaut’s Equation and Related Types
There are three different equations, each quite similar in form.

4-1. Clairaut’s Equation. Given f(z, y, p) = 0, it is of this type
if it becomes, when solved for y,
 y=ap+flp) ()
It is now 2-3 and if the procedure of 2-3a is used, the result is

p=p+[x+f ’(p)]% - (2)

which may be satisfied in two ways. Note that Clairaut’s equation may
often be recognized without actually solving for y; see 4-2.

a. Let dp/dz = 0. Then p = C and the general solution of the equation

is - .
y = Cz+f(C) _ (3)

b. Take
o z+f'(p) = 0 (4)

. Eliminate p between (1) and (4) to get ¢(z, y) = 0. It contains no arbit-
: rary constant; it 1s not a special case of the general solution (1); it satisfies
the differential equation. Alternatively, (1) and (4) may be used as a para-
metric solution of type ITI. In either case, the result is a singular solution :
see 10 for further details.

4-2. f(y—xp,p) = 0. When solved for y, the result is Clairaut’s
equation, type 4-1. The general solution is

A éingu.lar solution may also exist ; see 10.

. 4-3. d’Alembert’s Equation (also called Lagrange’s Equation).
' Tts form is . T _

y = =) +9(p) ®
j There are several possibilities.

£ . Special cases. When f(p) = p, it is Clairaut’s equation; see 4-1.
22 9(p) = 0, the equation is homogeneous: see 3-1.

fiay V- Differentiate with respect to x. Make x the dependent variable and

= .

" fndependent variable. The result is
= dp p—f(p) p—f(p)

—_
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If the denominators on the right do not vanish, the equation is linear,
type A1-2, and the solution of (6) is -

- xz=CF(p)+GpH (7)

Ellmma.te P between (5) and (7) to get an explicit solution, y = gb(sv) + C.
Alternatively, retain (5) and (7) as a solution of type III, replacing p by

a parameter f. A singular solution may also exist; see 10.
c. The Legendre transformation. With z = P(X ), y = XP—Y(X),
P = dY|dX, the result is linear; see Al1-2 and A1-9-3-1.

[X —f(X)]P = g(X)+ ¥ (X)

5. The Method of Lagrange
‘Suppose that the given equation o _
F(Q?, ?/:P) = 0 (1)

can be written as F(f, g), where f(z, y, p) = 0, g(x, y, p) = 0 are two first-
order equations, derivable from a common primitive

¢(x: Y, Cl: 02) = 0 (2)

Here, C; and C; are two arbitrary constants. The solution of (1) is also
gwen by (2), but the constants are related by

_ _ F(C,C3) =0 -~ (3)
The method will apply provided that -

fo(gz+Dp9y) = go(fz+2fy)

* where the subscripts indicate partial derivatives.
Alternatively, differentiate (1) with respect to z, solve the reeultmg
second-order equation, see B, to get (2) and use (3) to eliminate one

constant.

6. Change of Variable

Try to convert the differential equation into one of the preeed.mg types
by a new dependent variable, a new mdependent variable, or two new
variables. Specific directions are not readily given but a number of
suggestions may result from A1-9. See also A1-9-3-1. Modifications
needed for equations of second or higher degree are usually obvious.
Since an equation of Clairaut type, see 4-1, is quite simple to solve, seek
a transformed equation of that kind, as one possibility. A few special
cases of variable transformation are listed in the next section. Many
further examples will be found in Part I1. -
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6-1. Polar Coordinates. Let 72 = 22 + % and use new variables

r, 0, defined by x = rcos 0, y = rsin 0. If the differential equation con-

tains a term (2, y,r), examine one of the following types; see also
Al1-9-3.

a. f(r2)(1+p%) = (y—2p)2. In the ~new variables, the equation is

type 1-1,
' r2(r2 —No"(r) = f (%)

0o s f( L) e

It may be easier to keep r, 0 as variables in the final solutmn for an ex-
phmt solution in terms of x and y may be complicated.

b. 72f(z[r)(1 +p2) = (y—2ap)2. The new equation is of type 1-2,
12[1 —f(cos 6)]6'2(r) = f(cosf)

Inr = +f( ;f)1/2d9+0 _

S ﬂf (y/r)(1+p2) = (y—xp)z. With the new variables, an equation of
type 1-2 results _

Its solution is

_The solution 1s

ré[1 —f(sin 8)]10'2(r) = f(sin 6)

Inr = if(—f-_if—)mdﬂ+0

Its solution is

*=".
= .
-
H
....
=
....

7 The General Equation
: leen the general equation of first order and mth degree (m > 1)

f(z,y,p) =0

lf no method has yet been found for solving it, no solution is likely in

dmite form. In that case, it may be possible to use:

_g;g,ga. An infinite series; see Al1-11.

g»f b. A definite integral; see A1-12.

An approximate method; see A1-13.

eterences apply to an equation of the first degree but they may be

;_ pelified for equations of higher degree. Since problems of this sort are
Sl Fommon, no further details will be given here. .

M in Al1-10, mathematicians have been interested in finding

! classes of differential equations which define new transcen-

) nctions. The class concerned here is that with no movable
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singular points; see A1-10-1. The necessary conditions for equations of
degree two or greater are stated in 8 and its subsections. Wlth still further

restnctlons the special cases of 9 result.

8. Xo(%, ¥)p™+ X1(%, )P 1+ ... +Xm(%,y) = 0.

This special case of 7 is restncted. as follows: the coefficients X i(z, y)
are polynomials in y; the coefficients of ¥ and its powers are analytic func-
tions of z, see A1-10-1; the equation is ¢rreducible. The last property
means that the differential equation cannot be written identically as

fx,y,p) = Fy(z, y, p)Fyz, y,p) = 0

where F;, F; are polynomials in p of degrees ¢, §, respectively, with
(¢ +7) = m. If this were so, there would be two separate equations #; = 0,
F; = 0, and each could be treated according to the procedures following,
or in some simpler way.

- For the general differential equation of this section, use the abbreviated

symbol
flx,y,p) = 0 (1)
Differentiate it partially with respect to p and call this result
fP(x: y,p) =0 ' (2)
Finally, eliminate p between (1) and (2) to get the p-discriminant relation ;
see 10-1,
Ap(x,y) = 0 | (3)

It is analytic in > and a polynomial in y. Note that the subscript in (3)
does not mean a partial derivative, as it does in (2).

Examine the coefficients X;(z, y) for fixed smgular poinis; see Al 10-1.
There are four cases.

a. A, vanishes independently of .

b. Xo vanishes independently of y.

c. There are singular points of X; for general values of y.

d. There are singular points for y;, a root of (3).

Values of x so determined are fixed singular points, dependmg only on the
coefficients z;. Exclude each of them from subsequent consideration, for
we are interested here only in the movable singular points.

Let (xo, yo) be some point other than those which have been excluded
It may, or may not, be a movable singular point. Series solutions of (1) |
are wanted in the neighborhood of (x¢, ¥9). Provided that the origin is |
not a fixed singular point, a suitable choice is often 29 = yo = 0. There |
are four special cases. A study of them will reveal the conditions for a
solution with no movable amgnlar pomts If tha.t case a.long is of mterest

go te 9.1, at once.
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8-1. Xo(¥0, yo) # 0, Ap(x0, yo) # 0. These two conditions guarantee
that (1), a polynomial in p, will have m different finite roots in the neigh-
borhood of (x¢, o). Each is an analytic function there. Select one of
them, say p;, and develop it as a double series

P11 = ;j aij(-’v -fxo)"(y —Yo)

Solve this first-order equation according to Al-11. Call its solution
y1 = Fi(z, 2o, yo) and it will equal Yo, when x = xy. Treat each of the
other roots in the same way. The general solution of (1) will be, see 2-1

y = Fi(x, xo, yo)Fa(z, 2o, Yo) ... Fm(, o, yo)

It has one arbitrary constant yo. There are no solutions of any other
type.

8-2. Xo(%0, y0) = 0, Ap(x0, o) # 0. With these conditions there are
m different roots of (1), but one of them becomes infinite at (xg, yo). If
there were two infinite roots, the further condition X 1(o, ¥o0) = 0 would
be required, and so on, for a greater number of infinite roots.

Use 8-1 to find (m —1) solutions for the finite roots. The method of

A1-11-2b is applicable for the single infinite root and the resylt is, with
a0 # 0, k> 1

y — yo + (x _xo)]./(k“i'l)[ao_'_al(x _.xo)l/(k‘l‘l)_l_ ces ]

This case always has a movable branch point at z = x,. There can be no
general solution in this case entirely free from such a point.

8-3. Xo(%0, ¥o) # 0, Ap(x0, y0) = 0. Since (3) is a polynomial in y,
E 1t will have some solution y = ¢(z). Ignoring the singular points of A, = 0,
i see 8d, this solution will be an analytic function of . For general values
¢ of y there will be m different roots of p; see 8-1. Call them p,, ps, . . ., vy
but when y = ¢(x), there is at least one multiple root, g. Suppose that the
roots equal to ¢ are py, ps, ..., p,; r > 1. '

Keep z fixed and let ¥y make a small circuit around the point so deter-
¢ mined, y = ¢(z). Then, one of the equal roots, 21 for example, will either
i return to its initial value or become equal to one of its partners p,,
| 3, ..., 7. Eventually, after « < 7 complete circuits it will return to ;.
f  Thus, p;,asa function of y, has a branch point of order (x—1) at y = ().
i Let Y(2) = y—d(x), and use Maclaurin’s theorem to get

q+ Yklﬂ(gk +gx Yie4 ... ) | o (4)



70 ORDINARY DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

a. o = 1. The differential equation is analytw in and Y. Its solution
is an analytic function; see Al-11.

- b. & > 1. The right-hand side of (4) shows that 1 18 branched There
are two cases.

i. ¢ # d¢[dx. The solution of (1) is
Y = $(z)+(@—20)[a0+a1(x ~20)V* + an(z —mof2* + ... 1
It has a movable branch point. ' R -
ii. ¢ = dd/dx. Three possibilities arise in this case.
- One solution i1s ¥ = ¢(x). It is a singular solution ; see 10.

(e—1)>k. Let 8>1, so that a=k+s8+1. The solution of the differ-
ential equation is

Yy = ¢(x)+P,[(x ---'vo)“‘““"“’]

where P, designates a polynomial in its argument, with a leading term of
degree «. This solution has a movable branch point.
(x—1) < k. Let « = k—3+1 and there are two subcases.
8 > 0. The only solution of (1) is the singular solution,
y = ¢(x). This is the same situation as that in the first case of ii.
8 = 0. The solution of (1) is

y = ¢(x)+P,[(z —0)]

There is no branch point at z = z,.

8-4. Xo(%0, ¥0) = 0, Ap(x9, ¥o) = 0. The function y = $(x) satisfies
both Xo = 0 and A, = 0, for general values of  and y. The conclusions
are similar to those in 8-3, except that the multlple root is at mﬁmty
The dlﬂ'erentlal equation corresponding to (4) is

p= Yk g+ g YVt ..)
and the solution of (1) is _
- Y = @) +P,[(x —xo)/EHD]

Since £ > 0, there is a movable branch point even though « = 1.

9. p”'+f1 (x ypr-i+ . +fm..1(x’ Y)P +fm(%, ¥)=0.

'This is a special case of 8, where restrictions are imposed so that the
solution has no movable branch points, see A1-10-1. The coefficients
fi(x, y) are analytlc in z and polynomla.ls in y. Other special cases of 8
are presented in 9-1ff. -

Demgnate the general equa.tlon of thls section by
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and let its p-discriminant relation be A,(x, y) = 0; see 10-1. For further
details about the equation, see the following parts of this section. '
a. Movable branch points. They always occur when Xy(z, y) =
according to 8-2 and 8-4. To avoid them, require that X be a funetlon
of z alone. Thus, with this restriction, use the general equation of 8,
divide each of its coefficients by X(z), and get ( 1)
b. A singular solution. Suppose that y = ¢(x) is a root of Ap(z, y) =
and that p = ¢(x) is a multiple root of f(z, ¢, p) = 0; see 8-3. At the
same time, let the corresponding root of f(z, y, ») = 0, as a function of
Y(x) = y—¢(z), be branched. Then, ¢ = dcﬁ/dx and y q':(a:) is a smgu]a.r
solution but there may be others. @~ '

C. A restriction on «. If the order of any bra.nch 18 «, the equatlon has

the form see 8-3, | L
- ' Y () = gl Y (:v)]""‘

To prevent a movable branch point, it is necessary that (a—1) <

d. Further restrictions. If y becomes infinite at a branch pomt let
Yy = 1/u, 80 that u = 0 at x = 29, y = 0. A]eoletP dujdx = —plu?
and (1) becomes

Pm—fi(z, yutPml g . 4 (—1fm(z, ghutm =0 (2

It is necessary that the coefficients of P* be rational in %; thus fi(z, y)
- must be of degree 2: in y, or less. If ¢+ = 1, and all of the other conditions
are met, the result is a Riccati equation; see A1-3. :
€. u 18 a factor of Ay(x, ). Suppose also that P is a many valued
flmctlon of u. It is required that u be a factor of both f, and fjr—;.
= - f. Abranch of order «. It is necessary, according to c, that ( xa—1) <
The dJﬂ'erentlal equatron becomes
e P(z) — dujdz - Bkl 4

g 8. No mova.ble essential singular points. This is true for (1), mdepend-
dent - the presence or absence of movable branch points.

. ?—l p”' + Yl(y)pm“l + oo + Ym(y) = 0. The coefficients Y ;(y) are
pelynommle in y, of degree no greater than 2i. There can be no fixed
f sing la.r points, except possibly one at infinity, since the coefficients do
nd on z. If all conditions of 9 are met, there can be no mova.ble
| r pomte Furthermore there are no essential emgu.lantlee for
-2 ., ‘The pomt at mﬁmty can be an essential emgular pomt but not a
pomt oo . _

ﬁ* + X (x, y) = 0. This is a special case of the general equa.tlon
It is assumed to be irreducible, see 8, and to satisfy all further re-
gements of 9. Its aolutmns therefore have no movable branch points,

-----

-
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but the latter condition means that the equation must take the restricted
form - - _

SR pm+F(x)G(y) =0 )
However, there are still further limitations for only certain values of the
constant m are permitted. If uninterested in the details, go to 9-3, where
these permitted cases are listed. If the arguments for (3) are wanted, see
the following. o ' .

‘a. The degree of X(z, y) can be no greater than 2m, see 9d. If the
degree is less than 2m, there are two possibilities, but both can be reduced
to the case where the degree is 2m. For convenience, the degree of X(z, y)
will be taken as exactly 2m. ' _ -

i. The degree of X(z, y) is less than 2m, but it does not contain y as
a factor. Let y = 1/u, as in 9d, so that the equation is transformed into

Pm 4 (-1 X(z, yyusm = 0

where P = du/dz. It has become of degree 2m in the variables « and =.

ii. The degree of X(z, y) is less than 2m, but it contains y as a factor.
If it does not contain (y —a) as a factor, let (y —a) = 1/u and the equation
is transformed into that of case 1.

b. There are equal roots. This means that Ay(z, y) = 0; see 8-3 and
8-4. It also means that A, = X(x, y). Suppose that Y(x) = y—¢(x) 18 a
factor of X(z, y), so that p = 0 is a root of p™+ X(x, ¢) = 0. It follows
that the roots of the equation may be branched or may not be branched
when y = ¢(x). | . -

i. A root is branched when y = ¢(z). From 9b, it follows that
d¢/dx = 0; hence ¢(x) 18 a constant. | '
ii. A root is not branched when ¥y = ¢(x). In this case, X(x, y) must
contain Y™(x) or Y2m(x) as a factor; see 9Db.

In the first case, suppose that Y™ (x) = [y— ¢(z)]™ is a factor of X(z, y).
The remaining factor will have the form g(x){y — ¢1(x)}™ and the differen-
tial equation is irreducible, see 8, contrary to assumption. The second
factor of X(z, y) will be of degree less than m and the corresponding value
of p will be branched. It follows that ¢;(x) is a constant; see i.

In the second case, Y2m(z,y) may be a factor of X(x,y). Then, the
differential equation becomes p™+ F(x)Y2m(x) = 0, which 1s reducible,
see 8, contrary to the original assumption about the differential equation.

9-3. - pm 4+ F(x)G(y) = 0. When the diﬂ'erential.equation of 9-2 is
restricted so that there are no movable branch points, the equation of this
section results. From 9-2b, there are two possibilities for

L Xay=Fx)ey) . .
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a. Ym(x) = [y—¢(x)]™ is not a factor of X(x,y). Then, (3) must
contain a factor

G(y) = (y —a1)™(y —ag)™: ... (y —an)™

where the a; are constants and (m;+ma+ ... +my) = 2m. A power
series expansion, in terms of any a; and my, will give

p = A(x)(y —a;)™m+ ...

Reduce mi/m to its lowest terms and suppose that the result is k¢fo;. It
follows from 9c that (x;—1) < k; and, as a consequence of this inequality,
that kifoy > 1/2, o3 > 2, my > m[2. The possible equations are those
satisfying the conditions m;/m > 1/2, (m1+m2 + ... +my) = 2m, where
each m; is an integer. The results are listed in 9—-43.

b. Y™(x) = [y—d¢(x)]™ is a factor of X (2, y). In this case, the differen-
tial equation must contain a factor Y™(x)G(y) and the condition m; > m/2
must hold as in a. However, m; < m, (mi+mz+ ... +my) = m. There
is only one possible differential equation; see 9-4b.

9-.4. The Binomial Equations. If all conditions in 9-3 are met, the
resulting equations are called binomeal. There are three cases: the first
two correspond to a and b of 9-3; the third includes some degenerate
forms. For a method of solving each differential equation, see Part II.

_ The general equation is

™+ F(z)Q(y) = 0 (3)

o,
b

LA

'_:_l b b
Br . )
-
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G(y) = (y—a1)™(y—az)mo(y—ag)™s(y—as)™

... The quantities a; are constants; m and each m; is a posmve integer;

 (my+ma+ms+my) = 2m. The case m = 1 is excluded since it would be

:f?%;; of first degree; see Al. There could be further special types such as
{ P*+ H(y) = 0. These were first studied by Briot and Bouquet and they

p aare listedind.

f ° 4. The cases of 9-3a. There are six possible types; see Table 1.

TABLE 1. CONSTANTS IN THE BINOMIAL EQUATIONS
ph+F(z)G(y) =0

Type m m; ma m3 my
SR m m-+1 m—1 0 0
I 2 1 1 1 1
IV 3 2 2 2 0
. 2 4 3 3 2 0
SEE *5 (RO 8 B 4 3 0
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b. The case of 9-3b. Refer to type II in Table 1, replace (y —ai) by
Y(x) = y—¢(x) and call this type Ila, It becomes type 1I, if ¢(z) is a
constant not equal to ag or as.

Degenerate cases. Substitute (y a;) = 1 [u into the six types of a.

Each will give one or more degenerate cases of degree lower than 2m. If

the dependent variable is again called y, the results are of the same form
as (3), but G(y) is a product of three terms, rather than four terms. The

poselble cases are listed in Table 2

TABLE 2 CONSTANTS IN THE DEGENERATE
CASES OF THE BINOMIAL EQUATIONS

p™+F(x)G(y) =0

T ype | mi
I-1 m
1-2 m
I1-1

I1-2
III-1

1V-1

V-1

V-2

VI-1

Vi-2

VI-3

- d. The transformed equa.tlon pm+ H (y) = 0. In (3), let y(a:) = u(2);
z = (Fl/m(x)dx. The result is u'(z) = G1/m(u), a first-order equation of
separable type, A1-1-3. Each binomial equation of this section could
thus be written in the slmpler form pm + H (y) = 0.

3
5
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10. Singular Solutions
Given an equation of degree m > 2

fx,y,p) =0 ' ' -  (U

it is often possible to ﬁnd a function E(z,y) = 0, with the fo]lowmg
properties:
~a. It satisfies the differential equation.

b. It contains no arbitrary constant.

c. It cannot be obtained by assigning a particular value to the integra-
tion constant in the general solution of (1).

Such a function is a singular solution. Its properties are frequently of
interest and, in some problems, it is wanted rather than the general
solution of the differential equation.

There are two poeslbﬂltlee - -
. The equation is reducible. This means that (l) can be written as
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the product of two or more rational functions; see 2-1 and 8. There will
be no singular solution. A check on this situation can be made, for the
p-discriminant, see 10-1, will vanish identically. '

ii. The equation is irreducible. A singular solution may exist. In
such a case either 10-1 or 10-2 could be used. The former may be simpler,
since the general solution of the differential equation need not be known.
However, it would be preferable to complete the work of both 10-1 and
10-2, in that order. Then, refer to 10-3 for a more complete treatment

of the problem.

- 10-1. The p -discrlmmant Calculate the partial derivative of (1)
Wlthr%pecttop ' .

fol@, 4, p) = O o (2)

Eliminate p between this equation and (1). The result, A,(x, y) = 0,
called the p-discriminant relation, will contain the singular solution, if
& one exists. Note that the subscript in thls relation does not mean a partial
- denva.twe

. " Clear the p-discriminant relation of fractlons and r&dlcals dlscard any
L constant factors, but do not reject any functions of the variables. The
eﬁuation will then usually be a product of two or more functions of x and
¢ y. Test each to see if it satisfies the differential equation. If it does, it is
E either a singular solution or a special case of the general solution. Any
faetor which does not satisfy the differential equation describes a curve
: rela.ted to the general solutlon of (1). If such a functmn is of 1111;81'331; see
E 3

Ihere are two modifications of the general procedure which may be
relpful.

; %h. ‘Suppose that (1) has the form, see 8
T Xof@, yipm+ X, g)p L+ e + Xz, y) = O
_a-*: }{

< h p-dlscmmma.nt relation is equivalent to the algebralc problem of a

ﬁ omial with equal roots. Thus, for m = 2, 3, differentiation and

g ' Hnination of p can be avoided with the explicit relations

r
‘‘‘

A
"'h.
'qh.
ﬁ%

en m > 3, similar but more complicated relations can be found but
| be snnpler in such cases, or even if m < 3, to determine the
by dJﬂ'erentlatlon and elimination of p

Cfetpfy=0 @)
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where the subscripts mean partial derivatives. Provided that f, # 0,
a factor of Aj, = 0 is & smgular solutlon if 1t smultaneously satisfies (1),
(2), and (3). - -

10-2 The C -discriminant The procedure of this section can be
used as an alternative or a supplement to that of 10-1. In either case, the

general solution of (1) is first required. Suppose that some of the methods
of precedmg sections have been used to get a general solution of (1)

F(z,y,C) =0 . - (4)

Differentiate it partially with respect to C; that is, assume C to be a
variable parameter rather than a constant. Write the result as

and eliminate C' between (4) and (5). The C-discriminant relation is
obtained, A¢c = 0. Note, that C here does not mean a partial derivative.
The C-discriminant relation will usually be a product of two or more
factors. Test each to see if it satisfies the differential equation. If it does,
-1t 18 etther a singular solution or a special case of the general solution. If
this section has been preceded by the work of 10-1, the singular solution
found there will again appear in A¢c. The present section thus furnishes a
check on the earlier calculations.

If a factor in Ac fails to satisfy the differential equation, it may or may
not duplicate a similar function found by 10-1. For further information
about such functions, see 10-3.

It is often convenient to calculate A¢ as follows. erte ( 4) if possible,

in the form
Ag(x, y)O™ + Ay(z, y)Om-1+ .. +Am(x, y) = 0

Then, for m = 2 or m = 3, use the equations of 10-1a, replacing X; by 4;.
There is no equation analogous to (3) for the C-discriminant.

10-3. Singular Solutions and Associated Curves. There is no
generally accepted definition of a singular solution and at least three have
been used by different writers:

i. A function which satisfies the differential equation but which
cannot be obtained by asslgmng a special value to the a.rbltra.ry constant
in the general solution.

ii. An envelope to the family of curves gwen by the general solutlon

of the differential equation.

iii. A solution of the equation which occurs in A,. In this book,
definition i is used. If conclusions followed are compared with those in
other books, discrepancies may occur unless the same definition has been
used in each case. |
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Two discriminant relations will result, if the work of both 10-1 and
10-2 has been completed. Each will generally be a product of two or
more functions. Its factors may describe curves of three different kinds:
a singular solution, a particular solution, a function which does not satisfy
the differential equation. These three cases are conveniently discussed in
- geometric terms. If uninterested in the details, skip the rest of this section
., and go to 10-3-1. _ _
- Let the given differential equation be (1) and let its general solution be
(4). If (1) is of first order and first degree, its solution describes a family
of plane curves. A single curve of this family is completely identified
‘when a definite value is assigned to the constant C. The differential equa-
tion itself, when solved for p = dy/dz, fixes the slope of the tangent to
any curve of the family at a chosen point. Singular points, where the
~slope becomes indeterminate, require special treatment; see Al-11-2.
§ Otherwise, only one curve of the family will pass through any chosen
B point and there will be a unique slope at that point. -
-=.0On the other hand, when (1) is still of first order, but of degree m > 2,
there will be m slopes at a given point and m curves, as specified by (4),
. :may intersect at that point. In algebraic terms, both (1) and (4) are
E  ‘polynomials of degree m, the first in the variable o and the second in C.
i «Bach of these polynomials must have m roots but there need not be m
£ < different roots in either case, 8o there may be less than m curves or slopes
‘at a selected point. An indeterminate slope at a particular point is tem-
i 1porarily excluded; see d and e for such cases. Equality of roots is recog-
[ atized in algebra by the vanishing of the discriminant, The appropriate
f ‘equations for m = 2, 3 have been given in 10-1 and 10-2. An alternative
f Sinethod, based on calculus, has also been given in 10-1b.
f Wi The existence of singular solutions and the other functions that might
| "iive arisen by the methods of 10-1 and 10-2 depends on the unusual
PMelinvior when there are two or more equal roots for p and C. This is the
Bmiason for calculating both discriminants. The possible consequences are
Peescribed in the following sections.
P The envelope. If a curve is tangent to some member of the family (4)
glievery point, it is the envelope of the family. The slope of the envelope is

Ly ol
T i

PRessame as the slope of the integral curves at the points of common inter-
ebion. This situation should thus be revealed by examination of both A,
PricAc. In some cases, a special solution of the differential equation will
% ibe an envelope. According to our definition, such an envelope would
e ealled a singular solution. - '

A particular ‘solution. Occasionally, a particular solution of the
eeential equation will appear in both discriminants. As Cin (4) varies,

gy reach a certain value at which the integral curves approach a

= Tl oL L
RN Lo T
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limiting slope, different in value from others in the family. At the same
time, a special curve may intersect all other members of the family at the
same point, so that an infinite number of curves meet there. A smaller
number of curves than usual will pass through any other point on the
particular curve. The equation for this special curve will thus appear in
both A, and A¢ and, in fact, three times in the former but only once in the
latter. Such properties often make it possible to identify the situation
from the two discriminants; see also 10-3-1. Confirmation of the conclusion,
of course, comes from the fact that the particular solution is fixed by some
special value of C in the general solution. As explained in a, a particular
solution which is also an envelope is not regarded here as a singular solu-
tion.

c. Tac locus. Suppose that two curves of a famﬂy are tangent to each
other at some point. This means that there will be two equal values of p,
a fact which will be revealed if A, is examined. On the other hand, Ac
will show nothing about this behavior since the proper number of curves
pass through the point of intersection. Such a point is called a tac point;
the locus of these points is a tac locus. It should be noted that there may
be three types of tac points: the two touching curves can have the same
curvature ; they can have opposite curvatures; a point of inflection can
occur for one curve at the tac point. The nature of the tac locus can be
investigated by a study of the equation

02Fyy+ 2pF 5y + Fzp = 0

where p is the direction of the tangent at the tac point and the subscnpts
indicate partial derivatives of the general solution (4).

As in other cases, the tac locus can play more than one role. Thus, it
could also be an envelope but, in that case, we would not consider it to be
a singular solution. If the same integral curve is determined by two differ-
ent values of C, the equation of this curve will also be a tac locus. More-
over, a nodal locus, see d, of the slopes W1]l generally be a tac locus of the
integral curves. _ _

. d. Nodal locus. In some cases, a smgula.r point may occur on each of
the integral curves. There, the slope takes the indeterminate form 0/0, but
the methods of calculus can be used to evaluate the tangents to the curve.

If there are k tangents to the curve at some point, it is a multiple point
of order k. The simplest case is that with £ = 2 and there are three possi-
bilities. The singular point itself can be found from the conditions
F(z,y,C) = 0; F; = 0; Fy = 0. Calculate also ¢(z, y) = F2,y —Fy,Fyy.

If ¢ > 0, thepomtlsanode also called a crunode; if ¢ = 0, 1t133.cu3p

seee;if § < 0, the tangents are imaginary and the pointis called o

___The last case, and those with £ > 2, will not be discussed he

- - = et T a" - . Er R " . -
- LR PO L FACIN - .- . .o ' Fr .o . -
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When ¢(x, y) > 0 at a singular point, there are two real and unequal
tangents, so two branches of the curve cross at that point. In such a case,
two consecutive curves of the integral family will intersect at three differ-

~ent points. In the limit when consecutive curves approach coincidence,
two points of intersection approach the crossing point of the curves and a
nodal locus results. The third pomt of intersection becomes the envelope
of the family. |
~ The nodal locus will appear twice in A, corresponding to the two
branches of the curve. The tangents of each are different, so the nodal
locus will not occur in A,. In unusual cases, it is also possible for the nodal
locus to be an envelope, thus also a singular solution. As explained i in ¢, a
tac locus commonly exists when the integral curves contain nodes.

e. Cuspidal locus. Suppose that the three points of intersection in d
oomclde The node has become a cusp, also called a spinode, keratoid cusp,
B or cusp of the first kind. The position of the singular point is determined
E  asin d, but with ¢(z, y) = 0. There are two real, equal values of the slope
. “and the curve recedes from the point of tangency in one direction. The
f  two branches of it, however, are on opposite side of the common tangent.
i The cuspidal locus will appear three times in Ac, since three loci coincide
. there. It will normally appear only once in Ap, because there are two
k. equal values of the slope. Sometimes, but not in the usual case, the cuspi-
E dal locus may also be an envelope, thus a singular solution.
L “There are other kinds of cusps but they can occur only with multiple

"" 2 -.-".'._.:_."

i peints "Of order grea.ter than two; see d.

jf ' 1 Summary on Singular Solutions. Tt is assumed tha,t the
nlatlons of both 10-1 and 10-2 have been performed. Two discriminant
ions will thus be available. Each will usually be a product of two or
flmotlons Compare Ap with A¢ and it will often be true that both
bain one or more factors in common but they are not always raised to

> 8ame power In the two discriminants. Use symbols, as follows, to
ignate the possible functions: a singular solution or envelope, E; a
tteular solution, P; a tac locus, 7'; a nodal locus, N ; a cuspidal locus, K
g e §wo dmcrlmma.nt relations will then have the fo]lowmg forms

Ac(x y) EPN 2K3 =0

e R T L

ey atiom may often serve to determme the meaning of ea.ch factor.

gnetion belongs to more than one category, it will be repeated the
m”her @f tlmes Thus an envelope thh is also a cuspldal locus

-

—
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The correct interpretation of the discriminant relations is not always
easy and incorrect conclusmns are often rea.ched The following comments
may be helpful. _ -

a. Do not cancel out any functions of the variables in calculating the
dlscrlmmants Constant factors, however, may be discarded.

'b. A singular solution is an unusual case, rather than the general case.
Solve f(x,y, p) = 0 and f, = 0 to get the functions y = fi(z), p = fz(x)
In order for fl(:v) to be a solution of the differential equation, hence a singu-
lar solution, it is necessary that fa(x) = dfi/dz. Such a relation cannot be
expected to hold in general. '

c. No cuspidal or nodal loci can occur for a d1ﬁ'erentlal equation which
has families of straight lines or conic sections for a general solution.

d. The general solution of a differential equation can often be given in
several - different equiva.lent forms. It sometimes happens that the
C-discriminant will give the singular solution with one form, but not with
another. This difficulty would be avoided if both discriminants were

studied.

e. The two equations of this section are said to give correct results
always if the degree of the differential equation is two or three. A number
of examples, where they appear to give incorrect conclusions, are discussed
by Piaggio. Some of his examples have degree greater than three; some
have degree of three or less. Note, however, that he regards any emrelope
as a singular solution, which is equivalent to the definition here in 10-3ii.

f. Some equations of the preceding sections are completely general;
others apply only if the two discriminants are polynomials. If the degree
of the differential equation is finite, A, will be a polynomial in p. On the
other hand, the coefficients of p» and its powers are unrestricted so Ac need
not be a polynomial. If either A, or A¢ contain transcendental functions,

see 11, the singular solutions may be much more complicated than those
which have been discussed here. Such cases have been treated by Hill.

11. The Equation Is Transcendentél in dy/dx

The general equation is f(z, y, P) = 0, where P is some transcendental
function of p = dy/dx Typical cases are In p, €?, cos p, sin p, etc. The
differential equation is of infinite degree since the expansion of P would
yield an infinite series in p. _

Such equations are not common and they seldom arise in problems of
applied mathematics. Some of the preceding methods are directly applic-
able to equations of this type. As another possibility, seek a change of
variable to convert P into » and then use one of the methods of this part.
Some examples of such differential equatlona will be found in Part I1.




B. THE DIFFERENTIAL EQUATION IS OF SECOND
ORDER

The general equation is F(z, y, ', y”’) = 0. If the second derivative is

mussing, return to A; if derivatives occur of order higher than two, refer
to C. -

‘Writing the equation as ¥’ = f(z, y, ¥'), it is often useful to repla.ce
the second-order equation by a system of two first-order equations y’ = z;

Yy’ = dz[dx = f(x,y,z). Suppose that the system can be solved to get
-." = g(x) z = h(x); it then follewe that

9'(z) = h(z); R(2) = flz, g(x), h()]
g'(x) = flx, g(x), 9'(z)]

and y =g () 18 the solution of the given second-order equation. It should
tbe noted that the decompoeltmn of a smgle equation into a eyetem of
[ “équations is not unique.

ﬁ" _This book does not contain methods for solving systems of equations.

3:?5:'-7::%1.3? are frequently convenient when matrix algebra is to be used, for
f"f';menea.l solutions of equations, and for the study of properties of
i iff erentlal equations. Suitable references are Frazer, Duncan, and Collar:

, :ﬁ -—1 Kaplan- 1 and Kaplan-2. |

[~ There are two types of second-order equa.tlons Classify the given
.. [ tlon and proceed as directed.

2%, The linear equation. It is of the first degree in the dependent
e ble a.nd both denva.twes

#e:or a]l of the eoeﬁclents A a:) and f(z) m&y be constants; any of them
¥ vanish except 49. Consult B1.

fi‘he nonlinear equatlon This is the general equatlon of ord er two

ﬁet ef ty'pe a; see B2
g & ﬁ
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Bl. THE LINEAR EQUATION OF SECOND ORDER

The general equation is

A(z)y"’ + Ar(x)y’ + A2(x)y = J(= (1)

' For some properties of it and of 1ts solutions, see c. There are two main
cases; see a and b. |

a. The homogeneous equation. In this case, f(x) = 0. The word
homogeneous is used with a different meaning from that of A1-8. There,
it refers to the homogeneous form of the coefficients; see also B2-3.
Here, it suggests the similarity to a set of simultaneous homogeneous
linear algebraic equations. The equation is also said to be reduced or
without second member. Refer to 1 and following sections until a suitable
method is found. '

b. The nonhomogeneous equation. In this case f(x) # 0. The equation
is complete, nonhomogeneous, inhomogeneous, not reduced, or with a
second member. If the corresponding homogeneous equation can be
solved, it is possible, at least in principle, to solve the nonhomogeneous
equation. Assume temporarily that f(z) = 0, solve the resulting homo-
geneous equation by one of the following methods, and then refer to 12.
The general solution of the related homogeneous equation is the comple-
mentary function of the nonhomogeneous equation. |

¢. General properties of the linear equation. With appropriate restric-
tions on the coefficients in (1), there are existence theorems, see Intro-
duction-3, guaranteeing that the differential equation has a unique solution
in the neighborhood of some point (%o, yo). The solution also satisfies the
conditions ¥(xe) = e, ¥'(¥o) = Yo' . Since, within wide limits, the point
(g, ¥o) is arbitrary, the two constants yo and yo' can be taken as the two

integration constants in the general solution of the differential equation. .

Some further properties of the equation and its solutions follow. For
more details and proofs of them, as well as more exact statements about
the existence theorems, see appropriate references in the Bibliography.

Especially recommended are Coddington and Levinson, Ince-1.
_ «

''''
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~ of a second-order equation, the constants are independent if
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i. The general solution of the homogeneous equation. Let v, y2 be
linearly independent solutions of the homogeneous equation

Ao(-’v)y”+A1(x)?/ + Az(x)y = 0 (2)

Its general solutlon 18
y=Ciypn+Cayz 3)

where C;, C3 are arbitrary constants. Every solution of (2) is contained
in (3).

ii. The solution of the nonhomogeneous equation. Let F(x) be any
special solution of (1) and let Y (x) = Cyy1+ C2y2 be the general solution
of (2). Then, the general solution of (1) is ¥y = Y(x)+F(x). The solution
Y (z) is the complementary function of (1).

iii. Linear independence. Suppose that y; and yz are two special
solutions of (2). They may, or may not, be linearly independent. To test
this property, calculate the Wronskian, a determinant of second order,

Wynys) = | 0, 7o
| Y1 Y2

There are two possibilities. |

W(y1, y2) # 0. The two functions are linearly independent, see i,
hence the general solution of (2) is given by (3). '

W(y1, y2) = 0. The two functions are not linearly independent and there
is a relation Cyy;+Ca2yz = 0. One function is thus a multiple of the
other and the general solution of (2) has not yet been obtained. For one
method of finding a second linearly independent solution, see 4-1-1.

iv. Fundamental basis or set of solutions. The two linearly inde-
pendent solutions of (2) are said to form a fundamental set of solutions or
a basis. When either is multiplied by an arbitrary constant, a funda-

mental set again results; hence there is an infinite number of such sets.

One is of special interest. It is that with y1(xo) = 1, ¥1'(%0) = 0; ya(wo) =
0, y2'(x0) = 1; W(y1,y2) = 1. In such a case, the ﬁrst solution has zero

¢ slope and umt value at £ = x9, with ¢ frequently taken as the origin of

a coordinate system The second solution ha.s zero value and unit slope
at XQ. |

v. Constants of integration. Given y = f(z, C;, C2) as the solution

of of
T o005
o*f o%f

0C10x  9C20x
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1. The Linear Homogeneous Equation with Constant Coefficients
- The general equation is
y'+my +azy =0 (1)

where a,, as are constants. Either or both may be zero and, in that case,
the equation is also of type B2-2. However, the methods of this section
are probably simpler. If the coefficient of y’’ is a constant other than
unity, divide the other coefficients by that number so that the standard

form results.
If the right-hand side of (1) is a constant not equal to zero, or even a

function of 2, disregard this fact, solve the resulting homogeneous equa-

tion, and then refer to 12.
Equations like (1) are often presented in symbolic form as

(D2+ayD+az)y = 0 | (2)

where D = d/dx is a differential operator; see also 5-2 and 6.
To solve (1), determine the roots of the quadratic equation

r2+ayr+ag = 0 (3)

This is the auxiliary or characteristic equation. The roots of (3), r; and
re, are the characteristic roots of the differential equation and (r;+r3) =
—ay; r1irs = ag. There are three possibilities.

a. r1 # r2 and both are real. The discriminant, A = (a;2 —4as) > 0.
The general solution of (1) is '

Y = Olefla'ﬁ_l_ Ozefg.’ﬂ (4)

In some physical problems, it is desirable to use hyperbolic functlons

There are several equivalent forms.
i. Suppose, as a special case, that ry = —rg2 = r. The general

solution of (1) is _
' y = A cosh rx+ B sinh rx (5)

A=C0C+0C; B=C—-0C; - (6)
For_altemative forms, see ii and iii: if r; # —ro, see iv.
ii. A solution equivalent to (5) is
y = A; cosh (rz+B;)
where A% = A2— B2 tanh B; = B/A.
iii. Another form of the solution is
y = As sinh(rz + Bs)
where A2 = B2— A2, tanh B, — —BJA. =

Wi
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iv. If r; # —r3, as was assumed in i, ii, and iii, let rr =a+b
ro = a—b, where a, b are two real numbers. The general solution of the
equation is then

'y = e*¥(A4 cosh bx + B sinh bx)

with A, B as given in (6).
b. 71 =r3g=1r; A = (a;2—4a3) = 0. The general solution is
y = em7((1 + Cox)

C. r1 # r2 and both are complex numbers; A = (@12 —4a3) < 0. Take
r1 = a+1b, roa = a—1b, where a, b are real numbers. The general solution

IS
Yy = e%%(A cos bx+ B sin éa:) |

The integration constants are related to those of a, for 4 = C 1+ Co,
B = 1((1—C3). As in that case, alternative solutions are often desired.
i. y = A16%% cos (bx+By); A12 = A2+ B2, 4y cos By = A, Aqsin B,
= —B, tan B; = B/A. | -
ii. ¥ = A2e9%gin (bx+ B3); A2 = A2+ B2, Agsin Bo = A, As cos Bs
= B, tan Bg = A/B |

2. The Linear Homogeneous Equation with Variable Coefficients
The general equation is .
Ao(x)y'’ + Ai(x)y’ + Aa(x)y = 0

_ or, alternatively,
v +P)y + Qay = 0

wX -

Read the following for suggestions about procedures.
a. A term f(x) or R(z) occurs in the preceding equations. Ignore it,
[  solve the related homogeneous equation as directed in this section, and
¢ then refer to 12. |
i b. All of the coefficients are constants, return to 1. The constant zero
18 permitted for every term except A,.
€. Proceed with this section if 4;(z) or P(z) equals zero but As(x) or
@(x) is a function of z.
d. If As(x) or Q(x) vanish, consult B2-1-2.
e. See 3; the equation may be reducible to case b.
1. None of the preceding cases occur. It is likely that several methods
could be used, possible that one is much easier than the others for a given

| ‘equation, and probable that no simple solution exists. Consider each of
f  the following before deciding which to try. '
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i. See B2-3 for different types of homogeneity. The word now refers
to the definition of A1-8, not that of 1. '

ii. Seek one or more variable transformations so that the equation
can be solved; see 4. -

iii. Test the equation for exactness or look for an integrating factor;
see d.

iv. See 6 for a symbolic method which may apply in certain cases.

v. Refer to 7. A solution in some infinite form is probably required
if all of the preceding methods have failed or have seemed unsatisfactory.

3. Equations Reducible to Type 1

If the special cases a, b, ¢, d of 2 do not apply, compare the given
equation with the two types of this section. If they are inapplicable,
return to 2f. '

3-1. The Euler Equation. Its form is
' 2%y +axy’ +azy = 0 (1)

where a;, as are constants. It is also called the Cauchy linear equation,
the linear equidimensional eguation, or the general homogeneous lLinear
equation, where the word homogeneous refers to the meaning of A1-8;
see also B2-3. '

Let y(x) = w(z), 2z = In x and (1) becomes

w''(2)+ (a1 —1)u’ + asu = 0

which is type 1. If r; and 73 are the roots of the auxiliary or characteristic
equation '
r2+(a1—1)r+az = 0

there are three cases, as in 1. Alternative solutions, as shown there and
omitted here, may be found. For another procedure, not necessaril y to
be preferred, see B2-3-2, 3-5.

a. r1 #re; y = Cixnr+Coxra

b.ri=re=r; y=2a(C;+Cslnz) .

C. 7 #7re, 1 =a+1h, r3 = a—1b, where a, b are real numbers; y
= 24[C} cos (b In )+ C; sin (b In 2)]. _

Operator methods are often useful in this case, especially for the non-
homogeneous equation; see 12-2. With z = Inz, let D = dldz, zy’
= %'(2) = Du, 22y"" = D(D—1)u, and (1) becomes |

[D2+(a1-"1)D+a2]‘u = (D.'— rl)(p—rg)u = |
Alternatively, define the opera_.tor xd[dx = 0, 22d%[dx® = 6(6—1), and get
[0°+ (a1 —1)0+azly = (0—r)(@—r2)y =0 =

v
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3.2. The Legendre Linear Equation. This case is
(@+bx)%" +ay(a+bz)y +asy = 0 (2)

Ifa = 0,b = 1, it becomes type 3-1. There are two procedures.
a. Let y(x) = u(2), 2 = a+ bz and the result is

z2u''(2)+byzu" +bou = O

It has become type 3-1, with b; = a;/b, by = az/b2.
b. Let y(x) = u(z), z = In (e +bz). The new equation is
u''(2)+byu’+bou = 0

It 1s type 1, with bl = (al —b)/b, bg = ag/bz.

4. Transformations of the Linear Equation

The given equation is not one of the types in 3, which were reduced to
a simpler case. Attempt to transform the general linear equation so that

- 1t can be treated in a similar way. For most practical purposes, the new

equation should be one of the following types:
' i. An equation with constant coefficients ; see 1.
ii. The Euler equation or the Legendre equation ; see 3.

- iii. An equation with dependent variable missing ; see B2-1.
Consult the various parts of this section for detailed procedures.

If appropriate transformations are not found after some study, refer
in turn to 5 and 6, for these methods may apply in some cases. When
they, too, are discouraging, reconsider the use of a new variable but look

- for it according to the more formal methods of 9.
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4-1. A New Dependent Variable. Take the standard form of the

y'+P)y + Qx)y = 0 M
For an alternative form, see 4-1-3. When P(x) and Q(x) are given in explicit

___form, a new trial variable may be suggested. In the more general case,
i try each of the following. o '
. a. Let y’ = y(x) u(x), so that (1) becomes

w'(x)+ut+Pu+Q = 0

%Thlﬂ is & Riccati equation; see A1-3. Little has been gained .by the
~#ransformation for the new equation may be as difficult to solve as the

E ciald one, unless it is an integrable case of the Ricecati equation.

E _ b. Assume y(x) = u(xp(z). Then,y' = uv’ +u'v, y"" = uv” +2u'y’ +u'',
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“where vp(z) = 20’ +Pv, vq(x) = v’ +Pv'+Qv. The general form of ‘the
new equation is the same as that of (1) but the coefficients are different.
Consult the following sections, to see if (2) can be solved.

4-1-1. One or More Particular Integrals Known. If a particular
integral of (1) can be found by inspection or otherwise, see a. If two
linearly independent solutions are known, the general solution follows
immediately; see Blci. Suggestions for finding particular integrals are
given in b. '

a. Suppose that v(z) = y1 is a particular integral of (1). Then, (2)
becomes _

yuw' + 2y +Pyyu’ = 0
This is a first-order equation of separable type, see A1-1-2, if the variables
are taken as u'(z) and 2. The general solution of (1), after two quadratures,

18
y = y1[C1+ CefX(x)dx]
- X(x) = e*[y?; $(x) = [P(x)dx

b. It may not be easy to find a particular integral of (1). The following

simple cases and suggestions may be helpful.

i. If P(x)+2Q(x) = 0, y1 = <.
ii. Seek a number k, such that k2 + kP +@Q = 0. Ifit exists, y; = ekz,
iii. Set z = 0 in (1) and solve the resulting equation if possible, for
Yy = Y1 |

iv. Set 2 = coin (1). If the result can be solved, its solution 18 y = yi.
v. Assume a polynomial solution, y1 = ao+a1%+ ... +azz™. Some-
times, there are enough relations to determine the ay, if there is a particular

solution of this kind.
vi. See 4-1-3 for further suggestions.

4-1-2. The Normal Form of the Equation. Choose v(z) in 4-1bso |
that (2) lacks a term in «’. This 1s the normal or canonical form of the = |
differential equation "

w''(x) +1(z)ulz) = O ~ (3

The quantity [/ (:v)' is the invariant of (1). It follows that _
v(@) = exp[ —}{P()dx] (4)
I@@) = Q—}P' 1P (5)

It is usually easier to find a special solution of (3) by inspection, or other- |
wise, than it is to find a special solution of (1). The normal form can also
be obtained with a new independent variable; see 4-2-1b. _
When (3) has been solved, the general solution of (1) is known as soon
a8 9(x) is determined from (4). If I(x) is a constant, (3) has become type

o —
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1; if I(x) equals a constant divided by 2, (3) has become type 3-1.
The following properties of the normal form are often useful.
i. Let the given equation be

Y'"+px)Y +q(x)Y = 0 (6)

with an invariant I;(x). Further, suppose that I;(x) = I(x), where I(x) is
the corresponding invariant of (1). It follows that (1) can be transformed
into (6) by the relations y = Yw(x), w(r) = exp [$[(p—P)dx]. The
coefficients in the two equations are also related by the equations
p =2w|w+P,q =w'lwt+Pwlw+E.

ii. Suppose that I(x) and I;(x) are polynomials, both of the same

~ degree in z, but with different numerical coefficients. Equate coefficients

of equal powers of x and, if a solution of (6) is known, that of (1) is obtained
at once, or the reverse. 8

iif. Let u1(x) and us(x) be two linearly independent solutions of (3),
so that two solutions of (3) are

yi(x) = ui(x) exp[}fP(x)dx]

where ¢ = 1, 2. It follows that uifus = y1/y2 = s(%). The differential
equation satisfied by s(z) is nonlinear and of third order

8!’!’! 3 S!f 2
— --(—) = 2I(x)

3’ 2 8')

~ The left-hand side of this equation, commonly denoted by the symbol
~ {s, x} is called the Schwartzian derivative. 1t will usually be difficult to

solve but suppose that some particular integral can be found. Then,

- uy'fug = —s’’[28'. Here, the variables are separable, so that usV's' = C.

A second solution is u; = ugs = Cs/Vs’. Two linearly independent

~solutions of (3) are now known and the general solution of (1) follows.

4-1-3. Special Cases of Dependent Variable Transformations

‘Some specific forms for the new variable v(x) are given in this section.

- They may be most useful for purposes of reference, but see d. The
f  necessary algebraic manipulations are usually easier if the standard form
i of the equation is taken as

i The new coefficients are

Ao(z)y’’ + Ar(z)y’ + As(z)y = O (7)

| With y(x) = u(x)v(x), 1t becomes

Bo(z)u'’ + By(z)u’ + By = 0 (8)

Bo == Ao'v; | By = 2Ag'v'+A1‘v; By = on”+A1v’+Agv
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If (1) is preferred as the standard form, see 4-1b.
Examine the following cases to see if (8) is easier to solve than (7).
Reread 4, if necessary for further advice.

- a.

v= axk
v’ = kv, 220" = k(k— 1)
" By = 224y, Bj = x(2kAg+x41), Bz = k(k—1)Ap+kxd;+ 2242
b. S
v = ezerlz)[kc;!'s'(:v)]
v’ = kd'v, v = - k(" + k"2
- By = Ao, B1 = 2k¢>’A0+A1, By = k(¢”+k¢’2)Ao+k¢'A1 + Ag
C.

' ekx
v = kv, v = kv
By = Ao, By = 2kAg+ A;, Bg = K240+ 1A+ Ao

This is the special case of b, where ¢(x) = =.
d. If the forms of A4; are such that Bs can be made to vanish in any of
the preceding cases, the equation has become

Bo(x)u'' + Bi(x)u’ = 0

which is case B2-1-2. Its solution will be similar to that in 4-1-14a, since
v(x) = y1 is a particular integral of (1) or (8).

S
|

I

4-2. A New Independent Variable. Take the original equation in

the standard form (1), let y(z) = u(z) with some relation f(z,z) = 0

deﬁmng a new independent variable, and get the transformed equ ation
w'’ +p(2y +q(z)u = 0 (9)

Relations between P(x), p(2) and Q(z), g(z) are glven in 4-2-2, for the
general case and for certain special cases.

Any desired value could be assigned to p(z) and the new variable deter-
mined by the relation between p(z) and P(x). Similarly, ¢(z) could be
chosen and the new variable determined. For pra.ctlca.l purposes, the
transformed equation should be one of the types listed in 4. Such cases
are considered in 4-2-1; see also 4-2-2.

4-2-1. Special Cases of Independent Variable Transformation.

Try a and b. If neither is helpful, proceed to 4-2-2.
a. Calculate the quantity [2PQ+Q'}/@3/2. If it equals a constant
including zero, see i or ii; if it is a function of z, go to b. - -

r.-l"'u.-' =, - oA " . o
A o e P p g ey Feea
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i. The new variable 2 = & { V/Q(x)dx will convert (1) into a linear
equation in u(z) and z, with constant coefficients, type 1. The constant
k is arbitrary; it can be taken as unity or any other nonzero value as

econvenient.

ii. The new variable Inz = & ] v Q(:v)dx will convert (1) into an

. Euler equation, type 3-1. There seems to be no advantage in this case
over i, which would usually be chosen.

b. Let z = j' e~%dx, (x) = [ P(x)dx. The tra,nsformed equation is  the

normal form, «"'(z)+¢(z)u = 0. It may be integrable; see 4-1-2.

4-2-2. General Relations for Independent Variable Transfor-
formation. If the special cases of 4-2-1 were unsuccessful, it is likely that
a suitable new variable will be found only by the more elaborate methods
of 9. This section is included primarily for reference. Glance through it
to see if some transformation of variable is suggested. If not, go to 4-3.

Choose the standard form as (7); let y(z) = w(z), with f(z, z) = 0. The

new equation is
- Bo(2)u'' + Bi(z)u'+ Ba(z)u = 0

Tt is sometimes easier to solve f(x, z) = 0and get z = f,(x); at other times,

x = fo(z) is easier. Let 2z, = dfi/dx, zzx = d2fi/da2; xz, = dfs/dz, ;.
= d?fs/dz2. For the general case, use either a or b, whichever seems
simpler. For some special cases, see C. |

a.
X

Y = zgu', Y = 22U+ 2550
By = za:zAO; By = zgzAo+ 274, Bz = A»

xzyr —_ ur, xz3yn —_ xzu”—xzz%’_
- By = x;40, By = x,24; —x;;40, Bz = 7,34

c A few special cases, which are frequently useful, are the follbwing.

i.

.z axk, ry = kZ/x, -zxx — k(k—l)z/:vz

- Bo = k2224¢(2)[2?, By = kz[(k—1)Ao[2%+ A1[x], By = A
ii. . _ '
< = 1/27, Ry = — 22, Rxxr = 223
By = z'40(2), By = 22(2249— A1), Bz = A
i '
- | | Bﬂ = on(z), Bl 222A1—A0, Bz = 423A2
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E—— e y—

This is a special case of i, known as the quadratic transformation ; see
also 9-5-1.

4-3. Two New Variables. Let the new variables be defined with
the equations z = f(z, ), y = g(z, ») and it follows that ¥ = ¢'(2)[f'(2);
y"'(z) = [f(2) ' (2)—f"(z)9' (2)]/[f (2)}3. An especially simple case is that
where the dependent and independent variables are exchanged. The
appropriate equations are y'(x) = 1/z'(y); ¥"'(x) = —z'"(y)]z'3(y).

New variables are often suggested by some prominent combination of
z and y in the given equation. Polar coordinates are often suitable. In

that case, |
xr=rcosf, y=rsind, y'(r)= Rtan f(r’' +r cot 6)
y'' = R3sec30(r2+42r'2 —rr”

where
¢ = drfdf, 1+ = dr/df?, R = (' —rtan6)?

A more formal method of finding the new variable is possible in principle,
but it may not be easy to apply. Given an equation like (1), suppose that
a solution of (9) is known. Let the respective invariants of these equations,
see 4-1-2, be I(z) and J(z). There are two relations between them

dz\*= _
I(x) -3z, 2z} =J (d—-) s yehn/ 24 = ue2
x _

where ¢, = 1 | Pdz, ¢2 = } f pdzand {z, z} is the Schwartzian derivative ;
see 4-1-2. The first equation fixes the independent variable; the second
one, the dependent variable. Unfortunately, the first equation is non-
linear and of third order. It may be difficult to solve. A suitable choice
of J(z) might help; the simplest one is probably J(z) = 0. Unless there
are special reasons to use this procedure, it may be wiser to try 5 or some
later method. - -

- 5. The Exact Equation
The standard form of the equation can be taken as

Ao(x)y’’ + Ar(x)y’ + A2(x)y = O . (1)

Test it for exactness; see 5-1. If the test fails, seek an integrating factor
according to 5-2. '

§.1. Test for Exactness. The linear equation (1) is exact if
Ao’ —Ay+A4, =0
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If this relation does not hold, go to 5-2; if it does hold, a first integral of
(1) 18
Bgy'+Bly = (}

where By = Ao, B = A1 — Ap’. Since this first integral is a differential
equation of first order, use a method of Al to get the general solution of
(1); see also 4-1-1a.

If (Bi—Bo') = (41—24¢") = 0, the first integral is also exact and, in
that case, see A1-7. '
- When the given differential equation is nonhomogeneous, see 12, so
that (1) contains a term f(x) on the right-hand side, add a term { f(x)dz
to the right-hand side of the first integral.

5-2. The Integrating Factor. The test for exactness, see 5-1, has
failed and an integrating factor is to be sought. Every first-order differ-
ential equation can be made exact with an integrating factor, if it has a

 unique solution ; see A1-7-2. Such a factor may, or may not, exist for an
equation of order higher than the first. It can sometimes be determined
by inspection. In the general case describe (1) in terms of a linear differ-

enlial operator
L = A¢D?%+ A1D + Ao

where D = d/dx. Then, (1) becomes L{y) = 0 or, alternatively, L(D)y
= 0, L;(y) = 0, etc. If u(x) is an integrating factor for (1), it follows that
uL(y)dz is a perfect differential. The integrating factor is determined by
‘the adjoint equation to L(y) =

L(u) = (Aou)"’ —(Aw)’ + Asu = 0
- which can also be written as
' Agu'’ + (240" —Ar)w’ + (4o"" — A1’ + d2)u = 0

f};"_ The ongmal dlﬁ'erentlal equation and its adjoint are related by the
Lagmnge vdentity

_ d
uldy) —yL(u) = —[P(y, v)]

' v_éhere the term on the right-hand side, called the bilinear concomitant, is
Py, u) = Ao(y'w —yu') + (41 — Ao Jyu

Smee the adjoint equation is also of second order, it may be as difficult
to solve as the original equation. Suppose, however, that a solution of
qu) = 0 can be found; then the solution of L(y) = 0 is given by the

&'st-order equation P(y, u) = C, where C is an arbitrary constant. The
. genera] solution of (1) can thus be found by a method of Al.
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_If two linearly independent solutions, u; and wugz, can be found for

L(u) = 0, there will be two first-order equations P(y, u1) = C1, P(y, u3)

= Cs. Elimination of y' between these two equations, by algebraic

processes, will give the general solution of (1) as y(z) = f(u1, ue, C1, C2).
If any special solution y; of (1) is known, an integrating factor 18

A;(x) P
Ao(x)

u(z) = yu@)ed/Ao(2); lx) =

The general solution of (1) is then, see 4-1-1,
y(z) = yi(@)Chf X(z)dx + Cz]
where X(x) = e~%/y;2. | |

5-3. Properties of the Adjoint Equation. The following properties
may not be particularly helpful in solving (1). They are, however, of
importance in the general study of the linear equ ation. Many other
properties are known; see, for example, Ince-1.

a. The operators L and L enjoy a reciprocal relationship. If L is the

adj oint of L, then L is the adjoint of L. The corresponding differential

equations L(y) = 0 and L(u) = 0 have similar properties.

b. If L = I, the operators are self-adjoint. It is only necessary that
Ay = Ay'. If this is true, (Aoy’)’ + A2y = 0 and the Lagrange identity
becomes

. _ d
ul(y) —yL(u) = a[Ao(y’u —yu’)]

c. The equation L(y) = 0 can be made se]f—a.djbint, if it is not already
so, in three different ways. - |
i. Multiply it by w(x) = e?, where

Ay —Ay
¢($)=f( leo)dx

ii. Introduce a new independent variable, z = [ e~%dx.
iii. Introduce a new dependent variable, v(x) = y(x)e?.

6. Resolution of Operators

Use the differential operator D = d/dx, see 5-2, and take the equation
in the form o

[D*+P@)D+Q(x)ly = 0 . o n

Attempt to factor it, so that (D+u)(D+v)y = 0. The last form can

also be takenas -~ - o R
- _.--(D:-l-u)é_ =0; (D+o)y = ¢ - - - (2)
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The first of these equations is ¢'(x)+u(x)d(x) = 0, which is separable
and of first order; see A1-1-2. Its solutionis -

The second equation in (2) is linear and of first order, see A1-2, y' +vy
= ¢(x). Its solution will be the general solution of (1). 7

- This method is simple, when it can be used. In general, the factor
ization 18 impracticable. In attempting it, proceed as follows. '

a. Seek the two factors by inspection. -

b. Assume u%(x) and v(z) to be polynomials. When coefficients are
equated, it will be found that (¢+v) = P(z); (v'+uv) = Q(z). These
identities will furnish the coefficients in the assumed polynomials. How-
ever, it may be simpler to seek a series solution of the differential equation,

see 8. _
- ¢. In the general case, elimination of u(z) in b will give a Riceati

‘equation

v'(z)+vP(x) —v2 = Q(x)

Since such. an equation is seldom easy to solve, see A1-3, the method of
this section will be successful only in certain special cases.

7. Solution of the Equation in Infinite Form

If this section has been reached, elementary methods have failed and

- it is unlikely that the equation can be solved in terms of simple functions.
- Thugi the equation and its solution serve to define new transcendental
- functions, characterized by various kinds of singular points. Since the

differential equation itself is linear there can be fixed singular points but

1o movable ones; see A1-10-1.

There are several possibilities. The one chosen wﬂl depend on the

i purpose for which the solution is wanted, personal preferences, and perhaps
. other reasons. @@ '
. Q. Series solution, see 8. The method, is reasonably simple; it is given
i I most elementary texts on differential equations; it may be used with
k8 negligible knowledge of advanced mathematics, such as complex variable
i - theory. Moreover, the solutions frequently involve known series for which

:of a differential equation can generally be represented by an integral.
There are certain advantages, especially in many branches of applied
__ Mhemahcs, but some knowledge of complex variable theory is usu ally




96 ORDINARY DIFFERENTIAL EQUATIONS AND THEIR SOLUTIONS

needed. Often, the point at infinity is a singular point. In such cases,
the series solution will probably diverge. The convergence, asymptotic
behavior, and other properties of the solution can then frequently be

best studied with an integral, rather than a series.
c. Continued fraetion solution; see 11. The method is direct but has

not been extended to equations of third or higher order. It requires some
knowledge of the properties of infinite continued fractions and this may

be an objection. -
d. Approximate solution; see A1-13. If all other methods fail, this

one may be required. In many cases, it may be preferred. Graphical,
mechanical, or numerical procedures are possible.

8. Series Solution |
The equation is taken in the standard form

y'+Px)y + )y = 0 (1)
It is desired to find a solution as an infinite series in powers of x or of
(a —x), where a is a constant. Any x = a can be either an ordinary point
or a singular point; see A1-10-1. In the latter case, there are two possi-
bilities. If the singular point for P(z) is a pole of order one or less and that
for Q(z) is a pole of order no greater than two, the singularity is called
reqular. Any other kind of singular point is trregular.
These properties of the differential equation can be determined by
inspection when the point of interest is at x = @ < c. To study the
behavior at z = oo, use new variables y(z) = u(z), z = 1/x, so that (1)

becomes B
u'’'(2)+p(z)w' +q(z)u = 0 ‘

p(z) = 2[2—P(2)[2%; q(z) = Q(2)/#*
Test this transformed equation at z = 0. If it is an ordinary point,
regular singular point, irregular singular point, respectively, then z = oo
has the same property. _ .

It is sometimes simpler to use the symbol O(z~™). Consider some
function f(x) such that |zmf(x)] < C as z > 0 or z - oo, where C is a
positive constant or zero. Then, f(x) is said to be of the order of x—™, or
f(x) = O(x—m™). Furthermore, there is a pole of order m at x = .
Following these conventions, there are three possibilities for the co-
efficients in (1). ' |

i. An ordinary point at x = oo.

p(2) = (2)(1): g(z) = O(1); 2 >0
| P@) = +00/%); Q@) = 01/#); x> o

where

. . ' .
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ii. A regular singular point at z = oo.
p(z) = O(1/z); q(z) = O(1/2%); z—>0
P(x) = O(1l/z); @) = O(1/2?); x — oo

ili. An irregular singular point at x = . The preceding conditions
do not hold.

Given an equation to be solved with a series solution there are two
procedures. '

a. Find all singular points of the equation and classify them: see
A1-10-1. If a solution has been determined which is valid in the neighbor-
hood of z = a, either an ordinary point or a singular point, it will probably
fail at = b, the nearest singular point to 2 = a. However, the process
of analytic continuation can often be used to find a series for a wider
range of the independent variable. Other sources must be consulted for
the details; suitable references are Coddington and Levinson, Whittaker
and Watson. Here, we note only that the equation can have two linearly
independent solutions, if the existence theorems permit them ; see Intro-
duction-3. Convergence of the series can be tested by appropriate means:
see 8-1-1. To proceed further, refer to one of the following sections

i. Solution near an ordinary point, 8-1. '
ii. Solution near a regular singular point; 8-2.
iii. Solution near an irregular singular point; 8-3.

b. As an alternative method, suppose that a number of standard differ-
ential equations have been selected and that their general solutions have
been obtained by the procedures of 8-1, 8-2, or 8-3. Then, as will be
shown, any given equation which is to be solved is either the standard

- equation or an equation convertible to a standard type by variable trans-
formations. If this method is to be used, go at once to 9. The advantage
- of this procedure arises from the fact that the standard equations will
- usually have series solutions, previously studied ; thus they can be regarded
¢ as known functions. Some special cases of these equations are of interest.
t They are the equations of classical mathematical physies, see 9-6;
i equations in which the coefficients have certain special properties, see 9-7.

i 8-1. Series Solution Near an Ordinary Point. If the ordinary
§ Point is at 2 = a, where a is finite, introduce two new variables y(x)
b = u(z), z = (a—2). Complete the work of this section, replacing z, y
. everywhere by 2, # and then return to the original variables. If the
i ordinary point is at # = oo, use the new variable z = 1 [x. See 4-2-2 for
some useful formulas and also 9-5 for further information about an
L ordinary point. In any of these cases, it is thus possible to take the
| ordinary point at the origin, z = 0. There are two possible procedures:
| that of a will generally be preferred. - '

T
[ .
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a. Assume a solution
Y = Ao+ A1x+ Ao+ ...+ Agx® + ... - (2)

where the A are constants to be determined. In case the ordinary point
is at * = oo, it may be easier to assume a solution

y = Ao+ Ar[x+ Aaf2x®+...

rather than to use a new mdependent variable, as prewously suggested.
There are two ways in which the coefficients can be evaluated. They
are equivalent but differ somewhat in details. It is unlikely that i has any
particular advantage over ii, in the usual case. Either would fail if z = 0
. were not an ordinary point, because each coefficient in (2) would then
become infinite. However, z = 0 would be a singular point and 8-2 or
8-3 should have been used. .

i. When z = 0, call the correspondmg values of P(z), Q(:v) y, and its
derivatives, Pg, Qo, %0, Yo', yg , etc. There are two arbitrary constants
in (2); take them as yo and yo’. Use (1) to calculate yo”' = — (y0"Po+ yo&o)-
Differentiate (1) to get ¥’’’ = — [Py’ + (P’ +Q)y’ +@Q'y] and, find yo'*’ from
it. Continue the differentiation to get ylv, y', etc., and calculate yo'Y,
yo', ete., by setting 2 = 0 in each. Finally, take the coefficients in (2) as

Ao =y =C1, A1 =y = Cp, A2 = yo''[2!
A3 = 0'"'[3!, .., Ar= @[k, ..
The solution can also be written as

y = Ciyr+Cays o (3)

where
y1 = 1+agr?+agx®+...

yo = x(1+bix+box?+...)

A few of the constants a;, b; are given explicitly in ii. They, as well a8
the A;, may become increasingly more laborious to calculate for the
higher powers of z; see 8-1-1.

It is useful to note that y; is the specla.l solution of (1) with unit value
and zero slope at x = 0, while y3 has zero value and unit slope there;
see Bl-c. -

ii. Since x = 0 is an ordinary pomt for (1) both P(x) and Q(a:) are
analytic functions there and they may be expanded as

P(x) = po+pix+pex®+...
Q) = go+qr+g7%+..

Here, p; and q; are eonstants but they may be eomplex numbers When
P(x), Q(x) are polynomials, as is often the case, they already appear in

(4)

I (5)
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the form of (5). In other cases, they may be converted to that form in
several ways. | ' - B -

- L. Suppose that P(z) is a rational function, so that its form is P(x)
= P1(x)/Pa(x), where Py, P> are polynomials. The result ( 5) follows by
division, using detached coefficients if so desired. The procedure for
Q(z) is similar. '

- 2. Use the method of undetermined coefficients. '

'3-. Expand P(z), Q(x) by Maclaurin’s theorem. The coefficients in (5)
will be given by p; = Po®)[k!, q; = Qo®)/k!, where the subscript desig-
nates that the kth derivative is to be evaluated at z = 0.

Substitute (2) and (5) into (1). Equate coefficients of equal powers of
x to zero; that is, use the method of undetermined coefficients to find the
Ag. A typical term will contain Ao, 41, A3, ., Ag; po, P1, ..., Pr—2;

go,l qi, s Qr-2. The general equation, called a recursion relation, see
8-1-1, is -

k-1 k-2 -
k(k —I)Ak+ Z mAmPk—-m—l'l“ E Am?k—m—z = 0 (6)

m=1

1t can be used to get the a; of (4) with Ao = 1, Ay = 0. Similarly, let
o Ao = 0, A; = 1 and get the b; of (4). A few of these coefficients follow.

" az = —qo/2
as = (pogo —q1)/3! -
as = (go® ~Po*qo+Pog1 + 2p1g0 —2¢2)/4:

by = '-—po'/2 i
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_ b. Write (1) in the normal form, see 4-1-2,
| | | , w’ + Iz =0

b ©¥ts solution is
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i

Successive terms become increasingly difficult to evaluate. If I(z) 18 a
simple polynomial of low degree, the work 1is easier but a might still be
preferred. The method will failif x = 018 & singular point, because then
each integral becomes infinite. In that case, 8-2 or 8-3 should have been
used. ' :

8-1-1. Recursion Relations. In practice, it may be simpler to avoid
the use of (6). Clear (1) of fractions, if necessary, so that it becomes

Xo(x)y”+X(=v)y’+X2(x)y =0 (8)

Substitute the assumed solution (2) into (8) and use the method of un-
determined, coefficients to find the Aj. o

As seen from (6), a recursion relation, also called a recurrence relation,
is an equation defining a coefficient A in terms of two or more coeflicients
with smaller subscripts. Most examples in elementary texts—see Kap-

lan-1, for example—are carefully chosen so that this relation connects

only two coefficients. In such cases, many of the pg, gx in (7) will be zero,
and the calculations will be relatively easy. Moreover, a general rule for
the coefficients can be found and the solution can be presented in compact
form.

When three-term or many-term recursion relations occur, it becomes
increasingly laborious to calculate the coefficients and to test the series
for convergence or asymptotic behavior, but see also 11. Two examples
in a may help to clarify the situation. Additional comments will be
found in b. ' '

a. Consider two differential equations, both of which have z = 0 for
‘an ordinary point and no singular point in the finite plane.
i. 4"’ +xy = 0. The recursion relation is found to be

k(k -1)Ax+ A3 = 0

Take Ag = 1, A; = 0 for y; and 4g = 0, 4; = 1 for 'yg. The coefficients
in (4) are

(—1)¥1-4-7..(3k—2) . (-1)¥2-58..(3k-1)

(3k)! k Dokl = T (3k+ 1)!

azx =

The solution of the differential equation is completely determined, the B
ratio test can be used to test the series for convergence, and the 89th term ‘
i the series could be calculated without a great amount of labor, if that
were wanted. S . S

ii. 4" +(1 +z)y = 0. The recursion relation has three terms:

.....
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Take Ag and A4; as before but there is no general law for the coefficients.
A few of them are: a3 = —1/2, a3 = —~1/3l, ay = 1/4], a5 = 4/5!, ag
= 3[6!, ..; b1 =0, by = —1/3!, bg = —2/4!, by = 1/5!, b5 = 1/5!, etc.
The coefficient of 27 could not be predicted, as in i, and the 89th term
would require an extraordinary amount of labor to compute. The ratio
test cannot be used to study the convergence of the series, but, of course,
the existence theorems guarantee that the series does actually converge.
In i, the solution is a completely defined function; here, it is known only
as far as the number of terms calculated. '

b. The form of the differential equation does not always indicate the
nature of the recursion relation that will result. The following general
conclusions can be stated. For a simple relation both P(z) and () must
be rational functions of x. Otherwise, seek a variable transformation so
that the new coefficients are rational functions. There can be no more
than three regular singular points for a two-term formula. Even with
three regular singular points, the relation may contain more than three
terms. As before, a new dependent variable may simplify the recursion
formula. When more than one singular point is irregular, the simplest

possibility is a three-term relation and it may contain more than three
terms.

The methods of 9 are especially useful in the study of equations with
many term recursion relations. They will convert the equation into one
which has been investigated; hence the properties of the solutions can

- be related to known functions. It should be noted that a recursion for-
mula i8 also a finite difference equation. Properties of such equations are |
of considerable interest, especially in connection with partial differential

.. equations. For some references, sece Al-11-1a.

& 8-2. Series Solution Near a Regular Singular Point. Let 2 = 0

§ be the regular singular point; see 8 and 9-5. If the singular point is at
f 2 =a or z = oo, use a new independent variable, as explained in 8-1.
i The coefficients in (1) will have the forms

P@) = p(x)fz; Q) = g(a)/a? (9)

8
I where
<ol
8. -
- ) - .o
'\-|-l.:__ - 1‘:.\' N
T L ’

() = P0+Pix+pzx2+...+pkxk+...
g(x) = qo+qlx+qgkv2+...+qu"+...

i Lhe quantities p;, gx are constants but they may be complex numbers;
Po; 90, ¢1 cannot all be zero. Note that vz, g differ from the constants in
19): However, if po = g9 = ¢1 = 0, (5) and (9) are identical; hence z = 0
man ordinary point. If necessary, use the methods of 8-1a to find the

(10)
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Wlth the abbreviation L(y) = 0 for (1), assume a solution
y = 28(do+ Arx+ Asx+...) |

where s and the coefficients A are to be determined. It is assumed that
Aop # 0, but there is no loss in generality with 49 = 1, because any other
value of it desired could be absorbed into the integration constant re-
qulred for the general solution. Substitute the assumed solution into the
differential equation and use the properties (9) and (10) The result can
be written as

L(y) = x8(50+51x+52x2+...) = ()

ThJs is an ldentlty ; hence each coeﬁclent B must vanish. The following
relations are obtamed ' |

Bo = 82+ (po—1)s+go = 0 -
Br = Ai[(s+1)2+(s+1)po—1)+go]+sp1+q1 = O

B2 = Az[(8+2)2+(3+2)(P0 )+go]l+Aills+)pr+qr]+spatge = O(11)

P = Ak[(8+k)2+(s+k)(po-1)+g0]+ .
_ . _

+>° Ak—m[(3+k m)Pm+Qm]+3}9k+Qk =0

m=1

The first equation, conveniently designated as F(s) = 0, serves to deter-
mine the constants s. It is the indicial equation and its two roots, s; and ss,
which may be complex, are the exponents of (1) at the regular singular
point, z = 0. Select their subscripts so that Re(s1) > Re(sz), where Re(s)
means the real part of s = o +iB; «, B are real numbers, and Re(s) > 0.
Then define A = 81— 32, hence Re(A) > 0. It fo]lows that

F(s) = (8—81)(s—82) = O

and that F(k +s81) = k(k +A). When a value of s has been calculated from
(11), the coefficients 4; can be found successively from the equations for
Br provided that F(k +s8) # 0. There are three cases.

a. A s n; an integer; see 8-2-1, case 1.

b. A = 0; see 8-2-2, case 2. -

c. A=mn;an mteger but not zero; see 8-2-3, case 3.

If an exponent is complex, the solution of the differential equat1 on wﬂl. '
contain the factor z* = exp [(« +18)nx] = x“[eos Blnz +isinBlnx]. |
Such a factor will have a complicated. behavior at x = 0; helme equa.tmns
of this kind will seldom arise in a physical problem. PSR
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1'0 u(z) is to be determined by solving the first-order equation
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In the following cases, fractional exponents may occur, and this means
that the solution will have a branch point at z = 0. A negative exponent
means that there is a pole in the solution. In cases 8-2-2 and 8-2-3, the
general solution may also contain powers of In 2. When such exponents
occur, the point x = 0 is called a real singularity and the corresponding
solutions are regular solutions. However, in spite of the fact that x — 0,
or more generally that x = g, is a singular point for the differential
equation, it may happen that every solution of the equation is analytic
near the singular point, which is then said to be an apparent singular
point.

_ The following tests can be made to show that z = 0 is an apparent
singularity. First, calculate p(0); see (9). It must be a negative integer,
numerically greater than zero. Then, examine the two exponents and the
quantity A = s; —s8s. Case 3 must occur; see 8-2-3. Finally, the non-
logarithmic subcase a of 8-2-3 must result. If any of these requirements
fail, the singularity is real not apparent.

8-2-1. Case 1; A # n, an integer. The solution of (1) is given by

(3), where
Yi = 2%(Ao+ Arx+ Aox2+...)

- The successive coefficients are found from the recursion relation

- k1
k(k + A)Ax+ 2 Anl[(m+8)pe—m+g-m] =0
m |

T_ake Ag = 1, the plus sign, and s; for ¥1; Ao = 1, the minus sign, and
82 for ys. -

' 8-2-2. Case2; A = 0. In this case, as well as in case 3, where A = =,

an integer not equal to zero, only one solution would result by the pro-
¢ cedure of 8-2-1. A general method, applicable to either case 2 or 3, is
1 described in a. Two modifications of it, for case 2 alone, are given in b
. and c; for case 3, see 8-2-3.

3 Sa Assume that s; has been used to get a solution by the method of

¥ = 2%1(1 +A12’£+A.2x2+....) = 151 Y () - (12)

y() = yi(x)u(z)

S W) = X() = ed(y?; J(x) = (P(x)dx - (13)
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From the properties of (11), it is seen that
_ (81+82) = (1—po); (s1—82) = A _
hence (23, +p¢) = (A +1) = m, an integer in cases 2 and 3. If ¢(x) is now
evaluated, the result is X(x) = Cax—mg(x), where
' g(x) = Y12 exp(—p12 —poa?/2—...)

and (s is the integration constant from the quadrature. Examination of
g(x) shows it to be analytic at = 0; hence it can be expanded in a
Maclaurin series

g(x) = 1+crx+cox® +...

The first-order equation (13) can now be integrated, since it has separable
variables; see A1-1-1. The result is

u(x) = Calepm—1 In x+v(2)]+ O

where _
v(z) = —[21™/(m—1)+c12%™|(m —2) + ... + Cp2/T] + CmX + Cp122[2 + ...

The general solution of (1) is seen to consist of three parts:
i. 1C20m—11Inx.

ii. y1C20(2).

iii. C 1Y1.
Consider ii further. Multiplication of the two series y; and v(z) will give
al—m+8(Bg +Bix+...), where the constants B; are some combinations of
the constants ¢;, 4, and m. However, we note that (1—m +81) = 83;
hence the general solution of (1) can be written as

y = Ciy1+ Ca(y16m—1 Inx + 252 Bac¥) - (14

If 8y = 82, as it isin case 2, thenm = 1,¢,,—1 = 1, and a logarithmic term
always occurs. For conclusions about (14) in case 3, see 8-2-3.

b. For case 2 alone, where s; = 83 = 8, another procedure is the
following. Find y; by 8-2-1. The second solution, according to (14), will
have the form ' o -
Y2 = 11 Inx+ 28 2 Byak | (15)

Put it into (1) and determine the B; by the method of undetermined
coefficients. '

¢. The method of Frobenius. It seems likely that in the usual case,
this method would be preferred to that of either a or b. Assume a solution

of the form
Y = a8(Ado+ A1x+ Asx2 + ... + Azx® + ver)

oring the fact that the indicial equation has equal roots. Use the
recursion relation o | - :
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ey ———

- k-1
[(k+8)(k+8—1)+ (k+8)po+ go] A + Z=':o Am[(m +8)pr—m + gr—m] = 0

to determine .he coefficients, but keep s as a parameter. Then, calculate
Yi(z) = (Y 8)s—s, : Ay =1

o= ()

The second solution will be identical with (15), and By = [0A4;(s)/0s Jo=s;-
Since Y, is a rational function of 8, logarithmic differentiation is con-
venient in calculating 9Y/0s. Thus, suppose that ¥, = ¥ 1Y2Y3..Y,,
where each Y is a function of the parameter 8. Now

]Ile = lnY1+lIl Y2+"-+1.D.Yﬂ
and, if a prime means a partial derivative with respect to s,

Y]_’ Yz’ Yn’
Y, = Y | — —+...+ ] 16
’ 8[Y1+Y2 Y, (16)

-~ 8-2-3. Case 3; A =n, an Integer Not Equal to Zero. There are
two types. In case a, there is no logarithmic term, since ¢,,—; = 0. In
case b, a logarithmic term results, since ¢,,—; # 0. In either case, one
solution may be obtained with 8-2-1 and the exponent 8;. Find the second

solution with (15) of 8-2-2a, using the method of undetermined coeffici-

Y(x) = (Ao + Ayz+ Agx2 + ...) (17)

[ and use the recursion formula of 8-2-1. If both 4 and 4, are arbitrary
[ constants, the general solution of (1) is of the form (3), where both #,
B and y; are found from (17). Fory;, take 49 = 1, 4 4 = 0;forys, Ay = 0,
E 4, =1. If only one arbitrary constant results, the equation is type b.
[ Use of 5; in (17) would have given only one solution ys.
-1 When only one arbitrary constant results from the method of a, a
t ‘ogarithmic term will occur in the second solution. Proceed as in 8-2-2c,
mth ap eter s, but use ss instead of 81, and let 49 = s, before the
limiting 8tep, 8 — s3. This choice of 4 o will avoid indeterminate expres-
E 8ons for some A4;, which would otherwise have zero in the denominator.
| *The series in the second solution may not start with By, for several B;
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8-3. Series Solution Near An Irregular Singular Point. With
(1) as the standard form of the equation, suppose that the coefficients

are
P(z) = p(z)[zm™; Q(x) = g(x)/xn

where p(x), ¢(x) have the form of (10). Then, if m > 1, n > 2, or both,
the poles of P(x) and @(x) are of orders m, n, respectively. The point
z = 0 is therefore an irregular singular point; see 9-5¢. If the irregular
singular point occurs at x = a, shift it to z = 0, as directed in 8-1. An
irregular singular point may be classified in two different ways and each
suggests a method for solving the differential equation.

a. When the irregular singular point has resulted from the coalescence

of (p +2) elementary singular points, see 9-5, the methods of 9 can be
used. Find the original equation with (p +2) elementary singular points
and solve it by the methods of either 8 or 9. Apply a suitable limiting
process to its solution so that the elementary singular points coalesce to
form the irregular singular point. The result will be the solution of the
given equation. The method is simple when it can be used but it may
not be easy to find the original equation. See 9 for some typical examples.
- b. The equations of 8-2 have always had at least one integral, which
was a convergent power series in x. The second integral was either of
the same kind or of this kind, with a logarithmic multiplier. Such solutions
are called regular integrals. The equatlons of this section may have one
regular integral or none.
- To investigate the situation, let Ay = 2, b1 = m +1, hs = n, remem-
bering that m, n are the orders of the poles in P(x), Q(x), respectively.
Select the largest of these three integers and call it 4,. Its subscript, the
integer r, 18 the class or characteristic index of the irregular singular point.
If two ks are equal and larger than the third one, choose r as the one with
the smaller subscript. Equality of all three ; means that

ho = hy = hg = 2

Thus, the rule gives £ = 0, but thenm = 1, n = 2 and the smgula.r point
was not irregular but regula.r return to 8-2.
Calculate d = 2—r. It is the degree of the indicial equation, see 8-2,
and also the possible number of regular solutions. There are three cases.
i. d = 0. There is no regular integral but there may be one or two |
integrals of a more complicated type, known as normal or subnormal
wndegrals. Methods of seeking them are given in c. In general, normal
and subnormal solutions are divergent power series, although purely for-
mally they do satisfy the differential equation. Actually, they are asymp-
totic expansmna of the solution to (1) and they are of eonslderable impor-
tance, in spite of their divergent cha.racter T
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.

ii. d = 1. The indicial equation is of first degree in s, there is only
one exponent, and the single regular solution can be found by the methods

~of 8-2. The exponent is determined by one of the following relations

nt+i=m2=22; §=0,1,2,...: n#0;, s=0

n—t=m 2> 2; §= —go/Po

The second integral can be found by 4-1-1a. -
iii. d = 2. There are two regular integrals, since r = 0; return to

8-2.
C. There are no regular integrals, since d = 0. Assume a solution
y = e Dy(x) - (18)
The differential equation (1) becomes -#_
u'(x)+Puw'+Qu =0 _ (19)
Where | | ' |
Py =P+2¢"; Q1= Q+P¢' +¢" +¢ (20)

If 4(x) can be determined so that (19) has regular integrals, the solution

(18) is & normal integral. The function ¢(x) must be a polynomial in 1/z;

hence exp [¢(x)] cannot be expanded as a power series in x. In other
words, there is an essential singular point st 2 = 0 in . The difficulty
In this case arises from the fact that the poles of P(z), @(x) are of orders

- greater than 1, 2, respectively. If ¢(x) can be chosen so that the unwanted

terms in 'P(a:), @(x) can be removed, a solution will result and u(x) will

be a power series in z or in reciprocal powers of x. There are two possi-

bilities ; choose either, as convenient.
i. If P(z) contains terms f(2) = ag/a? +ag/ad +..., let 24" +f(z) = 0.

' The result is Py = a;/z +bo +b1 +... . If, at the same time, the coefficient

of  in (19) becomes _
Q1 = Cmf[2™ +Cmafam-14 . iz +eg+ e+ ...,

there are two cases. _
l. m > 2. There is no regular integral for » and therefore no normal

¢ integral for y, the solution of (1). o
t. - 2. m < 2. There are two regular integrals for u of (19). They may be
i found by the methods of 8-2, or otherwise. It follows that there are two
normal integrals for Y, the solution of (1). - -
i - ii. Choose ¢'(z) so that terms in Q(x) of the type 1/«3, 1/24, ete., are
i removed. Normal integrals of (1) will exist, provided that P;(z) Kg
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.

In the special case that P(x) is a constant or if there is a pole of order
one in P(z), this method must be used, rather than that of i.

It may happen that fractional powers of 1/x occur in ¢’(x). The resulting
integrals are then called subnormal. The procedure for finding them is
the same as that for normal integrals.

For a more elaborate treatment of series solutions near an irregular
singular point, it is convenient to choose that point at = oo, rather
than at x = 0 or x = a, where a is finite. Helpful references are Ince-1,
Erdélyi-2. The latter may also be consulted for a discussion of asymp-
totic series.

9. Equations of Standard Type

A differential equation with a finite number of regular singularities,
see 9-5, is said to be of Fuchsian type, after Lazarus Fuchs (1833-1902).
Many linear second-order differential equations are of this type or they are
degenerate cases of it. Most of the ordinary differential equations of
classical mathematical physics are also of this kind ; see 9-6.

In the method now to be described we first select a finite number of
standard differential equations, which could be called I, I, ..., I.
Suppose that one of them, say I,, has r singularities. It will be charac-
terized by the location of the r singularities and the two exponents at
each, a total of 3r parameters. However, there is no essential loss in gene-
rality if the singular points are taken as elementary ones, meaning that
their exponent differences are 1/2; see 9-5. Furthermore, investigation
of the situation shows that there are additional relations so that an equa-
tion with r elementary singularities contains only (2r — 6) arbitrary para-
meters. A general solution of such an equation can then be found by the
methods of 8, or otherwise. -

Now, let the differential equation X be given for solution. Suppose that
it also has r elementary singular points. It can differ from I, in one or
more of the following ways:

i. It is equal to I,, except for the arbitrary parameters.
ii. It differs only in the location of one or more singular pomts
iii. It differs only in the exponents. _
In either of these cases, suitable transformation of variable will change X
into I,. It is assumed that the solution of the standard equation I, is
available, hence the solution of X follows.

Suppose, however, that X has no elementary singular points but that it

has either regular or irregular singular points. In either case X can be

obtained by requiring that several elementary singular points occur at
the same value of 2. This process is known as the coalescence of singular

points and the resulting differential equation is a degenerate case of I,.

-_—
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Thus, a Fuchsian equation X, with 8 < r singularities of any kind, is a
special case of the standard equation I,.

To use the proposed method, first find all singular points of the given
differential equation, not forgetting to examine the point * = o0. Then,
classify them as elementary, regular, irregular and use the symbols
ki, ke, k3 for the number of singular points of each type, respectively.
More exactly, use k3 to mean that the irregular singular point is of
species p, referring to 9-5 for a definition of the species.

Let k = ky +ks +k3 and see 9-1, 9-2, 9-3, 9-4, respectively, for the
possible equations with £ = 1, 2, 3, 4. The equations themselves are
designated with the corresponding symbol [k;, ks, k3]. If an equation is
given for solution and it is not found, a shift of the singular points, the
exponents, or both will produce the standard equation as previously
explained ; for the details, see 9-5. HEquations with k1 > 4 or k > 4 are
not listed since they are seldom needed. They could be found from 9-5,
where the general case is discussed. When & <' 3, some of the cases can
be solved by elementary means but they are also included for complete-
ness. Further information for each equation in the following sections will
also be found in Part 1I.

9-1. Equations With One Singular Point, £k = 1. The types
[1, 0, 0] and [0, 0, 1] cannot occur. '

[0, 1, 0]. The si ar point can be taken at x = oco. The equation
results by coalescence from {2, 0, 0]

y'(x) =0

Its solution by 1, B2-1-1, or B2-2-1, for x < o0, is ¥y = C; +Csz. To
find the equation with a regular singular point at = a < oo, let
,_y(:c) = u(z) z = 1/(a—z) and get o

(a—2u""—2u" = 0
Its solution, from B2-1-2 is (@ —z)(u +C;) = C3. If the coefficient of u’
were anything other than —2, the singular point at z = ¢ would be
accompanied by another at z = 0. For that case, see 9-2.
i . [0,0,13]). The standard form, with a single irregular singular point of
2 the second species at x = oo, i8

Ita solutlon for x < oo, from 1 or B2-2-1, is

_ y — Olea:_l_ 026_1:

j'_,e equa.twn can be obta.med as a hlmtmg case of [1, 0, l] [0, 2, 0], or
5{4 0, 0] There are two generahzatlons in this case. -

.:' 1“.
B~ &
T.a = "‘-'.,._
b - .
-
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a. Ifthesingular pointis wanted at a < oo, let y(z) = u(2), x = 1/(a—2),

and get -
(@a—2)u'" —2(a— 23 —u = 0

Its solution is
U = Olell(a-z) + Coe-1/(@—2)

b. A more general case of this type is the equatmn with constant

eoeﬁcxents see 1,
(x)+a1y +azy = 0

It can be solved dJrectly Alternatwely, reduce it to normal form, see

4-1-2,
w(x)—k2u =0

where y(a:) = u(a:)-v(:c), v = exp(—a1x/2), k%2 = a;2/4—as. The constant

can be eliminated with one more transformation, u(z) = w(z), x = kz,
and the standard equation can be taken as

w'(z)—w = 0

[0, O, 15]. If the five singular points in [5, 0, 0] are made to coa.leeee

at x = oo, the result is |
y'+(A+Bx)y = 0

Every x < oo is an ordinary point. Both constants in the equation can
be removed with y(z) = u(z), B2/3z = A + Bz, and the result taken as the
standard form of this type

w'(2)+zu =0

- A series solution of it has been given in 8-1-1a. Another variable trans-
formation will convert it to a special case of Bessel’s equation, which is
type [0, 1, 13]. Thus, the series solution can also be presented in terms of
Bessel functmns |

[0, 0, 1;5]. Coalescence of six elementary singular points in [6, 0, 0] at |

x = oogwee
y"'+(A+Bz+Cx2)y = 0

One of its constants can be removed with a new 1ndependent variable
y(x) = u(z), 20(z—x) = B, and the result is

' (2)+(a+b22)u = 0

where a = A —B2/4C, b = C. To fix a second constant, let u(z) = w(t),
cz? = {2, and get

1 £
| w"(t)+(k+—-—-——)w = (
2 4 |
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with afc = (2k +1)/2, b/c2 +1/4 = 0. This is Weber’s equation and its
solutions are parabolic cylinder or Weber-Hermite functions. They can
be found by the methods of 8, or the equation can be transformed into a
special case of the Whittaker equation or the Kummer equation; see 9-2.
The general solution in this case can thus be given in terms of parabolic
cylinder, Whittaker, or Kummer funections. - _

[0, 0, 1,]. The general case, where 7 elementary singularities coalesce
at x = oo, is |

Y '+ (4o+ Arx + Agx2 + ... +A,-_.2x"-2)y = 0

It contains (r — 1) constants, but two of them can be fixed as for [0, 0, 14].
A convenient procedure is the following. First, let y(x) = u(z), z = a +=,
choosing a so that the new equation lacks a term in 2,

u”(z)+(Bo+Bgzz+Bgz3+...+Br;;zf*2)u = 0
Then, transform again, with u(z) = w(t), cz = t, and get
W' (t)+ (bo+bat2 + bat3 + ... — k24 ~2)w = 0

The relations between the various coefficients are rather complicated and
will not be given here. Note, however, that the general equation of this
type can be reduced to one with only (r —3) constants. -

To study this type further, consider the more general case [1, 0, 1,]
with r an odd integer and z as the independent variable. Use the quadratic
transformation, = 22, see 9-5, and get the type [0, O, 15,] in the variable
z. Similarly, an equation of type [0, 1, 1,] can be converted into [0, 1, 1o,]
80 that the standard equation of [0, 0, 1,] can always be taken of even
species and, in the form,

y”(x) + (Aﬂ + A2x2 + Aa:o'* + ...+ A2f—_—3x2r_3 — k2x2r;2)y = ()
- Since x = 0is an ordinary point, the methods of 8-1 can be used to find

L4

series solutions, convergent for all z < oo. However, many-term recur-
sion relations will result, see 8-1-1, and calculation of the coefficients in
the series will be laborious.

If a solution of the equation is wanted at the irregular singular point
T = <0, see 8-3. A normal integral, if one exists, is said to be of rank r

‘and the determining factor is

'_ where the a; are constants. The coefficient %2 in the previous equations
j Was selected to simplify this relation. These results hold, even if there are
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9-2. Equations With Two Singular Points, k = 2.
[2, 0, 0]. This is a trivial case of [0, 2, 0]. The two singular points are
at z = 0, oo and the differential equation 1s

2xy!!'+y! —_ O

Its solution, by B2-1-2, is y = (; +C09V z, valid for x < oo. The expo-
nents at z = 0 are 0, 1/2; at x = oo, they are 0, —1/2.

[0, 2, 0]. Take the singular points at x = 0, . If the exponents at
z = 0 are «, B, they must be —a, —f at z = oo and the differential equa-
tion 1s

22y +(1—a— By +afy = O

This is an Euler equation; see 3-1. Its solution 18 y = C1x* +Ca22?,
if « # B; if « = B, the solution is y = 2*(4 +BIn z). When «, B are com-
plex numbers, refer to 3-1. There are some more general cases.

a. To find the equation with singular points at z = a, b let y(z) = u(z),

(b—2)x = (a—2z). The result 18

(@ — 2)2(b— 2)2u’’ + (a — 2)(b— 2)[b(a+ B — 1)—a(e+B+1)+ 22+
+af(@a—b)°u = 0
Its solution is w(z) = C1U* +C:U8, U = (a—2)/(b—2), if «a #p. If
« =8, u =U%A4+BInU). _
'b. When [4, 0, 0] is used and the singular points allowed to coalesce
so that a; = a2 = 0, ag = a4 = 00, the result 1s
xzy”‘l"xyr‘_kzy — O

It is a special case of the standard equation, with exponents k at both
singular points. To convert it to the standard equation, let y = xPu(z),
which shifts the exponents and produces

22u'’ + (2h+ 1)xu’ + (B2 —k2)u = 0
It is identiocal with the standard equation if (k—h) = «, (k+h) = —B.
~ ¢. Another special case of this type is '
2y’ +(1+cly’ =0

Its exponents are 0, —c and its solution is y = C1 +Cex7% ¢ # 0;
y=A-I-Blle,C=O. ]
[1,0,1]. Use [4, 0, 0] and take its singular points as @3 = 0, ag = ag |

= o00. The result is
- oxy’ +y — 2k = 0

The eonstaxnt' can be removed with z = k2, so that
2zu’'(z)+u' —2u = O
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The quadratic transformation z = 2 converts the equation into
w''(t)—4w = 0

which is type [0, 0, 12], with an ordinary point at £ = 0 and the irregular
singular point at ¢{ = co. In terms of the original variables, its general
solution by 1 or B2-2-1 is |

y = C1e2kV2 4 (Cge—2v

[0, 1, 1]. The regular smgular point is at * = 0 and the 1rregu]ar one
at x = oo. The equation is

22y’ + xy’ + (Ao+ A1x)y = O

The exponents at x = 0 are the roots of s2 +A4¢ = 0. Since the constant
18 arbitrary, it may be chosen as 49 = —k2 so that the exponents are
+ k. Shitt them to new values with y(x) = 2?u(x) and get

2y’ () + (1 —a—B)ru’ + (af + A1x)u = O

where o = (k—h), B = —(k+h). In the special case with 8 = 0, 4,
= 1, « +p = 0, the result is a Bessel-Clifford differential equation

xu’' +(1+pyu'+u = 0

- The quadratic transformation, x = 22, will produce a special case of
[O: ]-: 12]
T 22u’(2)+ (1 — 20 —2B)zu’ +4(aB+ A122)u = 0

Convert A; to unity, with the variable change wu(z) = w(t), 2 = bz2

b = 44,, so that

20" (£) + (1 — 20— 28)tw’ + (4B + 2)w = O

Th.lS can be converted into Bessel’s equation of order p, if & = (« +p8),
y(z) = xhu(x), p? = 2(«? +2), and successive transformations, beginning

with the standard equation. The result is finally

2w (8) + tw’ — (P2 —2)w = 0
11,0, 12]. This case can be obtained from [5, 0, 0] with one singular

pomt at x = 0 and coalescence of the others at x = oo. The standard form
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22" +y'+ (4 + Bx)y = 0

Smeee there are only two smgula,r pomts see [1, 0, 1], one constant can
gg fixed and the result is

1 'ar:

$ %Ei; ._ Ay H’+2 r_I_(k_l__ _ _) — 0
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The quadratic transformation, 2 = 22, produces type [0, 0, 14], whlch is
Weber’s equation, see 9-1,

1 22
u''(2) + (k+—— — ——)u =0
2 4

[0, 1, 12]. The general equation is
' 2%y’ + 2y’ + (Bo+ Bix + Bax?)y = 0
The exponents at # = 0 are the roots of s2 +By = 0. They can be shifted

to 81, 8g if Yy = xku(x) k¢ +Bg = 8182, 2k = -—(81 -I—82) The result is

z2u’" + (1 —81 —82)xu’ + (8182 + Bix + Baa2yu = 0

Further simplification can be secured with » = z%1w(z), which changes
the exponents to 0, (s2 —s1), and gives

xw' + (1481 —82)w’' + (B1+ Bax)w = 0

A similar result would have been obtained with # = z%w;(x).

Now let w = e*%F(x), which will insure one normal integral at x = 0.
Choose A as a root of h2 +Bs = 0. The constant Bj is arbitrary; a con-
venient value 18 By = —b2, 80 that 2 = —b. The d