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Preface

Physics today is so strongly based on (quantum) models of the microworld that it is

difficult to imagine a time in which this was not so. Yet, until almost the beginning

of the twentieth century, the prevailing view, at least among those physicists who

worked predominantly in electromagnetism, was quite different. In Britain a method

held sway which not only avoided considerations of microstructure but was strongly

antagonistic to them. On the Continent, where there was more sympathy for micro-

models (and where the British method was neither used nor well understood), most

physicists nevertheless preferred a macroscopic approach to electromagnetism; as a

result, for a long time they had great difficulty in understanding how to meld field

equations with microscopic models. My purpose in this book is therefore twofold:

first, to explain the British method and to examine why, and how, it ultimately

proved to be a failure; second, to understand the manner in which microphysics first

penetrated electromagnetic theory on the Continent during the 1890s.

The words "microscopic" and "macroscopic" here have quite special meanings.

A "microscopic" theory employs atomic or molecular entities in order to compute

macroscopic effects. It does not make any difference what the structure of these

entities may be. A "macroscopic" theory avoids employing atomic or molecular

entities for such purposes. Consider, for example, two theories of viscosity. The

"microscopic" one calculates a measurable quantity—the coefficient of viscosity

—

by analyzing the invisible processes of molecular transport. The "macroscopic" the-

ory simply assumes the coefficient to exist and attempts to integrate it directly into

the structure of mechanics. In this sense, a macroscopic theory presupposes that all

variables are continuous functions of position, whereas some variables in the micro-

scopic theory may be discontinuous because they derive from the effects of discrete

atomic or molecular entities.

It is especially important to grasp the limited sense in which I shall use these two

adjectives because otherwise confusion may arise. For example, when we examine

Joseph Larmor's theory of the electron we shall find that he considers its properties

to derive from the properties of the ether, in which the electron is a special kind of

singularity. Larmor's electron might then seem to be macro- rather than microscopic

because it derives from the ether itself, whose own properties are not due to micro-

scopic processes. The problem here consists in confusing the nature of a microscopic

entity with the function of that entity in generating macroscopically measurable quan-

tities: Larmor's electron theory is a microscopic one because he employed the elec-

tron to compute such things as inductive capacities. In contrast, Maxwellian theory

simply assumed that things like capacity exist. In deciding the type of a theory, the

central question, then, is this: Can one avoid employing entities which are atomic or

molecular in scale to generate, through an averaging process, quantities which are

defined over regions that are macroscopic in scale, whatever the ultimate structure of
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these unobservable entities may be? According to electron theory one cannot; accord-

ing to Maxwellian theory one can often do so.

In parts I and II, I have attempted to explain the structure of Maxwellian electro-

magnetic theory, a theory that British physicists learned by reading the major British

texts of the day and by discussion with one another. This theory is so unlike electro-

magnetism after the electron that it has occasioned much perplexity over the years.

One of my major goals here is to show why it has had this effect by examining the

theory's physical and mathematical foundations, and by contrasting these foundations

with modern theory. I then take this understanding and use it to examine the work

of the Maxwellian community in the 1880s; here we shall see that the method they

employed to avoid microphysics was sufficiently successful to permit explanations of

several electromagnetic and optical phenomena in ways which are, to the modern

eye, strikingly odd and even paradoxical. This forms the subject of part II.

Despite many influential successes, the British method contained an internal ten-

sion, linked to its treatments of electric conduction and field energies, which made it

extremely difficult—in the end impossible—both to reconcile disparate elements

within it and to fit increasingly well-known phenomena into it. Part III and the epi-

logue describe the demise of Maxwellian theory in its attempt to reconcile this ten-

sion and to explain the properties of light reflected from magnetized metallic sur-

faces. The results of this reconciliation attempt (carried out preeminently, and

unsuccessfully, by Joseph Larmor in 1894 and 1895) were the introduction in Britain

of the "electron" and the abandonment of the macroscopic method which had guided

British research for over a quarter of a century.

In part IV I turn to the question of how Maxwellian theory, which became a

subject of intense interest outside Britain after Hertz's 1888 discovery of electric

waves, was understood in Holland and Germany during the 1890s. Here we shall see

how Maxwellian terminology and mathematics were interpreted in ways which were

profoundly incompatible with their proper meanings. Nevertheless, we shall also see

that, despite their non-Maxwellian approach, it was still extremely difficult for

Dutch, French, and German physicists to understand how to link field equations with

microscopic models, despite Lorentz's extensive work in this area in and after 1892.

Indeed, one of the results of our investigation will show that Lorentz's own work

was poorly understood during the 1890s. In fact, microphysics was incorporated into

electromagnetic theory through rather general considerations which, though they

were not as detailed as Lorentz's, provided German physicists with a cogent, simple

method for generating optical equations. (It is that method, not Lorentz's, which

ultimately passed into intermediate texts on electromagnetism, including modern

ones, though Lorentz's approach is universally used for purposes of rigorous deduc-

tion in advanced texts.)

Part V examines how this incorporation of microphysics into theory took place,

focusing on the immensely influential problems posed by magneto-optics; problems

which, it was first thought even in Germany, could be overcome without transgress-

ing macroscopic boundaries. By examining the theoretical and experimental devel-

opments in this area, particularly a controversy concerning the empirical adequacy of

certain macroscopic equations, we shall be able to understand how and why micro

physics became the received method in electromagnetism by 1900.
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I have dealt, then, with two rather different kinds of events. On the one hand,

there is the abandonment of a method—the Maxwellian—which is profoundly incom-

patible with microphysics. Here it is a question of the replacement of an entire set of

principles by a new set with which they cannot be reconciled. On the other hand,

there is—not the replacement of principles with new, incompatible ones—but the

gradual emergence of a method whereby new concepts are linked to already existing

methods, or, better, the emergence of a unified method where none had previously

existed. The former might well be thought of in the way one thinks of, say, the

replacement of the caloric theory of heat by energy conservation, whereas the latter

cannot be thought of in quite that way.

I have not attempted to examine how these two kinds of developments depend on

shared social experiences among groups of physicists but have confined myself to the

intellectual events that reveal those experiences. Since this book is already quite

lengthy, there is hardly space to address the many important social and institutional

questions which the material inevitably raises. I have indicated in the text where, in

my view, considerations of this kind are especially required.

I have also not attempted to pursue the intricate and difficult problem of "incom-

mensurability" which my discussion unavoidably raises, particularly in part IV,

though I am convinced that this question is essential for a full understanding of the

events which took place during the 1890s. Part of the difficulty which readers will

have in grasping the structure of Maxwellian theory—which Dutch, French, and Ger-

man physicists did have in the 1890s—is due to the impossibility of adequately trans-

lating Maxwellian terminology and mathematics into modern terms. In fact, I believe

Maxwellian theory cannot be translated into anything familiar to the modern under-

standing because the very act of translation necessarily deprives it of its deepest

significance, and it was this significance which guided British research. This fact will

be abundantly evident by the end of part I and accounts in good measure for the

profound difficulties felt by most readers of Maxwellian texts since the turn of the

century.

Readers familiar with the development of electron theory and the early history of

relativity will perhaps be surprised that I do not directly address the questions posed

by the electrodynamics of moving bodies (though Hertz's moving-body field equa-

tions do play a role in Germany in the 1890s, as we shall see in part V, chap. 27).

The reason for this is quite simple: with the exception of Lorentz, few physicists

either in Britain or on the Continent were actively interested in pursuing this problem

until c. 1900, when Lorentz's own principles first achieved widespread understand-

ing. The vast preponderance of work in electromagnetism during the 1890s was con-

cerned with apparently more mundane questions, such as how to create a system of

equations capable of dealing with the reflection of light from magnets. These seem-

ingly limited types of questions were the ones within which concrete problems arose

that led, in Britain, to the abandonment of Maxwellian theory, and, in Germany, to

a widespread understanding of how to meld microphysics with field equations. The
deeper questions raised by electromagnetic processes in moving bodies were compar-

atively peripheral ones for most of the decade in much the same way that the question

of the mechanical origin of force was a peripheral question in Newton's mathematical

work. If one cannot solve concrete problems concerned with relatively simple labo-
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ratory processes, it was felt, then how can one expect to solve a problem that de-

pends on the "great question," as FitzGerald once termed it, of the relation of ether

to matter? Only Lorentz, whose microphysical techniques were in many respects

designed to encompass this problem, was able to tackle it during the 1890s. But his

principles, as we shall see in part V, were ill understood during those years even

where phenomena in stationary bodies were concerned.

I hope also that parts I through III will somewhat alter the ways in which histori-

ans, physicists, and philosophers of science have traditionally understood the mean-

ing of the "mechanical"—more properly, "dynamical"—analyses prevalent in Brit-

ain during the last quarter of the nineteenth century. Perhaps unduly influenced by

such Continental critics of British work as Pierre Duhem, we have until recently

focused too closely on particular "mechanical" models without attempting to per-

ceive fully what unites them in a common "dynamical" method, and what it is about

that method that cannot be accepted after the introduction of the electron. This ques-

tion forms much of the substance of parts I and, especially, III, for I have attempted

to demonstrate that there is a premise underlying the British dynamical method which

fundamentally distinguishes it from electromagnetic theory after c. 1900. This prem-

ise concerns the primordial question of whether it is possible to treat the macroscopic

electromagnetic field, using energy principles, in precisely the same way one can

treat mechanical continua; particularly whether one can generally apply Hamilton's

principle to it. That possibility, which the Maxwellians uniformly admitted, is no

longer granted after the electron, and the dynamical approach to physics necessarily

disappeared with it.

Maxwellian theory itself descended from a wider tradition of dynamical reasoning

in Britain which has been extensively analyzed in recent years. (See the bibliographic

essay.) I have taken the existence of this tradition very nearly for granted in order to

concentrate on what the Maxwellians did with it. Consequently, I have not attempted

to motivate Maxwellian science but have rather tried to unravel its inner workings.

Continental electrodynamics of the 1890s was not so tightly organized, both intel-

lectually and socially, as Maxwellian theory was in Britain. Here important questions

of motivation arise. However, I shall not be arguing that the magneto-optic problem

(which I treat in some detail) led physicists on the Continent directly to the kind of

theorizing about the structure of the electron which became quite common by 1905.

That involved a change in physicists' outlook of the first order and could not have

been caused by anything so simple as a single technical problem. Rather, I shall

argue that it was through analysis of the magneto-optic problem that Continental

physicists learned how to link field equations with microphysical processes. They did

not know how to do so beforehand, but they were extremely well versed in the

techniques afterward.

My story introduces a sort of historical inversion which will disconcert many
readers. One often reads that Continental opposition to atomism during the 1890s

was quite powerful. One also reads that the British delighted in atomistics, even

going so far as to provide a method, with their vortex atom, for computing atomic

behavior. I shall argue, in apparent contradiction to this view, that the British were

strongly averse to using atoms in electromagnetism, whereas Continental physicists

were quite open to doing so. But, I think, the contradiction is only apparent. I do

not argue that the British did not believe in atoms, or even that they did not often
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use them outside of electromagnetism. Nor do I argue that Continental physicists

were quick to create elaborate atomistic explanations in electromagnetism. Rather,

my argument depends on a subtler distinction that can be encompassed by the cate-

gories "atomist" and "anti-atomist."

The distinctions I intend will emerge during the course of my argument, but, since

the way is crooked, I shall loosely chart it here. The British did generally believe in

atoms, but they used them in rather special ways, particularly in electromagnetism.

The British physicist conceived of the universe as a continuum studded with struc-

tures called "atoms." These things were built out of the continuum itself. In this

physical image, to modify an atom was to modify the continuum and vice versa. The

implication of this was striking: continuum mechanics could, in principle, be applied

to every type of problem because all phenomena emerge out of the continuum.

Thus the goal of many a British theory was to create a general dynamical formula

which would lead to large classes of observed phenomena. Having done so, one

could then try to envision "atomic" structures in and o/the continuum which were

compatible with the dynamical formulation. But these structures were not thought to

operate on the continuum in the way, for example, that Lorentz's or even Larmor's

electrons acted on the fixed ether of their theories. Instead of creating a state in the

ether in the manner of Lorentz's electron, the British "atom" was itself an aspect of

an ether state. One could (very loosely) say that the British physicists of this period

were "inverted" atomists. Instead of building the world out of atoms, they built

atoms out of the world—their "world" being the continuum proper.

We shall see in detail how this view had practical effects which led to theories

strikingly at odds with postelectron views. But we can also see how British physicists

were able to make the transition from the macroscopic to the microscopic approach.

They already believed quite strongly in atoms, but they had to learn to use atoms to

build theories rather than to use preexisting theories for building atomic systems. The
mental change this required was obviously a subtle one, even though it had dramatic

effects; rendering incorrect, for example, the several theories of the Kerr, Hall, and

Faraday effects the Maxwellians created in the 1880s and early 1890s. In fact, I think

it quite likely that few Maxwellians in the late 1890s consciously understood the

profound changes implicit in adopting the electron, though there is ample evidence

of the kind of confusion one would expect given a conceptual change of this magni-

tude. In the epilogue I will give brief examples of the difficulties encountered.
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1

On Discussing Different Theories

When, at the age of thirteen or so, I first learned Newton's third law of motion it

seemed to me impossible that anything could ever move. If every push were count-

ered by an equal and opposite push, I felt, then the final result must surely be a

standoff—or else I had no idea what a "push" was. Several weeks after reaching

this disquieting conclusion, I found myself on a train awaiting departure. The train

began to move, and the sudden jolt I received seemed all at once to resolve my
problem: obviously, I now saw, far from nothing moving, everything moves since

the equal and opposite forces act on different bodies. What only days before had

seemed to be an impossible situation suddenly seemed quite natural. I even had

difficulty grasping what had so troubled me earlier.

We are today in much the same position with respect to the subject of this book

(what I shall call "Maxwellian electrodynamics") as my thirteen-year-old self was

with respect to Newton's third law of motion. Maxwellian theory is so different from

our present point of view that even its elementary hypotheses—those which are as

fundamental to it as the third law is to Newtonian dynamics—seem paradoxical to

us. The problem is compounded by the fact that words and even intricate equations

occur in the theory which we at first think we understand. But when we try carefully

to read the Treatise Maxwell wrote to explain his theory, or any of the large number

of articles written by the "Maxwellians" of the 1880s and 1890s, we almost at once

face seemingly paradoxical, even nonsensical sentences. A thirteen-year-old may
wonder how pushes can be equal and opposite and yet things can move. The modern

reader of a Maxwellian text encounters a similar difficulty in grasping what the word

"charge" means. He may even find whole paragraphs to be almost completely

opaque, though they may contain familiar words. What, for example, does one today

make of this statement by Oliver Heaviside, written in 1897 to correct a misappre-

hension of Maxwellian theory?

My Maxwell teaches me that no [electromotive force] can produce electri-

fication in a dielectric which is not a conductor; and that no [electromotive

force] can produce electrification in a homogeneous conducting dielectric;

but that the existence of heterogeneity is (as well as conductivity and per-

mittivity) necessary for the production of electrification. On the other hand,

my Maxwell teaches me that variations in divlf are impossible, because of

the experimental absence of magnetic conductivity (...) and that divTf

itself is zero as a connected experimental fact. (Heaviside 1893-1912, sec.

537)

(The words in brackets
—

"electromotive force"—are represented by symbols in

Heaviside's original text.)

However odd Heaviside's statement may seem, it is in fact a rather simple Max-
wellian assertion. One of my goals in the first few chapters is to make it as simple
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to the reader as it was to Heaviside. To do so I must ask for patience and indulgence.

Modern eyes cannot be opened to Maxwellian theory by straightforward exposition

any more than a child can be taught dynamics by giving him the laws of motion.

We, like him, must explore several exemplary problems in order to develop a feel

for the theory. Only then can the shock of understanding be experienced.

Yet even if we acquire the knack of reading Maxwellian texts in a way that makes

consistent sense of them, a potential paradox always exists. We cannot entirely di-

vorce ourselves from a modern perspective, nor should we wish to do so. Every

problem, therefore, is almost certain to show us two faces—the modern and the

Maxwellian. The paradox is that we cannot see both faces at the same time. Put

more formally, we cannot, it seems, discourse about Maxwellian theory without

speaking in "Maxwelsh," but if we speak "Maxwelsh" then we cannot discourse

about modern theory. Were this literally true, our history could at most be a chroni-

cle—a reporting of events—and a critique from within Maxwellian science. We
could discuss theorems, discoveries, and controversies much as a Maxwellian sensi-

tive to conceptual issues might have done. This is a valuable and an illuminating

activity, but it cannot expose to modem eyes the deep structure of an abandoned

theory.

The situation is not hopeless, despite appearances. Modern theory and Maxwellian

theory, though different in fundamental ways, nevertheless make contact with one

another at several points. The most basic point of contact is experimental: the theo-

ries almost always imply the same effects. When they do not, we can compare them.

We can try to discover whether the difference derives from peripheral or from fun-

damental hypotheses. This way we can begin to strip away the common elements of

the theories, leaving behind their core differences. A second point of contact involves

the higher-order physical conceptions which the theories hold in common. Both mod-

ern and Maxwellian theories, for example, require energy conservation. But they do

not necessarily conserve energy in the same ways. If they do not—and they don't

—

then we can pursue the question to reveal differences. In this way we can localize

the fundamental points of divergence between the theories and concentrate on grasp-

ing their basic ideas.

In this first part I have accordingly chosen to present outlines of both modern and

Maxwellian theories. Many readers will already be familiar with modern principles.

They may, without encountering undue difficulties, turn to the section on Maxwellian

theory. However, I suggest at least glancing at the modern section because I have

attempted to highlight those aspects which contrast markedly with Maxwellian prin-

ciples. I have also presented several derivations which are today uncommon, but

which are critical for understanding how, even in modern theory, one can apply

dynamical principles to the microscopic field.
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Modern Basics

2.1 Charge and Current

In modern electrodynamics

—

pace relativity and the quantum—we suppose that noth-

ing exists but charged particles and fields. The equations which govern the electro-

magnetic fields E, B and the interactions between charges and fields are, in Heavi-

side-Lorentz units:

(I) V x E = -(Vc)(dB/dt)

(II) V x * = ( 1/c)[P^ + (dE/dt)]

(III) V • E = p

(IV) V • B = which allows B = V x A

(V) fem = p(£ + v X B)

By virtue of equations (I) and (IV) we may also write:

E = -{\/c)(dA/dt) - V<}>

These equations permit us to assume several relations between the vector potential,

A, and the scalar potential, <\>. In what follows I shall always use the Coulomb gauge,

in which V • A vanishes. In this gauge we may accordingly write, by virtue of

equation (III):

V A = • • • V 2

(J>
= - p

In these equations p is the net density of charged particles, v is the velocity of this

density, and /em is the force per unit volume exerted on it by the electromagnetic

field. The field itself contains energies whose volume densities are given by:

(VI) UE = (\/2)E
2

(VII) UB = (\/2)B
2

Finally, equations (II) and (III) imply that charge is conserved through an equation

of continuity:

(VIII) V • (pv) + (dp/dt) =

To predict the behavior of macroscopic bodies, we must also construct models for

them on the basis of charged particles. This leads us to distinguish major macro-

scopic classes of bodies and to introduce two new vectors for them. These two vec-

tors

—

P and M—respectively represent the mean electric and magnetic moments per

unit volume. They are material vectors in the same sense that pv is a material vector.

To obtain them we assume that substances exist in which molecular electric dipoles,

p, can be generated; there are also substances which contain permanent molecular

magnetic dipoles, m, which may be orientable or nonorientable; finally, there are

substances in which orientable dipoles m can be generated. The electric dipole p
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consists, in a very simplified model, of equal but oppositely charged particles (charge

e) which are separated by a variable distance, r:

(1) P = er

Because the charges of the dipole are generally at different distances from any given

point, F, a net E field will usually exist at F. If there are n dipoles per unit volume,

then we define the electric moment density, P, as follows:

(2) P = nip)

(Here and below angle brackets denote a space average.)

We construct magnetic media in a similar fashion. Our magnetic dipoles are al-

ways produced by charge motion because equation (IV) forbids magnetic sources.

Here we may imagine microscopic closed loops of current; each loop encircles an

area, a, and / units of charge per second circulate around it. We may produce such

a thing in various ways out of moving or rotating charges; here we need only to

assume it to be possible within our model. Then we define the molecular magnetic

moment, m:

(3) m = laic

Such a loop will, by equation (II), produce a B field. If there are ri loops per unit

volume, we may define the magnetic moment density M:

(4) M = n'{ffi)

We can show from our basic equations and these definitions that the portion of pv

in equation (II) which involves M contributes the term V X M. Hence equation (II)

may now be written:

(II') V x {B - M) = (pv), + (dE/dt)

Here (pv), excludes the microscopic current loops which produce magnetization. Sim-

ilarly, we can show that the electric polarization P contributes a term to the charge

density -V • P. So we may write equation (III) as:

(III') V • (£ + P) =
P(

Here pc excludes the charge densities due to polarization.

Using (II') and (III') we can develop a macroscopic theory of electrodynamics.

Consider first the electric polarization. We divide substances into two major electric

classes:

1

.

Dielectrics: in which P may exist but in which charge cannot move over mac-

roscopic distances.

2. Conductors: in which charge may move over macroscopic distances against a

dissipative resistance.

To develop the macroscopic theory we must make assumptions about the relationship

between P and E and about the relationship between the moving charge in conductors

and E. In isotropic dielectrics we assume that P is simply proportional to E:

(IX) P = 1EE
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Similarly, in isotropic conductors we assume that the net rate at which charge drifts

through them is also proportional to E. Introducing a new vector, C, to represent the

drift rate per unit volume, pcv, we have:

(X) C = pcv = <jE

Next we consider magnetic substances. Here we distinguish three important spe-

cial cases:

1. Paramagnets: in which the magnetization M is parallel to the field 5.

2. Diamagnets: in which M is antiparallel to B.

3. Permanent Magnets: in which the value of M is fixed.

Here, as with P and E, we must make assumptions concerning the relationship be-

tween M and B; this relationship can be justified on the basis of a simple microscopic

model. Conveniently, to represent this dependency of M on B we use equation (II')

to introduce a vector, H, equal to B - M:

V x H = (pv), + (dE/dt)

(XI) B = H + M

Then the B field divides into two parts. One part, //, is due to currents and to dE/dt;

the other part, M, is due entirely to magnetization. Since the magnetization is engen-

dered in paramagnets and in diamagnets by applied B fields, we may for these

substances reasonably assume that M is proportional to H, the nonmagnetization

part of B:

(XII) M = 1MH

Our first two magnetic classes will then correspond to values for the constant %M
which are, respectively, greater than and less than zero. For further simplicity we
introduce^ second constant, jx, equal to 1 + SM to represent easily the relationship

between B and H:

(XI & XII) B = H + M = (1 + 1M)H = \Ji

Experiment indicates that the constant (jl is always greater than zero.

We can generate a similar division for the electric case. Returning to equation

(III'), we introduce a vector, D, equal to the sum E + P:

(XIII) D = E + P

Then equation (III') may be written:

(HI') V • D = Pr

Here pr is, again, only the nonpolarization charge density. By virtue of equation

(IX), we may introduce a new constant, e, which links D with E:

(IX & XIII) D = E + P = {\+ X F:)E = e£

From the standpoint of microscopic theory, the new vectors we have introduced

—

P, D and M, //—serve solely to distinguish classes of current and charge. None of

them, including D, is in itself a fundamental field vector, because the field proper

consists only of E and B. We employ the auxiliary vectors, which derive from mi-
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croscopic models, to facilitate computations. Consider, for example, how we may
use D and P to analyze a charged conducting sphere embedded within a homoge-

neous, infinite dielectric (see fig. 1).

When the conductor is charged, the particles implicated in pc will drift to its

surface since a system governed by inverse-square forces is unstable. They there

distribute themselves in such a fashion as to annul the E field within and tangent to

the surface of the conductor. Since the particles are extremely small in comparison

with macroscopic dimensions, we may consider that they there form a charge crc (the

+ in fig. 1) per unit area equal to QIAirb
2

, where Q is the net charge added to the

conductor in the charging process, and b is the radius of the conductor.

The charge Q of the conductor causes a polarization charge a
p (the - in fig. 1)

equal to -P • es to arise on the dielectric at its interface with the conductor—this

follows from equations (III'), (IX), and (XIII) applied to the case of an abrupt tran-

sition between conductor and dielectric. Since ac is equal to IDI—all fields are ra-

dial—we find (just outside the surface):

D = (1 + XE)E = QIAitb
2

• • E = QI[4Trb
2
(\ + 2£)]

P = D - E = [S£/(l + lE)](QI4-nb
2
)

Whence we find for the ratio oyoc :

cy<rc = -X£/(l + XE) - (1 - e)/€

Since %E is known to be greater than or equal to zero, we see that the polarization

charge engendered by crc is smaller than and opposite in sign to ac . The E field in

every point of space, outside the sphere or inside it, would be the same as if we had

empty space except for the surface charge ac + o~p . In this configuration the E field

at a distance r greater than b will be:

E - (Qler
2
)e r

This very simple example illustrates that, in modern electrostatics, we can if we like

replace macroscopic systems with fully equivalent systems consisting of conduction

and polarization charge distributed in the void: the D and P vectors are merely useful

macroscopic aids for computing the effects of microscopic charge distributions.

In magnetostatics the situation is in one major respect simpler than it is in electro-

statics. Since we do not consider magnetic charge to exist, we need only to treat the

Fig. 1 Conduction charge generates a smaller and opposite polarization charge
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case corresponding to polarization charge. Consequently, the theory is analytically

the same as electrostatic theory without conductors: the vectors B, H function like

the vectors D, E in the absence of conduction charge. Both B and D then have zero

divergence, whereas H and E will have nonzero divergence if there is magnetic or

electric polarization, respectively. Applying equations (II'), (IV), and (XI) to a sta-

tionary situation in which there are no currents, we have:

V x H = - H = -V$M
B = H + M <mdV B = • V - H = - V • M

We see that H will have a potential 4>M , and that the source of <$>M is a magnetic

moment density — V • M. As in electrostatics, these implications follow at once from

the model, in which M represents the mean density of microscopic magnetic dipoles.

Like D and P, H and M are purely macroscopic vectors.
1

2.2 The Ampere Law

Return next to our basic equation (II) for V x B, and write j for j:

(II") V x B = (Vc)\j + (dE/dt)]

In discussing (II") modern texts usually begin with (I), (III), and (IV), combining

them with the continuity equation to obtain:

(5) V •

[J + (dE/dt)] =

The texts usually go on to argue that j + (dE/dt) must therefore be the curl of some

vector, and they guess that B is the vector, at once yielding equation (II").

But the choice is not unique. Suppose we write £, 4- Es for E, wherein E
t
is due

solely to electrodynamic effects, and Es is due solely to static effects. Then:

E = E
t
+ Es

% = -(\/c)(dA/dt)

(6) Es
= -V<t>

Then (5) may be written:

V •

[y + (dE,/dt) + (dEJdt)] =

But since V • A is zero in the Coulomb gauge (which we always use), this becomes:

V • [7 + (dEJdt)] =

In which case we could also guess:

(7) cV x B = [jo + (dEJdt)]

Equation (7) differs from (II") in lacking the latter' s term dEildt, but it is just as

consistent with the continuity equation, and it makes just as much sense in the ab-

sence of experimental evidence to the contrary. In fact, we will see that equation (7)

was historically used on the Continent, though never in Britain.

1 . Several difficulties are encountered with our use of the vector ft together with a model in which

magnetization is always due to microscopic currents. These difficulties are not of importance here, how-

ever, because we are concerned with interpretations common to all macroscopic theories. On these ques-

tions, see Fano, Chu, and Adler (1960, sec. 7.10).
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2.3 Energy and the Field

At this point we can gather together our results and rewrite the basic equations under

the macroscopic approximation:

Field equations:

do)

(Ho)

(mo)

(IVo)

V
V
V

V

XE
x H
b =

• B =

= -(\/c)(dB/dt)

= (l/c)[C + (dD/dt)]

(Faraday law)

(Ampere law)

(Gauss law)

Material equations:

(i.)

(ii.)

(iii.)

(iv.)

(v.)

P
M
P

M
->

C

= b -e
= B - H
= ZEE
= XMH
= <jE

e =
1 + 1E

= 1 + ^M

b =

B

Note that I have not provided a macroscopic equation corresponding to the Lor-

entz force—equation (V) in our microscopic set—nor have I given expressions for

macroscopic field energies. The first lacuna depends on the second. In macroscopic

theory it is exceedingly difficult to determine the electromagnetic force on an object

by directly considering the actions on the polarization and conduction charges, over

which we have already averaged. However, two related methods are available for

avoiding considerations of this kind: by energy methods and by the "Maxwell

stress." To see the limitations of these methods we must begin by considering the

energy stored in the real field—the E and B of our microphysical equations.

2.3.1 Microscopic Theory

Our original equations (VI) and (VII) represent the electric and magnetic energy

densities of the microscopic field proper. These energies are considered to reside in

the field and to be correctly localized by (VI) and (VII) in every volume element.

That is, a volume V contains field energy in the amount (l/2)/v(£
2 + B2

)d
3
x. Now

we cannot obtain this general requirement from our other equations. We can, how-

ever, with some effort demonstrate the following two propositions by considering the

work done according to the Lorentz force in assembling collections of charge and

current:

a. The total energy due to the static fields Es of the particles is (\/2)fE*d
3
x,

integrating to infinity.

b. The total energy due to the vector potential fields A of the collection of steady

currents C is (l/2)/C • Ad3
x, integrating to infinity.

(The second of these two results is remarkably difficult to obtain because of electro-

magnetic induction: unlike charges, currents do not naturally remain constant when

moved about, and volume currents present particular difficulties in this regard except

under highly artificial restrictions.) Replacing C with V x B, and recalling that B is
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V x A, we may perform a partial integration to rewrite result b in terms of B—
again, only for the case of steady currents—as:

b'. The total energy due to the magnetic field B of a collection of steady currents

C is (V2)jB
2d3

x.

Obviously we have not in this way demonstrated that (\/2)(E
2 + B2

) is the correct

function to use in computing the total energy of the field in the nonsteady state.

Much less have we shown that the energy in a finite volume V is actually (l/2)/v(£
2

+ B2
)d

3
x. However, if we simply make these latter assumptions, then a bit of math-

ematics demonstrates that they are fully consistent with energy conservation, and that

they are physically meaningful.

Returning to the microscopic equations, we replace pv in equation (II) with a

general vector Jc which incorporates all types of moving charges. Then we take the

scalar product of equation (I) with B, and the scalar product of equation (II) with E:

(A) B (V x E) = -(V2c)[d/dtB • B]

(B) E • (V x B) = (\/c)[E • Jc + (V2)(d/dtE • £)]

where d/dtE • E = dE • E/dt. Subtracting equation (B) from (A) and using a vector

identity, we obtain:

cV • (£ X S) = -E Jc
- (V2)(d/dtE • E)

(C) - (\/2)(d/dtB • §)

where dldtB • B = dB • B/dt. Now we may integrate equation (C) over any finite

volume V. Doing so, and using Green's theorem, we find Poynting's microscopic

theorem:

-fc(E x B) c& = (\/2)d/dtf(E
2 + B2

)d
3
x + }E • J<d

3
x

The last term on the right-hand side is, without question, the rate at which the elec-

tromagnetic field performs work on the material charges in the volume of integration.

Our theorem asserts that the sum of this power with the rate of change of another

volume integral over pure field quantities is equal to an integral of field quantities

over the surface of the volume V. If we assume (defining U as the density [1/2]

[E
2 + B2

]) that fvUd
3
x is the true field energy in V, then cE x B can be taken to

be the rate per unit area and the time at which the field energy flows into V by energy

conservation.

This effectively permits us to treat the field of our microscopic equations as a

dynamical system. If we are permitted to localize energy in every volume element,

then we should also be able to use Lagrange's equations and Hamilton's principle.

We can in fact do so, as we shall see in a moment. If we assume that the Lagrangian

density is (\/2)(B
2 - £2

), and that no charges are present, then we may use Hamil-

ton's principle together with equation (II) (the Ampere law with pv = 0) to deduce

equation (I) (the Faraday law).

What, though, of the charges? They are not part of the field; they are its sources.

They constitute, moreover, an independent dynamical system to which Hamilton's

principle can be separately applied. Field and matter, one can say, are distinct sys-
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terns which cannot affect one another's internal structure. By this I mean that the

energy density appropriate to each is not at all affected by the presence of the other

system.

Of course, the two systems do interact with one another, as we see from the

presence of the source terms in equations (II) and (III) and from the field terms in

equation (V). We can represent this interaction, without altering the energy density

of either field or matter considered independently, by including in our Hamiltonian

integral a term for the work done by the field upon matter. If this work is negative,

then matter is feeding energy into the field.

In order to operate in this way; we must know the constraints imposed on the

permissible variations by the fact that the source of the field is material charge. These

constraints are provided by equations (II) and (III). Another constraint on the varia-

tions is imposed by equation (IV): this constraint, of course, holds even in the ab-

sence of charge. Including in the Hamiltonian integral a term for the work of field

upon matter, we will be able to deduce equations (I) and (V). Equation (I) is a pure

field equation. Equation (V) determines the action of field upon charge. To clarify

these points, I shall give a precis of the calculation.

The Lagrangian of the field itself, LEM , is given by:

(8) LEM = (V2)i(B
2 - E2

)d
3
x

If /em is tne electromagnetic force per unit charge which the field exerts on matter

during a displacement 67 of the charge density p, we have for the work done on

matter by the field during br:

(9) bW = /p/em ' b7d
3
x

While the material system is displaced point by point through br, we also vary the

components of the electromagnetic field at any point by bE and bB.

In the absence of any constraints, br would be completely independent of bE and

bB. However, we use equations (II) and (III) to impose constraints.
2
After consider-

able simplification, we find:

(10) V E = p...V-8£ = 8p=-V- (p8r)

VxB = pv + (dE/dt) . . .

Vx8B = 8[pv + (dE/dt)]

(11) = d/dt(pbT + bE) - V x (pv X br)

Hamilton's principle requires that the variation of the Lagrangian, from which we

subtract the work done by the field, between two given states and over a given time

interval must be stationary:

J?(8LEM - bW)dt =

We first compute 8LEM :

2. One can show that:

8LEM = f(B bB - E bE)d
3
x

h(pv) = (a/a/)(p5?) - v x (Pf x s?)

by considering the variation jb(pV) • da in the current through the area enclosed by a loop because of its

displacement. I thank Philip Lervig and Ole Knudsen for pointing this out to me.
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Consider the magnetic part of 8LEM . We use equation (IV) to replace B with V X A;

then a partial integration yields:

/£ • bdd3
x = fA • (V x bB)d

3
x + surface terms

The surface terms vanish when we integrate to infinity. We can replace V X bB by

using equation (11) to obtain:

(12) J0 • bB)d
3
x = fA • [d/dt(pbr + 8£) I V X (pv x b?)]d

3
x

We can transform the term in A • [V x (pv X or)] by a partial integration to infinity,

replacing v x A with B:

fA [V x (pv x bf))d
3
x = /(V x A) • (pv x bf)d

3
x + surface terms

= fB • (pv X br)d
3
x

(13) = -/P5r -(v xB)d3
x

From (12) and (13) we now have:

fdt(fB • bBd3
x) =

(14) fdt{f[A a/ar(p8r + 8£) + p8r • (v x B)]d
3
x}

We can partially integrate over time in the first term on the right-hand side of (14)

to obtain:

(15) fdttfS • hB)d
3
x = J{J[-dA/dt • (p8? + 8£) + p8r • (v x B)]d

3
x}dt

Since the variation of E2
is simply IE • SE, we easily find from (9) and (15):

= J(8LEM - bW)dt

= Jdt{J[-dA/dt • (pSr + 8£)

(16) + p8r • (v x B)-E 8£ - p/EM • br]d
3
x}

We cannot as yet separately bracket the terms because 8r and 8£ are connected

by equation (10). We can add this constraint to the integral by forming the zero sum

V • (o£ + p8?), multiplying it by an undetermined scalar function $ and adding in

the result. We can then integrate (j>V • (8£ + poT) partially:

JcJ)V • (bt + pbf)d
3
x = -J(8£ + p8?) • V$d3

x

So we must have:

= - dA/dt • (p8r + 8£) + p8r • (v X B)

(17) -E • 8£ - (8£ + p8r) • V<|> - p/EM • 8?

Setting separately to zero the coefficients of 8r and bE, we now obtain:

(18) £ = -dA/dt - V<J> • • • V x £ = -dS/dt

(19) /EM = I + v x ^

Equation (18) is the microscopic Faraday law. Equation (19) is the Lorentz force.

I have taken the reader through this rather intricate exercise to demonstrate a

major point: in the microscopic theory we can treat matter and the electromagnetic

field as independent but interacting dynamical systems—systems which obey Hamil-

ton's principle. We can in this way generate the Faraday law and the Lorentz force.

But that is all that we can do—the exercise needs never to be repeated because the

circumstances governing the interaction of field and matter at this level of detail
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never change. The constraints are always the same, and the field's energy density is

always (l/2)(£
2 + B2

). Of course the material systems we are concerned with may

be dramatically different from one another, ranging from semiconductors to plasmas.

But that is, in principle, a problem for the model builder. We have provided all of

the basic equations necessary to analyze the electromagnetic properties of any mate-

rial system. Obviously these results are not, by themselves, very useful in analyzing

most systems of interest to us. We are usually concerned with macroscopic behavior.

What we would therefore like to do is to provide a method based on energy principles

for deducing macroscopic forces. This requires generating an energy density in terms

of D and H. We shall now consider how this is done, and whether or not similar

principles hold for the macroscopic scheme as hold for the microscopic scheme.

2.3.2 Macroscopic Theory

The most direct route to macroscopic energy expressions is through a macroscopic

Poynting theorem. Consider equations (I ) and (II ) of the macroscopic theory. Tak-

ing the product of H with (I ) and of E with (II ), we subtract the second result from

the first—proceeding as we did in the microscopic theory (sec. 2.3.1). This proce-

dure yields:

(D) cV • (E x H) = -E C - E • (dD/dt) - H • (dB/dt)

We may integrate over a finite volume V to obtain Poynting' s macroscopic theorem:

-fc(E x H) • dS = f[E • (dD/dt) + H • (dB/dt)]d
3
x + fE • Cd3

x

The last term on the right-hand side represents the rate at which the field does work

on the conduction current C. We are naturally led to the following interpretations:

a. c(E x H) represents the rate per unit area and the time at which energy flows

through the surface of V.

b. E • (dD/dt) + H • (dB/dt) represents the time rate of change of the energy

density at a point within V.

Result b differs considerably from the corresponding result in the microscopic

theory. We can best see this difference by using equations (i) and (ii) of the macro-

scopic theory to replace D and B. Then the rate of change of the energy density

becomes:

(V2)d/dt(E
2 + H2

) + E (dPIdt) + H • (dMIdt)

The first term above, which contains E2
and H2

, evidently pertains to the electromag-

netic field only. But the second and third terms implicate electric and magnetic po-

larizations: they involve matter as well as field. To grasp the effect of the several

terms we may consider a simple example. We envision a quasi-static situation in

which we ignore the magnetic fields, and in which at time t equal to zero both E and

P are also zero. If P is a linear function of E which is independent of time, then we

may integrate over time to obtain the energy density (\/2)E • P.

To make the situation concrete, we may consider a system consisting of two

conducting plates A and B separated by a dielectric slab (see fig. 2). We further

assume that A and B have been charged quasi-statically from the null state with
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Z

DIELECTRIC

V

Fig. 2 Capacitor with sandwiched dielectric

total charges +Q, —Q, respectively. Then if each plate has an area s, and if the

slab fills the space between them, the field D therein will be (e
t

is always a unit

vector):

D = (Q/s)ez

Since we are assuming that P is simply proportional to E, we have:

E = (Q/se)ez

energy density UE = (E
2 + E • ?)/2 = e£2

/2 = D • E/2

So, if the distance between the plates is z, we have for the total energy WE between

them:

WE = zsUE = Q
2
z/2se

Therefore the macroscopic theory implies that, for fixed charges, the energy with the

slab in place is lower by a factor of 1/e from its value in the absence of the slab.

We may interpret the effect on the E field microscopically in terms of the polari-

zation charges induced by the plates on the dielectric's surfaces. Since we assume

that the dielectric is homogeneous, it will have only surface charges —P, +P per

unit area on its upper and lower faces, respectively (see Fig. 3).

In effect, we now have four planes of charge : our twoplanes of conduction

charge, and two planes of polarization charge, with surface densities zrg(e~=r~T)/€3r

r~

+ £?(€ - l)/es above and below, respectively . We'riowlgnore the physical dielectric

and simply compute the E field for this configuration of charged planes. We see at

once that the polarization charges have dropped the E field in the region occupied by

the dielectric from its vacuum value of Qls to Q/se. The E field in this configuration

POLARIZATION

+ 4-/ + -h +

CONDUCTION

Fig. 3 Polarization charge on a sandwiched dielectric
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of charges is the same as in the real situation, but the energy is, of course, not at all

the same: we are missing the energy corresponding to P • Ell. In the macroscopic

theory, unlike the microscopic, the energy is not fully accounted for by the term E2
I1

in the electric field. Why is this so?

To answer this question we must first recall a cardinal point of the macroscopic

theory: the E and B fields which appear in macroscopic equations represent spatial

averages taken over the real fields, which vary markedly from molecule to molecule.

In our example, the real field Er (we shall hereafter denote microscopic fields with a

subscript r) varies radically from polarized molecule to polarized molecule, whereas

the macroscopic field E is uniform over the same region. This means that the energy

density E2
r/2—the real density in the field—includes much energy missing from

E2
/2, namely, the energy of polarization of the dielectric molecules. We take account

of the latter energy macroscopically in the term P • Ell. The answer to our question,

then, is simply that the macroscopic field E does not contain all the electric energy

because some is stored in material polarization against internal—presumably mechan-

ical—constraints. A similar remark can be made for magnetic substance in which M
varies linearly with H. Here we have macroscopic field energy density H2

I1, and this

does not include the energy H • Mil of magnetic polarization.

The macroscopic distinction between the energies (E
2 + H2

)/l and (E • P + H •

M)ll powerfully illustrates the difference between the microscopic and macroscopic

theories. In the microscopic theory, all electromagnetic energy is stored in the field

as (E
2
r + B2

r)ll. In the macroscopic theory this is no longer true: we must divide

the energy into two distinct parts, only one of which pertains to the macroscopic field

proper. The latter, (E
2 + H2

)ll, is an average energy and is indeed stored in the

macroscopic field. But the expression (E • P + H - M)ll is not macroscopic field

energy: it is material energy engendered by electromagnetic fields. Macroscopic the-

ory, through e and (x, introduces a division of energy which is entirely foreign to the

microscopic point of view, but one which is very useful.

To see how useful the macroscopic energy is, consider the expression for the

electromagnetic force per unit volume, /EM , which is exerted in the stationary state

on a substance which has dielectric constant e and magnetic permeability (jl. To
obtain it we consider the virtual change hWEM in the total electromagnetic energy

—

/(l/2)(e£
2 + \xH

2
)d

3
x—stored in a volume V wherein the material density is t when

the substance is displaced through a distance 8r. We allow a conduction charge pc to

be present as well. Setting 8WEM equal to -//em ' $rd
3
jc (e.g., Becker 1964, sec.

35), we find (considering for simplicity only the electric case):

8WEM = SE • §Dd3
x - (V2)fbeE

2
d

3
x

(20) = - ifem '^rd3
x

Since we ignore electrodynamic effects, we have E equal to — V<|>, and pc is, of

course, V • D. Whence:

E • 5D = -V((|>5D) + <j>V • (8D) = -V • (<f>SD) + <t>5pc

Then (20) becomes:

(21) WEM = /<t>5p, - /V • (<$>hD)d
3
x - {\l2)SE

2Ud3
x
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For a virtual displacement, Sr, of the substance, we can easily show 8pc and 8t, the

variation in the material density t, to be:

(22) 5Pc = -V-(pc8r)

(23) 8t = -V •
(T8r)

If e is a unique function of t, then we also have:

(24) Se = (-de/dr)[V • (t8?)]

Substituting (22)-(24) into (21) and using vector identities, we obtain:

-//em ' 8f</
3
* = hWEM
= -/V • {-<J>pc8r + {\l2)[E

2i(dddiW]-^D}d\

(25) - /8r • {pcV<J> + (V2)TV[E2
(dddT)]}d

3
x

Now, we argue, Gauss's theorem for a surface at infinity eliminates the first integral

on the right-hand side of (25), yielding:

(26) J8r • {/EM -
9(E + (l/2)E

2Ve - (1/2)V[£
2
t(^/^t)]} =

Including the magnetic case, we have:

/em —

pcE - (l/2)£
2Ve + V[{\l2)iE\dddi)]

(27) -(7/2)#
2v> + V[(1/2)t//V|x/Jt)]

Equation (27) can be directly applied when we know the dependencies of € and \x on

position and density.
3
Moreover, we can transform it into an even more useful form,

as follows.

If we replace pc in (27) with V • D and manipulate the expression, we can in the

end write (with TE and TM representing matrices):

/em = V • (TE + TM)

(TP)tJ = \Ffj if i ± j

(7»„ = (1/2)X(F
2 - Fj - F2

k ) + (l/2)TF
2
d\/dT where i i= j # k

Here /', j, k = x, y, z

(27') And TE = TF (F = E; K = e), TM = TF(F = H; \ = |x)

We may partially integrate in (27') to obtain:

(28) //EM - J(TE + TM) dS

Equation (28) may be interpreted as asserting that the material substance is in a state

of "stress" which consists of the following elements:

a. Two "tensions," £2
e/2 and H2

\lI2, parallel respectively to E and H.

b. Two "pressures," £2
e/2 and //

2
|x/2, perpendicular respectively to E and H.

c. A hydrostatic pressure, -{\l2)[E
2
(dddi) + H2

{d\Lldi)], in all directions.

3. See Jeans (1908, sees. 196 and 471) or any advanced text. Over the years much controversy has

surrounded equation (27) because it is entirely different from the force obtained by considering directly

the action on the polarization P, namely, (P • VjP. The contemporary view seems to be that both methods

of computation are incorrect unless supplemented by "mechanical" forces. On this point, which will be

of some interest to us in our discussion of Larmor, see Penfield and Haus (1967, sec. 8.2).
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For simplicity we write (28) as:

(28') ffEMd
3
x = -(l/2)/(£ D + H • B)dS + JE(D • dS) + J7/(fl • dS)

Since we have used the macroscopic energy densities in the derivation, equation (28')

represents the combined effects of the macroscopic field and the internal polarizations

of the substance.

Computations based on the macroscopic energy densities, or upon equation (28'),

cannot account for phenomena which we now attribute to the behavior of the electron

as a driven harmonic oscillator. This is because such computations presume, in ef-

fect, that we can ignore the mass of the electron. As a result we do not allow energy

to be transferred from the electromagnetic field into electron motion. Otherwise the

position of the oscillating electron at a given instant will depend on the frequency,

as well as the magnitude, of the electromagnetic field. Analytically the requirement

is that e and (x may not depend on the frequency of radiation. For, if we did allow

such a dependence—if we implicitly recognized the electron's mass, according to

modern theory—then our energy computations would have to take account of it, with

utterly ruinous results for the macroscopic theory.

But suppose we ignore microphysical reality and conceive that all phenomena

should be explicable macroscopically. We might assume that D and H constitute

fields properly speaking. We could then apply Hamilton's principle to this system of

fields just as we applied it above to the microscopic field. We could construct a

Lagrangian density (l/2)(// • B — E • D) and proceed as we did before, only now

using the macroscopic equations (II ) and (III ). If we do so and take our surface at

infinity, then we will obtain equation (I ), which is the macroscopic Faraday law.

This involves us in no difficulties. Moreover, we need not take our surface solely at

infinity if we believe that the Lagrangian properly characterizes the state of a single

system—the macroscopic field—at each point. We can take it also over an internal

boundary across which e and |x may abruptly alter. And if we do this then we will

obtain boundary conditions. In fact, we obtain the usual conditions, namely, the

continuity of ET and HT . (See appendix 4. Hereafter a subscript T denotes the tan-

gential component of a vector.)

Although this procedure works well here, it is based on a false premise: that we

are dealing with a simple, rather than a compound, dynamical system. In particular,

it ignores the fact that microphysical structure implicates other degrees of freedom

than our macroscopic equations can take into account. Nevertheless, as long as we

remain in quasi-static circumstances we will have little trouble. Of course, the point

of assuming that we may use Hamilton's principle macroscopically is precisely to

give us a method for explaining processes which modern theory attributes to electron

mass—and for which the quasi-static approximation therefore fails. Consider, for

example, the Faraday effect.

In the Faraday effect the plane of polarization of light is rotated on passage

through a substance in the presence of a magnetic field. This fact obviously requires

the wave equation to be different from what it is in the absence of the Faraday effect.

Modern theory can explain the phenomenon by assuming a simple microphysical

model in which charged particles oscillate about positions of equilibrium. We need

to change only the relationship between P and E (or between C and E): the Faraday,

Ampere and Gauss laws remain sacrosanct. In the Faraday effect the P, E relation-
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ship (as we shall see in detail when we examine Continental electrodynamics in the

1890s) is fundamentally altered; it becomes a second-order differential equation

which includes B, the particles' mass and charge, and the frequency of the incident

radiation. Combining this equation with the unchanged field equations generates a

new differential equation for the optically significant E field.

But suppose we did not demand that the basic field equations remain unchanged.

Then we could alter our expressions for the macroscopic field energy by adding new

terms, which we may regard as hypotheses to be tested by their effects. If we then

apply Hamilton's principle to this new energy expression, we will obtain new, and

considerably different, field equations. In fact, we shall see that a properly chosen

addition to the field energy will even lead to a nearly correct second-order equation

for the E field. However, we will also obtain new boundary conditions: ET and HT

will no longer be continuous. Modern theory forbids this: we never touch the basic

field equations or the boundary conditions which follow from them. We alter only

those relationships which depend on microphysical structure.

Nevertheless, in the last quarter of the nineteenth century—and not only in Brit-

ain—it was far from clear that macroscopic theory could not be made to work for all

phenomena (with the possible exception of dispersive ones). Three in particular did

not seem to require violating the macroscopic approach, and they are closely related

to one another: the Faraday, Kerr, and Hall effects. Indeed, Maxwellian electrody-

namics, which first explained these effects, was built on the very assumption we now
reject. It assumed that field and matter can always be treated as a single dynamical

system, subject to modification according to the circumstances, in which hidden de-

grees of freedom do not have observable consequences. Perhaps the most astonishing

characteristic of Maxwellian theory, given the twentieth century's deep belief in the

importance of microphysics, was its empirical success.
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Maxwellian Basics

3.1 Model Making and Field Dynamics

Anyone who has read about optics or electromagnetism in the nineteenth century

thinks at once of the "mechanical model." Most histories of the period discuss the

ways in which electromagnetic and optical processes were thought to occur in a

substantial medium—the "ether"—which was governed by the laws of "mechan-

ics." The major problem of the century would seem naturally to have been the con-

struction of a model capable of encompassing all optical and electromagnetic pro-

cesses by identifying them with processes in the ether. This picture of the period has,

as we shall frequently see, many elements of truth in it. But it is on the whole more

misleading than informative. When stated without careful qualification, it mistakes a

future hope of the era for a practical method of investigation. It is certainly true that

most British scientists hoped one day to obtain a structure for the ether. Nevertheless,

this was not generally required for immediate goals: the British were able to develop

a theory which is profoundly different from the modern one, but which does not rely

on an ether model. Instead, the theory employed Hamilton's principle and Lagrange's

equations in ways we no longer permit.
1

To clarify this most difficult point we shall begin with the comparatively simple

distinction between a mechanical model and a dynamical system. This can best be

approached by considering briefly Maxwell's own work after c. 1860. In 1861 and

1862 Maxwell published a lengthy article, appropriately titled "On Physical Lines of

Force." It described an elaborate mechanism for the ether. This structure has been

extensively discussed over the years, and we will not spend much time on it except

to make one remark: it seems quite certain that Maxwell was deeply attached to the

mechanism despite certain problems with it, and that he remained throughout his life

(he died in 1879) strongly committed in principle to model building. Yet only two

years later (1864) he published another article, "A Dynamical Theory of the Electro-

magnetic Field," which avoided specifying the ether's structure, but which neverthe-

less presumed the field to be governed by what he called "dynamical" laws. He
wrote:

We may therefore receive, as a datum derived from a branch of science

[viz., optics] independent of that with which we have to deal, the existence

of a pervading medium, of small but real density, capable of being set in

motion, and of transmitting motion from one part to another with great,

but not infinite velocity.

1 . See the bibliographic essay for relevant discussions. Recently a number of historians have discussed

the use by Maxwellians of Lagrange's equations (Moyer 1977, 1978; Siegel 1981; Topper 1970, 1971,

1980), and much that I have to say agrees with their general positions. I have chosen to concentrate

especially on what it is about the use of Lagrange's equations that can no longer be accepted after the

electron.
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Hence the parts of this medium must be so connected that the motion of

one part depends in some way on the motion of the rest; and at the same

time these connexions must be capable of a certain kind of elastic yielding,

since the communication of motion is not instantaneous, but occupies time.

The medium is therefore capable of receiving and storing up two kinds of

energy, namely the "actual" energy depending on the motion of its parts,

and "potential" energy, consisting of the work which the medium will do

in recovering from displacement in virtue of its elasticity. (Maxwell 1865,

sec. 6)

Maxwell's description of the medium contains one of the two basic elements of a

"dynamical" theory of the ether held by British scientists at the time: the assumption

that the medium contains kinetic energy (energy of substantial motion) and potential

energy (energy stored in some sort of substantial displacement). The second basic

element determines the dependence of the ether's state upon time. If one has a me-

chanical model for it, then its state is completely determined by the positions of its

parts. Then the ether's kinetic and potential energies can be expressed directly in

terms of its actual mechanical structure.

To be ''dynamical," in the sense that word was used by late nineteenth-century

British scientists, a theory need not provide so much. It need only provide expres-

sions for kinetic and potential energy which may be employed in Lagrange's equa-

tions. This means that the energies must be expressed in terms of some set of gen-

eralized coordinates and velocities. But these coordinates and velocities need not

directly represent an actual mechanical state. This greatly simplifies the problem if

we can somehow find a set of coordinates which express phenomena of interest to

us. Maxwell aptly captured the idea in a pretty Victorian metaphor:

In an ordinary belfry, each bell has one rope which comes down through

a hole in the floor to the bellringer's room. But suppose that each rope,

instead of acting on one bell, contributes to the motion of many pieces of

machinery, and that the motion of each piece is determined not by the

motion of one rope alone, but by that of several, and suppose, further, that

all this machinery is silent and utterly unknown to the men at the ropes,

who can only see as far as the holes in the floor above them. Supposing

all this, what is the scientific duty of the men below? They have full com-

mand of the ropes, but of nothing else. They can give each rope any po-

sition and any velocity, and they can estimate its momentum by stopping

all the ropes at once, and feeling what sort of tug each rope gives. If they

take the trouble to ascertain how much work they have to do in order to

drag the ropes down to a given set of positions, they have found the poten-

tial energy of the known coordinates. If they then find the tug on any one

rope arising from a velocity equal to unity communicated to itself or to

any other rope, they can express the kinetic energy in terms of the co-

ordinates and velocities.

These data are sufficient to determine the motion of every one of the ropes

when it and all the others are acted on by any given forces. This is all that

the men at the ropes can ever know. If the machinery above has more

degrees of freedom than there are ropes, the co-ordinates which express

these degrees of freedom must be ignored. There is no help for it. (Max-

well 1879, 783-84)
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Maxwell's metaphor readily applies to his theory of current-bearing linear circuits,

which we shall examine later. There Maxwell introduces, in addition to the position

coordinates of the circuits, a set of internal "electric" coordinates yim The kinetic

field energy then depends entirely on the corresponding "electric" velocities—in

effect, the linear currents—and on the positions of the circuits. The ropes of the

metaphor correspond to the electric substance within the circuits whose coordinates

are the y( . (Though in the electric case the v, are cyclic, since they do not occur in

the energy.) Ignoring the electric field energy, that is, the field's potential energy,

Maxwell treated the circuits as though the currents within them were linked by rigid

constraints to an intervening medium—the ether. The internal structure of the me-

dium does not have to be known as long as we have correctly expressed its energy

in terms of our chosen coordinates.

The coordinates used in linear circuit theory do not apply to the medium proper.

A more complex question, but the one with which we will be predominantly con-

cerned, addresses the coordinates appropriate to the medium itself. In an extension

of the method used for linear circuits, we may choose a set of generalized internal

coordinates for the medium; they need not determine its complete state, but they

must determine that part of it which appears as the electromagnetic field. Because

the coordinates may be extremely generalized, the resulting expressions for the field's

energy densities may seem to defy mechanical interpretation.

For example, we might find that the medium can be characterized insofar as the

field is concerned by treating H as a velocity and D as the curl of the corresponding

mechanical displacement. We might find that making such a substitution in the usual

field energies, and applying Hamilton's principle or Lagrange's equations, yields

correct field properties. Indeed, we may even be tempted (as the Maxwellians were)

to add terms to the energy expressions to see whether we can generate new types of

processes. However, to assume that H is a velocity and D a substantial curl does not

mean that the ether's true structure is fully understood. The velocity which H repre-

sents may in fact involve exceedingly complicated but hidden ether processes. More-

over, if we make substitutions of this kind, our expressions for the energy of the

field, although given in terms of velocity and position coordinates, may be very hard

to embody in a visualized mechanical structure. Indeed, this last characteristic may
itself suggest that we have not captured the ether's complete structure. Nevertheless,

the power of the method, as we shall see, more than compensates for this problem

of mechanical realization.

We will be concerned primarily with Maxwellian dynamical theories which do not

lend themselves to easy mechanical realizations. This permits us to concentrate on

that deep feature of Maxwellian theory which distinguishes it markedly from electro-

magnetism after the electron; namely, the assumption that all electromagnetic phe-

nomena, including boundary conditions, can be obtained by applying Hamilton's

principle to suitably chosen field energy densities which contain appropriate medium

constants like e and |x—there may be others (and, in the cases of the Hall, Kerr, and

Faraday effects, there must be). That procedure, modern theory implies, can at best

work only on occasion: the macroscopic field (D, H) is not a simple dynamical

system but a construct obtained by averaging over the true state and combining field

vectors (E, B) with material vectors (P, M). But precisely because the Maxwellians
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always thought of the ether as a material continuum, they insisted on applying to it

the methods appropriate to continuous mechanical structures. This provided a very

powerful method for building theories of particular phenomena, and even for linking

theories together.

These theories, not surprisingly, often differ dramatically from modern ones for

the same phenomena: where modern theory introduces the electron, Maxwellian the-

ory invented new forms of energy. This was possible because the Maxwellians were

quite willing to invent modifications to the basic equations governing the electromag-

netic field—as long as the results held up experimentally (which, as we shall see,

they did in several cases well into the 1890s). Modern theory seeks unified explana-

tions in an unmodifiable set of field equations coupled through electron motion to

intricate microphysical models. Maxwellian theory sought unity through a highly

plastic set of field equations coupled to Hamilton's principle.

3.2 The Elements of Maxwellian Charge and Current

The most difficult concepts for the modern reader to grasp in Maxwellian theory are

also the most basic ones; namely, its understanding of "charge" and "current." In

modern theory, charge is the source of the electric field, and current is a source of

the magnetic field. In Maxwellian theory, charge is produced by the electric field;

current, in the usual sense of rate of change of charge over time, is only indirectly

related to the magnetic field. These ideas, which we will explore in detail below, are

built into the foundation of Maxwellian theory. Like many fundamental concepts,

they are extremely difficult to explain in a straightforward manner. Indeed, no Max-

wellian text, including—perhaps especially—the Treatise, successfully conveyed the

theory's foundation to those for whom the word "charge" necessarily evoked the

image of a substance.

We must begin our examination of Maxwellian ideas with a basic understanding:

the Maxwellian goal was to create a theory of electromagnetism which made no use

whatsoever of the microstructure of matter. This is not to say that the Maxwellians

were anti-atomists. They were not. Nevertheless, they believed strongly that electro-

magnetic theory—and, in fact, most other areas of physics—was more basic than

material microstructure. For the Maxwellians, the world was fundamentally a contin-

uum, and the laws which governed it had to be expressed in an appropriate mathe-

matical form. (The discrete structure of matter had, they felt, to be explained as an

emergent property of the underlying continuum; see below.) Accordingly, the vari-

ables in the equations had to represent properties of a continuum. These properties

might very well be contingent on the microstructure of matter, but that was a sec-

ondary consideration. The goal of the theory was a general set of equations contain-

ing variables whose values were defined at every point. Phenomena were to be gen-

erated by manipulating functions of these variables—in particular, energy functions.

In practice this meant that the Maxwellians were willing to alter what modern theory

considers to be basic equations and were unconcerned with the factors modern theory

uses to avoid modifying the basic equations, namely, material microstructure.

To understand Maxwell, we begin with the underlying image of the universal

continuum or ether. We do not need to know what the structure of this medium is.
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But we must assume that the medium can be assigned a vector field with zero diver-

gence:

(1) V J =

We do not need to know what mechanical property of the field the vector J repre-

sents. However, we assume that it may vary over time. We therefore consider, in

virtue of equation (1), that J may be treated as though it represented the rate of flow

per unit area of a conserved quantity. We may introduce a vector X to represent the

shift in location of this quantity:

(2) J = dk/dt

To facilitate the discussion I shall often write as though X represented the shift in

location of an incompressible substance, and J its rate of change with time. We are

allowed to speak this way by virtue of equation ( 1 ) and our assumption that J may

alter over time. Nevertheless, we must be very careful—as the Maxwellians tried to

be in the 1880s and 1890s—not to carry this mode of expression too far. We should

never go beyond what the continuity equation implies when we think in this way.

Indeed, we shall see that one of the problems which Continental physicists had in

understanding Maxwell was that they found it extremely difficult not to think of X

as, quite literally, the shift of a substance. We must not do so because we would

then be led to think incorrectly of other aspects of Maxwellian theory. The end result

would be to make it nearly impossible to perceive a consistent pattern in Maxwellian

texts.

So far we have said nothing about charge or current. Nor can we say much until

we develop a bit further the basic Maxwellian structure. We next assume that the

state of the ether at each point depends on three continuous scalar variables, which

we denote e, |x, and a. Each of these variables is defined throughout all space. (They

are also, respectively, specific inductive capacity, magnetic permeability, and con-

ductivity. We shall see below how they may be interpreted in this way.) This requires

the assumption that the ether is ubiquitous: the ether exists even in the space occupied

by matter. In fact, alterations in the values of e, (x, and a occur only in space also

occupied by matter. We do not bother ourselves with such questions as how matter

and ether can be thought to occupy the same space—for very nearly the same reason

that we do not worry about the microstructure of matter. Both problems were, for

the Maxwellians, secondary to the main issue, which was to create a theory contain-

ing only continuous variables. And it was implicitly assumed that both of these sec-

ondary problems would be solved together. If, for example, theory progressed to the

point that molecules could be fruitfully treated as ether vortices, then matter would

become a structure of and in the ether, and both questions could be answered to-

gether.

Though we have as yet barely touched the surface of Maxwellian theory, we shall

jump ahead somewhat in order to see how, at a very elementary level, it introduces

"charge." Without detailed discussion at this point, we introduce the Maxwellian

concept of "displacement." In essence, a displacement D implicates a X shift in the

sense of equation (2), but it is not identical with X. Unlike X, which can be sustained

indefinitely anywhere, a displacement in the Maxwellian sense, though identical with

X when first produced, may disappear over time without X also returning to zero.
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Later we will carefully discuss how this can occur. Here we need only assume that

it is possible, and that the process occurs at a rapid rate wherever the value of the

ratio o7e is large. This is the case in bodies called conductors; in nonconductors, or

dielectrics, the ratio is small, and displacement will persist with \.

To grasp the Maxwellian concept of charge we examine a passage from Maxwell's

Treatise which has puzzled many readers during the last century.
2

It concerns the

Leyden jar, and in it Maxwell uses the phrase "displacement of electricity" where I

have used simply "displacement":

II. Surface charge of the particles of the dielectric. Conceive any portion

of the dielectric, large or small, to be separated (in imagination) from the

rest by a closed surface, then we must suppose that on every elementary

portion of this surface there is a charge measured by the total displacement

of electricity through that element reckoned inwards.

In the case of the Leyden jar of which the inner coating is charged posi-

tively, any portion of the glass will have its inner side charged positively

and its outer side negatively. If this portion be entirely in the interior of

the glass, its surface charge will be neutralized by the opposite charge of

the parts in contact with it, but if it be in contact with a conducting body,

which is incapable of maintaining in itself the inductive state, the surface

charge of the dielectric will not be neutralized, but will constitute that

apparent charge which is commonly called the Charge of the Conductor.

The charge therefore at the bounding surface of a conductor and the sur-

rounding dielectric, which on the old theory was called the charge of the

conductor, must be called in the theory of induction [i.e., in Maxwell's

theory] the surface charge of the surrounding dielectric. (Maxwell 1873,

vol. 1, Sec. Ill)

To understand Maxwell's odd discussion of the Leyden jar, consider a charged metal

sphere embedded in an infinite dielectric (see fig. 4). Suppose the sphere is positively

charged. According to modern theory we must begin our analysis with the positive

conduction charge on the sphere's surface. This charge creates an electric field which

engenders polarization throughout the dielectric. Suppose next that we divide the

dielectric into two parts by an imaginary surface C. One part (A) of the dielectric

lies between the conducting sphere and C; the other part (B) lies between C and runs

out to infinity.

According to modern theory, the innermost boundary of part A—which actually

touches the sphere—bears a negative polarization charge which is smaller in mag-

2. Maxwell's theory of charge has occasioned great confusion for decades. Some of this confusion

depends on Maxwell's having altered at least once his choice for the sign of the charge density in the

equation which links it to the divergence of electric flux (£). This change reflects, no doubt, the great

difficulty of developing a mathematics for a new conception rather than problems inherent in the concep-
tion itself. The problems have been repeatedly pointed out since the 1890s: see, e.g., Duhem (1902).

Duhem's angry study reflects his deep misunderstanding of the core of Maxwell's theory—indeed, of
British dynamical theory in general; he has been in excellent company. A more balanced but still confused
account is Poincare' (1890). For more recent discussions of the same problem, see Bromberg (1968). See
also A. F. Chalmers (1973a, 142) and O'Rahilly (1965, 1:78-80). O'Rahilly's work is historically unre-

liable since he was arguing a brief for the complete replacement of traditional field theory by electron-

based retarded forces. In particular, his claim to have detected an inconsistency in Maxwell's discussion

of the Leyden jar in the Treatise is simply incorrect, as I demonstrate below.
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Fig. 4 Conducting sphere embedded in an infinite dielectric

nitude than the conduction charge on the sphere. The outermost boundary of part

A—surface C—then bQaTS_apositive_polarization charge numerically equal to the

negative polarization charge on A's inner surface. This charge on A's outermost

boundary, however, is exactly compensated by a negativejwlarization charge on the

innermost boundary of part B—that is, by a charge on surface C considered as the

inner boundary of B. Accordingly, no space charge at all exists: we have only the

positive conduction charge and the numerically smaller negative polarization charge

on the surface of the dielectric which is immediately adjacent to it.

If we now look at the situation in the terms of Maxwell's quotation, we obtain a

very different picture from the modern one. We again divide the dielectric into the

two parts, A and B (fig. 5). Here we begin with a displacement D which exists

throughout the dielectric and which points away from the center of the sphere.

Consider first part B, which is bounded on the inside by C and on the outside by

infinity. Since the displacement points away from the center of the sphere, it enters

B's inner boundary in a direction parallel to that boundary's inward-directed

+

Fig. 5 Maxwellian theory of an embedded conductor



Maxwellian Basics 27

normal. According to Maxwell's definition of charge, therefore, this inner bound-

ary of B has a positive charge on it which is, per unit area, numerically equal

toD.

Consider next part A of the dielectric. The outermost boundary of A—surface

C—coincides with the innermost boundary of B. But the displacement exits from A's

outermost boundary in a direction opposite to that boundary's inward-directed nor-

mal. Consequently the outermost boundary of A has on it a negative charge equal

and opposite to the positive charge on the inner boundary of B. Since the boundaries

coincide, no net charge can exist anywhere within the dielectric.

At the surface of the sphere, however, the situation is very different. Here we

must consider, first, the inner boundary of the dielectric, which touches the sphere,

and, second, the surface of the sphere itself. The displacement enters the dielectric

boundary parallel to its inward-directed normal, so we have on this surface a positive

charge. But, since no displacement at all exists within the sphere, its surface is

uncharged. Consequently the positive charge on the inner surface of the dielectric is

uncompensated. The result is that what modern theory calls the positive surface

charge of the conductor, Maxwell's theory called the positive surface charge of the

inner surface of the dielectric.

This is obviously a disconcerting idea for the modern understanding. It at once

raises many questions, two of which are immediately pertinent: First, is this idea

consistent with charge conservation and the Coulomb force law? Second, how is it

to be understood—that is, how are we to understand the existence of a discontinuity

in displacement without a source? To answer both questions we must introduce the

Maxwellian concept of "current."

A current can be considered in two basic ways. First, there is the fundamental

theoretical entity. Second, there is the interpretation of this entity in a way that

connects it to the phenomenon of electric charge. Theories which, unlike the Max-

wellian, consider the electric current to be a flow of charged particles have little

difficulty in making this step. In Maxwellian theory, by contrast, this step poses

grave difficulties. We begin our discussion with the basic Maxwellian current.

Return to the quantity J and the associated vector X, equal to the integral of J

over time. In its most elementary description, the Maxwellian current is simply J—
the time rate of change of k. Whenever and wherever J is nonzero, Maxwellian

theory requires that we have a current and a magnetic field H, such that:

(3) V x fi = J

We have already jeen that the Maxwellian electric charge is not determined sim-

ply by the quantity \; it is linked to a quantity called displacement which is associ-

ated with but not identical to \. This has immediate significance for the relationship

between the basic Maxwellian current, J, and the phenomenon we know as the elec-

tric current. In order to see what is involved, we again bring in the scalars e and a.

We assume that the value of e^at a given point determines the amount of potential

energy^ stored there for a given X shift. In particular, we assume that, for a given

force E which causes a proportional K shift represented by e£ wherever e is non-

zero, the medium has stored in it per unit volume a quantity (l/2)e£
2
of potential

energy. That is, we treat the force E, and the shift e£ of the medium, as a conser-

vative one modeled on the response to stress of linearly responsive elastic substances.

(In this analogy € corresponds to the reciprocal of elasticity.)
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We saw above that a charge in Maxwellian theory requires a discontinuity in

something called displacement. We now define this -'isplacement as the product eE.

Then, for a conduction charge to exist, we have two possibilities. We might assume

that, in conductors, e is strictly zero. Then we would, of course, always have a

discontinuity in D (though not in X) at their surfaces. This assumption means that

potential energy cannot be stored in conductors as a result of a A. shift through them.

Then the purpose of the scalar cr would be to determine the rate of energy dissipa-

tion during a X shift. The problem with this alternative is that it fundamentally di-

vorces conducting from nonconducting bodies, whereas a basic goal of Maxwellian

theory is to pass continuously between classes of bodies. To the Maxwellian, a con-

ductor is not distinguishable absolutely from a nonconductor, as it would be if we
assigned it no inductive capacity whatsoever. Rather, the differences between the

bodies must derive from their possession in varying proportions of inductive capacity

and conductivity, that is, from their not having the same ratio o7e. This brings us to

the second possibility, which the Maxwellians adopt.

We assume (as stated above) that, in conductors, the ratio o7e is extremely large,

whereas, in nonconductors or dielectrics it is comparatively small. Suppose we have

a substance whose left half has a ratio Oj/e,, and whose right half has a ratio a2/e2 ,

where the first ratio is vastly smaller than the second. Suppose next that we generate

by external means a X directed to the right. Let us examine what occurs at the

interface between the two parts. At first the field will be identical in magnitude with

the displacement field: both are initially equal to e^ on the left and to e 2E2 on the

right. Since, moreover, X is divergenceless, in this first instant we have e
{
E

x
equal

to e.2E2 , reckoning E
x
and E2 normal to the interface. But as time goes on this will

no longer be true. If neither e
{
nor e2 is zero, then, the Maxwellians reason, the

energy stored in the displacements will dissipate over time at a certain rate which is

greater in proportion to the ratios o7e. Until the external means are again active, no

new shifts occur to replace the dissipated potential energy. That is, even though the

original X shift may remain, nevertheless, the potential energy associated with it is

gradually lost to the medium (somehow turning into material heat). As a result the

values of the displacement on either side of and normal to the interface will no longer

be equal since the decay occurs at different rates in the two regions. The magnitude

of this discontinuity, at any instant, is the "charge" on the boundary. If we repeat

this process extremely frequently, we have a Maxwellian conduction current.

To grasp more clearly this difficult matter we can turn first to Maxwell's remarks

in the Treatise. He wrote:

If the medium is not a perfect insulator, the state of constraint, which we

call electric polarization is continually giving way. The medium yields to

the electromotive force, the electric stress is relaxed, and the potential en-

ergy of the state of constraint is converted into heat. The rate at which this

decay of the state of polarization takes place depends on the nature of the

medium. In some kinds of glass, days or years may elapse before the

polarization sinks to half its original value. In copper, a similar change is

effected in less than the billionth of a second. We have supposed the me-

dium after being polarized to be simply left to itself. In the phenomenon

called the electric current the constant passage of electricity [which here
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means of \] through the medium tends to restore the state of polarization

as fast as the conductivity of the medium allows it to decay. Thus the

external agency which maintains the current is always doing work in re-

storing the polarization of the medium, which is continually becoming re-

laxed, and the potential energy of this polarization is continually becoming

transformed into heat, so that the final result of the energy expended in

maintaining the current is to gradually raise the temperature of the conduc-

tor, till as much heat is lost by conduction and radiation from its surface

as is generated in the same time by the electric current.

(Maxwell 1873, vol. 1, sec. Ill)

According to Maxwell, then, the current of conduction was effectively a continual

series of chargings and dischargings. Since no conductor, he reasoned, lacks induc-

tive capacity (indeed, we shall see that Maxwellians thought conductors actually have

capacities immensely greater than the capacities of dielectrics, but still small in pro-

portion to their conductivities), but since all conductors refuse to sustain induction

permanently, induction decays in all of them at rates determined by the ratio of their

conductivity to capacity. The conduction current is this process of growth and decay

of displacement, the latter measuring the state of strain associated with \ in a given

medium. The question remaining is how to quantify this process.

That problem was readily solved by Maxwell, but at the expense of a certain

degree of conceptual obscurity. (Indeed, I shall argue in chapter 4 that the basic

element in the Maxwellian agenda of the 1880s was the removal of this obscurity.)

We begin with the Maxwell version of the Ampere law,^equation (3). This equation

requires that magnetic intensity be produced only when X is changing. Now suppose

we have a closed conducting circuit bearing an electric current, as we ascertain from

the existence of a magnetic field. We could break the circuit and then measure elec-

trostatically the changing charge densities p at its ends. Then these densities, mea-

sured electroscopically, are related to the currents which produce them by the equa-

tion of charge continuity:

(4) V • C + dp/dt =

But we also now know that p is V • D, by definition of D in Maxwellian theory. So

we may rewrite (4) as:

(5) V • [C + (dD/dt)] =

Compare equation (3) with equation (5). From (3) we know—as our basic model,

in any case, requires—that V • J is zero. What is their relation? Our model tells

us that V x H necessarily includes dD/dt by the very nature of D (unless we are in

a place where there is absolutely no inductive capacity). On the other hand, we also

know empirically that V x H must include C where C exists. So we might write, as

Maxwell did:

(6) V x H = C + dbldt

The problem posed by equation (6) is to understand what it means, in terms of J

and \, to have simultaneously C and dD/dt, when we understand C as a process

which necessarily involves a X shift of some kind.
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3.3 The Problem of Conduction

We have arrived at perhaps the most difficult of all Maxwellian ideas, and the one

most responsible for the incomprehension with which Maxwell's discussion of charge

was greeted on the Continent, namely, the concept of conduction. Although central

to the idea of charge and current (since it accounts for the discontinuities in displace-

ment which constitute charge), Maxwellian conduction nevertheless cannot be simply

explained; it can only be illustrated by analogy, as we shall presently see. (In fact, I

argue in some detail below that a central Maxwellian concern in the 1880s was to

ameliorate this difficulty—though not actually to overcome it—by linking conductiv-

ity directly to microscopic processes which all Maxwellians agreed led to macroscop-

ically dissipative results.)

The problem was to understand how conductivity in a region introduces an empir-

ically essential distinction between C and dDldt. We begin by taking an extremely

fine time scale, say a billionth of a second or less, and consider what occurs, on

Maxwellian principles, when first we apply a very powerful electromotive force

across a gap which has conductivity and capacity. By external means we rapidly

generate a A shift such that the elastic reaction of the medium (viz., \/e) balances

the external action. We now have a displacement D such that:

During this part of the process we have a current dk/dt equal to dD/dt'^jwe need not,

at this point, introduce C at all.

However, we have assumed the external action to be so powerful, and our time

scale so small, that energy is stored reversibly in the k shift (with a density of D2
/2e).

As time passes this energy may dissipate—due to the mysterious property of "con-

ductivity" possessed by material bodies. Then we have, in Maxwellian eyes, a

"strained" region which possesses a tendency, symbolized in a, to dissipate the

energy stored in the "strain." Conceiving the process to be like elastic relaxation,

Maxwellians argue that, during the next (exceedingly small) time interval ,^the energy

of strain is dissipated (into material heat) while the substantial shift—the k—remains

unaltered. Consequently, during this phase we have no current at all. That is, in this

two-part process, magnetic effect appears only during the first half; in the second

half no substantial motion occurs, whereas energy is dissipated in situ.

This entire process, repeated billions of times a second, constitutes a current of

conduction C. In reality, then, the magnetic effect of a conduction current is only

macroscopically constant: on a sufficiently small time scale we would see displace-

ment grow rapidly, suddenly cease growing, and then just as rapidly decay away.

But since our measuring instruments can detect only the net effect, we do not know

directly what the currents dDldt are. Consequently we must represent the effect by a

physically uninterpreted, but empirically meaningful, vector C. It is not that C rep-

resents an effect which we cannot explain by dDldt and dissipation; it is rather that

we can only measure directly the net effects of the billions of dDldt which occur

every second.

Why, though, does Maxwell's equation (6) contain both a dDldt and a C? The

reason is quite simple: it may easily be the case that, in some region, we have, in

addition to the intermittent dDldt which constitute the conduction current, other dDldt
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which grow and decrease so rapidly that dissipation has no effect upon them (or, to

be precise, a negligible effect). In fact, whenever optical and higher frequencies

strike a metallic region bearing a conduction current, we have precisely this situation

(see appendix 5). Moreover, at the boundary between a conducting and a noncon-

ducting region, equation (6) simply ensures the continuity of the X shifts produced

by the dD/dt associated with the conduction current.

As it stands, of course, equation (6) is hardly useful: we must have some relation-

ship between C and E. That connection is Ohm's law:

(7) C C = vE)

Equation (7), as we shall see in a moment, permits us to quantify the Maxwellian

conduction current, but it remains mysterious. That is, we do not know physically

why the intermittent process of growth and decay of displacement, which constitutes

the conduction current, should depend on the strength of the applied electromotive

force in this way. Indeed, we do not even know whether it is the frequency of the

process, its intensity, or both that increase with E. Nevertheless, we can now illus-

trate Maxwellian charge and current through a quantitative example using equation

(7).

Consider a substance that exactly fills the space between two equally but oppo-

sitely charged plates. (For the present we ignore how the plates came to be charged.)

Suppose further that (as before) half the substance has constants e
t

, Oj, and the other

half has e2 , o2 . The charge on the interface between the two regions is equal to the

sum (D, + D2) of the charges on the common boundary of the two regions and is

the result of displacement crossing out of region 1 (yielding D
x
) and into region 2

(yielding D2 ). Consider first region 1. If the region is perfectly homogeneous (as we
assume), then at every point in it the continuity equation requires that the conduction

and displacement currents be equal and opposite. That is, we may integrate the con-

tinuity equation throughout an indefinitely small volume (because of the assumed

homogeneity) to obtain C, equal to -dX\/dt, where 2j is the surface charge per unit

area, at any point. Since 2i is just D,, we have C
x
equal and opposite to dD

x
ldt.

Using Ohm's law we may therefore write:

ct£, = (ct/€)D, = C, = -dDi/dt

Integrating we obtain:

D,

Similarly we find for D
:

D2
= e-*W

Consequently the charge 2 on the interface is, at any instant:

(8) 2 - -?- (w + «r (w
Clearly the charge alters with time as a function of the ratios oVe,, a2/e 2 . Suppose

that the first ratio is so small that 2j takes, say, twenty years to fall to half its value;

suppose further that the second ratio is so large that 2 2 falls to half its value in

several billionths of a second. Then we have, in effect, a surface charged nearly

permanently on a human time scale with amount 2,.
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According to Maxwellian theory all charge emerges in a manner similar to this.

To form an image of the conduction current, one may consider the "bounding

plates" of our example to be recharged billions of times a second—the plates would

then represent some unknown microscopic structure. Moreover, we saw above that,

during the process of decay of 22 , no magnetic field exists. The latter occurs only

during the unknown process which charges our microscopic analogs of the plates,

that is, only during the buildup, and not during the decay, of displacement. This

example of the leaky condenser was considered by Maxwell in the Treatise (vol. 2,

chap. 10, especially sec. 334: "Mechanical Illustration of the Properties of a Dielec-

tric") and subsequently formed the basis for a great deal of discussion among Max-

wellians, as we shall see. In fact, most of the major conceptual changes in Maxwel-

lian theory that took place between 1885 and 1895 were in some way connected with

this type of situation. Poynting, for example, clarified similar concepts for Larmor

much later (1895):

About the decay of charge in a condenser. Perhaps I ought to have said

that it does not produce any external magnetic effect. I suppose there will

be fields of molecular dimensions as the tubes of force rearrange them-

selves & shift about among the atoms. But I think you do not mean this

do you? I take it that you would ascribe to the discharge an external mag-

netic field round the condenser. If so I may take shelter behind Max-

well. ... In his chapter on the subject Vol I 3rd edi p 456 he puts u =

while the condenser is not connected externally & his u is the total cur-

rent p 453. ie he makes a conduction current from + to — equal and

opposite to & coinciding with the "displacement" current which is here a

lessening of already existing displacement. But this is to my mind a mere

mathematical fiction. The one phenomenon is the decay of electric induc-

tion. I dont see why we should want to give it any magnetic effect. In its

youth when it was moving into the condenser it had a good magnetic time

of it. That was the time of true current when the circuit had integral 4ttC

round every part, the condenser forming part of the circuit. But to give the

decaying charge in the condenser any more field is to give it a quite unfair

preference. (Larmor Letters, [R.S.] RR 1599 (seep. 774])

Perhaps the reader continues to be puzzled by the Maxwellian emphasis on the

intermittent concept of the conduction current. Why did they not simply treat the

conduction current as entirely unknown? Why bring in an intermittent process? I have

already implied one reason, which is perhaps the most important: that the Maxwel-

lians wished the conduction current to reduce ultimately to displacement changes

under particular circumstances. But there are other reasons as well. First, we shall

see that Maxwellians also wished to consider the thermal dissipation accompanying

conduction on the model of kinetic theory. This requires some kind of intermittent

microscopic process. Second, they were well aware that a purely macroscopic ap-

proach to conduction will not always work empirically (see appendix 5). Finally,

before the widespread acceptance on the Continent of Weber's electrodynamics (or

variants thereof), the traditional view of the current, though certainly not Maxwel-

lian, nevertheless conceived it to involve intermittent electrostatic effects (Brown

1969).

We can now return to a question posed earlier: How does Maxwellian theory deal



Maxwellian Basics 33

with charge conservation? In one sense the answer is obvious: since we have a con-

tinuity equation and Ohm's law, Maxwellian theory, at this level of detail, implies

nothing which the field and constitutive equations of modern theory do not also im-

ply, and vice versa. However, in modern theory we go beyond the equations to

assert, on a microphysical basis, that charge conservation reflects the deeper reality

of particle conservation. In other words, not only is the net quantity of charge con-

served, so also are the individual positive and negative charges. Maxwellian theory

asserts the exact opposite: according to it charge reflects transient field conditions,

and it is perfectly possible for there to be literally no charge at all in the universe

(overlooking the difficulties posed by Faraday's electrochemical laws, which always

troubled Maxwellians).

This difference between the modern and Maxwellian theories runs so deep that

the theories may make assertions which have exactly the same empirical conse-

quences but which are impossible to translate into one another's languages. Consider

how a Maxwellian might explain the presence of conduction charge on a dielectric

surface placed in the presence of a heated metal cathode. He would say that, even

though the dielectric surface had originally only vanishingly small conductivity, the

metallic particles striking it from the cathode carried with them their conducting

property. To the Maxwellian, conduction charge was literally inconceivable without

the simultaneous presence of conductivity. Modern theory says simply that electrons

boiling off the cathode bind to the dielectric surface and denies that the dielectric

surface possesses conductivity. Which is correct? If we have no independent evi-

dence, then both are correct; but we must acknowledge that the words "charge" and

"conductivity" mean entirely different things in the two theories, even though there

are many situations which the two theories describe in almost exactly the same

words.

This accounts for the puzzlement one feels when reading the quotation from Heav-

iside with which I began (chap. 1). Yet we can now see how simple the statement

is. C. E. Curry and L. Boltzmann (the targets of Heaviside's critique) had read

Maxwell's theory as asserting that "real electricity"—what Heaviside understands as

"true" charge (viz, V • D)—is created whenever an electric force due to internal

material processes (e.g., voltaic, chemical, thermal, or mechanical) acts on any body

which possesses conductivity. We have seen, however, that Maxwellian true charge

requires inductive capacity as well as conductivity to produce the essential disconti-

nuity. Heaviside's objection made just that point. A true charge always requires in-

homogeneities in the ratio of conductivity to inductive capacity. With regard to mag-

netic processes, Curry had asserted that, in Maxwell's theory, "real magnetism"

(i.e., true magnetic charge) cannot be created because there are no internal material

forces for magnetism analogous, for example, to voltaic action. Again, Heaviside

disagreed on field theoretic grounds. For him, as for Maxwell, "real magnetism"

cannot be created simply because there is no such thing as magnetic conductivity,

that is, there are no bodies which cause magnetic induction to decay over time. It is

therefore impossible to describe a region into which a different amount of magnetic

flux enters than leaves. One cannot create magnetic charge.

The Maxwellian theory of charge and current, based on its unique concept of

conductivity, clearly and sharply distinguishes Maxwell's theory from theories which

assume that charge is a collection of intrinsically electric particles, and that the pro-
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cess of charging a body is one in which these particles move onto it. Maxwellian

theory is concerned solely with the continuity, or lack of it, in the displacement at a

given surface. We shall see in part IV how this difference between the particle the-

ories and Maxwell's theory was alone sufficient to create a deep confusion among

those who did not learn electromagnetic theory directly from the Treatise, but read

Maxwellian accounts under the impression of an idea—the electric particle—which

is profoundly incompatible with them. In Britain and America, however, many were

trained in the 1870s directly from the Treatise. To them Maxwell's "charge" was

clear, and it was almost never discussed. When it was mentioned, the purpose was

to give a mathematically precise definition of charge in terms of displacement for

purposes of standardization (J. J. Thomson 1885a).

Although we have now discussed in some detail Maxwellian charge and current,

and though I have introduced aspects of the Maxwellian treatment of the magnetic

field, I have not answered the first question posed many pages ago—the place of the

Coulomb law of force in Maxwell's theory—nor have I discussed the details of mag-

netic theory. To answer the first question, we must consider how Maxwellian theory

generates ponderomotive force—force which moves bodies—which we shall do in

section 3.4. The basis of magnetic theory has, however, already been given, since,

as in modern theory, magnetostatics is analytically equivalent to electrostatics with-

out conductivity. That is, Maxwellians employ two magnetic vectors, B and H,

which correspond analytically to D and E when a may be ignored. As D is propor-

tional to E, so is B to H (constant |x of proportionality). There are, then, three

essential differences between magneto- and electrostatics (Maxwell 1873, vol. 2,

chap. 1):

First, unlike e, |x can be less than one (a fact which poses problems for Maxwell's

mechanical model of 1860 [see Knudsen 1976]).

Second, bodies exist which are permanently magnetic: this requires the introduc-

tion of another vector, M—the magnetization—such that B = H + M.

Third, there is no such thing as magnetic conductivity.

Of course, the electric and magnetic fields are linked through the presence of the

displacement current in the Maxwellian Ampere law. Beyond this there is little to

say about Maxwellian magnetic theory that cannot also be said about modern theory

if we avoid discussing the microscopic sources of permanent and induced magne-

tism—which Maxwellians successfully did during the 1880s, but which they found

increasingly hard to avoid by the mid- 1890s.

3.4 Local Action and Ponderomotive Forces

The dynamical basis of Maxwell's theory rests upon an assertion which modern the-

ory limits to matter, but which Maxwell's theory applies to the field as well: to wit,

that any surface whatsoever will be acted upon by a stress if there is a gradient in

energy density across it. It does not matter, to the Maxwellians, whether ponderable

matter is present or not: where there are energy gradients there must also be stresses.

This assertion reflects a core idea of field theory: that forces must be calculable from
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local conditions since all actions involve the transmission of energy through the con-

tinuum. In Maxwellian theory, whenever one region seems to act upon another at a

distance from it, in fact the action reflects local inhomogeneities in the energy distri-

butions about either region and is determined by their configuration and properties.

Consequently one should, in principle, be able to compute the force on a region

solely by examining the conditions on a surface surrounding it. Maxwell's descriptive

terminology for this essential idea refers, for obvious reasons, to the internal

"stress" which characterizes the continuum, that is, to a function which yields force

by surface integration and which is intimately related to energy considerations (Max-

well 1873, vol. 1, sees. 105 and 110).

In Britain by 1 873 all stress systems were thought of in terms of their associated

volume energy densities, which, by differentiation with respect to strain, yield stress

(W. Thomson and Tait 1895-1896, vol. 2, sees. 670-73, appendix C). Any system

that can be analyzed in terms of stress, it was supposed, must possess such an energy

density at every point, which is expressible as some function of the coordinate deriv-

atives which determine the strain state of the system. Conversely, if such a density

exists, then a specification of stress for the system must be possible which permits

deduction of moving force by surface integration.

The direct way to find the stress system for electrostatics would accordingly be to

express the energy density W as a quadratic function of the six nondegenerate com-

ponents of an electrostatic strain tensor, for then the corresponding six stress com-

ponents would be the derivatives of W with respect to the strain components. How-
ever, here we do not have an expression for strain because we do not know what

coordinates determine the state of the electrostatic field. That is, whereas we can

calculate forces from changes in }(D
2
/2e)d

3
x for virtual motions of a system's mate-

rial parts, we do not know from this expression what the corresponding nonmaterial

(viz., ethereal) strain is. This is in striking contrast with the mechanics of elastic

substances where one begins with an expression for strain in terms of the coordinate

derivatives of material displacement and then expresses W as a quadratic function of

the strain components, thereby immediately determining the stress (see appendix 2).

Not having an expression for strain, we cannot do so here.

One must instead seek indirectly for the stress, and Maxwell did so in essentially

the same manner that one finds in modern elementary texts (Maxwell 1873, vol. 1,

part 1, chap. 5). This first requires, for electrostatics, the Coulomb force law. Where

does the Coulomb law come from? Maxwell takes it from experiment. He writes:

Coulomb shewed by experiment that the force between charged bodies

whose dimensions are small compared with the distance between them,

varies inversely as the square of the distance. Hence the repulsion between

two such bodies charged with quantities e and e' and placed at a distance

r is:

. . . Our conviction of the accuracy of the law of the inverse square of

the distance may be considered to rest on experiments [involving hollow,

closed conductors], rather than on the direct measurements of Coulomb.
(Maxwell 1873, vol. 1, sec. 66)
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Maxwell, of course, generalizes, on the basis of Gauss's law, to obtain for the

force F on a region V:

F = Jj5(V • E)d3
x

Then partial integration immediately transforms this into a surface integral over the

boundary of V, if we assume V x E to be zero:

F = -(\/2)fE
2
dS + JE(E • dS)

This is the same as the modern expression when we ignore e. Maxwell did not

generalize to media of other than unit capacity in the Treatise, nor did he explicitly

demonstrate that one can actually begin with the energy density and work directly

from it to the force integral (as we saw in chap. 2). However, the extension to

general values of e was rapidly effected by Maxwellians in the 1880s without com-

ment: to them it was obvious that one simply factors in e because the stresses must

be first-order derivatives with respect to the unknown strains of W (the electric energy

density), and W contains e as a factor (see, e.g., J. J. Thomson 1888, sec. 39).

Looked at the modern way, Maxwell's expression for the force integral (which he

represented as a stress in the manner we discussed in chap. 2) is nothing more than

a mathematical transformation of the Coulomb force law. But in the eyes of Max-

wellians it was precisely the other way round, that is, the electrostatic force law was

thought of as an implication of the fundamental assumption that all forces are calcu-

lable from local energy gradients. (In fact, we saw in chap. 2 that taking the gradient

of the energy integrated throughout some volume yields the Coulomb force, together

with other forces, directly, and then manipulating this expression yields the Maxwell

stresses.) Heaviside succinctly summarized this quintessential Maxwellian position in

1891:

... we see that the localisation of the stored energies, according to the

square of the electric and magnetic force respectively, combined with the

two circuital laws, leads definitely to a stress existing in the electromag-

netic field, which is the natural concomitant of the stored energy, and

which is the immediate cause of the mechanical forces observed in certain

cases. (Heaviside 1893-1912, vol. 1, sec. 73)

In modern electrodynamics we do not regard the field itself as a material structure,

so we do not consider that stresses may act upon it. Rather, we assume that the field

can transmit energy without itself being subjected to forces that, were the field ma-

terial, would act upon it. Electromagnetic radiation, for example, transports energy

and momentum but stresses arise only when the radiation impinges on material struc-

tures. The Maxwellians did not think this way. For them energy inhomogeneity,

whether matter is present or not, implies stress. Indeed, after the discovery of Poynt-

ing's theorem, they realized that the free ether must be stressed when transmitting

radiation, and so must move (though perhaps not sufficiently to be detectable). In

Maxwellian theory, the electromagnetic field transmits stress and is itself acted upon

by stress. In modern theory, the field only acts; it is not acted upon.

In most circumstances these several differences between the modern and the Max-

wellian views have no effect. But when complicated phenomena that modern theory
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attributes to electron mass are in question, then the theories diverge. Modern theory,

based on a macroscopic approximation, employs the (macroscopic) energy densities

only under strictly limited conditions. When these conditions are not fulfilled, then

recourse must be made to microphysical structure. Maxwellian theory always em-

ploys macroscopic energy densities, because it does not view these densities as mac-

roscopic in the modern sense. That is, Maxwellian theory conceives that these dens-

ities correctly characterize the state of the continuum itself, which, like material

continua, both exerts and is affected by stress; microphysical structure affects the

densities only through the medium constants which appear in them. If one is faced

with new phenomena that cannot be encompassed by the usual densities, Maxwellian

theory argues, then one must simply invent new ones—and one is then committed to

following out the implications of these new expressions.

To follow out the implications, the Maxwellians inserted their novel energy

expressions into Lagrange's equations or, more fundamentally, into Hamilton's prin-

ciple. The usual result was to yield, not only the effect for which the energy expres-

sion was constructed, but other effects as well, some of which seemed in fact to

exist. In the remainder of part I and especially in part II, we shall examine the

Maxwellians at work during the 1880s as they applied their methods to new situations

and attempted to integrate conductivity more directly into Maxwellian theory.

3.5 More on Leaky Condensers and Conductors in Maxwellian Theory

I have not attempted in this chapter to demonstrate my understanding of Maxwellian
theory through an exhaustive consideration of the available texts and correspondence.

However, since my point of view is a novel one, and since it may be thought at

variance with recent writing on the subject, I shall here provide somewhat more
support for it.

I emphasize that the Maxwellian understanding of "charge" is based on the dis-

continuity in the D vector, or "displacement." Further, I argue that Maxwellians
employ another vector, X, which represents the physical displacement of the ether

and which, unlike D, is not discontinuous at charged surfaces. One problem this

distinction jaises is that Maxwell did not introduce separate terminology or symbols
for D and A. in the Treatise.

Nevertheless the distinction between the two vectors is clear in almost every pas-

sage. One must be careful to read "displacement" in context: it may refer to the

physical shift of the medium (X) whatever the circumstances, or it may refer only
to a X shift in which potential energy is reversibly stored (D). The following para-

graphs from Maxwell's Treatise is an example:

It appears, therefore, that at the same time that a quantity Q of electricity

is being transferred along the wire by the electromotive force from B to-

wards A, so as to cross every section of the wire, the same quantity of

electricity crosses every section of the dielectric from A towards B by
reason of the electric displacement.

The displacements of electricity during the discharge of the accumulator
will be the reverse of these. In the wire the discharge will be Q from A to

B, and in the dielectric the displacement will subside, and a quantity of

electricity Q will cross every section from B towards A. (vol. 1, sec. 60)
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Here Maxwell writes of transferrals of electricity in the wire, similar transferrals

in the dielectric as a result of "electric displacement," "displacements of electric-

ity," subsidence of "displacement" in the dielectric, and quantities of electricity

"crossing" surfaces. Occasionally Maxwell writes of the "displacement" of a quan-

tity of electricity. In general, what Maxwell calls "displacement of electricity" cor-

responds to my X, whereas "electric displacement within a dielectric" is D.

This is, however, too loose a distinction to encompass all of Maxwell's locutions.

Indeed, much of the difficulty in understanding Maxwell on charge and conduction

comes from his not having introduced different words for physical displacement (\)

and dielectric displacement (D). The closest Maxwell comes to such a distinction is

in using the phrase "electric polarization" (D) in conjunction with "displacement"

(X), as in the following passage from the Treatise:

... In the case of the charged conductor let us suppose the charge to be

positive, then if the surrounding dielectric extends on all sides beyond the

closed surface there will be electric polarization accompanied with dis-

placement from within outwards all over the closed surface, (vol. 1,

sec. 61)

Maxwell quite explicitly limits "electric polarization" to dielectrics, whereas "dis-

placement" in the sense of an ether shift is ubiquitous. In my discussion I have

preferred modern terminology, in which "displacement" refers always to D.

The second major novelty of my discussion is the claim that Maxwell and the

Maxwellians understand conduction as a process in which D is continually breaking

down, giving up its energy to material heat. I supported this contention in the first

instance by quoting Maxwell's discussion of the Leyden jar from the Treatise. I

emphasized Maxwell's statement that "in the phenomenon called the electric current

the constant passage of electricity through the medium tends to restore the state of

polarization as fast as the conductivity of the medium allows it to decay. Thus the

external agency which maintains the current is always doing work in restoring the

polarization of the medium, which is continually becoming relaxed, and the potential

energy of this polarization is continually becoming transformed into heat" (vol. 1,

sec. 111). I see no way to understand this other than that, for Maxwell, conductors

are equivalent to leaky condensers with extremely short relaxation periods. More-

over, in the Treatise he writes: ".
. . in the conducting wire the electric elasticity is

continually giving way, so that a current of true conduction is set up" (vol. 1,

sec. 62).

This way of understanding conduction introduces considerable difficulties which

Poynting and J. J. Thomson went to some lengths to ameliorate, as we shall see.

But it has the great advantage of providing a theory of charge: it explains that charge

appears as the end result of displacement 0) decay. Without this understanding the

appearance of "charge" is entirely mysterious; one would simply have to assume the

existence of sources and sinks at the appropriate places.

My argument depends critically upon the central importance of the "leaky con-

denser" analogy for Maxwell and for the Maxwellians. We need not rely entirely on

my reconstruction for its importance. Oliver Heaviside saw in it the original source

of Maxwell's theory. Thus he wrote that it "was probably by a consideration of

conduction in a leaky condenser that Maxwell was led to his inimitable theory of the
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dielectric, by which he boldly cut the Gordian knot of electromagnetic theory"

(Heaviside 1893-1912, vol. 1, sec. 31). Heaviside even wrote a lengthy account of

the relationship between displacement decay, conduction, and wave propagation

which contains an implicit criticism of J. J. Thomson's theory of moving tubes of

displacement (Heaviside 1893-1912, vol. 1, sees. 193-196).

Secondary but related aspects of Maxwellian theory which I emphasize are (1)

that conductors should have enormous inductive capacities and (2) that the process

of conduction is intermittent. Appendix 5 discusses aspects of the first point; most

Maxwellians were familiar with, and accepted, the idea. Thus Andrew Gray—who
was far from being on the leading edge of Maxwellian research—wrote in Nature in

1891 (in a review of Poincare's Electricite et Optique): ".
. .a difficulty is pointed

out as to the specific inductive capacity of a conducting substance. For such a sub-

stance the first term [conduction current] must predominate, and so K [e] must be

small; whereas K is generally regarded as very great in the case of a conductor"

[emphasis added]. Poincare's argument was that e had to be small in conductors in

order for the conduction current to dominate the displacement current. But this criti-

cism requires only that the ratio e/a be small: the value of e in relation to its value

in dielectrics is not at issue—as Gray understood. Nevertheless, Maxwellians were

generally aware that conductors are difficult beasts to tame, so that attributing large

e and even larger a to them by no means solves the many problems they posed. Thus

Gray stated: "It is worth noticing that this [assuming large e in conductors] is really

only a conventional means of explaining the impossibility of charging a condenser

the space between the plates of which is filled with conducting substance; the true

explanation is, no doubt, very different."

Gray's last remark leads implicitly to my second contention: that the "true expla-

nation" of conduction involves an intermittent process of displacement (D) growth

and decay. Gray did not discuss the point, but we need not rely entirely on Maxwell,

Poynting, J. J. Thomson, or Larmor to document my contention. In his Modern
Views of Electricity, Oliver Lodge remarked:

Consider . . . conduction. Connect the poles of a voltaic battery to the

two ends of a copper wire, and think of what we call "the current." It is

a true flow of electricity among the molecules of the wire. If electricity

were a fluid, then it would be a transport of that fluid; if electricity is

nothing material, then a current is no material transfer; but it is certainly a

transfer of electricity, whatever electricity may be. Permitting ourselves

again the analogy of a liquid, we can picture it flowing through, or among,

the molecules of the metal. Does it flow through or between them? Or
does it get handed on from one to the next continually? We do not quite

know; but the last supposition is often believed to most nearly represent

the probable truth. The flow may be thought of as a perpetual attempt to

set up a strain like that in a dielectric, combined with an equally perpetual

breaking down of every trace of that strain. If the atoms be conceived as

little conductors vibrating about and knocking each other, so as to be

easily and completely able to pass on any electric charge they may possess,

then, through a medium so constituted, electric conduction could go on

much as it does go on in a metal. Each atom would receive a charge from

those behind it, and hand it on to those in front of it, and thus may elec-

tricity get conveyed along the wire. Do not, however, accept this as any-
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thing better than a possible mode of reducing conduction to a kind of

electrostatics—an interchange of electric charges among a series of con-

ductors. If such a series of vibrating and colliding particles existed, then

certainly a charge given to any point would rapidly distribute itself over

the whole, and the potential would quickly become uniform; but it by no

means follows that the actual process of conduction is anything like this.

Certainly it is not the simplest mode of picturing it for ordinary purposes.

The easiest and crudest idea is to liken a wire conveying electricity to a

pipe full of marbles or sand conveying water; and for many purposes,

though not for all, this crude idea suffices. (1889, pt. 2, sec. 3; emphasis

added)

This passage shows very clearly that the intermittent theory of conduction, involv-

ing the "breaking down of every trace of . . . strain," was, for Lodge—as for J. J.

Thomson, Poynting, and, I argue, Maxwell—much closer to the true nature of the

process than the "crude" image of a continuous flow against resistance. It is essen-

tial to understand that, from a modern point of view, nothing at all like this occurs

in conduction. Conductors are different from dielectrics, and only in the latter can

significant polarization occur: for Lodge and most other Maxwellians polarization

can, indeed almost certainly does, occur preeminently in conductors—but its life

therein is evanescent. (Note also that Lodge used the word "continual" for what is

clearly an intermittent process—as, I argue, Maxwell did as well.)

But it is also essential to note that the complex picture of conduction which I

attribute to Maxwell and the Maxwellians is not strictly inconsistent with mechanical

models in which conduction is represented by a viscous flow. Such models were

generally thought of as idealizations (Lodge himself offered one). In any model of

this kind one can replace continuous flow with elastically resisted flow followed by

in situ breakdown without altering anything else. The net result will be precisely the

same.
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4.1 Energy Flow and Localization in the Field

The principle of the continuity of energy is a special form of that of its

conservation. In the ordinary understanding of the conservation principle it

is the integral amount of energy that is conserved, and nothing is said about

its distribution or its motion. This involves continuity of existence in time,

but not necessarily in space also.

But if we can localise energy definitely in space, then we are bound to ask

how energy gets from place to place. If it possessed continuity in time

only, it might go out of existence at one place and come into existence

simultaneously at another. This is sufficient for its conservation. This view,

however, does not recommend itself. The alternative is to assert continuity

of existence in space also, and to enunciate the principle thus: —
When energy goes from place to place, it traverses the intermediate space.

(Heaviside 1893-1912, vol. 1, sec. 67; written in 1891)

Among the several concepts of the quantum revolution which we are today accus-

tomed to thinking of as fundamentally novel is its insistence that a given portion of

energy cannot be precisely localized in either space or time. This might naturally

lead one to suppose that, between the discoveries of energy conservation and quan-

tum mechanics, all physicists believed that the motion of energy can be traced

through space at each instant. One might think that physicists believed that energy,

like matter, has identity and moves continuously through space. In fact, probably

few before the 1870s even thought of energy as a thing which flows; when that idea

was first broached, not everyone immediately accepted it. For to several of them

"energy" in the abstract was a concept that apparently lacked the very basis for

assigning a location to it as a thing. A moment's consideration suffices to show how
profoundly difficult the idea of the identity of energy may be, and, therefore, how
fundamentally novel it seemed to many when it was explicitly incorporated into Max-
wellian theory in 1884 by John Henry Poynting.

Consider, for example, a seemingly unambiguous situation described in 1891 by

Heinrich Hertz:

... a steam engine . . . drives a dynamo by means of a strap running to

the dynamo and back, and which in turn works an arc lamp by means of a

wire reaching to the lamp and back again. In ordinary language we say

—

and no exception need be taken to such a mode of expression—that the

energy is transferred from the steam engine by means of the strap to the

dynamo, and from this again to the lamp by the wire. But is there any

clear physical meaning in asserting that the energy travels from point to

point along the stretched strap in a direction opposite to that in which the

strap itself moves? And if not, can there be any more clear meaning in
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saying that the energy travels from point to point along the wires, or—as

Poynting says—in the space between the wires? There are difficulties here

which badly need clearing up. (Hertz [1893] 1962, note 31)

Hertz's strap communicates energy to the dynamo not by giving up its energy,

which remains constant, but by communicating in some manner the potential energy

stored at each point in the half of the strap under tension. The paradox is that this

half of the strap moves from the dynamo to the engine, whereas the energy must be

transferred to the dynamo from the engine (see fig. 6). "In the present state of our

knowledge respecting energy," Hertz therefore remarked, "there appears to me
much doubt as to what significance can be attached to its localisation and the follow-

ing it from point to point. Considerations of this kind have not yet been successfully

applied to the simplest cases of transference of energy in ordinary mechanics; and

hence it is still an open question whether, and to what extent, the conception of

energy admits of being treated in this manner" (Hertz [1893] 1962, 220).

Hertz's example is singularly interesting because it focuses immediately on the

central difficulty involved in conceiving energy to flow even in mechanics, much less

in the abstract field of electromagnetism: unless energy is entirely kinetic in form, it

is difficult to understand what it means physically for it to "flow." Unlike matter,

energy in the abstract is not an object with individual identity. One might say that,

since kinetic energy is, as it were, attached to matter, it can move. But what sense

is there in asserting that the potential energy of a particle subject to a force acting at

a distance moves with that particle? In continuum mechanics, where distant forces

are not used, the problem may be even worse, though it need not be if it is possible

to attach potential energy unambiguously to traveling matter (as a moving, com-

pressed spring carries potential energy). That is precisely what cannot easily be done

in Hertz's example, since the motion of the tensed strap opposes the direction of

energy flow.

There are essentially two ways to solve the Hertz paradox; one physical, the other

mathematical. One can treat the strap as consisting of discrete particles which exert

central forces upon one another. Then the energy flow follows the propagation of

particulate displacement, and this will oppose the strap motion as a whole. (We
imagine the dynamo continually jerking the strap.) Or, we may ignore particulate

structure and invent a consistent mathematics, based on continuum mechanics, which

TENSED—<—

ENERGY TRANSFER
>

RELAXED

Fig. 6 Energy flow in a stretched strap
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expresses the flow of energy as a function of stress and strain. This second alternative

is commonly taken today. It solves the Hertz paradox analytically rather than physi-

cally.

The British had neither of these alternatives available to them: not the first, be-

cause they generally avoided recurring to discrete structure; nor the second, because

they would not have regarded a purely mathematical solution as fully satisfying. The

only remaining way to bypass difficulties like Hertz's is always to somehow attach

energy to a physical entity whose motion can be directly traced. If all physical pro-

cesses involved only kinetic energy this would be easy, in principle, to accomplish.

One could trace the path of energy by following the motion of matter. Hertz, like

the whole of the British community at the time (Topper 1970), did generally believe

that an ultimate physical theory would involve only matter in motion—in other

words, that all potential energy would ultimately be derivable from purely kinetic

processes. That, however, was at best a hope.

Yet unless energy transfer can be treated as a continuous spatial flow, the foun-

dations of Maxwellian theory, even before the discovery of Poynting's theorem, be-

come insecure. For energy to be localized, and so for electromagnetic forces to be

deducible from the Maxwell stress tensor (from inhomogeneities in localized ener-

gies), energy must not disappear at one place and then appear at another without

having existed at all points in between. Otherwise it would make no sense to treat

all interactions as local. I suggest, therefore, that the very concept of the "continuity

of energy"—that energy flows continuously from one place to another—was an es-

sentially novel idea required by basic principles of Maxwell's theory or, indeed, by

any continuum theory which deduces moving force from the local state of the me-

dium.

Moreover, the concept of energy continuity is itself incomprehensible unless one

adopts a theory which localizes energy in the medium. Both Hertz and Poynting

regarded the two ideas—that energy flows continuously and that it may be local-

ized—as essentially equivalent. That is, they felt that it was meaningless to think of

a given volume as containing a specific quantity of energy unless that energy has the

kind of identity which matter possesses, otherwise one could speak only of the field

energy as a whole. Poynting wrote:

If we believe in the continuity of energy, that is, if we believe that when
it disappears at one point and reappears at another it must have passed

through the intervening space, we are forced to conclude that the surround-

ing medium contains at least a part of the energy, and that it is capable of

transferring it from point to point. (Poynting 1884)

Both Poynting (in 1884) and Heaviside (independently a year later) examined

what the flow of energy must be in the electromagnetic field»when the localized

energies alter. That work, in Poynting's hands, led directly to a mathematical repre-

sentation of the conduction current in terms of decaying displacement without re-

quiring a knowledge of the connection between ether and matter. It also led to a

method whereby Hertz's type of critique—energy going one way and the substance

in which it exists another—can be avoided by attaching the energy to moving

displacement.
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4.2 Reinterpreting Maxwell's Equations

Starting with Maxwell's theory, we are naturally led to consider the prob-

lem: How does the energy about an electric current pass from point to

point—that is, by what paths and according to what law does it travel from

the part of the circuit where it is first recognisable as electric and magnetic

to the parts where it is changed into heat or other forms? (Poynting 1884)

Poynting's deduction of the energy flow theorem is quite simple, but I shall sim-

plify it even further by assuming the wire to be at rest in the medium. (Poynting

considered the general case of motion, and this not only complicates his analysis but

raises a number of extremely difficult questions which he completely ignored by
choosing a stationary case for his examples.) Then the equations we need are:

(1) V x E = -\xdH/dt

(2) VxH = J = C + dD/dt

(3) field energy = W = (l/2)/(£ • D + B H)d\

From these equations Poynting easily deduced the energy-flow theorem:

(4) dW/dt + fC • Ed\ = -S(E x H) • dS

Clearly the right-hand side of this equation must represent the rate at which energy

flows out to the volume across its surface, if we accept energy continuity. Poynting's

conclusion (which is not strictly justified since one could add to E x H any vector

whose divergence vanishes and still satisfy equation [4]) was that E X H represents

the surface density of energy flow in the electromagnetic field: he concluded that

"wherever there is both magnetic and electromotive intensity there is flow of en-

ergy" (Poynting [1884] 1920, 181).

Scarcely pausing to discuss this striking result (which, e.g., implies that a charged

capacitor in a constant magnetic field which is not parallel to the electric field is the

seat of energy flows even though all macroscopic phenomena are static), Poynting

turned to the implications of his theorem for the conduction current. He at once

pointed out that energy does not flow along the wire: since the E field is parallel to

the wire, whereas the H field encircles the E lines, the energy flow E X H passes

radially into the wire at each point along it. In Poynting's words

It seems that none of the energy of a current travels along the wire, but

that it comes in from the non-conducting medium surrounding the wire,

that as soon as it enters it begins to be transformed into heat, the amount

crossing successive layers of the wire decreasing till by the time the centre

is reached, where there is no magnetic force, and therefore no energy pass-

ing, it has all been transformed into heat. A conduction current then may

be said to consist of the inward flow of energy with its accompanying

magnetic and electromotive forces, and the transformation of the energy

into heat within the conductor. (Poynting [1884] 1920, 182-83)

Note that Poynting limited his assertion to conduction currents; he did so because no

energy transformation into heat occurs for displacement currents. On this difference

between the two kinds of currents he constructed a theory which, though it modified

the Maxwellian interpretation of the circuital field equations, nevertheless embodied

the essential Maxwellian belief that conduction currents involve the decay, and not

the reversible decrease, of displacement.
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Scarcely a year after his groundbreaking theorem was published, Poynting devel-

oped these implications which were almost at once accepted by the majority of active

Maxwellians; in particular by J. J. Thomson and by George FitzGerald, who con-

structed a model which embodied the essentials of Poynting's ideas (FitzGerald

1885a).

Poynting's reinterpretation of Maxwell's equations (Poynting 1885a) was sug-

gested to him by the implications of his energy flow theorem for condenser dis-

charge, which he discussed several times in detail. In his figure (see fig. 7), A and

B are the plates of a charged condenser; the region between them is nonconducting

and has capacity e. The curve LMN is a high-resistance conductor and is drawn along

a line of electromotive intensity before discharge. The remaining lines are the equi-

potential surfaces which exist before discharge, that is, before LMN is joined to A
and B. Before discharge, the greatest energy density exists between the plates and is

equal to (\/2)eE
2

. When LMN is connected across A and B, discharge begins. Dur-

ing the discharge we have a current C of conduction in LMN together with a dis-

placement current dD/dt at each point outside LMN; dD/dt is greatest between the

plates. Consider the energy flow during discharge. Since LMN follows the E field,

energy must flow into it along the equipotential surfaces. Between A and B the

displacement current is in the opposite direction to the E field at each instant since

the displacement is decreasing. Hence energy must flow outward from the region

between the plates, following the equipotential surfaces, and it also laterally—that

is, along perpendiculars to the displacement at each instant—converges onto the wire

where it is converted into heat. (Note that the displacement current exists throughout

the condensor so that energy flows from left to right and from right to left. But there

are uncompensated flows at the termini of the plates and ultimate convergence on the

wire, since displacement is destroyed within it.)

This process suggested to Poynting that the energy flow could be associated di-

rectly with the motion of "tubes" of electric displacement. Instead of viewing the

process as one in which displacement disappears between the plates during discharge,

Fig. 7 Equipotential lines of a charged capacitor
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it was possible, Poynting reasoned, to envision a lateral flow of displacement from

the region between the plates outward to the wire, where the displacement is de-

stroyed:

In the neighbourhood of a wire containing a current, the electric tubes [D]

may in general be taken as parallel to the wire while the magnetic tubes

[B] encircle it. The hypothesis I propose is that the tubes move in upon the

wire, their places being supplied by fresh tubes sent out from the seat of

the so-called electromotive force [here simply the charged plates; else-

where, e.g., a voltaic pile]. The change in the point of view involved in

this hypothesis consists chiefly in this, that induction [D] is regarded as

being propagated sideways rather than along the tubes or lines of induction.

This seems natural if we are correct in supposing that the energy is so

propagated, and if we therefore cease to look upon current as merely some-

thing travelling along the conductor carrying it, and in its passage affecting

the surrounding medium. As we have no means of examining the medium,

to observe what goes on there, but have to be content with studying what

takes place in conductors bounded by the medium, the hypothesis is at

present incapable of verification. Its use, then, can only be justified if it

accounts for known facts better than any other hypothesis. (Poynting

[1885a] 1920, 195)

Briefly put, what Poynting proposed was to reinterpret Maxwell's circuital equa-

tions in such a way that they always represent the effects of lateral motion of either

electric, D, or magnetic, B, induction. In this way the Poynting flow of energy could

be directly linked to a true motion of field entities rather than being a purely mathe-

matical result with perhaps uncertain physical meaning. One effect of this proposal

would be to circumvent any criticism like Hertz's by attaching energy to an identifi-

able motion. (Though the electric energy transported by this motion is potential and

not kinetic, it would transport potential energy in the same manner that a compressed

spring in motion transports potential energy.) This will be clear on examination of

Poynting 's interpretation of the circuital laws.

Maxwell's two circuital laws may be written:

(5) V X E = -BB/dt or fE-d! = -d/dt(fB • dS)

V X H = C + dDldt or

(6) fH • dl = f[C + (dD/dt)] • dS

As they stand, these laws imply generation of electric or magnetic intensity around a

curve by any change, however produced, of magnetic or electric induction, respec-

tively, through the area bounded by the curve. If, for example, displacement in a

given area were simply to decay in situ, then one might expect that magnetic inten-

sity would be generated. That possibility was avoided by Maxwell in this case of

decaying displacement by setting C equal and opposite to dD/dt. This (implied by

the continuity equation) reflected Maxwell's view that displacement decay does not

involve quantity shift. Poynting 's proposal was to obtain the result at once by requir-

ing that only flows of displacement across a curve could generate magnetic intensity

around it (with similar requirements for magnetic induction and electric intensity).

Return to our example of condenser discharge (fig. 7) and consider the process



The Electric Current and Poynting's Theorem 47

from the point of view Poynting now proposed. When the wire LMN is connected to

the plates A and B, Poynting now argued, the "tubes" of displacement between A
and B begin to diverge laterally, moving outward, their termini moving along A and

B and toward LMN. (A tube of induction is a closed surface with sides parallel to

the lines of electric intensity and with bases which terminate on the charged surfaces,

i.e., where displacement cannot be sustained indefinitely. The strength of the tube is

measured by the area of, and the discontinuity in displacement at, the base. Tubes

may also be closed, in which case their strength is measured simply by the product

of intensity by capacity by cross section.)

As the tubes diverge from the region between the plates, any curve surrounding

an area through which wire LMN passes will be cut by them in their motion; conse-

quently magnetic intensity will be generated around such a curve. The tubes of dis-

placement eventually penetrate laterally into the wire (i.e., radially into it) where

they are somehow "dissolved" due to conductivity. As the tubes dissolve, the lines

of magnetic intensity which encircle the wire shrink into it, thereby generating an

electric intensity along the wire opposite in direction to the tubes of electric induction

which are being dissolved in it. The energy flow of the process follows the lateral

motion of the induction tubes, and at any instant the total energy is half-magnetic

and half-electric. The magnetic energy is derived from the electric energy as the

potential energy of the tube decreases in its motion, with the electric energy thus lost

becoming magnetic. Within the wire both kinds of energy are converted into heat by

the dissolution of the displacement, which is attended by the inward shrinking of the

encircling magnetic induction. (The magnetic energy, however, is not directly trans-

formed into heat, as is the electric energy. Rather, as the encircling magnetic lines

shrink in and thereby generate electric intensity along the wire, this intensity pro-

duces displacement which has the effect of retarding the decay of the incoming dis-

placement from the condenser. Hence, the magnetic energy becomes heat via trans-

formation into electric energy.)

In effect, Poynting's hypothesis completely bypassed the complicated questions

raised by Maxwell's account of conduction by supposing that energy flow in the field

is accompanied by, indeed produced by, the lateral motion of induction. Where one

might initially wonder why displacement is implicated in conduction, given Max-

well's terse account, the reason is at once obvious in Poynting's theory. The very

existence of the magnetic intensity generated by a conduction current is due to con-

vergence of displacement on the wire and its dissolution in it. The dissolution permits

displacement to go on converging since, if the displacement were not dissolved, a

static balance would ultimately occur.

We may use this to easily distinguish C from dD/dt. If displacement flows contin-

uously into a region and there disappears, then we have a "conduction current" C
in the region; if displacement alters by means of lateral motion of induction tubes

without their dissolution, then we have a "displacement current" dD/dt (e.g., if the

plates of a charged condenser recede from or approach one another, displacement

current exists in the region between them). If displacement is dissolved on entry into

a region, but not rapidly enough to maintain a steady balance with incoming flow,

then both displacement and conduction currents exist in the region.

Poynting's theory was the most influential development in British electromagnetic
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theory since the publication of Maxwell's Treatise twelve years before. John Hopkin-

son, a noted Maxwellian, wrote in his referee report to the Royal Society concerning

this new theory:

Prof. Poynting in a paper already published in the Transactions shewed

that energy reaches the points of a conductor where it is converted into

heat not by transference along the wire but by transference through the

insulating dielectric at each point in a direction at right angles to the tubes

of electric and magnetic induction. In the present paper Prof. Poynting

pursues the same theory further and shews that we may most conveniently

represent the reciprocal relation of electric and magnetic induction by sup-

posing that each are brought into or taken from the field by purely lateral

movements.

The first paper was very important and valuable, the present paper is a

natural sequel and is in my judgment not less important. ([R. S.] RR
9.300)

One reason for the contemporary importance of Poynting 's theory was that it pro-

vided a way to represent the role played by displacement in conduction clearly with-

out having to specify the presumptive microscopic link between ether and matter

which causes the dissolution of displacement. In Maxwell's Treatise the role played

by displacement in conduction was deeply buried—though unquestionably present

—

in a series of accounts of diverse phenomena such as electrolysis and the compound

condenser, where one could understand it only by always recalling that rate of quan-

tity shift (dk/dt) determines magnetic intensity. Whereas, with Poynting 's theory one

does not have to recur directly to quantity shifts to understand the way in which

Maxwell's equation (chap. 3, eq. [6]) is to be understood in any given process.

Moreover, since Poynting believed his theory to be a simple modification of Max-

well's, it seems likely that the theory occurred to him, given his theorem on energy

flow, precisely because he so clearly understood Maxwell's essential requirement that

magnetic intensity is not generated if quantity shifts do not occur, whether or not

displacement decays. Thus ten months after his theory was published, Poynting wrote

an article in which he gave a mathematical account of leaky condensers. His account

was "partially the same as Maxwell's," but instead of setting C equal and opposite

to dD/dt, as Maxwell had, he simply set V x H equal to zero on the grounds that in

the self-discharge of a homogeneous, "leaky" condenser no new tubes of induction

flow in (Poynting 1885&).

Perhaps the most significant result of Poynting 's theory for his British contempo-

raries was that it unambiguously demonstrated that, far from being of the essence,

the so-called flow of charge in a wire is merely a by-product of field processes which

involve the lateral motion of displacement. Poynting wrote:

The flowing of electric charges along the wire, which is usually considered

as the essential part of the phenomenon, or at least that to which attention

is to be chiefly directed, becomes on this hypothesis merely the last stage

in the process, which consists of a propagation from the surrounding di-

electric towards the wire of electric and magnetic induction, which we may

symbolize by the motion inwards of two sets of tubes, the electric tubes

being, on the whole, more or less in the direction of the wire, the magnetic

tubes being closed rings surrounding it. The wire plays the part of the



The Electric Current and Poynting' s Theorem 49

refrigerator in a heat-engine, turning the energy it receives into heat—

a

necessary condition for the working of the machinery. (Poynting [18856]

1920, 227)

4.3 J. J. Thomson's Theory of Conduction: A Phenomenological Account of

Microscopic Processes

Although Poynting 's work made explicit and embodied in a precise physical process

(lateral flow of displacement) the image of conduction which, I argued above, is

implicit in Maxwell's Treatise, he did not discuss the question of how dissolution of

displacement occurs in conductors. One must be careful to understand, however, that

there are two questions here, only one of which Maxwellians addressed. First is the

deep question of the link between ether and matter which is ultimately responsible

for the dissolution. Maxwellians did not address this question. The question they did

consider concerns the microscopic rearrangements accompanying dissolution. Several

years after Poynting 's theory was published, J. J. Thomson considered the micro-

scopic processes in a way which at once broadened Poynting 's account and linked it

to molecular processes without specifying the connection between ether and matter.

Thomson's theory strikingly embodied the Maxwellian consensus of the later 1880s:

namely, that conduction is a field process during which magnetic intensity is gener-

ated only by the lateral influx of displacement into the conductor. That single concept

is precisely what Larmor's theory of 1893 violated in its first form. Because his

theory violated this criterion, Larmor was forced to produce an elaborate account of

conduction beset with difficulties that were ultimately resolved by his introduction of

the electron.

Thomson first discussed the conduction current in both electrolytes and metals in

1888, when he remarked that "the current consists of a series of intermittent dis-

charges caused by the rearrangement of molecular systems" (Thomson [1888] 1968,

297). At this time he embodied the essentials of Maxwell's concept of displacement

buildup and decay in conduction in a general ionic model:

The forces between the atoms in a molecule are usually too strong to allow

of any arrangement under the electric field, but when the molecule breaks

up [as in electrolysis and even, Thomson assumed, in metals] and these

interatomic forces either vanish or become very small the constituents of

the molecule are free to move under the electromotive force, and they will

move so as to diminish the strength of the electric field. In order to form

a definite idea of the way in which the field gets discharged we may take

the usual view that the constituents into which the molecule splits up are

charged with opposite kinds of electricity and that when the molecule splits

up the positively charged constituent travels in one direction, the negatively

charged one in the other; in this way we get two layers of positive and

negative electricity formed, the electric force due to which neutralizes in

the region between the layers the external electric force [this corresponds

to displacement breakdown]. The positively charged particles soon come
into the neighbourhood of some negatively charged ones travelling in the

opposite direction and they recombine, while the negatively charged ones

do the same with some positive molecules, thus the force due to the layers

vanishes and the external electric field is re-established [this corresponds
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to displacement buildup after discharge] to be soon demolished again by

the decomposition and rearrangement of the molecules. (Thomson [1888]

1968, 294-95)

Thomson at this time did not discuss the magnetic field generated by the process,

but in view of both Maxwell's account and Thomson's own discussion in 1891 (see

below), to say nothing of Poynting's theory, he did not connect magnetic intensity

directly with the motions of the charged molecular constituents. On the contrary,

their motion is merely the necessary condition for the establishment of displacement,

which is alone directly connected to magnetic intensity. Moreover, the magnetic field

is generated only during the process of displacement buildup, that is, as dissociated

molecules recombine, and not during the process of molecular dissolution.

These essential Maxwellian characteristics of Thomson's theory are directly re-

vealed in his account of conduction (Thomson 1891), which was republished two

years later in his Recent Researches—intended to be the "third volume" of Max-

well's Treatise. Thomson's account was squarely based on the requirement that mag-

netic intensity is always associated only with the motion of tubes of displacement. If

a tube with displacement D moves with a velocity v, Thomson argued, it generates

a magnetic intensity H according to the following equation (an equation already im-

plicit in Poynting's theory):

(7) H <* v x b

Equation (7) is consistent with the circuital law V x H = dD/dt, if the tubes of

displacement are neither created nor destroyed. This limitation applies only to a re-

gion of zero conductivity. Elsewhere the tubes are destroyed, and this is the essence

of the conduction current. According to Thomson, in a conductor bearing a steady

current, positive tubes ( + to — in the direction of the electromotive source intensity)

are constantly moving radially inward to the wire, while, at the same time, an equal

number of negative tubes are moving radially outward. By equation (7), magnetic

intensity thus encircles the wire. When the positive tubes penetrate the wire, they

there "contract to a length comparable with that between the atoms of a molecule,"

yielding up their electric (potential) and magnetic (kinetic) energy. This process of

inward radial motion followed by dissolution parallels Poynting's earlier account, and

it is closely based on the theorem of energy flow—a connection Thomson made

explicit in 1893.

With this system Thomson was able to provide a limited theory of conduction. As

in 1888, displacement—represented in figure 8 by induction tubes entering the

wire—is continually breaking down as, now, the induction (or "Faraday" in Thom-

son's terminology) tubes contract to molecular dimensions. This process of contrac-

tion, which is of course equivalent to dissolution, is due to molecular dissociation.

We may picture to ourselves the tubes of electrostatic induction shortening

in a conductor in some such way as the following: —Let us take the case

of a condenser discharging through the gas separating its plates. Then,

before discharge, we have a tube stretching from an atom O on the positive

plate to another atom P on the negative one. The molecules AB, CD, . . .

of the intervening gas will be polarized by the induction, the tubes of force

connecting the atoms in these molecules pointing in the negative direction;
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Fig. 8 Molecular dissociation in a conducting electrolyte

as the strength of the field increases the tube in the molecule AB will

lengthen and bend towards the tube OP, until when the field is sufficiently

strong the molecular tube runs up into the tube OP. The tubes then break

up into two tubes OA and PB, and the tube OA shortens to molecular

dimensions. The result of this operation is that the tube PO has shortened

to PB, and the atoms O and A have formed a molecule. The process is

then continued from molecule to molecule until the tube PO has contracted

to molecular dimensions. Instead of the tube PO jumping from molecule

to molecule, several molecules may form a chain and be affected at once;

in this case the tube would shorten by the length of the chain in the same

time as on the previous hypothesis it shortened by the distance between

two molecules. (Thomson 1891, 155; cf. Thomson 1893, sec. 31)

In Thomson's theory of moving tubes of induction, magnetic intensity is generated

by the tubes' motion into the conductor from the electromotive source. This occurs

when the displacement generated by the source moves radially inward from the sur-

rounding medium, after which the dissociation process occurs, thereby destroying the

tubes. That is, the source creates tubes of displacement which ultimately move lat-

erally into the conductor, where they are destroyed by molecular dissociation.

In Thomson's opinion, this type of breakdown process occurs in all conductors

—

gas, liquid, and solid—the only difference between them being whether the disso-

ciated atomic constituents are sufficiently mobile to appear as by-products:

The connection between electric conduction and chemical change is much
more evident in the case of liquid electrolytes and gases than it is in that
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of metals. There does not seem, however, to be sufficient difference be-

tween the laws in conduction through metals and electrolytes to seek an

entirely different explanation for metallic conduction. (Thomson 1893,

sec. 34)

We see, then, that in Thomson's theory, as in Poynting's, magnetic intensity is

produced solely by motion of displacement and not by its subsequent dissolution.

The breakdown process is essential to conduction—indeed, it is conduction—because

it permits new tubes to move in, but in itself it is only indirectly related to the

magnetic intensity generated by the current. This is well illustrated by Thomson's

measure for resistivity, the reciprocal of conductivity, and for current quantity. Cur-

rent quantity is measured, according to Thomson, by the number of tubes of displace-

ment of unit strength which disappear in the conductor in unit time. For a conducting

medium with capacity e and subject to a source intensity E in which the "average

life" of a tube is T, the current quantity C is therefore eE /T. If p is the resistivity

of the medium, then, using Ohm's law (a law which remained fundamentally mys-

terious in Maxwellian theory), E = pC, we have:

(8) T = ep

'T is often called the time of relaxation of the medium," Thomson remarked (1893,

sec. 32; referring to Maxwell).

To assume that the process of conduction—displacement dissolution—can be de-

scribed in terms of relaxation is to assume that the process of molecular dissociation

(discharge) which occasions this breakdown, according to Thomson's theory, does

not involve anything like self-induction in electrodynamics. That is, even though the

dissociated atomic constituents produced by the breakdown are in motion, this mo-

tion of charged matter is not assumed to involve a substantial magnetic intensity. In

Thomson's theory it is at once obvious why this is so: self-induction involves the

rate at which displacement is sent from one part of a circuit to another part; it has

nothing directly to do with the molecular process of the breakdown of displacement.

This point is of great significance because it unequivocally implies that—at least

through 1893, and perhaps even later—Thomson and most Maxwellians did not think

that charge motion or convection (which they well knew does generate magnetic

intensity; see appendix 1) is responsible for the magnetic field of the conduction

current. For if it were responsible for the field, then the entire theory of lateral flow

of displacement into the circuit followed by breakdown would have to be abandoned.

Perhaps the most interesting (and surprising) example of the implications of this

theory involves Thomson's explanation of the deflection of the discharge in a rarefied

gas by a magnetic field. Thomson knew—indeed, he was the first to demonstrate it

using Maxwell's principles (Thomson 1881)—that a moving charge in a magnetic

field behaves like an element of a conductor carrying a current. Yet in Recent Re-

searches he did not reason that the entire gaseous discharge consists of moving

charges (though he did link the so-called negative glow to moving charged particles;

Thomson 1893, sec. 1301). Rather, he saw the phenomenon as precisely analogous

to electrolytic and metallic conduction in that it involved processes of molecular

dissociation and attendant breakdown of displacement. The reason magnetic fields

deflect the discharge is then quite simple and has nothing at all to do with the deflec-
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tion of moving charges. Rather, the phenomenon is equivalent to the deflection of a

current-bearing wire in that the path of the discharge, considered to be a conductor,

is deflected by the field during discharge, with subsequent discharge occurring along

the deflected path:

. . . when an electric discharge has passed through a gas, the supply of

dissociated molecules, or of molecules in a peculiar condition, left behind

in the line of discharge, has made that line so much better a conductor than

the rest of the gas, that when the particles composing it are displaced by

the action of the magnetic force, the discharge continues to pass through

them in their displaced positions, and maintains by its passage the higher

conductivity of this line of particles. On this view the case would be very

similar to that of a current along a wire, the line of particles along which

the discharge passes being made so much better a conductor than the rest

of the gas, that the case is analogous to a metal wire surrounded by a

dielectric. (Thomson 1893, sec. 127; also see sec. 89)

Poynting published a theory very similar to Thomson's, which he termed "an

electrolytic account of metallic conduction" (Poynting 1895). The mysterious part of

both Thomson's and Poynting's theories was precisely what link between ether and

matter occasioned the molecular dissociation necessary for the breakdown of dis-

placement. Neither theory, moreover, even attempted to explain Ohm's law because

that law seemed to involve so deeply this mysterious connection. What both theories

did do was to take Maxwell's account of the conduction current in terms of displace-

ment buildup and breakdown and to amplify it, using Poynting's theorem to argue

that displacement, like energy, flows radially into the conductor, generating magnetic

intensity at right angles to itself and to its motion. In order to explicate the process,

both Thomson and Poynting linked the dissolution of displacement to processes of

molecular dissociation. These processes, however, were entirely unexplained, nor

was any subsequent Maxwellian attempt made to explain them. In developing the

moving displacement account of conduction, Poynting and Thomson had, in essence,

provided a clear mathematical explication of the concept which Maxwell had implic-

itly used in the Treatise. The effect was to entrench that explanation and its attendant

lack of immediate concern with the link between the ether and the microscopic struc-

ture of matter.
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Electrodynamics

What I propose now to do is to examine the consequences of the assump-

tion that the phenomena of the electric current are those of a moving sys-

tem, the motion being communicated from one part of the system to an-

other by forces, the nature and laws of which we do not even attempt to

define, because we can eliminate these forces from trie-equations of motion

by the method given by Lagrange for any connected system. (Maxwell

1873, vol. 2, sec. 552)

Except for the Faraday effect (Knudsen 1976), the only direct application of dy-

namics in Maxwell's Treatise involves a limited theory of filamentary currents which

takes account only of the field's kinetic, and not its potential, energy. Despite these

limitations, the theory provides a good example of how dynamical theory works

—

and of how it can lead to surprising results.

Maxwell assumed that filamentary currents can be represented by generalized ve-

locities. He further assumed that the kinetic field energy associated with such currents

is spread throughout space, that it can be localized in every volume element, and

that one can specify what portion of the energy is controlled by a specific element of

the circuit. One can do this for mechanical structures: that is, one can determine both

the distribution of energy throughout them and the portions of the whole energy

controlled by those parts of the mechanism (the "driving points") on which external

forces act. The circuit itself demarcates the region in which external forces (viz.,

electromotive force) are applied, while the mechanism extends throughout space,

including the region occupied by the circuit. The problem now is to obtain an expres-

sion for the field energy as a function of the circuit positions, of the currents (gen-

eralized velocities) in them, and perhaps also of the coordinates which correspond to

the velocities.

Maxwell (1873, vol. 2, pt. 4, chap 6) assumed that a group of circuits bear-

ing currents /lf I2, . . . , Ij determines a distributed field energy, kinetic in form,

equal to:

(1) Tc = {MDXjLjIj + (1/2)2,.^/./;

The coefficients Ljy L tj
of self- and mutual induction, respectively, represent the man-

ner in which the currents, as generalized velocities, are linked to the field energy Tc .

These coefficients are functions solely of the configuration of the circuit system.

Maxwell settled on expression (1) only after an experimental consideration of

other possible terms in Tc ; terms which would, if they existed, represent a direct

connection between the electric currents as generalized velocities and the material

velocities of the circuits in which they occur. Thus one possible expression which is

quadratic in the currents and contains products of current quantities has the form of
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equation (2), wherein the e
{
are the generalized coordinates corresponding to the

generalized velocities It:

T'c
=

(2) + (V2)Xj[MJ{rj,ej)Ijdrj/dt]

In equation (2) the r, represent the configuration of the circuits.

Maxwell rejected any dependence of the energy on the coordinates eh however,

simply because if the currents are constant and the conductors at rest, then the field

does not change even though the e
t
do. Maxwell also rejected the third term in Tc ,

which represents a possible interaction between currents and the material motion of

the circuits in which they occur. In essence, if this term existed, then changes in

currents would imply mechanical forces on the conductors which bear them, and the

current itself would have a quasi-material momentum that could be detected, for

example, by rapid rotation of an electromagnet. Maxwell had in fact performed the

latter type of experiment as early as 1858 and had obtained no indication of an

interaction. He consequently set this term to zero. By so doing he divorced the field

processes associated with currents from material motions. This divorce was deeply

embedded in Maxwellian theory and for over two decades precluded any direct link

between current processes and material motions. It thereby reinforced the distinct

aversion Maxwellians had to a consideration of the link between ether and matter.

Given equation (1) we can easily develop the theory of quasi-stationary filamen-

tary currents from Lagrange's equations. For example, the electromotive intensity

induced in one of two circuits by a current change in the other is simply:

(3) E, = -dldt{dTJdI
x ) + {dTJde^ = L X2I2

Similarly, the electromagnetic or ponderomotive force on one circuit due to the cur-

rent in it and in a second circuit is:

F
x

= vTc
= /,/2VL 12

Thus far Maxwell had not provided a connection to the magnetic field. To do so

he recurred to Hamilton's equations and to Faraday's law of electromagnetic induc-

tion. It is here, as we shall see, that the assumption of identifiable portions of field

energy comes strikingly to the fore. Maxwell considered the effect of current changes

in external circuits on the current in a given circuit, that is, the second term in

equation (1). In computing the induced intensity to link it to magnetic induction, it

is first essential, Maxwell asserted, to decompose the affected circuit into geometric

elements—not current elements. One then seeks the contribution of each circuit ele-

ment to a quantity which is a function of the currents in the external circuits and

which can be used in Hamilton's equations as a generalized momentum to deduce

the intensity (eq. [3]), that is, Maxwell sought a p x
(I2) such that dp

x
ldt is equal to

dldt[dTc(I x
I2)ldI x }.

Maxwell thus assumed that each element dl of the affected circuit contributes a

part dp i to the interaction portion of the generalized momentum. He then postulated

that dp
x

is proportional to the scalar product of some vector A with dl
x , namely, that

dp
x

is equal to A • dl
x

. In Maxwell's words:
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Since the quantity p depends on the form and position of the circuit, we

may suppose that each portion of the circuit contributes something to the

value of p, and that the part contributed by each portion of the circuit

depends on the form and position of that portion only, and not on the

position of other parts of the circuit. (Maxwell 1873, vol. 2, sec. 586)

Maxwell immediately integrated dp
x
about the circuit, and he then used the Stokes

theorem to obtain:

(4) p x
= /(V x A) • dS

x

In equation (4) the integration is, of course, over the area bounded by circuit one.

Consequently, by Hamilton's equations -dp
x
ldt must be the electromotive intensity

induced in circuit one by relative motion with respect to, or by a current change in,

other circuits. By Faraday's law this means that V X A must be the magnetic induc-

tion, B, which passes through the region bounded by circuit one.

This provides a method for calculating the coefficients of induction through the

field equation linking induction and current, namely, V X B = \xJ . In particular,

adopting the condition V • A = (see note at end of appendix 1) leads to the

expression A(r) = |x/(//r')d
3
;c, where J is the current density in d

3
x, and the r' are

the distances from the field point r to the d
3
x. This gives, for example, for two

circuits:

Px = nJF X f(J2/r')d
3
x2 ]

• dS

= M.J[J(?2/rV*2] * dl
x

Since we assume all circuits to be filamentary, we have:

(5) Px = \LlJRdI, J/ 3/r,. 2 ]

Hence the part of Tc which is determined by I
X
I2 is:

(6) TC(IJ2 )
= yJJJSldli dl2lrxa ]

Whence the coefficient of mutual induction L
x 2 is simply \±Jf[dl x

• dl2/r Xy2\- Expres-

sion (6) is the so-called Neumann potential, and it implies an electromagnetic (pon-

deromotive) force between circuits equal to +Vrc , as well as an induced electro-

motive intensity -d/dt(dTc /dIj).

The most important point here is that Maxwell based his analysis on the assump-

tion that circuit elements control, as individuals, specific quantities of generalized

momentum—and therefore of field kinetic energy. (One can carry through precisely

the same kind of calculation for the coefficient of self-induction.) This fact is lost

sight of in Maxwell's calculation because he proceeded directly from the assumption

of elements to integrals taken round the circuits. Given the legitimacy of considering

individual circuit elements, however, the electromagnetic force, VTC , which is here

obtained from circuit integrals, is not the entire ponderable action of one current-

bearing circuit upon another. To see this, first note that +VTC gives an electromag-

netic force which, for each element, is perpendicular to that element:

+vrc = -vJMSifftjrtJydtt dl2 ]

(7) - iLlJJttldli x (dl2 x r K2)]/r,, 2

3

}
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(Equation [7] is Ampere's law for the force between closed circuits.) If there were,

say, a material tension in circuit one which depended on the current in circuit two,

then its existence would be fully compatible with the integrated force (eq. [7]) since,

taken round a closed curve, the integrated tension vanishes.

This might be without historical significance were it not for two things. First, if

one assumes that circuit elements individually determine quantities of energy, as

Maxwell did, then this tension must in fact exist. Second, both J. J. Thomson and

Larmor were well aware of this fact, though only Larmor investigated it in detail, as

we shall see in part III (Thomson 1888, sec. 41). In other words, if we assume that

the field behaves literally like a mechanism, with the circuits as its driving points,

then we will necessarily obtain other forces than Ampere's.

Let us examine how this circuit tension arises. For simplicity we shall limit our-

selves to the special case of rigid conductors. (In the general case one obtains even

more terms, but the analysis is more complicated.) This assumption permits us to

hold J fixed in the circuits as we consider virtual displacements of them. We begin

with the Maxwellian hypothesis that any volume element d3
x, in which a current J

and a vector potential Ae
(the latter externally applied) exist, controls a portion dT of

the total field energy:

dT = J • A ed3
x

On Maxwell's assumptions, the element d3
x controls dT geometrically but is not itself

a direct participant in the electric system, even if it is filled with conducting matter.

Hence, one can, by variation of dT through the element d3
x, calculate the electro-

magnetic force which acts upon the element. For rigid circuit J is fixed in d3
x geo-

metrically and is therefore not affected by the variation, which acts only upon Ae
.

We find for the electromagnetic force on d3
x:

(8) V(7 - A e
) = J x (V x A e

) + (J • V)A e

-*• -» -* -»• -»

We have already seen that, if V • A e
is zero, then Ae

varies as J'lr, where J' is the

external current. Consequently, if we integrate equation (8) about a circuit of which

d3
x forms an element, the second term necessarily vanishes, leaving only the inte-

grated first term which is just the Ampere force.

Clearly, though, (7 • V)A e
behaves like a pressure or tension. As such, it can have

a mechanical effect even though, when integrated about a closed curve, it vanishes.

If a system, subject to internal pressure or tension of this sort, is bounded by a

framework, then that framework will be subjected to extensive or compressive force.

(Consider, e.g., a closed elastic wire stretched around the circumference of a disk.

Although the integral of the tension in the wire taken all round it vanishes, neverthe-

less, the wire exerts a compressive force on the disk which is equipollent to the disk's

perimeter at each point. If the disk is compressible, one can measure its change in

volume and then, from a knowledge of its compressibility, deduce the tension in the

wire.) As we shall see in part II, Larmor suggested an experiment for detecting this

tension. J. J. Thomson was, to my knowledge, the first to point out that equation

(8), and not just its first term, must be considered. He, however, noting that the

second term vanishes on integration, missed the mechanical effects which Larmor

later discussed.
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It is instructive to examine how modern accounts (again limiting ourselves to rigid

conductors) avoid this extra term, for in doing so we shall be able to pinpoint why
Maxwellian theory could not avoid it. Modern accounts (see, e.g., Jefimenko 1966)

begin with the integral expression for the interaction energy of field and current,

namely, JJ • Aed3
x. One then takes the gradient of this expression with the operator

acting only upon Ae
. This procedure leads to the integrated form of equation (8) in

which the second term does not necessarily vanish since the currents may not all be

closed. However, one can partially integrate this second term to obtain:

(9) J0 V)A ed3
x = jA e

(J dS) - J(V • J)A
ed3

x

In equation (9) the operator affects only Ae
so that the second term vanishes. In order

for the first term also to vanish, modern accounts assume that J does not exist

through all space and that the surface of integration is at infinity. As a result, one is

left only with the integrated first term of equation (8):

(10) VJJ • A e
d3
x = J[J x (V x A e

)]d
3
x = J(J x Be

)d
3
x

However, to be able to perform the partial integration with a boundary at infinity,

it is essential to assume that it is not legitimate to consider the element d3
x in isola-

tion (or, indeed, any portion of the current system) as controlling a quantity of energy

(7 • A e
)d

3
x. For if this were legitimate, then the surface integral could be taken over

any volume in the field. If this is done, then jA
e
(J • dS) will not in general vanish

since A e may have different values at different parts of the boundary. Consequently,

to avoid the extra terms it is essential to assume that energy elements are not con-

trolled by circuit elements.

It is important to recognize that to assume the Maxwellian circuit element controls

a portion dT of energy is not necessarily to assume that dT is localized at d3
x. On

the contrary, Maxwell insisted that field energy is spread throughout space where

each volume element does contain a portion of the total energy. The two ways of

considering energy—by control and by localization—are represented mathematically

by the difference between the expressions for field energy as a function of current

and vector potential or as a function of magnetic induction and intensity.

Maxwell, and most Maxwellians (Heaviside was a notable exception), considered

the energy density J • A (which represents energy controlled by, not localized in, an

element) to be the fundamental expression. The reason, no doubt, was that this

expression directly reflects the dynamical image of the circuit—and, by extension,

even displacement currents—as the locus of the mechanism's driving points. Kinetic

energy feeds into the mechanism only through currents. To know the actual distri-

bution of energy, one must first construct a vector field which has a (possibly ex-

tremely small) value throughout all space even if the currents which generate it are

local, and one must then express the total energy as a function of this field. The field

in question is the magnetic field. We can easily obtain the required^ expression by

partial integration of the energy to a surface at infinity. Since J is V X H, and B
is V X A we have:

(11) (1/2)J7 • Ad3
x = (\/2)J(H x A) • dS + (l/2)vJH

2d3
x



Electrodynamics 59

Since J is local, and H x A falls off as Mr3
, the first term on the right vanishes for

a surface at infinity. On these assumptions we may consider (\/2)[kjH
2
d3
x to be the

total electrodynamic energy. We may further consider that the volume d3
x actually

contains the energy (M2)[xH
2
d
3
x since H, unlike J, is not purely local.

This last assumption differs considerably from the assumption that a circuit ele-

ment d3
x controls an amount of energy (1/2)7 • Ad3

x, since this latter energy is not

localized in the element. Nevertheless, the two ideas are related in the sense that

Maxwellian theory had a powerful tendency to consider integral expressions as less

than fundamental. Maxwellian theory always thought it essential to consider the po-

sition and localized source of any given portion of field energy, because it viewed

the field as a mechanism. Indeed, we shall see in part III that Larmor can scarcely

be said to have abandoned Maxwellian theory until he admitted that circuit elements,

with their control of specific portions of field energy, are not legitimate subjects for

dynamical inquiry.
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Applying Hamilton's Principle to the Field

Maxwell used Lagrange's equations in two places in the Treatise, only one of which

involved purely electromagnetic variables: first, in circuit theory; second, in his ex-

planation of the Faraday effect. Their use was soon widely extended by the young

Maxwellians who began to publish in the late 1870s. By applying Lagrange's equa-

tions to a continuum—the electromagnetic field—Maxwell was extending a British

tradition firmly established by William Thomson and Peter Guthrie Tait in their sem-

inal text on statics and dynamics, Treatise on Natural Philosophy (1879). The devel-

opment of the British dynamical tradition—a tradition which was first embodied in

W. Thomson and Tait's Treatise—is an extremely important topic of its own which

we cannot pursue in detail here. Suffice it to say that Maxwell's Treatise in effect

generates the mechanics of continuous media either directly from Lagrange's equa-

tions or, more fundamentally, from Hamilton's principle, which W. Thomson and

Tait regarded as the preeminently fundamental formula of physics in all of its

branches. Of it they wrote:

Maupertuis' celebrated principle of Least Action has been, even up to the

present time, regarded rather as a curious and somewhat perplexing prop-

erty of motion, than as a useful guide to kinetic investigations. We are

strongly impressed with the conviction that a much more profound impor-

tance will be attached to it, not only in abstract dynamics, but in the theory

of the several branches of physical science now beginning to receive dy-

namical explanation. As an extension of it, Sir W. R. Hamilton has

evolved his method of Varying Action, which undoubtedly must become a

most valuable aid in future generalizations. (W. Thomson and Tait [1879]

1962, vol. 2, sec. 326)

Briefly put, Hamilton's principle requires that the path actually taken by any phys-

ical system between two states at specified times and with fixed values of the vari-

ables at these times must be such that the value of the function }(T - W)dt, where

T and W are, respectively, the kinetic and potential energy, must be an extremum,

namely,

(i) 5/;i(r - w)dt = o

In this form Hamilton's principle is sufficient to generate both the equation of motion

of the system and the boundary conditions for any continuous field with localized

forms of energy. This principle, or special forms of it (e.g., what was on occasion

termed "d'Alembert's principle"), was used to develop continuum theories of optics

(see appendix 2).

In his Treatise, Maxwell did not use Hamilton's principle but employed only

Lagrange's equations (or Hamilton's), which are both implications of equation (1).

For Maxwell's purposes the general principle was unnecessary because it provides
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boundary conditions as well as the equation of motion, and Maxwell was content to

found his boundary conditions on the flux characteristics of electric displacement and

magnetic induction (but see chap. 23). The special importance of the principle arises

primarily, though not only, when one is not otherwise certain of the boundary con-

ditions, such as in the problem of reflection at the surface of a magnetic medium.

In fact, the first use made of Hamilton's principle in electromagnetism was for

precisely that problem. FitzGerald (1880) developed a theory of reflection (described

for isotropic media in appendix 4) which employed Hamilton's principle in conjunc-

tion with the Maxwellian proposition that the ordinary kinetic and potential field

energy densities are, respectively, (l/2\x)B
2
and (l/2e)D

2
. FitzGerald's theory is in-

timately linked to MacCullagh's optical theory, which was based on a certain poten-

tial function (discussed in appendix 2). For isotropic reflection theory, FitzGerald

could as easily have used the standard electromagnetic boundary conditions instead

of detouring through Hamilton's principle, but they did not give empirically correct

results in the problem FitzGerald was most concerned with—magnetic reflection (the

Kerr effect). (See part II for the details of this extremely influential problem.)

If one adopts Hamilton's principle as the fundamental formula of electromagne-

tism, then every problem in field theory very nearly reduces to finding an appropriate

expression for the field's potential and kinetic energies. (The reduction is not a com-

plete one where boundary values are concerned, because one must impose indepen-

dent conditions on the variables or generalized coordinates of which the field energies

are functions.) If one is not immediately concerned with boundary value problems,

then one can simply use Lagrange's equations. J. J. Thomson's Applications of Dy-

namics to Physics and Chemistry (1888) provides the most concentrated set of ex-

amples, for he treats every problem in electromagnetic theory in terms of the avail-

able variables used to specify field energies—essentially the same procedure Maxwell

had adopted in his circuit theory. J. J. Thomson concisely expressed the essence of

the procedure:

The first thing we have to do when we wish to apply dynamical methods

to investigate the motion of a system is to choose coordinates which can

fix its configuration. . . .

Having chosen these coordinates there are two ways in which we may
proceed. We may either write down the most general expression for the

Lagrangian function in terms of these coordinates and their differential

coefficients, and then investigate the physical consequences of each term

in this expression. If these consequences are contradicted by experience we
conclude that the term we are considering does not exist in the expression

for the Lagrangian function. Or we may know as the result of experiment

that there must be a certain term in the expression for the Lagrangian func-

tion and proceed by the application of Lagrange's Equations to develop the

consequences of its existence. (J. J. Thomson 1888, sec. 15)

This procedure, I contend, substantially embodies the core of what was meant by

"dynamics" in Britain during the 1880s. To connect a theory with the mechanics of

substantial continua then meant choosing an appropriate substantial representation

—

based on Green's potential—for the coordinates and velocities which occur in the

Lagrangian or Hamiltonian function. This was not an easy procedure, and, as we
shall see, it encountered intractable difficulties in accommodating conductivity.
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The essence of the Lagrangian or Hamiltonian approach consisted of two parts:

first, the specification of the generalized coordinates which fix the state of the field;

second, a choice of expressions, in terms of these coordinates and their spatial and

temporal derivatives, for the field energies. This procedure worked extremely well in

four kinds of situations: first, those, like circuit theory, in which the generalized

velocities were alone considered; second, in electrostatics, where only generalized

coordinates and not velocities were involved; third, magnetostatics, in which mag-

netic energy can be treated as potential; finally, situations, like nonmetallic reflection,

in which both velocities and coordinates figured but in which it was possible to

express the kinetic and potential energies explicitly in terms of functions of the same

variable. We have already considered the first (circuit theory) in some detail. The

second (electrostatics) is also quite straightforward and, in fact, formally parallels

circuit theory, for it concerns interactions between charged conductors. Thus the

theory of a system of conductors (Maxwell 1873, vol. 1, sec. 87) is based on an

expression for the field energy as a function of the squares and products of the con-

ductors' potentials or charges, and either the potentials or the charges may be treated

as generalized electric coordinates since they are linear functions of one another. If

the potentials are the coordinates, then variation of the energy with respect to them

yields charge; if the charges are the coordinates, energy variation yields potential.

The coefficients in the energy expression are, like the coefficients in circuit theory,

functions solely of material configuration; hence variation with respect to material

coordinates acts on these coefficients and yields material force. Magnetostatics differs

from electrostatics because it requires a dipole potential, but it too is formulated in

terms of static coordinates (see, e.g., Maxwell 1873, vol. 2, sec. 387).

The final situation—nonmetallic reflection theory—is, in one respect, even sim-

pler than the other three, for in this case material coordinates do not enter the prob-

lem except to fix the boundary. However, it is also more complicated than the others

because it is here essential to deal simultaneously with the kinetic and potential en-

ergy functions and to express them in terms of common variables. Reflection theory

requires both an equation of motion and boundary conditions, and Hamilton's prin-

ciple, first used in Maxwellian theory by FitzGerald (1880), provides them.

Consider how Hamilton's principle functions in this context. We begin with the

field energy:

(2) E = (l/2)/[|x//
2 + (\/e)D

2
]d

3
x

In order to apply Hamilton's principle, or Lagrange's equations, we must specify the

generalized coordinates. If only H or D appears then this is comparatively simple.

But here it is more difficult because both must be expressed in terms of common
variables. FitzGerald 's solution was to assume that H is a velocity duldt and to use

the displacement version of Ampere's law, V x H = dD/dt, to rewrite E as:

E = (l/2)J"[|x(dw/d0
2 + (1/€)(V x u)

2]d\

Appendix 4 includes a discussion of how Hamilton's principle then yields boundary

conditions and the equation of motion for u—which FitzGerald assumed to be the

optical vector. This emphasizes a cardinal aspect of the dynamical foundation of

Maxwellian theory: in order to apply Hamilton's principle or Lagrange's equations

to the most general possible situation, it is essential to choose generalized coordinates
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in terms of which the electromagnetic vectors can be expressed. The usual course

was to choose some expression for H and then to use Ampere's law to find the

expression for D in terms of the same variable. This did not have to be done in

circuit theory, electrostatics, or in magnetostatics because in these branches of the

subject only one of the two parts of the energy E appeared.

We are now prepared to examine the major difficulty which Maxwellian theory

faced, a difficulty which was substantially responsible for the influence of the inter-

mittent decaying displacement theory of conduction (which we have already dis-

cussed at length in sections 3.2 and 3.3). Briefly put, it was apparently not possible

to incorporate conductivity into the dynamical structure of Maxwellian theory: it

could not be consistently introduced into Hamilton's principle or Lagrange's equa-

tions. In order to understand this deeply unsettling problem, we begin with a case in

which it is possible to incorporate conductivity, namely, standard circuit theory.

Maxwell did not himself incorporate conductivity directly into the dynamical

structure of the theory. Rather, he treated Ohm's law as an empirical, independent

fact and subtracted the electromotive intensity it requires from the induced intensity

(Maxwell 1873, vol. 2, sees. 579 and 582). For example, in the case of two circuits

the intensity induced in the second by current variations is, since T = (\l2)Ll\ +
Ml

x
l2 + {\I2)NI\\

E2
= d{Ml

x
+ NI2)/dt

Using Ohm's law, Maxwell subtracted R2I2 from E2 , where R2 is the resistance in

the second circuit:

(3) E2
- R2I2 = d(A//, + NI2)ldt

In a complete dynamical theory, of course, one would be able to include a term in T
which would imply the term R2I2 in equation (3). This cannot be done without ex-

tending the dynamical method to include dissipative effects. That was first accom-

plished by Lord Rayleigh and presented in detail in his Theory of Sound (1877).

In order to include a generalized force which is proportional to the generalized

velocity in Lagrange's equations, Rayleigh showed that one must add to the Lagran-

gian a term F which is a linear function of the squares and products of the velocities.

F, termed the "dissipation function" by Rayleigh, is not, however, used directly in

Lagrange's equations as the kinetic and potential energies are used. Instead, to obtain

the corresponding generalized force one must add, for a component vx of generalized

velocity, the quantity dF/dvx to the usual Lagrangian derivatives. In the case of elec-

tric circuits, treated in detail by Rayleigh (1896, 1886), F is simply (1/2)2,7?,/?,

where the currents /, are to be considered as velocities. For example, in our case of

two circuits we now have:

T = (M2)Ll] + A//,/2 + {\I2)NI\ F = (1/2)/?,/? + (\I2)R2I
2
2

E2 - d/dt(dT/dI2 ) + dF/dI2 = dlbt(MI
x
+ NI2) + R2I2

Rayleigh 's dissipation function was an analytical device designed to preserve the

formal structure of Lagrange's equations (or Hamilton's principle, into which F can

also be incorporated by a suitable technique of independent variation) but at the price

of violating the completeness of the system; for energy is lost or "dissipated" wher-

ever F is nonzero, and the dynamical equations cannot be further modified to take
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account of this lost energy. As far as Lagrange's or Hamilton's equations are con-

cerned, such a system simply loses energy.

A completely general expression for the electromagnetic Lagrangian must include

a dissipation function in order to represent conductivity. In particular, it should be

possible somehow to generate every equation in Maxwellian theory, including bound-

ary conditions for metallic reflection, by including a dissipation function in Hamil-

ton's principle. (See the epilogue for an example of this.) But we here land squarely

in a deep difficulty which goes to the heart of Maxwellian theory: it is impossible to

do so and yet simultaneously to maintain a clear distinction between currents of

conduction and displacement. The reason is that both currents must be expressed in

terms of the same generalized velocities in order to use Hamilton's principle. This

need not in principle be damaging since, one might think, it could unite analytically

two things—currents of conduction and displacement—which were already united in

concept as quantity shifts, and it could do so by incorporating the irreversible aspects

of conductivity. After all, flow in a viscous, elastic continuum can be treated in this

way and yet a distinction of sorts can be retained between reversible flow (for fast,

small motions) and irreversible flow (for large, slow motions). However, if this is

done, then one faces two problems. One of them was important only after 1893, when

J. J. Thomson demonstrated that the Kerr effect can be explained on the basis of the

Hall effect only on the assumption that the magnitude of the Hall effect is different

for displacement than for conduction currents. There is no way in which such a

difference can be incorporated into Hamilton's principle because both currents rep-

resent the same generalized velocity. Second, and of greater importance, if this pro-

cedure is adopted, then it is not possible to assimilate the equations of electromag-

netism to those of any continuum which can store energy by substantial shift (with

one exception, discussed in chap. 7), as Heaviside conclusively demonstrated in the

early 1890s.
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The Maxwellian Dilemma

The great difficulty with Maxwellian theory is that one cannot set up correspondences

between mechanical and field variables which lead to consistent results unless one

ignores conductivity. Heaviside's demonstration of this fact was based on the require-

ment, accepted by all dynamical theorists, that Green's potential function for an

elastic continuum represented the most general possible expression for the potential

energy density, since Green had obtained it by considering a completely arbitrary

strain. In appendix 2 the several ways in which Green's potential was utilized in

(mechanical) continuum theories of optics is examined. Here we need only its iso-

tropic form, namely, for a vector field u that fixes the configuration of the medium:

W = (l/2)o(V • uf

(1) +2b{V x uf + IblijidUildXjduJdXi - du
i
/dx,du/dx

j]

Maxwellians believed that at least some of the terms in this expression must be

present in any possible mechanical analog for the electromagnetic field. (Not every

term had to be present, even though removing a given term might make it extremely

difficult to realize the model. The requirement that the potential of the field must be

contained in some part of equation (1) essentially reflects the assumption that the

medium is linear and conservative.)

The earliest mechanical analog in Maxwellian theory was the one developed by

Maxwell himself in the late 1850s on the basis of a suggestion by William Thomson,

in which it is assumed that the magnetic field intensity, H, corresponds to vorticity,

(1/2) (V x du/dt) (Maxwell 1873, vol. 2, pt. 4, chap. 21). Despite the importance

of this model for Maxwell (Knudsen 1976), it was not used by any Maxwellian after

about 1885 and by few before then. The reason is quite simple. Maxwellians soon

realized that this model cannot maintain a parallel between the electromagnetic and

the mechanical expressions for field energies. An understanding of this point will

clarify Heaviside's general considerations of analogs based on the potential func-

tion (1).

Maxwell's model was taken up by Richard Tetley Glazebrook (1881). The details

of this development are considered below (see chap. 14). Glazebrook simply com-

bined the assumption that H is vorticity with the equation of motion of an incom-

pressible elastic medium (for which V • u vanishes); equation (2) is implied by equa-

tion (1) and by the assumption that kinetic energy density is (\/2)p(du/dt)
2

:

(2) pa^/ar
2 = bv2

n

If we assume that the electromagnetic analog of this medium is nonconducting, then

Glazebrook's model, when combined with the field equations, is compatible with the

correspondences:



66 Chapter Seven

(assumption)// = (1/2)V X du/dt

D = -(l/2)V
2
w

u, = p

(3) 1/e = b

Now if we compare the usual expressions for electromagnetic field energy with the

corresponding mechanical expressions for the incompressible medium, we find at

once that it is impossible, given equations (3), to identify either (l/2)|x//
2
or (l/2e)D

2

with the medium's kinetic or potential energies. The reason is that the existence of

vorticity fundamentally alters the dynamical properties of the medium. For, if vortic-

ity exists, then it must be included explicitly in the scheme by partial integration of

the kinetic energy function. The resulting expression cannot be written as the square

of the vorticity (as shown in appendix 6), so that H2
cannot solely determine the

medium's kinetic energy, nor can it correspond to the medium's potential energy

since it contains velocity.

One cannot obtain a precise parallel at every point between the Maxwellian equa-

tions and a continuum analog, based on equation (2), in which the magnetic field

intensity corresponds to vorticity. One cannot, that is, begin with electromagnetic

energy densities expressed in terms of the analogs of D and H in this scheme and

obtain the energy density of an incompressible medium which stores energy by sub-

stantial shift and which is endowed with vorticity: this possibility is foreclosed by

the very existence of vorticity. This fact must have been quite obvious soon after

1885 because Heaviside, for example, did not even consider this scheme worth ex-

amining in the early 1890s.

Heaviside made the situation critical by demonstrating that one cannot set up any

table of consistent and acceptable correspondences between mechanical and electro-

magnetic variables unless one completely ignores conductivity. (Heaviside's pro-

foundly important analysis is given at the end of this chapter (sec. 7. 1) for those who

wish to follow it in detail.) The Maxwellian was therefore faced with a dilemma: it

seemed impossible to include conduction in a mechanical analog for the field. This

was not, however, clearly perceived by all Maxwellians (though most of them un-

derstood that the core problem of the theory somehow involved conduction.) For

example, when FitzGerald informed Larmor in 1893 that Heaviside doubted the pos-

sibility of consistently treating magnetic intensity as a velocity—an assumption which

was the foundation of Larmor' s theory—Larmor wrote Heaviside to query him on

the problem. Heaviside replied:

December 6, 1893

As regards H a velocity, it is hardly correct to say that I have given it up.

Rather that I could not see my way to understand the mechanical meaning

of resistance. But I consider it makes the only mechanical analogy (except

a similar one, E a velocity) of the quasi-elastic solid type that has yet been

proposed, & which is electromagnetically satisfactory. Of course I presume

that you too refer to Lord K's rotational ether. If you are able to develop

it clearly as regards conduction current, etc. it would I think be of impor-

tance. Even if this rotational ether is not the thing, it is the next best thing.

(Larmor Letters, [R. S.] RR 695)

This letter encapsulates the central problem for Maxwellian theory by the early

1890s: namely, to incorporate conductivity into a formally consistent dynamical
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scheme. That problem substantially determined the development of Larmor's ideas

(see part III).

Nevertheless, one did not have to consider conductivity in this fashion. Conduc-

tivity need not pose a problem if one conceives it differently, in the way that Poynt-

ing and J. J. Thomson did. That is, one could adopt the theory according to which

"conductivity" is merely a measure of the rate at which displacement, flowing into

the medium, disappears and attribute this process to unspecified, or loosely de-

scribed, processes of molecular dissociation. The effect of this theory is to divorce

conductivity from capacity and permeability; to make it, unlike them, a property

which depends directly on the complex and unknown link between ether and matter

which most Maxwellians in the 1880s declined to discuss. But, one wonders, why
should conductivity differ so profoundly from properties of the field which can be

directly incorporated into a consistent dynamical scheme based on Lagrange's equa-

tions or Hamilton's principle?

J. J. Thomson addressed precisely this question in his Applications (1888, chap.

18). He there demonstrated that dissipative terms cannot be introduced into a dynam-

ical system "by supposing that any subsidiary system with a finite number of degrees

of freedom is in connexion with the original system." The only way in which La-

grange's equations can be preserved (without, i.e., introducing the artifice of Ray-

leigh's dissipation function) is to assume that the dissipative terms represent time

averages over the system's true states, these terms being due to intermittent effects.

In fact, Thomson easily demonstrated that if these actions are of exceedingly short

duration and do not involve steady changes in the state of the system, then their

effect is the same as that of a steady, generalized force of the form «V2, where n is

the number of actions per second and 2 is the integral over the duration of the

intermittent action of that part of the Lagrangian which is determined by each action.

If V2 does not involve the generalized velocities, but n is a linear function of them,

then this force is frictional in character on a macroscopic time scale.

This analysis applies particularly to viscosity in material media, which, since

Maxwell's work in the 1860s, had been attributed in Britain to molecular transport

properties. Thomson's purpose here was to show how intermittent actions of this

kind can be incorporated in a Lagrangian formulation which, on a macroscopic time

scale, yields frictional terms without using the dissipation function. The application

to conductivity follows at once in Thomson's account—which was aimed at this

problem—and goes far to explain why Thomson, at precisely this point in his book,

first considered Maxwell's old intermittent breakdown conception of the conduction

current. (Indeed, it is perhaps possible, in view of Maxwell's own work in transport

theory, that he was himself attracted to the idea for much the same reason.) If the

conduction current is intermittent, as the breakdown theory suggests, then one should

expect viscouslike terms on the large scale without being able to incorporate them
into a macroscopic dynamical scheme. What Thomson's argument provided, when
coupled with his and Poynting's account of conduction on the basis of displacement

flow, was both a justification and a method for bypassing the grave difficulty of

incorporating conductivity into the dynamical structure of Maxwellian theory.

Whereas Larmor was at least superficially cognizant of the broad outlines of this

approach, he was not deeply aware of the price that adopting it exacted (see part II).

For, unlike any of his Maxwellian contemporaries, Larmor attempted, and failed, to
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combine an attitude of ignorabimus toward conductivity with a dynamical theory that

demanded much more.

7.1 Heavside's Proof

There are numerous alternatives to the identification of H with vorticity, but all but

one of them have difficulties either with energy expressions or with conductivity.

Heaviside divided the various possibilities into four major categories: the incompres-

sible, inviscid elastic medium; the incompressible, viscoelastic medium; the inviscid,

rotationally elastic medium; and finally, the viscous, rotationally elastic medium,

with either linear or rotational viscosity (Heaviside 1893-1912, vol. 1, sees. 146-

59). For each model we may choose either the magnetic or the electric field vector

to be the velocity.

Let us examine the first case, whose equation of motion is:

(4) pd^/df
2 = bV2

u

To find the electromagnetic analog of equation (4)jve simply combine Ampere's law

(V X H = edE/dt), the Faraday differential law (V x E = -^dH/dt), and the zero

divergence condition on magnetic induction. There results:

(4') \Ld
2
Hldt

2 - (l/e)V
2# =

For compatibility with equation (4) we may consistently choose:

H = du/dt; p = jx; b = 1/e; D = V x u

magnetic energy density = {\I2)\lH
2 = (l/2)p(dw/d?)

2

electric energy density = (l/2e)D
2 = (b/2)(V x u)

2

We see that we obtain a conflict between the electric energy density and the potential

energy density (eq. [1]) for a medium with V • u zero. If we choose electric intensity

as velocity, we obtain the converse of this situation: the magnetic field energy, which

must now correspond to the Green potential, is purely rotational, that is, (Z?/2)(V X
w)

2—it lacks the terms in brackets in equation (1).

The alternative, already familiar since FitzGerald's work (1880), was to assume

that the bracketed terms in equation (1) do in fact vanish, that is, that the medium

stores energy reversibly only in absolute differential rotation. This peculiar medium,

invented by James MacCullagh sixty years before (see appendix 2), is difficult to

explicate mechanically—though far from impossible—but it is entirely straightfor-

ward from the analytical position of dynamical theory of continua. That theory sim-

ply treated the Green potential as a general expression to be manipulated as needed.

If the result worked, fine; a mechanical image could be worked out later on if one

felt it necessary to do so. Green's potential had to be fit somehow to any given

scheme, because if it could not be, then it would be impossible to fit electromagne-

tism to any model of a continuous, linearly responsive medium which stores energy

through substantial shifts. In other words, Heaviside 's considerations dealt, not with

the playschool variety of model building occasionally exemplified by Oliver Lodge

and so often thought to be at the heart of British theory at this time, but with the far

more profound question of whether it was possible consistently to assimilate the

Maxwellian field to any analytically possible medium in which energy is stored by
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some possible shift of substance (a shift which may, in fine detail, involve extremely

complex rearrangements).

Suppose, then, that we adopt rotational elasticity. The equation implied by (1) is

then consistent with the Maxwellian equations, including energy expressions,

whether we take H or E to be a velocity. But if we introduce conductivity, a deep

problem arises. Begin by simply combining Ohm's and Ampere's laws to obtain:

(5) V x H = edE/dt + <jE

If we assume that H is a velocity duldt, then, as we have already seen, D must be

V X u. This gives, from (5):

(6) V X {duldt) = V X {duldt) + (o7e)(V X u)

If e is finite and a does not vanish, equation (6) evidently implies that V X u is

zero, that is, that there can in fact be no displacement, or else a is zero or e infinite.

The alternative is, of course, to generalize with Heaviside the representation for E to

be such that:

(7) V X H = V X {duldt) = (a + edldt)E

The problem with equation (7), Heaviside remarked, is that we do not at once see

the corresponding mechanical representation for E, whereas when a vanishes, E must

clearly correspond to (l/e)V x u.

To see what E might be, given (7), Heaviside first considered an irreversible

resistance coefficient {g) to the rate of change of differential rotation. This gives the

following equation for D:

(8) od^ldt
2 = -gV x (V x u) + b[V x {duldt)]

Equation (8) is to be compared with its electromagnetic equivalent. That, using

Ohm's, Ampere's, and Faraday's laws, is:

{9) [LdHldt = -(1/ct)V x (V x H) + (e/(T)V x {dEldt)

With H a velocity, we cannot, in Heaviside 's words, "harmonize" (8) and (9).

lb do so we would have to set g^ the coefficient of rotational resistance, equal to

— 1/cr, which gives duldt equal to V X H—an obvious inconsistency; or else assume

g to be equal to + 1/cr, and duldt to be equal to dDldt, which is inconsistent with

Ampere's law. One might essay a resistance to linear flow, namely, gdti/dt, but this

also fails because we would then have dtildt equal to V X (V X H), which is a

differential equation for H. In general any resistance term except the mechanically

meaningless gV X (V X duldt) must fail. Moreover, even for the latter term—the

only one which is even remotely possible—the representation for {eld)dE/dt (i.e., for

[\l(T]dDldt) would be —bV X {duldt), which implies that the rotational coefficient b

must itself represent the ratio of capacity to conductivity or else just the reciprocal

of conductivity, depending on whether E or D, respectively, is V X u. Thus, even

this possibility is inconsistent with Ampere's law in the absence of conductivity

(V x H = dDldt), since we would have V X H equal to the second derivative with

respect to time of E or D. It would be impossible, in this last remaining case, to

obtain the limiting situation for a medium of zero conductivity.

These results point out the cardinal problem of Maxwellian theory. Namely, it is
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simply not possible—except for one case to be considered in a moment—to introduce

a velocity for a field variable in order to retain Ohm's law and yet maintain consis-

tency with all field equations. If we start with Ohm's law, combine it with the field

equations, and assume H to be a velocity, we find that the displacement itself either

disappears or else that the system is inconsistent. Precisely because there is no inde-

pendent representation for the conduction current in terms of the velocity (precisely

because there cannot be one in Maxwellian theory), we are forced to use only E, H,

e, (x, and a in constructing the equation of motion for the generalized coordinates.

This leads to inevitable inconsistencies.

The only alternative, it seems, is to assume that the electric field E or the displace-

ment is the velocity. We first use field equations to find:

ed
2
E/dt

2 = -(l/fJL)V x (V x E) - vE

(10) \LdHldt = -(1/ct)V x (V x H) + (€/<t)[V x (dB/dt)]

If E is^ du/dt, then, since - [xdH/dt is V x E, we must have H equal to

— (l/|x)V X u (when the electric vector is velocity, then Faraday's law plays the

role Ampere's law plays when the magnetic vector is velocity). Combining this with

equations (5) through (10), we find:

(11) ed^/df
2 = -crdti/dt - (l/n)V x (V x H)

Moreover, we may write the field energies as:

electric field energy = (l/2)e£
2 = (\/2)e(du/dt)

2

magnetic field energy = (l/2)|x//
2 = (l/2(x)(V x«)2

Consequently, our scheme is fully consistent if we assume that the medium is elastic

for the differential rotation which represents magnetic intensity, that the electric field

energy is kinetic, and that the medium irreversibly resists linear flow.

The problem with this scheme is that it conflicts irremediably with the widely

accepted Maxwellian explanations of the Kerr, Faraday, and Hall effects on the basis

of the assumption that H is a velocity. Of equal significance, Maxwell's application

of Lagrangian theory to circuit analysis would fail entirely if magnetic energy could

not be treated as kinetic. To adopt the assumption that £ is a velocity—and this is

the only consistent dynamical choice left—would require a complete reconstruction,

and perhaps not a successful one, of Maxwellian theory. This was not a viable alter-

native.
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The Influence of Maxwell's Treatise on Henry

Rowland

By the late 1870 Maxwell's Treatise had engendered a vibrant program of research,

for by then Maxwell's own students had begun to train others, using the Treatise

both as a text and as a source for research problems. Little has been written about

this community of "Maxwellians," as I shall call those who pursued the program

set out in the Treatise at some point in their careers. Nevertheless, anyone who reads

the literature of the period rapidly learns to recognize many recurring names. The

first Maxwellians were mostly trained at the Cavendish Laboratory, if not directly by

Maxwell, then at least by reading the Treatise, discussing it with colleagues, and

working in the laboratory under Maxwell's direction. The first group of Cavendish

men consisted of eleven students, and most of them at some point published research

in Maxwellian electrodynamics (see Table l).
1

Other men who were trained at Cam-

bridge also became Maxwellians; finally there was a substantial group trained outside

Cambridge. These men, most of whom were born in the 1850s and educated in the

1870s, formed the core group of Maxwellians.

Among the non-Cambridge men listed in Table 1 were Henry Rowland and his

student, Edwin Hall. Although Rowland never worked at Cavendish, he had been in

contact with Maxwell in the early 1870s about his (Rowland's) attempt to develop a

magnetic analog of Ohm's law (Rowland 1873; see Miller 1975). By 1874 Rowland

fully understood the central distinction between magnetic flux or quantity, and mag-

netic intensity or force, on which the analogy depends (Rowland 1874). Though it is

not clear whether Rowland was familiar with either Maxwell's or William Thomson's

articles on electricity and magnetism before 1873, nevertheless Rowland's articles on

magnetic permeability (1873, 1874) reveal a good familiarity with W. Thomson's

work
2
and a growing understanding of the relevant portions of Maxwell's recently

published Treatise.
7'

Since Rowland had not learned electromagnetism from the Treatise—he appar-

ently relied on Faraday's Experimental Researches (1839-55)—he probably did not

fully assimilate the Maxwellian concept of the current until he had used the Treatise

many times (i.e., until late 1874 or 1875). On the other hand, Rowland had early

been attracted by Faraday's brief suggestion that the current is a vibratory phenome-

1. I thank Bruce Hunt for correcting several errors in this table as originally published.

2. Kelvin (W. Thomson) (1872). Thomson developed much of the mathematics which Maxwell later

transformed into field theory, and Thomson was aware of the crucial distinction between induction and

intensity; in fact, he invented it mathematically (see Wise 1977).

3. See Rowland (1873, 1874). For example: "Now when a magnetic force of intensity H acts upon a

magnetic substance, we shall have B = H + 4ttI, in which B is the magnetization of the substance

according to Faraday's theory, and is what I formerly called the magnetic field, but which I shall hereafter

call, after Professor Maxwell, the magnetic induction" (1873, 157).
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Table 1 The Maxwellians

The First Group of Cavendish Students

George Chrystal (1851-1911)

John Ambrose Fleming (1849-1945)
,

William Garnett (1850-1932) demonstrator

Richard Tetley Glazebrook (1854-1935)

James Edward Henry Gordon (1852-1893)

William Mitchinson Hicks (1850-1934) first admitted

Donald Macalister (1854-1934)

William Davidson Niven (1842-1917)

John Henry Poynting (1852-1914)

S. A. Saunders (1852-1912)

Arthur Schuster (1851-1934)

Cambridge Men Who Worked in Maxwellian Electrodynamics

Alfred Barnard Bassett (1854-1930) Caius, 1877

John Hopkinson (1849-1898) Trinity, 1871

Horace Lamb (1849-1934) Trinity, 1872

Joseph Larmor (1857-1942) St. John's, 1880

Hector Munro MacDonald (1865-1935) Clare, 1889

Michael Idvorsky Pupin (1858-1935) 1884. Berlin, 1889.

George F. C. Searle (1864-1954) Cavendish Peterhouse, 1888.

William Napier Shaw (1854-1945) Emmanuel, 1876.

J. W. Strutt (Rayleigh) (1842-1919) Trinity, 1865.

Joseph John Thomson (1856-1940) Trinity, 1880.

Maxwellians Educated Outside Cambridge

William Edward Ayrton (1847-1908) Univ. London

Arthur Prince Chattock (1860-1934) Univ. College, London

James Alfred Ewing (1855-1935) Univ. Edinburgh

George Francis FitzGerald (1851-1901) Trinity Coll., Dublin

Edwin H. Hall (1855-1938) Johns Hopkins

Oliver Heaviside (1850-1925) self-educated

Oliver J. Lodge (1851-1940) Univ. College London

Henry A. Rowland (1848-1901) Rensselaer Poly.

Silvanus P. Thompson (1851-1916) Univ. London

Herbert Tomlinson (1845-1931) Oxford

John S. E. Townsend (1868-1957) Cavendish Trinity Coll., Dublin

Frederick Thomas Trouton (1863-1922) Trinity Coll., Dublin

non that is intimately linked to the material structure of the conductor. Though one

can find the relaxation concept of the current elsewhere in Faraday's work, and per-

haps even here, nevertheless it is in all cases a difficult idea that can hardly be

distilled with ease. At least superficially familiar with contemporary Continental

views of the current as a flow of electric charge, Rowland had only Faraday's rela-

tively undeveloped idea of a ray-vibration to contrast with those views.

4. Faraday ([1839-55] 1965, vol. 3, pp. 447-52). This is a letter to Richard Phillips entitled

"Thoughts on Ray-Vibrations." See Miller (1972).
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In 1868, well before he was familiar with W. Thomson's and Maxwell's work,

Rowland tried to envision a way to distinguish between Faraday's ray-vibration the-

ory and the Continental theories. He reasoned that since in the Continental theories

the magnetic action of the current must depend solely on the motion of electric

charge, whereas in Faraday's theory the current depended directly on the properties

of the conductor, one could devise experiments to test the alternative hypotheses.

Rowland's idea was to rotate a charged conducting disk cut by radial slits; the slits

would maintain the electricity in position on the disk. If the Continental theories were

correct, one should obtain a magnetic effect when the disk is rotated, whereas Fara-

day's theory did not obviously imply that a magnetic effect should occur. To test

Faraday's theory directly, the radial slits would be eliminated and a charged body

held near the rotating disk. The moving disk would presumably interact with the

stationary induced electricity upon it, thereby producing a magnetic effect (Miller

1972, 8-9). Rowland did not perform these experimemts until 1876, when he carried

out variants of them in Helmholtz's laboratory in Berlin. He obtained a magnetic

effect only in the first case (Miller 1972, 13-15; Rowland 1878), but this did not

lead him to adopt the Continental theories.

By 1876 Rowland was immensely more knowledgable in electromagnetism than

he had been in 1868. He had by then assimilated the Treatise. In fact, Rowland

(1878) described his Berlin experiments by referring neither to Faraday nor to Con-

tinental theories, but to Maxwell's discussion in the Treatise of the possibility that,

as Rowland put it, "an electrified body in motion produces magnetic effects" (Row-

land 1878; Maxwell 1873, vol. 2, sees. 769-70). Thus by this time Rowland had

left Faraday's ray-vibrations far behind, replacing them with the Maxwellian concept

of the current. Indeed, Rowland did not refer at all to Faraday in his published

account, but to Maxwell and Helmholtz. Therefore, the null result of the second

experiment and the positive result of the first experiment had to be interpreted in

terms compatible with Maxwell's theory. This required that both experiments, though

they seemed to be quite different, be interpreted in essentially the same terms. To do

so, Rowland adopted a model suggested by Helmholtz in which the electricity gen-

erated by static induction in the second experiment was carried forward beneath the

inducing plate and released at its edge (e in fig. 9), where it divided into oppositely

directed currents of conduction (a and b). If the respective conduction currents thus

charged metal plate

inductively charged disk

Fig. 9 Rowland's convection experiment
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produced were inversely proportional to the lengths of the disk each traversed and

directly proportional to the "convection current" (c)—the electricity carried beneath

the inducing plate—then Rowland argued that the combined effect of conduction and

convection currents was too small to be detected with his device. Hence, the null

result of the second experiment could be explained if one assumed that the induced

electricity was carried forward to the edge of the inducing plate; that assumption

essentially reduced the two experiments to a common phenomenon. 5

Now Rowland calculated the magnetic forces in his experiments by assuming that

"as in the conducted current, the magnetic force due to any element of surface is

proportional to the quantity of electricity passing that element in a unit of time"

(Rowland 1878). Although this was an axiom in the Continental theories, Maxwell
had made the same assumption in the Treatise (1873, vol. 2, sees. 769-70). That is,

supposing a current of convection does produce magnetic force, it would do so, both

Rowland and Maxwell thought, as though it were a conduction current of magnitude

qv, where q is the charge on the moving body, and v is its speed. This supposition

was entirely natural within Maxwellian theory, though a detailed calculation of the

effect would have proved difficult.
6

To see why the supposition is natural, recall that in Maxwellian theory a current

was measured by the amount of electric quantity shifted across a unit surface in unit

5. See Miller (1972, 15-16). Miller claims that Rowland reported an effect in the second experiment

of the predicted order of magnitude. This is correct only in the sense that Rowland obtained no deflection,

which was consistent with the sensitivity of the experiment and the ad hoc theory of it proposed by

Helmholtz. Miller also argues that Helmholtz was suggesting that, in some sense, the convection and

conduction currents "exchange identities without net currents being created or destroyed." I find rather

that Helmholtz was suggesting an analogy based on parallel electric circuits, though there is a sense in

which a conversion of convected to conducted electricity occurred. In Rowland's experiment both sides

of a portion of the revolving disk were covered by a stationary metal sector which was charged. To

calculate the effect of the motion, Helmholtz suggested that, beneath the metal sector, the induced charge

rotates with the disk and constitutes a current of quantity C. Consider an element of this moving charge.

When it reaches the edge of the sector, Helmholtz further suggested, it is in effect released and flows

from the point of release in two directions as a current of conduction: one current flows around the disk

to the other side of the sector; the other current flows back under the sector. Both currents terminate at

the sector's edge. Helmholtz evidently reasoned that these conduction currents must occur if we allow the

induced charge to be carried forward by the revolving disk because the uncovered portions of the disk

remain uncharged (they would be charged if the convection charge were carried round). The two conduc-

tion currents, Helmholtz further assumed, effectively constitute a pair of currents in parallel circuit; each

begins at one end of the sector and ends at the other end. Let the sector cover \ln of the circumference of

the disk, and assume that the current flows in circles about the disk's center (Rowland scratched circles

on the disk to eliminate radial flow). It follows from the proportionality of electric intensity to resistivity

that the voltage drop between any two points is proportional to the product of the current between these

points by the distance between them. Consequently, since the conduction currents are in parallel, the

current of conduction beneath the sector is proportional to (1 — \lri) — (n — \)ln. Obviously the total

conduction currents must be equal to C (this is perhaps what Miller meant by the "exchange of identi-

ties"), so that Cln and C(n — 1)1n are the respective portions into which the current of convection is

divided at the edge of the sector. Now C(n - \)/n, which occurs beneath the sector, is opposite in

direction to the convection current. We have, therefore, a net current of C - C(n - \)ln = Cln beneath

the sector, and also Cln outside the sector. Consequently, there is a net current of Cln at every point, or,

as Rowland remarked, "the motion of electricity throughout the whole circle is \ln what it would have

been had the inductor covered the whole circle" (Rowland 1878).

6. The development of convection current theory among Maxwellians—specifically J. J. Thomson,

George FitzGerald, and Oliver Heaviside—is discussed in appendix 1.
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time. This by no means implied that a current in a conductor involved the motion of

charge, only that electric conduction was measured by the rate of transfer through a

surface of electric quantity. Convection currents do not occur in conductors, but they

do occur in electrolysis in Maxwell's theory, and they can, as in Rowland's experi-

ment, be produced artificially. In both of the latter cases, electric quantity is shifted

from one region to another, just as it is when a conductor carries a current.
7

The shift of quantity with time is the essence of a Maxwellian current of any kind.

The changing electric flux in the space surrounding a moving charged body should

therefore produce a magnetic effect. No careful reader of the Treatise can miss this

implication. That the effect will be the same as though the body in motion constituted

a conduction current was, of course, an intuition.
8
The fact that Rowland began his

1878 article with a reference to Maxwell's comment on convection currents is strong

evidence that he did not have to go beyond the Treatise to imagine or to calculate

the magnetic action of such currents.

Even this cursory review of Rowland's early work in electromagnetism makes it

clear that he was deeply imbued with Maxwellian ideas after 1874. Moreover, there

is no evidence in his published work or, to my knowledge, in his notebooks that

even before he read the Treatise he seriously entertained action-at-a-distance theories.

When Rowland began to direct students in the late 1870s, we can be quite certain

that he had them read Maxwell's Treatise carefully, and that the discussions he had

with them were carried out in the language of Maxwellian theory. Edwin H. Hall

was among the first of Rowland's students, and his earliest knowledge of electro-

magnetic theory was gained from reading the Treatise under Rowland's direction.

7. For electrolysis, see Maxwell (1873, vol. 1, sees. 238, 239 and 255-60). In section 238 Maxwell

stated that it was quite possible, though not certain "on account of our ignorance of the nature of electric-

ity and chemical compounds," that electrolysis takes place through electric convection. In section 239 he

further asserted that the magnetic action of a current is "independent of the nature of the conductor in

which the current is flowing, whether it be a metal or an electrolyte." It follows that convection currents

should have magnetic effects.

8. Maxwell described something very like this situation early in the Treatise: see vol. 1, sec. 61.
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Hall's Abortive Discovery

Edwin Hall graduated from Bowdoin College in 1875, after which he became a

secondary school teacher (Finn 1972; see Bridgman 1939-40). After two years he

decided to enter science. His motivation was not, apparently, a deep interest in the

field, but rather his conviction that science displayed that moral and progressive char-

acter which all sound Victorians so eagerly espoused.
1

Hall accordingly enrolled at

the newest institution in the country for pursuing a career in the eminently moral and

highly progressive science of physics: Henry Rowland's graduate department at Johns

Hopkins University in Baltimore, By the spring of 1879 Hall had progressed far

enough in his study, under Rowland's direction, to be reading the second volume of

the Treatise, which deals with magnetic and electrodynamic phenomena. He there

encountered a statement which he found quite puzzling. His ideas at that time, and

the subsequent developments which we shall discuss below, were recorded in his

notebook:

I was surprised to read some months ago in Maxwell Vol. II page that the

Electricity itself flowing in a conducting wire was not at all affected by the

proximity of a magnet or another current. This seemed different from what

one would naturally suppose, taking into account the fact that the wire

alone was certainly not affected and also the fact that in Static Electricity

it is plainly the Electricity itself that is attracted by Electricity.
2

We can best understand Hall's viewpoint by recognizing that he was just then

struggling to grasp Maxwellian principles. He was by this time becoming familiar,

as any student of Rowland's would necessarily have been, with at least those funda-

mental concepts of Maxwellian theory which do not involve the more advanced equa-

tions of electrodynamics. He had certainly read the first volume of the Treatise and

the first part of the second volume (on magnetism). He had also begun the first

chapter of the next part, which concerns electrodynamics. Moreover, he recorded in

his notebook that, having an interest in "discharge or conduction through Dielectrics

and Electrolytes generally"—a prime topic in Maxwellian theory—he had read an

article by Oliver Lodge which he had found "instructive in this direction" (Hall

1. Bridgman (1939-40, 74) quotes Hall as having said late in life: "I turned to science, after two

years of school teaching, because it was progressive and satisfied my standards of intellectual and moral

integrity, not because I had any passionate love of it or felt myself especially gifted for scientific under-

takings."

2. Hall, "Notebook of Physics" (Johns Hopkins University, 1877-80), Hall Papers Houghton Li-

brary, Harvard University: bms Am 1734-2 (hereafter Hall Notebook), see sheet 70. The statement by

Maxwell in the Treatise, vol. 2, sec. 501 reads in part: "It must be carefully remembered that the me-

chanical force which urges a conductor carrying a current across the lines of magnetic force, acts, not on

the electric current, but on the conductor which carries it. . . . The only force which acts on electric

currents is electromotive force, which must be distinguished from the mechanical force which is the

subject of this chapter.
'

'
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Notebook, sheet 72). Lodge's article presented a superb illustration of the essentials

of Maxwell's theory of charge and current through the use of a machine consisting

of rope, pulleys, buttons, and elastic bands (Lodge 1876). Not only did Lodge care-

fully demonstrate the displacement concept of charge in its essentials, he also pointed

out the intimate link between the currents of displacement and conduction (discussed

earlier in chap. 3). Little wonder, then, that Hall found Lodge's article "instruc-

tive." Read together with the Treatise, Lodge's illustration must have begun to instill

in Hall the core ideas of Maxwellian theory—its concepts of charge and current.

One might, therefore, be puzzled by Hall's statement that in electrostatics, "it is

plainly the Electricity itself that is attracted by Electricity." This peculiar assertion

most likely reflects Hall's incomplete assimilation of Maxwellian ideas at this stage.

What led to Hall's confusion was most probably the dual nature of electromotive

force E. On the one hand, the charge on a surface does seem to "move" when acted

on by an E field in the surface. On the other hand, a body bearing charge Q also

moves under a force QE. At this point in his study of the Treatise, Hall had not fully

realized that these two phenomena
—

"flow" of charge in a surface and the motion

of a charged body—are, in Maxwellian theory, entirely different phenomena. Con-

sequently, Hall assimilated the force on a charged body to the action of an E field

on the body's charge.

In Maxwellian theory these are two entirely distinct effects. The "flow" of charge

is an artifact of the combination of Ohm's law with the continuity equation. Together

they imply the redistribution of "charge" whenever an E field exists in a conducting

region. Of course, "charge," properly speaking, does not flow at all; rather, the

value of V • D changes over time at any given point. By contrast, a charged body

placed in an E field moves physically, and it does so because energy considerations

require it to move in a direction which minimizes the total energy stored in the

electrostatic field. These two processes—charge flow and motion of a charged

body—are only indirectly linked to one another.

At this point, however, Hall had not quite seen the distinction. But he did soon

understand it. After he had more carefully thought about the problem, Hall signifi-

cantly altered the notebook's description of his original puzzlement to read ".
. .it

is customary to say that charged bodies are attracted towards each other or the con-

trary solely by the attraction or repulsion of the charges for each other." (emphasis

added). The change reflects his understanding of the distinction between charge flow

and bodily motion.

Hall's original difficulty here was occasioned by the apparent asymmetry between

electrodynamics and electrostatics in this matter. For, Maxwell asserted, currents

have no affect at all upon one another in stationary circumstances (Maxwell 1873,

vol. 2, sec. 572). The reason for Maxwell's claim was simply that he could find no

evidence for such an action. In his consideration of the mutual actions of currents,

Maxwell noted that "if all the electric currents are maintained constant, and the

conductors at rest, the whole state of the field will remain constant" (1873, vol.2,

sees. 571-72). This, he reasoned, could not be true if there were a direct action

between currents which depended on their magnitudes at a given moment. (Of

course, what Maxwell neglected was the possibility that the action might be neutral-

ized, in the stationary state, by the inability of the current to occur outside the con-

ductor.)
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The major effect of Maxwell's claim (which, it is important to emphasize, was

based solely on experimental considerations) was to divorce magnetic force from the

field processes associated with currents: the currents determine the magnetic force

through field processes, but they are themselves unaffected by it in stationary circum-

stances. This lack of symmetry seemed, in Hall's eyes, to contrast strikingly with

electrostatic induction, where the charge distributions both determined the forces

upon the conductors and were themselves linked in a given medium to these forces.

Hall's confusion is entirely understandable: since he had not as yet fully grasped the

underpinnings of Maxwellian charge and current, he could not understand why the

assymetry occurs.

Hall had by this time also read an article by Erik Edlund
3
which assumed implic-

itly that stationary currents do act upon one another, and that this action is identical

with the force between current-bearing wires. (It is quite likely that Edlund 's article

was Hall's only source, excepting certain passages in the Treatise, for alternative

electromagnetic theories.) Indeed, Edlund tacitly assumed that the current-current

action was in some way the source of the electromagnetic action. Like everyone who
thought of electricity as a substance, Edlund simply took it for granted that stationary

currents exert forces upon one another which are measured as the forces upon the

wires. There had, in fact, already been several attempts to detect this current-current

force directly, as Hall later found out.

Feilitzsch (1858) passed currents in opposite directions through two spirals of

wire, with both currents passing through a galvanometer. With the galvanometer

needle adjusted to register zero, Feilitzsch brought a third current-bearing spiral near

one of the first two to see whether the needle was affected. It was not. Mach (1870-

71) used a current in a silver plate to melt wax covering the plate. Bringing an

electromagnet up to the plate, Mach looked for a change in the melting of the wax,

but he found none. A third experiment was made by George Gore, who also failed

to find a differential heating effect when bringing a magnet near a current-bearing

wire.
4

Hall was not aware of these failures to find an interaction between currents in

1879. His own puzzlement over Maxwell's claim, and Edlund 's implicit disagree-

ment with Maxwell, pressed Hall to ask Rowland about the difficulty:

[Rowland] told me he doubted the truth of Maxwell's statement and had

been thinking of testing it by some experiment though no good method of

so doing had yet presented itself to him. I now began to give some atten-

3. Edlund (1878). Edlund, who deserves some study, held a hybrid ether-electric fluid theory which

has several affinities with Helmholtz's (1870) polarization theory of the ether.

4. Gore (1874). Gore was quite pleased to obtain a negative result because he did not believe that

magnetic force acts upon currents. Though Gore did not mention Maxwell, nevertheless his explanation

of why magnets act on current-bearing conductors reflects the British field theoretical idea that electric

and magnetic phenomena are mechanical states of bodies. According to Gore all magnetic substance

—

whether permanent magnets or paramagnetic bodies inductively magnetized—have a peculiarly twisted

molecular structure which is accompanied by an internal state of tension like that in a metal wire twisted

under longitudinal stress. Permanent magnets have this tension naturally; conductors acquire it when bear-

ing a current. When a body in such a state is brought into a magnetic field, the body's already twisted

structure, Gore argued, in effect tries to retwist itself to conform to the external field. But, because it is

already under internal tension, it resists the new stress, and this resistance manifests itself as a force upon

the body.
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tion to the matter and thought of a plan which seemed to promise well. As

Prof. Rowland was too much occupied with other matters to undertake this

investigation at present I proposed my scheme to him and asked whether

he had any objections to my making the experiment. He approved of my
method in the main, though suggesting some very important changes.

(Hall Notebook, sheet 77)

Hall decided to look for changes in the apparent resistance of the circuit to reveal

an action between currents. Hall reasoned that if the current is "attracted" by an

electromagnet, the wire carrying it being fixed, then it will be drawn to one side of

the wire. Consequently, it will have to traverse a smaller section of wire under the

same electromotive force, in which case the apparent resistance of the circuit should

increase (i.e., the current should drop). The effect, he continued, would be amplified

by using a wire with a triangular cross section and so placing the electromagnet that

the current would be drawn toward a vertex. Rowland found the idea reasonable.

Hall took a three-foot length of wire with a resistance of about two ohms, and he

wound it into a spiral groove cut in a hard rubber disk; the whole was then covered

with a second rubber disk. The device was then "pressed" between the poles of an

electromagnet, with the spirally wound wire forming one arm of a Wheatstone

bridge. The electromagnet was driven by twenty Bunsen cells in four series of five.

The current to the spiral wire was provided by the small battery in the Wheatstone

bridge. The object of the experiment was to see whether a galvanometer in the circuit

of the spiral wire would give different readings with the electromagnet on and off.

There were several probable sources of error, and Hall took care to eliminate

them, or so he thought. First, the current in the wires to the electromagnet might

affect the galvanometer; second, the electromagnet itself might affect the galvanom-

eter; third, induction currents due to opening and closing the electromagnet circuit

might occur in the galvanometric circuit; finally, thermoelectric currents could exist.

The first two causes, however, were found to produce only small, permanent deflec-

tions of the galvanometer when the electromagnet was placed far away. The third

and fourth causes were more difficult to estimate, being variable:

I replaced the small battery used with the Bridge by a short wire; then with

the magnet circuit alternately open and closed, I would complete the circuit

through the galvanometer pressing down the key until the needle had

reached its maximum deflection. I normally ["always" crossed out] found

slight deviations in this way and have recorded them when about to try the

main experiment.

(Hall Notebook, sheet 81)

Having eliminated all the sources of error which he could think of, Hall performed

his first experiments on 13 June 1879. He found that the third and fourth sources of

error produced maximum galvanometric deflections of 1.25 millimeters. But the av-

erage deflection of the needle when the magnet was on from its position when the

magnet was off was 2.055 millimeters. "It is such an effect," Hall concluded, "as

would be caused by a slight increase of resistance in the wire tested" (Hall Note-

book, sheet 83). Observations made the next day with the current entering the coil

at its circumference instead of at its center, as had been the case on 13 June, gave

even better results.
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This was the last entry in Hall's notebook until the following 3 November. Over
the summer it had occurred to him that the increased resistance might be spurious,

that it "might be due to the heating caused by the pressure exerted by the poles of

the electromagnet on the spiral of wire between them" (Hall Notebook, sheet 90).

That is, since the pressure would increase when the electromagnet was turned on,

the apparent increase in the resistance might have been due to the known effects of

heating caused by pressure. Taking precautions to prevent the pressure, Hall dis-

covered that the resistance now remained the same whether the electromagnet was

on or off. Further experiments using a galvanometer which was sensitive to a change

in the current of one part in a million still indicated no effect.

Hall's notebook becomes somewhat confusing at this point, due primarily to the

fact that he was writing several weeks after he had obtained a positive indication

using a different technique. (We shall examine this discovery in chap. 10.) To un-

derstand how Hall perceived his results, we must first consider several entries in his

notebook which were written after the discovery but which in part discuss ideas he

had between the failure of the resistance experiments and his final success.

Edlund (1878) described a phenomenon which Hall found puzzling. Edlund as-

serted that if a vertical magnet is surrounded by a metal cylinder, and a current is

sent through the cylinder from one end to its middle, then the cylinder will revolve

about the magnet. According to his recollection in the late fall, Hall had been puzzled

the previous spring by the force that made Edlund 's cylinder revolve, since, in Ed-

lund's theory, the magnet was supposed to deflect the current: "I wondered what

could make the cylinder move if, as Edlund seemed to suppose, an electric current

could be acted upon and moved by a magnet just as a wire bearing a current is acted

upon and moved" (Hall Notebook, sheet 105). When asked about the problem, Hall

recalled, Rowland suggested that "the current might be made by the magnet ["to

pursue a spiral course" crossed out] to move around the cylinder and by the metallic

resistance drag the cylinder about" (Hall Notebook, sheet 105). In view of the in-

creased path length the current would have to traverse, it was an obvious step to the

conclusion that the magnet must produce an apparent increase in resistance—and

hence to Hall's first experiments.

In the autumn when Hall found that his success of the previous spring had been

spurious, it occurred to him that his experiments provided an argument against Ed-

lund's theory.
5

If, Hall now argued, the magnet did cause the current to pursue "a

spiral course along the cylinder," as Rowland had earlier suggested but as experi-

ment seemed to falsify, then, clearly, more work must be performed per unit time

with the magnet on to maintain a given current than with the magnet off. This extra

energy must come either from the battery that maintains the current, in which case it

would have shown up as an increased resistance, or else it must somehow come from

the magnet itself, in which case "we have a permanent magnet doing continuous

work" (Hall Notebook, sheet 105). The latter possibility, Hall felt at this point, was

improbable; whereas the former, as the negative results of his experiments demon-

strated, had not been observed. The conclusion was apparently inescapable: Edlund

was wrong; magnets do not act on currents:

5. Hall Notebook, sheet 105: "Some time after this however I approached Prof. Rowland again on

this subject."
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Prof. Rowland admitted the full force of my reasoning and remarked at the

time that he didn't see why this argument was not conclusive. Conclusive

against Edlund's theory I suppose he meant. He observed however at the

same time that if there was not action at all on the current itself he didn't

see how his experiment on Electric Convection could ["work" crossed

out] succeed.
6

Thus Hall saw in the negative results of his experiment an opportunity to publish

an article disputing Edlund's theory based on an action between currents. But to be

quite certain that currents are not affected by magnetic force, Hall (motivated by

reasoning which we shall examine in chap. 10) undertook a new series of experi-

ments; these gave positive results, much to Hall's surprise:

When I began the experiments with the gold leaf I expected to obtain a

negative result as I had in the experiment on resistance and I expected to

publish these negative results together with a criticism of Edlund's theory

as applied to this phenomenon of the revolving cylinder.
7

6. Hall Notebook, sheet 107. The last sentence in this passage is interesting, as well as quite confus-

ing. It implies that in Rowland's mind there was an implicit link between the magnetic effect of convected

electricity and a magnetic action on currents. He apparently thought that, if convected electricity exerts a

magnetic action, then a magnet must affect a convection current and, by implication, a conduction current

as well. This might be a necessary inference if the force exerted by a magnet on a rotating, electrified

disk acted upon the electrification of the disk. But Rowland had not even detected a force upon the disk,

much less an action upon its electrification.

7. Hall Notebook, sheet 107 and sheet following sheet 99. Sheets 100-102 are missing; the sheet

between 99 and 103 should follow sheet 107.
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The Discovery of the Hall Effect

10.1 The First Experiments

We have now come to a crucial stage in Hall's thinking. Hall's intentions were to

publish an article which disputed Edlund's theory by empirically demonstrating that

magnetic force does not affect currents in stationary circumstances. But it occurred

to Hall that, if Maxwell were correct and the conduction current satisfied the same

continuity condition as an incompressible liquid (this is equivalent to the Maxwellian

axiom that the density of electric quantity is always, everywhere the same), then

perhaps a new experiment should be performed to test whether, under this hypothe-

sis, there was still no action on the current:

If electricity were an incompressible fluid it might be acted on in a partic-

ular direction without moving in that direction. I took an example like this.

Suppose a stream of water flowing in a perfectly smooth pipe which is

however loosely fitted with gravel. The water will meet with resistance

from the gravel but none from the pipe at least no frictional resistance.

Suppose now some body brought near the pipe which has the power of

attracting a stream of water. The water would evidently be pressed against

the side of the pipe but being incompressible and, with the gravel, com-

pletely filling the pipe, it could not move in the direction of the pressure

and the result would simply be a state of stress without any actual change

of course by the stream. ["It is evident however that in such a case the

pipe might be tapped on the side toward the attracting object and a second

pipe applied to the orifice" crossed out.] It is evident however that if a

hole were made transversely through the pipe in the direction of the pres-

sure and the two orifices thus made were connected by a second pipe,

water would flow out toward the attracting object and in at the opposite

orifice. This supposes of course that the attracting object acts upon the

current flowing in one direction without acting, equally at least, upon the

current in the other direction.

Nov. 4th, '79. I mean by this that the attracting object is supposed to act,

not upon the water at rest and under all circumstance, but only when the

water is flowing and flowing in a certain direction or the opposite. In this

way I arrived at the conclusion that in order to show conclusively that the

magnet does not affect the current at all I must show not merely that there

was no actual deflection of the current which seemed to be already shown

by my experiments on resistance, but further that there was no tendency of

the current to move. In order to do this I tried to repeat an experiment

which Prof. Rowland had once tried without any positive result.
1

1. Hall Notebook, sheets 93 and 95. No contemporary record except Hall's remark remains, to my
knowledge, of the experiment which Rowland had performed unsuccessfully, or of why Rowland had

performed it. Miller (1972, 19-20, n.13), however, quotes the following remark Rowland made in a letter
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According to Hall, a change in apparent resistance would occur only if the current

were actually deflected by the magnet, and his earlier experiments seemed to pre-

clude deflection. If, however, the current were not physically moved, but only

pressed to one side, then no change in resistance would occur despite the existence

of a force. This possibility had to be excluded. Though Rowland had never reasoned

on the same basis as Hall, he had nevertheless apparently performed an experiment

which could accommodate the situation Hall was considering.

Rowland, recalling the failure of his experiment using a copper plate, advised Hall

to begin with a strip of gold leaf cemented to a glass plate. With a battery supplying

a potential across two points on opposite edges of the leaf, the idea was to test for a

current across the other two edges when an electromagnet normal to the leaf was

turned on. In figure 10 the battery current through the leaf runs from B to A. The

Fig. 10 Hall's experiment

to FitzGerald years later (12 May 1894; in the possession of the Royal Dublin Society): the 1876 convec-

tion experiment, Rowland claimed, "together with that of Mr. Hall (Hall effect) which was really my
experiment also, were made to find the nature of electric conduction [emphasis added]. Indeed I had

already obtained the Hall effect on a small scale before I made Mr. Hall try it with a gold leaf which gave

a larger effect. My plate was copper or brass and I only obtained a 1 mm. deflection, Mr. Hall simply

repeated my experiment, according to my direction, with gold leaf." Rowland's retrospective remarks to

FitzGerald must have been colored both by wishful thinking and by the events of the 1880s, since Rowland

had not in 1879 claimed any deflection for his experiment. Thus Hall records Rowland as having obtained

no "positive" result in his earlier experiment (Hall Notebook, sheet 95), and Rowland told Hall that he

"had not made the trial very carefully himself" (sheet 95). Moreover, I have uncovered no clear-cut

evidence that in 1879 Rowland had forged the strong link between the conduction and the convection

currents which his 1894 remark to FitzGerald implies. By the mid- 1890s some Maxwellians felt that

convection was implicated in conduction. That link, however, would have made little sense in the late

1870s, when the Maxwellian program of research was just taking shape. Behind Rowland's skewed rec-

ollection, perhaps, was his profound wish that he had had the perseverance to refine an initially unsuc-

cessful experiment and thereby to have discovered an effect which had eluded many other investigators.

It is, nevertheless, just possible that Rowland had suspected a connection between the conduction and the

convection currents. His early remark to Hall that he could not see how his convection experiment would

succeed if Hall's did not might reflect such a belief. It could, however, have been little more than a belief,

since much complicated analysis was required during the 1880s to elucidate the nature of electric convec-

tion (see appendix 1).
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points a,b and c,d are two pairs of taps where one can test for a transverse current.

Rowland, Hall wrote, "advised me to place my tapping points . . . near the end of

the disk [i.e., at c,d] on the ground that the equipotential lines crossing the disk in

the center would not be altered by a deflection of the current. His theory was [see

fig. 11]." In figure 11 the curved horizontal lines in both diagrams represent the

lines of current; the curved vertical lines (which, according to Rowland, were normal

to the horizontal lines) were equipotentials. Rowland and Hall assumed that if the

magnet did affect the current, it would do so by altering the potential gradient in the

plate.

Hall, however, disagreed with Rowland concerning the normality of the current

lines and the equipotentials. Rowland's reasoning depended on the current's being

actually deflected. If, Hall objected, the current is not actually deflected then "the

current would be in a state of stress and the equipotential lines would not be simply

perpendicular to the lines of flow but would be oblique to them and that the whole

length of the disk, in the middle as elsewhere" (Hall Notebook, sheet 97). On Row-

land's theory the transverse effect would be significant only at c,d; on Hall's theory

it would also occur at a,b. Hall, however, followed Rowland's directions and used

c,d. On the evening of Friday, 24 October, Hall detected, greatly to his surprise, "a

somewhat doubtful indication of the action of the magnet" (Hall Notebook, sheet

99). A repetition the following day, however, failed to repeat the result. Further

adjustments were made to make the apparatus more sensitive. "On the evening of, I

believe, Tuesday, Oct. 28th," Hall recorded on 10 November, "very marked and

seemingly unmistakeable evidence of the looked for effect was observed." He con-

tinued:

Mr. Freeman was observing the galvanometer. The deflection observed

was a permanent one of two or three centimeters. I was myself at the

MAGNET OFF

MAGNET ON

Fig. 11 Displacement of potential and field lines in a Hall experiment
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magnet. It seemed hardly safe even then to believe that a new phenomenon

had been discovered, but now after nearly a fortnight has elapsed and the

experiment has been many times and under various circumstances, suc-

cessfully repeated, meeting at the same time the criticism of fellow stu-

dents and professors, it is not perhaps to early to ["claim" crossed out]

declare that the magnet does have an effect on the electric current or at

least an effect on the circuit never before expressly ["recognized or"

crossed out] observed or proved.

(Hall Notebook, sheet 99)

Hall rapidly discovered as well that he had been correct in reasoning that the lines

of current flow are not substantially deflected: he obtained a current across a,b. At

this point in Hall's notebook (sheet 99) there are, unfortunately, sheets missing

(sheets 100-102) which described the experiments he performed with different loci

for the tapping points, and which confirmed his view that the current must be incom-

pressible. These missing pages lead into a discussion of the direction of the effect, a

question which at this time (10 November) greatly puzzled Hall, for it was precisely

opposite in direction to what he had expected: ".
. .the current seemed to tend to

move in the opposite direction to that in which ["the wire itself" crossed out] the

disk itself would tend to move under the action of the magnet" (Hall Notebook,

sheet 103). Hall at first reasoned that this discrepancy would not occur if he were to

redefine the arbitrary direction of the current, letting it run from negative to positive.

But he concluded that this would not work because "we must make the same change

in our conception of the electromagnet and the two changes will annul each other

leaving us still face to face with our difficulty" (Hall Notebook, sheet 103). Hall's

conclusion at this stage demonstrates how far he was from connecting the electro-

magnetic force on the disk with the newly discovered action on the current:

To me at present it seems probable that two parallel currents of electricity

flowing in the same direction tend to repel each other, just as two quantities

of static electricity do. Further experiments will probably be necessary to

ascertain the truth of the matter.

(Hall Notebook, sheet 103)

(Parallel currents attract one another according to all theories in which currents are

flows of electric particles.)

Two weeks later (25 November), however, Hall revised his reasoning and con-

cluded that the new action and the electromagnetic force will agree in direction if the

current runs from negative to positive. He had earlier forgotten that the current direc-

tion must also be reversed within the galvanometer which measures the transverse

current. Taking this into account, "the new phenomena are in accordance with the

supposition that two parallel currents attract each other" (Hall Notebook, sheet 115).

Nevertheless, neither Hall nor any Maxwellian in the 1880s reasoned that the

small action on the current could explain the apparently much larger action on the

conductor. This is not surprising when one recalls that in Maxwellian theory a current

is not a substance to be acted upon; it is merely a condition that can be changed. In

fact, it is only by continually recalling this basic tenet of Maxwellian theory that we
can understand both Hall's view of the new effect and the use made of it by others.
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10.2 A New Source of Electric Energy

On 3 November 1 879 Hall thought of an experiment to examine the energy questions

raised again by the success of his new experiment (Hall Notebook, sheet 105). These

questions had previously been resolved by the failure of Hall's early resistance ex-

periments, which had shown that currents are not deflected by magnetic fields. Hall

had expected the new experiments, based on the incompressibility of the current,

also to give negative results. But they had not. Consequently, Hall again wondered

what effect the increased path length traveled by a current in Edlund's cylinder under

magnetic action would have:

Naturally after discovering the action of the magnet on the gold leaf I

recurred to this phenomenon [Edlund's cylinder] and asked myself how I

could reconcile it with the results of my own experiments. So I took up

again the suggestion of Prof. Rowland that the current went in a spiral

course along the cylinder and ["determined" crossed out] concluded to

boldly face the two horns of the dilemma and test them in turn.

Who knows that the ["presence" crossed out] proximity of a magnet may
not increase the resistance of an electric current? Who knows that a per-

manent magnet can not do continuous work? At present [10 November] I

reason thus. The deflection of the current in the cylinder can not be the

cause of the cylinder's motion, for according to my experiments thus far

the current would have a tendency to drag the cylinder in a direction con-

trary to the one it follows. Moreover the effect of the deflected current

would be, as far as I can judge now, altogether inadequate to produce such

a result as I presume the motion of the cylinder to be.

It seems more probable to me at this stage that the metal of the cylinder is

affected in one way while the current flowing in it is affected in the op-

posite way. It is not difficult to suppose this possible, though I have not

now any clear conception of the way in which it is possible. The explana-

tion ["reason" crossed out], as I conceive, of the non deflection of the

current in a disk [here Hall was referring to his discovery of the transverse

effect] is that the circuit in the transverse direction is not completed. When
we complete it through the galvanometer a current is set up. Suppose now

we bend our disk into a cylinder and so dispose it in the magnetic field

that many lines of force pass out through the walls of the cylinder thus

giving the current flowing therein a tendency to turn or slide around the

cylinder. Why will it not pursue a spiral course? If it does take a spiral

course, and I think we can ascertain whether it does so or not, we will try

the two horns of our dilemma in succession. My opinion is that the exper-

iment will succeed and that the magnet will be found to do the extra work.
2

The two horns of Hall's dilemma were these: supposing the current to follow a

spiral path in the cylinder under the influence of the magnet, does the extra energy

necessary to maintain a given current quantity come from the battery or from the

electromagnet? If the former, then the resistance in the primary circuit will increase;

if the latter, then the primary resistance will remain the same but the resistance in

the electromagnet circuit should increase.

2. Hall Notebook, sheet between sheets 99 and 103, continued on sheet 111. Sheet 1 1 1 is out of

sequence and should follow sheet 107.
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Busy with experiments to determine the quantitative properties of the new effect,

Hall did not perform the experiment for a month (15 December). When he mentioned

his idea to Rowland, Rowland was at first cold to it, but, Hall recorded, he "finally

admitted it to be worth trying." Rowland suggested using a metal disk instead of a

cylinder; the electrodes would be placed at the center and at the circumference of the

disk. With a magnetic field normal to the disk, the currents, Rowland and Hall rea-

soned, would be deflected into spiral paths. Hall performed the experiment. It failed

to reveal any increased resistance in the primary circuit, as Hall, but not Rowland,

had expected. They were, however, looking for a substantial change in resistance:

Neither of us saw at first though Prof. Rowland has since pointed out that

any increase of resistance would be ["only" crossed out] very small in-

deed, ["being proportional not to the" crossed out] Thus where I had

found a transverse electromotive force in the strip, we could look for a

change of resistance equal to the square of 1/3000, 1/9,000,000. This slight

change is of course very difficult to detect and I doubt whether it can be

discovered with an instrument if it exists which I somewhat doubt. (Hall

Notebook, sheet 119)

Hall had doubted that the resistance would change because he expected the extra

energy to be supplied by the magnet and not by the battery:

I have heretofore expressed my opinion that the magnet would be found to

do the extra work, but here too the change of resistance (in the magnet

circuit) would be extremely small, too small probably to detect even if it

exists. At present however I see no absurdity in the way of expecting

continuous work from a magnet. (Hall Notebook, sheet 119)

However strange Hall's view may seem today, it was quite natural in the context

of Maxwellian theory. In Maxwellian theory, as we have seen, a conduction current

was not a primary physical concept. It was only one manifestation of changing elec-

tric displacement, here occurring under the peculiar physical conditions of the con-

ductor which cause displacement to decay continuously. It made little sense to think

of a force as acting on a current, because a current was not a thing to be acted on; it

was a condition to be changed. Only one kind of force could alter a current—electro-

motive force—and it could be produced in several ways. It could be generated by

friction, or by chemical, mechanical, or thermal processes; it could also, of course,

be generated by electromagnetic induction. Since, in Hall's experiment, a magnet

was found to act upon a current, it seemed obvious to Hall—and also to Rowland

—

that he had discovered the creation of a new electromotive force no different in kind

from any other electromotive force. (Of course, its direction and magnitude were

specific to it.)

This understanding of the effect was quintessential^ Maxwellian and must be

taken quite literally. That is, the action on the current was not the same as though

an electromotive force had been created; rather, it was literally produced by a new

electric field. There were two places the energy for this field's effects could come

from: the battery or the magnetic field. Hall felt it came from the magnetic field:

. . . suppose now that the magnet acts upon the electric currents radiating

from the center of the disk mentioned above and continue to act upon them

until they reach the ring surrounding the disk. Beyond this there seems to
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be no reason for attributing to the magnet any considerable action on the

current. Now if in this case a new electromotive force is set up causing a

current around the disk at right angles to the original radiating currents,

these radiating currents remaining unchanged meanwhile, it seems to me

that in this particular part of the circuit the magnet does work and I do not

see how the energy thus lost to the magnet can be made up in any other

part of the circuit. (Hall Notebook, sheet 121)

The idea that the energy of a stationary magnetic field could be drawn upon to

create electric energy without moving a circuit fit Maxwellian ideas of the nature of

magnetic energy. Maxwell, in the Treatise and elsewhere,
3
had argued that magnetic

energy was the rotational kinetic energy of molecular vortices in the ether, an energy

which could be altered by the presence of matter. Rowland soon linked Hall's dis-

covery to the Faraday effect, which Maxwell had explained by using the vortices.

Hall could have easily reasoned that he had, in effect, discovered a way to draw

directly on the kinetic energy of the magnetic field. The implication was that it might

be possible to draw energy from a magnet without putting energy into it. (The field

energy of the magnet would be decreased by the extraction.) Hall did see this impli-

cation, and he even thought to test it:

A week or two ago I expressed these views to Dr. Nichols who himself

had formed somewhat similar ones, though hardly so definite as mine. He
immediately set about trying to find some way of making a magnet do

work. A few days afterward he suggested the experiment of allowing the

magnet to attract a stream of iron filings which after being attracted to the

vicinity of the magnet were to be dissolved or otherwise changed in such

a way as to lose their magnetic property. I suggested to though he may
have thought of it before that in this case there might be a retardation or

enfeeblement of the chemical reactions owing to the influence of the mag-

net on the filings. It appears that this must be true or that the magnet must

be able to do continuous work. I have been myself thinking of attacking

the problem in a different way. It seems to me that a magnet ought to do

work when as in Faraday's experiment (Ganot [1863] p. 712)
4
a part of an

electric circuit revolves about a magnet. The difficulty is that if the magnet

does do work in this case it ought to have been discovered long ago. There

may be some consideration which I have overlooked and which will show

the absurdity of my ideas at once. Nichols and I are thinking of making

some experiments on the thing some time, in his way or mine or both,

unless someone shows us our folly before we have a chance to test our

theories practically. (Hall Notebook, sheets 121-22)
5

The experiment of Faraday's that Hall referred to involved the rotation of a cur-

rent-bearing wire about a vertical magnet; one end of the wire was attached to the

top of the magnet, and the other end terminated in a mercury bath. When a current

3. Maxwell (1873, vol. 2, chap. 21). For a clarifying analysis of the mathematical structure of Max-

well's vortex theory as applied to the magnetic rotation of the plane of polarization of light, see Knudsen

(1976).

4. Adolphe Ganot's Elementary Treatise (1863) went through numerous editions and revisions, and

was widely used as an introduction to physical science through the early 1900s.

5. Sheets 121-22 are not numbered but are in sequence.
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flowed through the wire, it rotated about the magnet. Perhaps Hall reasoned that the

portion of the current flowing through the mercury will be deflected by the new field

and will therefore follow a longer, curved path to the electrode in the mercury. If

the new field is produced by an electromagnet, then one should, according to this

theory, measure an increase in the apparent resistance of its windings when the

moveable wire carries a current. Alternatively, Hall may have thought that the new

field created its own, independent current, and that the net current, compounded of

the original current and the current produced by the Hall field, followed a curved

path to the electrode. In this theory, the total current quantity would be increased

and, again, the resistance in the electromagnet would have to rise. The experiment

would have been quite difficult to perform, and it is in any case uncertain that Hall

ever carried it out. He never published any results, either positive or negative. Per-

haps Rowland, who did not think that the magnet supplied energy (he sought the

energy in the primary voltage source), discouraged him. Whatever the reasons for

Hall's silence, his theory provides a striking example of creative Maxwellian

thought. The notion that the magnetic field can feed energy into the circuit makes a

great deal of sense when the current is thought of as a changing state, and the mag-

netic field is thought of as a storehouse of kinetic energy.

In later years it was generally thought that the field's energy remained perma-

nently associated with it as long as the current and the magnetic field remained con-

stant; that is, no energy was transferred into or out of the Hall field after its creation.

This, in turn, could be true only if the Hall field was perpendicular at each point to

the current in the plate, for only if this were so would the current be merely "de-

flected." According to this theory—which was the received Maxwellian understand-

ing after 1880—the extra energy needed to maintain the quantity of the current de-

flected by the Hall field was obtained from the primary voltage source. Hence, the

apparent resistance of a current-bearing circuit must increase in the presence of a

magnetic field.

During the first half of 1880, on the other hand, Hall may have thought that the

newly discovered electric field was fixed in direction relative to the primary electric

field and not to the current: one can perhaps discern this understanding in the passage

just quoted. Consequently, the Hall field would generate its own, independent cur-

rent. The energy for this current would be obtained, of course, from the energy of

the Hall field, and this energy would have to be continuously replenished as the

energy supplied to the circuit was dissipated as Joule heat. That energy, Hall seems

to have thought, was supplied by the magnetic field. Even after mid- 1880 Hall prob-

ably continued to believe that the magnetic field supplies energy to the circuit. How-
ever, he had by then referred the direction of the new intensity to the direction of the

current and not to the primary intensity. The current was therefore merely deflected,

and the total current in the plate did not increase in quantity. Consequently, the

energy of the Hall field did not require continuous replenishment: the same energy

remained permanently stored in the field as long as the current and magnetic field

remained constant. Nevertheless, Hall apparently thought that the current would not

decrease in quantity and that the resistance of the circuit would not increase, despite

the deflection of the current into a longer path. He continued to believe that the

magnetic field would feed energy into the circuit, albeit not via the Hall field. This

implied the existence of another electric intensity with a component in the direction
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of the current at each point. Rowland implicitly referred to this idea of Hall's when
he presented a quantitative law for the Hall effect. Hall's early ideas and his changing

understanding will perhaps be clarified by a brief account of his published work.

10.3 Publication

Hall announced his discovery in a letter to the American Journal of Mathematics

dated 19 November 1879. The Journal published the letter, together with an adden-

dum which Hall sent on 22 November, in the last issue of the year. The same account

was published in Britain early in 1880 (Hall 1879). Here Hall briefly described the

origins of his ideas in his reading of Maxwell and Edlund. He went on to mention

his early resistance experiment with the spirally wound wire and its failure. He then

explained his deflection idea, based on the current's incompressibility, and he care-

fully noted that he tested it by repeating an experiment performed earlier by Row-
land. He did not mention his expectation that the experiment would fail. This brief

account also contained Hall's first efforts to quantify the effect.

On 12 November Hall had begun a series of experiments to determine the depen-

dance of the effect on the magnetic force and on the current strength (using at this

time only a single strip of gold leaf). Hall measured the quantity, c, of the transverse

current with a Thomson galvanometer. If the primary current through the gold leaf

strip has quantity C, and the magnetic field "intensity" is M, then Hall found that

the ratio CMIc for the strip of gold leaf varies by a maximum of 8% from its mean

value when both field and current are altered.

The addendum Hall sent in on 22 November reveals his view of the effect—

a

view which rapidly became common among many Maxwellians—as one in which a

new electric intensity is somehow created:

It is perhaps allowable to speak of the action of the magnet as setting up

in the strip of gold-leaf a new electromotive force at right angles to the

primary electromotive force. This new electromotive force cannot under

ordinary circumstances manifest itself, the circuit in which it might work

being incomplete. When the circuit is completed by means of the Thomson

galvanometer, a current flows. (Hall 1879)
6

Note that Hall referred the direction of the new field to the primary electromotive

force and not to the primary current. As I implied in section 10.2, he almost certainly

did so because from a Maxwellian perspective the current was a secondary phenom-

enon. The electromotive force—a field intensity—which produces the current was

considered primary. This characteristic Maxwellian emphasis on fields instead of cur-

rents determined Hall's first quantification of the effect. The purpose of the 22 No-

vember addendum was to correct what Hall feared might have been the misleading

implication of his first communication that the ratio cIC (the ratio of current quanti-

ties) was equal to the ratio of their corresponding electromotive forces. The current

ratio does not, in fact, directly measure the field ratio because the resistances of the

two circuits, primary and transverse, are different. Hall calculated that the ratio EIE'

of the primary to the transverse intensity varied in his experiments from 3000 to

6500.

6. Quotation is from Phil. Mag. 9 (1880): 230, n.61.
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According to Hall the true law of the effect is that E' is proportional to MCls,

where s is the cross-sectional area of the gold leaf through which the primary current

passes. From this we can deduce the relationship between field intensities. The pri-

mary current quantity, per unit area, is CIs. Since the primary intensity, E, is pro-

portional to this density by Ohm's law, we have E'lEM proportional to E'l(MCIs).

Consequently, Hall's law—that E' is proportional to MCls—is equivalent to asserting

that E'IME is a constant.

We know that Hall at first believed this to be the law because he recalled his early

views a year later in print.
7
Indeed, Hall had at first thought that E'lEM would have

the same value for all conductors. Clearly then, Hall initially supposed that the ex-

istence of a field of electric intensity, E, at right angles to a field of magnetic inten-

sity, M, would produce a new field of electric intensity, E' , at right angles to both.

The current proper had nothing fundamental to do with the phenomenon.

Hall's views are again apparent in his reply, sent in for publication in the summer

of 1880, to what he saw as Ludwig Boltzmann's incorrect use of the new effect to

calculate the "velocity" of electricity in the conduction current. Hall's reply was

based on a "fatal objection to the fundamental assumption which [Boltzmann]

makes" (Hall 1880&). Boltzmann's argument was based on the assumption that the

force on a current-bearing conductor in a magnetic field was due to the Hall action

on the current. Hall's objection to this assumption was simple:

If the very slight difference of potential existing between opposite sides of

the conductor is sufficient, when acting upon the electricity contained

within the conductor, to cause the strong action which every one has ob-

served between magnets and conductors bearing currents, why is there not

an enormously greater force always acting upon the conductor in the direc-

tion of the primary electromotive force and primary current? (Hall 1880b,

137)

Since, Hall reasoned, what he had discovered was the existence of a new electric

intensity, but a very small one, it seemed to him that if one were to attribute a

ponderomotive effect to this electric intensity, then one should also do so to the

immensely greater primary intensity. (I have found no record of Boltzmann's re-

sponse, if any, to Hall's criticism.)

If the Hall field were generated by the combined action of electric and magnetic

fields at right angles to one another and to it, then, one might reason, the Hall effect

should occur even in the absence of a current. That is, an electric intensity might be

generated at right angles to electric induction in the presence of a magnetic field;

there should be a transverse potential at right angles to a line of electrostatic induc-

tion in the presence of a magnetic field. Rowland felt this effect to be worth looking

for, and he instructed Hall to make the experiment. This experiment, in which a

thick plate of glass served as the dielectric, was negative. However, Rowland esti-

mated the capacity of the electrometer used in the experiment, which enabled Hall

to conclude, not that the effect was absent, but only that the ratio E'lEM in this case

had to be less than 16 x 10" 6
. Hall knew by this time (late 1880) that the same

ratio for current electricity in iron was 10" 6
; in tin the ratio was 1.6 x 10~ 9

. Hall

7. Hall (188a). This article, in a slightly different form, was accepted by Rowland as Hall's disserta-

tion for the Ph.D.
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concluded that the static effect might exist but that his experiment was not suffi-

ciently sensitive to detect it.

During 1880 Hall had examined several different kinds of gold leaf for the effect,

and he also tested silver, iron, platinum, and tin. These experiments indicated that

the ratio of intensities, E'lEM, was not the same for all metals and that, in addition,

it varied for different thicknesses of the same metal. Seeking a new constant, Hall

settled on the ratio E'UM, where J was the density of the primary current. This

quantity, Hall remarked, did not have the same value for all metals, but for a given

metal it was "much more nearly a constant than the ratio E'lEM given above

would be."
8

Hall was by this time not puzzled by the substitution of E'UM for E'lEM, even

though it meant that he had to abandon his early understanding that the Hall intensity

was generated by the interaction of the primary electric intensity with the magnetic

field. Substituting the current for the field meant that the conductivity of the metal

was implicated in the phenomenon. Hall was able to switch his position readily be-

cause by mid- 1880 both he and Rowland strongly suspected that the phenomenon

was affected by the electromagnetic properties of the matter in the field. Thus Row-

land pressed Hall to examine the effect in iron, where, Rowland expected, its direc-

tion would be opposite to that of gold. We shall examine Rowland's thoughts in

detail below (see chap. 12); here we need only remark that Rowland at first expected

the sign of the effect to depend on whether the substance was paramagnetic or dia-

magnetic; he also hoped to find a quantitative dependence on permeability. Since

gold is diamagnetic, the effect in it should be opposite in direction to the effect in

iron; it was. Hall found, however, that the magnitude of the effect was not at all in

proportion to the permeabilities of the substances, so that, though the effect was

opposite in direction in iron and gold, a direct link to magnetic character seemed

unlikely. Moreover it turned out that nickel and platinum, both paramagnetics as far

as Rowland or Hall knew, exhibited the same direction as gold, not iron. Neverthe-

less, it was at least clear that the Hall effect was somehow linked to the electromag-

netic properties of the conductor since it varied both in magnitude and direction from

substance to substance.

Hall continued his experiments with various substances during the next four years,

paying particular attention to effects that might be significant for a theory Rowland

developed which applied the Hall effect to the Faraday effect. Hall did not himself

ever offer any theory of the phenomenon, but he did conclude his second article with

a brief and cautious analogy:

It is perhaps idle to speculate as to the exact manner in which the action

between the magnet and the current takes place in any of the preceding

experiments; but it may be worth while to remark a seeming analogy,

somewhat strained perhaps, between this action and a familiar mechanical

8. Hall (1880a, 307). Hall's claim regarding different thicknesses of plates of the same metal is quite

interesting because it should not, at first thought, be true: if E'IMJ is a constant for a given metal, then

E'IMaE should also be a constant, where cr is the metal's conductivity. Conductivity is not a function of

length or area, and Hall was well aware of the difference between conductivity and conductance, the latter

depending on length and area (see e.g., Hall 1880a, 319). Yet Hall must have observed variations in

conductivity between different thicknesses of the same metal. This was probably caused by thermal ef-

fects, as Hall apparently later realized: Hall (1883).
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phenomenon, the theory of which has of late attracted considerable atten-

tion. It is well-known that a base-ball projected swiftly through the air, and

having at the same time a rapid motion of rotation about its vertical axis,

does not throughout its course continue in the original vertical plane of

motion, but follows a path curving sensibly to one side. Imagine now an

electrical current to consist of particles analogous to the base-ball moving

through a metallic conductor, the electrical resistance of which will corre-

spond to the mechanical resistance offered by the air. Suppose, further, the

particles of electricity, on coming within the influence of the magnet. . . .

[Hall refers to Maxwell 1873, vol. 2, chap. 21, sec 83, in which Maxwell

reiterated his conviction that the magnetic field involves material rotation.]

Under all these supposed conditions we might perhaps expect to find the

action which is actually detected. To account for the reversal of the action

in iron we might suppose the particles of electricity to acquire in this metal

a rotation about the same axis as in other metals, but in the opposite direc-

tion. Even after all these generous concessions in favour of our hypothesis,

however, it fails to account for the behaviour of nickel as different from

that of iron. The analogy, such as it is, which has been pointed out, is

perhaps curious rather than significant. (Hall 1880a, 326)

Hall's model must be seen as a residue of his earliest understanding of the phe-

nomenon that the magnetic field can feed energy into the current, but it does not

represent the energy stored in the transverse field in any obvious way. Moreover it

limits the effect to metals, where resistance occurs, despite the fact that Rowland had

published a detailed theory of the Faraday effect based on the hypothesis that a Hall-

like action occurs for displacement currents as well as for conduction currents. Hall

was perhaps implicitly quarreling with Rowland, but more likely he was serious in

calling the model "curious rather than significant."
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Alternative Interpretations

11.1 British Views

Rowland and Hall had, from the outset, thought of Hall's discovery as a fundamental

field phenomenon. Their position, though it was at heart deeply Maxwellian, never-

theless seemed too radical to other Maxwellians. One among them, John Hopkinson,

early reasoned that the effect was not a fundamental one, and that what Hall had in

fact discovered was that the relationship between electric intensity and current density

in isotropic conductors in a magnetic field does not obey Ohm's law. Moreover,

Hopkinson pointed out, Maxwell had already indicated the possibility of just such a

phenomenon (Hopkinson 1880).

In the Treatise (this is, analytically only, the modern view), Maxwell had ex-

pressed the most general, linear relationship between current density and electric

intensity (X, Y, Z) as follows (vol. 1, sec. 297):

X = R
x
u + Q 3v + P2w

Y = P 3u + R 2v + (?!*>

(1) Z = Q2u + P,v + R3w

Maxwell, following William Thomson, introduced two new vectors (S lf S2 , S3 ) and

(7^, T2 , r3), such that (P lt P2 , P3 ) is equal to their sum and (Q x , Q 2 , Q 3) is equal to

their difference. Substituting into equations (1) we obtain:

X = /?,w + S3v + S2w + (T2w - 7»
Y = S3u + R2v + S

x
w + (T3u - T

y
w)

(2) Z = S2u + 5,v + R3w + (7> - T2u)

Equations (2) consist of two parts.
1 One part which is independent of the T terms is

symmetric, and Maxwell noted that it represents all hitherto observed relationships

between current and electromotive force. The other part represents an "electromotive

intensity" which had never been observed. If this term did not vanish, Maxwell

continued, then the electric intensity would have a component equal to the vector

product of (T\, T2 , T3 ) and the current; Maxwell accordingly called the T term the

"rotatory coefficient," and he remarked that it would most likely be found, if any-

where, in magnets.

Hopkinson merely quoted Maxwell's discussion and noted that Maxwell's "rota-

tory coefficient" seemed to express fully the facts Hall had observed. Consequently,

Hopkinson concluded, one could express Hall's discovery without resorting to an

action of the magnet upon the current "by saying that the effect of a magnetic field

on a conductor is to change its coefficients of resistance in such wise that the electro-

1 . Maxwell did not give equation (2) in full because he chose a coordinate system in which the vector

T lies along the z axis. In this system 7, and T2 vanish.
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motive force is no longer a self-conjugate linear vector function of the current"

(Hopkinson 1880, 431). Hopkinson accordingly proposed calling the term the "ro-

tatory coefficient of resistance."

Hall was willing to adopt part of Hopkinson 's suggestion; he was willing to call

the term E'U in his expression for the effect the "rotational coefficient" because it

did represent a rotation of the current lines per unit magnetic intensity. But he was

unwilling to call the term the "rotational coefficient of resistance." Although E'U,

being an electric intensity divided by a current density, appears to be a resistance,

Hall noted, "the electromotive force E' is not the cause, but the effect, of the current

implied in [/]" (Hall 1881, 163). There might be something like a rotatory coeffi-

cient of resistance, Hall continued, but his effect had nothing to do with any change

produced by the magnetic field in the resistance of the conductor.

Hopkinson 's essential idea of the effect—that it was a by-product of material

processes produced in the conductor by the magnetic field—was widely received in

Britain through 1885, and eventually the most elaborate theory based on this idea

required a careful empirical refutation by Hall. Shelford Bidwell (1884a) suggested

that Hall's phenomenon could be explained as a result of the combined effect of the

known mechanical force exerted by a magnet on a current-bearing conductor and

thermoelectric action.

Bidwell 's theory made the phenomenon depend on the manner in which the ends

of the plate in Hall's experiment were fastened. His argument, simply expressed,

was that under the action of the magnet the plate will be strained when bearing a

current because it is fastened at both ends. Some portions of it will be compressed

by the strain; others will be stretched. When the current traverses the boundary be-

tween regions of different strain, heat will be produced or absorbed depending on

the change in strain. Since resistance is a function of temperature, it will therefore

be altered. Bidwell examined Hall's experiments and did several of his own on other

metals. In each case he found that the direction of the Hall effect concurred with the

requirements of his theory.

Hall immediately replied to Bidwell' s contention.
2
His response was simple. Hall

took a metal strip and arranged the experiment so that the strip could be fastened at

its center instead of at its ends. On Bidwell's theory, Hall pointed out, an opposite

effect should occur if the strip is fastened in this way instead of at the ends:

Now, when the strip was clamped across its middle and left free at the

ends, and was made to conduct a current of electricity across the magnetic

field, it was like a beam supported at its middle, and with a load distributed

from end to end; but when the strip was clamped at its ends and left free

in the middle, it was like a beam supported at both ends, and with a load

distributed from end to end. (Hall 1884)

On performing the experiment, Hall found that the effect had the same direction in

both cases. Moreover, Hall stated that one can show from Bidwell's theory that the

transverse effect should not be proportional to the primary current, as experiment

shows it to be, but to its cube.

Hall's refutation of Bidwell's theory was not published in time to forestall its

2. The editor of Science evidently sent the abstract of Bidwell's paper to Hall. The abstract and Hall's

reply to it were published together.
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publication in full (Bidwell 1884b). In his lengthy article, Bidwell described the

course of his reasoning and his experiments. He demonstrated, in particular, that one

could produce a Hall-type effect merely by physically stressing the metal plate at

right angles to the primary current. In addition, Bidwell described an experiment

which, he reasoned, refuted Hall's theory. Bidwell cut two collinear longitudinal slits

in the plate, leaving a bridge of metal between them. Attaching the galvanometer

wires on opposite sides of the bridge along a line normal to it, he found that the Hall

effect was opposite in direction compared to its direction in the uncut plate. This

reversal should not have occurred according to Hall's theory, but, Bidwell argued, it

was consistent with his own. 3

Bidwell's theory soon received support from Herbert Tomlinson (1884). Tomlin-

son had earlier felt that the Hall effect could be explained merely by considering the

strain in the plate produced by the electromagnetic forces, and he now accepted

Bidwell's more elaborate theory. Nor was Tomlinson alone in supporting Bidwell.

At the meeting of the British Association in Montreal in September 1885, Lord Ray-

leigh, in his presidential address, also supported Bidwell:

A remarkable observation by Hall of Baltimore, from which it appeared

that the flow of electricity in a conducting sheet was disturbed by magnetic

force, has been the subject of much discussion. Mr. Shelford Bidwell has

brought forward experiments tending to prove that the effect is of a sec-

ondary character, due in the first instance to the mechanical force operating

upon the conductor of an electric current when situated in a powerful mag-

netic field. Mr. Bidwell's view agrees in the main with Mr. Hall's division

of the metals into two groups according to the direction of the effect. (Ray-

leigh 1884)

Although I have not located any correspondence concerning the Hall effect during

this time, it is likely that the extensive discussion which Rayleigh mentioned con-

cerned the theory of the Faraday effect which Rowland, in 1881, based on the Hall

phenomenon. Rowland's work was closely bound to the view that the Hall action

was a fundamental, field phenomenon, and that it required a basic modification in

Maxwell's field equations. Any change in the mathematical structure of a widely

accepted theory is bound to generate opposition, even if the change is fully compat-

ible with, indeed motivated by, the basic structure of the theory. That was why

Bidwell and Tomlinson tried to explain the Hall effect using well-known phenomena;

Rayleigh 's easy acceptance of Bidwell's theory further makes the point, since Ray-

leigh was by this time a complete advocate of Maxwellian theory. But we do not

have to rely entirely on conservatism to explain this common reaction to Hall's dis-

covery. We will uncover a second reason when we examine Rowland's attempt to

explain the Faraday effect (see chap. 12).

11.2 On the Continent

H. A. Lorentz (1884) examined the Hall effect. His view of it—which he attributed

to Hopkinson and Maxwell—seems to involve a new electric field because, in gen-

3. Bidwell (18846, 261-63). Hall simply rejected Bidwell's claim out of hand.



Alternative Interpretations 99

erating the Kerr effect, he proceeds exactly as Rowland had. (For full details see

chap. 24 below.) Lorentz writes the Hall equation for a conduction current C as

follows:

(3) E = pC - Ti x C = pC - EH

Lorentz at once points out a striking physical implication of equation (3). If both

field and current are reversed in direction, the Hall electromagnetic force remains

unchanged in both magnitude and direction. In the Weber electric particle theory,

wherein all forces are, in the steady state, even functions of velocity, reversing all

directions of particulate motion from a given state A merely causes the particles to

retraverse the paths which led to A. Suppose we adopt the usual Fechner hypothesis

so that a current C consists of + e moving with velocity + v, and — e moving with

velocity — v, and we assume with Weber and others that magnetic action is always

the result of currents of some kind. Then exchanging +e with — e reverses the

direction of C; this is the same as simply reversing the sign of each particle's veloc-

ity. Suppose we do this for all electric particles when the system is in state A, in-

cluding those particles which produce the magnetic field. The entire system should

then retraverse the path which led to state A. Consequently, the Hall electromagnetic

force should now have a reversed sign. But it does not. Hence we cannot assume

that exchanging +e with — e merely reverses all motions. That is, there must be a

difference in the speeds of the positive and negative particles, which means that the

Fechner hypothesis must be abandoned if one retains Weber's particle theory—

a

point also made by Boltzmann (1886).

Lorentz goes on to examine the resistance properties of a conductor undergoing a

Hall action to explain why Hall had not been able to measure any resistance change

(i.e., any drop in the primary current). He shows, in effect, that there is such a

change but that it is of second order in |/i|. Boltzmann (1886) provided a simple

demonstration of the same point (although their proofs differ considerably), which

we shall examine in a moment. But first I want to point out an important character-

istic of Lorentz 's proof which further shows that at this time he, like the Maxwelli-

ans, thought of the Hall effect as involving a new electric field.

Lorentz's proof, which is fully rigorous and mathematically detailed, as usual with

him, proceeds in essence by assuming that if the primary current does change, then

this change must be due to a change, Ac)), within the conductor of the electric poten-

tial, <\> (the potential remaining the same at the electrodes). He then uses the conti-

nuity equation to demonstrate that, to second order only, A<|> is zero. This evidently

means that, since Ac)) does not actually vanish except to second order, Lorentz feels

that the Hall effect implicates a change in the E field in the plate, that is, that a new
electromotive force is involved. (Clearly at this stage he has not created the Lorentz

force.) This is fully consistent with his explanation of the Kerr effect in this same

article, wherein he adds a new field to the usual electromagnetic force and employs

their sum in the unmodified Ohm law. This is different from Boltzmann 's (1886)

approach to the Hall effect, for he retains a single electromotive force and considers

the Hall action as a modification of the Ohm law. That is, where Lorentz always sets

the product of current and resistivity equal to the usual E field plus a new term,

retaining the Ohm law structure; Boltzmann always sets the product of the usual field
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times the conductivity equal to the current plus a new term, thereby breaking the

Ohm law structure.
4

Thus Boltzmann writes equation (3) in a different way from Lorentz:

(4) C -I x C = -aV<|>.

Written this way, the Hall term can still be seen, as Boltzmann points out, as a new
electromotive force on dividing through by o\ However, that means the new field

itself involves conductivity (unless h is proportional to o). Boltzmann himself prefers

the view that the effect involves a modification of the Ohm relation between E and

C. These two approaches are analytically equivalent here, but only the Lorentz inter-

pretation leads to a macroscopic explanation of the Kerr effect.

Consider next, with Boltzmann, a plate in the xy plane. From (4):

Cx + hC
y
= -vdfydx

(5) C
y
- hCx = -udfydy

Setting h equal to tanv, we have from (5):

C, = - [or/V 1 + h2](cosv dfydx - sinv dfydy)

(6) C
y
= - (a/VI + h 2

](s'mv dfydx + cosv dfydy)

Whence, if C is the value of C for zero h:

(7) C = Cq/VI + h2

As an example, Boltzmann considers a circular plate with fixed potentials at its

center and circumference. In the absence of h, the potential 4> obeys the Laplace

equation in polar form:

(8) V*<)> = (\/r)d/dr(rd$/dr) =

This has the solution:

(9) $ = -fllnr + b

4. Boltzmann (1886). Considering the equation C = h x C - aVcj), where 4> is the potential and o

the conductivity, Boltzmann, after noting that in this form the Hall action constitutes a contribution to the

electric intensity in the plate, offered an alternative in which +h x C appears on the left side of the

equation: the two equations are algebraically equivalent, but they have entirely different physical impli-

cations. He wrote:

Eine ganz andere Interpretation enthalten die mit h behafteten Glieder der obigen

Gleichungen, wenn mann sie auf die linke Seite des Gleichheitszeichen mit den

anderen Gliedern dasselbst vereint betrachtet; sie erscheinen als eine Modification

des galvanischen Leitungswiderstandes, wie ja jede der Stromintensitat proportionale

elektromotorische Kraft ebenso gut auch als Widerstand aufgefasst werden kann.

Man muss dann annehmen, dass die Platte unter der Einwirkung des Magnetfeldes

zwar in alien Punkten gleich beschaffen bleibt und sich auch nach alien Richtungen

gleich verhalt (d.h. sich nicht andert, wenn mann einen kreisformigen Theil deselben

um einen beliebigen Winkel gedreht wider in die Platte eingefugt), dass aber ihre

kleinsten Theile eine eigenthumlich gedrehte Structur annehmen (wie Schraublinien,

deren Axen die magnetischen Kraftlinien sind). In folge dieser Structur sind die

Bahnen des elektrischen Stromes bein ungehinderter Ausbreitung keine Geraden,

sondern spiralen.
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Finding Vcf> from (9) and using (6), we have:

Cx = [va/Vl+h2
][(x - hy)lr

z

]

(10) C
y
= [<ja/VrT~F][(y + hx)/r

2

]

To find the current lines in the plate, we need y such that dyldx = tan6 is C
y
/Cx . We

have from (10):

(11) Cy/Cx = (y + hx)/(x - hy) = dyldx

In polar form:

(12) r
2
dQ = hrdr

This integrates to:

(13) 6 = h\nr + c

Equation (13) determines a family of logarithmic spirals.

From this we see that Hall's early resistance experiments were sound in principle

but flawed in practice. For if the current were taken from the circumference and fed

to ground through a galvanometer, one would indeed find that the current quantity

has decreased in the ratio V(l + h
2
). One could attribute this to the extra path

lengths which the current lines must now traverse, because the lengths are in this

same ratio to the radii, as one can see by rectifying the spiral. Since the squared path

length {ds)
2

is (drf + r\d§)
2

, and dQ is hdrlr, we have J&ds = V(l + h
2
)r

,

where r is the radius of the disk. And the measured current quantity varies inversely

as the path length for fixed potentials. (This presumes that the Hall current energy is

not compensated except by the primary electromagnetic force.) Hall's experiment

was flawed because he used rectangular plates in which the current lines are not

substantially deflected (as Lorentz shows in detail). In a disk the lines are logarith-

mically displaced.

Note that Boltzmann's equation for the Hall effect was unique to him. The Maxwellians, and Lorentz as

well, multiplied the left-hand side of the equation—the current—by the resistivity, whereas Boltzmann

had multiplied only the electric intensity by the conductivity.
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Modifying Maxwell's Equations

Rowland almost immediately saw in Hall's discovery the possibility of a purely elec-

tromagnetic explanation of both the Kerr and the Faraday magneto-optic effects,

though he limited his theory to the Faraday effect.
1

Perhaps it would be more accu-

rate to say that Rowland required the Hall effect to explain magneto-optics, because

when the idea came to him (and, indeed, even in later years the data available were

inadequate to support the hypothesis on which his theory was based) it was confirmed

solely by its successful explanation of magneto-optics.

Soon after Hall sent the first report of his discovery to the American Journal of

Mathematics, Rowland sent the Journal a brief account of a theory linking magneto-

optics to the new phenomenon (Rowland 1879). He prefaced his article with an

unequivocal statement that Hall's discovery was a fundamental one which implied

that Maxwell's equations had to be modified:

The recent discovery by Mr. Hall of a new action of magnetism on electric

currents opens a wide field for the mathematician, seeing that we must now

regard most of the equations which we have hitherto used in electromag-

netism as only approximate, and as applying only to some ideal substance

which may or may not exist in nature, but which certainly does not include

the ordinary metals. But as the effect is very small, probably it will always

be treated as a correction to the ordinary equations.

Rowland perceived a fundamental similarity between magneto-optic rotation and

the Hall effect. For, Rowland noted, the Hall phenomenon could be described as a

rotation of the primary current about the direction of the magnetic force. He

continued:

... by Maxwell's theory, light is an electrical phenomenon, and consists

of waves of electrical displacement, the currents of displacement being at

right angles to the direction of propagation of light. If the action we are

now considering takes place in dielectrics, which point Mr. Hall is now

investigating, the rotation of the plane of polarization of light is explained.

The experiment Rowland referred to was surely Hall's attempt to discover a trans-

verse action on a line of electrostatic induction. Although Hall did not detect any

such action, nevertheless he and Rowland reasoned that the experiment proved only

that the effect had to be quite small.

Early in 1880 Rowland completed a detailed theory of the Faraday effect which

1 . In the Faraday effect, discovered in 1845, the plane of polarization of linearly polarized light which

passes through a transparent medium under magnetic action is rotated, see Knudsen (1976). In the Ken-

effect, discovered in 1876 (see chap. 13 below), the plane of polarization of light reflected from a mag-

netized surface becomes elliptically polarized, and the major axis of the ellipse is rotated away from the

original plane of polarization.
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was based on the assumption that the Hall force affects displacement currents just as

it affects conduction currents.
2 Rowland began his theory with a brief and puzzling

discussion of the various forms which the Hall force might take (puzzling because

he offered no explanation for the various terms). He distinguished without comment

four actions, each with its own constant:
3

EH = h(B X J) + m2 ' e,)(B • e,)e,

i

+ n% • e,)[B
2 - (B • e,)

2
]

m
e,

i

CD + pZ (b • idV
2 - • sf]

l%
i

Here J is the primary current density, B is the magnetic induction, and the e
t
are the

three unit vectors along the Cartesian coordinate axes. Rowland noted that Hall had

discovered the term whose coefficient is h. He had also determined that the p term

must be extremely small, because he found no measurable effect parallel to the mag-

netic field. The other two coefficients, Rowland continued, had been sought in Hall's

resistance experiments.

Rowland did not explain his reasoning here, but it probably reflects his under-

standing, if not his support, of Hall's idea that the magnetic field might feed energy

into the current. There will either be no compensating force when the current is

deflected into a longer path and suffers a greater resistance by the h term, or else the

magnetic field will compensate to some degree by adding energy. The latter possi-

bility is represented in two ways by the coefficients m and n: m represents a compen-

sating electromotive force that is oblique to the primary current and whose compo-

nents are the products of the respective components of B and J; n provides a force

which has a component parallel to the current. Either n or m, if greater than zero,

will in effect step up the primary voltage and compensate for the drop occasioned by

increased path length produced by the deflection. The energy in either case would

have to come from the magnetic field since the primary voltage is fixed. Rowland

noted, however, that the effect would be extremely difficult to measure (as Hall's

resistance experiments demonstrated).

Turning to Rowland's theory, we must first introduce some aspects of Maxwellian

theory not yet discussed. We need not enter fully into them, but a brief discussion

of the mathematical route to Maxwell's equations for electromagnetic disturbances is

essential. It was usual to derive a propagation equation for the vector potential (or,

in Maxwell's terms, the electrokinetic momentum; Maxwell 1873, vol. 2, chap. 20),

and Rowland followed custom. The field equations we shall use link the rate of

decrease of the vector potential, A, to the electric intensity, E; the electric intensity

to the electric displacement, D; and the rate of change of the displacement to the

vector potential:

(2) E = -dA/dt

2. Rowland (1880). The first part of this article contains a theory of magnetic action in an infinite

conducting medium. Although this theory is significant for understanding Rowland's perspective, it is not

of great present importance. The second part of the article contains the theory of the Faraday effect. It

alone was reprinted verbatim a year later in Britain (Rowland 1881).

3. Rowland gave his equation in Cartesian form. Here as elsewhere I have translated Cartesian equa-

tions into vector notation for simplicity.
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(3) D = <lE

(4) \LdDldt = V x V x A

Combining equations (2) and (3) we find:

(5) dbldt = -ed^/dt2

Equation (5) represents the displacement current generated by the acceleration of the

vector potential in a medium of specific inductive capacity e. Excluding conductivity,

as Rowland did, equation (5) will be the only current in the medium. From equations

(4) and (5) we obtain the vector wave equation:

(6) -e\xd
2
A/dt

2 = V x (V x A)

Consider with Rowland a plane wave propagating along the z axis. Since the wave

must be transverse, Az vanishes, and Ax , Ay
are functions only of z and t. Conse-

quently (6) becomes:

d
2
AJdz

2 = e^AJdt2

(7) d
2A

y
Jdz

2 = e^AyJdt2

Equations (7) determine a wave of "electrokinetic momentum" that propagates in a

medium of inductive capacity e, magnetic permeability (jl, and zero conductivity.

Rowland next added the Hall term, h(BT x dD/dt) to equation (2), replacing J

with the displacement current dD/dt:

(2') ET = -dA/dt + h(BT X dbldt)

Of course, BT consists of two terms: one, provided by the external source in Hall's

experiment (BE), was quite large; the other, corresponding to the vector potential of

the wave itself, was much smaller, and Rowland (as well as everyone after him)

ignored it. Conversely, A also consisted of two terms, but the term provided by the

source field was constant and so disappeared from dA/dt, leaving only the wave term.

Rowland's insight was to treat the Hall term precisely as Maxwell treated —dA/dt

in deducing the wave equation. That is, we treated it as afield of electromotive force.

Like all such fields, this one necessarily generates a proportional electric displace-

ment, the total displacement then being -edA/dt + th[BE x (dD/dt)]. The rate of

change with time of this quantity was therefore itself a displacement current. Nothing

better emphasizes the profound difference, amounting to incommensurability, be-

tween this quintessentially Maxwellian idea and the later explanations based on the

Lorentz force (discussed in part IV).

Carrying through the steps which led to equations (7), but using (2') instead of

(2), Rowland obtained a new wave equation as follows. (He merely gave the results,

but the deduction is simple and also typical for all subsequent theories.) We assume

that BE is constant and employ the usual Maxwellian condition that V • A vanishes

(see appendix 1). We have from this:

V X (V X A) = -V2A = V x B = \Ldbldt = e\xdE^dt

(i) = ep^-d^/df2 + h{BE x d
2
Dldt

2

)}

In the last term of equation (i) we replace d
2
D/dt

2
with (l/|x)(V X dB/dt) from equa-

tion (4) and use BE constant to find, taking the curl:

(ii) V x [$E x (V x dB/dt)] = ~{BE - V)(V x dB/dt)
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Taking the curl of equation (i) and using (ii) we have:

(iii) V2
(V x A) = eu,{d

2
(V x AVar

2 + h@E • V)[V x (dS/dt)]}

Finally, using (6) and dropping a curl, we obtain Rowland's wave equation in full

vector form:

(8) e^A/dt2 = V2A - e\x.h(BE • V)(V X dA/dt)

In component form for a wave traveling along the z axis, this becomes:

e^AJdt2 = tfAJb? + ehBzd
2
Ay/dtdz

2

(8') e^Ay/dt2 = d
2
Ayldz

2 - ehBzd
2Ax/dtdz

2

Equation (8') has precisely the right form to explain the Faraday effect (Knudsen

1976, 241-42), as we can easily see from Rowland's particularly simple solution.

Assume:

Ax = rcos(nt - qz)cos(mt)

(9) A
y
= rcos(nt - qz)s'm(mt)

This represents a linearly polarized wave whose plane of polarization rotates over

time. Substitution of equation (9) into (8') gives a nonzero value for m:

(10) m = hq
2
BJ2\k

If D is the length of substance traversed in time t at speed V, the, from equation (9).

the angle of rotation, 6, is just mDIV. The speed of the wave is equal to cli, where

c is the speed of light in air, and i the index of refraction. Allowing for weak dis-

persion, and introducing the wavelength \ in air, yields the same form for the angle

of rotation that Maxwell had obtained in the Treatise (vol. 2, chap. 21; Knudsen

1976):

(11) = (2T7
2hDBz/[xc)(i

2
/k

2
)(i - \di/dk)

Rowland's theory of the Faraday effect was thus founded on two empirically un-

supported assertions: first, that displacement currents are subject to the "Hall" field

(hereafter references to the "Hall" field in quotation marks will always refer to the

assumed transverse electric intensity for displacement currents); second, that the

"Hall" field generates an electric displacement (which presumes that energy is stored

in the field, as had been generally assumed from the beginning). One could view the

Faraday effect as a confirmation both of these assumptions and, by implication, of

the electromagnetic theory of light. Rowland apparently did:

... the new electro-magnetic phenomenon explains in the most perfect

manner the magnetic rotation of the plane of polarization of light, and we
are almost in the position to pronounce positively that the two phenomena

are the same. Should this preliminary theory of the subject stand the test

of time, it hardly seems to me that we can regard it in any other light than

a demonstration of the truth of Maxwell's theory of light; for the rotation

of the plane of polarization is thus a necessary consequence of the laws of

electro-magnetism, and this, added to the other facts of the case, raises

Maxwell's theory almost to the realm of fact. (Rowland 1881)

To understand the reasons for Rowland's enthusiasm one must recall that, until

his theory, there had been no purely electromagnetic explanation of the Faraday ef-
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feet in Maxwellian terms. Maxwell had to introduce the nonelectromagnetic hypoth-

esis that there is a preexisting vortical motion in the magnetic field with which the

electromagnetic motions of light could interact (Maxwell 1873, vol. 2, chap. 21).

Two years before Rowland's work, George FitzGerald (1880) had produced an elec-

tromagnetic theory of the Kerr effect in which linearly polarized light is transformed

into elliptically polarized light by reflection from a magnetized metal, with the major

axis of the ellipse rotated from the original plane of polarization. This theory encom-

passed the Faraday effect, but it was entirely hypothetical. In particular, FitzGerald'

s

theory introduced an auxiliary vector, u, equal to the time integral of the periodic

portion of the magnetic force, H, and it was based on the assumption that the elec-

trokinetic energy of the medium in a field of magnetic force contains an additional

term, per unit volume, proportional to (dD/dt) • [(H • V)w] (see appendix 4 for a

discussion of FitzGerald' s theory). This was, of course, unsupported at the time by

any independent electromagnetic phenomenon. Rowland's theory of the Faraday ef-

fect was, by contrast, based on the extension of a known electric phenomenon, the

Hall effect, to bodies in which it had not as yet been observed; namely, in dielectrics.

Although the extension was hypothetical, it was nevertheless entirely natural, indeed

necessary, within the context of Maxwellian theory. Moreover, as R. T. Glazebrook

(1881) demonstrated, there was a significant underlying link between FitzGerald'

s

hypothetical theory and Rowland's less speculative one.

Why, then, did Rayleigh not see the Hall effect as fundamental? As a Maxwellian

he should have, one would think, because of the powerful integration of optics and

electromagnetism it afforded. One important reason for Rayleigh 's and others' reluc-

tance was undoubtedly conservatism—an aversion to altering Maxwell's equations.

But there was another factor which was certainly of significance: Rowland's theory

was plagued by a serious anomaly.

Hall had touched on the source of the problem as early as the winter of 1880, just

when Rowland was working out his theory (Hall 1880a, 325). When quantitatively

examining five substances during 1880 for the effect, Hall had observed that it had

the same sign in all of them except for iron. Rowland was not surprised by the sign

difference for the strongly paramagnetic iron because he expected the effect to have

different signs in paramagnetic and diamagnetic substances. He had expected this

because he knew that a transparent diamagnetic solution rotates light, in the Faraday

effect, in a direction opposite to that in which the rotation occurs when, in the same

solution, a sufficient quantity of iron perchloride is dissolved (see, e.g., Kerr 1877).

What was puzzling, therefore, was not the sign of the effect in iron, but the fact that,

as Hall found, it had the opposite sign in nickel and platinum, which are both para-

magnetic substances. But since Hall's data did not indicate a quantitative relationship

between permeability and the magnitude of the transverse effect, one could—and

Rowland did—conclude that there is, in fact, no such direct link. If this were so,

however, then, if the Hall effect could explain magnetic rotation (as Rowland

thought), the nickel and iron should rotate light in opposite directions when used as

pole pieces in a Kerr effect experiment. Hall described the result of a Kerr experi-

ment with nickel which he carried out at Rowland's undoubtedly urgent request:

The reflecting surface used was the nickel plating on one of the disks of

Professor Rowland's absolute electrometer. This disk, for the purpose of
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the experiment, was placed between the poles of the electromagnet. The

action upon the plane of polarization, though apparently much weaker than

in iron, has, in the plate used, unmistakeably the same direction. (Hall

1880a, 325)

But this first experiment could have been flawed by impure nickel, or so Rowland

suggested:

The nickel plating, however, was executed in Germany; and Professor

Rowland thinks that, as the nickel of that country is very impure, this

specimen may possibly contain iron enough to mask the true action of the

nickel. (Hall 1880a, 325)

Hall, however, confirmed these anomalous results in the summer of 1881, this time

using two specimens of nickel from different sources, both of which exhibited a

rotation in the same direction as iron. This, Hall admitted, "is on its face undoubt-

edly an argument against the theory which refers the two effects to the same cause

(Hall 1881, 171).

What Hall did not admit was that, if Rowland's theory failed, then the fundamen-

tal character of the Hall effect was itself thrown into question. Yet that is almost

certainly what happened: Bidwell's theory and Rayleigh's approval of it were prob-

ably late reactions to the anomaly. Despite the fact that the anomaly was mentioned

only briefly by Hall (1880a, 1881), the problem was certainly on people's minds.

For example, as late as 1891, while reporting on an article by A. B. Basset (1891)

which applied the Hall phenomenon to the Kerr effect, George FitzGerald com-

mented:

Nov. 11, 1891

Dear Lord Rayleigh,

Mr. Basset's paper herewith returned is very interesting. He has worked

out in a way less open to objection than mine the same problem [the Ken-

effect] and obtained substantially the same results. . . . His assumption

that Hall's effect will explain rotary polarisation of magnetic media is not,

as well as I can remember, justified by experiment. As well as I remember

Rowland got a lot of experiments performed on the subject [in fact Hall

performed just three] and found that nickel, I think rotated the plane of

polarisation the wrong way as compared with its Hall effect. I have not

had time to look the matter up but would refer to papers of Rowland and

others about a year after Hall's effect was published and published, I think,

in the Phil. Mag. and in the American Journal of Science (?). I am not

sure that they did not work on some Kerr effect as their test of the rotatory

power of nickel and so actually compare Hall's effect with the Kerr effect

which would be a direct test of Mr. Basset's theory. My recollection is

pretty clear that some such difficulty in explaining rotatory polarisation by

Hall effects was carefully investigated and the theory found unsatisfactory

and think Mr. Basset should look up this question and if I am right and it

is a difficulty he should state it. ([R.S.] RR 11.9)

FitzGerald nevertheless admitted that, were it not for this difficulty and the fact

that Basset had neglected a fact of great importance to the Kerr effect (metallicity),

Basset's theory would be an improvement on FitzGerald's own. It would be based
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on purely electromagnetic equations throughout, and these equations had some em-
pirical support beyond the phenomenon they were being used to explain:

Mr. Basset's theory is, I think, quite consistent which mine was not, it is

founded on an experiment [Hall effect] not obviously connected with the

subject matter [Kerr effect], though there is some doubt as to whether this

assumed foundation ["can be" crossed out] has been experimentally veri-

fied, while mine was founded on an equation invented to ["explain"

crossed out] represent the phenomenon of rotatory polarization and which

has no dynamical or other foundation. ([R.S.] RR 11.9)

Although the anomaly posed by the difference between the signs of the Hall effect

and magneto-optic rotation in some media was apparently not fatal, it was sufficient

to raise repeated doubts concerning the fundamental character of the Hall effect

throughout the late 1880s. Moreover, Hall's refutation of Bidwell's theory had not

destroyed that theory in the minds of many Maxwellians. Oliver Lodge, for instance,

referred favorably to it as late as 1889, and he even suggested that Bidwell's theory

might be able to explain the Faraday effect:

. . . may not the Faraday rotation of light vibration be due to infinitesimal

temporary strains and heatings in the medium, caused by the fact that min-

ute electric displacements are occurring in a violent magnetic field? ... I

do not know of data, at present obtained, sufficient to enable us to answer

it. If its answer should turn out in the affirmative, several apparently dis-

tinct phenomena will be linked together. (Lodge 1889, 290)

On occasion Bidwell's theory was ignored, but Hall's phenomenon was still not

thought fundamental. A common alternative was the idea that the magnetic field in

some way altered the resistance of the metal (Hopkinson early offered this alterna-

tive). Boltzmann (1886), for instance, analyzed the current distribution in a disk

subject to normal magnetic force under this assumption.

Rowland's work stimulated Richard Tetley Glazebrook in 1881 to look for points

of contact between Rowland's and FitzGerald's theories through the field energy

implications of the Hall effect. In 1888 J. J. Thomson recalled Glazebrook's analysis

and emphasized the view that the Hall effect is a fundamental field phenomenon.

There was little work done by Maxwellians on the implications of the Hall effect

until Basset's theory in 1891, which we shall discuss in Section 14.3 after examining

Glazebrook's and Thomson's analyses. But first we shall consider the discovery of

the major phenomenon in addition to the Faraday effect for which Maxwellians and

others used Hall's discovery: magneto-optic rotation by reflection.
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The Kerr Magneto-Optic Effect

The magneto-optic reflection effect is a small and subtle phenomenon, requiring great

experimental acumen. As a result, Kerr's initial discovery of it was open to several

interpretations (Kerr 1877, 1878). Reflecting linearly polarized light from the poles

or sides of an electromagnet, Kerr in essence discovered three facts:

1. The incident beam, polarized in or perpendicular to the plane of incidence, has

an additional component at right angles to the original polarization added to it by

reflection. This component is extremely small in magnitude.

2. The reflection is elliptically polarized in all cases, albeit only slightly so, and

the axes of the ellipse are neither in nor perpendicular to the original plane of polar-

ization.

3. The direction of the new component reverses when the magnetizing field is

reversed.

At first Kerr assumed that the ellipticity was produced by the usual metallic effects

(see appendix 8) combined with a slight rotation of the plane of polarization some-

how produced in the incident beam before actual incidence. That is, he at first

thought that magnetism produces essentially the same effect that would be produced

by reflection from a metallic surface if the incident polarization were slightly inclined

to the plane of incidence or to its normal. This is incorrect because it presumes that

the phase of the new component is essentially the same as the metallic phase pro-

duced by reflection of a component normal to the incident plane of polarization. This

has the virtue of assimilating the magneto-optic effect to metallic reflection.

Kerr, however, tested this assumption by actually rotating the polarizing prism

and found a considerable difference in effect between the magneto-optic and the

metallic cases, so he admitted that his assumption was not exact, though he still felt

it to be a good approximation (which it was not).
1

Experiments with reflection from

the side of a magnet further convinced him that the magneto-optic component has its

1 . If Kerr had been correct in this assumption then one would find the amplitude of the magneto-optic

component as follows, supposing it small for incident polarization normal to the plane of incidence. Let

T w be the magneto-optic rotation in radians (see appendix 9). Then on Kerr's initial theory:

The true equation is:

[cos(«t.r
ET - <k

MET
)]

/iMO,iMETU/,„ / i MET iMOvi
(A IA V )[cos(<J) v - <pL )]

At 75° incidence for iron, I compute that >4
MO = 0.003 where TV

TRUE = 0.0066 radians. On Kerr's theory,

using this value for Tv , one has AMO = 0.0215. This is about a factor of 7 off. But since Kerr did not

compute or measure rotations, this is not historically relevant. What is relevant is the fact that the sign of

the rotation does not change for iron at incidences Kerr observed, for if it did change then Kerr would

have at once realized that the magneto-optic phase must differ from the usual metallic phase (in the case

of iron <J>„
- 4> V

MHT
never crosses 90°).



1 10 Chapter Thirteen

own particular phase and amplitude, which he realized was "very remarkable and

very important if true" (Kerr 1878, 176), since it obviously would require an entirely

new theory. In essence, then, though Kerr's experiments were not quantitative (he

did not measure the rotation of the ellipse axes), he had understood fairly well that

this is an entirely new phenomenon which is not readily assimilable to metallic ef-

fects: the phase and amplitude of the magneto-optic component are unique to it,

though perhaps related to the usual metallic constants.

August Kundt (1884) examined what occurs when light passes through thin, mag-

netized metallic films, and he found that the Faraday rotation is about 30,000 times

as great as for passage through dielectrics. He also pointed out that FitzGerald's

theory for the Kerr effect (see appendix 4) cannot explain even the gross aspects of

the phenomenon, though he seems not to have realized why this must be so. Fitz-

Gerald's theory does not take account of metallicity and so cannot possibly produce

rotations that depend on phase differences between the metallic component of the

reflection and the magneto-optic component, as FitzGerald (1885b) remarked in

reply.

The first detailed, quantitative experiments were carried out by A. Righi (1885,

1887), though he did not give the metallic constants of the iron mirror he employed.

He recognized in full the unique character of the magneto-optic phase and amplitude,

and he also carefully pointed out that the effects differ considerably depending on

whether the incident polarization is in or normal to the plane of incidence (a fact

Kerr had observed but had not pursued in great detail). In an inordinately compli-

cated computation (based on FitzGerald's (1876) earliest discussion of the phenom-

enon), Righi decomposed the incident wave into two circularly polarized components

rotating in opposite directions, and he then showed that magnetic reflection differ-

entially affects these components in amplitude and in phase, particularly by introduc-

ing a new phase difference between them. What this procedure obviously does is to

incorporate the magneto-optic and the metallic phases into a single phase, thereby

significantly masking important regularities. However, Righi did discover an impor-

tant new fact which I shall call the "law of reciprocity": He found that the analyzer

rotations obtained when the polarizer is set in or normal to the plane of incidence are

equal to the polarizer rotations obtained when the analyzer is set normal to or in the

same plane, respectively. He also recognized a similar regularity which occurs when

both polarizer and analyzer are set to produce a linearly polarized reflection (see

chap. 25 for a discussion of these points). By 1887, the basic features of the Ken-

effect were clear. In the next chapter we shall see how the Kerr effect was, like the

Faraday effect, linked to Hall's discovery by the British, culminating in what seemed

at the time (1893) to be a highly successful theory based on the idea that the Hall

effect implicates a new electric field.
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The Unification of Theory, 1881-1893

14.1 Glazebrook 's Deduction of the Field Energy Implied by the Hall Effect

In June 1881, scarcely a year and a half after Hall's discovery, Richard Tetley

Glazebrook worked out its implications for the energy of the "Hall" field. At the

same time he developed a vortex theory which was mathematically equivalent to

Maxwell's theory of the Faraday effect as developed in the Treatise. Although the

vortex theory was probably less influential than Glazebrook 's deduction of the

"Hall" field energy, we must examine it in order to grasp his analysis of the field

energy. First, however, it is essential to recall the major elements of Maxwell's

theory. These have been ably described by Ole Knudsen (1976) and we shall follow

his discussion.

Maxwell's theory was based on a property of vortex motion which Helmholtz

(1858) had deduced. Helmholtz had defined a linear vortex as a line drawn through

an incompressible fluid to coincide at every point with the instantaneous axis of

rotation of the fluid element at each point. Now if o5 is the angular velocity (vortex

strength) of the fluid element, and v is the velocity field, then first we have a purely

kinematic relationship:

(1) w = (1/2)V x v

The equation of motion of a fluid of density p subject to a total body force F and

with an internal pressure p is:

(2) F - (l/p)Vp = DvlDt

Assuming that V • v vanishes, that is, that the fluid is incompressible (Helmholtz's

theory applies only to such fluids), one can derive from equations (1) and (2) (see,

e.g., Batchelor 1967, eq. [5.22]):

(3) DulDt = (d) • V)v

If u is the small displacement generated by a disturbance in time dt, so that v be-

comes v + du/dt, we have:

(4) Aw = 5 — 3> = (d) • V)u

In the Treatise, Maxwell adopted equation (4) as the law for the alteration in a

permanent field of magnetic force when a small displacement of the medium in which

the field exists occurs. That is, he replaced the angular velocity, 65 , with the mag-

netic intensity, H(h and he assumed that a small displacement of the medium will

change c5 = H to u> = H + (H • V)w. This assumption was based on the idea
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that magnetic force is the macroscopic manifestation of a microscopic vortical mo-
tion.

If, Maxwell next supposed, during the passage of lighten element of the medium
acquires an additional angular velocity to' equal to (1/2)V x duldt, then the kinetic

energy of the field will be increased by a term, per unit volume, of the form:

(5) r = 2C(eo' • w)

After a partial integration equation (5) becomes:

(6) T = CfJ(du/dt x w) • dS + Cfjf[duldt • (V x Z)]dV

Assuming that V x to vanishes (i.e., that the external field is uniform), taking the

ctosed^ surface in equation (6) at infinity, and recalling that co is equal to H +
(H • V)w, Maxwell next used equation (6) to obtain:

(7) r = CiJJ(duldt) [(H • V)(V x u)]dV

Adding equation (7) to the usual kinetic energy for a fluid, and making a simple

assumption concerning the potential energy, Maxwell used Lagrange's equa-
tions to deduce the equation of motion for u. This equation yielded the Faraday
effect.

In 1881 Glazebrook was a college lecturer in mathematics and physics at Cam-

bridge, where he had obtained his B.A. in 1876 as a fifth wrangler (Rayleigh and

Selby 1936-38). He had also worked under Maxwell at the Cavendish, mostly on

optics. Glazebrook was entirely familiar with the Treatise, and he had also read at

least some of Maxwell's earlier articles. Shortly after Rowland's article on the link

between the Hall and Faraday effects was published, Glazebrook developed a math-

ematical model of the field based on hydrodynamics; in this model, the magnetic

force, H, was equated to the angular velocity, to, of a fluid element. Glazebrook

used the model to forge a link between Maxwell's theory of the Faraday effect and

Hall's discovery.

The model's first equation (eq. [1]) was purely kinematic; it connected the angular

velocity to the linear velocity (Glazebrook 1881). From equation (1) we find:

(8) V x w = (l/2)[- V2
duldt + V(V • dti/dt)]

Next we use the hypothesis that H is equal to co to link a> with the vector poten-

tial, A:

(9) Ltto = ilH = V x A

From equations (1) and (9) we find:

(10) A = (l/2)|x duldt

Combining equation (8) with Maxwell's field equation for the rate of change of the

electric displacement, we have, again using the equivalence of to and H:

(11) -V 2
duldt + V(V • duldt) = 2V x H = 8ir dDldt

Finally, from equations (10) and (11) we obtain:

(12) 4ttll dDldt = - V2A + V(V • A)
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Glazebrook first used these results to reach an analog of Maxwell's equations for the

electric intensity in conductors and in dielectrics.

We are now prepared to understand how Glazebrook was able to link Maxwell's

expression for the field energy (eq. [7]) to the Hall effect, and thereby to obtain the

first expression for the energy associated with the effect. Glazebrook first assumed,

precisely as Maxwell had assumed in the Treatise, that the medium has the same

potential energy, W, as the strain energy of an elastic solid. Directly adding Max-

well's term to the medium's mechanical kinetic energy, Glazebrook obtained the

equations of motion by requiring f(T — W)dt to be stationary, just as FitzGerald had

done in 1879 (see appendix 4). He thereby obtained the same equation that Maxwell

had for the material displacement (except for the terms in Maxwell's equations

[1873, vol. 2, sec. 828, eqs. 10-13] which represent dispersion):

(13) pd
2
u/dt

2 + 2C(H • V)(V X du/dt) = pF + bV2
u

Here b is the medium's coefficient of rigidity.
2

At this point Glazebrook brought in the equations of his model. Since the medium

is incompressible, equation (11) implies:

(14) D = -(1/8tt)V
2
w

1

.

Glazebrook combined equation ( 1 2) with the usual mechanical equations of motion of a viscous

fluid to obtain Maxwell's field equations for the electric intensity in a conductor. The mechanical equations

are:

(i) pd
2
u/dt

2 = pf - Vp + (1/3)*V(V • du/dt) + kV 2
du/dt

From equations (10), (12), and (i) Glazebrook deduced:

(ii) dA/dt = (uV2)(f - (l/p)V» - (4TT\ik/p)dD/dt + (4*/3p)V(V • A)

In Glazebrook's model the density, p, of the medium was set equal to its magnetic permeability, u., as

Maxwell had assumed in his early model of the field. Using this assumption, one can rewrite equation (ii)

in a particularly interesting way, if one assumes that P has a potential V such that -W is equal to \ifl2:

4TikdD/St = -dA/dt - Vo)

(iii) a) = V + p/2 - (4ir/3p)(V • A)

If we call 4irk the "resistivity" of the medium, then the left-hand side of equation (iii) is equal to E, the

electric intensity, and we have Maxwell's equation for the intensity in a stationary conductor (Maxwell

1873, vol. 2, sec. 598). However, the same form of equation obtains for a dielectric. To show that

equation (ii) applies uniquely to a conductor, Glazebrook combined it with equation (12) to obtain:

(iv) dA/dt + VV + (\/2)Vp + {kl\L)V
2A - (*/3u.)V(V • A) =

Using the previous definition of <d, and calling 1/4tt& the "conductivity," a, we find from equa-

tion (iv):

dA/dt + Vo + (l/4iru.cr)[V
2
/4 + V(V • A)] =

This equation is Maxwell's equation for a conductor (Maxwell 1873, vol. 2, sec. 783, eq. 7; with K, the

inductive capacity, ignored in comparison with a). To obtain the equations for a dielectric, Glazebrook

used the equations for an incompressible elastic solid instead of the viscous fluid equation (eq. [i]).

2. The elastic potential used by Glazebrook was well known by this time, having been most promi-

nently discussed in W. Thomson and Tait (1895-96). This form of the potential was first deduced by

George Green (1838); see appendix 2.
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From equations (1), (9), (10), (13), and (14), we have, on the assumption that the

density, p, is equal to the magnetic permeability, (jl:

(15) dA/dt + 2C(H • V)# = (\xJ2)F - (4-nb)D

(It is important to understand here that Glazebrook's magnetic field, H, was the field

generated by all sources except those which produced the external field, H . In terms

of Maxwell's mechanical variables, Glazebrook's H would be Maxwell's o5'.)

Glazebrook wished to obtain an equation for the electric intensity which would

explain optical rotation, in particular the Faraday effect. Since this latter phenomenon

occurs in nonconducting, transparent bodies, Glazebrook simply ignored the conduc-

tion current. That is, he set V X H equal to the displacement current, At:dD/dt, as

Rowland had. Glazebrook's theory, in fact, had to ignore conductivity unless he were

to have somehow melded the equations for an elastic solid and for a viscous fluid:

his model links conductivity to viscosity and inductive capacity to elasticity. This

might have been done using the Stokes generalized equations for viscoelastic media,

but this would have greatly complicated the analysis and was in any case unnecessary

for the Faraday effect.

Glazebrook did claim that his analysis applies to conductors as well as to dielec-

trics, representing the empirical Hall effect as well as its analog for dielectrics. How-
ever, he did not generate an independent theory for the conduction Hall effect.

Rather, he simply treated dD/dt as a conduction current and set dA/dt equal to zero

(since the currents were steady in Hall's experiments). This merely ignored the pro-

found difficulties posed by the incorporation of conductivity into Glazebrook's the-

ory. A consistent theory would, by contrast, have to utilize a mechanical equation

for conductors, that is, it would have to use either the equations of motion for viscous

bodies, instead of equation (13), or else the Stokes equations for viscoelastic media.

Since Glazebrook had used the former to reach Maxwell's intensity equations for

conductors, he was certainly aware of the fact. That he nevertheless did not do so

here reflects a deep problem. At the end of this section we shall return to the difficult

question of consistently generating the empirical Hall effect. (J. J. Thomson did later

introduce conductivity, but his theory used no mechanical equations, and, even

though he allowed for conductivity, he also demonstrated that the transverse field

which is important in magneto-optics—specifically in the Kerr effect—had to be a

function solely of the displacement current.) Thus, replacing V x H with AttdD/dt,

and supposing the external field to be constant and uniform, Glazebrook obtained:

(16) (H V)H = V(H • H) + 4tt(dD/dt x H )

Set |xF/2 equal to — Vi|/, and let B be represented by \IK, where the electric inten-

sity, E, is related to the electric induction, D, by 4ttD/K. Then equations (15) and

(16) give:

(17) E = -dA/dt - 8-nC(dD/dt x H )
- 2CV(H • H) - Vi|/

The second term in equation (17) is the same in form (excepting the third term) as

Rowland's addition to the equations of electric intensity (see chap. 12, eq. [2']). It

represents the analog of the Hall effect for displacement currents and leads, as Row-

land had demonstrated, to magneto-optic rotation. (The third term had not been ob-

served, but Glazebrook somehow concluded that, in the Kerr effect experiments per-

formed by Hall, H was perpendicular to H ).
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Glazebrook had demonstrated that Maxwell's addition (eq. [7]) to the field's ki-

netic energy will imply the dielectric analog of the Hall effect under the same three

assumptions that Maxwell himself had made, namely: (1) the potential energy of the

medium is the same as the strain energy of an incompressible, isotropic elastic solid;

(2) the magnetic intensity is equal to the angular velocity of an element of the me-

dium; and (3) the magnetic permeability is equal to the medium's density. Thus

Maxwell's energy term, which implies the Faraday effect, also implies the dielectric

analog of the Hall effect on mechanical assumptions concerning electromagnetic var-

iables. Rowland had already demonstrated that the dielectric Hall effect entails the

Faraday effect; Glazebrook had, in essence, further unified the two effects (only the

Faraday effect had been experimentally demonstrated) by showing that both have a

common source in Maxwell's extra term in the field energy.

Having linked Maxwell's term to the dielectric Hall effect, Glazebrook turned to

FitzGerald's magneto-optic theory to see whether it, too, might be linked to the

supposed transverse action on displacement currents. Unlike Maxwell's theory,

FitzGerald's theory had not directly used mechanical assumptions, but it was never-

theless formally linked to Maxwell's through its energy term. That is, FitzGerald's

energy term could be mathematically deduced from Maxwell's by substituting

FitzGerald's light vector for Maxwell's: Maxwell's vector represented a mechanical

displacement of the medium, whereas FitzGerald's was an auxiliary vector defined

as the integral of magnetic intensity over time.

Glazebrook 's aim was to determine an expression for the field energy in Fitz-

Gerald's theory in terms of known field variables, that is, without using the auxiliary

vector, and from this to deduce the corresponding equation for the electric intensity.

To do this he first replaced V X vv, where vv is FitzGerald's auxiliary vector, with

4ttD, using the definition of vv as jHdt. In this way he initially found that Fitz-

Gerald's extra energy term could be expressed with appropriate constants in the form

16tt
2
C///[(// V)vv] • dD/dtd

3
x

3
Several purely mathematical transformations then

led to an expression for the field energy in terms of the usual electromagnetic vari-

ables.
4
Thus the total electrokinetic energy in FitzGerald's theory consisted of two

3. To obtain FitzGerald's term—[(# V)vv] • [V x (dw/dt)]—from Maxwell's in a formal way, first

replace Maxwell's mechanical displacement with FitzGerald's auxiliary vector: since the auxiliary vector,

vv, is equal to jHdt, we have V x vv = 4-nD. Using this relation and integration by parts, FitzGerald's

energy term emerges (Glazebrook 1881, 409-10).

4. To obtain Glazebrook's expression, transform 7" mathematically into:

T = 16ir
2
C/OD/d/) • (D x H )d

3
x - 4irC/{(d5/d/) [ex (H • dw/dx)

(v) + e
y
(H • dvv/dy) + e z(H dw/dz)]}d\

The second part of equation (v) can be integrated by parts, yielding a surface integral and two volume

integrals. Assuming the surface is at infinity, we are left with the volume integrals:

T = \6TT
2
Cj[(dD/dt) • (D X H )]d\ - 4>nCf{w • [V • (HxdD/dt),

(vi) V • (HydD/dt), V • (Hz
<ydD/dt)]}d

3
x

Since V x H is equal to AitdDldt, the second term of equation (vi) can be rewritten. I find for this

term: „ ^ ^
-Cj{ux[VH

x
• (V x //)] + u

y[VHl (V x //)] + uz[VH
z

(V x H)}}d\

Since we suppose that the external field, H , is uniform, this term vanishes. Glazebrook reached this

conclusion, but through an incorrect, or at least symbolically confused, analysis. He neglected to distin-

guish at^ this point between H and H. Thus he replaced dD/dt in equation (vi) with what appears to be

(1/4tt)(V x //()). However, in prose he permitted the components of the resulting magnetic term to be

either H or H. His deduction was flawed, but the result was correct.
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parts: one, equal to (l/2)///A • dD/dtd
5
x, represented the usual energy in a field of

displacement currents (Maxwell 1873, vol. 2, sec. 634); the other, 16Tr
2
C///dD/df •

(D X H )d
3
x, was the energy contributed by FitzGerald's term.

Using Hamilton's principle with the standard form—(l/2)///£ • Dd3
x—for the

field's electric potential energy, Glazebrook then deduced the equation of electric

intensity:

(18) E = -dA/dt - 32TT
2
C(dD/dt x H )

This, of course, represents the Hall effect in dielectrics. In sum, Glazebrook had

concisely demonstrated that FitzGerald's energy term, without any extra assump-

tions, directly implies the "Hall" field intensity. One did not have to detour through

mechanics to obtain the Hall effect, as had to be done to obtain it from Maxwell's

term.

Glazebrook 's analysis had forged strong links between Maxwell's and Fitz-

Gerald's magneto-optic theories, on the one hand, and between Maxwell's theory

and the Hall effect, on the other, and it had done so by examining field energies.

This was an important step in the unification of theory, as Glazebrook 's concluding

remarks indicate:

Thus the additional term [in the field energy] assumed by Mr. Fitzgerald

leads to Mr. Hall's additional terms in the electromotive force. Of course,

if we start from Mr. Hall's terms, and work backwards to find the electro-

kinetic energy, we shall arrive at Mr. Fitzgerald's terms; and if, further,

we assume the hypothesis of the molecular vortex theory, we shall get

Maxwell's additional term. Mr. Fitzgerald's term is a direct consequence

of Hall's experiments; Maxwell's term is a consequence of them on some

theory of the action between light and magnetism. (Glazebrook, 1881, 413)

It is significant that what Glazebrook referred to as "Mr. Hall's additional terms"

in the electric force were, strictly, not Hall's at all: Hall had found an effect on

conduction currents, not on displacement currents; Glazebrook's analysis was limited

to the latter, despite his claim. In fact, one doubts whether the Hall effect could have

been deduced for conductors in Glazebrook's fashion because the added term in the

field energy yields a transverse action through mathematical transformations which

link it to electric displacement.

The difficulty can be seen by considering what would have to be done to apply

Glazebrook's analysis to conductors. Consider first the case of FitzGerald's energy

term. To include conductivity, one would add two terms to the kinetic energy of the

medium. One, (l/2)//J7 * Ad3
x, represents the kinetic energy of the conduction cur-

rents. The other, a homogeneous quadratic function of the conduction currents, rep-

resents half the rate at which energy is dissipated in Joule heat: it is the electromag-

netic analog of Rayleigh's dissipation function, F (Rayleigh 1877, vol. 1, sec. 81).

These extra terms would not, however, yield a transverse action on J because

FitzGerald's magnetic term depends directly on the displacement and on dD/dt. The

transverse action, in effect, emerges mathematically because both FitzGerald's mag-

netic term and the potential energy, (\/2)}ffE • Dd3
x, are directly proportional to

the displacement, and because FitzGerald's term contains dD/dt. Consequently, even

if dD/dt in FitzGerald's magnetic term were replaced with the total current, there

would be no transverse effect on the conduction current part. Consider next Max-
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well's energy term. Here one needs either a viscoelastic medium or a purely viscous

medium, if one excludes displacement. In either case nothing like the Hall effect for

conduction currents would emerge because there is no viscous potential energy as

there is elastic solid potential energy: at best, in the case of the viscoelastic medium,

one would obtain the action for displacement currents. Moreover, in the latter case

it would be extremely difficult to distinguish mathematically between the conduction

and the displacement currents—if, indeed, such a distinction were here possible.

When Glazebrook excluded conduction currents from his theory, he may have done

so not merely because they were unnecessary for the Faraday effect, as they certainly

were, but also because he realized that he could not generate the Hall effect in con-

ductors. This difficulty emphasizes an important problem (introduced in part I) that

was inherent in Maxwellian electrodynamics: although Maxwellian theory was based

on dynamics, in particular on Hamilton's principle, there appeared to be no simple

way to introduce the conduction current into field dynamics except as a purely kinetic

phenomenon. This was adequate for the usual electrodynamic purposes, but it was

not adequate for optics, nor was it adequate for the Hall effect. J. J. Thomson's

signal success in accounting for the Kerr effect was based on ignoring the Hall effect

for conduction currents. The problems posed by the dynamics of the conduction

current were a central feature of Maxwellian work in the late 1880s and the early

1890s. Joseph Larmor's theory of the electron emerged in part from his attempts to

grapple with the implications of the Maxwellian conduction current.

14.2 J. J. Thomson's Generalized Field Dynamics: The Application of

Glazebrook 's Energy Term

We saw in section 14.1 how Glazebrook successfully deduced the Hall effect from a

mathematical transformation of FitzGerald's expression for electrokinetic field en-

ergy. Glazebrook's analysis was sufficiently convincing that in 1888 J. J. Thomson

anachronistically looked back at FitzGerald's 1879 article on magneto-optics as a

demonstration that the Hall effect—which had not then been discovered—implies the

energy term which FitzGerald had used:

Prof. Fitzgerald . . . and Mr. Glazebrook . . . have shown that the exis-

tence of the [Hall] force proves that there is a term equal to (1/2) C ' dbl

dt • (D x Pl ) in the expression for the Lagrangian function of unit volume

of the medium. (Thomson 1888, sec. 43)

The dynamics of the electromagnetic field, as embodied in its kinetic and potential

energies which determine the field's Lagrangian, were central to Maxwell's theory

in the Treatise. Thomson was especially concerned to extend dynamical analysis to

all areas of physics and chemistry by developing the appropriate Lagrangian for each

area, a program he had well under way by 1885.
5
Glazebrook had shown that, given

the Hall effect, the complete Lagrangian of the electromagnetic field had to include

the extra term which appears in Thomson's remark above—at least if Lagrangian

dynamics were to continue to apply to electromagnetism. As a result, Thomson
pointed out, there had to be other effects present besides Hall's, given the structure

5. J. J. Thomson (1884/?). On Thomson's use of dynamical (i.e., Lagrangian) analysis, see Topper

(1970, 1971). Thomson's career is more broadly discussed in Spitzer (1970).
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of Lagrangian mathematics. If, for example, a current traversing the junction be-

tween two metals of different conductivities causes, say, a local absorption of heat,

then, if the junction were heated, a current should be generated at it. This reciprocity

is intrinsic to Lagrange's equations because the Lagrangian contains generalized co-

ordinates representing the respective contributions of each component of the system.

We cannot here pursue this important and intricate topic, but we can examine its

implications for the Hall term in the Lagrangian.
6

Only the essentials of Thomson's reasoning will be presented in the following

discussion, but nothing of present importance will be lost. Suppose that a small,

transparent, magnetized sphere is completely bathed in a long cylindrical beam of

light, and that there are no other magnetic fields. If the magnetization, 7, of the

sphere is uniform, then the magnetic force within it will be, by standard results,

(4/3)tt 7. Inside the sphere, then, the term in the Lagrangian becomes after a partial

integration:

V = (2irC73)///0B/ar X D) • IdV

The integration is carried out over the sphere's volume.

Thomson had earlier demonstrated from Lagrange's equations that, writing 7 as

|7|(X, (jl, v), the components of the force, F, on a magnetized element due to mag-

netic terms in the Lagrangian will be (l/|7|)(dL7d\, dL'/d[x, dL'/dv) (Thomson 1888,

sec. 41). In our case we find that the term V leads to a magnetic force per unit

volume on each element of the sphere equal to:

(19) F = (2irC73)[(dfi/dr) x D]

Consider a circularly polarized ray traveling in the +z direction:

Dx = /zcos(u)r — kz)

D
y
= /isin(o)f - kz)

D z
=

We then find from equation (19) that there will be a magnetic force along the z

direction equal to (2ttC73)/z
2
o>. With this result Thomson had closed a circle of

deductions, for he had found an action that was the dynamical converse of the Fara-

day effect:

Prof. Rowland has shown . . . that the Hall effect if it existed in trans-

parent bodies . . . would account for the rotation of the plane of polari-

zation of light passing through such bodies placed in a magnetic field in

which the lines of magnetic force are more or less parallel to the direction

of propagation of the light. In this case by the aid of an external magnetic

6. One of the additional effects of the Hall energy term might have been found by Glazebrook if he

had not assumed a static magnetic field. If H is a function of time, then an additional term results in the

electric intensity equation:

t = -dAldt + C'[H X (dfr/dt)] + (C72)[D x (dHo/dt)]

The third term in this expression is, in effect, what Rowland had asked Hall to look for when he suggested

there ought to be a "Hall" action on a line of static induction. There is indeed such an action, according

to Maxwellian theory, but it depends on the time rate of change of the magnetic field, and the field was

static in Hall's experiments.
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force we rotate the plane of polarization; in the case we have just investi-

gated, which may be looked upon as the converse of this, a beam of cir-

cularly-polarized light produces a magnetic force parallel to the direction

in which it is travelling. (J. J. Thomson [1888] 1969, 79)

14.3 Basset's Theory of the Kerr Effect

FitzGerald's expression for the field energy was, in retrospect, justified in Maxwel-

lian eyes by the discovery of the Hall effect. Nevertheless, FitzGerald's explanation

of the Kerr effect, though it used the field energy, was not accepted, primarily be-

cause it involved an auxiliary vector whose electromagnetic significance was obscure

but which FitzGerald identified as the light vector. In 1890, A. B. Basset, then thirty-

six years old and the author of a recent text on hydrodynamics (Basset 1888; see also

Lamb 1930), developed a new theory of the Kerr effect based on the Hall effect

which did not utilize FitzGerald's auxiliary vector (Basset 1891).

Basset was apparently unfamiliar with either Glazebrook's (1881) article or with

Thomson's (1888) Lagrangian analysis. He did not refer to either one in the pub-

lished version of his article, and there is unmistakable evidence that he was unaware,

at first, of the modifications which must be made to the field energy to obtain the

"Hall" field. On the other hand, he was intimately familiar with FitzGerald's Ken-

effect theory, with Hall's experiments, and with Rowland's application of Hall's

discovery to magneto-optics.
7
Using Rowland's assumption that the "Hall" inten-

sity, C(H X dD/dt), can generate an electric displacement and without detouring

through a Lagrangian analysis, Basset easily deduced, as Rowland had, an equation

of motion for the displacement:

d
2
D/dt

2 = (l/uJ:)V
2D - (C/47tjjl)(# V)[V X (dD/dt)]

This equation implies that two waves circularly polarized in opposite directions have

different velocities. So far Basset had done nothing that Rowland had not already

accomplished.

To explain the Kerr effect, though, boundary conditions were necessary, and here

Basset encountered difficulties. Usually, Basset remarked in his published article, the

boundary conditions are ( 1 ) the continuity of the electric and magnetic intensities in

the boundary, and (2) the continuity of the electric and magnetic inductions normal

to the boundary.
8
Unfortunately, these conditions will not yield Kerr's observations.

9

A new set had to be found.

To begin, Basset retained the continuity of the inductions. This gave two equa-

tions to determine the four unknown quantities (the reflected intensities parallel and

perpendicular to the plane of incidence are two of the unknowns; the refracted inten-

sities are the other two). Two more equations were needed. To find them, first take

the yz plane as the boundary, and let the xy plane be the plane of incidence. Then,

Basset assumed as a third condition, the magnetic intensity parallel to the y axis is

continuous across the boundary.

7. Basset's main interests were in hydrodynamics, so his lack of knowledge of the more recent and

advanced work in electromagnetic theory is not surprising.

8. Basset apparently also used these conditions in his manuscript article.

9. This was why FitzGerald, who certainly knew the usual boundary conditions, had not used them.
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So far all of Basset's conditions, including the third, seem to be consistent with

ordinary reflection theory. In fact, there is already a conflict. Consider the continuity

of the normal magnetic induction, Bx . Since B is independent of z for this plane of

incidence, Bx is equal to dAJdy, where Az is the z component of the vector potential.

Consequently, Az must be continuous. Now the electric intensity, E, in air and the

intensity, £", in the medium have different expressions because, Basset assumed, the

Hall constant, C, vanishes in air:

E = -dA/dt

(20) E' = -dA'/dt + C(Hq x db'ldt)

Since Az is continuous, equation (20) implies:

E[ = Ez
- C{H' dD'

y
ldt - H' dD'xldt)

Here H'Q is the intensity of the external magnetic field within the refracting medium.

Clearly the component of the electric intensity in the boundary and perpendicular to

the plane of incidence is discontinuous across the boundary. This result does not,

however, yield an independent boundary condition because it is implied by the con-

tinuity of the normal magnetic induction, which we have already used.

Basset's initial deduction of a fourth boundary condition was not published be-

cause J. J. Thomson, in a referee report, strongly objected to it. Although Basset's

manuscript apparently has not been preserved, we can recognize the elements of his

deduction from Thomson's comments and from our knowledge of the energy term in

the Lagrangian required by the Hall effect. In his report Thomson recommended that

the article not be published until Basset had provided an acceptable deduction of the

fourth condition:

Feb. 18, 1891

I have read Mr. Basset's paper on the Reflection and Refraction of Light

at the surface of a magnetized medium and though I could not recommend

its publication in its present state I think that if the Author had the oppor-

tunity of rewriting the paragraphs on the "boundary condition" the paper

might be made well worthy of publication. The proof given in the paper

of one of these conditions seems to me unsound as the Author assumes

that the Electrokinetic Energy is given by the same expression in a medium

producing Hall's phenomenon as in one not doing so. He justifies this by

saying that Maxwell in proving this expression for the energy in the sim-

pler medium does not introduce the Equations of Electromotive Intensity

which are different in the two media. I do not think this position is tenable

as Maxwell in deducing the expression implicitly assumes a principle

which is equivalent to these equations in identifying certain quantities

which occur in the general expression from which he starts. I am inclined

to think that the ["bound" crossed out] condition at which th[is] Author

finally arrives is probably right as he seems to have corrected, what I be-

lieve to be, one error by another. The proof however seems to me very

unsatisfactory. It is the more desirable that the boundary conditions should

be fully & rigorously discussed as it is in these that the Author states he

differs from Prof. FitzGerald who has also written on this problem. ([R.S.]

RR 11.5)

From Thomson's comments one sees that, to obtain a fourth condition, Basset had

apparently assumed that the electrokinetic energy of the medium has the same ana-
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lytical expression in air as in the medium in which the Hall effect occurs. He had

probably then differentiated this expression with respect to time, integrated the result

by parts, and required the continuity of the resulting surface integral.

Thomson's objection to Basset's procedure was this: although it probably seemed

legitimate to Thomson to require the continuity of a surface integral that results from

the time derivative of an energy expression (we shall see why in a moment), never-

theless, Basset's assumption that the usual expression for the electrokinetic energy

remains everywhere the same must be rejected because Glazebrook had shown that

the energy must be supplemented when the Hall effect occurs.

In order to meet Thomson's objection, Basset took a new approach and deduced

the analog of Poynting's theorem for a medium that has a Hall effect. From the

equation for the electric intensity (eq. (20]), he easily found:

(21) dB'/dt = -V X E' - C(H'Q • V)(dD'/dt)

Here B' is the magnetic induction in the Hall medium; in Basset's notation it is equal

to 4tt£//', where H' is the intensity. Taking the scalar product of equation (21) by

H' and integrating through a volume gives:

d/dt(ffjB' H'd\) = -fff[H
f

(V x E')]d
3
x

(22) - CSftiH' • (Hi V)(dD'/dt)]d
3
x

Next we form the expression, W equal to (1/2) /// (£" • D')d
3
x; differentiate this

with respect to time; substitute V X H' for dD'/dt; and integrate the result by parts:

(23) dW/dt = -Jf(H' x £') • dS + Hi[H' • (Vx E')]d
3
x

Return now to equation (22). Since dD'/dt is equal to V X //', and since (dD'/dt) •

(dD'/dt X H'Q ) is identically zero, the C term in equation (22) can be rewritten after

a partial integration as Cfj{[(dD'/dt) x H' ] x H'} • dS. Using this result, by sub-

stituting equation (23) into (22) and recalling the definition of W, Basset found:

(\/2)d/dtUff[(H' • B') + (E' D')]d"x} =

(24) - //[{£' + C[(dD'/dt) x ft]} x H'\ • dS

Poynting (1884) had derived this equation, for C equal to zero, from the usual

field equations, and he had interpreted it as representing the new flow of energy

through the surface surrounding the volume of integration. Poynting's interpretation

presumed that the left-hand side of equation (24) represented the rate of change of

the field energy within the enclosed volume. However in the Treatise Maxwell had

deduced the expression (\/2)JJJ(B • H)d3
x for the magnetic field energy from the

expression (\/2)}}f[A • (dD/dt)]d
3
x for the electrokinetic energy of a field of currents.

That deduction was invalidated by the existence of a Hall effect. Nevertheless, Basset

felt that the left-hand side of equation (24) still had to be interpreted as energy be-

cause of the prior validity, as Basset apparently now saw it, of Poynting's theorem:

Observations on the Reports of Profs. J.J. Thomson & FitzGerald

For the purpose of meeting Prof. J. J. Thomson's objections, I have en-

deavoured to deduce the proper form of the principle of energy for a me-

dium which produces Hall's effect, directly from the general equations of

the electromagnetic field. I thus prove equation [24] of the paper. ["This

equation I interpret as meaning" crossed out.] The obvious interpretation

of this equation is, that the left hand side represents the rate at which
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energy increases within a closed surface, whilst the right hand side repre-

sents the rate at which energy flows into the surface. We are thus led to

identify the quantity under the integral sign on the left hand side, as rep-

resenting the total energy of the electric field per unit of volume. ([R.S.]

RR 11.13)

In the published article, Basset made essentially the same point by insisting that a

field relationship like equation (24) can hold only for energy:

The physical interpretation of this equation is, that the rate at which some-

thing increases within the closed surface, must be equal to the rate at which

something flows into the surface. This cannot be anything else but energy;

we are thus led to identify the expression \(B' • H') + 0' • E')] as

representing the energy of the electric field per unit of volume. The first

term represents the electrokinetic energy, and the second term the electro-

static energy.

The above expressions are the same as those obtained by Maxwell by a

different method, and it thus appears that the expressions for each species

of energy are not altered by the additional terms which have been intro-

duced into the general equations of electromotive force.—(Basset

1891, 384)

In effect, Basset did not so much answer Thomson's criticism as circumvent it by

taking as an axiom what had previously been a deduction—the Poynting theorem.

Having obtained equation (24) and interpreting it in terms of energy, Basset re-

quired that the surface integral portion of it be continuous across the boundary to

prevent the accumulation of energy. This gave him his fourth boundary condition:

(25) E
y
= E'

y
+ C[H'

0x
{dD'2 ldt) - H'

0z
{dD'xldt)]

In sum, Basset's boundary conditions were: (1) continuity of normal electric in-

duction, (2) continuity of normal magnetic induction, (3) continuity of the component

of magnetic intensity in the intersection of the boundary with the plane of incidence,

and (4) discontinuity of the electric intensity in the same intersection according to

equation (25). The last condition is implied by conditions (l)-(3) coupled to the

requirement that energy not accumulate.

If we use the field equations to rewrite Basset's condition (25) in terms of H, it

becomes in vector form:

(25') {(1/€*jl)(V x H) + CH' x [V x (d#/df)]}tan continuous

Basset used these conditions to deduce expressions for the reflected and refracted

waves, and his results fail in the same way as FitzGerald's: they give always a 90°

phase difference between the magneto-optic component and the component normal

to it, so that, though the reflection is elliptically polarized, the axes of the ellipse are

always in and normal to the plane of incidence—there is no rotation.
10

10. To see this, simply take equations (13)—(16) of part V, chap. 24, and set a to zero. These equa-

tions are then fully equivalent to Basset's, and we see at once that the magneto-optic phase is always 90°

while the usual reflection has 0° phase since the medium is nonmetallic. One can also see this from the

Drude ratios in appendix 9, equations (16)-(17), wherein, for a equal to zero, all the variables are real,

so that the component ratios are purely imaginary, implying a 90° phase difference. The same holds for

the FitzGerald theory (see appendix 4 and the epilogue).



The Unification of Theory, 1881-1893 123

Basset was well aware of the problem, and, like FitzGerald, he knew that it was

related to metallic properties, so he was deeply interested in experiments which by-

passed metallicity by using transparent media. It so happened that August Kundt, the

German experimentalist, had shortly before performed just such an experiment using

a glass plate whose sides were not quite parallel, thereby producing two well-sepa-

rated reflections: one from the anterior, the other from the posterior face. Applying

his theory to Kundt' s experiments on the assumption that the C term is present in

glass, Basset found that the effects which Kundt had observed in both reflections

agreed with the theory. Consequently, it seemed likely that the differences between

Basset's theory and Kerr's experiments were linked to metallic factors.

From an empirical standpoint Basset's theory was no improvement over Fitz-

Gerald' s. Yet, FitzGerald himself regarded it as a distinct theoretical improvement

because its boundary conditions applied to the usual electromagnetic variables,

whereas FitzGerald 's had not, and because it was based on a reasonable extension of

a known electromagnetic phenomenon, the Hall effect. FitzGerald had also remarked

that the opposite signs of the Hall effects of iron and nickel were incompatible with

the fact that they exhibited the same Kerr effect. To this Basset could only reply that

W. Thomson had shown in 1879 that, under certain extreme conditions, nickel does

not behave magnetically as iron does, so that a similar difference between them

might exist with regard to the Hall effect.

We have clearly reached a highly advanced stage in the research program centered

on the Hall effect. Only one problem, and one confusing inconsistency, apparently

blocked a complete unification of magneto-optics with Maxwellian electromagnetic

theory. The problem was how to incorporate metallicity into reflection theory. The

inconsistency involved the opposite signs of the Hall effect in at least two substances

that exhibited the same Kerr effect. Basset had certainly made the inconsistency less

anomalous by pointing out what no one seems to have previously noticed, that these

same substances also differ under certain circumstances with regard to their magnetic

character, which is usually the same in both. What specifically could account for the

difference in the case of the Hall effect? This question and the problem of metallic

reflection were both addressed by J. J. Thomson in 1893.

14.4 J. J. Thomson's Recent Researches

In the twenty years which have elapsed since the first appearance of Max-

well's Treatise on Electricity and Magnetism great progress has been made

in these sciences. This progress has been largely—perhaps it would not be

too much to say mainly—due to the influence of the views set forth in that

Treatise, to the value of which it offers convincing testimony. (Thomson

1893, preface)

J. J. Thomson's Recent Researches (1893) is perhaps best remembered today for

its discussion of the conduction of electricity through gases, which paved the way
for Thomson's later discovery of the electron. Yet only one chapter of the work

—

the second—dealt with gaseous conduction. The other six chapters, comprising three-

quarters of the whole, were concerned for the most part with electromagnetic waves

and oscillations. These chapters are deeply theoretical and mathematically detailed.

They represent the state of the art in British electromagnetic theory in the early
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1890s. Particularly striking for our purposes are the final sections of chapter five, for

here Thomson nearly solved the puzzle of magneto-optics and its relationship to the

Hall effect (Thomson 1893, sec. 408). He did so without transgressing the bounda-

ries of Maxwellian principles.

Thomson, as we have seen, was intimately familiar with contemporary work on

the Hall effect. He was well aware of the two outstanding problems that blocked an

electromagnetic explanation of magneto-optic reflection on the basis of the Hall ef-

fect. He also knew that Basset had attributed both difficulties to the effects of metal-

licity, which Basset had not analyzed. Thomson had himself analyzed metallic re-

flection on electromagnetic principles, and he accordingly thought to apply it to

magneto-optics. He combined that theory with a clear perception of the various pos-

sible expressions for the Hall effect on electromagnetic waves.

Thomson first carefully distinguished three distinct possible connections between

the "Hall" field and the currents associated with waves in metallic reflection; no one

had made these distinctions previously, and they enabled Thomson to produce a more

successful theory than Basset's. In the expression k(B X J) for the "Hall" field, J

might, in given circumstances, be any one of three things: (1) the total current, (2)

the displacement current, or (3) the conduction current. Previous work (Rowland

1881; Basset 1891) linking the Hall effect to electromagnetic waves had examined

only the second case and had therefore not excluded the other two. Thomson decided

to consider each possibility separately. They can be distinguished analytically simply

by assigning different values to the Hall coefficient, k, and by letting J always rep-

resent the total current, that is, the sum of the displacement and the conduction

currents.

Thus if k is real we have case (1). To obtain cases (2) and (3) recall that the total

current is equal to e(dE/dt) + £Vp, where e is the specific inductive capacity, and p

is the resistivity. For a wave we may set E proportional to e
ipt

, in which case the

total current becomes (tip + l/p)£. Now, to obtain Thomson's case (2), simply set

the Hall coefficient k equal to k'eip/(€ip + 1/p), where k' is real: this transforms k(B

X J) into k'{B X edE/dt). Similarly, for case (3) set k equal to k"/(epip + 1), where

k' is again real: this gives k\B X £/p) for the "Hall" field.

Whichever of these three cases proves correct for explaining magneto-optic reflec-

tion, all of them imply the same differential equation for the magnetic light vector,

H. Thus if |x is the magnetic permeability of the reflecting medium, and B is the

external magnetic induction, then, as Thomson easily showed, adding the "Hall"

field to Maxwell's equations yields, for an oscillating H field:

(26) (tip + l/p)|x(d#/df) = V2H - k(eip + l/p)(S V)(V x H)

To obtain the Kerr effect, Thomson had to choose boundary conditions; he used

Basset's despite the fact that he had criticized Basset's original deduction of his

fourth condition. However, Thomson did not refer to Basset, perhaps because he

regarded Basset's last condition, which required in effect that only that part of the

tangential electric force due to electromagnetic induction be continuous, as an empir-

ical necessity which, despite Basset's best efforts, had not been successfully de-

duced.

The next step, given the boundary conditions and the differential equation, was to

take account of metallicity; for here, Thomson felt, lay the solution to the problems
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posed by the Kerr effect. This was simple: if ea is the specific inductive capacity of

air, then [Ju(eip + \/p)/eaip must be set equal to R2
e
2l(x

, where R, a are the real

metallic constants (see appendix 8). The boundary conditions then become:

//tan continuous

{/rV 2/a
(V X H) + R~ 2

e~
2ia
kB x [V X (dH/dt)]}un continuous

From these Thomson deduced the angle of the major axis of the elliptically polarized

ray generated by reflection with respect to the plane of polarization of the incident

(linearly polarized) ray (see appendix 9), under the approximation that R2
is much

greater than one.

He then proceeded to consider the three possible values for the Hall coefficient.

In the first case he found that the angle of rotation for iron did not, contrary to Kerr's

experiments, reverse at high incidences for light polarized in the perpendicular to the

plane of incidence when the external field lies in the intersection of this plane with

the boundary. Consequently, the first case was excluded. The third case leads to the

same result; it was also excluded. But the second case not only does imply a reversal,

it also gives to within 3° the angle of incidence at which Kerr had seen the reversal

occur. Therefore, Thomson concluded, only the displacement current can be used to

explain the Kerr effect.

The introduction of metallicity into the theory solved the major problem of pro-

ducing rotation, and it seemed also to predict correct properties. Yet there remained

the problem of the difference in signs required for the Hall and Kerr effects of certain

metals. Thomson's theory contained a ready answer to this problem; indeed his care-

ful consideration of the three different expressions for the "Hall" field was aimed at

just this difficulty. For the exclusion of all but the second expression implied that the

Hall effect for electromagnetic waves (i.e., for rapidly alternating currents of dis-

placements) was not the same as the Hall effect, measured by Hall's original exper-

iments, for steady conduction currents. This was so because, if the two effects were

the same, then the conduction currents generated by reflection in the metals would

have had to appear in the "Hall" field associated with the waves; Thomson had

proved that they did not. Thus, Thomson noted, the difference between the Kerr and

Hall effects was not surprising:

The transverse electromotive intensity indicated by hypothesis (2) is of a

totally different character from that discovered by Hall. In Hall's experi-

ments the electromotive intensities, and therefore the currents through the

metallic plates, were constant; when however this is the case the "polari-

zation" current vanishes. Thus in Hall's experiments there could have been

no electromotive intensity of the kind assumed in hypothesis (2); there is

therefore no reason to expect that the order of the metals with respect to

Kerr's effect should be the same as that with respect to Hall's. (Thomson

1893, sec. 413)

14.5 Implications

J. J. Thomson's theory seemed to unite magneto-optics effectively with Maxwellian

electromagnetism, and it therefore marks an epoch in Maxwellian theory. His success

made even more pressing the desire for a unification of electromagnetism with con-
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tinuum mechanics. During the 1880s—as in the case of Glazebrook—occasional at-

tempts had been made to this end. This activity intensified substantially after the

major problem of linking Maxwellian theory with magneto-optics had been solved.

In fact, in the year that Thomson's Recent Researches was published, Joseph Larmor

linked the "Hall" explanation of magneto-optics to a dynamical optical theory (spe-

cifically with James MacCullagh's optics, which utilized an energy function that had

the same form as Fitzgerald's) which he based on the concept of intrinsic rotational

elasticity in a continuous medium (see part III).
11

Larmor' s interest in discovering a strict dynamical basis for electromagnetism was

founded on his deep knowledge of contemporary British theory. In particular, at this

time (1893) Larmor held the full Maxwellian understanding of the conduction current

(viz., that it involved the continuous transformation in situ of the energy stored in

displacement in a conductor into heat and magnetic energy):

The electric current is in a dielectric the rate of change of the electric

displacement, which is of an elastic character; in a conducting medium part

of the current is due to the continual damping of electric displacement in

frictional modes: it may thus be argued that the fundamental relation is

primarily not between current and electric force, but between current and

displacement, while the current is indirectly expressed in terms of electric

force through the elastic relation between displacement and force. The

equations would then run as follows, [D] being the electric displacement:

J = {dldt + 4 >n(j/k)D

where D = E + HxE[H represents the Hall term and depends on the

magnetic field as well as on the substance]

This would make the relation between electric displacement and electric

force of a rotational character, owing to magnetisation. If the medium were

not magnetised, Lord Kelvin's argument might be employed for the nega-

tion of such a rotational character, on the ground that a sphere rotating in

an electric field would generate a perpetual motion; but as it is the rotation

in the magnetic field would generate other electric forces. The frictional

breaking down of displacement, viz., conduction, is known to assume a

slightly rotational character, as manifested in the Hall effect. (Larmor

1893, 360)

The essential aspect of the Maxwellian concept of conduction is contained in Lar-

mor' s statement, namely, that it is decaying displacement. Consider now the follow-

ing statements which Larmor wrote just after introducing the electron:

In circumstances of conduction, though the electric displacement (i.e. ro-

tational strain) in the medium is absolutely negligible, yet the drift of the

electrons which constitutes the true current causes an irrotational flow of

the medium (the magnetic field) ... the energy of the current system is

thus the kinetic energy of this irrotational flow, the rotational flow arising

1 1. Larmor (1893). Larmor's work has been discussed and characterized as the creation, in his theory

of electrons, of a "non-mechanical" theory of matter (Doran 1975). Dr. Doran relies on an idiosyncratic

definition of mechanical for her assertion and develops her argument with insufficient attention to the

technical content of field theory in general, and Larmor's work in particular. Ignored, for example, are

the basic characteristics of Maxwellian electromagnetism which, I shall contend below, strongly shaped

Larmor's work.
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from strain being in comparison inappreciable. As here [i.e., in traditional

Maxwellian theory] primarily introduced, the true current was a fiction, so

far as elastic stress in the medium is concerned; but it has now acquired

an objective meaning as the mathematical quantity that serves to com-

pletely specify the energy of the flow of the medium which is associated

with movement of electrons in bulk, that is, the energy of the magnetic

field [emphasis added]. The ordinary electrodynamics of conduction cur-

rents is a dynamical problem of the aether in which the kinetic energy is a

function of the true current, and the potential energy, when there is such

in the field, is a function of the rotational strain of the medium, that is, of

the aethereal displacement current only. (Larmor [1895a] 1929, vol. 1, pp.

556-57)

The conduction current does not involve elastic displacement [emphasis

added]; if it flows in a complete circuit so that electrons are not allowed to

accumulate and exert a back electric force, it will go on permanently, a

limit being set to it only by the quasi-inc\.\om\ resistance to the motion of

the ions through the medium in the sense of the kinetic theory of gases,

which is expressed by the law of OHM. (Larmor [1895a] 1929, vol. 1, p.

575)

The contrast of these remarks with his statement of 1893, quoted above, is strik-

ing. In 1893 the conduction current was, for Larmor as for all Maxwellians, a field

phenomenon of decaying electric displacement. The magnetic and thermal energies

of the current were obtained through the continuous transformation of the potential

energy of displacement into material (heat) and ethereal (magnetic) kinetic energy.

This basic idea, as Larmor remarked later, made of the true (conduction) current a

"fiction" in the sense that it was a by-product of field processes. By late 1894, only

one year later, the picture had changed fundamentally. Displacement no longer

played any role in conduction, and magnetic energy was thought to be a direct func-

tion of the "objective" flow of electrons, in contrast with its previous dependence

on an implicit, decaying displacement. As Larmor unambiguously noted, "the con-

duction current does not involve elastic displacement."

We have repeatedly seen that the idea of conduction as a secondary field phenom-

enon was an essential aspect of Maxwellian theory. Yet Larmor had discarded that

idea sometime between 1893 and 1894. In 1893 he was a Maxwellian; by 1894 he

had embraced a new approach. This was obviously a change in theory of the first

order, and it necessarily affected Larmor' s understanding of magneto-optics, as we
can see from another statement he made in 1895. Replying to certain objections

which Basset had raised to Larmor' s critique of Basset's (and J. J. Thomson's)

boundary conditions for magneto-optic reflection, Larmor indicated his deep interest

in the area's implications for fundamental theory:

As regards Mr. Basset's second letter, on the reflection of light from the

surface of a magnet, the parallel which he draws between one type of

theory which I provisionally uphold, and another which I reject, is, I think,

not a real one. The latter theory retains the dynamical equations and sur-

face conditions which belong to the luminiferous medium under ordinary

circumstances, merely adding on to the electric force a new part of mag-

neto-optic origin. This would hardly be open to objection if it worked; but
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it is admitted that it does not work, and in default of a specific reason

being assigned for the discrepancy the theory fails. It is as if a machine,

whose mode of working is thoroughly known under certain simple condi-

tions, were observed to be working steadily under more complicated cir-

cumstances, while a mathematical analysis showed that it ought to get

jammed under these new conditions. The inference would, I think, be that

the machine has been reset, or some change has been made in its consti-

tution, which obviated the jamming. Now the ordinary equations of the

electric theory of light are, presumably, deducible from the energy function

of the medium by the principle of least action. When the substance that

transmits the light is in an extraneous magnetic field, there is a subsidiary

term in the energy function which arises from this field; therefore the ap-

plication of the principle of least action will now give different equations

of the medium, and different boundary conditions, from those which ordi-

narily hold good. The statement that the boundary conditions which held

for non-magnetic circumstances are not now maintained, is not to the point;

the question is rather, whether the boundary conditions which are appro-

priate to the actual formulation of the problem can all be maintained, and

if they can the theory is consistent. (Larmor 1895b)

Here Larmor was not arguing that Basset's and Thomson's boundary conditions

were incorrect, for he knew by this time that they worked well. Rather, his point

was that they were not consistent with the dynamical structure of Maxwellian field

theory. Since no reasons could be assigned for them on energy principles, the empir-

ically correct boundary conditions are simply incompatible with the Maxwell-Fitz-

Gerald magneto-optic theory based on additions to the field energy; this was the point

Larmor had his student, J. G. Leathern, prove in detail several years later. It is

precisely here that Larmor' s own electron theory, and the "ion" theories which were

just then being developed by Lorentz and the Germans (Helmholtz, Drude, Reiff,

and others), provided a solution. All of these theories strictly separated matter from

the field and retained in all cases the usual electromagnetic boundary conditions:

magneto-optic effects were generated by equating the conduction current to the prod-

uct of ionic charge by velocity, the ion's motion being governed by a distinct, ma-

terial equation.

The Hall effect has provided us with a peculiarly revealing insight into Maxwel-

lian theory during the years in which it was most actively pursued. Hall's discovery

was interpreted in a way which is strikingly different from the later explanation based

on the Lorentz force, a way which uniquely emphasizes the fundamental Maxwellian

insistence on field theory. These explanations uniformly presumed that Hall's discov-

ery could be extended to displacement currents, an extension which was itself im-

plicit in the Maxwellian field-theoretic interpretation of the discovery. This natural

extension of Hall's discovery, and the detailed uses made of it in the 1880s and early

1890s, point out the unity which the concept of displacement gave to Maxwellian

theory. Nevertheless, it also reveals a profound difficulty in the theory which was

also due to the central role which displacement played in it. Precisely because chang-

ing displacement was conceived to be the essential aspect of the electric current,

Maxwellian theory was not able to readily distinguish, mathematically, between cur-

rents in conductors and currents in dielectrics. Indeed, Maxwellian explanations were
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usually developed in terms of the displacement current; then, in the resulting equa-

tions, the displacement current terms were simply treated as conduction currents

when conduction was primary. Conductivity proper posed grave analytical difficulties

for field theory, as well as problems of physical understanding, and it was therefore

usually treated in an ad hoc fashion. As we have seen, Hall's actual discovery—the

transverse effect in conductors—was precisely what field theory could not, or at least

did not, explain: field theory yielded only the hypothetical effect in dielectrics.
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The Abandoning
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Larmor and Hamilton's Principle

The following letter, dated 12 July 1900, was written by George FitzGerald to Oliver

Heaviside:

Dear Heaviside,

I was fortunate in being with Larmor in Cambridge when your letter

was forwarded to me and so I asked him about the difference between

himself and your work and he pointed out what would have taken me some

thought to discover.

It all arises from the difference he takes between a moving electron and

a changing displacement. The electron is certainly a change of place of the

point but we cannot say that the changing displacement is a real motion in

the direction of the displacement. The electric displacement at a point is,

no doubt, representable by a vector but it is very unlikely that it is really

a simple displacement of the point: it is much more likely to be a rather

complex change in the structure of the ether at the point which can be

represented by a vector. In consequence of this difference Larmor sepa-

rates the electric force which acts on the ether and produces electric dis-

placement from the force on a moving electron due to its motion across a

magnetic field. When matter moves across the ether in which there is mag-

netic force this latter is what produces the electric current i.e. a current of

electrons. Its value is VpH while there is no electric force producing any

displacement of the ether due to this motion: unless the induction changes

owing to the moving matter and so produces an electric force that acts on

the ether.

I have considered the matter from time to time and I think there is a

great deal to be said for Larmor' s position. A great deal of the difficulty

of these displacements in the ether are due to workers thinking that they

are of the same kind as displacements of the points in space and it is most

improbable that they are. All Lord Kelvin's heresies, almost, have been

due to this identification of the ether "displacement" with an actual move-

ment of the point of the ether in space, and I think your difference with

Larmor is due to your not distinguishing between the two. (UCL MS.
ADD. 35)

In its few sentences, FitzGerald's letter attempted to explain to Heaviside a profound

change in British electromagnetic theory that began in 1894 and was completed in

1897. During these three years the basic principles of Maxwellian theory were aban-

doned, and the entire subject was reconstructed on a new foundation—the electron

—

by Joseph Larmor in consultation with George FitzGerald.

FitzGerald's letter to Heaviside was written by one man who was instrumental in

changing Maxwell's theory and sent to another who was widely regarded as that

theory's most brilliant, if eccentric, proponent. It is a letter from one whose outlook
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had profoundly altered to one whose outlook remained essentially the same. Yet

Larmor himself, as well as FitzGerald, would have had few disagreements with

Heaviside over electromagnetism before 1894. The events which led to their ultimate

break with tradition are inextricably linked to the development of Maxwell's theory

during the 1880s, and are to be found preeminently in the consensus which then

emerged in Britain on the nature of the electric current.

Unlike most of his contemporaries, Larmor became acutely aware of difficulties

in the Maxwellian concept of the current as he tried, late in 1893, to develop a

general scheme for electromagnetism based on Hamilton's principle. Although that

scheme was at first entirely Maxwellian in intent—indeed, in several respects it was

intended to epitomize Maxwellian principles—it nevertheless contained elements,

linked to its treatment of the current, which in the end impelled a break with tradi-

tion.

In what follows we shall discuss in some detail the manner in which Larmor

attempted to create a scheme for electromagnetism on a Maxwellian basis which

could also incorporate the latest results in optics by using Hamilton's principle. This

will prepare us to understand precisely why that scheme was, in his eyes and in the

eyes of FitzGerald, deeply flawed. With that understanding we will be able to follow

Larmor' s almost daily correspondence with FitzGerald in the spring of 1894. In that

correspondence we shall find the British origin of the "electron," which entailed the

break with Maxwellian tradition.

... at the time when Larmor started on his main work there was little to

inspire new ideas. The ever-urgent problem of the ultimate relation of mat-

ter and electricity and aether, and the search for a unifying conception

which would explain how they come to possess their fundamental proper-

ties, had occupied the greatest minds of the time; and it was hard to see

any direction in which new light might be found. The ground had been

gone over again and again, and impassable barriers seemed to have been

reached. Classical physics was indeed near the end of its tether. Of those

who yet continued to make substantial progress at this difficult stage—who

brought classical physics to the point where new methods became inevita-

ble—two names stand out prominently, Lorentz and Larmor. Their work

had much in common, so that it is sometimes difficult to assess their con-

tributions separately. Larmor' s reputation has perhaps been overshadowed

by that of Lorentz. But on any estimate, Larmor 's achievements rank high;

and his place in science is secure as one who re-kindled the dying embers

of the old physics to prepare the advent of the new. (Eddington 1942-44,

197)

Eddington 's melodramatic assessment of Larmor' s significance is at once mislead-

ing and perceptive. Though it is true that Larmor in the end did establish a relation-

ship between ether and matter, that was not his original intention. Nor was he any

more bothered by the question than were most of his agnostic Maxwellian contem-

poraries. Moreover, the passing of forty years, during which rapid and profound

developments in physics took place, inevitably obscured perceptions of what pre-

cisely Larmor had accomplished. As we shall see, Larmor's work, quite unlike Lo-

rentz's, emerged from deep within the bosom of Maxwellian theory.

In many respects Larmor was a typical, if uncommonly intelligent, product of the
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Cambridge-centered educational system in physics of the 1880s. Born in 1857 at

Magheragall in County Antrim, Northern Ireland, Larmor attended the Royal Belfast

Academical Institution and then Queen's College; in both places he evidently did

quite well in mathematics and classics. He then went down to Cambridge, where he

enrolled in St. John's College from which he graduated in 1880 as senior wrangler

in mathematics, having beaten J. J. Thomson in the final honors competition. For

the next five years Larmor taught "Natural Philosophy" at Queen's College in Gal-

way, after which he returned to St. John's where he was a lecturer for eighteen years.

In 1903, when Stokes died, Larmor succeeded to his chair as Lucasian professor of

mathematics. In his later years he was renowned as a staunch conservative in his

scientific views, often delighting in the role of the older scientist defending the Olym-

pian past against the immodest pretensions of the present. Eddington remarked

of him:

He would often say that all true scientific progress ceased around 1900

—

or even earlier, for his own fin de siecle effusion was only dubiously qual-

ified. He admitted that modern work might have some kind of merit, if

judged by the looser standards of the times; but that was about as far as he

would go—except when he forgot his pose. There was, of course, a great

deal of exaggeration in this pose; but he adopted it so systematically that

perhaps he himself could scarcely distinguish it from his natural opinions.

It was tempting after his conservative outbursts to chaff him as having been

the moving spirit in the modern ideas which so much disturbed him, but it

was plain that he did not like the accusation. (Eddington 1942-44, 205)

Although Larmor apparently never studied under Maxwell (who died the year

before Larmor' s graduation) at Cambridge, he did read the two major Treatises of

the day—Maxwell's and W. Thomson and Tait's. Unlike his contemporary J. J.

Thomson, Larmor was evidently considerably more interested, at first, in the analyt-

ical structure of dynamics proper than in the emerging applications of it in various

fields. That is quite possibly one of the major reasons for his having beaten Thomson
in the Tripos (i.e., final honors examinations) competition in mathematics—for the

Tripos were more easily succeeded in, despite the reforms instituted by Maxwell and

others, by one who was adept at the analytical intricacies of dynamics than by one

who, like Thomson, was concerned primarily with applications. Much can be learned

about the outlook of young British physicists—still usually termed mathematicians

by themselves and others—in the 1880s from a careful study of the curriculum they

followed at Cambridge, particularly of the texts they used (which by the early 1880s

undoubtedly included Rayleigh's Theory of Sound, if one is to judge from its wide-

spread citation).

For nearly a decade after his graduation, Larmor' s research interests were not

directed to pressing general problems (his first article was not published until 1884);

he produced several articles on limited, highly technical questions in electromagnetic

theory as well as a number on hydrodynamics and elasticity theory. These various

articles, sharply limited to specific questions, strikingly illustrate both the profound

influence which dynamical analysis had on Larmor and his fairly complete familiarity

with the basic principles of Maxwellian theory. We shall have occasion to discuss

several of these articles, particularly his later ones. Here it is important to recognize

that, especially after c. 1884, Larmor insisted that Hamilton's principle (he usually
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called it the principle of "least action") was the most fundamental principle, not

merely in dynamics, but in every branch of physics. Like W. Thomson and Tait, and

like his contemporary J. J. Thomson, Larmor felt that every conceivable physical

action must be compatible with this principle. Eddington, who clearly knew Larmor

very well, characterized the significance of the principle for him in these words:

Larmor had an intense, almost mystical, devotion to the principle of least

action. Owing to its invariant form, this is a compact and often the most

convenient way of formulating physical laws; though one would not nec-

essarily choose it as physically the most illuminating. But to Larmor it was

the ultimate natural principle—the mainspring of the universe. His first

paper (1884) was "On least action as the fundamental formulation in dy-

namics and physics," and numerous subsequent papers and addresses were

devoted to this subject. I had never been able to persuade him of the truth

of general relativity theory, but (about 1924, I think) he said to me re-

proachfully: "I have been reading the continental writers on relativity, and

I find it is all least action. I begin to see it now." Much as Lord Kelvin

required a theory to be put in the form of a mechanical model before he

would admit to understanding it, so Larmor required it to be put in the

form of an action principle (Eddington 1942-44, 204)

What Eddington wrote of Larmor could, with less intensity, be written of a gen-

eration of Maxwellians in the 1880s, for whom Hamilton's principle encapsulated

the dynamical essence of physics. Kelvin himself had insisted on the primitive im-

portance of the principle, and one doubts whether anyone educated at Cambridge, by

Cambridge graduates, or by those who learned physics from the major British trea-

tises could possibly have thought otherwise. Larmor' s deep attachment to the prin-

ciple differed only in degree, not in kind, from that of his British contemporaries.

15.1 Larmor and Energy Localization

In 1893 Larmor published an article (actually a British Association Report) on the

action of magnetism on light in which he adapted the theory according to which the

optical and electromagnetic medium stores energy reversibly in differential rotation.

He discussed, with full familiarity, those various Maxwellian theories of the previous

decade which explained magneto-optic phenomena by adding a certain term to the

kinetic energy density of the medium, explanations which had been closely linked to

similar accounts of the Hall effect. In this article Larmor also considered in detail

the dynamical structure of contemporary optical theories, particularly the theories of

reflection which had always posed a problem.

In reflection theory, one is concerned with boundary conditions. Hamilton's prin-

ciple provides these conditions (with the exception of boundary constraints on the

variable which fixes the state of the field, e.g., the material displacement in contin-

uum mechanics; see appendix 2). In thus obtaining the conditions, one tacitly as-

sumes that the Lagrangian function correctly localizes the energy in each volume

element of the medium, for the process of partial integration leading to surface inte-

grals presumes that it is legitimate to demarcate volumes which contain specific quan-

tities of energy. In Larmor's words: "... the energy-function of a medium, pro-

vided it is correctly localized, contains implicitly in it the aggregate of the boundary
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conditions at an interface between two different media" (Larmor 1893, 364). That

is, to use Hamilton's principle in this fashion is to assume that energy may be local-

ized. Conversely, if it is legitimate to localize energy, then it is also legitimate to

use Hamilton's principle to find boundary conditions. The origin of Larmor' s deep-

felt belief in the principle was due primarily to his conviction that a complete dynam-

ical theory must be able to localize energy correctly. To see this we need only con-

sider his commentary on theories of optics based on forms of Green's potential

—

namely, Kelvin's, Kirchhoffs, and MacCullagh's. (MacCullagh's potential does not

strictly employ a form of Green's potential but can nevertheless be obtained from it

by discarding certain terms. Kelvin's and Kirchhoffs potentials also require discard-

ing terms, but on the basis of limiting conditions and assumptions concerning the

elastic constants; MacCullagh's cannot be obtained in this manner.)

It is first essential to understand that, in a material continuum, energy is indeed

correctly localized by the kinetic and potential densities. Consequently, one can par-

tially integrate in Hamilton's principle to obtain boundary conditions. In appendix 2

it is shown that Hamilton's principle does not suffice in either Kelvin's or Kirchhoffs

optical theories. Rather, both theories require a punishingly limited condition on the

wave forms. Given this condition, Kelvin's theory does correctly localize energy and

therefore is, from this point on, compatible with Hamilton's principle (i.e., with

stress continuity). Kirchhoffs theory, however, is still incompatible with the princi-

ple, for he had to abandon stress continuity. Instead, Kirchhoff used the extra con-

dition to reach a principle which embodies his theory's failure to localize energy in

a single energy function: that principle presumes some sort of interaction between

ether and matter. Of Kirchhoffs principle Larmor remarked:

. . . it is only a confession of total ignorance as to the distribution of the

energy throughout the mass of the media which would permit us to prop

up the boundary conditions by extraneous forces in this manner ... if

Kirchhoffs extraneous surface-tractions cannot be deduced from some en-

ergy-function of the complex medium (aether and matter) which is the seat

of the undulations, there is absolutely no basis left for them. . . . The

correct method is the one indicated above. The energy of the medium is

associated with the medium in bulk, is localised in its elements of volume.

(Larmor 1893, 367)

The twin assumptions—that energy must be localized in electromagnetism as in

material continua, and that all systems are governed by Hamilton's principle—very

nearly exhaust the content of the word "dynamical" for most British Maxwellians.

If one could somehow discover expressions which localized the energy then one had,

in essence, discovered all that was needed to deduce the laws which govern the

system, even including those laws which involve boundary conditons: all this could

be deduced provided only, but essentially, that one could localize the energy. One
can do so for material media; to assume that one can also do so for the electromag-

netic field imports into electromagnetism a property of energy which is sufficiently

difficult to understand where matter is concerned. Yet it is precisely this assumption

of localized energy that Maxwellians used to link electromagnetism with mechanics.

Further linkage of matter and ether by construction of mechanical models which have

the same localized energy functions as the ether was perhaps desirable but hardly

essential. Larmor (1893) wrote only three short paragraphs about mechanical models
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(e.g., Kelvin's gyrostatic model for the MacCullagh medium) in his report. For Lar-

mor, as for most Maxwellians, such models were primarily "illustrations" designed

to exhibit the localized energies in mechanical garb. After remarking that the power

of the Lagrangian method is that it permits one to work directly with a single energy

function and to ignore the system's internal structure, Larmor characterized the ulti-

mate goal of physics as follows:

The problem of the correlation of the physical forces is . . . divisible into

two parts (i.) the determination of the analytical function which represents

the distribution of energy in the primordial medium which is assumed to

be the ultimate seat of all phenomena; and (ii.) the discussion of what

properties may be most conveniently and simply assigned to the medium,

in order to describe the play of energy in it most vividly, in terms of the

stock of notions which we have derived from the observation of that part

of the interaction of natural forces which presents itself directly to our

senses, and is formulated under the same natural law. It may be held that

the first part really involves in itself the solution of the whole problem; that

the second part is rather of the nature of illustration and explanation, by

comparison of the intangible primordial medium with other dynamical sys-

tems of which we can directly observe the phenomena. (Larmor 1894a,

260; emphasis added)

As discussed at some length in chapter 1 , from a modern standpoint the difficulty

with the Maxwellian approach is that it implies too much. Modern theory assumes

localization of energy (though not without a certain ambiguity; see, e.g., Panofsky

and Phillips 1962, 102), even in the macroscopic case, but it imposes strict limita-

tions on what can subsequently be done with the concept. In particular, we are no

longer allowed to manipulate the energy expressions to obtain new field equations

for new phenomena: since the macroscopic theory emerges out of the microscopic

theory as an approximation, we are constrained by the dictates of microphysical real-

ity. Maxwellian theory was not so constrained because, according to it, many vari-

ables which modern theory attributes to molecular structure (inductive capacity, etc.)

are always present: molecules merely alter the values.

The deep connection between Maxwellian theory and energy localization is partic-

ularly well illustrated by Larmor's (1892) attempt to disprove any theory that does

not localize all energy in the field, theories such as, he reasoned, Helmholtzian po-

larization theory. The essence of his argument is easily expressed. Larmor first con-

sidered a parallel-plate capacitor with the lower plate submerged in a dielectric fluid

(see fig. 12).

The force over any closed surface can be calculated from the Maxwell stress. Here

we have Da = Ea = eEf, where subscript a denotes air, and subscript / denotes

fluid. Consequently, the force per unit area on the upper surface of the fluid is:

(1) F = /-(\/2)}E • DdS + JE(D dS)l = (1/2)^(1 - 1/e)

Considering polarization theory next, Larmor replaced the fluid between the plates

with the polarization surface charges, and he then calculated the force on the polari-

zation charge o-j at the air-fluid interface, including in his calculation the force attrib-

uted to the polarization charge cr2 on the lower, plate-fluid interface. We have o^ =
— 0*2 = — P and P = D - Ef = (1 - l/e)£a since all fields are vertical. Consid-
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Fig. 12 Charged capacitor with lower plate sunk in a dielectric fluid

ering cr2 to comprise an effectively infinite plane, one obtains from it a field a2/2

acting on trx . Hence the force per unit area on the fluid surface should be:

(2) F = u
x
Ea + 0,(^/2) = (l/2)£

2
(l/e

2
)

Evidently the Maxwell stress and the polarization theory give different results. Using

air bubbles in liquid dielectrics, the German experimentalist Georg Quincke had,

Larmor noted, obtained results which seem to be compatible with equation (1) only.

Consequently, Larmor concluded, polarization theory fails whereas Maxwellian the-

ory succeeds.

Since we today use polarization theory, and Larmor himself used it extensively

after 1895, this result seems remarkably puzzling. In fact, as Larmor himself proved

several years later, there is no incompatibility here. The difficulty results from the

temptation to use — (V • P)E to calculate the forces: we cannot use this expression

except under very limited circumstances, because the true force on a polarization P
is (P • V)£, which differs from the former expression by a term which may, in

certain circumstances, be quite significant. To see this, consider the general relation:

f(P • V)Ed\ = fE(P • dS) - fE(V • P)d\

In the computation leading to equation (2) we assumed that each surface layer can

be considered so thin that the first term in the equation above disappears. In reality

this is an approximation which may or may not work well. In this case it does not.

(Appendix 11 details Larmor' s subsequent correction in 1897 of the erroneous de-

duction, as reconstructed by Philip Lervig.)

Part of the significance of Larmor' s error is its implication that polarization theory

cannot be accepted no matter what assumptions are made concerning the disposable

constants which it employs. Larmor did indeed interpret the result in this way. But
the deeper significance of the result involves energy localization. The (Helmholtz)

polarization theory, in Larmor' s description, ".
. . is the representative of a wider

theory which supposes the electrostatic energy to be in part distributed through the

dielectric as a volume density of energy, and in part over the plates as a surface

density" (Larmor 1892, 58). The concept behind this assertion is, evidently, the

belief that the energy of a system of particles governed by conservative forces acting

directly at a distance is located at the particles. Presumably the force, and so the

potential energy, "exists" only where it acts, that is, at the particles' loci. Conse-
quently, in Larmor's eyes the empirical failure of polarization theory was tantamount
to the failure of the assumption that the energy in an electrostatic system is located
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anywhere but in the dielectric. Conversely, the success of the Maxwell stress calcu-

lation, which is unquestionably an implication of energy localization in the dielectric

though it certainly does not imply that localization, confirmed Larmor's already deep-

felt belief that all forces are due to inhomogeneities in volume distributions of en-

ergy. We can see this view expressed in a remark of his which also leads directly to

Larmor's earliest conception of the dynamical connection between matter and ether:

When a dielectric is excited, we find ourselves in the presence of a strain

of an aethereal origin somehow produced; it would relax on discharge of

the system with the velocity of light. At an interface where one dielectric

joins another, the aethereal conditions will somehow, owing to the nature

of the connexion with matter, only admit a portion of the stress being

transmitted across the interface; and there will thus be a residual traction

on the interface which must, if equilibrium subsist, be supported by the

matter-web, and be the origin of the stress which has been verified exper-

imentally. Inside a conductor, the aether cannot sustain stress at all, so that

the whole aethereal stress in the dielectric is supported by the surface of

the matter-web of the conductor. At such interfaces the aethereal part of

the distribution of energy in the medium will be discontinuous. (Larmor

1982, 66)

With Larmor, envision a continuum which in some places consists only of isolated

ether and in others of ether connected somehow with matter. The energy density

(l/2e)D
2
exists only in the ether, but the presence of matter occasions discontinuities

in this density. As a result of the discontinuity, net moving forces may result, and

these forces act upon the matter "web." Envision a stress acting over a closed sur-

face in the ether. If the energy density were continuous, this stress would be balanced

by a compensating stress acting on the ether from within the closed surface out.

Larmor's idea was that, when matter as well as ether occupies the enclosed volume,

then the stresses of ethereal origin are in part carried by the matter, in part by the

ether. This is reflected in the discontinuity of the ethereal energy density across the

closed surface, for if the density were continuous then the stress would be carried

entirely by the ether.
1

1 . I thank Ole Knudsen for helping me clarify this difficult point.
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The Elementary Structure of Larmor's Theory

through January 1894

The abandonment of Maxwellian theory, which was the result of Larmor's goal to

create a universal energy function, took place rather abruptly and without Larmor's

initial recognition that he had embarked upon an entirely new course. We can place

the final change close to 18 April 1895, nearly eight months after Larmor introduced

the electron. The purpose of the remaining chapters in part III will be to reconstruct

and to explain the developments between November 1893, when Larmor committed

the earliest version of his scheme to paper, and April 1895, when he abandoned

Maxwellian theory.

We unfortunately do not possess the draft of Larmor's first theory (late 1893). It

almost certainly no longer exists, having been extensively revised by Larmor over an

eight-month period before it was printed in the Philosophical Transactions. We do,

however, possess a short precis of the draft's contents which was printed in Nature

early in January 1894. Moreover, many—though not all—of the changes which Lar-

mor made in his original draft are at least dated in the published version because

they were sent in as addenda or replacements to an already submitted manuscript.

Finally there is an extensive correspondence between Larmor and FitzGerald during

the period of revision; indeed, it is this correspondence that has enabled us to under-

stand fully Larmor's developing ideas and the critical stimulus that FitzGerald pro-

vided.

Larmor's "Dynamical Theory of the Electric and Luminiferous Medium" was

finally printed in three large installments, the first of which reached the printer in

August 1894. This first portion contains revisions which were received by Rayleigh

as secretary of the Royal Society on 14 June and which will strongly figure in our

reconstruction of the development of Larmor's ideas. Most important, this first part

concludes with an "Appendix," received on 13 August, in which Larmor used the

electron to resolve difficulties which had plagued his theory and which were repeat-

edly pointed out to him by FitzGerald. Yet even here Larmor had not as yet aban-

doned Maxwellian theory. However, the second installment, dated 16 May 1895,

does so in a completely unambiguous manner. The third installment, dated 21 April

1897, essentially builds a complete theory of dielectric and magnetic polarization

with a careful analysis of the energy questions involved. In this final part of his

theory, Larmor for example, demonstrated that his earlier "proof" that polarization

theory must be incorrect was based on a false physical assumption. By late 1898,

Larmor had completely reconstructed electrodynamics on the foundation of the elec-

tron, though in a special manner which yet retained a place for certain aspects of

Maxwellian theory as well as for Hamilton's principle. We will briefly discuss this

final assimilation in chapter 20, for it is the theory that Larmor developed at length

in his famous Adams Prize essay published in 1900, Aether and Matter.

Larmor was unfortunately not gifted, to say the least, with stylistic clarity. Indeed,
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his is probably the most difficult of contemporary scientific locutions to decipher.

This fact, coupled with the novelty and intrinsic difficulty of his subject matter, was

not conducive to a wide understanding even in Britain of just what Larmor's theory

was about, especially since many of his ideas were (necessarily) rather vague. My
approach to understanding Larmor involves much interpretation, based not only on

the published documents, but also on my understanding of the problems which he as

a Maxwellian had to confront, on the intrinsic logic of his theory, and on his corre-

spondence with FitzGerald during the critical months which culminated in the elec-

tron. I shall begin with an outline of the theory as Larmor conceived it late in 1893

as revealed in the Nature precis and the unamended portions of part I of the "Dy-

namical Theory."

16.1 The Basic Equations: Optics and Electrostatics

Larmor's theory was based on the assumptions that magnetic intensity is velocity and

that the medium is governed by Hamilton's principle. We have already seen, of

course, that this model is in fact the only one which, by the early 1890s, was even

remotely tenable. Since H is velocity du/dt, D must be V x u in order to satisfy

Ampere's law in nonconducting media. For consistency with electromagnetic expres-

sions, the kinetic energy density must be (l/2)p|d«/df|
2
and magnetic, and the poten-

tial energy density must be (l/2)a|V x u\
2
and electric, where p is density and a is

the medium's only elastic constant. The medium, that is, must possess MacCullagh's

rotational elasticity. The variational principle yields an equation of motion (eq. [1])

which, substituting electromagnetic for mechanical variables, is equivalent to Fara-

day's differential law since p must represent \x and a must represent 1/e.

(1) pd
2
u/dt

2 = -aV x (V X u) = -dB/dt = V x E

We may summarize the scheme in the following table:

Table 2 Larmor's Model

duldt

V x ti

P

a

T =

W =
(\/2)p\dTi/dt\

2

(1/2)a|V x u\
2

Mechanical Electromagnetic

H
D
M-

L/c

(\/2)[lH
2

(l/2e)D
2

Note that, in this scheme, Ampere's law is merely an identity required by the iden-

tification of H with velocity. Faraday's differential law, in essence, is the medium's

equation of motion.

We shall consider Larmor's early application of the theory to electrodynamics in

a moment. Let us first briefly consider how he applied it to optics (Larmor 1894b).

We have already seen (appendix 2) that the MacCullagh medium easily deals with

isotropic refraction and reflection (refraction is obtained simply by altering B across



The Elementary Structure of Larmor's Theory 143

a boundary); it also readily deals with birefringenece by assuming that the potential

density has the form:

(2) W = (\/2){a[ex • (V x u)f + b[e
y

• (V x u)f + c[e z
• (V x u)]

2
}

To obtain dispersion all one needs to do is to assume that the potential contains terms

which are odd powers of the curl, the lowest such term being (excluding unity):

(V X u) • [V X (V X u)] = b - V25. Such terms in Hamilton's principle lead

directly to Cauchy's old formula for normal dispersion. Anomalous dispersion was

not discussed here by Larmor, as, indeed, it was generally ignored in Britain at this

time (except by Kelvin), since it seemed to be so strongly linked to the details of the

connection between ether and matter at the microscopic level. Finally, one can ac-

count for optical rotation of the structural type in a similar fashion. In Larmor's

words, written in late 1893: "MacCullagh is easily able to hit off a simple form of

the potential-energy function, which—on the basis of Lagrange's general dynamics,

or more compactly on the basis of the law of Least Action—absolutely sweeps the

whole field of optical theory so far as all phenomena are concerned in which ab-

sorption of light does not play a prominent part" (Larmor 1894a, 261; emphasis

added).

We will shortly find this last restriction presciently significant because absorp-

tion—more generally, conductivity—is precisely the area in which Larmor's theory

fails badly. But let us first consider how the theory is applied in electrostatics (Lar-

mor 1894b, sees. 39-45). Here the application is immediate, as long asjeharge trans-

fer does not occur: since D is V X u where a is nonzero, we have V • D always

zero there, and so we obtain the potential equation V2
<j> = 0. The usual electrostatic

boundary conditions result directly from Hamilton's principle, if we assume that u is

completely continuous across the boundary. To obtain an analog for conducting sur-

faces, we must assume that in "perfect" conductors a vanishes, that is, e becomes

infinite, since only in this way do we^obtain a discontinuity in D (V X u) at a

dielectric-conductor interface such that V • D does not vanish there. The assumption

that e, the inductive capacity, is large within a conductor was already in widespread

use among Maxwellians on other grounds (see appendix 5).

All this is merely a translation of the standard Maxwellian concept of charge

into MacCullagh's variables. "Charge" is simply the discontinuity in electric dis-

placement, or V X w, which necessarily occurs at an interface across which the

elasticity drops to zero. The true test of the theory must come, not from electrostat-

ics, but from electrodynamics, for, as we have repeatedly seen, it is the conduction

current that most deeply challenged Maxwellian theory.

16.2 Displacement and the Current

We come now to the core of Larmor's theory before mid-June of 1894—the relation-

ship it requires between the currents of displacement and conduction. To understand

Larmor here, we need only three elements of the theory: first, that displacement is V
X h; second, that magnetic intensity is duldt; third, that elasticity vanishes in "per-

fectly" conducting regions. Note that we as yet have no representation for conduc-

tivity proper—indeed, in Larmor's theory the "perfect" conductor is defined as a
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body devoid of elasticity (i.e., with infinite capacity). Conductivity, as we shall now
see, is a decidedly secondary property which characterizes inhomogeneous bodies

with low, but nonzero, elasticities.

We begin with Larmor's illustration of a process for generating an electric current

(Larmor 1894&, sees. 46-48). Consider a pair of charged capacitors A and B con-

nected in parallel (see fig. 13). The plates and connecting wires are "perfect" con-

ductors. If the distance between plates A and A' is altered, a current will flow in the

wires. By current continuity and charge conservation it is simple to show that, if the

plate distance changes at a constant rate k, then the current will be - Qkal(a + kt)
2

,

where Q is the total charge on the inner plate system A', B'. The current can also

be derived by consideration of the flux through a surface S which encloses only A',

B' and the wire between them: since this must equal Q at all times, the flux from A'

must increase if the flux from B' decreases. On Maxwell's principles the total current

J is C + dD/dt, where C is the conduction current, and V • J vanishes (current

continuity). Since D vanishes in the wire because the capacity therein is infinite, but

dD/dt exists outside, C must exist "inside" the wire and be equal and opposite to

the external displacement current.

The question for Larmor—as for all Maxwellians—was how to represent the con-

duction current, and how to do so in terms of the characteristics of the rotationally

elastic medium. The solution to the problem was dictated by the structure of the

medium. In figure 14, we first describe a closed surface S' about the wire and one

of the plates, say A'. Now if the distance between A', A changes, we have changing

displacement D, most of which passes through the portion of the dotted surface near

A': in Larmor's theory D is V x u. Hence:

(3) d/dtjD dS = d/dtf(V x u) • dS = d/dtfu dl = Jdu/dt • dl

That is, we can completely replace flux of D into the plate with circulation of u about

the open end 7 of the dotted surface S' . By our previous calculation:

(4) Jdu/dt - dl = JH - dl = - Qkal(a + kt)
2

In hydrodynamics, Jdu/dt • dl is twice the vorticity. In Larmor's theory, the conduc-

tion current is measured by (in fact, it literally is) the circulation in the surrounding

medium.

To follow out the example: if, while the plate distance changes, we suddenly fill

—
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Fig. 13 Circuit containing two capacitors
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the gaps between A and A' and between B and B' with substance of zero elasticity,

we then have a vortex sheet consisting of circulation about a toroidal region; this

circulation can continue indefinitely because rotational elasticity is not involved as

long as the region is unbreached by finitely elastic substance. This is not the usual

hydrodynamic vortex but involves circulation about a perforated solid: the substance

circulates irrotationally about the wire with no resultant flux (V X u) through the

region occupied by the wire (see fig. 15).

One immediately sees an important feature which Larmor did not hesitate to point

out (Larmor 1894b, sees. 49 and 55-56). Current generation requires a breach in the

continuity of the inelastic ("perfectly" conducting) region in order to alter the flux

through its boundaries. If that breach is closed, the current—circulation—can never

thereafter be altered. This forms a close parallel both to Maxwell's infinitely con-

ducting body (through which the magnetic flux can never alter; see Maxwell 1873,

vol. 2, sec. 655) and to the property of a vortex system by which vorticity cannot be

altered by internal processes. Consequently, ordinary electrodynamic induction

would necessarily require incomplete circuits, whereas the Amperean currents sup-

CIRCULATION

WIRE

Fig. 15 Fluid circulation about a current-bearing wire



]46
'

Chapter Sixteen

posed to exist in magnets must constitute unbreached toroidal regions (Larmor
1894/?, sec. 61). But what of conductivity proper? As yet we have no property to

represent it, for in the theory as it stands we have only a "perfectly" conducting

substance represented by a region entirely devoid of elasticity. Here is precisely

where Larmor' s theory ran into grave difficulties.

16.3 "Ether Rupture" and Conductivity

In Larmor 's theory, electric interactions between circuits had to be expressed entirely

in terms of changing displacement because "imperfectly" conducting regions—those

breached by gaps with nonzero elasticities—were necessary to permit alteration in

the circulation. This is strikingly illustrated by Larmor' s calculation of the electroki-

netic energy (Larmor 1894/?, sec. 52). He necessarily began, of course, with

(l/2)p|dw/dr|
2
as the kinetic energy density and transformed its volume integral par-

tially into:

;i/|r - r'\ [(V x i) (V x t')]d\d\'

Here \r — r'\ is the distance between d
3
x and d

3
x' . That is, the energy is expressed

entirely in terms of displacement currents, even if the circulation is in fact about an

unbreached toroidal region of vanishing elasticity. In Larmor' s words:

The currents are here simply mathematical terms for such flows of electric

displacement along each wire as would be required to make the displace-

ment throughout the field perfectly circuital, if the effective elasticity were

continuous. (Larmor 18946, sec. 52)

Where in all this does "conductivity" figure? If by conductivity one means either

what Maxwell meant, or even what Poynting and J. J. Thomson understood by the

term, then it figures nowhere in Larmor' s theory. This is perhaps the most difficult,

and yet the most important, aspect of his early theory to understand. Let us begin by

discussing why Maxwell's "conductivity" does not, indeed cannot, occur in Lar-

mor' s theory.

Recall that to Maxwell conductivity symbolized a property of the electric medium

by which energy stored in quantity shift is transformed in situ into heat (without an

attendant change in configuration). This image has no place whatsoever in Larmor'

s

theory precisely because it identifies electric displacement, D (and not a more ele-

mental shift), with a function, V x u, of the medium's material displacement. Con-

sider a region which, like Maxwell's conductor, has finite capacity and finite con-

ductivity. According to Maxwell, a shifted quantity can lose its energy to heat, with

the electric displacement simply disappearing without further quantity shift, and

therefore no magnetic intensity exists during the decay process. In Larmor 's theory,

a change in "displacement" in a region of nonzero elasticity—however produced

—

necessarily involves magnetic circulation because d/dtf(V X u) • dS is identically

fdu/dt • dl; and duldt is, by hypothesis, H. That is, Maxwell's electric quantity has

no analog at all in Larmor's theory, which is based entirely on displacement.

In one sense Poynting and J.J. Thomson had also abandoned, or at least circum-

vented, Maxwell's quantity shift through their theories of moving tubes of displace-

ment, with "conductivity" being the determinant of the rate of tube dissolution. But,

for reasons similar to those which exclude Maxwell's quantity shift from Larmor's
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theory, the Poynting-Thomson alternative also has no application in it. For Larmor

cannot connect, as this alternative demands, lateral flow of displacement through any

curve surrounding a circuit with magnetic intensity. In his theory there must in fact

be no flow of displacement into a circuit except at the breached parts where the

elasticity becomes nonzero. (This is obvious simply because, in Larmor's theory, in

situ breakdown of displacement must generate magnetic intensity, whereas it does

not do so in either Maxwell's quantity analysis or in the Poynting-Thomson alterna-

tive to it.)

For Larmor the question is not how or along what path the displacement flows

into the finitely elastic breaches which must exist in his conductors; the only deter-

minant of magnetic intensity is the rate at which displacement changes in the direc-

tions of lines normal to the (conducting) surfaces which bound the breaches. In Lar-

mor's theory, magnetic intensity must exist wherever, and however, displacement

alters.

The immediate consequence of this is that Larmor does not have available to him

the by-then standard way of introducing conductivity into theory: namely, as a mea-

sure of the rate of destruction of inflowing displacement. He was nevertheless at least

partially aware of that approach, championed especially by J. J. Thomson, which

attributed the macroscopically dissipative characteristics of conductivity to discontin-

uous, but nondissipative, microscopic processes which occur with extreme rapidity.

"Dissipation in conductors," Larmor remarked, "is connected with a sort of transfer

by discharge from molecule to molecule within their substance" (Larmor 18942? , sec.

56). In essence, Larmor's theory initially attributed conductivity, properly speaking,

to an unknown microscopic mechanism which causes the elasticity of the ether in

conducting matter subject to electromotive intensity to fall periodically to zero in the

intermolecular gaps (Larmor 18942?, sees. 55 and 66-68). This produces a "dis-

charge" which involves a macroscopically dissipative effect, no doubt for much the

same reasons advanced by Thomson. Consequently, to understand Larmor's theory

of conduction as a process in which the ether periodically "ruptures" or loses its

elasticity in matter, we must first understand the process of "discharge" (i.e., that

process in which charge is transferred between conductors).

The basic process described by Larmor involves, as one expects, the creation of

a path of zero elasticity between charged conductors:

A charged body exists in the field, causing a rotational strain in the aether

all round it; consider the portion of the aether inside another surface, which

we may suppose traced in the field, to lose its rotational elasticity as the

result of instability due to the presence of molecules of matter; the strain

of the aether all round that surface must readjust itself to a new condition

of equilibrium; the vortical lines of the strain will be altered so as to strike

the new conductor at right angles, —and everything will go on as in the

electrostatic phenomenon. But there will be no aggregate electric charge

on the new conductor; for the electric displacement (f, g, h) is a circuital

vector, and therefore its flux into any surface drawn, wholly in the aether,

to surround the new conductor, cannot alter its value from null which it

was before. (Larmor 18946, sec. 63)

In figure 16, A is a charged conductor, and B is an uncharged conductor initially

separated from A by a region of nonzero elasticity. In A and B the elasticity is zero.
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Fig. 16

If we connect A with B by a conducting wire C, the electric displacement, or rota-

tional strain V X u, in the region occupied by C can nojonger exist since the

elasticity is now zero there. Consequently, the distribution of V x u in the surround-

ing, finitely elastic medium must so readjust itself that it is normal to the surface of

C at each point. That is, if we suppose that C parallels what was originally a line of

electromotive intensity, then V x ti along C—or, equivalently, fu • dl about C

—

must now be replaced with a convergence of V x ionC. This can occur only

because V x « vanishes within C. Our task now is to understand the process of

stress breakdown, such as occurs in C, which Larmor envisioned.

Larmor had an electrolytic model in mind for the microscopic process of "ether

rupture," or the breakdown of stress, which accounts for conductivity (Larmor

1894/?, sees. 66-68; 1894a, 282). In electrolysis (a subject Larmor (1885) had dis-

cussed), the "current" is maintained by ionic convection, as in the standard Max-

wellian account, through the electrolyte up to the electrodes (or, in Larmor' s theory,

up to the perfectly conducting molecules). At the electrodes, and only there, the

medium, according to Larmor, periodically "ruptures"—goes to zero elasticity

—

thereby opening a path of "discharge" from the nearest ion to the electrode (per-

fectly conducting element). This permits the "stress" between the electrode and the

ion layer which has been building up (galvanic polarization) to break down, and

therefore permits the ionic flow between electrodes to continue, which would other-

wise cease because of the masking effect of the ionic layers near the electrodes. In

the process of discharge, a charge is transferred from ion to electrode across the

(temporarily) inelastic path between them. (In the early form of Larmor' s theory, no

explanation of this transfer is given beyond that implied by the account of charge

transfer just discussed, i.e., redistribution of displacement V x u.) Note that the

"conductivity" of the electrolyte (or, in general, of the macroscopic conductor with

finite elasticity in the breached portions between its inelastic molecules) is measured

by the rate at which the ether ruptures follow upon one another. This rate is imme-

diately related to the mobility of the "ions," since the more readily they move, the

more rapidly they build up polarization layers at the electrodes, and the more fre-

quent the discharge.

We can understand Larmor (1885) better by considering the sequence he envi-

sioned (see fig. 17). Begin with existing displacement D in the entire region between
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+

A A'

polarization layers

Fig. 17 Electrolytic polarization

electrodes A and C. As positive ions migrate left, and negative ions migrate right,

polarization layers build up near the electrodes. This continues until the layers annul

the electric intensity in the region B, whereupon ion migration ceases. We now have,

in effect, two capacitors, AA' and CC, and discharge ensues as the regions "rup-

ture," their elasticity temporarily and rapidly falling to zero. The net magnetic effect

after reestablishment of elasticity is the same as a current from right to left; that is,

in this process the discharge generates magnetic intensity in the same direction as

that involved in the preceding process of ionic convection through region B. Of

course, like most Maxwellians, Larmor (1894b, sec. 59) conceived that a moving

"charge" constitutes a current element "completed" by changing displacement in

its path (see appendix 1 for the history of this idea). What Larmor was not clear

about (and what he did not mention) was whether it is the completing displacement

current or only the moving ions, followed by discharge, that engender the magnetic

field. Indeed, in late 1893 such detailed considerations were far removed from Lar-

mor's purposes, which were primarily to invent a scheme that seemed plausible if

not complete.

By 14 June, however, Larmor had made convection a central element in his

scheme, and he began to consider it in some detail in order at once to clarify the

meaning of ether "rupture" and to distinguish conduction currents from the Amper-

ean currents in magnets. This was done under FitzGerald's influence. The idea is

simple. The ions while in motion alone determine the magnetic intensity. (Presum-

ably Larmor now agrees with FitzGerald that the displacement currents involved in

charge motion produce no H field; see appendix 1 on this question.) Ionic motion is

not, however, the entire source of intensity, for it is evidently preceded by displace-

ment buildup. This buildup, as Larmor now sees it, generates magnetic intensity but

would eventually be stopped by elastic reaction when aV X u balances the applied

electromotive intensity. When the ionic motion ceases, galvanic polarization layers

having been created, the ions transfer what Larmor now calls "monads" of charge

to the electrodes, therefore the interstitial ether does not "rupture." This transfer of

"monads" entirely replaces ether rupture because it has essentially the same func-

tion; namely, transfer of charge and elimination of galvanic polarization in the pro-

cess. These ideas are more or less implicit in Larmor's longest discussion of conduc-

tion, submitted in a 14 June addendum to the original manuscript:

In an ordinary electric circuit, the circulation of the medium [magnetic

intensity] is thus maintained around the conducting [inelastic] part of the

\
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circuit by electric convection or displacement across the open [finitely elas-

tic] or electrolytic part, by means of a process in which the rotational

elasticity [inductive capacity reciprocally] is operative. We may imagine

this electric convection to be performed mechanically [by convection], and

to be the source of the energy of the current [i.e., of magnetic field en-

ergy]: the force-component corresponding to the dynamical velocity which

represents the current will then be the electric force which does work in

the convection of the charged ions. If this convection ceased, the circula-

tory motion which constitutes the magnetic field of the current (i.e. its

momentum) would be stopped by the elasticity of the medium; and by

altering the velocity of this convection, we have the means of adding to or

subtracting from the circulatory motion, the change of kinetic energy [of

the field] so produced being derived from the electric force which resists

convective displacement [essentially the cognate force of self-induction

—

see appendix 1—involved in convection]. This mode of mechanical repre-

sentation suffices to include all the phenomena of ordinary electric cur-

rents. On the other hand, in a molecular circuit there is no electric convec-

tion, but only a permanent fluid circulation through it, such as would be

self-subsisting, by aid of fluid pressure alone, when the core is fixed, and

could not in any case be permanently altered on account of the rotational

elasticity [this is the Amperean current, the cognate of circulation around

fixed cores]. (Larmor 1894b, sec. 106)

Note that Larmor' s theory at this stage (14 June) continued to fundamentally dis-

tinguish between macroscopic currents, which require microscopic convection to gen-

erate magnetic intensity, and Amperean currents, which in no way at all involve

convection since they require only toroidal regions devoid of elasticity. Convection

thereby appears as an essential complication to a theory in which "currents" of the

most elementary kind (Amperean) must not involve convection at all because they

are permanent. Trapped, as it were, by the structural requirements of his medium

into the distasteful complication of assuming ether rupture to explain conductivity

and thereby to make electromagnetic induction possible, Larmor seems to have rather

unwillingly recurred to the almost equally distasteful alternative of convection and

"monad" transfer for the same purposes. The price he paid was to divorce the basic

mechanisms of macroscopic and Amperean currents from one another. Unfortunately

for him, these two kinds of currents do not differ in respect to other properties where

his theory implies that they should differ.

16.4 The Baroque Mechanism

Larmor and J. J. Thomson were, as mentioned earlier, competitors in the Cambridge

Tripos examination in mathematics, which Larmor had won. Yet by the late 1880s

Thomson had produced considerably more work than Larmor and had attempted to

construct accounts of processes at the boundaries of contemporary theory, such as

conductivity, and even kinetic and chemical processes in gases. The latter two sub-

jects he treated in his 1882 Adams Prize essay, "A General Investigation of the

Actions upon Each Other of Two Closed Vortices in a Perfect Incompressible Liq-

uid." The essay was published in 1883 as A Treatise on the Motion of Vortex Rings.
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The bulk of the essay consisted of an extremely technical investigation of interactions

between vortex rings under limiting conditions (e.g., small apertues in relation to

their mutual distances). But in its last part (comprising only 8% of the whole), Thom-

son sketched a method for assimilating gaseous kinetic phenomena to vortex motion

on the assumption that gas particles are closed vortices. He also essayed an applica-

tion of the scheme to gaseous chemical processes by the "pairing" of vortex rings

which can occur under certain conditions.

In his preface Thomson (1883) thanked Larmor "for a careful revision of the

proofs and for many valuable suggestions." It seems reasonable to assume that Lar-

mor, who had after all beaten Thomson in the Tripos, would not have entirely over-

looked an opportunity to create a rather similar theory which could, at least in prin-

ciple, account for chemical phenomena as well as Thomson's theory could. His

electromagnetic medium offered the opportunity, and I shall briefly sketch the ba-

roque and quantitatively undeveloped mechanism he envisioned.

Recall that, for Larmor, Amperean currents were circulations about toroidal cores

with zero elasticity. If these currents with their cores are taken to be material parti-

cles, say "atoms," then one can qualitatively explain permanent magnetism and

paramagnetism, since the vortices will tend to line up with planes and vorticities

parallel to one another. But for electrolytic phenomena one needs something like a

permanent "atomic" charge, in Larmor's words, associated with the vortex to obtain

Faraday's electrochemical laws. Moreover, if these vortices are the basic type of

atom, then, without an additional mechanism of some kind capable of counteracting

kinetic pressures, all matter would necessarily be permanently magnetic or paramag-

netic. Larmor accordingly superadded a mysterious "charge" to the vortex, which

he took to be spread over the core and which alters the dynamical interactions of the

vortices, though he offered no analysis of the alteration (Larmor 18946, sec. 62).

This is Larmor's "atom." Molecules are built from such atoms, but the forces of

chemical affinity are not due to electrostatic forces between the charged cores.

Rather, Larmor attributed chemical forces to the hydrodynamic effects of pulsations

of the (flexible) vortex cores (no doubt basing his theory implicitly on William Hick's

(1883-84) analysis of forces due to pulsations of solids in an incompressible, inviscid

liquid). Radiation occurs when, under the action of intense chemical motions (pul-

sations), the charge, spread over the core, pulsates rapidly along with the core. Lar-

mor associated radiation fed by core pulsations with sharp spectral lines (Larmor

18946, sec. 65).

Larmor's "atom" thus consisted of two independent components: first, the flexi-

ble toroidal core with circulation; second, the charge—or V x u—distributed over

the core and everywhere normal to it (since the core is inelastic). "An atom," Lar-

mor argued:

. . . would be mathematically a singular point in the fluid medium of

rotational elastic quality. Such a point may be a center of fluid circulation,

and may have elastic twist converging on it, but it cannot have any other

special property besides these; in other words this conception of an atom

is not an additional assumption, but is the unique conception that is nec-

essarily involved in the hypothesis of a simple rotationally elastic aether.

(Larmor 18946, sec. 69)
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Given a medium whose properties are exhausted by flow and rotational elasticity,

the demands of magnetostatics, electrolysis, chemical affinity, and radiation can be

met, even in principle, only by an atom with circulation and twist, since there are no

other properties available. Note an interesting characteristic of this theory before

August 1894: chemical (and cohesive) forces are not electrostatic in origin but are

hydrodynamic, that is, they are due to kinetic and not to potential actions. Intrinsic

twist, or V x u, is granted the atom at this stage to explain why not all bodies are

magnetic and to provide for electrochemical laws. As with convection in conduction

theory, Larmor's "atomic" charge is a decidedly secondary element in the scheme,

superadded to explain what would otherwise not emerge from the basis structure of

the Amperean current. This "atomic" charge is as mysterious as the processes of

conduction dissolving tubes of displacement were in the Thomson-Poynting theory.

Though the "atomic" charge involves more microscopic detail than those conduction

processes, it is even less useful since Poynting and Thomson were at least able to

quantify their theories. Moreover, a detailed atomic theory was not even Larmor's

aim at this stage. He was preeminently developing a theory of electromagnetism and

optics, as the title of his essay suggests.

The Amperean atom proper was an immediate and obvious early fruit of the the-

ory which Larmor eagerly plucked, only to find at once that the fruit was not suffi-

ciently nourishing to feed a complete theory. The extraneous and mysterious element

of charge was also necessary. Precisely this superadded element of detail sharply

distinguishes the character of Larmor's theory from all previous Maxwellian efforts,

which had steadfastly tried to avoid the microscopic realm as much as possible.

In Larmor's original, unamended manuscript, microscopic detail of this kind was

a negligible component (two short sections—65 and 69 in the final version—dealt

with it). Even the Amperean atom proper was only briefly mentioned, and then sim-

ply to contrast it with the necessarily inhomogeneous structure of macroscopic con-

ductors. In the 14 June addenda Larmor amplified the subject, making charge con-

vection and transfer essential in macroscopic conduction and introducing his peculiar

"monads", groups of which were now taken to constitute the core charge of the

atoms (Larmor 1894b, sec. 70).

Larmor amplified his microscopic scheme only after several months of correspon-

dence with FitzGerald, during which several new problems arose requiring additional

detail. On 30 April, Larmor sent Oliver Lodge the following letter which indicates

two things: first, that he was by then somewhat oppressed by the problems FitzGerald

kept pointing out; second, that by that date, and not much before, he had replaced

ether rupture with convection and transfer of charge.

I am still in a good humour with my scheme: I think it still improves on

acquaintance. I don't know when I shall ever see my MS. again [it was in

FitzGerald 's hands]: but if I do I have a good deal to alter and explain,

and new points to add. I have had a long correspondence with FitzGerald

about it, which has taught me that much wants to be more fully explained

in it. I am now deep in atomism. If you make up the world out of monads,

electropositive and electronegative, you get rid of any need for such a

barbarous makeshift as rupture of the aether. . . .

A monad or an atom is what a geometer would call a "singular point" in
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my aether, i.e. it is a singularity naturally arising out of its constitution,

and not something foreign to it from outside. (UCL MS. ADD. 89)

There is little doubt that the "monads" and the microscopic detail were intro-

duced at about the same time that Larmor introduced convection, since he inserted

the following remarks in the text on 14 June closely after his earlier, brief description

(one paragraph) of "cohesive, chemical and radiant forces":

In the theory as hitherto described, electric discharge has been represented

as produced by disruption of the elastic quality of aether along the path of

discharge; and this is perhaps the most unnatural feature of the present

scheme. If, however, we examine the point, it will be seen that the phe-

nomenon of electric flow need involve only convection of the atomic

charges without any discharge across the aether, with the single exception

of electrolysis [which involves ionic, as well as monadic, convection].

(Larmor 18942?, sec. 70)

(Note that in metallic conduction, monad transfer between fixed, inelastic, Amperean

atoms is alone involved.) This scheme was to be contrasted, Larmor parenthetically

remarked, with the concept of ether rupture which he had earlier employed. In view

of his letter to Lodge, the contents of the Nature precis, and the internal evidence of

the text of the final "Dynamical Theory, Part I," I conclude that Larmor turned to

convection and monads as the basic mechanisms for conduction only several months

after he had formulated the main outlines of his theory. Charge convection provided

an alternative mechanism to ether rupture, and the transfer of charge which was

previously supposed to take place during rupture was now understandable on the

assumption, first expressed in the 30 April letter to Lodge, that charge consists of

"monads" of intrinsic twist which can be transferred between Larmor's toroidal

atoms.

The role Larmor here assigned to convection was highly specialized. He did not

assume that convected charge alone constitutes the current of conduction. He rather

envisioned a generalized electrolytic process. First, he supposed, displacement flows

into the electrolyte, engendering ionic motion in order to relieve the cognate stress.

The ions carry their load of monadic charges to the electrodes, forming polarization

layers. When the intensity between layers and electrodes is sufficiently high, the

monads are transferred from the ions to the fixed atoms of the electrodes. The process

then repeats. In metals, about which Larmor was vague, one evidently replaces the

ions with the monads proper and the electrodes with the fixed metallic atoms. Again,

displacement first builds up, after which monads are convected across the elastic gap

between the inelastic atoms. It is essential to recall that Larmor's theory after 14

June, perhaps even more than before, continued to fundamentally distinguish be-

tween macroscopic currents, which involve convection and monad transfer, and Am-
perean currents, which do not. In chapter 17 we shall investigate the problems which

faced Larmor given the baroque mechanism he had elaborated by 14 June.
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A New Version of an Old Dilemma

Larmor's first inkling of a difficulty with his scheme occurred late in 1893, when

Kelvin challenged the idea that currents can be treated as vortex rings. Larmor wrote

to FitzGerald on 27 February:

Lord Kelvin threw at my head at the meeting that two vortex rings taken

as equivalent magnets of which like poles attract: and said he gave up

such things on that account. I had forgotten about the fact, being misled

by a wrong result of Kirchhoff's. I have been led to examine into the

discrepancy further: and I even make it a strong support of my position

that electric currents are in open circuits, amperian in closed circuits. I

have written out a pretty long account of the matter, in the hope of being

allowed to incorporate it, which I will send you if you are so good as to

take an interest in it, though it is not in its present form quite fit for press.

(Larmor Letters [R.S.I RR 2124)

The problem for macroscopic currents is this: the force between them is equal but

opposite to the force between fixed-core vortex rings (see appendix 6); Larmor had

taken such rings as the analogs of currents. This possibility would at first seem to be

precluded, but Larmor had a ready solution for macroscopic currents. The reason for

the difference is that external energy must be supplied via an electromotive force to

maintain current strength against induction, whereas no such external source is re-

quired to maintain circulation about the core. The conflict reduces to the fact that

external electromotive force has no analog in the fluid medium. But—and this was

his point—Larmor's theory postulates that macroscopic currents are necessarily

breached at points where displacement can be altered, whence electromotive force

can act there. Their analog is not a closed vortex but a discontinuous region of the

medium in which circulation occurs about the (inelastic) conducting parts when dis-

placement (V X u) is altered in the breach.

But FitzGerald asked, what about magnets whose Amperean currents must be

closed?

I see the sort of way in which you get out of [Kelvin's paradox] in cases

of ordinary conducting currents by making them unclosed so that their spin

can be increased, but I would have thought you would require some cor-

responding theory for amperian currents to enable magnets to obey the

same laws as solenoids with constant currents. (Larmor Letters [R.S.] RR
445)

According to Larmor the Amperean currents in magnets are fixed-core vortex rings.

Hence the forces between them should be equal and opposite to the forces between

macroscopic currents. That is, the forces between permanent magnets should be
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equal and opposite to the forces between the macroscopic currents which produce the

same magnetic fields. Yet they are not. On Larmor's theory, for example, poles of

the same kind should attract one another, and poles of opposite kinds should repel.

They do not. Consequently, FitzGerald wrote, something like an "open circuit" is

needed for Amperean currents as well.

Yet in the published version of the theory with the 14 June addenda, Larmor's

Amperean currents remain closed. How then did he answer FitzGerald's critiques?

The reply to this question shows Larmor still bound to his electrolytic theory of

conduction and still resisting FitzGerald's suggestions, which he subsequently found

deeply stimulating; suggestions which ultimately led him to introduce the electron.

Charge convection was used in the electrolytic theory to overcome the conceptual

difficulty of ether rupture. But the context of Larmor's longest discussion of charge

convection was in the same 14 June addendum (sees. 106ff) in which he attempted

to resolve Kelvin's paradox. That discussion was used solely to illustrate how mac-

roscopic currents can be altered by induction, that is, how ethereal elasticity has a

grip on those currents. One therefore expects that Larmor's response to Kelvin's

paradox must be concerned with this central question of how currents can be affected

by induction. In particular, if Larmor could associate the Amperean atoms, as mac-

roscopic currents are associated, with ethereal elasticity—without at the same time

destroying their permanence—then he could possibly explain why they do not behave

like fixed-core vortex rings. The purpose of juxtaposing macroscopic currents with

Amperean currents at this point in his essay was to emphasize their differences and

to investigate those differences by finding in the two kinds of currents a common
element. That element was the charge of the vortex atom.

Larmor's first solution to the Kelvin paradox was not the one which reached print,

if one may judge from a letter he received from FitzGerald on 29 March:

I am afraid I cannot agree that your attempt to get over Ld. Kelvin's ob-

jection as to the action of magnets upon one another is successful. I will

take the concrete case of a number of tubes with flow through them. You
seem to think that you can suppose the fluid inside the tubes and near them

to be bound up with the tubes while that outside the system of tubes is not

bound up with them. I can't see where the liquid ceases to be inside and

becomes outside. I can't see how the fact that the tubes will rearrange

themselves into mutual equilibrium under mutual forces will alter the equi-

librium under an external stimulus. You see I think you must elaborate this

much more if you expect any ordinary person to follow it. You say "When
we consider the liquid inside the tube as belonging to the tube." You must

explain how on earth you have any business to do so. (Larmor Letters

[R.S.] RR 447)

Judging from FitzGerald's remarks, Larmor at first assumed that, somehow, the

atomic vortices have fluid circulation through their cores which is linked to the sur-

face circulation through the ring's aperture. This was to overcome Kelvin's paradox

on the assumption that the new dynamical situation is not subject to the same con-

straints as simple circulation about the fixed core. FitzGerald could not see the dif-

ference because he could not see how to distinguish fluid circulation in order to link

core and aperture circulation.
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Larmor rather quickly dropped this vague atempt at a solution and, on 2 April,

sent FitzGerald a new one:

You will see that I have capitulated on several points, but want to maintain

my position on others. The most important thing is under head 14, which

on coming back to it again I imagine was a concoction (!): I did not ex-

amine it as carefully as I ought because Love, who is an expert mathema-

tician, passed it without demur. I now say that Kelvin's objection applies

only to fixed ring cores, not to free vortex atoms. Kelvin used to like to

say that magnetism was the coordinated part of the motion that is called

heat: I would say that it is the coordinated part of the atoms which consti-

tutes the internal energy of the substance; but at present I can only assign

as much reason for my view as he did for his one. (Larmor Letters [R.S.]

RR 2128)

Larmor did not offer an alternative calculation for a core free to move. Rather, he

intended here only to show (correctly, in fact) that Kelvin's proof does not hold for,

and its result may therefore be inapplicable to, moveable cores.

In the 14 June addendum Larmor passed rapidly from this rather limited argument

to a more detailed theory, not incompatible with it, in which he implicitly introduced

the charges of the vortex atoms—the same charges which he had just used to explain

ether rupture. To grasp this theory we must begin with the seemingly unrelated ques-

tion of induction by motion through a magnetic field, which Larmor also dealt with

at this point in the addendum.

The reason for Larmor' s particular concern with induction by motion was, aston-

ishingly, that his theory in its elementary form could not explain the phenomenon,

as he admitted in the "Dynamical Theory":

In all theories which ascribe the induction of electric currents to elastic

action across the intervening medium, a discrepancy arises when the

induction is produced by movement through a steady magnetic field: for

in such cases there is no apparent play of electric force across the field,

(sec. 108)

This cryptic remark was Larmor' s sole comment on the matter. By referring to a

"discrepancy," he left the impression that the problem is minor. It is not, for it goes

to the mechanical heart of Larmor' s medium. To see how, consider first the way in

which Maxwell—and we today—obtained the electric field due to motion in a mag-

netic field without electric particles.

First, write Faraday's law of induction as an equation between integrals over and

around the circuit:

(1) fE-dt = -d/dtjB dS

In this law, dldt represents the total time derivative of the flux through the circuit,

including alterations due to field changes and circuit motion. Maxwell (1873, vol. 2,

sec. 598) deduced his "equations of electromotive intensity" from this integral law

expressed in terms of the vector potential and intensity around the circuit:

(2) fE-d!= -d/dtjA • dl = -d/dtfV x A - dS
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Since dldt is the total or convective derivative dldt + v • V, where v is the velocity

of a circuit element dl, we have:

(2') fEdl = f(-dA/dt + v x B) • dl

Only upon obtaining equation (2') did Maxwell identify corresponding elements in

the integrals to write:

(3) E = -dA/dt +vXfi

The point to emphasize here is that induction by motion is deduced by operating

with dldt on the integral Faraday law. The differential law,

-dB/dt = V x E

where dldt is the spatially fixed time derivative, holds only for circuits held fixed in

the frame of the field. It alone yields just -dA/dt for E, not equation (3).

Return now to Larmor's mechanical equations of motion, obtained by least action

from the rotational energy function:

pd^ldt
2 = -aV x (V x u)

This equation yields only the differential Faraday law (with dldt) by setting p = |x,

a = 1/e, H = duldt, and D = V x u. In other words, in its elementary form

(before microscopic details were added) Larmor's theory simply could not explain

induction by motion through the magnetic field. Nor, as he remarked, can any theory

do so which relies solely on a mechanical equation of motion for a continuum. (In

fact, as FitzGerald remarked in his 1900 letter to Heaviside [see first paragraph,

chap. 15], it is precisely their respective accounts of induction by motion that so

clearly distinguish Larmor's later electron theory and Maxwellian theory.)

Larmor had recognized this problem and had sent FitzGerald an attempted expla-

nation of the discrepancy before the end of March. An explanation which FitzGerald

found less than compelling, as he wrote to Larmor on 29 March:

I cannot follow your explanation of ordinary induction by motion of a

conduction current ["conducting circuit" crossed out]. You seem to sup-

pose that a conduction current is a series of impulses whose induction is

on the average zero in a steady state. Now you should specify more clearly

what you imagine these impulses to be. They cannot be the ordinary elec-

tric force that would accompany an increase of the current because unless

these followed one another quite slowly they would (1) radiate energy (2)

excite synchronous vibrations in a properly tuned circuit and if compara-

tively slow, I think we should be able to detect them by the latter method.

They must therefore be impulses which are of such a nature ["so ar-

ranged" crossed out] as not to produce radiation and I do not see that if

they would not produce radiation that they could produce electric currents

in conductors. (Larmor Letters [R.S] RR 447)

Despite FitzGerald's critique, essentially the same explanation reached print be-

cause it also allowed Larmor to escape Kelvin's paradox, or so he thought. More-

over, it is here that the existence of atomic charge on Larmor's Amperean vortices

became particularly essential for him. As one might expect from FitzGerald's com-
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ments and, indeed, from the profundity of the problem, Larmor's explanation was

far from lucid. However, it depends quite directly on his claim that in macroscopic

conduction molecular discharges are continually taking place. He evidently reasoned

that each such discharge must build up over time and that, as they build up, the

discharges produce propagated disturbances (hence FitzGerald's claim that radiation

must occur). Each such disturbance induces a current when it impinges on a second

circuit. However, the primary discharge eventually declines—due, no doubt, to the

gradual stopping of the individual monads—and, in this latter process, the induction

in the secondary circuit is reversed. The result, Larmor argued, is no net secondary

current as long as the circuits are relatively at rest. But—and this is his (admittedly

obscure) main point—if they are in relative motion "there will be a residual value"

to the net effect of growth and decay, presumably because the relative distances are

not the same during the two processes (Larmor 1894b, sec. 108). In other words,

Larmor based his explanation for induction by relative motion of circuits on the

hypotheses that (1) the field of a macroscopic current is never steady but is, to use

his words, only "statistically" so, and (2) the reason for the field fluctuation is the

molecular process of discharge, which Larmor had just finished attributing to charge

convection.

It is essential to grasp how crucial this explanation must have been for Larmor,

however fanciful, obscure and ad hoc it seems. In the basic form of his theory, the

requirement that macroscopic conductors must contain elastic breaches, and the at-

tendant concept of ether rupture when the breaches continually close during conduc-

tion, was designed to explain how it is mechanically possible for one circuit to induce

a current in another by induction without relative motion. However, the law of in-

duction was implied directly by the medium's equation of motion, namely, the dif-

ferential Faraday law. All Larmor had to do was to explain how the law can act in

real circuits. But he was here faced with a very different and much more dangerous

problem: in its basic form his theory simply did not imply Faraday's integral law. It

was not a case of explaining how a deduced law actually operates mechanically but

of trying to explain how a law which the basic mechanism did not imply can possibly

hold true. The result of this quandary was to force Larmor to explicate the micro-

scopic mechanisms which he had previously regarded as embellishments to an oth-

erwise self-contained theory. For, in combination with Kelvin's paradox, the problem

of induction by motion could only be answered, if the basic medium is retained, by

microscopic detail. It was at this point, I believe, that Larmor began to consider

carefully the function of atomic charge in his theory, leading him to elaborate the

Nature account by replacing ether rupture with convected charge and to create his

strange account of induction by motion and the related explanation of Kelvin's par-

adox.

To overcome Kelvin's paradox, Larmor knew that in some way he had to break

the purely hydrodynamical character of the Amperean vortex atoms. He had already

argued that the paradox was demonstrated only for fixed cores, but this merely re-

placed, at best, a contradiction with a mystery. What he needed was a mechanism

that was sufficiently precise to provide a positive answer to the problem. That mech-

anism had to involve the hydrodynamic properties of the Amperean vortices in order

to evade Kelvin's proof.

Larmor had just provided himself with one aspect of the mechanism, or rather had
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already revealed one of its mechanical functions in his "statistical" theory of induc-

tion by motion. Indeed, he saw both problems as involving different aspects of one

and the same mechanism. Specifically, induction by motion occurs not only by rela-

tive motion of circuits, but also by relative motion of a circuit and a magnet. For

induction to occur in both cases, according to Larmor's theory, the magnet's field

had to be only "statistically" steady, it being composed of microscopically changing

fields. But, the mechanism he had used for circuits was not available to him here in

full because, if one thing was certain, it was that the Amperean vortices had to retain

their circulations permanently because of the permanency of the field, statistically

fluctuating though it may be. In other words, molecular discharges could not be used

as the source of inducing action of the circuit in a field due to a magnet because this

necessarily involves dissipative resistance.

Larmor's complex solution was to employ rotationally unfixed cores for the Am-
perean vortices and to emphasize that these cores must be "incessantly moving"

because of thermal effects (Larmor 1894/?, sec. 108). Now, he remarked, if the cores

were completely fixed one would of necessity have Kelvin's paradox. But if they

move, then a new factor must mechanically come into play. Specifically, rotation of

a vortex about a diameter, which Larmor supposed to be the primary thermal motion,

would necessarily involve a species of "slip" as the core rotates which could not be

hydrodynamically compensated. Slip, however, cannot occur because it would de-

stroy stability, thereby affecting the permanency of the Amperean vortices. To pre-

vent slip, Larmor argued, some nonhydrodynamical agency is necessary, and he had

one ready at hand: the atomic charge of the core. The charge associated with the

core clearly affords the elasticity of the medium a grip on the vortex and this, Larmor

maintained without even a wink at a demonstration, somehow maintains the stability

of the vortex during core rotation. The field of the magnet thereby becomes only

statistically steady because the Amperean vortices are continually rotating, and this

creates in a secondary circuit the same growth and decay process with a net result of

zero when magnet and current are at mutual rest. That is, the changing magnetic

field associated with the rotation of the vortex induces, by virtue of the constitution

of the medium, electric stress in the secondary circuit with a net result of zero since

the field is statistically steady: relative motion, as with ordinary circuits relatively

moving, leaves a residual inductive effect. At the same time, the rotations which

occasion the field fluctuations require a nonhydrodynamical factor to maintain stabil-

ity—namely, the core charge—which, in allowing the elasticity of the medium a

perch on the vortex atom, permits electric stress to come into play. But, if stress is

necessarily involved in the microscopic processes of a permanent magnet, then Kel-

vin's paradox is not only unproved, it is evidently removed because it is precisely

the action of electric stress in macroscopic circuits that differentiates them from fixed

core vortices. In the case of permanent magnets, the Amperean currents are not

anywhere breached but are intrinsically associated with stress through the charge they

bear.
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Recapitulation of the Scheme as of June 1894

One of the most astonishing features of Larmor's scheme is that it introduces a com-
plete physical asymmetry between induction due to in situ field change and induction

due to relative motion. This asymmetry occurs because Larmor's theory is con-

strained by the mechanical structure of the rotationally elastic medium. In Larmor's

theory, induction by motion becomes a feature of microscopic statistics and is not

part of the elementary field equations in any way. Unlike Maxwellian theory,
1

Lar-

mor's theory necessarily and dirctly involves microscopic detail and, in particular,

the atomic charge which, by transfer, is the critical factor in the macroscopic con-

duction current and which, by permanent association with the Amperean vortex,

functions in a parallel fashion to permit electric stress to play a role in the field of

the permanent magnet and thereby to overcome Kelvin's paradox. It is, then,

uniquely the atomic charge that both unifies Larmor's theory, such as it was, and

enables it to accommodate induction by motion and forces between permanent mag-

nets.

Nevertheless Larmor's scheme in its penultimate (14 June) form is hardly a con-

vincing one, as FitzGerald's letters to Larmor bear ample testimony. FitzGerald con-

tinued to find Larmor's theory of the intrinsically variable macroscopic current quite

obscure, and he was not convinced by Larmor's solution of Kelvin's paradox. As we
have seen, these two questions are related. Moreover, Larmor's scheme was unclear

in that he frequently left implicit the mechanisms which he envisioned. For example,

the 14 June addenda explicitly discuss three things: (1) stress relief by convection in

conductors, (2) induction by motion, and (3) Kelvin's paradox. The connection be-

tween (2) and (3) is explicitly made, but their relationship to (1) is left implicit.

Moreover, (1) does not explicitly mention the charge monads which in section 70

(also added on 14 June) Larmor had made the basis for his contention that ether

rupture need not be postulated.

Combining Larmor's various discussions, we arrive at a mechanically detailed but

less than compelling theory—a theory in which several fundamental phenomena, di-

rectly implied by any of several versions of Maxwellian theory, are now vaguely by-

products of microscopic discharge processes. Let us recall the major features of the

scheme as of 14 June.

First, we begin with the action integral for MacCullagh's medium and identify

magnetic intensity with velocity; electric displacement with twice the absolute differ-

ential rotation; magnetic permeability with density; and inductive capacity with the

reciprocal of rotational elasticity. The analogy proper immediately yields Ampere's

law with the rate of change of displacement as current, and the action integral yields

1 . See Knudsen (1980) for an analysis of the asymmetries inherent in Maxwell's analysis of induction

by motion of a conductor in a magnetic field.
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the differential Faraday law only. To regain circuit theory, Larmor formulates the

Lagrangian equation in terms of displacement currents, obtaining induction between

stationary circuits in the proper form. However, he is thereby forced to argue that

actual conducting circuits are discontinuous in a complex way: they must be breached

by regions of finite elasticity to permit displacement currents to enter—and so to be

able to alter magnetic circulation about the unbreached portions where the elasticity

is zero—but the breached portions must continually lose their elasticity to permit

charge transfer and so to prohibit infinite buildup of displacement.

To avoid having to postulate ether rupture, Larmor invents a complex convective

mechanism in which disembodied "monads" are transferred between the conducting

(inelastic) regions in a circuit. Resistance is linked to the intermittent monad transfer,

which also maintains magnetic circulation. Macroscopically, conductivity is repre-

sented by lateral diffusion of magnetic circulation into the circuit; microscopically

this is the result of molecular discharges.

The basic microscopic elements ("atoms") of the theory are vortices with charge

in the form of positive or negative monads distributed over the core. Vortex diameter

pulsations affected by neighboring atoms in a molecule account for chemical forces,

while pulsations affected by neighboring molecules account for cohesion. Radiation

occurs when comparatively rapid pulsations occur, for example, during chemical dis-

sociation. The charge monads also have the function of modifying hydrodynamic

stability in such a way that not all substances need be magnetic. The electrostatic

forces between monads—which are themselves mere singularities without mechanical

inertia—are attributed to their intrinsic nature as sources of divergence of absolute

rotation with its associated electric stress.

Kelvin's paradox is overcome, and the integral Faraday law regained, by postu-

lating that all magnetic fields are only statistically steady; they fluctuate, in the case

of macroscopic currents, because of the continual transfers of monads between at-

oms, and, in the case of permanent magnets, because of thermal atomic motions in

which the vortices oscillate continually about their diameters. Induction by motion is

then a result of a residual effect of either the molecular discharges (macroscopic

currents) or atomic oscillations (magnets), which in cases of relative rest is zero.

Kelvin's paradox, which depends on the hydrodynamical self-sufficiency of fixed

core vortices, is bypassed by noting that the oscillating vortices in magnets require a

nonhydrodynamical action to prevent slip. Larmor finds this factor in the atomic

charge, which permits ethereal elasticity to come into play, and hence provides a

mechanism for retrieving the usual laws of force between magnets.

This correct force law means that, when two permanent magnets approach one

another, their internal energy must somehow diminish by twice the increase in the

external field energy, just as with steadily maintained currents. This diminution

somehow had to be associated with the core charge in its role as the maintainer of

steady circulation through the core during atomic rotation. How precisely this process

occurred was not a question Larmor was prepared to answer. It had been sufficiently

difficult to invent a process that might be able to overcome the various problems that

plagued his theory.
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FitzGerald's Influence: The Emergence of the

Electron

Larmor was not well satisfied with his theory. It had almost by necessity evolved

from a dynamical theory of optical and electromagnetic field phenomena, based on

least action, into a complex and only partially developed theory of microscopic struc-

ture. "In unraveling the detailed relations of aether to matter," Larmor wrote in his

conclusion of 14 June, "it is not very successful, any more than other theories"

(Larmor 18946, sec. 113). Its value was primarily suggestive and its structure only

tentative:

... it suggests a simple and precise basis of connection, in that form of

the vortex-atom theory of matter to which it leads; and even should the

present mode of representation of the phenomena become on further de-

velopment in this direction definitely untenable, it may still be of use

within its limited range as illustrating wider views of possibilities in that

field. (Larmor 18946, sec. 113)

Larmor' s concluding remarks are particularly significant because they almost cer-

tainly reflect, on the one hand, his realization that contemporaries like J.J. Thomson,

his old rival, would not find the theory satisfactory and, on the other, FitzGerald's

sympathetic but critical remarks. J. J. Thomson had sent Rayleigh a report on the

first version of Larmor' s theory on 6 February:

I must apologize for the length of time [two months] I have kept this paper,

but it is an exceedingly long one & the argument is very compressed: it

also deals with a very large subject being a kind of Physical Theory of the

Universe.

. . . The Author develops the theory at great length, & applies it to many

optical & electrical phenomena, the impression left upon my mind after

reading this part ... is that the theory does not give any help in gaining

a clear insight into what goes on in any physical process in which matter

as well as ether is concerned: as long as the ether alone is concerned it is

definite & clear enough, but it does not seem to me to be well suited to

grapple with the connection between ether & matter. In spite of this I think

that it is both an interesting & an able paper & I recommend its publication

in the Transactions of the Royal Society. ([R.S.] RR 12.160)

Thomson's comments parallel Larmor's own concluding assessment, even though

Larmor had spent the months between February and June trying to work out "the

connection between ether and matter." Larmor's conclusion was an admission of

defeat.

We can trace Larmor's declining enthusiasm for his scheme during the months

between February and June from his correspondence with FitzGerald (which is, un-

fortunately, not complete on Larmor's side). FitzGerald was the second referee for



FitzGerald ' s Influence 163

Larmor's original paper, and he had contacted Larmor about it as early as 13 Decem-

ber—almost certainly because Larmor had already sent him a draft version (Larmor

Letters [R.S.] RR 442). By 9 February FitzGerald had received the review copy from

Rayleigh, and he then requested permission to correspond directly with Larmor about

it ([R.S.] RR 12.161). On 27 February he wrote Larmor his first comments (Larmor

Letters [R.S.] RR 443) having received Rayleigh 's permission, and on 4 April he

recommended publication and the inclusion of several "notes and explanations"

which Larmor was working on ([R.S.] RR 12.162). These, of course, all concerned

the questions of convective discharge, monads, the Faraday integral law, and Kel-

vin's paradox—that is, they concerned the "connection between ether and matter."

By early April Larmor had developed his second reply to the Kelvin paradox

—

the one based on the argument that the paradox holds only for fixed-core vortices, or

at least is only proved for them. FitzGerald had quite strongly emphasized the diffi-

culty of just this problem, as well as the questionable virtue of making the Faraday

integral law a "statistical" by-product of microscopic discharges. The weight of

these criticisms was beginning to tell on Larmor, who wrote back on 2 April that:

My interest in the whole thing is not so keen as it was: but I still claim

that as a dynamical analogue of aether-action it is far wider than any other

I ever heard of, and that it has really taught me to have views about things

I could not before catch hold on at all. Further what I am even more

pleased with is that it has set a fellow like A. E. H. Love, who is a

tremendous analyst, but who could make nothing of the literature of elec-

trodynamics before, to start working out problems on that subject as ex-

amples of the theory of elasticity. (Larmor Letters [R.S.] RR 2128)

By the end of April Larmor had fully replaced ether rupture with the convection

of charge monads and had also developed his "statistical" explanation of induction

by motion in the field of a permanent magnet (he had previously developed it for

circuit theory on the basis of the ether rupture account) and the attendant explanation

of Kelvin's paradox. However, in the same 30 April letter to Lodge in which he

mentioned his replacement of ether rupture by monad convection (see sec. 16.4

above), he wrote a rather plaintive confession of the inadequacy of his theory.

Larmor continued to resist the import of FitzGerald' s comments until well into

June. Until then Larmor continued to add detail and to provide vague "statistical"

explanations of primary difficulties which FitzGerald regarded as deeply serious

problems. Nevertheless, FitzGerald 's letters returned constantly to what he saw as

the key to all of these problems. Larmor's theory of the electron, which at once

resolved these difficulties, almost certainly reflects his capitulation to FitzGerald. The

electron was not so much a new theoretical discovery for Larmor as it was his adop-

tion of ideas PiTzGerald had frequently suggested during their correspondence be-

tween February and May.

FitzGerald first commented on Kelvin's paradox on 1 March, shortly after Larmor

had mentioned it to him. FitzGerald had immediately fastened on the central prob-

lem, namely, that the Amperean currents had somehow to be "opened" to make

them subject to induction; yet they had also to be permanent. Initially Larmor ignored

this point and advanced the peculiar claim that circulation through the core could

overcome the problem by somehow establishing a link with circulation through the
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aperture (magnetic intensity). FitzGerald rejected this idea as mechanically ridiculous

and suggested in a different context that the charges on Larmor's vortex atoms pro-

vide an essential link between the vortex core and the ether:

Is it not possible that these ionic charges are a mere representation of the

connection of the vortex core with the surrounding medium? (Larmor Let-

ters [R.S.] RR 447)

Larmor at this time, and until well into June, saw no connection between the core

and the charge of the vortex atom because he thought of the charge as a phenomenon

of the inelastic core's surface, where twist terminated. Indeed, we have seen that it

was precisely this connection, which comes into play when the atoms of permanent

magnets rotate thermally, that he used to overcome Kelvin's paradox. The function

of the charge was to enforce hydrodynamic stability, and this associated the charge

with the surface, not the inner structure, of the core.

On 30 March FitzGerald amplified his remarks on this point in what I believe to

be the primary source of Larmor's electron:

My dear Larmor,

I feel as if you were not making near enough of the difference between a

M'Cullagh medium and a perfect fluid. In a perfect fluid a vortex ring can't

stand still so that ordinary electric currents are essentially different,

whether because they are unclosed or because the medium can have rota-

tional elasticity or for some other reason. You hold it is because they are

unclosed, I would suggest looking for a reason founded on the rotational

elasticity. Why cannot a vortex ring stand still? Simply because you cannot

distribute irrotational velocity round a core so as to vanish at infinity with

the core standing still, unless you can set lines of ["irrotational" crossed

out] flow to pass into the core and out again in the way that lines of

magnetic force near an electric current go into it and out again, thus [see

fig. 18]:

CORE

Now with matter in the core to change the irrotl motion outside into rota-

tional motion inside the core and back again as the medium goes out on

the other side there is no reason why a flow of this kind should be impos-
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sible in a current, in fact, it is postulated by your theory. Nov/ when a

thing like this moves there is no reason at all why it should behave like a

vortex ring and not tend to excite rotational strains in the surrounding me-

dium. You are not dealing with a perfect liquid at all nor with a case of

forces having a potential because by hypothesis inside the current the flow

is changed from being irrotnl. to be rotational and this is what really con-

strains the system and where you should look for the source of the electric

force of induction and all the reasons why these currents don't behave like

Ld. K's rigid cores with flow through them. (Larmor Letters [R.S.] RR
448)

(Larmor' s reply to FitzGerald, three days later, was his second theory for Kelvin's

paradox—that the agument applies only to "fixed ring cores, not to free vortex at-

oms.")

To grasp FitzGerald's remarks, begin by recalling that two problems are posed for

Larmor' s theory in comparing closed currents to fixed cores with circulation. These

problems are mutually related. First, the vortex maintains constant circulation solely

through hydrodynamical constraints, whence no alteration in circulation can occur.

Currents are altered by induction. Second, the forces between fixed cores are equal

and opposite to those between their current analogs. For macroscopic currents Lar-

mor resolved both problems through the same mechanism: he required the currents

to be open so that the ethereal elasticity could act in the breach. This provides a

mechanical analog of induced electromotive force (or electromotive force in a voltaic

circuit if breaches are located in the battery also), and hence permits alteration of

circulation about the core. At the same time, allowing elasticity to act in the breach

provides a means whereby circulation can be maintained against induction. It is pre-

cisely the latter effect for currents that yields the reversed sign of Kelvin's paradox.

FitzGerald's comment addresses both problems at once by noting that unclosedness

is not the only possible resolution, at least not Larmor's use of it. Instead, he argues,

go back to the problem's source, which is simply that in the case of the vortices fluid

cannot penetrate the core.

Now, FitzGerald continued, in the case of a current-bearing conductor, magnetic

lines of force do infact penetrate the region i n which the current exists, as figure 18

illustrates, and this is the key to "the difference between currents and vortices. Why?
Because FitzGerald implicitly adopted here the view (which he had previously up-

held) that currents are maintained by radial flow into the circuit of energy from

without, the energy flowing in at right angles to the applied electromotive force and

to the magnetic field. (This is, no doubt, why FitzGerald continued in this letter with

the remark: "I think [your theory] will practically come to the same thing as J. J.

Thomson's theory of motion of lines of electric force: in fact I can't see how the two

theories can be sensibly different." This was not a comment likely to endear Fitz-

Gerald's criticisms to Larmor.) Clearly this view requires the penetration of magnetic

lines into the "core" throughout. FitzGerald continued, in a crucial remark, that if

matter existed in the core with the property of having V X u associated with it, then

if it circulated through the core one would have magnetic circulation [(d/dt)fu • dl]

about the moving matter and therefore penetration of circulation (irrotational flow)

into the core with rotational motion (d/dtJV x u • dS) through every cross section
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of the core. With this understanding we can now grasp the final part of FitzGerald's

letter:

I don't see where you require a discrete structure [e.g., in the breaching

of conductors] except that you say that it is required in order to make the

electric currents unclosed, yet I think that electrolytic and other phenomena
prove that there is this discrete structure and you do see it, where you don't

call attention to it, namely where you speak of a rotational strain near an

atom. You say that electric currents are unclosed vortices but I can't see

that this necessitates a molecular structure [breaches in the conductor] be-

cause in the matter the unclosedness might be a continuous peculiarity as

far as I can see. That it is molecular is due to the molecular constitution

of matter and not to any necessity of your theory of the ether. (Larmor

Letters [R.S.] RR 448)

FitzGerald's point was simply this: whereas Larmor had assumed breaches in con-

ductors to overcome Kelvin's paradox and to explain induction by motion, thereby

necessitating a de facto unclosedness, FitzGerald pointed out that this might just as

well involve a continuous property of the conductor as a discrete one—all that is

necessary is openness in the sense of presence of both capacity and "conductivity;"

if it is discrete it is so for other reasons. He was suggesting that the molecular

constitution of matter itself, when combined with a molecular property of associating

V X u with matter, would naturally solve the whole problem by intrinsically asso-

ciating rate of displacement change in the conductor with magnetic circulation about

and through it. That suggestion, in effect, makes conduction a phenomenon of charge

convection in some way associated with moving matter, whether intrinsically or oth-

erwise. (As FitzGerald remarked, "How this transformation of flow is performed is

another question.")

Larmor did not at first adopt FitzGerald's suggestion. Though he did adapt part of

it when during April he elaborated the mechanism of convection, which he associated

with charge "monads." What he had not done was abandon his dearly held convic-

tion that atoms are vortices with inelastic cores. As long as he maintained that hy-

pothesis, Larmor was also forced to maintain that macroscopic conduction involves

charge convection between atoms only as a way to affect circulation about a region

studded with many inelastic, toroidal discontinuities. This makes convection only one

possible mechanism out of many conceivable ones. That is, the sole function of

convection at this stage was to replace the absurdity of ether rupture, and Larmor

was careful to remark that it is only a solution to the problem. (Thus: ".
. .the

phenomenon of electric flow need involve only convection of the atomic charges"

[Larmor 1894b, sec. 70]. It is not required, but it is all that is needed.) Moreover,

Larmor' s vortex atoms absolutely forbid convection from playing any role in the

Amperean currents, where he used the atomic charge only to overcome Kelvin's

paradox.

Nevertheless, Larmor was hardly satisfied with his scheme, and during late May
and early June he continued to worry over its complexity. Most important, he contin-

ued to worry about Kelvin's paradox. That paradox uniquely joined together the

various mechanisms of the theory and focused the question squarely on the nature of

the Amperean atom—an aspect of his scheme he had held close since the beginning

as a "precise basis of connection" between ether and matter, however incomplete it
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might be. But FitzGerald refused to accept Larmor's various "statistical" theories.

By 14 June Larmor had abandoned the Amperean vortex atom—the source of all

his problems—and had adopted FitzGerald's implication of 30 March that charge

convection is of the essence in all current phenomena. At the same time he identified

his charge "monads" as the only sources of charge, their motion as the only source

of magnetic effect, and they themselves as the only entities, excepting ether, in the

universe. The irony is that on that very day his baroque solutions based on "statis-

tics" were received by the Royal Society.

June 14, 1894

Dear FitzGerald

I have been trying again to see into the difficulty about free magnetism.

There seems to be no way out of it that making magnets consist of cyclic

motions, of whatever kind, as has been done by almost everybody who has

treated them, will not work: if they do not contradict the law of attraction,

they give like my one no answer at all.

I would like now to make electric nuclei, i.e. centres of radial rotational

strain in the aether, to be the sole ultimate things or monads. I have got

through the dynamics of their mutual actions, or rather have adapted for-

mulae given by Lamb and Heaviside. I find that they can get up tremen-

dous speed, comparable to the velocity of radiation. A positive and a neg-

ative nucleus whirling round each other at this pace set up a slow

circulating fluid motion [viz., the V x du/dt involved entails Jdu/dt • al

about the motion] which is practically perfect [because of the high speed

of rotation] and is in fact the magnetic vortex [since H is du/dt].

This gives the elasticity of the aether a grip on the vortex motion, and so

evades the trouble, as the flow is no longer purely cyclic [the nuclei con-

stituting sources of V X u\.

I can't see anything incongruous in this. What strikes me also is the fact

that free electric charges of ionic or some such character can flash about

space with velocity comparable with radiation, provided they are not both-

ered by any inertia other than that of the medium around them: cf. dis-

charge in vacuum tubes.

I have sent my MS. to the press. I would like to be fortified by an opinion

as to whether the above is nonsense, so I make free to send you the full

account of it herewith. If it meets your even modified approval I will in-

corporate it. (Larmor Letters [R.S.] RR 2130)

Fig. 19
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Abandoning Maxwellian Theory

Larmor did not at first perceive his nuclei, which, following G.J. Stoney, he at once

termed electrons (both positive and negative), as incompatible with the structure of

Maxwellian theory. In fact, for many months he regarded the electron as an adjunct

which had to be added to the already existing and correct body of field theory. Thus,

whereas in the last two parts of his "Dynamical Theory" (1895a, 1897) Larmor

applied concepts of electric polarization to distinguish D from E, as one would do

today, he did not do so in the first part (1894/?). The reason he did not do so is that

the primary functions of the electron were to solve the problems posed by conduction

in a clear, consistent manner and also to solve the related Kelvin's paradox. He did

not therefore think that the distinctions which the MacCullagh medium theory made

to yield inductive capacity and magnetic permeability needed supplementing in de-

tail. For example, inductive capacity—the cause of refraction—was still to be under-

stood mechanically as a decrease in "effective" ethereal elasticity due now to elec-

tron mobility rather than the inelastic vortex cores of Amperean atoms. No further

analysis in terms of molecular polarization was provided.

In August 1894 Larmor attached an appendix to his article entitled "Introduction

of Free Electrons" (Larmor 18946, sees. 114-25). The main subject of the appendix

was, of course, the interelectron force law. To deduce it Larmor followed the well-

trod Lagrangian path, using at once Heaviside's formula

—

^fH
2
d
3
x—to determine

the electrons' interaction energy. He began, however, with what looks like J. J.

Thomson's route (see appendix 1).

An electron of charge e produces a displacement D at a distance r:

(1) D = er/r
3 = -eV(\/r)

If the electron has a velocity v, then equation ( 1 ) implies a current of displacement:

(2) dbldt = e(v • V)V(l/r)

Thus far Larmor followed Thomson, but the parallel stops here, because in Larmor'

s

medium the kinetic energy, (\/2)pf\du/dt\
2d3

x, at once gives magnetic energy in

Heaviside's form since pdu/dt is \xH. The sole question was the form of H. To find

it Larmor sought an H whose curl is equation (2). One such is:

(3) H = -ev X 7/r
3

That is, the displacement current (2) is compatible with precisely the same magnetic

field one obtains by ignoring the displacement current and considering ev to be an

element of current. Thus Larmor at once obtained Heaviside's value for the electron's

self-energy. This mixture of elements from Thomson's and Heaviside's calculations

suggests that Larmor was not as yet thinking of the electron as a fundamentally novel

entity: he still tended to think of moving charge in terms of the displacement currents

involved.
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For the interaction energy, He
• Hc >, of two electrons e, e' with respective veloc-

ities v, v' (see fig. 20), Larmor obtained from equation (3):

(4) Tet = ee'vv'M

Larmor gave two expressions for M, one, Mc, in terms of circuit elements, the other,

Mp , in terms of electron distances and velocities:

Mc
= {\lr)dl dV - (\/2)(dl • V)(dT V)r

Mp
= (l/r)v • v'/vv'

Mc is obtained from circuit element interactions using the energy density (1/2)7 • A.

The second term in Mc integrates to zero if either circuit is closed. From equation

(4) and Mp we have:

(5) T«. = {\l2){ee'lr)v -v'

In Larmor' s opinion, equation (5) was a possible, but not at all the only possible,

expression for Tee >, since the basic expression is Mc not Mp . At this stage Larmor'

s

view was, evidently, that the correct expression for Mp would be precisely that one

which ensures full consistency with traditional Maxwellian theory. He wrote:

In the general theory of electric phenomena it has not yet been necessary

to pay prominent attention to the molecular actions which occur in the

interiors of conductors carrying currents: it suffices to trace the energy in

the surrounding medium, and deduce the force acting on the conductors,

considered as continuous bodies, from the manner in which this energy is

transformed. The calculations just given [ of Tee ] suggest a more complete

view, and ought to be consistent with it. (Larmor 1894/?, sec. 1 19; empha-

sis added)

The problem is that modern electron theory and Maxwellian theory are not every-

where compatible, even where basic phenomena are concerned.

If we insist that Maxwellian theory must remain primary, then we must adjust

electron interactions to be consistent with Maxwellian implications. This implies that

we must continue to look upon circuit elements dl, dl' as controlling fixed portions

of field energy, just as Maxwell did. That is, we must adjust the electron interaction

energy, and our hypothesis concerning the nature of the conduction current, to pro-

duce the same results implied by the interaction energy of circuit elements supposed

to be controlled by them. But if we do so, then it necessarily follows that the non-

Amperean circuit tension (discussed in chap. 4 above) must exist, and this force must

somehow be incorporated in electron interactions when they form currents in material

circuits. If, on the other hand, one begins, as Larmor did not, with an appropriate

interelectron potential which does not imply the non-Amperean tension, but which

Fig. 20
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does imply Ampere's circuital force law, then it necessarily follows that circuit ele-

ments are not legitimate physical concepts, for they cannot be thought of as control-

ling, as individuals, specific amounts of field energy.

Larmor in fact hoped to find the non-Amperean tension empirically. To Larmor

the existence of this tension was intimately bound up with his basic belief in energy

localization, a belief on which his initial attraction to MacCullagh's medium had

been based. For if it is legitimate to localize energy by splitting a volume energy

integral into its elements, then it seemed necessary as well to be able to split a circuit

energy integral into its elements.

In 1895 Larmor pressed both FitzGerald and Lodge to look for the tension. It

would, of course, be impossible to observe in rigid conductors since their rigidity

would merely compensate the extra stress. Liquid conductors, however, could reveal

the effect, as FitzGerald mentioned to Larmor on 18 January (Larmor Letters [R.S.]

RR 465). In particular, according to Larmor' s deduction, a current which links a

closed electromagnetic circuit (produced, e.g., by a toroidal solenoid) should expe-

rience an impulsive tension, which would thereafter persist, along its length which is

created when the electromagnet is turned on or off. According to the Amperean

circuital law, however, since there is no magnetic field in the space outside the closed

solenoid, there should be no effect on a conductor linking it (see fig. 21).

If the linked conductor contains a mercury thread in its circuit, then the impulsive

tension should reveal itself as a lengthening of the thread coupled with a decrease in

its cross section (due to continuity). FitzGerald, who suggested the test, regarded it

as certain that it would fail because he felt that "any system which brings out that a

constant current is in any way affected by a constant current in a closed solenoid in

its neighbourhood is almost certainly wrong" (Larmor Letters [R.S.] RR 465).

FitzGerald reasoned, the circuit element used by Maxwell and Larmor should not be

admitted. Again FitzGerald was leading Larmor.

On 9 March Larmor reiterated to FitzGerald his conviction that the extra tension

must exist, and he explicitly saw the experiment as a way to determine whether

elements of circuits are legitimate entities, as Maxwell assumed, or not: "You say

that an element ids is inadmissible. Now I take it that this is just what the experi-

ments would test" (Larmor Letters [R.S.] RR 2131). It is important to understand

that, at this time, Larmor felt that only if ids is a legitimate physical entity would

circuit

solenoid

mercury

Fig. 21 Testing for the non-Amperean tension
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his electron theory be tenable: "On my scheme (? on any scheme) ids is the same as

Zev which is a physical reality" (Larmor letters [R.S.] RR 2131). His reason, of

course, was his conviction that the electron theory must be tested for consistency

with Maxwellian theory, and this consistency requires interpretation of ids in physical

terms as Xev, implying that the latter—an inherently "physical" term—must yield

all of the effects which, on Maxwellian principles, are implied by ids. That Larmor

was thinking in this way is clear from FitzGerald's remarks at several points in the

correspondence to the effect that Larmor need not assume that Xev stands or falls

with the legitimacy of ids.

By the end of April both FitzGerald and Lodge had unequivocally demonstrated

that the non-Amperean tension does not exist. Moreover, by 18 April Larmor had

abandoned the circuit element as a physical entity, which carried with it the impli-

cation that electron interactions had to be constructed ab initio to yield the correct

macroscopic laws. That is, instead of deducing, as Larmor had been doing, electron

interactions from field theory by identifying them in flowing groups as circuit ele-

ments, one now had to establish the interactions from the beginning by using mag-

netic energy density, (1/2) \lH
2

, instead of from the circuit element interactions

which yield the Mc discussed above:

I am fairly certain now that the electrodynamic forcive must be Ampere's

pure and simple. But that carries with it the conviction that an element of

current ihs is dynamically an illegitimate conception, and must be replaced

by moving single electrons. To fortify this conclusion I should like to hear

more of your [Lodge's] experiment with the filament of mercury and inter-

ference fringes, which strikes me as elegant and to the point. (UCL MS.

ADD. 89)

One sees from this letter that Larmor had evidently abandoned circuit elements

even before he was quite certain of the results of experiment. The reason was almost

certainly that he had in the interim seen Lorentz's Versuch (1895), which, of course,

was based on electron interactions that yield the Ampere circuital force alone. (In

the same letter to Lodge written on 18 April, Larmor said: "Have you seen Lorentz's

'Versuch . .
.' 1895. He is very good.") Larmor had finally abandoned Maxwellian

theory.

Once Larmor had taken the final step of abandoning the circuit element for the

electron, Maxwellian theory as traditionally pursued was finished. Nevertheless cer-

tain aspects of the old way persisted in the new, and they are strikingly apparent in

Larmor' s reconstruction of electrodynamics on the basis of the electron. Larmor'

s

theory continued to rely directly on Hamilton's principle, though it no longer per-

mitted the partial integration which had, in Maxwellian theory, localized energy.

Variation with respect to electric coordinates (D) yielded field equations, while varia-

tion with respect to the electron's coordinates yielded equations of motion: this was

effected by including the conduction current, 2ev, explicitly in the kinetic energy

along with the displacement current and by imposing the condition of constraint,

V • D = %e, in vacuo.

Equations of this kind were loosely obtained by Larmor (1895a), but were first

carefully derived in Larmor (1900a), which included detailed theories of the Faraday

and Zeeman effects. Polarization theory was also added in Larmor (1895a), and the
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third installment (Larmor 1897) developed an elaborate theory of mechanical trac-

tions at dielectric interfaces and at interfaces between media of different permeabili-

ties. (Optical dispersion was discussed along the by-then common lines of proper

vibrations for electrons bound to stationary particles.) In essence, Larmor (1897)

provided a detailed theory of macroscopic electromagnetic phenomena based on mo-

lecular polarization. With its publication Larmor had effected a revolution in Max-
wellian theory, one in which the "electron" had become the fundamental generator

of fields, but one in which that epitome of field principles—Hamilton's "least ac-

tion"—continued to play a role. It is precisely this theory that was published as

Aether and Matter (Larmor 1900b).

In Britain Larmor' s theory was, insofar as the electron proper was concerned,

quite rapidly adopted. Horace Lamb and Richard Glazebrook both strongly recom-

mended publication of Larmor (1895a), which contains the first detailed working of

electron theory. Lamb called it "a remarkable contribution to electrodynamic specu-

lations" ([R.S.] RR 12.243), while Glazebrook wrote that "it marks a distinct step

in the advancement of Natural Knowledge in that it shews how the equations which

we know to represent the action taking place in the electromagnetic field may be

deduced from a fairly simple and reasonable hypothesis as to the nature and motions

of electrons" ([R.S.] RR 12.244). However, J. J. Thomson, Larmor' s old rival,

found it "exceedingly difficult to arrive at any definite conclusions as to the merit

of" Larmor (1897). He found it "so long, its range so wide, & the method of

reasoning employed so very general, that I have found in many places a great diffi-

culty in grasping the author's meaning" ([R.S.] RR 13.207).

It is difficult to judge the extent to which Larmor' s theory was directly influential

in subsequent British work, especially in view of Lorentz's (1895) superficially sim-

ilar work and in view of the dramatic discoveries of X-rays and radioactivity, which

rapidly ushered in an era in which it was taken for granted that microscopic theories

were both desirable and essential while continuum theories were less than fundamen-

tal. The published response to Larmor' s theory was not extensive. However, private

letters to Larmor do show a general British appreciation, as illustrated by the referee

reports just quoted, as well as an occasional favorable Continental reaction. Zeeman

congratulated Larmor in 1898 "on the beautiful electrodynamic theory you have

made" (Larmor Letters [R.S.] RR 2111), while J. T. Merz, just then beginning his

great History of European Thought in the Nineteenth Century, found the going diffi-

cult but thought the work a "great paper on the Ether" (which Merz took care to

spell in the English manner without an "a," having scolded Larmor for not doing so

himself [Larmor Letters (R.S.) RR 1415]). Heaviside felt that Larmor' s idea of the

electron as a nucleus of intrinsic twist was not sufficiently fundamental, and Fitz-

Gerald agreed but remarked in a letter to Heaviside that he was "afraid people would

not work up their ideas at all if their friends jumped on them" (UCL MS. ADD.
35). Some difficulties of this latter kind were, evidently, not uncommon, as one sees

from William McFadden Orr's (1900) short critique of the theory.

The major impact of Larmor' s theory was the destruction of the idea that contin-

uum theory can serve as a sufficient basis for electromagnetism. Very few British

papers after about 1 898—the year Larmor was awarded the Adams Prize—attempted

to do without microscopic considerations. That Larmor' s name infrequently appears
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in them attests primarily to the rapidity of the change in Britain, propelled by new
discoveries, including J. J. Thomson's measurement of elm in 1897, which Larmor

had begun. Maxwellian theory, with its fundamental assumption that the electromag-

netic field can be subjected to precisely the same type of analysis as the material

continuum, was an artifact after 1898.
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Helmholtz's Polarization Theory of Ether and

Matter

By 1890 most physicists on the Continent were well aware that something called

"Maxwell's theory of electromagnetism" existed and that it had apparently received

striking confirmation in 1888 with Heinrich Hertz's experiments on electric waves.

Hertz's experiments precipitated a deep and widespread interest in Maxwell's theory,

and by c. 1890 one finds, particularly in Germany, increasing numbers of articles in

major journals which employ field equations of some kind. Some very few of these

articles (e.g., those written by Hertz himself) approach the spirit of aspects of Max-

wellian theory. However, by far the majority fundamentally mistook the core of

British field physics while nevertheless appropriating from it those elements which

could be assimilated to the prevailing Continental view (which had not changed in

essence since the 1840s) that "electricity" is not an epiphenomenon but an entity in

its own right. Indeed, to my knowledge there were almost no physicists in the 1890s

who had not learned electromagnetic theory from Maxwell's Treatise and yet who

had grasped the structure of Maxwellian theory (the sole exception, which fact I owe

to Ole Knudsen, is Willard Gibbs). On the other hand, many Continental physicists

of the period were intimately familiar with field equations.

The primary sources of Continental knowledge of field equations were almost

certainly Poincare's (1890) and Boltzmann's (1891) texts on the Maxwell theory,

Foppl's (1894) account of Maxwell's theory, Helmholtz's (1897) lectures on the elec-

tromagnetic theory of light, Drude's (1894b) account of ether physics, and Volk-

mann's (1891) comprehensive optics text.
1 Some of these texts deal with electrostat-

ics and electrodynamics as well as optics, while all discuss in detail the

electromagnetic theory of light, which they refer to Maxwell. Indeed, both Poincare

and Boltzmann claim to explicate the structure of Maxwell's own work.

Yet one overriding attribute characterizes all but Foppl's text: each of them at-

tempts to obtain the "Maxwell" field equations as a limiting case of Helmholtz's

(1870; entirely non-Maxwellian) "polarization" theory of ether and matter. This the-

ory (well known on the Continent by 1890 and also known in Britain) substantially

determined the way in which Continental physicists understood Maxwell's theory.

Even those few who no longer reached the Maxwell equations via Helmholtz's (like

H. A. Lorentz after 1892 or Hertz after 1890) continued to bear unmistakeable marks

of the Helmholtz polarization theory. Therefore, to understand the Continental recep-

tion of Maxwell's theory, we must begin with Helmholtz's (1870) equations.

1. Foppl's work (which was recommended to all by Heaviside [1897] in his review condemning

Boltzmann [1891] as non-Maxwellian) is the only one of these six texts which does not rely on Helm-

holtzian theory but concentrates instead on fluxes and intensities. Nevertheless, it continues to regard

electricity as substantial, in that "charge" is not referred directly to discontinuities in displacement. Of
all the texts, though, Foppl's comes closest to proper Maxwillian concepts. This was one of the texts from

which Einstein learned electromagnetism.
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Helmholtz's theory has been discussed several times in recent years, and little to

be said here differs substantially from those accounts insofar as the equations proper

are concerned.
2
However, precisely because these equations have certain striking

similarities to the Maxwell equations, modern accounts have followed the Continen-

tal argument that Maxwell's theory can be thought of as a limiting case of Helm-

holtz's, at least formally. This assertion is fundamentally mistaken, for there is an

unbridgeable gulf between the two theories, a gulf which separates those who viewed

electricity as a by-product of field processes from those who did not.

Helmholtz's theory consists of three interlocking components: first, expressions

for electromagnetic potentials and the forces derived from them; second, a continuity

equation linking electric "charge" and "current"; finally, a model for an electrically

and magnetically polarizable medium.
3 We begin with Helmholtz's potentials.

There are two potential functions: one, a vector U, depends solely on the current,

J, and distance; the other, a scalar, (\>f, depends on a net or (to use Helmholtz's

word); "free" charge density p^. To accommodate various possible forms for the

potential U (all of which agree in yielding the correct force for closed conducting

circuits), Helmholtz incorporated a constant k in U whose value must be fixed by

experiments with open circuits:

U(x) = ![J(x')/\x - x'\]d
3
x

f

(1) + (1/2)(1 - k)V[JJ(x') • Vx.\x - x'\d
3
x']

Helmholtz separately denoted the function whose gradient multiplies (1/2) (1 - k)

as i|/:

(2) »K*) = PCx') ' VV \x - x'\d
3
x'

For <\>f Helmholtz wrote:

(3) V2^ = -4ttP/ . . . 4v(3c) = -(\/4TT)fpf(x')/\x
- x'\d

3
x'

Next Helmholtz presumed a continuity equation according to which all accumulations

of "free" charge p^are due to inhomogeneities in the current density J:

(4) dpf/dt = - V • J

Equations (3) and (4) establish a very important link between ty and J:

(5) d/dtV
2

$f = 4-rrV • J

By virtue of equation (5) it is possible to express the function i|/ of equation (2)

—

a function whose gradient appears in U, the electrodynamic potential—directly in

terms of dty/dt by partial integration of equation (2) under the assumptions that J and

dtyldt both vanish at infinity (see appendix 10 for derivation of equations [6]-[8]):

(6) i|/© = {\l^)S[dldt^f(x')W
2

x\x - x'\d
3
x'

2. See, e.g., Woodruff (1968), Hirosige (1969), and Rosenfeld (1956). I am indebted to Ole Knudsen

for extensive discussions of Helmholtz's theory which we had in the fall of 1979. We employed an

unpublished dissertation (Nielsen 1974) which succinctly covers important elements of the theory and

which much aided our discussion.

3. Where the particular equations occur in what follows, I shall, for the most part, omit specific

references to the loci in Helmholtz (1870) because they are readily identifiable.
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In this way one can express V2U and V • U as follows by virtue of the continuity

equation (5) and the partial integration in the expression for V • U:

(7) V2U = (1 - k)Vd$fldt - 4tl7

(8) V • = -kdfyldt

Equations (1) through (8) are the foundations of Helmholtz's electrodynamics.

Their most significant property for our purposes is the appearance of terms containing

not only the current J but also the quantity d<\>f/dt in the vector potential U and its

derivatives. The time rate of change of ty affects U, however, solely because of the

continuity equation (5) which links <|>y with J. That is, dfyidt always derives from

changing free charge densities (dp/df) which, in turn, are always associated with

inhomogeneous currents J. This is a critical point, because the reason Helmholtz's

theory cannot be reduced to Maxwell's is primarily due to the function d<\>f/dt. In

other words, the conflict between Helmholtz's and Maxwell's theories occurs where

one would expect to find it—in the continuity equation.

We come now to Helmholtz's model for an electrically and magnetically polariz-

able medium. In essence, he assumed that inhomogeneities in the total electromotive

force ET in the medium determine a polarization charge density pp and associated

potential <\>p such that (with P the electric moment density):

(9) Pp = - V • P = - V •
(XET) = (- 1/4tt)V

z
<j>

Helmholtz distinguished in ET the force EE which engenders the polarization from

the force EP , which arises as a result of the "distributed electricity"—the polariza-

tion charge pp—produced by the action of EE . Introducing the potential <\>P of EP , he

had:

(10) P = X(EE - v<M = XEt

(Unfortunately, Helmholtz did not use different symbols to distinguish the $p of

equation [10] from the c|yof equation [3]. This leads to an apparent error in his final

equation for the curl of the magnetic force, but this error was corrected without

comment in Lorentz [1875], which was based on the Helmholtz theory.)

We have almost reached the final elements in Helmholtz's theory, but first we
must introduce the magnetic force and polarization. Helmholtz assumed that induced

electromotive forces may be produced by time changes in either the vector potential

U due to currents or the potential UM due to changing magnetization. The magne-

tization, M, of the medium is taken as proportional to the total magnetic force HT :

(11) Emd = -A 2
dU/dt - A 2dUM/dt

(12) M = QHT

The potential DM is further defined as proportional to the curl of a vector L which is

the potential of M:

(13) AUvix) = V x f[M(x')/\x - *'|]</Y = V x I

(The distinction between U and UM permits one to treat magnetization without re-

course to a model linking it to current.)

The magnetization implicates a potential function eoM , such that V • M may be
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represented by (1/4tt)V^o)m . The corresponding force is - Va)M , and thejotal force,

HT , is then the sum of VwM and the force BE due to currents, namely, AV X U:

(14) M = Q(BE - Va>„) = mT

(15) ££ = AV x u

We may now write the total electric force ET by summing the various contribu-

tions and including a term Ectm which represents the possible action of chemical,

thermal, and other purely material processes. In doing so we shall not distinguish the

fields attributed to polarization and true charges, as Helmholtz also did not, by rep-

resenting both effects as the net potential <\>f due to Helmholtz's "free" charge; in-

deed, this free charge is just the sum of the modern conduction (pc) and polarization

charges. In modern terms:

P/
= -{\I4t:)V% = (l/4ir)V • t = pc + pp = -(1/4tt)V

2
(4)c

-

=̂ (l/4ir)V D - V P

Whence, in terms of specific inductive capacity, we have:

E = D - 4ttP = eE - 4ttxE . . . e = 1 + 4tt\

So in Helmholtz's theory:

(16) Pl\ = ET = -V^ - A 2
dU/dt - Ad/dtV x L + E

{ctm

To transform equation (16) into something like the Maxwellian form of the Fara-

day law, we must take its curl and express the second and third terms as functions

of the magnetization M. This is done simply with the help of equations (1), (14),

and (15):

V • L = -coM

V2L = -4ttM

AV x dU/dt = d/dt(M/Q + V<oM)

Consequently, equation (16) yields the Helmholtzian version of the Faraday law as:

(17) V X ET = V X PIX = -Ad/dt(\ + 4ttQ)Ht + V X £ctm

Evidently we may write:

HT = B - 4ttM = A//0 . . . [L = 1 + 4tt0

We turn next to the Ampere law, that is, the expression for V x HT . Here we

use equations (7), (8), (14), and (15):

V x M/6 = V x BE = AV x (V x U) = AV(V • U) - AV2&

Whence the Helmholtzian Ampere law reads:

(18) V x HT = V x M/0 = -AdldNfy + 4ttA7

Note that BVty/dt appears in the Ampere law. Its presence derives not from V\\t in

the expression for U (since the curl of this vanishes) but from partial integration of

the term in J through use of the continuity equation (5). (Helmholtz neglected here

to distinguish between <$>f and <|>p , as mentioned above, though his "error" was, I

believe, limited to equation [10], where Helmholtz used the same symbol for what

is clearly <\>p that he had previously used for ty,
namely (|>. The corresponding equa-
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tions [17] and [18] also use <|), and here <j) must clearly denote <\>f since Helmholtz

was considering an infinite conducting medium which can contain accumulations of

conduction charge as well as polarization charge. In an infinite nonconducting me-

dium it is possible to replace (Jy with (J)p).

Having established the Ampere and Faraday laws, we must now introduce an

expression for the current J and an equation linking J with ET . For the conduction

current part, C, of J, Helmholtz employed Ohm's law:

(19) kC = ET = P/\

Helmholtz next argued that the current consists of, in addition to C, a polarization

current dP/dt which does not obey Ohm's law—it is an unresisted electric motion:

(20) J = C + dP/dt

The continuity equation (5) holds for the total current J because accumulations of

both, or either, conduction and polarization charge are possible. Combining equa-

tions (18), (19), and (20) we finally have:

(21) V X HT = V X M/6 = -ABIdtVty + (4ttA/k)£t- + {At:A\)dE^dt

This, in essence, is the Helmholtz theory. If one uses ET , HT instead of P, M, as

in equations (17) and (21), one can compare Helmholtz's equations with Maxwell's

equations. We see at once that the two theories agree formally in the Faraday law

but there is a glaring inconsistency in the Ampere law: instead of the term (1 +
4iTx)dET/dt, as in the Maxwell theory, Helmholtz has 4irxdET/dt. It is precisely here

that the elementary difference between the two theories appears, for this incompati-

bility reflects the fact that Helmholtz's theory does not, indeed cannot, incorporate

even a formal equivalent of the Maxwellian displacement current. The ultimate rea-

son for this is that in Helmholtz's theory all fields involve interactions between

charge densities, and these interactions are not in fact propagated. Only the polari-

zations propagate; charge interactions are always instantaneous. We shall return to

this point below. First, the formal incompatibility between the Maxwell and Helm-

holtz equations will be discussed in more detail.

Further examination of Helmholtz's Ampere law, equation (21), pinpoints its dif-

ference from the Maxwell Ampere law. Suppose we rewrite equation (21) as follows:

(21') V x H = C + dldt{-V<\>
f + 4-nxEr)

Clearly if ET were equal to - Vty we would have the Maxwell law since € is just 1

+ 4tt\. But ET contains electrodynamic (£ind ) as well as electrostatic forces, so that

— V<|>y + 4ttxEt is actually equal to the difference tET - Emd . In other words,

Helmholtz's law differs formally from Maxwell's by requiring the nonconducting

part of the current to consist of the difference between the rate of change of displace-

ment and £ind .

In Maxwellian terms this makes no sense at all, since it introduces an artificial

distinction between conduction and displacement currents. But it does make sense in

the Helmholtz theory because there one has no physical reason to choose dD/dt rather

than d(D - Ewd )/dt. Indeed, if equation (1) is chosen for U, and equation (4) is the

continuity equation, we necessarily obtain Helmholtz's expression. Most Continental

physicists until c. 1900 understood Maxwell's theory in Helmholtzian terms, and

they therefore sought formal conditions to transform the latter into the former. These
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are, superficially, readily found. What they amount to in the end is a conflation of

displacement with polarization.

To find the conditions, we first obtain the wave equations for P by using equations

(9), (16), (17), and (18), and by limiting ourselves to a nonconducting medium,
wherein we may now legitimately replace <\>f with <&p :

(22) V " ^ = ° • •
^2P = 4irx(l + 47r0M

2
a
2
P/ar

2

(23) V X P = . . . V 2
(V • P) = [4ttxM

2
/(1 + 47TX)]a

2
(V • Pydt2

Equations (22) and (23) respectively determine transverse and longitudinal waves
of electric polarization. In Maxwell's theory longitudinal waves do not arise, so one

condition to reach that theory is that the constant k be zero, which makes the longi-

tudinal speed infinite. (Note that k cannot itself be infinite, though this also destroys

the longitudinal wave, because this would make the vector potential negatively infi-

nite.) However, this is not enough, even for optics, because the transverse wave
speed implied by equation (22) is not the same as the Maxwellian speed.

This can most easily be seen by considering the refraction of a wave at the inter-

face between two media which have constants \ u Q and \2 , 0, respectively. Then
the index of refraction will be:

"1.2 = V[x 2/xil

Now X2, Xi are not m fact directly measurable from electrostatic experiments because

the polarization of the ether superposes on the polarization of the matter. However,

by considering the force between measured charges one can show that the measurable

X is related to the true constant x as follows (xo denotes the polarizability of the

ether):

1 + 4ttx = (1 + 4irx)/(l + 4ttxo)

Whence the index becomes:

(24) »,,2 = J[{\ + 4ttxo)£2 " 1]/[(1 + 47rxo)€, - 1]

In equation (24) then, I|, i2 are the measured capacities. According to Maxwell's

theory, however, n X2 should be just [e2/e,]. The only way to reach this result from

equation (24) is to assume that the polarizability Xo of the ether is effectively infinite,

which means infinite x also if x is to be finite.

In the eyes of those Continental physicists familiar with Helmholtz's work, these

conditions (k zero and Xo infinite) were thought to lead directly to Maxwell's theory.

Helmholtz (1870, 127) called these "Maxwell's limiting conditions," and Lorentz

(1875, 275) actually wrote that Maxwell arrived "in this manner [viz., through these

limiting conditions] at the result that transverse electric vibrations can propagate in

air with speed equal to that of light." Moreover, the texts of the early 1890s men-

tioned above uniformly agree that one can arrive at Maxwell's theory in this way.

But one cannot do so, and the reason is not hard to find. Simply put, taking the limit

does not lead to Maxwell's theory; it only deprives Helmholtz's of physical signifi-

cance.

We need not examine the questions raised by the vanishing of k because, as Poin-

care later noted, the requirement that Xo De infinite alone suffices to grant the longi-

tudinal wave infinite speed (Poincare 1890, 2:1 12; cf. Woodruff 1968, 307). But the
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second condition on \o makes it completely impossible to introduce a distinct dis-

placement current, since the ratio (1 + 4ttx)/(1 + 4ttxo), ec
l
ual t0 tne measured

capacity e, must be a ratio of two quantities in the denominator of which xo must be

so large that it cannot be distinguished from 1 + 4ttxc> for then, since e is measur-

able, x must share precisely the same property, whence e cannot be distinguished

empirically from x, or e from x/Xo- That is, in the "Maxwell" limit of Helmholtz's

theory it is impossible to distinguish between polarization and displacement.

Yet until c. 1891, when Lorentz evidently first fully saw the profundity of this

problem
4

(and long after that date for many Continental physicists), Helmholtz's

theory was seen as the only route to Maxwell's. The reason for this is again not hard

to find: no Continental physicist understood that in Maxwell's theory "charge" is an

epiphenomenon due to discontinuities in induction, whereas everyone could grasp

Helmholtz's theory because it was founded on a continuity equation that embodied

the substantiality—though not the materiality—of charge. The complexity of Helm-

holtz's equations as compared with Maxwell's was more than compensated for by

the familiar concepts they embodied. This essential difference was partly understood

in Britain, where Maxwellian ideas had taken firm root, but it was never quite per-

ceived on the Continent, despite the fact that those who read Maxwell's Treatise—
and there were many after 1888—always experienced insuperable difficulties in

grasping what he meant by the word "charge."

Let us now examine the underlying principles of Helmholtz's theory before we

turn to several revealing Continental attempts in the 1890s to explicate Maxwell's

theory. Begin with the fundamental equations (l)-(8). One can easily grasp the phys-

ical import of these equations by envisioning a current as a flow of charge, literally

imagined. If the flow field is uniform then there will be no charge accumulation, and

the electromagnetic potential will be due simply to solenoidal flow. If the current

field is not solenoidal then charge density accumulates over time, and this changing

density determines an additional current, — (1/4tt)(1 - &)V(d((ydf). There is nothing

the least difficult about this on the model of a current as a substantial flow.

Now equations (l)-(8) by themselves do not imply waves because the charges act

directly at a distance both statically and electrodynamically. However, when a polar-

izable medium is introduced, the state of polarization propagates at a finite rate be-

cause of electromagnetic induction. As polarization increases at one point, an elec-

4. Lorentz (1891). Hirosige (1969, 185) remarks:

In the old [Helmholtzian] theory, too, one can assign to a medium an intervening

role in electromagnetic phenomena, and thus arrive at an explanation of Hertz's

experiment and the electromagnetic theory of light. But for this purpose the ratio

between the quantity of electricity given to the condenser plate and the quantity

transferred to the dielectric should not differ perceptibly from unity. It is difficult to

make this requirement compatible with the one mentioned above that the quantity

transferred to the dielectric should be smaller than the quantity supplied to the plate

to give rise to the electric action of the parallel-plate condenser: [quoting Lorentz]

"It is only through an artificial assumption that one could satisfy both requirements,

and this is the second argument, to which I have already alluded, that seems to

plead in favor of the new mode of conception."

The "artificial assumption" here is that the polarizability of all bodies, including the ether, must be

effectively infinite and yet have finite ratios among one another.
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tromotive force, it is true, acts at once throughout the medium, but it is of decreasing

intensity with distance from the original locus. This temporally growing and spatially

decreasing electromotive force in turn causes polarization buildup throughout the me-
dium, and the electromotive force of each of these increasing polarizations necessar-

ily acts at once upon all the others, including the first. Since these electromotive

forces are decreasing functions of distance from their sources, the result is a pattern

of electrodynamic interactions which, though the actions propagate infinitely rapidly,

nevertheless imply that the polarization propagates as a wave. Nothing in this picture

at all violates traditional concepts, including both substantiality of charge and action

at a distance, anymore than the existence of waves in a point lattice whose elements

interact with instantaneous central forces violates them. Here, however, there need

be no analog of mass because finite transmission rates result directly from electro-

magnetic induction. Indeed, one could understand Helmholtz's theory simply in

terms of a series of interacting circuits. It is hardly surprising that Continental phys-

icists found the theory so convincing.

Moreover, it is also not surprising that they saw Maxwell's theory as a limit of

Helmholtz's because, in their view, to quote Helmholtz:

[Helmholtz's and Maxwell's] theories are opposed to each other in a cer-

tain sense, since according to the theory of magnetic induction originating

with Poisson, which can be carried through in a fully corresponding way
for the theory of dielectric polarisation of insulators, the action at a dis-

tance is diminished by the polarisation, while according to Maxwell's the-

ory on the other hand the action at a distance is exactly replaced by the

polarisation. ... It follows . . . from these investigations that the re-

markable analogy between the motion of electricity in a dielectric and that

of the light ether does not depend on the particular form of Maxwell's

hypotheses, but results also in a basically similar fashion if we maintain

the older viewpoint about electrical actions at a distance. (Woodruff 1968,

307-308)

From this one sees that to Helmholtz—as to his Continental colleagues—the core of

Maxwell's theory was the requirement that ether, indeed all dielectric media, be so

highly polarizable that the immense charges produced at conductor-dielectric inter-

faces by polarization completely overwhelm and in fact cancel the conduction

charges proper. In other words, it is not the case that polarization charge replaces

conduction charge, not at all; for the electromotive force in a charged, isolated ca-

pacitor which engenders the polarization in the sandwiched dielectric is due to the

conduction charge. However, the forces exerted directly at a distance by the conduc-

tion charges are, in the limit of the Helmholtz theory, canceled by the bounding

polarization charges. In Maxwellian theory, by contrast, neither conduction nor po-

larization charge exerts forces because each is an epiphenomenon of, respectively,

induction or intensity discontinuity. What Helmholtz and every other physicist on the

Continent missed was this most elementary aspect of Maxwell's theory: its abolition

of "charge" as a fundamental physical entity.

British Maxwellians seem to have grasped this difference between the two kinds

of theories, though their outlook was sufficiently Maxwellian to preclude a complete

understanding of the Helmholtz theory. Consider, for example, J. J. Thomson's
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(1885a) discussion of the relationships between the theories. Thomson read Helm-

holtz's x as essentially the same in significance as Maxwell's e, which it is not. He

found that for consistency between the theories one must actually set i to x/Xo and

assume both x and Xo to be infinite. Having said this much, Thomson at once turned

to the locus of the basic difference between the theories, namely, the continuity

equation, for here the incommensurability between the Maxwellian and Helmholtzian

concepts of charge is strikingly evident.

Helmholtz, Thomson remarked, defined the total current J as C + dP/dt, and he

wrote the continuity equation as:

(24) V • J = - dp/dt

Here, Thomson remarked, "p is the volume density of the free electricity"—which

latter Thomson thought should be V • D since he assimilated e to x (Thomson 1885a,

134). But, he continued, in Maxwell's theory V • J should be zero. Whence he

concluded:

... on Helmholtz's theory [conduction] currents behave like the flow of

an incompressible fluid, while on Maxwell's theory it is the total current,

which is the sum of the conduction currents and the dielectric currents,

which behaves in this way. (Thomson 1885a, 134)

Thomson's conclusion is correct only if p is V • D, which, in Helmholtz's theory,

it is not—it is V • E. We see that, though Thomson pinpoints at once the fundamental

difference between the two theories—their treatments of charge and current as em-

bodied in the continuity equation—he, as a Maxwellian, insists on treating "charge"

as a discontinuity in displacement, not in the E field, for discontinuities in the latter

(V • E) may occur without discontinuities in D at dielectric interfaces. Here we have

a compelling instance of the unbridgeable gulf between the Maxwellian and Conti-

nental views: in Maxwellian theory "free" electricity necessarily denotes only one

kind of charge, and it is an epiphenomenon of displacement discontinuity; in Helm-

holtzian theory a distinction is drawn between conduction and polarization charge,

with "free" charge being their sum. This distinction is entirely foreign to Maxwel-

lian theory, in which, at most, what Helmholtz meant by "free" charge would be

termed "apparent" charge and have no basic physical significance since it is due

only to discontinuities in intensity, not displacement. Whereas, for example, a Helm-

holtzian would analyze the force between the plates of a capacitor by summing the

forces due to conduction and polarization charges, a Maxwellian would calculate the

intensity engendered in the dielectric by the bounding displacement discontinuities

and then compute the energy stored in the system as (\/2)}(E • D)d3
x. J. J. Thomson

had an inkling of this basic difference in outlook, for he concluded with the remark:

We have seen that we can make certain equations which occur in Helm-

holtz's theory coincide with the corresponding ones in Maxwell's by giving

particular values to certain constants. The difference in Helmholtz's and

Maxwell's views as to the continuity of the currents is too serious to let us

expect that we should ever get a complete agreement between their theo-

ries; and, in fact, make as many assumptions about the constants as we

may, there are still differences between the theories. (Thomson 1885a,

138-39)
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Just the year before R. T. Glazebrook (1884) had also compared the two theories

(referring to Helmholtz's as that of "Helmholtz and Lorentz" because of Lorentz's

use of the theory in 1875). His analyses is very like Thomson's, including its inter-

pretation of "free" charge density as V • D. Glazebrook also points out that even if

we replace Helmholtz's dP/dt in the Ampere law with Maxwell's dD/dt, we still do

not reach Maxwell's Ampere law because of the term —Ad/dtVty in the Helmholtz

equation (21'). In an inhomogeneous body this term cannot vanish. However, in a

homogeneous dielectric <ty not only becomes typ (since there are no conduction cur-

rents) but also Vc()p will vanish since here V • P is zero. So to reach the Maxwell

theory from Helmholtz's, Glazebrook sees it necessary to replace Helmholtz's polar-

ization current with Maxwell's displacement current and to assume homogeneity.

This procedure violates the physical basis of the Helmholtz theory, in which there is

no reason to consider dE/dt as well as dP/dt to be a part of the current because dE/dt

derives in part from electrodynamic induction changes, and these changes alter forces

but do not in themselves constitute currents.

In the end the Maxwell and Helmholtz theories are incommensurable; there is no

way to pass between the two without altering the meaning of the word "charge"in

addition to choosing limiting values of the Helmholtzian constants. Indeed, the very

passage to the limit in the Helmholtz theory itself makes it extremely difficult to

grant any meaning at all to the word "charge" because it obliterates the distinction

between displacement and polarization. That is, whereas passage to the limit obliter-

ates the dual aspect of charge insofar as the forces are concerned (since the bounding

polarization charges now fully neutralize the conduction charges), it does not in itself

provide a replacement for this duality because the concept of infinite polarizability

lacks physical significance. This is the main problem which the Continentals encoun-

tered in trying to understand Maxwell's theory as a limit of Helmholtz's: in the limit

the basic physical image of polarization as delimited charge shift, which underlies

Helmholtz's theory, becomes deeply confused. This is the sort of thing one expects

to happen when theories treat the same phenomena but are, in their deepest concepts,

built upon radically different foundations. Equations which look similar in the two

theories lead physicists to enforce comparisons in which the significance of the vari-

ables is lost, with the result that a sense of profound confusion necessarily occurs.

The Maxwellians were somewhat better off here than their Continental colleagues

because they at least were aware of the old Poisson-Mossotti charge theory of the

dielectric upon which Helmholtz built, whereas the Continentals had only the Max-

wellian articles and Treatise to read. But even the Maxwellians found it difficult, and

perhaps impossible, to understand Helmholtz on his own terms because by the early

1880s the Maxwellian concepts of charge and current had, in Britain, thoroughly

replaced the old ideas. Let us now turn to several significant Continental attempts,

each based on a direct reading of Maxwell's Treatise, to explicate the Maxwellian

concept of "charge."
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Continental Views of Maxwellian "Charge"

Since the Continentals reached Maxwell only via Helmholtz, and the two theories

are incommensurable, one expects to find Continental attempts to make Maxwellian

ideas comprehensible to be expressed in essentially Helmholtzian terms. Clearly,

such attempts would somehow have to avoid the epiphenomenal character of charge

basic to Maxwellian theory. This is what one does find. In this chapter we shall

illustrate the Continental approach by referring to four examples of texts and articles

from the early and mid- 1890s.

Let us begin with Lorentz's (1892) discussion of Maxwell's theory, wherein he

incorporates moving charge as the sole field source and assumes that the Ampere and

Faraday field equations remain unaffected by the presence of matter. (This last aspect

of Lorentz's theory will be examined below.) In section 31 of his lengthy article,

before he introduces charged particles but after he had deduced the Faraday law from

"d'Alembert's principle," Lorentz discusses an illustrative model first introduced by

Poincare (1890). The purpose of this model is to elucidate a concept of charge which

does not invoke a direct association with substance. To this end—which is designed

to illustrate what Lorentz and Poincare took to be the Maxwellian idea—Lorentz

introduces a catholic "electric fluid" of constant density whose flow rate measures

the electric current, whether in conductors, free ether, or dielectrics. So far we seem

to have something like Maxwell's electric quantity. Indeed, Lorentz continues by

defining quantity of electricity in an apparently Maxwellian fashion:

What we have called the quantity of electricity which has passed through

any surface during a certain time is precisely the quantity of incompressible

fluid which has passed from one side of the surface to the other. (Lorentz

1892, 140)

In this Lorentz-Poincare illustration, the difference between conductors and dielec-

trics is that only in the latter does a fluid shift give rise to elastic reaction—again, a

seemingly Maxwellian idea. Lorentz continues by defining the measure of the

"charge" of a conductor as the electric quantity shifted through a surface which
completely surrounds the conductor.

All of this certainly captures part of the Maxwellian image, but only a part of it.

These ideas completely fail to embody the deep field-theoretical image of "charge"
as nothing more than a discontinuity in the displacement vector due entirely to the

alteration in conductivity at the boundary. Lorentz provides no characteristic in his

illustration which would enable one to locate his "charge" on the conductor-dielec-

tric interface—where it is necessarily located in Maxwellian theory—because he

writes here only of the measure of the charge in terms of quantity shifts. For exam-
ple: "The charge will be measured by either the quantity of electricity which has

traversed a section of the wire, or by that which has been displaced in the dielectric
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towards the exterior of any closed surface which envelops the conductor" (Lorentz

1892, 191). In addition, Lorentz fails to remark the crucial point that the sign of the

charge is determined with reference to the inner surface normal to the bounding

dielectric, and this specification is precisely what enables Maxwell fully to assimilate

charge to displacement discontinuity. More to the point, what is missing in Lorentz 's

illustration is the fundamental Maxwellian emphasis on inhomogeneity in the con-

ductivity as the source of "charge," properly speaking.

This latter point is particularly evident in sections 43-45 of Lorentz (1892). Sec-

tion 43 is entitled "Electric Charge within an Insulator." This is in itself a clue to

the non-Maxwellian character of Lorentz' s illustration. For, in Maxwellian theory, it

is not only impossible to generate charge within an insulator, it is, strictly speaking,

impossible even to imagine such a thing because conductivity and inhomogeneity are

both essential for the very existence of Maxwellian charge.

Lorentz admits that one cannot in fact produce charge within an insulator without

the presence of a conducting path. The field equations forbid it because, in the ab-

sence of a conducting path, we have:

V • dbl'dt = V • (V x H) = -» dp c /dt =

Consequently, if p c
. is zero initially, it must always be zero. But Lorentz thinks it

possible nevertheless to "imagine" the presence of p (
. within a medium entirely de-

void of conductivity. To realize this image, Lorentz assumes the existence within the

internally charged insulator of a strange additional quantity of fluid which itself dis-

places the natural quantity from equilibrium. He writes:

In a dielectric which is in its natural state, each particle of electric fluid

occupies its position of equilibrium. Now, one can imagine that, besides

this fluid which the body contains in its natural state, it contains a certain

other quantity, which there finds a place by driving back before itself the

fluid which would otherwise find itself in its position of equilibrium. (Lo-

rentz 1892, 200)

The effect of this additional fluid is to reintroduce the very duality of charge which

Maxwellian theory sought to avoid, since one now distinguishes between this new

fluid and the original. This makes no sense at all on Maxwellian principles, but it is

a good way to retain charge duality while incorporating superficially Maxwellian

concepts of electric quantity.

In section 45, Lorentz further shows the fundamental differences of his concepts

from the Maxwellian, for here he misses the deepest part of Maxwellian theory: he

regards the idea that one and the same body can possess simultaneously conductivity

and capacity as important only for the optics of metals. Whereas, as we have repeat-

edly seen, in Maxwellian theory all bodies except the free ether must possess both

properties. Indeed, their concurrence constitutes the very essence of charge.

All this is missed by both Lorentz and Poincare. This is not surprising since,

excepting Gibbs, no one not educated in Britain or directly from the Treatise ever

did grasp the basic structure of Maxwellian theory. Lorentz, like every other Conti-

nental physicist, simply could not rid himself of the idea that electric "charge" must

have some kind of objective existence. He is able to retain this objectivity even in

the context of what he thinks to be Maxwell's theory in its deepest sense by referring

"charge" to the hypothetical, but nevertheless objective, shift of incompressible
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fluid. In Maxwellian theory, "charge" is related only indirectly to quantity shift via

the values of the inductive capacity and conductivity across a given surface at a given

time.

One finds a somewhat similar illustration in Boltzmann (1891) and its expansion

in English by Curry (1897).
!

Curry and Boltzmann used a two-fluid model through-

out instead of Lorentz's and Poincare's single fluid. However, Curry and Boltzmann

also found it perfectly conceivable for a homogeneous insulator to have conduction

charge within it; for them, too, the essence of charge was not tied to the simultaneous

presence of inhomogeneity, conductivity, and capacity.

Curry's work provides a cogent and, for our purposes, immediately relevant ex-

ample of the gulf between Maxwellian and Continental views. Recall that by the

early 1880s it was usual among Maxwellians to obtain boundary conditions in com-

plicated cases directly from partial integration in Hamilton's principle, or, in the

simplest circumstances, by assuming abrupt changes in the electromagnetic parame-

ters (e, |x, a) and then employing the field equations. This procedure is closely linked

to the concept of charge as a surface discontinuity in displacement. Now, the exis-

tence of volume charge—charge densities—in Maxwellian theory requires rather

complicated physical conditions because of this focus on discontinuity. In particular,

one needs a medium in which either or both e and a change continuously from point

to point. Volume charge reflects a continuous inhomogeneity. Consequently, in using

Hamilton's principle it was natural to presume abrupt changes, since one is basically

concerned with continuity, or its lack, and not with the spatial variations throughout

a volume. One could say that, to Maxwellians, volume densities were continuous

series of surface discontinuities.

Curry and Boltzmann also used Hamilton's principle, with E a velocity, to reach

the Ampere law for displacement currents. (Faraday's law, in the form E = — dA/dt

and B = V x A, was, of course, the definition of B as twice the vorticity.) How-
ever, they did not also use Hamilton's principle to obtain boundary conditions. In-

stead, Curry assumed a finite transition between media and then applied the field

equations to thin but finite layers. This assumption of a finite transition, Curry wrote:

... is without doubt the most probable and natural of the several assump-

tions that might still be made concerning dividing-surfaces. We gain by it

at least a considerable mathematical advantage; for in assuming any other

conditions we should be obliged in our partial differential with regard to

the coordinates to investigate separately those terms, which refer to the

dividing surfaces, and to evaluate them in order to find the surface-condi-

tions. In assuming the above transition-films, however, we do away with

all discontinuities once for all, and are thus enabled to regard as the limits

of our integrals the confines of space to which the electric and magnetic

disturbances cannot, of course, extend; and in consequence of which all

integrals dependent only upon these infinite limits, that is, all the surface-

integrals, will vanish. (Curry 1897, 18)

1. Despite repeated attempts, I have been unable to find material on Mr. Curry. He appears in none

of the usual biographical sources for the period, and he is not mentioned by anyone I know of except

Heaviside, and that in a review. His published books provide no information, except that he obviously

knew Boltzmann well, that Boltzmann had great confidence in him, and that he resided in Austria. Of his

education, training, and family background I know nothing. He was fluent in both English and German,

and it seems most probable that his advanced training was in Germany or Austria.
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Curry's procedure, which reflects Boltzmann's own views and which restricts the

applicability of Hamilton's principle in a way that prohibits it from yielding boundary

conditions, is one effect of a wider, and more fundamental, Continental idea that

underlies his remarks; namely, that volume distributions, and not quantities defined

across surfaces, are alone physically significant. Continental physicists thought of

charge in the same way that they thought of matter in its relation to space, that is,

as subsisting throughout a volume. Boundary conditions are therefore only mathe-

matical limits of conditions which change rapidly through finite but thin regions.

There is a sense in which Maxwellians would agree with Curry: they thought that

field transitions had to occur continuously. But they tended to think in terms of a

continuous series of surface transitions rather than volume densities. Consequently,

Maxwellians naturally used Hamilton's principle for boundary conditions, just as

they usually assumed abrupt transitions. The fact that transitions must be continuous

was an unimportant complication. For Curry and Boltzmann, by contrast, continuity

was of the essence, and it was so precisely because they did not think of electromag-

netic processes in terms of discontinuities in capacity and conductivity.

We need not spend much time on our third example, drawn from Paul Drude

(1894b). Like Lorentz and Poincare, Drude invokes the image of an incompressible

fluid free to move in conductors and subject to elastic reaction in insulators. Of
"charge" he wrote:

... the charge of two insulators with positive and negative electricity

consists, according to this picture, in this, that a certain quantum of fluid

has been shifted from equilibrium across the surface of the positively

charged conductor outwards, and an equal quantum of fluid has been

shifted from equilibrium across the negatively charged conductor inwards.

The same shift must appear at each point of the insulator between the two

conductors in consequence of the incompressibility of the fluid, whence

certain pressures and tensions [arise] which seek to move the conductors

with respect to one another. (Drude 1894b, 312)

This is, again, superficially Maxwellian; indeed, we shall see that of all Continental

physicists Drude made the most use of Maxwellian energy principles. However, there

is here, again, no emphasis on, or even mention of, the definition of charge in terms

of displacement discontinuity. In fact, Drude 's text is on the whole markedly devoid

of speculations of any kind, being almost completely macroscopic in outlook, even

though it misses the heart of the prototypically macroscopic Maxwell theory. Drude

was at this time strongly positivist in outlook (an attitude he probably absorbed from

his teacher, Woldemar Voigt), and this no doubt attracted him to the macroscopic

character, if not the details, of Maxwellian theory. To him "... only what obser-

vation supplies to us is to be considered as securely founded" (Drude 1894b); no

microscopic speculations were permitted. As we shall see, he was shortly to sing a

rather different tune.

We come to our final example, the most difficult and revealing of all: Heinrich

Hertz. Hertz's (1890) article on the field equations for bodies at rest in the ether was

of immense influence on the Continent because of its compact presentation of the

equations in what is essentially their modern form. Of even greater influence was

Hertz's introduction to the publication of his experimental and theoretical papers, for

here he directly addressed the basic difficulties involved in grasping Maxwell's the-
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ory of charge. This introduction has been widely read over the years, and, I believe,

has been instrumental in molding the historical understanding of Maxwellian theory

in the postelectron era. It is so influential that it is worth quoting at some length:

. . . what is it that we call the Faraday-Maxwell theory? Maxwell has left

us as the result of his mature thought a great treatise on Electricity and

Magnetism; it might therefore be said that Maxwell's theory is the one

which is propounded in that work. But such an answer will scarcely be

regarded as satisfactory by all scientific men who have considered the

question closely. Many a man has thrown himself with zeal into the study

of Maxwell's work, and, even when he has not stumbled upon unwonted

mathematical difficulties, has nevertheless been compelled to abandon the

hope of forming for himself an altogether consistent conception of Max-

well's ideas. I have fared no better myself. Notwithstanding the greatest

admiration for Maxwell's mathematical conceptions, / have not always felt

quite certain of having grasped the physical significance of his statements.

Hence it was not possible for me to be guided in my experiments by Max-

well's book. I have rather been guided by Helmholtz's work, as indeed

may plainly be seen from the manner in which the experiments are set

forth. But unfortunately, in the special limiting case of Helmholtz' s theory

which leads to Maxwell's equations, the physical basis of Helmholtz s the-

ory disappears, as indeed it always does, as soon as action-at-a-distance

is disregarded. I therefore endeavoured to form for myself in a consistent

manner the necessary physical conceptions, starting from Maxwell's equa-

tions, but otherwise simplifying Maxwell's theory as far as possible by

eliminating or simply leaving out of consideration those portions which

could be dispensed with, inasmuch as they could not affect any possible

phenomena. This explains how the two theoretical papers (forming the

conclusion of this collection) came to be written. Thus the representation

of the theory in Maxwells own work, its representation as a limiting case

of Helmholtz s theory, and its representation in the present dissertation—
however different in form—have substantially the same inner significance.

This common significance of the different modes of representation (and

others can certainly be found) appears to me to be the undying part of

Maxwell's work. This, and not Maxwell's peculiar conceptions or meth-

ods, would I designate as "Maxwell's theory". To the question "What is

Maxwell's theory?" I know of no shorter or more definite answer than the

following: — Maxwell's theory is Maxwell's system of equations. Every

theory which leads to the same system of equations, and therefore com-

prises the same possible phenomena, I would consider as being a form or

special case of Maxwell's theory; every theory which leads to different

equations, and therefore to different possible phenomena, is a different

theory. Hence in this sense, and in this sense only, may the two theoretical

dissertations in the present volume be regarded as representations of Max-

well's theory. In no sense can they claim to be a precise rendering of

Maxwell's ideas. On the contrary, it is doubtful whether Maxwell, were he

alive, would acknowledge them as representing his own views in all re-

spects. (Hertz [1893] 1962, 20-21; emphasis added)

Hertz, like everyone else on the Continent, came to Maxwell via Helmholtz; but,

unlike many of his Continental colleagues, Hertz understood well that one cannot in

fact reach the physical core of Maxwell's ideas by taking a limiting case of Helm-
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holtz's equations. For, Hertz understood, in this limit the Helmholtz theory loses its

"physical basis." Though one still considers conduction charge in a capacitor as the

source of the intervening polarization, the bounding polarization charges fully neu-

tralize the conduction charges, and the electric forces which stress the capacitor de-

rive in the end solely from internal polarization in some way. Conduction charge is

still necessary conceptually, but it has no effect. Moreover, as we have seen, in this

limit one cannot distinguish between polarization and displacement—a fact which

Hertz does not quite mention because he himself had great difficulty in forming a

consistent account of the difference between the Helmholtz and Maxwell theories.

Rejecting, then, the claim that Maxwell's theory can be taken as a limit of Helm-

holtz' s in concept (though this is how he himself first reached it), Hertz goes on to

argue that in a correct representation of the Maxwell theory we must "discard the

electricities from which these distance forces [between charged conductors] are sup-

posed to proceed." In fact, ".
. .we altogether deny the existence of these distance-

forces." That is, instead of visualizing the conduction charge as neutralized by the

bounding polarization charge in the "Maxwell" limit of the Helmholtz theory, we
discard the conduction charges altogether, conceive that only the polarization charge

exists, and "defer ... the explanation of the nature of the polarisation" (Hertz

[1893] 1962, 25).

Now, Hertz continues, mathematically this view is identical to the limit of the

Helmholtz theory, but physically they differ fundamentally because we now deny

distance forces by removing the exciting conduction charges. But how, then, are we

to reintroduce something which represents what used to be called conduction charge?

Maxwellians knew how to do this: by defining charge surface density as a disconti-

nuity in displacement and by referring the sign of the charge to the relationship

between the directions of the displacement and the inner surface normals of the

bounding dielectric. But this Hertz does not do. Indeed, he cannot do so because his

mind, like the minds of his Continental colleagues, simply cannot accept or perhaps

even conceive of the epiphenomenal character such a view grants charge.

Hertz's difficulties (and he was aware that he was missing something important)

are well expressed in these revealing remarks:

The general explanations in [Maxwell's] work leave no room for doubting

that he wished to discard distance-forces entirely. He expressly says that if

the force or "displacement" in a dielectric is directed towards the right-

hand, we must conceive each particle of the dielectric as being charged

with negative electricity on the right-hand side, and with positive electricity

on the left-hand side. But it cannot be denied that other statements made

by Maxwell appear at first sight to contradict the conception of this stand-

point. Maxwell assumes that electricity also exists in conductors; and that

this electricity always moves in such a way as to form closed currents with

the displacements in the dielectric. The statement that electricity moves

like an incompressible fluid is a favorite statement of Maxwell's. But these

statements do not fit in with the conceptions of the fourth standpoint [in

which conduction charge is entirely removed and no distance forces exist];

they lead one to suspect that Maxwell rather viewed things from the third

point of view [the limiting case of the Helmholtz theory]. My own opinion

is that this was never really the case; that the contradictions are only

apparent and arise from a misunderstanding as to words. (Hertz [1893]

1962, 26; emphasis added)
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Hertz was correct. The misunderstanding is due to words. What he failed to see

was how Maxwell's words must be read, as these remarks make clear. What Hertz

missed was the core idea of displacement discontinuity. Like Poincare and Boltz-

mann, to whom he referred, he understood the quantity shift imagery of Maxwellian

theory but still did not see how charge was to emerge from it, at least as he under-

stood "charge." He knew that, properly read, Maxwell's words would—as they

do—make complete sense, but he did not see how to read them:

If we read Maxwell's explanations and always interpret the meaning of the

word "electricity" in a suitable way, nearly all the contradictions which at

first are so surprising can be made to disappear. Nevertheless, I must admit

that I have not succeeded in doing this completely, or to my entire satis-

faction; otherwise, instead of hesitating, I would speak more definitely.

(Hertz [1893] 1962, 27)

The result of Hertz's quandary was to force him into an uneasy compromise with

traditional Helmholtzian nomenclature for charge, a compromise which preserved

terminologically the duality of charge absent from Maxwellian theory. Remarking

that one usually says that the "true" electricity of a conducting system is not altered

when its dielectric surroundings are changed, whereas the mutual forces are altered,

Hertz distinguished the "free" electricity from which one calculates forces and

which is alterable by nonconducting means, from the "true" electricity which is

alterable only by conduction (Hertz [1893] 1962, 276, n. 30). So, though Hertz

referred the measure of "true" charge to the divergence of the displacement, he

preserved Helmholtzian wording because he had not seen how to avoid it. Whereas

a Maxwellian would write of "apparent" charge (V • £), which is thought of solely

as a convenient locution, Hertz wrote of "free" charge and felt it necessary to retain

the idea of "bound" charge to grant "free" charge physical significance, though he

refused to consider why such a thing as "bound" charge exists.

We see now the significance of Hertz's famed rejection of the Maxwellian distinc-

tion between electric intensity and displacement in the free ether (Hertz [1893] 1962,

196): without this distinction it is impossible, in Maxwellian theory, to understand

the existence of a charged surface in vacuo because charge is displacement disconti-

nuity. The fact that in free ether D reduces to E is merely a mathematical artifact of

the definition of the ether's capacity as unity; the conceptual and physical distinction

between displacement and intensity is still essential. Not knowing or understanding

that this distinction goes to the heart of Maxwell's theory, Hertz felt free to ignore it

where it seemed mathematically to make no difference.

The differences between Maxwellian and Continental ideas are so profound that

only someone able to explode the most stable foundations of thought could possibly

have made the transition. To the best of my knowledge no one ever did. It might

have occurred sometime in the mid- 1890s, at least among younger physicists, if a

way had not been found to retain the substantial character of charge while incorpo-

rating certain Maxwellian elements which did not violate basic preconceptions. This

was fully accomplished by Lorentz (1892). It was also widely done, but perhaps not

quite so completely, by many German physicists in the mid- 1890s, who developed,

quite independently of Lorentz, what I shall term "proto-ionic" theories of electro-

magnetism.
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Field Dynamics and "Ion" Physics

To understand the extent to which Lorentz's (1892) field dynamics (if not his concept

of charge) follows Maxwellian patterns, we must begin with the question of how
Lagrange's equations are affected when the coordinates of the system in question are

not denumerable, that is, with the case of a continuum. Despite our extensive con-

sideration in previous chapters of Maxwellian theories, we have not explicity en-

countered this question. The Maxwellians actually never used Lagrange's equations,

properly speaking, for the ether itself except under circumstances where it is possible

to reduce the problem's necessary coordinates to a countable, and usually finite, set.
1

Consider, for example, Maxwell's theory of the Faraday effect in the Treatise (vol.

2, chap. 21). He did use Lagrange's equations here, even though he was concerned

with the motions of the ether proper. But he avoided the problem of uncountability

of the coordinates by assuming a wave form for the disturbance and then treating the

amplitude, a, as the sole coordinate; the condition for a wave of constant amplitude

then requiring -dT/da + BUIda to be zero.
2
Here T, U are, respectively, the field's

kinetic and potential energy functions. In fact, one can usually proceed in a way

similar to Maxwell's in optical problems if absorption is not involved.

However, a fully general treatment of the problem requires considerable general-

ization of the Lagrange equations. We may begin with the Hamilton action integral

in the case where the coordinates are not countable. The integral S is:

let uik
= dujdxk

Uu = dujdt

ujt = dujdt

S = fdtfL(uh u ik , u
lt
)d

3
x

The principle requires that 85 vanish. Carrying out the variation:

3

bS = SdtSKdL/dudhUi + X (dL/dulk)buik + (dL/du
it
)bu

it
]d

3
x

k=i
3

= JdtS[(dL/du
t)
- X d/dxk(dL/duik)

- d/dt(dL/du
lt
)]hu,d

3
x + surface terms

*= i

So we at once have, instead of the usual Lagrange equations:

3

(1) d/dt(dL/du
Jt)

+ X d/dxk(dL/dujk) - dL/dUj =
k=\

1. See J. J. Thomson (1888, sec. 43) for use of Lagrange's equations when the force in question acts

on matter and not the ether.

2. See Knudsen (1976) for a thorough analysis of Maxwell's calculation. I thank Ole Knudsen for

extensive discussions concerning Lagrangian theory and continuum mechanics, when these points were

first made clear to me. I also thank him for the derivation of equation (1) below.
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As a simple but relevant example, wejnay consider the field model in which E is

the velocity du/dt, and therefore B is -V X u from the Faraday law. The Lagrangian

density is then:

(2) L = (\I2)[lB
2 - (l/2)e£

2 = (l/2)p,|V X u\
2 - {V2)e\du/dt\

2

Substituting in equation (1), we find:

(3) -(1/H)V x (V x u) = ed
2
u/dt

2

This is the medium's equation of motion,
3
and it is also the Ampere law:

(4) (l/|x)V x B = edE/dt

This procedure, to the best of my knowledge, was never used by the Maxwellians,

perhaps because the generalization (1) of the Lagrange equations had not been de-

veloped, and because in any case they directly utilized Hamilton's principle. Indeed,

it seems that the Lagrange generalization (1) was unknown on the Continent as well,

because there those who attempted to meld electromagnetism and mechanics used

either Hamilton's principle or (and here they departed from the British) assumed a

model for the medium in which the coordinates, even if infinite in number, are count-

able. Curry (1897) and Boltzmann (1891) took the former approach; Lorentz (1892)

took the latter.

When Lorentz decided that he wished to follow Maxwell in basing electromag-

netism on mechanics, he would naturally have turned to the portions of the Treatise

which utilize, respectively, Hamilton's and Lagrange's equations: Maxwell's treat-

ments of the interaction of linear circuits and of the Faraday effect. In both cases

Maxwell found it possible to avoid Hamilton's principle—even though the field

proper is a continuum—and yet not to introduce the generalization (1), by finding

suitable sets of denumerable coordinates. We have just seen how he did this for the

Faraday effect, and in chapter 5 we examined his linear circuit theory. In the latter

he avoided the problem of the continuum by assuming that the electric velocity / (the

current) in rigid, closed, linear circuits is equal to the time rate of change of electric

coordinates, which we shall denote e, such that }' Idt is equal to e, — e , and such

that this difference represents the quantity of electricity which has passed during time

t through any section of the circuit. The electric configuration of the system is com-

pletely specified by e
t

.

The problem with this treatment is that it presumes the field to contain only rigid

constraints: otherwise, the field energy in Maxwell's treatment would not depend

solely on the value of e„ but also on the past electric history of the circuit. Maxwell's

circuit theory, that is, precludes radiation. It is consequently a poor model to use for

the field, but Lorentz did so in any case, thereby creating a system which even he

admitted was extremely difficult to envision. We need not follow his argument in

full detail. I shall sketch it, however, to point out where the assumption that the field

contains only rigid constraints enters.

First, Lorentz assumes, per linear circuit theory, that the field's kinetic energy is

3. We assume here, in common with all Maxwellian theories, that the medium's linear flow velocity

is sufficiently small in comparision to optical motions that partial time derivatives may replace total deriv-

atives.
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a homogeneous, quadratic function of the generalized coordinates (in which case the

Lagrange equations reduce to d'Alembert's principle).
4

In equation (5), Qh w, are,

respectively, the generalized forces and displacements, and the 8 variation is a sta-

tionary-time operator:

(5) work = bA = 2,& • u, = ^(d^/df2
) • 5h,

Introducing the kinetic energy T as 2
z
(l/2)m

/
(aM

/
/ar)

2
, we can easily rewrite equa-

tion (5) as:

(6) bA = d/dt[2
l
m

i
(du

i
/dt) • bu,] - bT

Lorentz had to fix the electromagnetic significance of his terms. In essence he

began with the following five relations, including the Ampere law:

(7) V • J =

(8) B = \lH

(9) V'i = • • -B = V x AandV -A =

(10) V x H = Aid

(11) T = (l/8ir)/8 Hd\

Lorentz first calculated bT from equation (11), assuming the only boundary to be

at infinity:

(12) bT = (l/4ir)/S bHd'x = (l/4ir)/i4 (V x bH)d3
x = JA bJd

3
x

From this point on Lorentz employs an intricate variational procedure which in the

end permits him to conclude that bT, the variation of the kinetic energy, must vanish,

leaving only the first term in equation (6). The rigidity assumption enters directly

into this procedure. To prove his point, Lorentz must assume that the velocity of a

point in the system which constitutes the field is a linear function of the currents

which exist simultaneously throughout the field. This can only be true if the con-

straints, as in Maxwell's circuit theory, are rigid, or else the system behaves like no

mechanism ever before known (which latter, in fact, was Lorentz 's position). Given

the assumption, however, Lorentz was able to deduce the Faraday law, but only

under the further assumption that the variation involves potential as well as kinetic

energy, which is odd indeed for a system governed by rigid constraints.

In comparison with an approach via Hamilton's principle, Lorentz 's deduction of

the Faraday law is mathematically cumbersome and physically obscure. However, it

appears that Lorentz was unfamiliar with the Maxwellian procedure in which one

begins by choosing either E or H a velocity. Remarking in a note that he had just

seen Boltzmann's Vorlesungen (1891), Lorentz continued that, though he had em-

ployed different methods and had different goals from Boltzmann, they had never-

theless both been guided
i4
by the same fundamental idea" (Lorentz 1892, 2:169).

This can only refer to the comparatively vague notion that dynamical principles

should be employed to find a field equation; because, in the Vorlesungen, Boltzmann

had used Hamilton's principle with E a velocity to reach the Ampere law, whereas

Lorentz in effect treated the velocity as a linear function of the displacement current

4. Lorentz (1892). Hirosige (1969) discusses Lorentz' s computation but does not remark the peculiar-

ities of its approach.



Field Dynamics and Ion Physics 197

throughout the field to reach the Faraday law through d'Alembert's principle for a

system with rigid internal constraints and denumerable coordinates.

This has far-reaching consequences. Precisely because Lorentz felt it necessary to

operate with rigid constraints and denumerable coordinates, his theory cannot be

considered dynamical in the Maxwellian—or even Boltzmannian—sense. Indeed,

Lorentz is at once faced with the difficult problem that his scheme corresponds to no

readily conceivable mechanism, whereas both Maxwellian alternatives (E or H a

velocity) can be illustrated by a model attributed to Kelvin involving hidden rota-

tional mechanisms (called "gyrostats"). Lorentz was well aware of the difficulties

with his scheme, but he could offer only a weak defense for it:

. . . one is entirely free to essay any supposition one wishes concerning

the mechanism that produces electromagnetic phenomena, and, always rec-

ognising the difficulty of imagining a mechanism which possesses the de-

sired property, it seems to me that one does not have the right to deny the

possibility [of such a property]. (Lorentz [1892] 1935, 2:221)

A Maxwellian would argue otherwise, and Boltzmann would here side with the

Maxwellian rather than with Lorentz; for Boltzmann—despite his atomistic views

where matter is concerned—insisted upon treating the electromagnetic field at least

formally as an elastic continuum. In 1893 he wrote:

We imagine a fine matter endowed with mass and inertia (though not with

weight) and, for brevity, term this matter the ether. [The ether] is supposed

to permeate all bodies and also the so-called vacuum. We shall leave aside

the question of whether the qualities with which we shall endow it can be

realised by means of a molecular structure and shall provisionally think of

the ether as a continuum, in the same sense as Kirchhoff viewed pondera-

ble matter in his Lectures on mathematical physics.
5

Given the mechanical implausibility of Lorentz's model, it seems reasonable to

infer that, unlike the Maxwellians and several of his Continental contemporaries (in

particular Boltzmann and Arnold Sommerfeld), Lorentz was never strongly attracted

to dynamical field theory. Indeed, a major characteristic of all of Lorentz's work,

including his 1875 dissertation, is its powerful preference for particulate models of

matter and perhaps of the ether as well. Unable to invent a plausible model for the

Maxwell ether on the basis of a dynamics requiring denumerable coordinates, Lo-

rentz no doubt soon found it entirely reasonable simply to assume that the ether is to

be considered an entity sui generis whose properties must be divorced from the elec-

tromagnetic properties of matter, which latter critically depend on matter's discrete

structure.

That, in fact, is precisely what does happen in Lorentz (1895), wherein he simply

adopts Hertz's equations for stationary ether and adjoins to them the microscopic,

discrete structure of matter, linking the two via the so-called "Lorentz force." An-

5. Boltzmann (1893) used the MacCullagh rotationally elastic medium with £ a velocity, but he did

not detour through Hamilton's principle; instead he began directly with the torque generated by a differ-

ential rotation and proceeded by considering the energy balance throughout the medium. Hamilton's prin-

ciple begins more fundamentally with the potential energy stored in the rotation.
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other major characteristic of Lorentz's work which, even in 1875, though not dog-

matically at that time, distinguished it from Maxwellian theory was its view that the

properties of the ether in itself are unalterable by matter, and that the optical prop-

erties of bodies derive from "the inner electrical structure of a [material] molecule"

(Hirosige 1969, 173). Lorentz (1878) further developed these ideas when he explic-

itly considered a molecule to contain an elastically bound, massy particle endowed

with fixed charge in order to develop a formula for optical dispersion. However, we
shall see in part V that the idea of a qualitatively invariant ether, and even the idea

that matter's optical properties derive from the action on the ether of its inner, massy

molecular structure, were actually quite common by the late 1870s. These ideas were

derived preeminently from Helmholtz's (1875) mechanical theory of dispersion, pub-

lished in the very same year that Lorentz's dissertation was published. One does not

need to refer to the influence of the several Continental theories of electromagnetism

based on interparticle force laws to understand why Lorentz, from the earliest days,

relied so strongly on the image of the invariant ether studded with molecules, for this

was the basis of Helmholtz's most advanced work from 1875 on.

Nevertheless, it is essential to distinguish in Lorentz's work his unique and early

(c. 1878) predilection for calculations involving microphysical averages. For he alone

among his contemporaries before c. 1895 took molecular theory sufficiently seriously

to carry out extensive molecular analyses in electromagnetism. This unique predilec-

tion also reveals itself in Lorentz's continual insistence upon the necessity of using

molecular models for matter consistently and completely throughout one's calcula-

tions. As we shall see below, even Helmholtz preferred to introduce electric mole-

cules only where absolutely necessary and to leave uninterpreted such things as the

origin of inductive capacity. Briefly put, whereas to Helmholtz and most other Dutch

and German physicists in the early and mid- 1 890s the function of molecular theory

was almost solely to explain complicated optical phenomena like dispersion, Lorentz

tended to insist upon a unified explanation of all electromagnetic properties from

molecular principles. Thus as Lorentz's conviction in the power of molecular theory

increased between 1878 and 1892, what had (in 1875 and 1878) been a useful though

perhaps only approximate assumption—that the ether's properties are invariant—be-

came an axiom for Lorentz. In the early 1890s this idea remained a convenience

rather than a necessity for most of his Dutch and German colleagues. Lorentz's

strong belief in this principle was also, of course, linked to his deep interest in the

optics of moving bodies. He dealt with this problem in 1892, insofar as first-order

effects are concerned, by assuming a stationary, invariant ether, constructing matter

out of moving charges, and finding the wave equation for the polarization vector.

(He also had previously deduced the Fresnel ether-drag coefficient on the basis of a

stationary ether.)

To the modern physicist or historian of physics, Lorentz's name has come to be

so closely associated with the microscopic foundations of electromagnetism that it is

natural to assume that Lorentz's (1892, 1895) articles were the primary stimuli to the

development of the microphysical theories of optical processes which appeared in

Holland and Germany in and after 1893. This is, however, not the case, as even a

cursory citation count makes clear. Lorentz (1892) is almost never mentioned, and

even Lorentz (1895) is rarely referred to until about 1900. Moreover, there is even

little trace of specifically Lorentzian ideas in the majority of work in the 1890s.
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For example, in the Continental work on magneto-optics, even after 1892 when

much of this work was done, Lorentz's microphysical foundation for electromagne-

tism was used only by his own student C. H. Wind. This was despite the fact that

most of the Continental theories were actually based on Lorentz (1884) which, how-

ever, was entirely macroscopic. Indeed, when magneto-optics was finally based di-

rectly on "ionic" principles, the most influential text on the subject (Drude 1900Z?)

mentions Lorentz only in the context of the optics of moving bodies. Further,

Drude' s two extensive and widely influential papers on the electron theory of metals

(Drude 1900a) contain no reference at all to Lorentz's work. These examples could

easily be multiplied. What they imply is simply this: during the 1890s ionic ideas in

electromagnetism were considered to be common property among many Dutch and

German physicists and were not associated specifically with Lorentz, whose own

work was not well understood, Lorentz's work was probably thought of as merely

one instance of a general trend, a trend which was most closely associated with

Helmholtz.

Only after the enunciation of the so-called electromagnetic theory of nature c.

1900, with its comprehensive claims and its focus on detailed microphysical averages

and the structure of the electron, did Lorentz (1892, 1895) come to epitomize to the

physicists of the time the ionic physics of the 1890s. Quite likely the skewed image

of history implicit in this identification reflects the profoundly revolutionary impli-

cations which many physicists of the day, especially those who disagreed with Lo-

rentz's own position that the electron is deformable, saw in a full-fledged electron

physics. Russell McCormmach (1970, 495) argues:

... to many temperaments an electromagnetic understanding of the phe-

nomena appealed as something deeper than a mechanical understanding.

The whole cultural configuration at the turn of the century was implicated

in the change from mechanical to electromagnetic thinking. The immaterial

electromagnetic concepts were attractive in the same measure that the inert,

material imagery of mechanics was displeasing. The ether, whose proper-

ties were considered to be exactly described by the concise, elegant equa-

tions of the electron theory, stood in marked contrast to ordinary matter,

whose complexity was believed incapable of being exactly described.

It was precisely Lorentz's detailed calculations of microphysical averages that so

powerfully illustrated this impossibility of exact description. By contrast, most of the

ionic theories of the 1 890s employed microphysics only as an aid and not as a foun-

dation. They did not enter into detailed calculations of means to obtain macroscopic

results, but left the theory just at the point where such calculations become necessary.

This remained true even as late as 1900, for Drude (1900b) epitomizes this approach.

To what extent this widespread Continental reluctance to delve deeply into the

microphysics of electromagnetism reflects the well-known controversies of the period

concerning the kinetic theory and the propriety of employing microphysical entities

is hard to determine, primarily because many of the physicists whose work we shall

examine in part V did not achieve the fame of a Lorentz or a Poincare.
6
Certainly

some influence of this kind is present. Drude, for example, was a student of Wol-

6. On these questions see, e.g., Nye (1972), Blackmore (1972), Kuhn (1978), Klein (1970), and

Brush (1976).
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demar Voigt, who remained steadfast in his completely macroscopic approach to

optics; while Poincare, at least to the mid- 1890s, regarded microphysical hypotheses

as occasionally convenient but little more. What is clearly called for is an examina-

tion of the structure of the physics profession in Germany and Holland in the 1890s,

including personal and institutional affiliations as well as philosophical predilections,

if we are to understand precisely what the prevalent attitude toward microphysics was

among those physicists whose names are today not familiar (the bulk of the profes-

sion, of course). This study shall attempt only to show by example that in electro-

magnetism and optics the general attitude was rather like Poincare 's in the early

1890s. We shall examine in detail how this led to the creation of theories which

uneasily balance between microscopic and macroscopic conceptions. We shall also

see how this very balance reflects strong conceptual problems which made it ex-

tremely difficult for physicists throughout most of the 1890s to appreciate Lorentz's

work.

In part V we will consider the area of research in which microphysics first made

its appearance in Continental electromagnetic theory: magneto-optics. Much of the

experimental and theoretical work we shall examine was undertaken by now forgot-

ten members of what I shall call the "Leiden school" of physics of the mid- 1880s

and early 1890s, a school closely associated with Lorentz and having its physical

locus in Leiden. During this period three experimental and two theoretical disserta-

tions on magneto-optics were written, all directly concerned with the Lorentz (1884)

theory for the phenomenon. The two theoretical dissertations were actually written

under Lorentz. Of the five physicists in question, only one—Pieter Zeeman—is at all

well known today. Of the remaining four, two were never even entered in Poggen-

dorff's comprehensive biographical dictionary. Yet the work of all five was referred

to at the time, sometimes frequently. They are:

Remmelt Sissingh, Ph.D., Leiden, 1885 (experimental)

Leiden, 1883 (theoretical)

Leiden, 1893 (experimental)

Amsterdam, 1884 (experimental)

Groningen, 1894 (theoretical);

studied at Leiden and Amsterdam, 1894-95

From 1877 to 1912 Lorentz held the chair of theoretical physics at Leiden, so all but

Kaz of these five physicists almost certainly had direct contact with him. Indeed, it

is likely that they chose magneto-optics as a topic because Lorentz was deeply con-

cerned with the phenomenon during this period. (The physics chair at Amsterdam,

where Kaz studied, was held by van der Waals, whom Lorentz knew well, and whom
Sissingh referred to as having suggested how to calculate magneto-optic phases and

amplitudes directly from observation.)

Our goal will be to understand how, in the sharply defined area of magneto-optics,

field theory first took strong hold among Continental physicists and was then rapidly

linked to very general "ionic" concepts. We shall examine the interlocking series of

theories and experiments undertaken during the 1880s and the early 1890s to see

where, and how, the conviction took hold that macroscopic theory was not merely

inadequate in magneto-optics but was fundamentally misguided in its methods. This

will be particularly well illustrated when we consider the rather bitter controversy

W. van Loghem, Ph.D

Pieter Zeeman, Ph.D

(?) Kaz, Ph.D

C. H. Wind, Ph.D
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between two German physicists—Paul Drude and D. A. Goldhammer—over which

of their respective sets of equations fit the observations.

I shall not be arguing that the limited area of magneto-optics was in itself, or even

primarily, responsible for the marked turn which electromagnetism took on the Con-

tinent after c. 1900 toward a preoccupation with electron theory. Rather, my goal is

to show how Continental physicists first learned how to link microphysical entities

—

whatever their structure may be—with field equations, and why it became necessary

to do so. To my knowledge no other area of electromagnetism was so intensively

investigated in the mid- 1890s as magneto-optics, and no other then-known phenom-

enon, with the sole (and related) one of dispersion, proved intractable without micro-

physical considerations. Here we shall also see the earliest application of specifically

Lorentzian ideas in Wind's magneto-optic theory. We shall compare this treatment

with Drude' s alternative, which was not based on Lorentz's work. We shall be ex-

amining "ionic" physics as it appeared to the Continental practitioners in electro-

magnetic theory in the mid- to late 1890s: as a rather flexible framework capable of

supporting several competing theoretical alternatives.





PART FIVE

Magneto-Optics

in Holland and Germany
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The Lorentz-van Loghem Equations

The history of Continental magneto-optics properly begins in 1884 when Lorentz

published a theory which he did not develop in full detail, leaving that task to his

student, W. van Loghem (1884). Lorentz's theory was the first to incorporate metal-

lic effects, and it was based on the Hall effect. Indeed, he published it in the same

article that discussed Hall's discovery (Lorentz 1884; see sec. 11.2 above).

Lorentz's theory utilized Helmholtz's (1870) equations for electromagnetism. He

wrote them compactly as follows (though he did not use vector notation):

(1) V x E = -(1 + 4TTQ)A(dH/dt) (Faraday law)

(2) V E = -V2
<|>/ + A 2kd%ldt2

(3) V X H = A{ - d/dtVfy + 4-rJ) (Ampere law)

(4) V • H = - V2uM (magnetic potential)

(5) V • J = (\/4-n)d/dtV
2
<$>f (continuity)

To begin, Lorentz referred directly to Maxwell, Rowland, and Hall, remarking:

Immediately after M. Hall carried out his first experiments, M. Rowland

remarked that the action whose existence they betokened could lead to an

explanation of the electromagnetic rotation of the plane of polarisation of

light. In effect, if, under the influence of a magnet, a current is deviated

from its direction as a result of the appearance of a transverse component,

one grasps that the luminous vibrations which, according to Maxwell's

theory, are motions of the same nature as electric currents, equally expe-

rience a rotation in a magnetic field. Later, M. Rowland published an ex-

tended memoir in which he studied the question more closely, limiting

himself to insulating bodies. It is true that, in his experiment with an in-

sulator, M. Hall could not find a rotation of the lines of force, and that

theoretical reasons also led us to regard such an action as improbable; but

nothing prevents us from supposing that, in insulators, an action analogous

to that which M. Hall observed in the metals occurs in a different manner.

One can in effect admit that, in a magnetic field, all motion of electricity

in an insulator (Maxwell's displacement current) provokes a transverse

electromotive force. That is the hypothesis which served as M. Rowland's

point of departure. (Lorentz 1884, 148-49)

Despite these references to Maxwell and Rowland, Lorentz began with the Helm-

holtz equations (l)-(5), which contain the anomalous term —dV<\>f/dt in the Ampere

law, as well as the constant k. However, equation (2) does not appear in Lorentz's

deductions because he considers the current vector, J, and not the electric field, E,

to be the optical vector, while without comment he sets <|>y equal to zero. This last

step is not legitimate in the Helmholtz theory when one is dealing with conductors.

Moreover, Lorentz does not commit himself to a specific form for J as a function of
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E, thereby avoiding the question of whether Maxwell's displacement, or Helmholtz's

polarization, current is at issue. These last two steps—setting (jyto zero and ignoring

the form of J—in effect permit Lorentz's theory to accord fully with Maxwellian

theories like Rowland's insofar as the differential equations (and even boundary con-

ditions) are concerned. It is hardly likely that Lorentz was unaware of that fact.

Indeed, it seems quite likely that we have here Lorentz's first, tentative nod to a

properly Maxwellian theory insofar as the field equations are concerned.

Lorentz thus assumes only that J and E are linearly related in their derivatives

with respect to time:

n n

(6) X ajfhdt = X bjd'J/dt'

« = o »=o

This relation includes, but is not limited to, both conduction and "polarization"

currents and has the additional advantage of being sufficiently general to incorporate,

if necessary, dispersive effects. Assuming that J and E vary as e
loyt

, equation (6) can

be written:

(7) J = pE

where p is, in general, a complex number and function of the frequency. If Lorentz

had adopted the Maxwellian relations and had ignored dispersion, then he would

have written p as a + z'ea), since in Maxwellian theory J is uE + edE/dt where a
is conductivity and e is inductive capacity.

The core of Lorentz's theory, like Rowland's, consists in the idea that the trans-

verse electromotive force which is due to the Hall action must be added to the E field

to form a total field ET , and that ET then replaces E in all relations between current

and electromotive force (viz., in eq. [7] and so in the Ampere law), but that only the

E part of ET functions in the Faraday law. That is, electromagnetic induction per se

does not implicate a Hall action, the latter being linked directly with the magnetic

field and not its time rate of change:

(7') J = pET

(8) ET = E - Ti x J

Lorentz goes on to consider the special case of a plane wave J traveling parallel

to h and normally incident on a metallic surface. He does not explicitly deduce a

wave equation for J, preferring to operate directly with the field equations. We can,

however, follow Lorentz's deductions and easily deduce this equation. The deduction

is essentially the same as Rowland's earlier one and Basset's and J. J. Thomson's

later ones. From (3), (7'), and (8) we have (setting A to one for simplicity):

(9) V x (V x H) = 4tt/?[V x E - V x $ x J)]

If h is constant, then equation (3) implies that V x (h xy^is equal to -(h V)(V

x H), which is, again by equation (3), just -4tt(% • V)7. Hence we have from

equations (1) and (9):

(10) V X (V X J) = 4ir
J

p[-(l + 4T:Q)dJ/dt + (/z • V)(V X J)]

The expression 1 + 4tt0 is the magnetic permeability (x, and in Lorentz's theory the

form of p is left provisionally open.

To obtain boundary conditions, Lorentz (like J. J. Thomson nine years later) as-
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sumed that, as usual, Etan and H^n are continuous. From equations (7') and (8),

continuity of Etan entails:

(11) [J/p + Jt x 7]^ continuous

(Note that, by virtue of the Ampere law, eq. [11] also entails the continuity of the

normal component of H, whence Lorentz sets a>M to zero in eq. [4] for consistency.)

To better understand the relationships between the various theories we will ex-

amine, I shall reduce p to the form a + e'd/df, leaving open the question of whether

e' is inductive capacity or dielectric susceptibility. (As usual in magneto-optics, we
ignore the magnetic permeability, 1 + 4tt6). Then our equations become, by virtue

of equation (5) with <$>f set to zero:

(10') d^/dt
2 = [l/(e' - /a/o))]V

2
7 + (fi • V)(V x dJIdt)

(11') {[l/(cr + ie'u)]J + £ X 7}^ continuous

In this form we can see how the constants of metallic reflection (see appendix 8)

enter: since by definition R2
e
2,a

is e' - /o7co (the frequency w is unchanged by

reflection and refraction), equations (10') and (IT) become:

(10") d
2
J/dt

2 = R- 2
e~

2iaV2
J + {I • V)(V x dJ/dt)

(11") [-(i/io)R~
2
e~

2ia
J + ~fi x J]^ continuous

(Note that we could just as easily use H in place of J by the Ampere law.) We could

also obtain equations (10") and (11") directly from (10) and (11) if we assumed in

equation (6), that all a if b
t
vanish except b , a and a

x
. For then we have J equal to

(\lb )(aoET + axdEfldt), recalling that here ET replaces E. We now define R 2
e

2lOL
as

(l/boX^i — iao/u)', in effect, a becomes ao/b , and e' becomes a x .

The purpose of introducing R 2
e
2ia

is that it represents the square*of the complex

index of refraction. Consequently, if we introduce the complex angle of refraction,

0fl, phase continuity at once gives the metallic analog of Snel's law:

(12) Re
,a = sine/sine*

Lorentz did not solve his equations for the general case (arbitrary incidence and

direction of h), but his student, van Loghem (1883), did so for the two cases in

which h either is perpendicular to the plane of separation (termed "polar" reflection)

or lies in the intersection of the planes of incidence and separation (termed "equa-

torial" reflection). The results were first obtained in terms of the usual metallic dR

and the angle of incidence 7 , and then equation (12) was used to obtain expressions

in terms exclusively of R, a, h, and 67 .

Van Loghem found that the magneto-optic component of the reflection in its com-

plex form is, in both polar (/?J, ) and equatorial (t) cases, perpendicular to the

incident direction of polarization for waves initially polarized in or perpendicular to

the plane of incidence; it is equal to a factor —K times the expressions for the usual

complex reflections, R™e{
(parallel to the plane of incidence), and /?™et

(normal to the

plane of incidence), for the polar case, and ± A'tan9
/?
times the metallic reflection for

the equatorial case:

(I) Incident polarization in the plane of incidence:

R?el = -sin(6, - e^/sinO, + 8*)

nP I'nmel

RE
mo = tftfrtane*
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(II) Incident polarization normal to the plane of incidence:

RT = tan(0, - 0^)/tan(e, + QR )

nP _ f r>met
"mo - — A/C v

REmo = -KRTtmd,
K = p|S|sin(2e,)sin8*/sin

2
(e, + e^)cos(e, - 6*)

In these deductions several approximations were used which depend solely on the

assumption that |/i| is very small. Since the differential equations and boundary con-

ditions implied by the various theories we shall examine are precisely the same in

form, I have, in appendix 9, summarized Drude's comparatively simple deduction

and shall not go into details concerning the others, except to remark that in van

Loghem's and in D. A. Goldhammer's equations (see sec. 26.2 below) no assump-

tion is made concerning the magnitude of the metallic constant R; in Drude's and

J. J. Thomson's theories it is assumed that either R4
or R2

is much greater than one.

(As appendix 8 shows in detail, this is due to the fact that most Continental physi-

cists—here Drude was an exception—employed equations for metallic reflection

which originate with Cauchy, whereas Drude and the British preferred, in general,

less exact but analytically much simpler expressions in which approximations are

made that depend on the size of/?.) However, it is extremely important to understand

the structure of van Loghem's results.

Van Loghem had found that in both polar and equatorial reflection all proceeds as

usual in metallic reflection (viz., the amplitude and phase of the incident wave are

altered per the usual equations) with one important difference: in all cases a small

component is introduced perpendicular to the original plane of polarization with its

own amplitude Amo and phase 4>mo ; this phase and amplitude, moreover, do not de-

pend on whether the original polarization is in or normal to the plane of incidence.

Van Loghem proceeded to calculate the phase and amplitude explicitly. In his expres-

sions below, the usual Continental auxiliary quantities for metallic reflection

(namely, a and s) appear, together with their functions r ]f r2, $i, 52 (see appen-

dix 8):

(13) AE
mo = |&|/?

3
sine#/flrfocos

3
e7

(14) <!&> = 3a - s + tt/2 - 25! - 52

For (13) and (14):

re = ae «&,,vmo nmoc

(15) Ap
mo = -aRAE

mJsinQ,

(16)

For (15) and (16):

(16) <t>L = <|4> + « +

e^™

These equations (published in this form only in van Loghem's thesis but, ex-

pressed in terms of dR , fully described in the abstracting Beiblatter in 1884) rapidly

became the foundation for all subsequent Continental work in magneto-optics. From

them it is possible to calculate precisely what should be observed in reflection exper-

iments since the phenomena depend entirely on the amplitudes and phases of the

components of the reflection in and perpendicular to the plane of incidence. The latter
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are given by the Lorentz-van Loghem equations (13)—(16) together with the usual

metallic formulae (see appendix 8 to see how this works in metallic reflection, and

appendix 9 to see how it works magneto-optically). Moreover, all subsequent theo-

ries, including British theories, differ from the Lorentz-van Loghem equations in

only one detail: the presence of an additional constant term in the phases (14) and

(16).

Yet it is on the empirical form of this single term that the transition in magneto-

optics between macroscopic and microscopic theory depends. To understand fully the

complicated events which occurred during the next twelve years, we shall begin with

the experimental situation as it appeared in 1891. For it was only in that year that

another student of Lorentz's theory (and probably also of Lorentz), Remmelt Sis-

singh, completed the first experiments capable of very accurately measuring the am-

plitude and phase of the magneto-optic component.
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Quantitative Determinations of the Magneto-

Optic Phase and Amplitude: Sissingh's

Experiments

Although Sissingh is today an unknown figure in the history of physics, his experi-

mental work in magneto-optics was a critical factor in the development of electro-

magnetic theory in Holland and Germany during the early 1890s (Sissingh 1891,

1897). Moreover, the apparatus which he designed and built was later used by Zee-

man in the experiments which form the background to the discovery of the Zeeman
effect in 1896. The influence of Sissingh's work derives from two characteristics:

first, Sissingh developed a precise set of equations for calculating phases and ampli-

tudes directly from observation; second, his apparatus was accurate and easily rep-

licable.

The device Sissingh built (see fig. 22) consisted of four major components: (1) a

beam collimator, (2) a polarizing prism, (3) a device capable of being rotated about

a vertical axis and containing the magnetized reflecting surface, and (4) an analyzing

prism. Two distinct types of experiments were performed for which Sissingh intro-

duced the terms "minimum" and "null" measurements. In the "minimum" mea-

surements, one begins by polarizing the light as accurately as possible in or perpen-

dicular to the plane of incidence and setting the analyzer so that it completely

extinguishes the reflection before the electromagnet is turned on. Then, after turning

the electromagnet on, the analyzer is rotated until the intensity in it is minimized.

We shall denote the positions of the analyzer when this is done by Y*, Y* for polar-

ization in, and normal to, the plane of incidence, respectively. One can carry out

precisely the same experiment by initially fixing the analyzing prism in or normal to

the plane of incidence and then rotating the polarizing prism until minimum intensity

is reached in the analyzer. The angles of the polarizer when this is done are desig-

nated r£ , Yy for polarization in, and normal to, the plane of incidence, respectively.

The "null" experiments are a bit more complicated than the "minimum" ones,

for here the idea is to achieve a plane-polarized reflection instead of an elliptically

polarized one. This can be done only if the analyzer and polarizer are inclined to the

plane of incidence or its normal because only in this way can one produce a reflection

whose components in and normal to the plane of incidence differ in phase from one

another by an integral multiple of it. However, one finds experimentally that one can

achieve this result by setting the prisms at only small angles. We define these angles

as follows: if the angles *y£, t£ of the polarizer set it, respectively, close to or normal

to the plane of incidence, then the corresponding angles of the analyzer with respect

to or normal to the same plane are respectively denoted 7^,7^.

Appendix 10 provides details of Sissingh's deductions of equations (l)-(8) below

(particularly the intermediate steps [eqs. (l)-(6) in appendix 10]). In appendix 10 I

also explain why Sissingh replaced the angles we have just discussed with the angles

between the loci of the polarizer or analyzer for opposite field directions (i.e., a

marked increase in accuracy results). These "double" rotations are what appear in



The Magneto-Optic Phase and Amplitude 211



212 Chapter Twenty-five

equations (l)-(8). Equations (l)-(4) determine, in minimum experiments, the mag-

neto-optic and metallic phase differences (<j>) and amplitudes (A) in (L) and perpen-

dicular to (V) the plane of incidence:

lL :

(1) tan<j>r = -cot<KT - (l/sin^rXAj/AfXlt/It)

(2) AT = ArT^/cos^r

(3) tan<|>r = -cot^r 1 - {\lsm<bT)(A
R
IA

R
L){Y

A
vlY

p
v )

(4) AT = /CTf/cosC

So we see that to calculate the magneto-optic component we need two experiments

in each of which either the polarizer or the analyzer is fixed, and we need also to

compute the usual metallic amplitudes and phases.

Equations (l)-(4) lead to important limitations on experimental accuracy which

Sissingh carefully discussed. The basic point to grasp is that an accurate minimum
experiment can be made only if a small rotation of the variable prism produces a

very noticeable change in the intensity. This change is the more noticeable the

smaller the initial intensity. However, the equations show that in the vicinity of the

usual metallic principle angle of incidence, where <$>™
et

is an odd multiple of 90°, the

analyzed intensities are not very small. Consequently, minimum observations, to be

at all accurate, should be done far from principal incidence. But even then, the

equations show, the accuracy will be much better for the amplitude than for the

phase.

This is why Sissingh also performed null experiments, for here the reverse situa-

tion obtains: they are accurate only near principal incidence, and their accuracy is

higher for phase than for amplitude. We can find the null expressions for phase and

amplitude from equations (1) and (2) in appendix 10 because here the intensities

actually vanish. If, again, we denote by 7 the angle between the variable prism

positions on field reversal, we find:

k:

(5) cot4>r = cot(|C
et - (l/sin4>r)(Af/AfX7^/7r)

(6) AT = -AjItsin^r/siiKl)?

/v

(7) cotctC = cot<tC
et - (Vsin<\>TM

R
L/A

R
)(y

P
/^)

(8) /C° = -Afr^incjCVsintK
10

The null experiments have the additional advantage over the minimum experiments

in that only one pair of simultaneous observations is needed to find an amplitude and

phase.

Before considering Sissingh 's actual experiments, let us for a moment examine

how, using equations (l)-(8), one can compare a theory with experiment. The pro-

cedure is, in principle, quite simple. As we have seen in the case of the Lorentz-van

Loghem equations, theory provides the magneto-optic phase and amplitude for a

given incidence and polarization. Metallic reflection experiments give the values of
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the corresponding metallic phases and amplitudes. Substituting these calculated val-

ues into any of the pairs of equations (l)-(2), (3)-(4), (5)-(6), and (7)-(8), one can

solve for the two unknowns (viz., the null or minimum angles) and then compare

with experiment. Alternatively, and more simply, one can calculate the magneto-

optic phase and amplitude from theory and then compare them with the empirical

values computed from equations (l)-(8). These two procedures involve considerably

different methods of estimating experimental error. In the former case, which is in

effect direct calculation of the angles from theory, one must compute the likely errors

in both the calculated and observed rotations. In the latter case, one computes errors

only in the calculated and observed phases and amplitudes, or, even more simply,

one can deal entirely with the phases since they are independent of magnetization on

all theories. This latter was Sissingh's procedure. The former computation is much

more difficult than the latter because the computed rotations are always effectively

obtained via phase and amplitude computations even when the Sissingh equations are

not directly employed. This had important historical effects, because Drude relied

directly on the rotations and did not actually compute likely errors for them but only

offered extremely weak estimates, whereas Sissingh, and later Zeeman, could have

great confidence in their estimates of the phase errors because here the computation

is comparatively simple and is independent of amplitude errors.

No matter how errors are computed, there are multiple sources of possible inac-

curacy in both theoretical and experimental computations. First of all, there is the

problem of error in measuring and setting of the double rotations. Sissingh, by using

multiple series of observations, was able to reduce this to about 20". This is not

sufficient to calculate phase and amplitude errors from the Sissingh equations because

the latter also require computation of the usual metallic amplitudes and phases, and

here errors in the empirical values of the metallic constants R, a enter as well. These

errors are not necessarily insignificant because it was soon found that, as a result of

oxidation of the reflecting surface engendered by the short cooling process necessary

between field reversals, R and a change substantially. This problem was subse-

quently overcome by Zeeman, who cooled the surface more slowly, measured the

principal incidence and azimuth, which determine R and a (appendix 8), both before

and after an experiment, and used the mean values for computation. Errors in the

metallic constants also affect theoretical computations. (Drude relied strongly on such

errors to extend the spread of his theoretical calculations to accommodate the obser-

vations.)

In 1891 Sissingh had only the Lorentz-van Loghem equations to compare with

experiment. First, Sissingh remarked that certain broad features of these equations

are well confirmed experimentally. In particular, the Lorentz-van Loghem theory

—

indeed, every theory for the simple reason that all theories agree in the implication

that the phase and amplitude are the same for incident polarizations in either of the

principal planes—implies a set of equivalences between the polarizer and analyzer

angles:

Polar magnetization:

re = rz n = rf

(9) rt = r: -/L = n
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Equatorial magnetization:

TAV = -It 7? - -yl

do) r? = -it 7C - -a
That is, one can always find the analyzer from the polarizer rotations for incidence

in the other principal plane, and vice versa. The polar relations are the Righi (1885)

"law of reciprocity." Sissingh used these relations to simplify his calculations

greatly since one now needs only to experiment with a variable analyzer and inci-

dences in the principal planes. Unfortunately the Lorentz-van Loghem equations fail

markedly in another respect.

Sissingh 's experiments were done solely with equatorial magnetization with an

external field intensity at about 1400 cgs, an iron reflector, and sodium light. He first

computed the phases and amplitudes from equations (l)-(8) for ten incidences rang-

ing from 6° to 86°, the principal incidences of the two mirrors he used being at

76°30'5 and 77°23!5. From the Lorentz-van Loghem equations the ratio kT of the

magneto-optic amplitude to \n\ can be computed. Since \n\ is proportional to the

external magnetic field (within the range that hysteresis is not significant), the ratio

of the observed amplitude to kT should be a constant at all incidences, and indeed

Sissingh finds it to be 1.49 ± 0.14 x 10~ 3
. The observed magneto-optic phases,

however, differ from the theoretically computed phases by a mean value (85) equal

to 84°53!5 (± 1°), as calculated from observations primarily of v* to minimize errors.

This is vastly too great for the allowable phase error. Indeed, since all theories agree

in requiring the actual magneto-optic phase for incidences in either of the principal

planes to be equal, to find the phase error we need only find the mean difference for

these values from Sissingh' s experiments for v* and v£. That mean difference is just

about 1°, as Sissingh noted, and is, therefore, close to the standard deviation of

Sissingh' s value for 85 . One can also compute errors from the inaccuracies both in

setting the rotations and in the metallic constants. The latter derive from empirical

errors of about 1° maximum in setting the principal incidence and azimuth, while the

former are, as remarked above, about 20". For Sissingh's experiments I compute a

mean maximum phase error of 3° from rotational inaccuracies, and a maximum error

of 1° due to the metallic constants, for a total maximum error of 4°. The true accu-

racy is 4 times as good because errors in setting the rotations are mutually compen-

sating, and, again calculating errors from the Sissingh equations and taking account

of this compensation, the total error drops to about 1?4. In any case it is simply not

possible for the mean phase error to exceed 4°.

The difference 85 between the Lorentz-van Loghem equations and experiment was

thereafter referred to, particularly by Zeeman, as the "Sissingh phase," and the goal

of all future theories was to obtain equations which at least permit it to be nonzero.

The value of 85 is critical for the observed rotations, and one does not even need to

calculate extensively to see that the Lorentz-van Loghem equations fail badly. For,

if 85 is zero, as they require, then for all metals the rotation T* can never change

sign, which even Kerr had seen it do for iron. Moreover, again if 85 is zero, then

r£ does change sign, which is not true. In the case of iron, 85 must be greater than

about 65° to accommodate these two gross facts at all, much less to predict the

incidence at which reversal occurs accurately. The question was how to reasonably

alter the differential equations to obtain this result. It was this question that ultimately

led to the first major breakdown in electrodynamics of macroscopic theory.
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Failure of the Macroscopic Theory: The

Drude-Goldhammer Controversy and

Zeeman's Experiments

26.1 The Drude Theory

The first response to Sissingh's demonstration of the failure of the Lorentz theory

came early in 1892, scarcely a year later, but we shall consider this work below, for

it was here that a fundamental breach with all previous theories first occurred. Let us

begin with Paul Drude 's (1893a) attempt to design a macroscopic theory capable of

accommodating Sissingh's results.

We have already seen that Drude did not grasp the core of Maxwellian theory any

more than Lorentz did, but his strong commitment to macroscopic analysis also fa-

vorably inclined him toward Maxwellian energetics for the field. He was also widely

known as an expert on metallic reflection, and, unlike Lorentz and most Maxwellians

before J. J. Thomson's work in 1893, Drude also strongly felt that there is no direct

connection between the Hall effect and magneto-optics except in the very general

sense that both probably involve additional field energies which are similar in form.

In accordance with his firmly macroscopic outlook, but noting that such a term may
be obtained from the MaxweH addition to the field energy, Drude decided simply to

add a term of the form (d/df)[V X (h X E)] directly to the Faraday law. This at once

alters the propagation equations from what one obtains directly through a "Hall"

analysis in which the total current is implicated, though we shall see that the altera-

tion can be interpreted in the usual "Hall" terms.

To see what is involved, consider first how the Faraday law is ultimately affected

by the "Hall" term in the usual Maxwellian relationship between J and E:

J = cjEt + zdEjIdt = (a + ed/dt)(E - ft X 7)

Since J is V X //by the Ampere law, the Faraday law becomes in general:

(1) -dH/dt = V x ET + V x \k x (a + ed/dt)ET]

This, in fact, leads directly to the Lorentz wave equation. In Rowland's theory, ct

was zero. We have already examined J. J. Thomson's (1893) theory in which a was
omitted in equation (1) but not in the Ampere law, which implied that only displace-

ment currents function optically in the "Hall" term, even when the medium has

conductivity. J. J. Thomson's theory is completely equivalent to Drude 's if we sim-

ply set TtJJT equal to ehDRD , the sole difference being that Drude forewent any con-

nection to a "Hall" action and termed his equations an uninterpreted "Erklarungs-

system". So we can at once write down the Drude wave equation, inasmuch as it is

the same as J. J. Thomson's:

(2) d^/dt2 = [!/(€ - /a/w)]V
2
// + [l/(e - icr/co)](€S V)[V X (dH/dt)]
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Since R2
e
2ia

is e — /o7a>, this is just:

(3) b
2HI^ = /TV 2,aV2# + R- 2

e-
2ia

(eft -V)[V x (dH/dt)]

Comparing equation (3) with the corresponding Lorentz equation (10") of chapter

24 (the wave equation for J is the same in form as equation [3] for H by the Ampere

law), we see that one can obtain the Drude equations formally from Lorentz 's simply

by including the factor eR
~ 2
e~

2ia
in hLTZ .

For boundary conditions Drude used the same argument that Basset had employed

in 1891, even though Drude was evidently unaware of Basset's work despite its

publication in the premier British journal, the Philosophical Transactions. That is,

he turned to Poynting's theorem. The conditions are the same as those obtained

merely by requiring continuity of //tan and of the tangential induction part of ET ,

namely, £tan :

(4) {/rV 2,a
(V x H) + e/rV 2 'a

£ x [V x (dH/dt)]}tan continuous

These are the same in form as the Lorentz equations in chapter 24 if we factor in

*R~ 2
e~

2lCL
in Lorentz 's second term. As a result one can see that the only difference

between the Lorentz-van Loghem equations (13)—(16) of chapter 24 and the corre-

sponding Drude equations will be the addition of +2ct (or, equivalently, tt —2a) to

the magneto-optic phases, and the multiplication of the amplitudes by dR2
, because

multiplication of h by ae~ ,bs simply adds 85 to the phase and multiplies the amplitude

by a. Drude, however, preferred not to introduce the amplitudes and phases directly,

so his equations (for which I have given an abridged deduction in Appendix 9) must

be manipulated to compare them directly with the Lorentz-van Loghem expressions.

Thus Drude left the component ratios in their complex form and obtained rotations

directly from them by means of approximations in which R4
is taken to be much

greater than one. The result is that Drude was uninterested in phase computations

and insisted on dealing directly with the empirical rotations (which are the real parts

of the complex component ratios).

Drude did not actually compare his theory with Sissingh's equatorial experiments;

instead, he examined the polar and equatorial experiments which A. Righi had per-

formed in 1885 and 1887. Righi's experiments were reasonably accurate only for the

polar case, and even there they are far less accurate than Sissingh's equatorial mea-

surements. As Sissingh pointed out, Righi's equatorial experiments suffer from de-

viations of nearly 100% in the values they imply for the Sissingh phase, 85 . Com-

paring his theory with Righi's (minimum) polar observations, Drude finds differences

between theory and experiment which, I find, have a mean value of about 1', which

seemed to Drude to be quite good, especially since Righi did not give enough detail

to allow one to estimate the inherent error in his experiments. Indeed, Righi did not

even give the optical constants of his (iron) mirror, so Drude had to use known

values which could easily have differed substantially from the correct ones. More-

over, as far as minimum observations are concerned in both the polar and equatorial

cases, Drude 's theory implies a reversal of rotation only for rj in the equatorial case,

which is true for iron. Drude comes within 1?5 of the incidence at which the reversal

occurs.

However, when Drude calculated null rotations for Righi's experiments, he ran

into problems, for here his computations reveal mean deviations between theory and
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experiment of I'.l and 3!5, respectively, for v
p (= v£) and v? (= v

p
L ). Of this he

could only say that for null observations the "errors are greater" (Drude 1893a,

404).

This deviation between theory and experiment reveals the inadequacy of Drude'

s

theory, because null observations depend more critically on the magneto-optic phase

than do minimum observations. We have seen that, according to Drude' s theory,

the Sissingh phase o5 should be tt
— 2a. Recall that, for iron, Sissingh had ob-

tained ~84°53' for 8S , using primarily v^ experiments to minimize errors. On
Drude's theory 85 should be 76°16\ since Sissingh's measures for the principal

incidence and azimuth for iron give a as 51°52'. This is a difference of 8°37', which

is over eight times as great as the deviation allowed by Sissingh's experimental

errors.

But Drude did not closely examine Sissingh's experiments because he felt they

agreed overall with Righi's results, though he knew Righi's equatorial measurements,

at least, were much less accurate than Sissingh's. While he was working on his

theory Drude was unaware of any alternative theory besides Lorentz's, and he was

quite content at this time to have found a way of avoiding the inadequacies of the

Lorentz theory through his macroscopic "Erklarungssystem." Indeed, the great ad-

vantage of Drude's theory is that it provides a value for 85 in terms of the usual

metallic constant a and is therefore able to operate solely with macroscopically sig-

nificant quantities, since a derives ultimately from the conductivity and capacity. The

only underived constant in Drude's equations is h itself, and that is at least a function

of the magnetic field. It is, moreover, a real vector, just as E and H are real, and

therefore has full macroscopic significance.

Shortly after completing his work in March 1892, Drude learned of an article on

the subject by D. A. Goldhammer (1892a). There Goldhammer developed an alter-

native theory which implied that o5 cannot be obtained directly from known optical

constants. Indeed, the striking and macroscopically paradoxical thing about Gold-

hammer's theory was that it seemed to require the vector h itself to be complex. This

was unacceptable to Drude. In a note to his article (1893a) he commented only that

he did not see the empirical necessity for introducing an extra, undetermined constant

—the phase of h—when his own theory worked quite well.

In Goldhammer' s theory we find the first impetus to microphysics in what had

hitherto been the province solely of macroscopic calculations.

26.2 The Goldhammer Theory

Goldhammer, like Sissingh, is little known today, but his work was instrumental in

demonstrating the insufficiency of macroscopic theory in magneto-optics, though he

himself probably did not perceive it in quite that way. To understand Goldhammer'

s

unorthodox theory, we must begin, paradoxically, with his quite orthodox consider-

ation in 1887 of the usual conduction current Hall effect and his attempt to link it to

the alteration in longitudinal resistance of metals when magnetized. (This latter is an

instance of magneto-resistance and is due to the Hall effect.)

Referring directly to Maxwell's Treatise, with which he was unusually familiar

for a German physicist of the time (the year before Hertz's experiments), Goldham-

mer, like Hopkinson before him, considered the Hall effect to be the result of ani-
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sotropy imposed by a magnetic field on the relationship between current and electro-

motive force (Goldhammer 1887<a, b)\

Pll Pl2 Pl3

V<J> = ~ p21 P22 P23 C = ~ [p]C

(5) LP31 P32 p33_

Assuming current incompressibility (V • C = 0), Goldhammer found that [p] could

be split into a symmetric matrix [p5] and a cross-product term in C:

(6) V(j> = [p5]C + p x C

He then chose axes such that [ps] became diagonal [pD ]. This implied that the lon-

gitudinal resistance of the metal, namely [pD ], should also be affected by the mag-

netic field, which recent experiments qualitatively confirmed.

Goldhammer (1892a), well aware that Sissingh's work had revealed a significant

flaw in Lorentz's theory, generated a new modification of equation (6) to overcome

the problem. Moreover, Goldhammer wished to free magneto-optics from reliance

on Helmholtz's equations, which Lorentz had used. To this end, he employed the

full spectrum, including potentials, of Maxwell's equations.

Let us begin with Goldhammer' s seven field equations, which he referred directly

to Maxwell's Treatise:

(7) E = -V(}> - dA/dt

(8) V • A =

(9) D = e£

(10) J = dbldt + £/p

(11) V • J =

(12) V2A = -4tt7

(13) H = V x A

These constitute, in effect, four definitions (egs. [7], [9], [10], and [13]) and three

conditions (eqs. [8], [11], and [12]). To these, and springing from them, Goldham-

mer appended continuity conditions:

(14) Jnorm continuous

(15) cj>, A, VAXV2 continuous

(16) (V
2
^)norm continuous

In virtue of these equations, Goldhammer introduced an auxiliary vector A' and a

scalar o> such that:

(17) A' = A - Vw
(18) V2

u> =

As we shall see, Goldhammer considered A', and not A, to be the optical vector.

We come now to the heart of his theory. Considering the set of equations and

conditions (7)—(18), one sees that all but two of them are completely independent of

electromagnetic constants: for only (9) and (10) involve e or p (\x, as usual in mag-

neto-optics, is ignored). Goldhammer insisted that one should modify these two

equations—and only these two—for magneto-optics. In other words, the Faraday and

Ampere laws in themselves must not be touched: the field proper is not altered by

magneto-optic action except through effects on electromagnetic constants.
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This was an extremely unorthodox view in both Britain and the Continent. All

theories, except for Drude's, which appeared after Goldhammer's and which directly

modified the Faraday law, would effectively proceed with these equations as follows:

(i) modify equation (7) by adding the "Hall" field; (ii) feed this total ET field into

unmodified equation (9) to obtain a new displacement field; (iii) feed this new dis-

placement field, as well as ET, into unmodified equation (10) to obtain the current;

(iv) use unmodified equation (12) to obtain V2
A; (v) finally, use unmodified equation

(13) to find the wave equation for H (or, if one prefers A, as Rowland and Maxwell

did, equation (13) is unnecessary). If J contains the total current, this procedure leads

directly to the Lorentz wave equation; if J contains only the displacement current,

we obtain the J. J. Thomson-Drude wave equation. Neither satisfies experiment. A
new approach, Goldhammer felt, was necessary.

Goldhammer's idea was to take equation (6) for the Hall effect and to generalize

it considerably without adding any new fields but relying entirely on a kind of an-

isotropy. Beginning with equation (10), which contains both conduction and dis-

placement currents, Goldhammer assumed J and E to vary as e~'
at

:

(19) dE/dt = [l/(e + i/ap)]J = A7

He next assumed that magnetization transforms A into a matrix [A]:

(19') dE/dt = [A]7

He then carried out the separation of A into a diagonal matrix [AD ] and a cross

product in J:

(20) dE/dt = [AD]7 + k x J

The crucial point to grasp here is that the components of both [AD ] and \ are complex

numbers because of equation (19). Moreover, their values cannot in principle be

obtained from the isotropic values e and p because the essence of Goldhammer's

assumption is that magnetization produces alterations in the usual electromagnetic

constants. Indeed, he went so far as to write k in the form

[l/(€, + Uapd, l/(e 2 + i/ap2), l/(e 3 + i/ap3 )]

where the €, and p, are obtained by splitting [A] into a matrix and a cross product

and then diagonalizing. [A] itself derives from the scalar A by transforming e and p

each into €,-,- and p,y.

Equation (20) is, however, insufficiently general for the Kerr effect because that

effect does not in any way involve the alteration in longitudinal resistance which

equation (20), in common with equation (6), incorporates. Goldhammer therefore

took a momentous step: returning to equation (19'), he added to it a priori a term

[$]dJ/dt which by hypothesis springs into being only when the metal is magnetized

and which must, like [A], be due to the metal's internal structure in some way. He
assumed that [A] and [£] have the same general properties since they both derive

from the effects of magnetization: in particular, that they share principal axes and

that the components of both are complex numbers, though they are otherwise unre-

lated. Spiriting [p] into the diagonal matrix [pD ] and a cross-product term involving

a vector X', Goldhammer now had:

(21) dE/dt = [AD)J + k x J + [$D]dJ/dt + k' x dlldt
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In the limit of constant J, this reduces to the Hall equation (20).

For magneto-optics, Goldhammer continued, we may assume that the anisotropy

in [A] is of little consequence and that [pD ] has, in itself, no important effect. These

are again a priori assumptions. So, finally, Goldhammer had his new expression:

(22) dE/dt = [l/(e + i/pa)]J + X' X dJIdt

He regarded equation (22) as a "pure hypothesis" (Goldhammer 1892a, 76), but he

nevertheless insisted that the components of X' must be complex numbers because X'

is obtained from [p], and [p] is introduced as a generalization of [A] to changing

currents. If the components of [A] are complex, Goldhammer reasoned, then so must

be the components of [p].

Equation (22) marks the first break in magneto-optics with macroscopic theory,

albeit an implicit one, because it introduces into the wave equation a complex mag-

nitude which is not obtainable from the usual electromagnetic constants. Take equa-

tion (22) as a replacement for equations (9) and (10) and combine it with the remain-

ing field equations:

(23) d
2
H/d? = R2

e'
2iaV2H + (X' • V)[V x (dH/dt)]

This wave equation differs formally from previous ones in a single important partic-

ular: the magneto-optic vector, X', is in itself complex. Moreover, its complex char-

acter derives ultimately from Goldhammer' s modification of the relationship between

J and E and can in no way be thought of as depending on the question of which of

the two currents—conduction or displacement—is of magneto-optic importance. Here

the vector X' has been fully divorced from macroscopic significance, and the cause

of that divorce comes from the effect of a magnetic field upon the internal structure

of a metal. If this wave equation were to be accepted as alone capable of explaining

the facts, then it would at once be clear that macroscopic theory was faced with a

profoundly disturbing result. This is, if anything, even more obvious if one is forced

empirically to introduce a phase factor into Drude's magneto-optic vector, for then

the generalized Faraday law itself would contain a complex vector, necessarily de-

void of the macroscopic significance which E and H possess.

One would therefore not expect to find Drude, who was at this time so strongly

committed to macroscopic analysis, ready to abandon his wave equation for Gold-

hammer's. He did not do so, and his refusal inaugurated a rather bitter controversy

with Goldhammer in which Drude went so far as to call into question Goldhammer'

s

competence as a mathematician. Drude's anger and impetuosity in this matter reflect

the importance of the issue to him. It was not an argument merely over the presence

or absence of a constant in a wave equation; it was an argument that concerned the

basic structure of contemporary theory, and Drude was well aware of that fact.

26.3 The Controversy

Much of the Drude-Goldhammer controversy concerned Goldhammer' s deductions.

The problem was that, in seeking to follow Maxwell, Goldhammer insisted on em-

ploying a vector potential as the optical vector, but he was not sufficiently removed

from the Helmholtz theory so that he could simply ignore the scalar potential, even

though Helmholtz's anomalous term in the latter's time derivative no longer appears
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1

in the Ampere law. As a result, Goldhammer actually obtained four equations—the

wave equation for the vector potential coupled to three auxiliary conditions. More-

over, Goldhammer employed the vector A' of equation (17), which differs from A
by the term Va) subject to the Laplace equation for oo. The purpose of introducing w

was to facilitate application of the boundary conditions ( 1 4)—( 1 6) . So, combining

equations (7), (12), (17), and (22) Goldhammer initially obtained:

(24) d^'/dt
1 + 3/dfV[4> + du/dt] = -V2

[A7(e + i/pa) -X' x (dA'/dt)]

Note that <\> and o> both appear in equation (24)—a Maxwellian would simply have

ignored the scalar potential, whereas someone influenced by Helmholtz would have

retained it if possible. It is possible to do so, but this leads to considerable analytical

complexities, including the introduction of a pseudo-wave for the scalar potential,

one with an infinite wavelength. (On these points see appendix 10.)

Despite Goldhammer' s extraordinarily complicated methods, he nevertheless ob-

tained in the end the Lorentz-van Loghem expressions (13)—(16) of chapter 24, with

a single difference: to the magneto-optic phase is added the phase 55 of the magneto-

optic vector X' = k'Re
lbs

(In fact, one can obtain numerical values for Goldhammer'

s

theory from those of the Lorentz theory simply by adding bs to the phases and divid-

ing the amplitude by R2
.)

Unfortunately, in addition to the intrinsic complexity of Goldhammer' s calcula-

tions, his article as published contains a series of misprints wherein, in the basic

boundary conditions given in component form, A' is mistakenly printed for A. That

this is a misprint is completely obvious to any careful reader. Drude, however,

missed this fact when he first perused the paper, and he was in any case unwilling

to accord Goldhammer' s analysis serious attention. In the note at the end of his own
1892 article, Drude (1893a) claimed that Goldhammer' s boundary conditions are

irreconcilable with his own. So Drude felt that the two theories differ in more than

the presence of the factor bs in the magneto-optic vector.

Goldhammer soon saw Drude 's paper, and he replied to it later in the year (Gold-

hammer 1892b). He began by pointing out that the only difference between his and

Drude 's theories insofar as the wave equation is concerned is the replacement of

it — 2a in Drude 's equation with 8S in Goldhammer' s. So, he argued, Drude 's

theory is actually "only a special case" of his own, a case in which bs is determined

by the usual metallic constant a.

Goldhammer, unlike Drude, had calculated magneto-optic phases for the Sissingh

experiments, and he pointed out at once that bs cannot here be the —76° 16' required

by Drude's theory since experiment gives it as ~84°18'. To strengthen the point,

Goldhammer further remarked that for nickel and cobalt, where a ~ 60°, o5 should,

according to Drude, be —80° (here Goldhammer erred arithmetically since 8S is here

60°). From "a private source"—almost certainly Zeeman—Goldhammer had re-

cently learned that o5 is nearly 50°. He argues, therefore, that Drude's system is

insufficiently general: ".
. .all Erklarungssysteme of magneto-optics which, like

Drude's, introduce but a single constant, are therefore not in agreement with experi-

ence" (Goldhammer 1892b, 348). In conclusion he also remarks, contrary to Drude's

claim, that his own boundary conditions are in fact fully consistent with Drude's.

Drude soon replied and reiterated his conviction that the theories' boundary con-

ditions differ (Drude 1893b). They do not differ, but if one does not recognize the
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misprint of A' for A in Goldhammer's published equations then they do conflict. To
see the agreement, recall that in Drude's theory one has continuity of £tan . In Gold-

hammer's theory we have:

(25) £tan = -(VcJOtan - d/dtA tan

In terms of auxiliary quantities this is (see appendix 10):

(26) £tan = -(V(J>")tan " d/dtA' tan

Since in Goldhammer's theory both A and (Vc|)) tan are continuous, it is at once ob-

vious that Etan is also continuous. If one does not see that there is a misprint, how-

ever, then Goldhammer's A tan continuity equation seems to involve A'^n , and if the

latter is continuous, the former cannot be. Moreover, since cf>" is \' • (V X A'), and

X' vanishes in the medium of incidence, <$>" is also discontinuous. Hence it would

appear from equation (26) that £tan is discontinuous. This was Drude's conclusion.

Having cast doubt on Goldhammer's technical competence, Drude turned to the

critical question of whether or not the magneto-optic vector must be complex. He
argued, in the face of Goldhammer's experimentally calculated values for 85 , that the

extra constant is unnecessary. To do so he invented a most peculiar argument. In-

stead of computing rotations for Sissingh's experiments using his own equations,

Drude instead recurred to Righi's highly inaccurate equatorial experiments and inter-

polated them to the incidences and magnetic field employed by Sissingh to see how
the two sets of observations compare. He found that their respective double minimum
observations differ by at most 40", and their double null observations by less than

2'. This he deemed close enough to conclude that, since his own theory can accom-

modate Righi's double null observations, from which they differ by between 2' and

4', it can also accommodate Sissingh's, making an additional constant unnecessary.

This is, in a word, sophistry, because Sissingh's null measures, if not Righi's, were

vastly more accurate than Drude claimed. Drude's theory is incompatible with Sis-

singh's results for the analyzer perpendicular null measurement.

To see just how far wrong Drude was, I have calculated and plotted (see figs. 23-

26) the double minimum and null rotations for Sissingh's experients which are im-

plied by the two theories, and I have included as well the rotations implied by the

Lorentz theory. (All three curves can actually be computed from Drude's equations

by substituting the appropriate values of the Sissingh phase and magnetic factor; see

appendix 9 on this. Hereafter I shall refer to Goldhammer's theory when computed

in this way as the "biconstant" theory.) The points marked at the cross centers were

directly observed by Sissingh, and the vertical extents of the crosses delimit empirical

accuracy.

One sees that both Drude's and the biconstant theory seem to work equally well

for the double minimum rotations (figs. 23 and 24), but that Drude's theory is worse

for the double null rotations (figs. 25 and 26), especially for v
p
L . In all cases Lorentz'

s

theory fails completely. Recall that the maximum observational error is on the order

of 20" in the double rotations. Because the amplitudes do not enter phase calculations

either theoretically or empirically, it is simple to specify the phase errors. The em-

pirical phase error is about 1°, while the theoretical phase error due to inaccuracies

in the metallic constants is only about 1/3°. To compute the spread between theory



Failure of the Macroscopic Theory 223

IRON— EQUATORIAL

11.0

9.6

8.2

6.8

5.4

4.0

2.6

1.2

-.2 F

-1.6

-3.0

GOLDHAMMER-BICONSTANT

DRUDE^J. J. THOMSON
LORENTZ

Fig. 23

10 20 30 40

ANGLE OF INCIDENCE IN DEGREES

IRON— EQUATORIAL

10 20 30 40

ANGLE OF INCIDENCE IN DEGREES

80 90

Fig. 24



224 Chapter Twenty-six

5.0

4.0

3.0

2.0 \-

1.0

0.0

-1.0

-2.0 h

-3.0

-4.0

-5.0

IRON—EQUATORIAL

GOLDHAMMER-BICONSTANT

DRUDE-O. J. THOMSON
LORENTZ

30 36 42 48 54

ANGLE OF INCIDENCE IN DEGREES

60 66 72 78 90

Fig. 25

9.0 r

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

GOLDHAMMER-BICONSTANT

DRUDE^J. J. THOMSON
LORENTZ

J—

^

30 36 42 48 54

ANGLE OF INCIDENCE IN DEGREES

60 66 72 78 64 90

Fig. 26



Failure of the Macroscopic Theory 225

and experiment for the rotations proper is much more difficult because here error in

computing the amplitude also enters.

The differences between Drude's theory and Sissingh's null experiments are

(l/2)Av£ ~33" and (l/2)Avf ~ 1'7". The large error in v
p
L had already shown itself

when Goldhammer pointed out the 8° phase difference between Drude's theory and

experiment, because the observations which lead to this difference are almost all of

vf (actually they are of v^, but this, according to all theories, is also v
p
L ).

But because Drude relied directly on the rotations, for which error computations

are quite tedious, he missed the fact that the phase error simply reflects an equally

damaging error in vf . Had Drude computed errors this would have been clear. In-

stead, he assumed that even as much as a 2' error in the single null rotations is

possible. It is not. Direct calculation allowing for an observational error of 20" in the

rotations and a 1° error in the principal incidence and azimuth shows conclusively

that the maximum possible spread in Drude's theoretical values for the double null

rotations is only half a minute. (To obtain this spread one uses experimental values

to compute a mean value for |/J| and the value for \h\ obtained when the rotations in

error are used. Allowing as well for a 1° error in the principal angles, this computa-

tion implies that Drude's theoretically predicted single null rotations have a maxi-

mum spread of only 15".) Glancing at figure 25 one sees at once that Drude's theory

misses every one of the vf rotations, whereas the biconstant theory, whose theoretical

spread is also about 15" in the single rotations, accommodates every observation.

Thus Sissingh's null experiments are, as Goldhammer claimed, entirely sufficient to

prove that Drude's theory is empirically incorrect. This was even more directly ob-

vious from the phase calculations, because here one needs to take account theoreti-

cally only of the 1° error in the principal angles, because on Drude's theory the

phases are determined entirely by the metallic constant a for a given incidence.

Again, since the empirical error in phase, taking account of errors in the observed

rotations and the principal angles, is at most 4° (and is in fact only 1° when one

compares the observations of v
p
L and v^), Drude's theory errs by at least 4° and

actually by over 7°. This phase error is the direct cause of the error in the null

rotations.

Having erroneously concluded that his theory works, Drude dismissed Goldham-

mer' s phase computations and argued that the only important thing is the rotations.

He was nevertheless well aware that the deviations between his theory and the null

measures were perhaps too large to ascribe entirely to observational error. So he

invented a complicating factor, one which was frequently used on the Continent

when reflection experiments did not agree entirely well with formulae. He argued

that his formulae presume an abrupt transition at the interface, but since the transition

must be continuous, the presumptive transitional surface layers necessarily alter the

phenomena. This assumption has the great advantage of being essentially incalcula-

ble, so that, as long as the difference between theory and experiment does not be-

come embarrassingly large (more, e.g., than the effect of the other observational

errors) one can always invoke "surface layers" to explain the discrepancy.

Irked especially by Drude's claim that their boundary conditions do not agree—

a

claim which cast doubt on Goldhammer' s technical competence since he had asserted

that they do not differ—Goldhammer (1893a) at once pointed out the misprint of A'
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for A which led Drude to the spurious conflict. Second, Goldhammer took his own
boundary conditions and, by means of a point-by-point comparison with Drude' s,

explicitly demonstrated that the two sets agree. Finally, he insisted that, Drude 's

beliefs notwithstanding, a correct theory must give accurate phases as well as rota-

tions.

In his most telling point, Goldhammer remarked that he had recently obtained

news from the Amsteram Academy of Zeeman's newest observations. He noted that

Zeeman claimed in his dissertation that, for nickel and cobalt, Drude 's single con-

stant theory fails miserably. Yet Drude still refused to admit defeat. To see how he

at first managed to do so, we must briefly examine Zeeman's experimental work.

Zeeman's work on the magneto-optic problem was evidently undertaken (probably

at Lorentz's urging) in response to the Dutch Society's offer of a prize for an answer

to the following proposal:

To study experimentally, for a metal other than iron, the modification

which magnetisation produces in the state of reflected light. (Zeeman

1897a)

Entries had to be received by 1 January 1892. The fact that a prize was being offered

no doubt indicates the importance of the issue. Zeeman was, of course, well aware

by this time of the difference between the Lorentz-van Loghem equations and exper-

iments for iron; in particular, he knew of the Sissingh phase. He decided to pursue

the study further than the prize proposal stipulated by determining whether this dif-

ference also depends on the optical frequency. The experimental apparatus he em-

ployed was borrowed from Sissingh, modified only to permit observation of polar

instead of equatorial reflection, and Zeeman used it much as Sissingh had.

To come right to the point, Zeeman found that, for cobalt, Drude's theory fails

entirely.
1

He, like Sissingh, relied on phase calculations. Using several different co-

balt mirrors and white light at three incidences (45°, 60°, 73°) with cgs magnetiza-

tions of, respectively, 430, 530, and 700, Zeeman obtained a mean value of about

49° for the Sissingh phase, 55 . Since here the metallic constant a was ~57°30', 55

should have been, on Drude's theory, —65°. This was a 16° difference and vastly

greater than any possible experimental error. To carry the point further, Zeeman used

two different wavelengths (X
{
= 0.460|x, and \ 2 = 0.618 (jl) for which the metallic

constants a are, respectively, a
x

~ 61°15\ a 2
~ 59°17\ For the Sissingh phases he

finds, again respectively, 55l
~ 51°55' and 852 ~ 45°32'. So here Drude's theory

errs by 7° and 16°. Moreover, Zeeman points out, Drude's theory implies that 85l is

less than 552 , whereas experiment yields 85l greater than 8$2
.

Unfortunately the details of Zeeman's work were not printed in the Amsterdam

Verslagen until October 1893, and Goldhammer had already referred to them in Jan-

uary 1893. Sometime between January and May Drude obtained a copy of Zeeman's

dissertation (not published in full in French translation until 1897); nevertheless

Drude continued to maintain that his own theory worked. He was wrong, and his

tenacious clinging to his macroscopic theory led him into unavoidable error.

1. Zeeman (1895). A full analysis of the theoretical implications of his experiments was subsequently

published in Zeeman (1898-99 a, b).
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26.4 Drude's Concession

Having obtained Zeeman's dissertation, Drude calculated the rotations for the three

white-light incidences with cobalt (Drude 1893c). But he completely overlooked the

fact (he could not, he later admitted, read Dutch) that Zeeman's observations had

been made at three different magnetizations. On this incorrect assumption, he found

that his own theory differs with experiment by about 1
' in the double minimum and

4' in the double null rotations. However, allowing his own magneto-optic vector to

become complex—effectively yielding the Goldhammer biconstant theory—Drude

found that here the differences are, respectively, about 1' and \'.5.

Thus, even though Drude had incorrectly assumed equal magnetizations, never-

theless the biconstant theory still works much better for the null rotations. Yet Drude

had also previously found a considerable discrepancy in the Righi null measures and

had held his ground. Again he recurred to the influence of "surface layers" for help.

He was strengthened in his conviction that his own theory could be maintained in

this way by the fact that the biconstant theory, though seemingly better for the null

rotations, still deviates from experiment by much more than a minute.

Seeking to discredit a biconstant theory further, Drude studied Goldhammer'

s

work with greater care in view of Zeeman's experiments and found difficulty in

understanding how Goldhammer' s wave equation (23), expressed in terms of A by

means of equation (17), can be everywhere valid unless co and A have the same

arguments, which he finds impossible since V2
cd is zero. This is the true difficulty

with Goldhammer' s theory since, to avoid it, he had to introduce infinite wave-

lengths. Nevertheless, Drude was now at least well aware that Goldhammer' s results

differ from his own only over the question of the Sissingh phase.

By this time Goldhammer was fed up with Drude's criticisms. He replied in a

short note in July and pointed out how he had inserted a pseudo-wave for w (Gold-

hammer 1893b). But he was sufficiently annoyed—wishing to conclude this "po-

lemic with Hr. Drude that has already lasted many months"—that (though he himself

had a copy of Zeeman's dissertation) he missed Drude's critical error in assuming

the magnetization was constant in Zeeman's experiments.

Sometime during or just before the autumn of 1893, Zeeman, who saw Drude's

recent article in the Annalen, wrote what must have been a devastating letter to Drude

in which he not only pointed out Drude's error concerning the magnetization but also

provided correct calculations which were printed in the Verslagen in October.
2 What

Zeeman demonstrated was simply this: if the correct magnetizations are used, then

Drude's theory differs from the cobalt experiments by about 1' in the mininum and
3' in the null rotations. This in itself would not have upset Drude. But what was

worse was that the biconstant theory differs by only about 0'.3 in both mininum and

null rotations. Figures 27-30 illustrate the situation. Not only does the biconstant

theory now fully fit Zeeman's null rotations, it clearly surpasses Drude's theory in

the mininum rotations as well, which had previously not been the case.

Drude was faced with unequivocal empirical results, and he publicly conceded

defeat the following February: ".
. .the observations are well represented with the

2. Drude (1894a). Drude here writes that Zeeman had called his attention to (Drude's) error in assum-

ing equal magnetizations in the three experiments.
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help of two constants, that is according to the Goldhammer theory, but not with the

help of one constant, as hitherto in my formulae" (Drude 1894a, 496). Faced with

the unavoidable necessity of admitting a complex magneto-optic vector, Drude real-

ized with full force that the macroscopic theory confronted an apparently insurmount-

able obstacle:

I wish to add a word concerning the present state of the theory of magneto-

optic phenomena. [That state may be] styled mathematically complete in-

asmuch as one can give an "Erklarungssystem" which suffices for the

observations . . . physically, however, the theory is unsatisfactory because

neither the magnitudes nor the directions of the magnetic activity can

be predicted from other physical behavior of the body. (Drude 1894a,

497-98)

Here we see that, per contra, had Drude 's uniconstant, macroscopic theory suc-

ceeded he would have deemed it "physically satisfying." He continued, referring

implicitly to the Maxwellian field theories:

Thus a deduction of the "Erklarungssystem" solely from the representation

of molecular vortices, which may be esteemed the cause of a body's mag-

netisation, is unsatisfactory because the direction of the magnetic activity

depends only on whether the body is para- or diamagnetic.

This last was an old criticism and has nothing to do with the macroscopic validity of

Drude' s theory. It merely implies that one cannot determine the sign of h from the

metal's magnetic character, even though |«| is proportional to magnetization. How-
ever, the purpose of bringing this point up is to introduce a different idea that goes

beyond molecular vortices. For the first time, a quasi-microphysical model is used

which does not implicate field energies and which can pinpoint what the significance

of a biconstant theory might be. Drude continued:

One can interpret the form I chose for the "Erklarungssystem" in this way:

that the magnetic polarisation which obtains in the ether has added to it a

polarisation brought in by the ponderable molecules (molecular-magnets)

of the magnetically active body; the jc-component of this added polarisation

is either:

bdX/dA or bdX/dA + b'd/dtdX/dA

according as one (b) or two (b and b' ) magneto-optic constants are intro-

duced. X signifies the ^-component of the electric force, dX/dA its first

differential quotient in the direction (A) of the magnetisation. — These

equations may be physically explained if a molecular magnet possesses

electric charges of the same kind at its ends (and charges opposite to these

in its interior).

This marks the introduction of microphysics in a direct way into magneto-optics.

To unpack Drude 's model, return first to the Faraday law in his Erklarungssystem:

(27) -dH/dt = V x E + d/dt[V x (h x £)]

The puzzle now posed by the success of the biconstant theory is to understand at
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1

least formally what it means for the vector h to be complex. For h constant equation

(27) becomes:

(28) -dHldt = V x E - d/dt(fi • V)E

Suppose that E varies as e
,u>t

, and let h become complex as h'e
lh

. Then we find:

(29) -dHldt = V x E + a)sin5$' • V)E - cosbdldt(fi' • V)£

If we set b equal to o)sin8|ft'|, and b' equal to -cos8|^'|, then we have the expression

Drude gives in the quotation above (letting dHldt become mH). That is, if h is

complex then the magneto-optic term splits into two parts, and, for some reason, the

optical frequency is directly implicated in the basic magneto-optic equation (29). This

is the formal meaning of a complex h. But what is its microphysical meaning? To
this Drude had no answer, but he offered a crude model which at least begins to

divorce the problem from a sole reliance on macroscopically significant quantities.

Drude discussed this model in a bit more detail than the short reference to it here

in his Physik des Aethers (1894b), which was published almost exactly at this time.

He had, in effect, a microscopic electric dipole with charges of the same kind at its

ends, and, we assume, it has fixed magnetization along its length. Assume next that

the magnitude of h is proportional conjointly to the magnetization and to the dipole

moment, and let the dipole center be fixed. Then in an electric field E the dipole

experiences a torque proportional to (b • V)E. This will rotate it through some angle,

and Drude tacitly assumed that the angle of rotation will be proportional to the torque

(perhaps thinking that an elastic, angular restoring force acts on the molecule as

well). This rotation will alter the magnetic field (because b is proportional to mag-

netization) in a proportional amount (b • V)E. This is Drude's model. We just saw

that if b is complex, then there is some kind of interaction implicated between the

wave frequency and the microphysical structure, but we also see that, as it stands,

nothing in this model would lead one to treat % as complex.

This hybrid model betrays Drude's recent and still incomplete emergence from a

macrophysical outlook. It is only by courtesy termed microscopic because it merely

carries a macroscopic analog—a linear magnet charged equally at its ends—to the

molecular level, and it offers no explanation for the complexity of the magneto-optic

vector. Thus we see, for example, that here there is no apparent connection between

charge motion per se and magnetization; indeed, when light is not passing, the mi-

crocharges remain at rest. Nevertheless, this model, in conjunction with certain im-

plications that one easily draws from the Goldhammer theory, leads quite directly to

the idea that some kind of microscopic charge motion is involved.

Recall the core of Goldhammer' s theory: the relation between J and E, including

both conductivity and capacity, is to be modified. In ordinary metallic reflection a

complex index of refraction arises by virtue of conductivity. Drude was faced with a

complex magneto-optic constant. Goldhammer—admittedly in a very complicated

way—obtained both complex metallic and complex magneto-optic constants from a

single, general equation linking current and field. Given the widespread conviction

in Germany at just this time that, in electrolytic conduction at least, the motion of

"ions" was implicated, and given the rapidly growing belief that optical dispersion

required consideration of ionic vibrations, it is hardly a long step to the conviction
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that the solution of the puzzle posed by magneto-optics had to lie in a detailed ac-

count of the motion of charge at the microphysical level. In chapter 27 we shall

briefly examine the emergence in Germany in the mid- 1890s of what I shall call

"proto-ionic" theories of electromagnetism; theories which occupy an uneasy middle

ground between macro- and microphysics, but which base all optical phenomena,

including magneto-optics, on "ionic" motions. Through these theories the great puz-

zle of Drude's magneto-optics—the complex character of the magneto-optic vector

—

was first solved.
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The Proto-Ionic Alternative: Helmholtz's

Twin Equations

27.1 The Mechanical Background

Two years after the rediscovery of anomalous dispersion by the Danish scientist

Christiansen (1870),
1

the German Wolfgang Sellmeier (1872) developed a qualitative

mechanical theory according to which all forms of dispersion are due to the interac-

tion of ether vibrations, mechanically conceived, with natural oscillatory frequencies

of molecules. The guiding ideas of Sellmeier' s theory were that the wave equation

of the ether is itself unaffected by the presence of matter particles, but that energy

must be abstracted from an ether wave in order to displace the massy material parti-

cle, which is tied elastically to a fixed location. Employing an analysis based solely

on energy considerations, Sellmeier deduced a formula for dispersion which yielded

the major features of the phenomenon. In particular, for ether waves whose fre-

quency a) lies below the natural material frequency o)c , the index of refraction in-

creases from a limiting value n at w equal to zero as o> approaches o>c , becoming

infinite at resonance. Above coc the index increases from minus infinity to the value

Hq, when w becomes infinite. To explain ordinary dispersion Sellmeier located coc in

the ultraviolet. To explain anomalous dispersion he located several o)c in the visible

portions of the spectrum.

The critically important aspects of Sellmeier' s theory were its tacit assumptions

that neither the elasticity nor the density of the ether should be manipulated, the

properties of the ether itself remaining effectively invariant even in the vicinity of

1. "Anomalous dispersion" was first discovered, or rather observed, by the photographic pioneer Fox

Talbot in 1840 according to his later testimony (Talbot 1870-71). Taking a square bit of window glass,

Talbot spread a solution of chromium salt upon it; he then covered the whole with a second, equal glass

pane, which spread the solution into a thin film. Minute crystals soon formed in the solution, producing

in effect many small prisms. When Talbot viewed a candle through the device, he saw that each minute

prism formed its own spectrum. Though the spectra were generally indistinct, he was able to isolate a

clear one by covering the glass with a pinhole, whereupon he discovered that each prism seemed to

produce two distinct spectra: one is normally colored, but the other has a complex spectral structure

different from the usual one. Talbot made "many experiments," which led him to the conclusion that the

oddly colored spectrum "could only be explained by the supposition that the spectrum, after proceeding

for a certain distance, stopped short and returned upon itself." Talbot did not publish his observatio'ns at

the time because the crystals dissolved after several minutes, making the experiment "delicate and capri-

cious" and therefore "difficult for others to verify." F. P. Leroux (1862) discovered peculiarities in the

spectrum of light that has passed through vapor of iodine. He found that the phenomenon involves an

apparent inversion of red and blue light in the spectrum, but he did not examine intermediate spectral

regions. The discovery that established the true character of the "anomalous dispersion" was performed

by Christiansen (1870). Using the aniline dye fuchsin dissolved in alcohol, he determined that the refrac-

tive index of the solution increases from the B to D spectral lines, decreases from D to G, and then

increases again after G. During the mid- to late 1860s in Germany there was a strong interest in metallic

reflection. Christiansen's discovery rapidly had a major impact precisely because of this existing interest,

for the peculiar optical properties of metals could be related to Christiansen's anomalous dispersion.
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material particles. (Sellmeier was not dogmatic on this point. For him these assump-

tions were primarily conveniences, for he held that ether and matter together consti-

tute a dual lattice of point masses.) All refractive phenomena then implicate a me-
chanical resonance action in which ether waves must move massy particles of matter

as well as the substance of the ether itself. What Sellmeier' s theory lacked was a

mathematical representation of what occurs at resonance (coc) where absorption takes

place. (Though Sellmeier did offer an intricate and difficult qualitative explanation

for this situation.)

In the same year that Lorentz completed his dissertation, Helmholtz (1875) appro-

priated Sellmeier' s basic ideas and reformulated them mathematically in mechanical

equations of motion which were capable of dealing with absorption as well as dis-

persion. In Helmholtz's view absorption was the central difficulty in Sellmeier's the-

ory, and he developed equations which were based on the commonly received idea

that optical absorption involves the transformation of light energy into the "inner,

irregular motion of the molecules" of matter, that is, into heat. To effect this trans-

formation, a force is necessary, and this is what was missing in Sellmeier's theory.

Helmholtz wrote:

Sellmeier's hypothesis offers difficulties only for those cases in which the

proper oscillatory period of the molecules vibrating along with the light

oscillations are equal to them. Then, namely, the absorption of light oc-

curs, that is, the annihilation of the live force of the light vibrations. How-
ever, Hr. Sellmeier has introduced no force in his calculations which an-

nihilates the mechanical work of the vibratory motion, capable of

transforming it into heat, but avails himself for this case of considerations

which perhaps correctly describe the essence of the process, but which

have the provisional disadvantage of being accessible to no analytical

expression. (Helmholtz 1875, 583)

The problem Helmholtz now faced was how to represent this energy conversion

analytically. He was well aware that the fact of absorption—the exponential decrease

in light amplitude with distance—requires the presence in differential equations of a

term proportional to velocity, but he also knew that this term cannot appear in the

ether's equation of motion since, in vacuo, no absorption occurs.
2
Helmholtz's so-

lution to the problem was at once obvious and unprecedented: he constructed a dis-

tinct equation of motion for matter which itself contains a velocity-dependent force.

The idea was that the material particles, driven by ether waves, are subject to two

other forces which emanate from the surrounding matter particles: an harmonic force

of restitution and a frictional force of resistance. As the matter particles absorb en-

ergy from the ether waves, the optical energy decreases, and the absorbed energy is

converted into thermal motion by the frictional force. (Just how the latter transfor-

mation occurs was a question utterly foreign to Helmholtz's theory.) Neither of the

two material forces are supposed to act on an entire molecule. Rather, each molecule

consists of a massive central core, which hardly moves when struck by an ether

wave, together with a light, moveable particle; the latter is resisted frictionally in its

motion, and the harmonic forces tie it elastically to the massive core. (The purpose

of the core-particle distinction was to explain the dispersive and absorptive properties

of gases.)

2. In fact, O. E. Meyer (1872) had unsuccessfully (both empirically and theoretically) used just such

an assumption to account for anomalous dispersion and its link to absorption.
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The mutual actions of ether and matter which cause energy transformations be-

tween them must, Helmholtz reasoned, satisfy the principle of action and reaction:

whatever force represents the action of matter on ether in the latter' s equation of

motion must appear with the opposite sign in the former's equation of motion. Helm-

holtz assumed on mechanical grounds that this mutual action is directly proportional

to the difference between the displacements from equilibrium of ether and the light,

moveable particle of matter. He further treated both media as effectively continuous

and interpenetrating, so that the ethereal and material displacements, ue and um , re-

spectively, are continuous functions of time and distance. This gave him partial dif-

ferential equations. The equation of motion of the ether consists of the usual one for

an incompressible, isotropic, elastic continuum, to which a term £
2
(wm — ~ue) is

added to represent the action of matter upon ether:

(1) vetfujdt
2 = -aV% + (3

2
(ww - ue)

Here pe is the ether's density, and a is its coefficient of elasticity. The material

equation of motion contains three forces: the ether action, p
2
(we

— um)\ the frictional

force, -y2
dujdt; and the harmonic force, -b2

um :

(2) pmd
2
um/dt

2 = -b2
um - >y

2
dum/dt + $

2
(ue

- um )

Here pm is effectively the number of moveable particles per unit volume. These twin

equations constitute the mathematical structure of Helmholtz 's theory, for they lead

at once to the wave equation for ue :

p^ujdt2 = -a2V2
ue + Jig where

/ = (d^/df)[0
2

(pma>
2 - b

2 - i9my
2

)]

g = /o)[-pwo)
2 + b

2 + /o)7
2 + P

2

]

This equation is easily applied to dispersion and absorption and agrees very well with

the phenomena when proper choices are made for the various constants, as Helmholtz

showed in some detail.

Helmholtz's theory was immensely influential, and not only in Germany. During

the next fifteen years numerous German physicists, including Eduard Ketteler, Eugen

Lommel, and Woldemar Voigt, used it in one way or another to construct mechanical

theories of phenomena in physical optics.
3
These theories, like Helmholtz's, gener-

ally gave little detailed consideration to the actual molecular structure of matter,

3. These several theories were thoroughly discussed by Glazebrook (1885). This article provides an

excellent and comprehensive account of the state of mechanical theories of light in the mid- 1880s. It also

includes a short section on the electromagnetic theory. Glazebrook saw little formal difference between

the electromagnetic theory and mechanical theories based on the twin equations (reflecting what I believe

to have been a common view in Britain at the time, and one which became common in Germany for a

short time in the early 1890s). He wrote (1885, 256):

There seems to be no reason—as has been pointed out by Professor Fitzgerald

—

against applying to the oscillations of the electromagnetic field the methods and

reasoning developed in the third part of this report [entitled "Theories Based on the

Mutual Reaction between the Ether and Matter"]. Almost the whole of the work

can be translated into the language of the electromagnetic theory at once. Periodic

electric displacement in the ether will produce periodic displacement in the matter,

and the relations between the two will depend on the ratio of the period of the ether

vibrations to the possible free periods of the electric oscillations in the matter mol-

ecules; and it is not difficult to see how the relation between the two might depend

on the relative electric displacements and their differential coefficients.
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preferring instead to employ simple and usually a priori terms in the material equa-

tions. Among the British, W. Thomson (1884), in his acclaimed Baltimore Lectures,

based most of the intricate mechanical models for which he soon became famous (or

infamous on the Continent) directly on the Helmholtz-Sellmeier model. (Indeed, even

Maxwell set an examination question based on a similar model.
4
) Thomson's work,

however, differed substantially from contemporary German accounts in that his goal

was to construct a continuum representation for ether and matter.

Among the Germans there was little if any concern for building a coherent contin-

uum model. In Thomson's representation the ether is considered to be an isotropic,

incompressible, elastic substance which is here and there studded with small, spher-

ical regions each of which consists of a series of concentric shells of continuous

elastic matter, also incompressible. Each such shell differs from the ether proper,

which is in contact with the outermost shell, only in possessing its proper density;

all have the same elasticity as the ether. The spherical region as a whole is a mole-

cule of matter; the shells which form it endow it with a series of normal vibrational

modes. To deduce the equations of motion of such a system would, of course, be a

supremely difficult problem in continuum mechanics. Thomson accordingly had re-

course to an idealized representation in which the shells are replaced by concentric,

rigid surfaces, the outermost of which remains in perfect contact with the surrounding

ether. Each surface is connected to the next inner one by equally spaced springs with

elastic coefficients that may vary from surface to surface. This variability represents

the different densities of the continuous shells. Although Thomson intended this to

be an idealized representation, it, and the changes Thomson rang on it, repelled many

of his Continental contemporaries, such as Pierre Duhem. (However, the essential

structure of the model—its image of a qualitatively invariant ether studded with re-

gions of variable density— became the basis for Thomson's 1888 theory of the labile

ether.)

Helmholtz's twin equations, and the German and British treatments of them before

the 1890s, are purely mechanical. By 1893, however, they had received an electro-

magnetic interpretation. But even by 1878 the idea underlying the twin equations had

already been used in electromagnetic theory. Lorentz (1875) had tentatively supposed

that the ether's properties are in themselves invariant and that optical effects are due

to the effect of inner electrical motions of material particles. He reaffirmed this idea

when he deduced for the first time an electromagnetic formula for dispersion by

actually constructing two linked sets of equations: one for the ethereal polarization,

and the other for the motion of a moveable charge in a molecule with a fixed central

core (Lorentz 1878; see Hirosige 1969). The links between the two equations were,

on the one hand, the polarization in the invariant ether effected by the moveable

charges, and on the other, the driving force exerted by the ether polarization on the

charge.

4. Rayleigh (1899, 1917). Maxwell's suggestion, like W. Thomson's, does not actually employ twin

equations because he considers ether and matter to form a compound but continuous system—so only one

differential equation is involved. Maxwell here considers all the forces which act on matter to be ethereal

in origin, whereas Helmholtz uses ether only to drive matter. The other forces on matter are due to

neighboring ether particles. Maxwell supposed, that is, "that every part of this [ethereal] medium is

connected with an atom of other matter by an attractive force varying as distance, and that there is also a

force of resistance between the medium and the atoms varying as their relative velocity, the atoms being

independent of each other" (Rayleigh 1899, 151).
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The correspondences between this and Helmholtz's (1875) mechanical theory are

manifest. However, Lorentz still viewed the ether itself as a polarizable substance,

with the result that he drew no clear distinction between material and ethereal polar-

ization (Hirosige 1969, 174). Indeed, Lorentz' s theory retained the Helmholtzian

(1870) implication that every action is transmitted instantaneously; only states of

polarization propagate. Dispersive effects arise by associating charge with mass in

material bodies while retaining massless charge in the ether. One can say that Lorentz

had abandoned Helmholtzian theory only when he required finite propagation for

intermolecular actions and not just for the effects of the actions (viz., the polariza-

tions), and this did not happen until c. 1890, appearing in full-blown form in 1892

(see appendix 7).

In any case Lorentz (1878) apparently had very little influence, except perhaps in

Holland. One reason being that it was published in Dutch. Even if it had been printed

in German or French one doubts whether its impact would have been much greater

because it involved the sort of detailed microphysical computations and presupposi-

tions which, even as late as the mid- 1890s, few German physicists were willing to

employ. In order for Helmholtz's twin-equation approach to acquire a electromag-

netic significance that most German physicists could easily grasp and approve, the

equations had to be reinterpreted in a way that preserved both their formal structure

as linked systems and their relative independence of detailed microphysical calcula-

tions. This was accomplished by Helmholtz himself in 1893.

27.2 The Electromagnetic Transformation of the Twin Equations

Helmholtz (1893)
5
had great influence.

Among the theoretical treatments of dispersion on the basis of the electro-

magnetic theory of light which have been given in recent years, von Helm-

holtz's is distinguished by the simplicity of the hypotheses which underlie

it. For he introduces only the assumption that the ions are themselves set

oscillating by rapid electric vibrations, and that a frictional force opposes

the motions of the ions; moreover, according to H. von Helmholtz the true

electricity of the ions is firmly tied to them. (Reiff 1895a, 82)

Note Reiff s approval of the "simplicity" of the Helmholtz theory. It is simple in

the same measure that Lorentz's (1892) dispersion theory is complicated, that is, it

avoids detailed microphysical computations. Note moreover that Reiff introduced the

usual Continental terminology here
—

"true" electricity—and this was due to the

character of the new Helmholtz theory. For unlike Lorentz since at least 1892, Helm-

holtz still did not consider a dielectric to be composed entirely or even primarily of

massy ions. He supposed only that a dielectric contained ions of this kind. These

ions were supposed to be distributed in a medium which itself possessed an entirely

distinct inductive capacity e. Given this, the essence of the Helmholtz theory is read-

ily expressed.

Each charge-bearing "ion" has mass, and its motion is determined by three

forces: the force due to the E field at its locus (which Reiff and Helmholtz defined

in terms of D as D/e); the elastic force; and the frictional force. The electric moment

5. To fully grasp the arguments in Helmholtz (1893) one must first examine Helmholtz (1892).
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density, p, of the massy ions was supposed proportional to their displacements from
equilibrium. Consequently, the forces were taken proportional to d

2
p/dt

2
, where the

proportionality constant m
x

is itself proportional to the ionic mass density p^

(3) m
x
d
2

p x
ld^ = D/e - p/0 - K

x
dp/dt

The remaining equations pertain to the dielectric proper, and they are linked to

equation (3) by inclusion of the term dp/dt in the current:

(4) -dB/dt = V x (D/e)

(5) V x (B/\l) = dD/dt + dp/dt

Equations (4) and (5), in effect, determine the electromagnetic equations of motion

since they yield:

(6) d
2
D/dt

2 = -(1/€|jl)V x (V x D) + d^/dt
2

Comparing equations (1) and (6), and equations (2) and (3), we see that the mechan-

ical structure has been decisively breached but the formal patterns are quite similar:

the ionic acceleration d
2
p/dt

2
acts as a coupling link to the electromagnetic wave

equation, while the electric force D/e directly drives the ions. This breaches the 1875

mechanical structure since one loses the symmetrical driving terms of equations (1)

and (2), and this is due to the divorce between D and ue . D clearly can no longer

represent a simple shift of massy ether. However, the formal pattern and concepts

remain. There are two distinct second-order equations, one with electromagnetic, the

other with material, significance, and they each contain a term that appears in the

other. Helmholtz's electromagnetic twin equations, moreover, readily solve a long-

standing problem in electromagnetic theories of metallic reflection concerning the

inductive capacity (see appendix 8 on this point).

Helmholtz's equations provide little that Lorentz had not already provided in

1892; indeed, they provide considerably less because Helmholtz has not abandoned

the idea of a polarizable ether and, consequently, does not enter into microscopic

computations for matter. Helmholtz was quite insistent that the ionic polarizations

must be carefully distinguished from the usual dielectric properties, remarking:

According to the hypothesis here put forward, our ion pairs differ from the

polarised molecules of the dielectric only in that they bear mass and are,

therefore, not always in their equilibrium loci, but, rather, can oscillate

about these [loci], so that p can change independently of E, and, conse-

quently, the potential energy of electrification does not depend merely on

E but also on p. (Helmholtz 1893, 392)

Nevertheless, we also see that Helmholtz now has dD/dt as the nonconduction cur-

rent. There is no mathematical trace of his 1870 polarization theory. This reflects the

impact of Hertz's experiments and articles on electromagnetism. However, Helm-

holtz introduced D first by equating its divergence to what he continued to call the

"true electricity" of the polarizable medium. This "true electricity" is distinguish-

able from the true electricity of the massy ions since it pertains to the polarizable

medium proper (if it contains distinct conduction charges) and not to the massy ions

distributed in it. This curious mixture of new and old elements was uniquely influ-

ential in Germany for the next five years precisely because, unlike Lorentz 's theories,

Helmholtz (1893) did not go very far beyond the basic understanding of electromag-



The Proto-Ionic Alternative 239

netic principles which Helmholtz had himself created over twenty years earlier (ex-

cept that Helmholtz used the so-called Maxwell limit of the polarization theory and

tried to ignore the problems posed for a physical understanding of polarization and

conduction charge that does not implicate the massy ions) and because Helmholtz

did not employ microscopic computations, with which most German physicists of the

time were neither familiar nor overly sympathetic.

27.3 Reiff, Microphysics, and Magneto-Optics

A full four years after Lorentz's (1892) theory was published, and a year after Lo-

rentz (1895) appeared, Reiff, who never referred to Lorentz, created the first micro-

physical theory of magneto-optics, for which he used Helmholtz 's electromagnetic

twin equations. He wrote:

In the following a new explanation of [electromagnetic rotation] is given

drawn directly from Rowland's assumption, an explanation distinguished

by great simplicity. We take this explanation from Helmholtz's hypothesis

concerning the synchronous vibrations of atoms which occur in optical mo-

tions. In his electromagnetic theory of dispersion, Helmholtz assumes that

the atoms of the molecules execute oscillations about the molecules' cen-

ters of gravity; moreover he presupposes for simplicity that the velocities

of the atoms of a bipolar molecule are equal and opposite to one another.

If, however, one bears in mind that, besides the external electric forces

and those within the molecule, the forces of the surrounding molecules also

act—and that these forces must be of different kinds with regard to positive

and negative electricity—then it is more probable that the atoms of a mol-

ecule have different velocities. (Reiff 1896, 281)

Reiff s requirement that the velocities of positive and negative "atoms" must be

different underlies all microphysical explanations of magneto-optics based on the

Hall effect ("Rowland's assumption"), including the Lorentzian. The idea originated

with Lorentz (1884) in his discussion of the Hall effect, and this perhaps indicates

Reiff s familiarity with the Lorentz-van Loghem theory. Indeed, it is difficult to see

how he could have avoided being familiar with that theory given the extensive dis-

cussion devoted to it in 1892 and 1893 in the pages of the Annalen der Physik.

Suppose, with Reiff, that the molecule as a whole, that is, its center of mass, has

a velocity vm . Suppose further that its positive and negative components move with

different velocities v+, v_. Assuming the masses of the atoms (or ions, as we shall

continue to call them) to be equal, we have:

(7) vm = (l/2)(v + + v_)

Accordingly, Reiff introduced the vector v' equal to (l/2)(v + - v_), whence:

v + = vm + v'

(8) v_ = vm - v'

Now, if +p, -p are, respectively, the volume densities of the positive and neg-

ative ions, then the density Cm of the current they determine by their motion is:

(9) Cm = pv + - pv_ = (p - p)vm + (p + P )v'
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Whence:

(10) Cm = 2 pv'

Turning at once to Helmholtz's views on the matter, Reiff calls Cm the "polari-

zation current" where the ions remain bound though mobile. Despite the fact that it

is v', and not vm , that determines the current Cm , in Reiff s magneto-optic theory Cm
is important only in the usual way: as determining a polarization current. It is actually

vm that is here of significance. What he needs is a relationship between vm and the

driving field, but he writes little to explain the one he now introduces. But if we turn

to Reiff (1895a; see also 1895b) where a similar question arises, we can divine his

meaning.

The essential point to grasp is that, microphysically, Reiff s theory is actually

based on a single, very general assumption which is limited to a dielectric; namely,

that when a slowly changing E field acts on the dielectric, the centers of mass of the

bipolar molecules remain nearly at rest, but if the field frequency is great, then the

centers of mass move. Reiff did not offer a detailed model to elucidate this assump-

tion, but the argument clearly presumed that the forces exerted on the positive and

negative constituents of the molecule and due to surrounding molecules are not al-

ways equal and opposite. Whence |v+| usually differs from |v_|, and this difference

is for some reason a function of the frequency of the driving E field; a function which

vanishes with the frequency. In other words, in a dielectric subject to a slowly chang-

ing E field, the ions oscillate in opposite directions with the same speeds about the

molecular centers of mass. As the frequency increases, forces begin to act on the

molecular constituents (no doubt because, as Ole Knudsen has remarked, the E field,

now possessing a short wavelength, is inhomogeneous at the molecular scale), with

the result that the centers of mass move. Reiff supposed as a reasonable approxima-

tion that vm varies directly as dE/dt:

(11) vm = gdE/dt

Reiff s theory was based directly on this relationship, which involves the idea that

the ionic constituents have different speeds in rapidly changing E fields. This is the

full extent of Reiff s excursion into microphysics. The remainder of his theory was

based, not on the Maxwell equations for a vacuum studded with electric particles,

but on Herz's (1890) field equations for moving bodies. He wrote:

According to this supposition, that the molecule as a whole oscillates with

the velocity [vm], the entire dielectric [is] in a state of oscillation. Instead,

consequently, of the usual equations of electricity for bodies at rest one

must employ the optical equations for moving bodies. (Reiff 1896, 282)

The Hertz moving-body equations
6

assert that if v is the velocity of the dielectric

through the ether, then the fields in the ether and outside the dielectric satisfy the

relations:

(12) dBldt - V X (v x B) + v(V • B) = - V X E

(13) dD/dt - V x (v x D) + v(V • D) = V x H

6. Hertz (1890). Hertz's equations are explained in Knudsen (1980).
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Reiff s peculiar idea—in effect a halfway point between micro- and macrophysics

in electromagnetism—was that one must use these equations with vm, the velocity of

the molecule, for v. Hertz's equations (12) and (13) are macroscopic equations based

on the concept that the moving body carries the ether with it. Reiff was evidently

assuming that, when in motion as wholes, the bipolar molecules actually entrain the

ether. This is completely unlike the Lorentz (1892, 1895) theories in which the ether

is always at rest and only the material particles move, even though a magneto-optic

theory based on Lorentz' s work necessarily requires, like Reiff's, different absolute

speeds for positive and negative ions. But there the similarity ends.

The theory now emerges directly from equations (10)—(13). Separating the mag-

netic field, B, into a varying optical portion, B , and ji constant, externally applied

portion, #ext , Reiff has from equation (12) (assuming V • B vanishes):

(14) dSjdt = -V X E + V X (vm X B)

He supposes that vm and B are sufficiently small to ignore their product (this is the

usual assumption, that the magnetic field due to the optical disturbance is of no

significance), and he finds from equations (11) and (14):

(15) dBJdt = -V X £ + V X (dE/dt X gBext)

Turning to equation (13)—the moving-body Ampere law—Reiff argues on similar

grounds that the product of vm and D vanishes (vm being small), so equation (13)

becomes:

(16) dbldt = V x B

These two equations are the very same ones that Drude had employed, the only

difference being that Reiff takes no account of conduction currents in the Ampere

law. Here we have the first truly microphysical theory of magneto-optics based on

charge motion. However, Reiff s theory not only goes into no detail concerning mi-

crophysical structure (such as attempting to deduce equation [11]), but it also is in

reality a macrophysical theory in disguise; a theory based on Hertz's moving-body

equations carried to the microlevel. Reiff had no notion that ionic motion is in itself

capable of explaining magneto-optics when reasonable hypotheses are used; he

thought that the function of ionic motion is to make possible the use of the Hertz

equations. Though entirely different in details, Reiff s theory shares the spirit of

Drude's early speculation, where he also employed macrophysical representations at

the microlevel (a charged, linear magnet in Drude's case; the Hertz moving-body

equations in Reiff s). Neither theory had as yet made the critical transition exempli-

fied by Lorentz (1892, 1894). This reveals itself mathematically in Reiff s case by

the fact that the magneto-optic vector is real; in Drude's case, by his perplexity over

why the magneto-optic vector is not real. Nevertheless both theories point to the

origins of the problem in microphysical structure, for therein lies the origin of the

added term in the Faraday law. Indeed, the bondaries between macroscopic analysis

and microphysical models, heretofore quite stringently enforced in electromagnetic

theory, have begun to disappear. They disappeared entirely when Lorentz' s student,

C. H. Wind, became the first to apply specifically Lorentzian ideas, which he used

to explain why the magneto-optic vector must be complex.
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First Fruits of the Lorentz Theory

Sometime about 1894 Wind borrowed Zeeman's magneto-optic apparatus, as Zeeman
had borrowed it from Sissingh, and he carried out observations of polar reflection

from nickel to determine the Sissingh phase (here 36°44'20'.'5 for the sodium D-line)

(Wind 1895, 1898, 1898-99a, b). Shortly thereafter he embarked on a critical ex-

amination of the three extant theories (Lorentz 1884; Drude 1893c; Goldhammer

1887a) with the explicit goal of establishing a set of hypotheses which would yield

the complexity of the magneto-optic vector. During this work he also discovered an

hitherto unknown magneto-optic phenomenon, which I shall call the "Wind effect,"

one which had escaped previous investigators because it involves the production of a

component in the original plane of polarization under certain circumstances, which all

had thought impossible. Announced by van der Waals and Lorentz (1896), Wind's

work was the first application of Lorentz 's electromagnetic theory and pointed the

way to future research in the microphysical foundations of optics. Nevertheless, like

Lorentz' s own work, Wind's work had little contemporary influence, and it was soon

forgotten when Drude ( 1 900a) provided a theory in which he demonstrated that mag-

neto-optic reflection and the Zeeman effect, discovered in 1896, must be due to

different microprocesses, with the implication that Wind's theory, which would have

referred the two phenomena to the same processes, was inadequate.

Insofar as the wave equation and the boundary conditions are concerned, Wind's

theory offers nothing new. As he carefully noted, it is in these respects precisely the

same in form as Goldhammer's biconstant theory. But Wind's work is above all

characterized by a careful application of Lorentzian ideas, beginning with the require-

ment that the electromagnetic system—the ether—is in itself structurally unaffected

by the presence of matter.

Following Lorentz, Wind exploited the idea that there are several possible dynam-

ical links between the electromagnetic and material systems, each such link corre-

sponding to one of the energy forms observed when matter exists in an electromag-

netic field. The forces associated with these links are considered to be "forces acting

on electricity," where here "electricity" is thought of in the general sense of incom-

pressible electric quantity. So, whereas Maxwellians and Drude modified the intrinsic

structure of the field, Wind proposed to modify only the link between field and matter

as circumstances required, and then to provide a microphysical rationale for the mod-

ification. Finally, though Wind (1898-99a) discussed in some detail Lorentz's (1892)

peculiar use of d'Alembert's principle, he preferred to follow Hertz (1890) in taking

the (vacuum) field equations a priori, as Lorentz (1895) had done.

28.1 Wind's Use of the Hall Effect

There is a critically important difference between the way in which Wind exploited

the Hall effect and the way Lorentz (1884) had used it, though the difference is one
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of understanding rather than of formal structure. Lorentz 's method was to attribute

the Hall effect to a new electromotive force. Denoting the usual, non-Hall field by

E, which continues to appear alone in the Faraday law, Lorentz had defined a total

field ET:

J = pET

(1) ET = E + qh X J

These give:

(2) E = J/p - qTi X J

Wind also exploited equation (2), but he regarded it as a modification of the usual

equations with Ti = 0; that is, Wind saw no necessity for considering a total field ET

(though he did mention that one could interpret equation (2) in this way were it not

for what Wind takes to be the fact that the transverse Hall current is obtained entirely

at the expense of the primary current, i.e., that its energy derives from the primary

electromotive force, so that no such thing as a Hall field is necessary.)

Bespeaking the fairly advanced theoretical and experimental state of the subject

by this time, Wind's analysis rapidly generated the basic wave equation and bound-

ary conditions by combining equation (2) with equations (3)-(5):

(3) V • J =

(4) V X 8 = J

(5) V X E = -dH/dt

Introducing, as usual, mR2
e
2ia

for/?, Wind had:

(6) d
2
lldt

2 = R~ 2
e~

2iaV2
J + q(h V)(V X dJIdt)

For boundary conditions Wind employed:

(7) ^norm COfltinUOUS

Hun continuous

To accommodate the Sissingh phase, Wind at first simply assumed that q is com-

plex of the form q e
lb
s, where q and 85 are real. So we see at once that Wind's

theory is fully equivalent, analytically, to the Goldhammer biconstant theory. Wind

then generated the magneto-optic phase and amplitude precisely as van Loghem had

done, obtaining ratios expressed in terms of the usual complex metallic angle of

refraction, and then using the Cauchy-Eisenlohr equations to obtain real expressions.

Wind wasted little space pointing out the unique agreement of this theory with

experiments, including Zeeman's and his own on polar reflection from nickel. How-

ever, he goes on at once, for the first time, to predict a new phase shift for the

reflection of a wave polarized normally to the plane of incidence when the external

field is also normal to that plane. This effect reveals itself in an alteration in the usual

metallic principal incidence and azimuth (see appendix 9). It had previously been

missed because it is a second-order effect in \qji\, and it was usual in all theories to

discard terms beyond the first order. This prediction was the capstone of the bicon-

stant theory, for Zeeman (1897b) soon measured it. (It amounts to about 5' difference

in the azimuth of reflection.)
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28.2 Wind's Critique of the Maxwellian Theories

Wind compared his theory with those which, like Drude's, are obtained by modifying

the Faraday law. He recognized that the critical question concerned field energy:

Now according to M. Drude it would not be legitimate to modify [the

Ampere law—this is the effect of altering the relationship between J and

E] and to leave [ the Faraday law] intact; according to him it would be

much more justified to alter [the Faraday law] by adding new terms to it.

The author bases this remark on the consideration that [the Faraday law] is

intimately tied to the formula which expresses the electromagnetic energy

as a function of the magnetic force, and that magnetisation, according to

Maxwell, makes necessary the addition of new terms to this energy. (Wind

1898-990, 188)

Wind pressed to the heart of the matter by, in effect, pointing out the fundamental

difference between the Lorentzian and the field theoretical positions in this matter:

In the case of the magnetic force Ti a certain force EH , acting on the elec-

tricity [for which read electric quantity here] plays a role. In our represen-

tation of the mechanism we have, corresponding to this force, a system a

linked in some fashion to the electricity E. We may, first, envision this

system a as independent of the system a, which we consider to be the

carrier of the electromagnetic energy. We thereby imagine the force EH as

an electromotive force, and it is always the complete electric force which

E represents [in the field equations]. On the other hand we could prefer

—

and this would be more directly in accord with Maxwell's ideas—to imag-

ine that the action of this system—admitted in virtue of the vector EH—
signifies only a modification of the action of the former system on the

electricity. In other words, the new system a could, properly speaking,

constitute a part of the system a,, or even be completely identical with it;

however it is only at the moment of magnetisation that the new action of

the system a, on the substance E would come into play. (Wind 1898—

99, 189)

This remark is based on Wind's view that electric quantity in itself cannot be the

seat of electromagnetic energy, but that the quantity system must be tied to a second-

ary system a
x
which is the seat of the energy. This idea depends on Wind's under-

standing of quantity as closely analogous to an inviscid, incompressible liquid, de-

void of mass. Indeed, all field energies in Wind's view are due to links of the

quantity system with other systems. The quantity system itself merely transmits pres-

sure—electrostatic force. This closely parallels Lorentz's (1892) account, having the

peculiarity of requiring in addition to E, even in vacuo, two other systems: one for

magnetic, the other for electric field energy. These three systems together constitute

the electromagnetic system proper. The presence of matter requires that either (1)

other systems come into play (Wind's position) or (2) modifications of the links

between E and the original two systems arise (Wind's understanding of the Maxwel-

lian position). But since the Hall action implicates a current whose energy, in Wind's

view, derives from the same source as the primary current, to view the Hall effect

as implicating a field—a modification of the links between the original three sys-

tems—is not necessary. This is only true if one does not take the idea of a Hall field

energy sufficiently seriously to employ it in Hamilton's principle to obtain boundary
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conditions. For then, if the conditions proved empirically correct (which they do not;

see epilogue), one would have objective support for the Hall field even though its

energy does not drive the transverse current. Wind, however, seems unaware of these

facts, probably because he was not familiar with the Maxwellian literature.

28.3 Microphysics

Wind's goal was to explain why the magneto-optic vector must be complex. Recall

first that, in Wind's view, the magneto-optic effect is bound to the Hall effect

through a modification in the usual relationship between J and E (eq. [2]). Referring

explicitly to Lorentz (1895), Wind considered E to represent the force per unit ionic

charge for an ion at rest. Now, he continued, Lorentz (1884) had shown that, if a

current consists of oppositely moving but equally charged positive and negative ions,

then the Hall effect considered as a transverse action on the current requires that the

mean speeds of the two kinds of ions must differ from one another. Wind intended

to use this fact to construct a complex expression for the magneto-optic vector.

He began with an ion moving under both E and Hexi fields and drew his equations

directly from Lorentz (1895, sec. 39), wherein Lorentz computed averages for veloc-

ities and other variables. If F is the total force on the ion per unit charge, the ion's

velocity is v, its charge (positive or negative) is e, and we denote the mean values

by an overbar, then, following Lorentz, the mean force on an ion is:

(8) Nl + 5xL = I + ?x tfext = E + (^ x //ext)(|v|/p|)

The mean current density ev multiplied by the number n of ions per unit volume

constitutes a moment current BM/dt (Lorentz 1895, sec. 40), and this may in turn be

split provisionally into a conduction_current_part, dM
c
Jdt, and a polarization part,

dMp/dt, giving for the mean forces, Fc and F
p , respectively, on conduction and on

dielectric ions:

(9) fc = E + ec(dMt
Jdt x //ext )

(10) FP
= E + ^(dM^t x Hext)

Here subscripts c and p indicate, respectively, conduction and dielectric ions, and ec ,

ep represent:

(11) ec = \vj/ncec\vc \

02) *P
= \vp \/npep\vp \

The real numbers ec and ep depend entirely on the microphysical structure of the

body and are functions of the differences between the speeds of the positive and

negative ions because they are means. To show this explicitly, Wind, for simplicity,

assumed that, for both conduction and dielectric situations, unit volume contains on

average as many positive as negative ions, and that the ionic charge, denoted [e], is

the same in magnitude for all ions. Denoting the respective velocities of positive and

negative ions with subscripts + and - , Wind had:

v
cp = v

c
.

Whence:

ev
cp = M(v+'
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This gives an expression for ec and e
•

*cP = \v
c 'p

\/n\ev
c 'p

\ _
(13) = \vr + v

c
lp\/n[e]\v%p ~ v

c
lp

\

Clearly, only if the mean speeds for positive and negative ions are not equal will ec p
be nonzero.

The critical point now was to establish a relationship between F and E using these

results and leading finally to a relationship between J and E. This cannot be done

exactly, since one must compute microphysical averages. But, again following Lo-

rentz, Wind adopted relations between Fc

p

and Mcp based on such averages:

(14) Fp = kMp

(15) Fc
= yMc + fidMJdt = yMc + i$o>Mc

Note that equation (15) allows for the possibility that the conduction ions are subject

to a (probably small) restoring force. The constants 7, k, and p are due to micro-

physical means, and equations (14) and (15) are, in effect, the ionic equations of

motion. Wind allowed that all three of k, 7, and p must depend on the optical

frequency per Lorentz's (1892) dispersion theory since the ions have mass. (But here

Wind ignored dispersion.)

Wind next turned directly to 7, the total current:

(16) J = dE/dt + dMJdt + dMpldt

Combining equations (9), (10), (14), and (15) gives:

(17) dMJdt = [/a)/(7 + /pa>)]£ + [/a>e
(y(7 + i^WMJdt X #ext)

(18) dMp/dt = (Wk)£ + (iojep/KXdMp/dt X #ext)

The magnetic force is small compared with the electric force, so that for dMJdt

and dMpldt one may substitute the values given by equations (17) and (18) for //ext

= 0, yielding:

(17') dMJdt = [hb/Oy + /*Poj)]£ - [ecw
2
/(7 + "*>P)

2
](£ x #ext)

(18') dMpldt = (io>/K)E - (epu>
2
/K

2
)(E X #ext)

Then, finally, equations (16), (17'), and (18') give:

J = a + $ where

a = (iw)[l + 1/(7 + /po>) + 1/k]£

(19) I = -co
2
[er/(7 + /Pco)

2 + ^k2
](E X tfext)

This is not yet in the form of equation (2). If, however, in equation (2) we sup-

pose with Wind that q is sufficiently small that (pqf is much less than one for k

greater than one, and we define r as p
2
q, then equation (2) becomes:

(2') J = pE + pqh X J = pE + rh X E

Comparing this with equation (19), we have:

(20) p = /o>[l + 1/(7 + /pw) + 1/k]

(21) q = -(a>V)[e (7(7 + /p<o)
2 + e^K2

]

As usual in metallic optics:

(22) /?//a) = R 2
e
2ia
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This completes Wind's theory, for we see at once that q can easily be complex.

Note that in a pure dielectric, where we discard the term in 7 + *Pa), p is purely

imaginary, and q is real. In a pure conductor the terms in k are discarded, 7 is

discarded, p becomes 1/(3—the conductivity—and q becomes ec and so is again real.

Wind left the theory here, but we can pursue its implications a bit further to see how

the known experimental facts of magneto-optics now provide some information on

microstructure.

Since experiment requires that both q and p must be complex, only two cases are

possible: (1) both conduction and dielectric ions are present, or (2) only conduction

ions subject to finite restoring forces (7) are present. If case (2) obtained we would

have:

p = m[\ + 1/(7 + /p<o)] = ito/?V'°

q = 6,7(1 + 7 + /(3co)

That is, the phase of q would be determined by the amplitude and phase of p since

ec is real. If we assume as usual that R4
is very large, then the phase 85 of q will be

arctan[2sin(2a)]/[/?
2 - cos(2a)]. In the case of cobalt 85 would then be about 6?6

instead of the 49?5 required empirically. This difference holds as well for iron and

nickel, so we conclude that conduction ions alone, even if subject to small restoring

forces, cannot explain the magneto-optic behavior of the strongly magnetic metals.

However, magneto-optic experiment alone does not determine whether, given that

both conduction and dielectric ions play a role, the conduction ions also experience

restoring forces since, even if they did not, the phase of p would still not determine

the phase of q because of the term €p/k
2

in q.

Wind's theory, unlike Reiff's, is based directly on microphysical averages drawn

from Lorentz (1895) and on the action of the external magnetic field in deflecting

moving ions. It does not rely on the Hertz equations for moving bodies. However, it

agrees with Reiff's theory in requiring that the positive and negative ions have dif-

ferent speeds, since otherwise both ec
. and ep would vanish. Moreover, Wind's theory

shows that the question of which currents—displacement, conduction, or both—de-

termine the magneto-optic effect is wrongly phrased, because in this theory one re-

places all but the free ether current with ionic motions.

One can say, then, that the J. J. Thomson-Drude theory failed because it em-

ployed an unanalyzed macroscopic displacement current, while the Lorentz (1884)

theory failed because it used unanalyzed conduction and displacement currents. Only

Goldhammer's theory remains intact because he, in effect, allowed for microscopic

effects. However, as Wind points out, Goldhammer denied any relations between q
and the Hall coefficient. Wind's theory insists that there is indeed a relation between

the two, since one obtains the Hall coefficient in the limit that the frequency a> goes

to zero, whereupon p becomes 1/p and q becomes ec . These are real numbers and so

are not to be used in magneto-optics, but they follow as limits of the general expres-

sions.

Wind's theory went far beyond Reiff's in basing magneto-optics on microphysics.

Van der Waals and Lorentz (1896) gave (in Dutch) a succinct precis of Wind's work,

but they did not go into details concerning Wind's ionic calculations. Wind's work

as a whole was published in French in 1897 in the Archives Neerlandaises, and in

1898 the Physical Review translated a good portion of it into English, including a

cut-down version of the ionic theory.
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28.4 Poincare's Misunderstanding

Before 1897 Wind's theory was not widely known, but by that date Lorentz's (1895)

theory was beginning to catch physicists' attention, in great measure because of its

success in explaining the Zeeman effect, discovered in October 1896. However, the

principles of ionic physics in Lorentz's form were not easily grasped, being highly

unfamiliar, as we can see from Poincare (1897), to which Lorentz replied shortly

after the publication of Wind (1897), a paper on magneto-optic dispersion which did

not employ microphysical considerations.

Recall first the essence of the Wind theory: the basic field equations remain un-

touched, all effects being due to phenomena associated with ionic motion. Poincare

had clearly studied Lorentz's (1892) theory, and he was well aware of the fact that

magneto-optics required an additional term in the wave equation. In 1897 he took

Lorentz's (1892) wave equation for the polarization in a pure dielectric (see appendix

7) and added to it the term h X dMIdt, h being the magneto-optic vector, to obtain:

(23) [\lq + (K/Ne
2
c)d

2
/dt

2
][V

2 - {\lc
2
)d

2
ldt

2]M
= (4ir/c

2
)d

2
M/ar

2 + Ji x dMIdt

Now the solution to equation (23) yields an expression for the magnetic rotation as a

function of wavelength which cannot be reconciled with experimental results, even

though the purpose of Lorentz's wave equation was to explain dispersion. Specifi-

cally, Poincare effectively found that the magnetic rotation 6P per unit length in the

direction of h will be very nearly:

(24) P
oc

(n
2 - 1)

2
/coa2

Here n is the refractive index for light of frequency o>. According to this formula the

specific rotation varies approximately in proportion to the wavelength X in the me-

dium, whereas experimental results dating back to Verdet's work in 1863 indicated

that the rotation goes approximately as the inverse square of \ (see Knudsen 1976).

Poincare 's result was due to his not as yet having grasped the structure of Lo-

rentz's theory: how one must generate optical phenomena from the combination of

field equations with ionic motions. What Poincare missed was that the magneto-optic

term must not be inserted a priori in the wave equations for dispersion, as one might

insert it in the nondispersive wave equation, but it must be deduced from modifica-

tions to the ionic equations of motion. Thus if m is the ionic mass, and FD is the

force on the ion due to nonmagnetic causes:

(25) Fp = mdv/dt = FD + ev x //ext

Use of equation (25) in the Lorentz (1892) theory of dispersion (appendix 7) then

adds the term K to the left-hand side of equation (23)(/z = 0):

(26) K = (VecN)[V
2 ~ (l/cV/d^KdM/df x Hext)

This was what Lorentz (1897) pointed out, and he remarked that, instead of Poin-

care 's expression (24) for 6^, it leads to:

(27) ep « (n
2 - l)

2
(x)

2
/n

This does vary as the inverse square of the wavelength in the medium.

We see, then, that even as late as 1897 it was extremely difficult for Continental
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physicists (to say nothing of the British) to understand how to employ microphysical

theory in electromagnetism, or even to grasp the basic ideas involved. Reiff felt he

had to treat moving ions as though they dragged ether along in accordance with

Hertz's equations. Poincare did not see that the magneto-optic terms must derive

from modifications of the very same microequations that yield dispersion. Drude, as

late as 1894, and probably much later, had no idea how to generate a complex

magneto-optic vector from his early model.

These difficulties all point to the conclusion that, even on the Continent, the trans-

formation from a macroscopic to a full-fledged microscopic theory of electromagnetic

optics was difficult and prolonged. Much of the problem was simply that many phys-

icists found it difficult to treat the ether as an entirely different thing from matter.

However, with the discovery of the Zeeman effect in 1896, its explanation by Lo-

rentz in microphysical terms, and J. J. Thomson's direct measurements of the ratio

elm of charge to mass of the electron in 1897, most physicists on the Continent,

including Poincare and Drude, had assimilated the basic concepts by about 1900.

Nevertheless, even at that late date Lorentz' s work was not widely credited with

creating the basic structure for ionic electromagnetics, and there were still several

confusions left over from the previous scheme in which ether was scarcely differen-

tiated from matter. This is particularly evident in Drude (1900b), his extremely influ-

ential text wherein he for the first time showed microphysically that the Zeeman

effect, on the one hand, and magneto-optic action in strongly magnetic metals, on

the other, must be due to different ionic processes.
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Microphysics

Drude's comprehensive text, Lehrbuch der Optik (1900/?), was the first detailed op-

tics text in any language which was based entirely on electromagnetic principles and

which incorporated the "ion" hypothesis. It was immediately and immensely influ-

ential, not only among German-reading physicists but in most advanced scientific

communities, having been rapidly translated into English by C. R. Mann and R. A.

Millikan of the University of Chicago (Drude 1905). Millikan remarked in his

preface to the translation:

No one who desires to gain an insight into the most modern aspects of

optical research can afford to be unfamiliar with this remarkably original

and consecutive presentation of the subject of Optics. (Drude 1905, iv)

The primary novelties of Drude's text were: first, its comprehensiveness in treating

geometrical and wave optics; second, its detailed consideration of electromagnetic

field principles; third, its account of the new "ion" physics; fourth, its discussion of

Lorentz's (1895) equations for moving bodies; and, fifth, its examination of radiation

thermodynamics, including the first textual treatment of radiation from ions.

It should by now not overly surprise the reader that Drude referred to Lorentz's

work only in his discussion of moving bodies. We have repeatedly seen that the

"ion" hypothesis proper, in manifold ways, had been in extensive use since the early

1 890s by physicists who nowhere refer to Lorentz but who usually do refer to Helm-

holtz. This is also characteristic of Drude's text, for he writes:

The particular optical properties of bodies first make their appearance in

the equations which connect the electric and magnetic current densities

with the electric and magnetic forces. Let these equations be called the

substance equations in order to distinguish them from the above fundamen-

tal equations [the Faraday and Ampere laws]. ... In the process of set-

ting up "substance and fundamental equations" I have again proceeded

synthetically in that I have deduced them from the simplest electric and

magnetic experiments. ... In this way, however, no explanation of the

phenomena of dispersion is obtained because pure electromagnetic experi-

ments lead to conclusions in what may be called the domain of macro-

physical properties only. For the explanation of optical dispersion a hy-

pothesis as to the microphysical properties of bodies must be made. As

such I have made use of the ion-hypothesis introduced by Helmholtz be-

cause it seemed to me the simplest, most intelligible, and most consistent

way of presenting not only dispersion, absorption, and rotary polarization,

but also magneto-optical phenomena and the optical properties of bodies in

motion. These two last-named subjects I have thought it especially neces-

sary to consider because the first has acquired new interest from Zeeman's

discovery, and the second has received at the hands of H. A. Lorentz a

development as comprehensive as it is elegant. (Drude 1905, vii-viii)
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1

To Drude, Lorentz's work was distinguished not by its detailed developments of

the ion hypothesis, which was widely used and worked on, but by its use of this

hypothesis to develop the optics of moving bodies. We have seen that there are at

least three basic reasons for this rather widespread lack of interest in specifically

Lorentzian "ion" theory before 1900: first, the existence of the Helmholtz ion the-

ory; second, a common failure to consider necessary the sorts of microphysical av-

erages which underlie Lorentz's theories; and, third, persistent confusion over how

to meld field equations with ionic motions. There is a fourth factor which directly

concerns the specific structure of Lorentz's work.

In appendix 7 I have outlined Lorentz's (1892) theory of dispersion—the only one

he offered (except the 1878 sketch) before his full commitment to electron theory

after about 1900. Whereas Lorentz's theory is formally unexceptionable, it has sev-

eral unique characteristics which strongly distinguish it from the methods generally

employed for a period after about 1897 when "ion" theories became very common.

In particular, Lorentz here concerned himself with calculating the force which acts

on any given ion and which is due to external fields and to the actions of surrounding

ions. This force, equal to the product of the ionic mass by its acceleration, contains

time-dependent expressions which arise directly from Lorentz's careful and detailed

consideration of what we would now call the general retarded solution to the inhom-

ogeneous wave equation. In these expressions the exciting fields do not in the end

appear because they are used to generate solutions in terms of the retarded values of

the electric moment throughout the body and in terms of the ion's self-force due to

radiation reaction (which latter Lorentz in the end ignores as small). To generate a

wave equation for the moments, Lorentz simply multiplied the ionic force by N (the

ion density), [obtaining finally equation _(23)j)f chapter 28 abpvel(without the h term),

which is actually of the order of t .

Throughout these deductions, Lorentz employs microphysical averages. Now,
though it is certainly true that Lorentz's method is a correct one even from the stand-

point of later electron theory, nevertheless it very much obscures the relationship

between ionic motions and the basic field equations in E and H. It is extremely

difficult to see, in Lorentz's computation, precisely where and how the fields are

linked to ionic motion because Lorentz employs the field equations solely to generate

retarded expressions for the material electric moments in order to calculate the de-

layed action which one moving ion has on another. This procedure would necessarily

have deeply confused Lorentz's contemporaries, as it apparently confused Poincare,

because they understood microcalculations from Helmholtz 's method in which the

effect of ionic motion is to be represented by inserting terms in the expression for

the current and only then employing the field equations. Lorentz did not follow this

pattern because he was concerned with a rigorous deduction of the mutual effects of

the members of the set of ions which determine by their motions and retarded actions

the propagating electric moment. Moreover, to anyone not intimately familiar with

Lorentz's method it appeared to be, at first glance, closer in spirit to the old Helm-

holtzian polarization theory of 1870 than to the new Helmholtzian theories because

it was concerned with electric moments and not with the electric field proper as it

propagates through the body.

This is a difficult distinction to understand but one which is crucial for grasping

the emerging structure of ion or (after c. 1897) electron theory. The key to under-

1
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standing the microphysical origins of refraction lies in the retarded E field which is

generated by an accelerating electric particle—a field which Lorentz in effect calcu-

lated (see Feynmann 1965). In particular, an infinite plane with surface ion density

T\ (each ion having charge e and mass m), in which the charges are subject to a

restoring force -mule 1" 1

, produces the following E field at a distance r from the

plane:

(1) = -(\/2c)j][me
2
/m(u

2

o - u)
2
)]£ e'

w('~ r/c)

Here \y^]t-rfc is me retarded velocity of the charges in the plane.

From a microphysical point of view a dielectric may be thought of as a sequence

of such planes distributed in otherwise empty space. When a wave impinges on the

first plane in the series it sets its charges in oscillation, and they radiate fields E^. At

the same time, the incident wave continues to propagate at the vacuum speed c, and

at a distance r from the plane it will be EQe
li3i(t ~ rlc)

. Whence the total field ET at r

will be the resultant of these two fields £ffie?consider a thin slab of thickness r, so

that T) is equal to pr, where p is the number of ions per unit volume:

ET = E e^'-
r/c) - a where

(2) a = [fW2
pr/2cm(cug - a)

2

)]£ ^(,_r/c)

This is equivalent to a phase shift in the source field because[we"may^rewrite equation

(2) for small r (using e
lx

is nearly 1 + ix) as;

ET — E e® where

(3) (3 = /cu[(r - rlc) - pre
2
/2cm(o)

2 - oo
2
)]

jWecanJ interpret equation (3) as implying a decreased phase velocity for the total

field ET as compared to the source field: if n is the index of refraction, then, since

the total field travels a distance r at phase velocity cln:

ET = E^e
a
where

(4) a = m[(t - rlc) - (n - \)r/c]

Comparing equations (3) and (4) we have an elementary dispersion equation:

(5) n = \ + pe
2
/2m{ul - co

2

)

(This fails at resonance since we did not include a damping force.)

The critical point to grasp here is that refraction is a sequential process in which

ET has its phase delayed on passage through the plates of charge out oflwhich'lve)

build the dielectric. That is, the source field continues to travel at the vacuum speed

c but is continually interfered with by fields Ew causing phase shifts in the total field

which are equivalent, in the limit of continuous distribution, to a phase velocity cln.

The surprising fact is that this velocity, cln, is precisely the same velocity at

which Lorentz 's theory predicts the moment wave M also propagates, the reason

being that Lorentz had in effect carried out a retarded-force calculation to find the

wave equation for M. The difficulty which his contemporaries probably had in un-

derstanding Lorentz 's calculation was due precisely to this retarded calculation for

M. Specifically, for Lorentz' s calculation to have been easily understood by people

who thought in terms of the Helmholtz twin-equation pattern, Lorentz would have

had to solve the equation of motion for the ions to find dMIdt as a function of the
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driving force Eexi in order to feed dM/dt as a current into the Ampere law, and

thereby to solve the wave equation for £ext . That is, on the Helmholtz pattern the

function of the ionic currents is to alter the wave equation for the E field, and no

distinction is drawn between the E field which propagates freely past the ions at the

vacuum speed c and the field generated by the charges: the Helmholtz theory consid-

ers only the total field.

Lorentz, by contrast, carefully separates £ext , subjecting it to the free-space wave

equation [V
2 — (\/c

2
)d

2
/dt

2
]Eext = 0. He does not, indeed he cannot, treat the prob-

lem on the twin-equation pattern because his equation for M depends not only on £ext

but also on the propagated actions of the ions themselves, which are incorporated in

a total driving field. As a result, in Lorentz 's theory the Faraday and Ampere laws

have, in effect, already been incorporated directly into the partial differential equa-

tion for M, so that this equation cannot be treated separately from the field equa-

tions—it already contains them.

What Lorentz did not makejclear, however, was precisely how the resultant E
field emerges since he tre~aTs only thlfpbiarization field. That is, he did not carry out

the phase-BeTay^cbmputatlon we considerecTabove. This makes his theory quite ob-

scure, to the extent that the editor of his papers felt it necessary to add an elaborate

footnote to explain Lorentz 's cryptic remark that the waves due to ionic vibrations

"superpose upon the already existing state of the etherj^ (Lorentz_l 935-39, 2:270).

The editor distinguishes first the case^Tan infimteldielectric, which was what Lo-

rentz treated. In this case the external wave can be ignored because the phase differ-

ence between it and the polarization wave—and hence the EM field due to the polar-

ization wave and propagating with it—is presumably constant. (The editor in fact

ignores £ext and argues only that the M and EM fields propagate together.) However,

in the case of a dielectric which does not fill all space—the real situation—the free-

space wave £ext must be explicitly considered. But, instead of directly computing the

total wave ET within the dielectric, the editor, following P. P. Ewald, provided an

argument to demonstrate that ET can be replaced by the M or EM field insofar as

propagation is concerned. He wrote:

When all space is filled with the ponderable dielectric there is no particular

difficulty. Let us pose, on the contrary, the case of a dielectric infinitely

extended in the half-space, but limited by a plane surface. Let us suppose

the particles to be animated with vibrations that propagate in plane waves

towards the interior with [their] proper speed. Now, according to a study

of M. Ewald, we know that these vibrations will give rise to three electric

waves. One of them will leave the surface with the speed [c] belonging to

the free ether. A second will propagate into the interior with this same

speed [c] but in a different direction than that of the propagation of the

vibrations. The third, finally, will follow the vibrations. It is the second

wave which must be annulled in the interior on superposing throughout the

space a system of plane waves which will represent the incident waves

from the free ether. Then the first wave coming from the particles will be

the reflected wave, [and] the third will confound with the vibratory waves

in the refracted waves. (Lorentz 1935-39, 2:270)

The editor argues that, within the dielectric, the particles effectively emit two waves

one of which travels with M while the other is phase-shifted relative to the free-ether;>
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field by 180°, with the result that only the field traveling with M persists. This justi-

fies Lorentz's calculation and is itself based on Ewald's consideration of the emitted

fields.

This type of argument (which Lorentz did not provide and which is, at most,

implicit in his work) would have been very hard for physicists to follow before 1900

because it focuses essentially upon waves emitted by oscillating ions, and we have

seen that microphysical techniques were only just beginningTo be"~understood under

the impetus of the Helmholtz twin-equation methods. Bluntly put, the radical reduc-

tionism inherent in Lorentz's theory—its exclusive concentration upon retarded fields

emitted by oscillating ions—would have been confusing to most of his contempo-

raries, who were just beginning to understand how to treat fields distinctly from

material processes mathematically. To many of them Lorentz's theory probably

looked very much like the Helmholtzian (1870) polarization theory since it employed

the polarization vector. And it is indeed similar to that theory, but with one critical

difference: in the Lorentz theory all actions are propagated at the free-ether speed c.

To appreciate Lorentz's theory one must first fully be liberated from the Helmhol-

tzian polarization views and be able to understand clearly that actions, and not only

states, propagate at a finite rate. For most physicists this required an initial detour

through the Helmholtz twin-equations in order to see how to divorce field from mat-

ter analytically. As electron theory developed in the years after 1900, it was increas-

ingly realized that the core of the microphysical model lay in the assumption of

propagated action. The end result was to found the theory entirely on electron-based

retarded forces, to the extent that texts today often deduce "field" equations from a

complicated expression for the retarded force between two charged particles—an

expression which is usually supposed to be given directly by "experiment."

But all this lay in the future, and those like Drude and Reiff who understood

microphysics in terms of the Helmholtzian (1893) ion theory would have certainly

been (as Poincare evidently was) somewhat confused by the structure of Lorentz's

(1892) dispersion theory, and this is probably why it seems to have had so little

impact at the time. What was then necessary to make ion physics comprehensible to

the majority of physicists was a direct, simple method of generating a wave equation

which did not introduce the conceptually and mathematically difficult retarded cal-

culations based on microphysical averages which Lorentz had employed. It is not

surprising to find Drude in 1900 employing just such a simple method for dispersion

and magneto-optics. _

29A The Drude Models

In the lengthy seventh chapter of his Lehrbuch, Drude developed two distinct micro-

physical models. The first envisions a magnetically active body as consisting of ions

with charges e
{
and masses m, which orbit about unfixed points %. The difference

between para- and diamagnetic bodies is (on the old Weberean model) that the orbits

always exist in the former but in the latter are brought into being by induction when

a magnetic field is established. In this model Drude assumes that the orbital motions

are nondissipative but that, when the orbital foci p, move, both dissipative and har-

monic forces come into play. The idea here, which Drude does not discuss in any

detail, seems to be that the forces due to motions of the p, derive from relative

displacements and velocities of the molecules of the body, whose centers are the (3,.
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The effect of an incoming E field, Drude reasons, is to drive these foci in harmonic

motion on the (tacit) assumption that the orbital frequencies are considerably greater

than the optical frequencies. Allowing for both conduction and dielectric ions, Drude

at once writes the equations of motion (6) and (7) for the displacements uc and up of

the conduction and dielectric orbital foci:

(6) m^ujdt1 = e£ - rce
2

cduc/dt

(7) m^Tip/dt
2 = efi - (ejjmp ~ rpe

2

pdtip/dt

Here epQ is the harmonic coefficient for the dielectric ions. The conduction ions are

only dissipatively resisted, as are the dielectric ions (the terms in re
2
represent dissi-

pation). This reverses Wind's procedure, since he assumes harmonic action for both

conduction and dielectric ions but dissipation only for the former. So in Drude' s first

model the effect of a driving E field is simply to displace the orbital focus of the ion.

He presumes that the massive central core (of opposite charge) which occupies the

focus in the absence of a driving field remains essentially at rest. Note the generality

of the model and Drude 's lack of interest in any detailed consideration of the micro-

physical processes.

Suppose now that an external B field is brought into play. Since Drude 's model

does not employ an equation of motion for the orbiting ions proper, but rather for

their orbital foci, he cannot compute the effect of the B field by analyzing its action

on the ion itself. Hence he has recourse to what are, formally though not concep-

tually, the very same Hertz equations for moving bodies that Reiff (1896) had used.

His reasoning is quite simple and bears a close relation to his charged magnetic

dipole model of 1893. Indeed, the present theory may properly be seen as a transla-

tion of that model into realistic ionic terms.

Consider a paramagnetic body. In the absence of an externally imposed magnetic

field §ext the planes of the ionic orbits are randomly oriented. When 5ext alone acts,

neither the orbital speeds nor the orbital foci are affected; however, the orientations

of some fraction of the orbits are realigned parallel to #ext , the number so affected

being determined microphysically by the intermolecular relationships and being mea-

sured macrophysically by the intensity of the magnetization. When, in addition to

Sext , an external, oscillating field E acts, the orbital foci will, by equations (6) and

(7), be driven, but this action does not alter the orientations of the orbital planes.

If we draw any plane curve fixed with respect to the equilibrium loci of the p,

—

this being the frame of the observer—then the magnetic induction through such a

curve will change with time as a result of the oscillations of the orbital planes. In

this frame, therefore, a secondary electromotive force is generated about the curve,

and the negative curl of this electromotive force will be measured by the rate of

change of the magnetic flux through the area enclosed by the curve. Denote the

magnetic field engendered as a result of orbital realignment under the action of Bext

by MA ; this field oscillates with the orbits, remaining always parallel to Bext . Drude

in effect considered MA as fixed and, for purpose of calculation, imposed upon the

curve a velocity equal and opposite to the velocity uc p of the p,. He then calculated

the rate of change s of the magnetic induction through the area enclosed by the curve,

much as Hertz had done but now without envisioning any ether entrainment. He
found for s:

(8) J=-Vx (duc Jdt x MA )
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In addition, the curve experiences the inductive effect of the magnetic field B of the

impinging wave, so the Faraday law becomes:

(9) -V x E = dBo/dt - V x {duc _pldt
x MA )

The optical field B is in itself uninfluenced by the aligned ionic orbits (i.e., by

MA ) so it is simply the vacuum field. MA is some function of §ext , and Drude offered

a crude expression for it which contains a coefficient whose magnitude is determinate

but which, because of hysteresis, is not constant. If/?
1 ' 2

denote the number of aligned

(I) paramagnetic and (2) diamagnetic (the latter aligned opposite to 5ext) orbits, q X2

are the orbital areas, i^ 2 (equal to e1.2lv1.2l* where |v 12 |
is the mean linear orbital

speed) is the ionic current, then Drude had:

(io) MA
- 2 = hjiiji

ia
Bj\$Ji

We now have all we need to generate Drude' s first magneto-optic theory, if we

consider the usual Ampere law together with the various currents. Drude assumed

that the disordered ionic orbits contribute nothing to the net ionic current. Since the

orbital speeds are sufficiently rapid that we may consider the ions to occupy their

orbital foci p,, the dielectric and conduction currents, Cj'
2
and C**

2
, respectively, are

simply:

C ]

c
' 2 = e\'

2
R\'

2
du

x

c
'2
ldt

(II) C x

p
2 = e

x

p
2R x

p
2
du

x

p
2
ldt

Then the Ampere law becomes (ignoring magnetic permeability as usual):

(12) V x BQ = dE/dt + Cp + C2 + C\ + C2 = J

Equations (6)—( 1 2) contain the complete theory of magneto-optics including dis-

persive effects. Drude 's goal, much simpler than Lorentz's, was to eliminate all

vectors except E, B and Bcxt from these equations. This may be done using equations

(6) and (7) by assuming that all time-dependent vectors vary as e
,u>t

, for then equa-

tions (6), (7), and (11) give:

Cp
2 = X U2dE/dt

(13) C''
2 = [L h2dE/dt

wherein

V,2 = /?;-
2
e,, 2/[l + ii*r

l

p'%,2<»Wp
2
)
2
]

jt1>2
= Rl'

2
lu[irl

2 - mU2̂ (el-
2
)
2
]

If we write J in equation (12) as e' dE/dt, then e' will be the sum 1 + \i + X2 +

M-i + to-

Next Drude considered the term MA in equation (9) and found from equations (6),

(7), and (10):

du
l

p
2
/dt X MA =

(i'
2
qp'%,2/ep

2
)J

(14) du
l

y
2
/dt X Ma = (£VVi.2^

2
)7

wherein

/ = dE/dt x 8exl/|Sext |
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Finally, introduce the magneto-optic vector v:

(15) v =
J
2 2 (WpVeJ + 2 (icqc&ec) |Sext/|8exJ

Then combining the various equations we have:

(16) VxB = e'dE/dt

(17) -V X E = dBo/dt - V X (dE/dt X vj

Equations (16) and (17) immediately yield the standard form (18) for the magneto-

optic equations, and Drude considered E to be the optical vector:

(18) d^/dt
1 = (l/e')V

2£ + (l/e')(v • V)(V x dE/dt)

(Note that on Drude 's theory it
and i2 have opposite signs, and their signs also

depend on whether positive or negative ions are orbiting.)

As in the case of Wind's theory, experiment at once places limitations on possible

microphysical structure. For example, a magneto-optically active metal cannot be a

pure conductor, for then |v| would be proportional to e' - 1, incorrectly fixing its

phase. Nor can the body be a pure dielectric, for then the same result holds. Both

dielectric and conduction ions must be present. However, unlike Wind's theory,

Drude' s in no way implicates the Hall effect because he does not consider the action

of £ext on the ions proper. By hypothesis, Bext affects only the orbital paths by align-

ing them, and magneto-optic effects are due to inductive actions generated by the

oscillating orbits.

This theory cannot, however, account for Macaluso and Corbino's (1898) obser-

vation that, for sodium vapor, the Faraday rotation has the same sense on either side

of an absorption band. This fact is closely associated with the Zeeman effect, which

also cannot be explained by this theory (which is not surprising since Drude's theory

takes no account of the deflection of moving ions by a magnetic field, which was

how Lorentz explained the effect; see, e.g., Lorentz 1900). However, only this the-

ory, incorporating orbital or "magnetization" ions, can explain the magneto-optic

properties of the metals. In this last respect Wind's theory was at least incomplete.

The Hall type of theory, epitomized microphysically by Wind's work, is however

essential for the Macaluso-Corbino and Zeeman effects. Here one simply drops the

assumption or orbiting ions and directly includes the transverse action of the mag-

netic field in the ionic equations of motion. This—the Wind theory, in effect—was

also developed by Drude in the Lehrbuch as a second model, but without mentioning

Wind or Lorentz. It yields the normal Zeeman effect as well as the sign of the charge

responsible for it (negative).

Drude's theories constituted the basis from which subsequent investigations de-

parted. Indeed, one might argue that the aim of much subsequent work was to refine

Drude's models. The discovery of the anomalous Zeeman effect by T. Preston (1898)

ultimately (though, at the time, far from obviously) vitiated this endeavor, since the

Zeeman effect required the incorporation of quantum properties (as, in fact, did the

entire theory of magnetic matter).

For our purposes the most significant aspect of Drude's work is the direct way in

which he is able to generate equations for E and B which contain ionic effects: all
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he does is to examine the nature and behavior of the various ionic orbits and currents.

His work is closely related to Helmholtz's (1893) extension of the twin equations to

electromagnetism, for it ignores the complexities of retarded ionic interactions which

Lorentz had so carefully (and, to his contemporaries, confusingly) calculated. More-

over, the spirit of Drude's work is also more Helmholtzian than Lorentzian because

he retains a terminology which obscures the divorce between field and matter which

underlies his theory. For example, although Drude carefully constructs the dielectric

constant e by adding what we would term ionic electric moments, he nevertheless

calls the proportionality factor of the ionic moment to the external field the "dielec-

tric constant" of the ions, and e is then the "resultant dielectric constant." This is a

holdover from Helmholtzian wording which Lorentz (1892) had avoided by writing

only of the electric "moments" and the "specific inductive capacity."

By the end of the 1890s interest was gradually turning to "electron" dynamics

with the electron's universality being accepted. Further, in 1900 Drude himself em-

ployed statistical mechanics in creating the first electron theory of metals, on which

subsequent accounts were also built. However, until 1903 there was no detailed ac-

count available of Lorentz's principles beyond Lorentz (1892, 1895). In June and

December 1903, Lorentz contributed two elaborate sections to the Encyklopddie der

Mathematische Wissenschaften on Maxwell's theory and on electron theory (Lorentz

1903a, b). Both contained extensive references to contemporary and historical liter-

ature. Here for the first time Lorentz united his various researches and showed in

great detail how microphysical computations are to be carried out. Both articles em-

ploy vector notation throughout (as Lorentz [1895] had already done). In Lorentz

(1903/?, sec. 4), he considered "electromagnetic processes in material bodies" and

set out a clear, easily understood program based on microphysical averages and the

computation of currents due to conduction, polarization, and magnetization electrons.

Until the publication of his Theory of Electrons in 1909, Lorentz's (19036) pamphlet

was the major work on the subject, though it did not discuss dispersion except to

provide several references to the literature. The subject was by this time actively

being pursued in manifold ways, with connections being drawn to kinetic theory and

to chemical processes. By 1913 it was sufficiently widespread that Goldhammer

(whose magneto-optic theory was instrumental in demonstrating the inadequacy of

macroscopic electromagnetics) was able to publish an extensive text on dispersion

and absorption designed specifically for students (Goldhammer [1913], in which he

took the opportunity to point out inadequacies in Drude's work on the subject).
1

1 . In addition, A. Schuster's widely used Theory of Optics (1909) contains some discussion of electron

theory, including the Zeeman effect.



Epilogue: The Post-History of Maxwellian

Theory

In part V we have examined the gradual emergence during the 1890s of a compre-

hensive microphysics for electromagnetism as it developed in Holland and Germany.

Although there were considerable difficulties in understanding how to combine field

equations with microprocesses, nevertheless there was no difficulty on the Continent

in grasping the nature of the generalized "ion" before 1896, or the nature of the

universal "electron" after J. J. Thomson's experiments and the Zeeman discovery.

In Britain, where Larmor's work had begun to undermine Maxwellian theory by

1895, the conceptual transformation from macro- to microphysics was not so readily

achieved, for it required more than the understanding of new techniques. It required

abandoning the two fundamental hypotheses of Maxwellian theory: its concept of

charge and its exclusive reliance on field energetics. To follow the British transfor-

mation properly would require a careful study of the personal and institutional affili-

ations of British students and professionals between 1895 and about 1905. Here we
can only briefly examine instances which imply that the transformation was difficult

for older Maxwellians but perhaps not so difficult for students. (Note that the one

point not at issue here is the status of the ether, since it persists, albeit in consider-

ably altered form, in all theories throughout the early 1900s.)

Heaviside

Our first example is Heaviside, who was greatly perplexed by Larmor's concept

of the electron. In 1893 Lorentz evidently sent Oliver Lodge a precis of his 1892

work, and Lodge sent it to Heaviside for comment. The precis in Lorentz's hand,

with marginalia in Heaviside's hand, together with a concluding note dated 13 No-

vember 1893, is today preserved in the Lodge Collection at University College Li-

brary in London (UCL MISC. 89 50B [1892-99]). The precis is here reproduced:

H. A. Lorentz considers Maxwell's theory of the

motion of electricity, particularly the phenomena in

ponderable media which are in motion, whilst the

aether contained in them remains at rest. In this in-

vestigation every electric current in such a medium

is considered a displacement of charged particles

which act on one another by the intervention of the

aether. It is assumed that the charged particles have

a certain magnitude, that the (volume) density e of

their electric charge varies continuously from point

to point and becomes at the surface, and finally

that the aether pervades the particles so that a di-

electric displacement of the aether may ["persist"

crossed out) exist in their interior.
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The components of this displacement are repre-

sented by /, g, h; like all other quantities which

there is occasion to consider they are expressed in

electromagnetic ["measur" crossed out] units and

are considered as functions of the time t and the

coordinates x, y, z of a point, fixed in space.

In the space external to the charged particles f, g, h

satisfy the condition

df/dx + dg/dy + dh/dz = 0,

but in the interior of a particle this equation must be

replaced by

df/dx + dg/dy + dh/dz = e.

The motion of a charged particle through the im-

movable aether has this effect that it is now at this

point and then at that, that the sum of the three dif-

ferential coefficients ["be" crossed out] must have

a prescribed value e.

The following expressions are assumed for the com-

ponents of the electric current:

u = e£ + df/dt, v = €Ti + dgldt, w = e£ + dhldt.

Here £, tj, £ represent the components of the veloc-

ity of the charged particle.

In all points of space:

du/dx + dvldy + dwldz =

It is furthermore supposed:

1. that the components a, p, 7 of the magnetic

force are determined in the ordinary way by the

equations

dy/dy - d$/dz = 4ttm, da/dz - dy/dx = 4ttv,

d$/dx - da/dy = 4-itw

da/dx + d(3/dy + dy/dz = 0;

div D

D = electr

div D = p

as usual

el. current = D + wdivD

(therefore medium at rest).

= dispt ct + convection ct.

current circuital.

curl H = current

div H = .'. jjl constant.

= 1 later.

2. that the potential energy per unit of volume is

2ttV
2

(/
2 + g

2 + h
2
),

V being the velocity of light in the aether;

3. that the kinetic energy per unit of volume has the

value

U = (\ll)D
2
lc

= (l/2)v
2D 2

if n = 1

l/8Tr(a' P
2
+ 7

2
); T = {\l2)\xH

2
(v = 1)

4. that the position of the material points ["which

(illegible)" crossed out] endowed with this kinetic

energy is determined by the position of the charged

particles and ["by" crossed out] the values of/, g,

h in all points of space.

The equations of motion are deduced from d'Alem-

[This is queer. "Material points"!

\I2\lH
2
should be the mag. energy]
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bert's principle. First it ["If

that everywhere:

crossed out] is shown

4trV
2
(dg/dz - Bhldy) = da/dt,

4TrV
2
(dh/dx - df/dz) = d$/dt,

4TtV
2
(df/dy - dg/dx) = dy/dt.

These formulae combined with what precedes deter-

mine the state of the aether when the motion of the

charged particles is given. In the second place the

components of the force ["which a charged"

crossed out] with which the aether acts on a charged

particle are found to be

x = 4<nV
2
fefdj + /€(T|7 - t$)di,

y = 4irV
2/e^T + Je(£a - &y)t*r,

z = 4irV
2/eMT + Je(€P - T\a)drt

These equations in which dj is an element of vol-

ume, and in which the integration is to be extended

over the particle in question, must be employed in

investigating the motion of the particles.

The laws of electrostatics, electrodynamics and cur-

rent-induction may be deduced from these results.

The equations may ["also be" crossed out] also be

["em" crossed out] applied to the determination of

the velocity of light in a ponderable dielectric. To

this effect it is assumed that the molecules of such

a dielectric contain charged particles capable of dis-

placements from their positions of equilibrium ["to

whi" crossed out] whither they are always driven

back by forces originating in the structure of the

molecule. In a beam of light these particles will ex-

ecute vibrations, accompanied by periodic dielectric

displacements in the aether and ["the prop" crossed

out] whose propagation may be studied ["as well

when(?)" crossed out] in the two suppositions that

the ponderable matter as a whole is at rest and that

it moves across the aether. In the first case it is

found that the index of refraction n must change

with the density d in such a way that the expression

n
2 - 1

(n
2 + 2)d

is a constant (here it has been supposed that by a

change in ["their" crossed out] the mutual distances

of the molecules the properties of each of them are

not changed).

By supposing ["the" crossed out] a motion of the

ponderable matter the theory arrives at the formula

1 - \ln
2
which was introduced by Fresnel into the

theory of aberration.

Bother d'Al.s principle.

This is the Faraday law

wh. shd be a fundamental

one. Equivt to

- curl E - p,H

F = Ep + VpuH

mech. force per unit vol.

on the electrification

and convection current.

But the dispt ct shd

be included in pu I think.
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13.11.93

The lengthy initial statement on first two pages

amounts to this: —Maxwell's ether stationary has a

lot of electrification moving about in it, find the me-

chanical force on the electrification. It is done pre-

cisely on same data as in my theory of electrifn

moving through ether. Only I dont agree with his

estimate bottom p. 2 [p. 1 verso] of the force on the

electrification. The stress formula makes it different.

Inasmuch as it is Maxwell's theory of displacement

with convection current included in the true current,

it of course includes a good deal of electromagnetic

theory. But his statement that the "laws" etc may
be deduced from these results is open to question.

You might say they are not results, but the data.

And next, that since no conduction current comes in

anywhere, and |jl = 1 all over, you can't derive

more general properties from the data which do not

include them.

On p. 3 [p. 2 recto] is a statement of results of one

or more special hypotheses about charged molecules

hung on to the above. But impossible to follow the

argument.

It would, I think, conduce to clearness, if mathj_

writers would follow Maxwell more, and state pre-

cisely what changes or additions they propose. One

might imagine that p. 1 and 2 [p. 1 recto and verso]

was statement of a new theory; whereas it is Max-

well's theory limited to a particular state of things,

though with convection current included in true cur-

rent.

O.H.

Lorentz begins directly with the introduction of charged particles within whose

interiors the charge density is p. Heaviside at once reads this p as V • D "as usual."

Lorentz continues with the^current pv + dE/dt, E being "ethereal displacement,"

which Heaviside reads as (V • D)v + dD/dt. This means, Heaviside thinks, that the

medium is at rest, which, of course, it is on the Lorentz theory. For if the medium

proger had a velocity vm then the total current would contain the additional term

- V x (vM x D).

Lorentz continues with the solenoidal condition on the current, the Ampere law,

electric potential energy density, and magnetic kinetic energy density, remarking that

the loci of the "points" which constitute the electromagnetic system are determined

by E. This last Heaviside finds incomprehensible ("This is queer. 'Material points'!

(l/2)|x//
2
should be the mag. energy."), which it is to a Maxwellian who treats the

system as a continuum. Lorentz then uses "d'Alembert's principle," which Heavi-

side finds extremely distasteful (because he, almost alone among Maxwellians, was

not overly enamored of Hamilton's principle, for which he had a peculiar dynamical

alternative based on Poynting's theorem).

Lorentz then writes down the force F on "a charged particle," and here Heaviside
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finds himself entirely at sea because he thinks that pv should include the "displace-

ment current." This is because he does not think of F as acting on a unitary thing

—

the Lorentz charged particle. To him it is the force which acts on an object as a result

of the electric processes in ether which the object in its motion entails; these include

electrification (V D), convection of displacement (v[V • D]), and displacement cur-

rent (dbldt). Lorentz leaves out the last since he uses the charged particles to build

polarization, not displacement currents, but Heaviside can't see why he does. He

can't see the reason because he cannot divorce the concept of charge from ethereal

discontinuities. In his understanding p is not represented by V • D, it is V • D, and

whatever forces act on the moving object are due in the end to internal ether stresses.

Lorentz concludes with a brief account of how the charged particles are used to

obtain optical relations—in particular, the Lorentz-Lorenz law-and, to Heaviside,

this is simply "impossible to follow." As far as he can see Lorentz has offered

nothing more than "Maxwell's theory limited to a particular state of things, though

with convection current included in true current."

In the absence of a detailed study of the situation in Britain between 1895 and

1905, I cannot say to what extent Heaviside 's perplexity was shared by other Max-

wellians. FitzGerald and Larmor had made the transition from electrification to elec-

tricity through Larmor 's model by 1895, as it seems J. J. Thomson had by about

1897. Certainly Heaviside was not alone in continuing to inhabit the Maxwellian

world, for Maxwellian articles do not cease abruptly in 1895, though I have not

located any comprehensive treatments of Maxwellian principles of the sort that fre-

quently appeared in Britain between 1892 and 1895. One could not expect most

committed Maxwellians to have easily understood the new microphysics, or, even if

they did somehow come to understand it, to have embraced it with delight before the

pressures of consensus on the Continent and among such British physicists as Lar-

mor, FitzGerald, and J. J. Thomson became irresistible, which evidently took place

about 1900.

E2. Leathern

Our second example concerns Larmor' s student, J. G. Leathern, who rapidly and

enthusiastically embraced the new ideas. This example has the additional virtue of

completing the story of magneto-optics in Britain, because Leathern was the first

British physicist to remark the necessity of a biconstant theory. He also finally and

explicitly demonstrated that magneto-optics cannot be constructed on a Maxwellian

foundation.

In the early summer of 1897 Leathern 's work was read to the Royal Society

(Leathern 1897). Fully familiar with all of the literature on magneto-optics, Leathern

took his stand directly upon the distinction, which he adopted from Larmor, between

displacement and polarization:

(1) D = E + P

Now in nonmagneto-optic situations P is just proportional to E; this, argued

Leathern, may be altered by magnetic action since P is a material vector whose

dependence on one field quantity might be affected by the other field quantity. How-
ever, one can set restrictions on the forms which the altered dependence can assume
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because (1/2)P • E represents the energy density stored in polarization. Energy ar-

guments similar to those which imply that the dielectric or susceptibility terms must

be symmetric if P is linear in E then show that P may contain terms of the form b

X d
n
E/df. Leathern chose n equal to one and wrote:

(2) P = (e - l)f - $ X dE/dt

In addition he allowed for a Hall effect, but only to yield a transverse conduction

current of the form g x E, so that the total current J becomes:

(3) J = (a + g X)E + dbldt

Combining equations (l)-(3) Leathern had:

J = (<r + ed/dr)£ - t| x £ where

(4) T] = ZdVdt
2 + £

The vector tj is the magneto-optic term, and Leathern assumed without comment
that it may be complex, presumably because b may be complex as a result of micro-

physical processes. Given equations (4) we have the usual wave equation:

(5) d
2
J/dt

2 = R- 2
e-

2,aV2
J - (^ • V)(V x dJ/dt)

Leathern retained the common boundary conditions (£tan and Htan continuous), and

he arrived in the end at expressions for phase and amplitude which are the same as

the usual ones for theories in which the magneto-optic vector is complex. Leathern,

however, gave the phase and amplitude explicitly, instead of in ratio to the oppositely

polarized components of the reflections, so that he was able to deduce the Wind
effect and to compute its magnitude. In fact, Leathern deduced the effect indepen-

dently of Wind. He remarked:

On enquiring whether such an effect had ever been observed or measured,

I found that a few months ago it was predicted from theoretical consider-

ations by Dr. C. H. Wind, in a paper which has as yet appeared only in

Dutch. Acting on this prediction Zeeman sought the phenomenon experi-

mentally, found it, and succeeded in measuring it. (Leathern 1897, 118)

The significance of Leathern' s theory is its easy introduction of a complex magneto-

optic vector on the basis of a new, complex expression for P as a function of E, a

relation Leathern thought was made possible by Larmor's "recent papers."

The success of this type of theory does not necessarily mean that the Maxwell-

FitzGerald theory, based on a modified kinetic energy density in the field, cannot

work because the latter had never been fully analyzed. Larmor (1893) had pointed

out—and at the time he strongly believed this would work—that one might make the

theory effective by carefully extending it to include conductivity and, above all, by

explicitly taking account of the constraint imposed by the incompressibility of the

medium. This last was what FitzGerald had omitted in 1880, and it alters substan-

tially the boundary condictions. By 1897 Leathern and Larmor were quite certain that

field energetics could not possibly work, but to drive the point home, Larmor evi-

dently had Leathern explicitly work out the theory. The result was, as Leathern

wrote:

. . . what was to be expected by those who adhere to the more recent

formulation of optical theory which treats a material medium as free aether
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pervaded by discrete molecules involving in their constitution electrons

considered as nuclei of intrinsic aetheral strain: on such a view a continu-

ous energy function is not the starting point, and the influence of these

discrete nuclei could hardly be expected to modify the propagation in the

intervening aether in so fundamental a manner as an electromotive pressure

would demand. (Leathern 1898, 17)

Leathern' s article effectively destroyed the Maxwell-FitzGerald theory. It is worth

spending a moment on, as it marks the end of a long-standing tradition. Leathern

took H to be a velocity, dti/dt, began with the usual field energies and introduced the

dissipation function (F) for the conduction current (C):

T = (\/2)fH
2
d

3
x = (\/2)}\du/dt\

2
d3
x

W = (V2e)fD
2d3

x

(6) F = (l/2)/£ • Cd3
x

The constitutive equations of the medium are the Ampere and Ohm laws:

V x H = C + dD/dt

(7) C = (tE

Since H is a velocity, we have from equation (7):

(8) V x du/dt = (cr/e + d/dt)D

The magneto-optic term T in the kinetic energy is, as usual:

(9) T = f[(fi • V)m] • d/dt(V x u)d
3
x

To apply Hamilton's principle with the dissipation function, one must separately

vary f[fFd
3
x]dt. Moreover, since the medium is incompressible (V • u vanishes) it

is subject to an internal pressure, and the corresponding constraint must be incorpo-

rated directly into the variation by adding in a term /[/XV • ud
3
x]dt, where X is an

undetermined multiplier. Carrying out the variation, Leathern obtained the following

wave equation and boundary conditions:

(10) d^/dt
2 = R~ 2

e~
2iaV2

u - {I • V)(V x du/dt) - V\

(11) continuity of:

"tan

[R'
2
e~

2iaV X u + (S • V)duldt + (S • en)<y x du/dt)] tan

(12) either of:

5"norm continuous

(i) X - (h • en)(V X du/dt)norm continuous

o«norm discontinuous

(ii) X - (S • en)(V x duldt)norm =

In the boundary conditions en is a unit vector normal to the interface, and 5wnorm is

the variation in the displacement of the medium along this normal: Hamilton's prin-

ciple can be satisfied by either equation (12i) or (12ii). (To rewrite the equations in

terms of H, simply substitute H for du/dt and Him for u (a> is everywhere the same

to ensure phase continuity). Leathern found that, despite their apparent difference,

equations (12i) and (12ii) lead to precisely the same reflected and refracted waves.
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The continuity of 8wnorm does not affect the problem. We see that \ acts as a pressure

producing the body force -VA. as was to be expected. It is eliminated from the

empirically significant expressions by means of equation (12).

Leathern 's boundary conditions are entirely different from the usual ones on mag-

neto-optics, which involve:

continuity of [R~
2
e~

2iaV x H + Ji' x (V x dH/dt)] tan

(Here the form of h' depends on the theory.) The simplest way to see the difference

is to assume, as Leathern does, that h is complex of the form h'e'*, and to compare

the expressions for the complex ratios of the magneto-optic component to the com-

ponent normal to it, which Leathern here finds, with those implied by the biconstant

theory. I find that the formulae differ only in their numerators: Leathern' s polar for-

mula contains a factor

sin'e/V/? 2*2'" - sin
2
8,

which the biconstant formulae lack, and Leathern' s equatorial formula contains a

factor

[R
2
e
2,a - sin

2
0,]

3/2

which the biconstant expressions also lack. It is hardly likely that the modified Max-

well-FitzGerald formulae, even if one allows a complex magneto-optic vector in

them (which itself hardly makes sense in an expression for field energy), can succeed

empirically if the biconstant theory works.

And, indeed, Leathern finds numerous conflicts with Righi's, Sissingh's, and Zee-

man's data. In particular, he finds among other difficulties that the value of |x must

be vastly different for the same metal in polar and equatorial reflection, and that the

value of \h'\ in equatorial reflection for the same metal varies with incidence by a

factor of 100. Leathern concludes: "On the whole, then, it is clear that the theory

which we have been considering does not account for the observed facts" (Leathern

1898, 40). That theory is the one implied by Maxwellian considerations. After 1898,

to my knowledge, Hamilton's principle based on a continuous energy function was

never again used in optics, and Maxwellian theory lost its power to motivate re-

search. Future work in electromagnetism, in Britain as on the Continent, depended

directly on microphysics and a complete divorce between matter and the field.
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The rapid spread of microphysical concepts in the first decade of the twentieth cen-

tury led to such radical changes in physics that proper understanding of the theories

we have discussed was lost. After c. 1910 it becomes increasingly difficult to find

comments about the years between 1875 and 1900 which correctly capture the tenor

of the period. Even though many Maxwellians lived well into the 1930s—and at

least one until the 1950s (George Searle)—the radical recasting implicit in the new

emphasis on microphysics obscured even for these survivors the nature of their early

endeavors. Continental physicists had never truly grasped Maxwellian theory, so

among them there remained primarily a recollection of confusion for the years be-

tween Hertz's discovery of electric waves and the widespread understanding of Lo-

rentz's work by c. 1905.

We have examined a considerable number of intricate theories and experiments. I

can hardly expect the reader to recall their details, but that was not my intention.

Rather, I hope through this intimate recounting to have conveyed the coherence and

power of Maxwellian theory, and to have shown how difficult it was for even non-

Maxwellians to learn how to separate the field from matter as distinct objects of

investigation. I especially hope to have shown through the Maxwellian example that

one can fully grasp a theory only by understanding what there is about it that cannot

be understood in modern terms, and how it must be understood on its own terms.

The Maxwellian case provides a particularly instructive example because its close

analytical similarity to major areas of modern electrodynamics is extremely mislead-

ing. If we assume that these apparent agreements represent true equivalences, then

we are inevitably led to the conclusion that Maxwellian theory contains major incon-

sistencies or, at the least, obscurities. I have attempted to show that there are no

inconsistencies and only a very sharply limited obscurity: namely, the nature of con-

duction. That obscurity, quite clearly marked by Maxwell in the Treatise, prompted

a large percentage of Maxwellian work between 1880 and 1895, and led, in the end,

to the demise of the theory at the hands of Larmor.

I have particularly emphasized what there is about the Maxwellian theory's use of

dynamics that cannot be accepted after electron theory. This is an especially impor-

tant point because it is overly simple to assign special characteristics to Maxwellian

theory which in fact also apply to electron theory. For, as we saw in part I, modern

electrodynamics, even where the field proper is concerned, can also employ dynam-

ical principles.

I shall conclude by recalling the concept which physicists, both in Britain and on

the Continent, had the most difficulty in grasping. Before electron theory, even in

Britain, physicists thought that the microstructure of matter was responsible for

changes in such variables as inductive capacity. Nevertheless, they also thought that

these variables were continuous functions of position, even though matter is made of
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discrete parts. They were able to think this way because they considered the role of

matter to be the modification of the properties of the ether. A material particle alters

inductive capacity in its neighborhood by altering a characteristic of the ether, not,

as electron theory later had it, by superposing electric fields.

The British went the farthest in thinking this way by uniting the concept with

dynamics in many areas. Yet even on the Continent Helmholtz's polarization theory

invited a kindred mode of thought by considering the ether to be similar in structure

to a material body conceived as an arrangement of molecules polarizable in the sense

of Poisson and Mossotti. Though vastly different in many important details, Max-

wellian and Continental electrodynamics agreed on this major point. And it was this

idea that most physicists in the 1890s had the greatest difficulty abandoning, because

it required distinguishing analytically as well as conceptually between two things

—

matter and ether—which had previously been treated in very much the same ways.



Appendix 1:

Maxwellian Analyses of Charge Convection

The Convection Current

The magnetic effect of convected charge was not a central issue in Maxwellian theory

before the introduction of the electron, though it afterwards lay at the core of electro-

dynamics. However, J. J. Thomson (1881), FitzGerald (1881), and Heaviside (1889)

all considered the problem, and their analyses are particularly interesting as illustra-

tions of the power and inherent ambiguities of Maxwellian theory.

The basic questions were, given a finite, spherical conducting surface of radius a

on which displacement terminates (i.e., a charged sphere), then: (1) What magnetic

field is produced by its motion? (2) What is the ponderomotive force which acts on

such a sphere when it moves in an external magnetic field? Thomson (1881) was the

first to consider these questions, and his results are provoking because he obtained

the postelectron expression for (1) but not for (2).

Consider first the magnetic field produced by the moving sphere. It is qualitatively

reasonable to suppose, as even Maxwell did, that the motion produces such a field

because it clearly involves changing displacement at each point in the surrounding

medium. We suppose that the "charge" of the sphere—the integral of displacement

over its surface—is fixed and that the sphere's speed is much less than the velocity

of propagation of electromagnetic radiation in the medium. If the charge is e then

each point in the field has a displacement D equal to:

(1) D = -(e/4TT)V(l/p)

Fig. 31
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In equation (1), p is the distance from the center C of the charged sphere to a point

Q in the field (see fig. 31). Suppose that the sphere has velocity v. Then d(l/p)dr =
-(v • V)(l/p), so that equation (1) yields a displacement current (eq. [2]) at each

field point Q:

(2) dD/dt = (e/4ir)(v V)V(l/p)

From Maxwell's Treatise (vol. 2, sec. 616, eq. 5) this implies that there is a vector

potential at an arbitrary point P a distance p' from Q, and r from the sphere's center

c whose contribution from the displacement current at Q is:

dA = [x(dD/dt)(\/p')d
3
x'

Integrating over all field points Q, we thus have:

(3) A(r) = (uW4tt)JP: (l/p')(v • V)V(l/p)dV

To evaluate equation (3) Thomson expanded 1/p' in powers of 1/p and the fixed

distance r using spherical harmonics. Since D vanishes when p < a, he found:

(4) A-rh = [Le(r
2
/6 - a

2
/\0)(v • V)V(l/r)

If one takes the divergence of this vector potential, one finds that it is not zero

but — (2/3)|xeV • (v/r). But, following Maxwellian practice, which viewed the zero

divergence condition on the vector potential as representing, in effect, the incom-

pressibility of electric quantity (see note at end of this appendix), Thomson simply

added the necessary term to equation (4) to enforce this condition. Thus:

(5) A-nff) = 2[xev/3r + (r
2
/6 - a

2
/\0)(v • V)V(l/r)

To find the B field Thomson simply calculated V x ATh . We thereby find (gen-

eralizing his analysis, which was limited to a velocity v along the x axis):

(6) Be
= V X A-n = [iev x ?/r

3 = \xeV(\/r) X v

Strikingly, this is precisely the same expression as in electron theory for the induction

field produced by a charge e moving with (slow) velocity v in a medium of permea-

bility (JL.

To find the force exerted on the moving sphere in an external field, fiext , Thomson

calculated the interaction energy of field and charge and then, in standard Maxwellian

fashion, used Lagrange's equations. In so doing he committed an error. He began

quite properly with the total field energy density (1/2) § tot
• //tot , where B tot , Htot are

total fields. He then split §tot , first, into intensity and magnetization, and second, into

the part Be due to the moving charge and the part 5ext due to the external source

which has a vector potential Aext :

(7) Btot = #tot + 4<rrA/tot = u^tot

(8) Bm = -^ev x V(l/r) + V x Aext
= Be + Bext

He next separated the energy into its component parts, but he wrote down only what

he took to be the interaction energy, U^, of charge and field:

(9) U-n = -[[Lev X V(l/r)] • (V x A ext ) + 2ir[[Lev X V(l/r)] -Mtot

This is volume energy and can be partially integrated. Doing so, and assuming that

the radius of the sphere is small, the first term in equation (9) yields [Lev • Aext , while
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the second yields (— l/2)jx^v • Aext on the tacit assumption that Mtot can be calculated

from Aext . Thus Thomson obtained (\/2)\xev • Aext for U^. To find the force on the

sphere, one then uses Lagrange's equations (e.g., Fx = - d/dt^U^/dx] + SU^/dx).

This gives:

(9') P-n = (1/2)m*v x 8ext

This is precisely jx/2 times the magnetic part of the so-called Lorentz force.

Thomson's error is easy to locate and does not at all involve the several basic

differences between Maxwellian electrodynamics and electron theory. To see it, split

all fields into two parts, one due to the moving charge and the other due to the

external source:

Bio t
= Be + £ext

(10) Mtot
= Ue + Mext

Be
= He + 4irMe

= \lH€

(11) Sext = #ex, + 4<TTMext = ^£
; ext

The total field energy density is then:

(1/2)5,* • Htot
= (V2)(B

2

e
- 4irBe

• Me) + (l/2)(Z?e
2

xt
- 4<Tr8ext • Mext)

(12) + (l/2)(28, • Bext)
- (l/2)(*jr5e Mex«)

~ (V2)(4irMe 8„t)

Consequently, the correct interaction energy of field and charge is:

(13) U = Be
• 8ext

- 27r8e
• Mext

- 2ttM, • 8ext

Thomson's interaction energy (eq. [9]), on the other hand, was, since Z?ext = V
X Aext :

(14) Un = Be
• 8ext

- 27r8e
• Me

- 2-uBe
• Mext

Comparing equation (13) with (14), we see that Thomson had included a term which

depends solely on the charge's self-energy whereas he had excluded an interaction

term. What he had done was tacitly to assume in his equation (9^ that Mtot is due

solely to the external field, thereby permitting him to set Mtot
x V(l/r) equal to V

X Aext . This makes the contribution of the second term in equation (9) half that of

the first term and of opposite sign. If, instead, we correctly use equation (14), we
find, using equation (11):

(15) U = %t
• HeKt

Since Hcxt
= (l/|x)V x Aext , and Be is given by equation (6), which already includes

permeability, we have:

(16) U = ev A ext

This expression leads, through Lagrange's equations, directly to the magnetic "Lo-

rentz force." In other words, the appearance of the factor (l/2)u, in Thomson's

expression for the force was due simply to his having forgotten that the moving

charge contributes to the magnetization of the medium in which it moves. What is

particularly interesting about Thomson's result is that he was evidently not concerned

by the fact that the charge produces the same magnetic field as an element of a

current-bearing conductor but is acted on by a different force than the conductor is.
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He should have seen the inconsistency because for the same Be field the same inter-

action energy obtains, and hence, by Lagrange's equations, the same force. That he

did not at once perceive the conflict reflects, we believe, the fact that charge convec-

tion was entirely divorced, physically, from the conduction current, so that one

would not necessarily be surprised by differences between them, though the differ-

ence here was due to a simple error.

Aside from this mistake concerning the magnetization, the questionable step in

Thomson's deduction was his arbitrary addition of a term to equation (4) in order to

secure that the vector potential has zero divergence. FitzGerald (1881) addressed

precisely this question several months laster. FitzGerald, naturally, did not object to

the requirement since it was a standard Maxwellian assumption, but he queried its

meaning in the context of Thomson's analysis. He argued, in the first place, that

Thomson's deduction of equation (4) was flawed because Thomson had tacitly as-

sumed that, when the sphere passes over a point, the displacement at that point

remains subsequently unchanged. That is, Thomson did not include a displacement

current at the sphere's surface; he had integrated outward from it on the assumption

that, since the displacement vanishes within the sphere, one did not have to consider

what occurs to displacement within it. In fact, FitzGerald remarked, integration in

this manner cuts out a portion of the displacement current because it effectively

assumes that passage of the sphere over a point fixes permanently the displacement

there. However, the displacement must vanish as the sphere moves over the

point and then reappear after it has passed. This, too, is a current of displacement.

Calculating this extra current, FitzGerald easily obtained, instead of Thomson's equa-

tion (4):

(17) A ¥ = (\/6)\Le[(r
2 - a

2
)(v • V)V(l/r) - 2v/r]

This potential still does not have zero divergence, however, but contains an extra

term — |xeV • (v/r).

FitzGerald decided to grab the bull by the horns and to "
. . . calculate the action

of the superficial moving electricity if it be assumed to act like an electric current."

That is, he added to his AF the term \x,evlr, yielding for the entire potential:

(18) A ¥ = 2\xev/3r + (\/6)\i,e(r
2 - a

2
){v • V)V(l/r)

This expression does have zero divergence. Moreover, we find V x AF = |xev x

r/r
3—the same expression Thomson had obtained for the magnetic field. But this is

just what is obtained by taking the curl of only \xev/r. Hence the striking, almost

paradoxical in the Maxwellian context, conclusion is that the displacement currents,

which give equation (17), do not contribute in any way to the magnetic field of the

moving charge. (This is easily seen by taking the curl of eq. [17], which vanishes.

Thomson's eq. [4] has nonzero curl because it lacks the additional term FitzGerald

obtained from the displacement currents at the surface of the sphere.)

The problems raised by convection were greatly clarified by Heaviside when he

wrote:

. . . fixation of the displacement at any moment definitely fixes the dis-

placement current. We at once find, however, that to close the current

requires us to regard the moving charge itself as a current-element of mo-

ment equal to the charge multiplied by its velocity. . . . The necessity of
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regarding the moving charge as an element of the "true" current may be

also concluded by simply considering that when a charge q is conveyed

into any region, an equal displacement simultaneously leaves it through its

boundary. (Heaviside 1889, 324)

To understand Heaviside 's remark, begin with equation (6) for the magnetic field

associated with the displacement currents (eq. [2]) generated by a moving charge.

Heaviside had given this expression without any justification other than that its curl

in regions outside the charge equals the displacement currents (Heaviside 1885). But

if we take the general expression for the curl of equation (6) we find:

V x H = V X [eV(l/r) X v] = v[V • (eT/r
3
)} + e(v • V)(?/r

3

)

Now if r is vnot zero—if we are not at the charge locus proper—then V • (r/r
3
) equals

zero. But if we include the charge locus itself, then we see that, far from vanishing,

the first term on the right is proportional to v(V • D). Whence we now have:

V x H = pv + dbldt

Taking the divergence of this curl with v constant yields a continuity equation for

charge:

V • (pv) + dp/dt =

In effect Heaviside demonstrated that the convection of charge must be considered

part of the total current by a route which inverts the one modern texts often use to

prove that the displacement current must be included in the expression for V X H.

First, Heaviside found an H, correct to an additive gradient, such that its curl is

dD/dt in regions outside the moving charge. Then, knowing that in general the curl

of this H contains the term pv, he realized that continuity of charge itself demands

treating convection as a part of the true current.

Neither J. J. Thomson nor FitzGerald understood this before Heaviside 's work.

There were two reasons for their lack of understanding. First, they began with a

spherical shell of charge instead of with a point charge. Second, they detoured

through the vector potential in order to compute the magnetic field. Neither of them

ever thought to take the curl of the resulting magnetic field, or, if they did do so,

they failed to notice the extra term which must be included at the charge locus. Had
FitzGerald noticed this term, for example, he would not have had "to take the bull

by the horns" in assuming convected charge to be a part of the current; he would

have been able to demonstrate the point.

Convection and Field Energy

The most well-known result of Thomson's analysis was his deduction of an extra

"mass" for the charged sphere implied by the self-energy of the charge. Since he

was mistaken in the interaction energy, one might think that he would obtain a mis-

taken expression for this extra mass. And, indeed, he did, but not for this reason.

Rather, his result here is much more interesting because it reflects a basic ambiguity

which arises in Maxwellian theory in calculating the self-energy of a finite-sized,

moving, charged body.

The basic aspects of the problem are easily explained and are almost obvious in
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the Maxwellian context. Since a moving charge generates a magnetic field, there is

field energy associated with its motion; this energy depends on the field intensity and

therefore on the speed of the charge. Consequently, any force which accelerates the

charge must also feed energy into the field as well as increase the kinetic energy of

the charged body. This implies that the acceleration produced by the force must be

less for a given inertial mass when the body is charged than when it is uncharged;

moreover, the difference must depend on the size of the charge. By setting the extra

energy required for a given speed to be attained equal to the product of half the

square of the speed by a factor me , we may calculate me and consider it to be a kind

of extra "mass" due to field processes. The question which Maxwellians had to

consider was how to calculate this extra mass.

One might think the question is easily answered since the energy is magnetic field

energy. But what expression should be used to calculate this energy? In the Treatise

Maxwell had deduced (\/$tt)B • H as the energy density of the magnetic field by

partial integration of (1/2)7 • A, where 7 is current and A is vector potential, on the

assumption that the fields vanish at infinity and that the region of integration is sim-

ply connected (see Maxwell 1873, vol. 2, sec. 634; we use 4tt7 = V x H);

T = (1/2)J3 • Ad3
x = (1/8tt)/(V x H) • Ad3

x

= (1/8it)/V • (H x A)d
3
x + (1/8tt)J7/ -(V x A)d

3
x

(19) = 0/8tt)/(# x A) • dS + (l/8ir)/g Hd3
x

If all sources are local, then under the conditions just mentioned the surface integral

in equation (19) vanishes, since \H x A\ falls off as 1/r
3

. Under these conditions,

then, (1/8tt)# • H is the energy density of the magnetic field.

In the Treatise, (1/2)7 • A is the original expression for energy density, and it was

the one Thomson used to calculate the self-energy of a charge in motion. Using

expression (5) for A^ and (2) for the current of displacement, Thomson correctly

obtained:

(20) T-n = (\/2)fA • dD/dtd
3
x = 2[xe

2
v
2
/\5a

According to electron theory, however, the factor in equation (20) should be 1/3, not

2/15. That factor was first obtained by Heaviside (1889).

Heaviside, however, did not use (1/2)7 • A for the energy density, but instead

employed (1/8tt)jx//
2
with H = ev X r/r

3
. Heaviside 's H field, that is, was precisely

the same as Thomson's and FitzGerald's. Yet he obtained a different value for the

self-energy:

(20') TH = (l/87T)jy//V.x = |xe
2
v
2
J£sin

3
fo/e/4a = |xe

2
v
2
/3a

The difference between Thomson's and Heaviside' s expressions is due to the differ-

ence between (l/2)/7 • Ad3
x and (1/8tt)/S • Hd3

x in this case. In particular, we see

that:

(21) TH - TTh = (l/2)/7 • Ad3
x - (l/8ir)/g Hd3

x = Siry.e
2
v
2
/5a

From equation (19) we also find:

(22) TH - TTh = (l/8ir)/(# x A) • dS

Whereas in other cases, like Maxwell's, the surface of integration in question is at

infinity, in this case of the moving sphere it is not because the boundary is not merely
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located at infinity: the sphere carves out an inner surface. Integrating over this surface

and using equation (5) for A, we indeed find that the surface integral is precisely the

difference between Heaviside's and Thomson's expressions for the self-energy.

To recapitulate, Thomson's calculation begins with Maxwell's field energy for

currents, (1/2)JJ • Ad3
x, and he then correctly obtains 2[xe

2
v
2
/\5a for the self-energy.

Heaviside ignores the potential expression for field energy and uses instead (1/8tt)

fB - Hd3
x, correctly obtaining [xe

2
v
2
/3a for the self-energy. The difference between

these values is a surface integral over the charged sphere, an integral which is zero

for a simply connected region with a surface at infinity. It is here not zero because

the sphere forms an inner boundary. Consequently, both Thomson and Heaviside are

analytically correct, but they differ in their expressions for magnetic field energy.

This difference in part reflects Thomson's predilection for the potential formulation

of Maxwellian theory, and Heaviside's extreme distaste for potentials. In the context

of Maxwellian theory either expression may be the correct one. It is a question of

choice of hypothesis concerning basic field energy.

If, however, we take the momentum analog of Poynting's theorem (i.e., that theo-

rem which represents the flow of momentum in the electromagnetic field), then we
necessarily arrive at Heaviside's method of calculation, and Thomson himself used

the field momentum approach in his Recent Researches (1893). There are at least

two routes to the field momentum. One can detour through the force on a moving

charge as follows. Let pmcch be the mechanical momentum of a charge distribution

p. Then we have:

dpmcch/dt = }p(E + v x B)d\

Maxwell's equations then yield (in Gaussian units):

dpmcJdt + dldt${\l4>nc){E x B)d3
x =

(23) (\/4>n)f[E(E dS) - (\/2)E
2
dS + B(B • dS) - (\/2)B

2
dS]

The right-hand side of equation (23) is just the Maxwell stress over the surface, that

is, the force on the surface bounding the volume of integration which contains the

charge. Consequently, we may interpret (1/4ttc)(£ x B) as a field "momentum"
density. If the inertial mass of the charge were zero, then (1/4ttc)(£ X B) would be

the total momentum of the moving charge.

Thomson (1893, sees. 14-16) instead began with the assumption that (1/8tt)(jl//
2

is the field energy density and then turned at once to Hamilton's equations to find

the corresponding field momentum. Specifically, he first turned to his moving tubes

of displacement for equation (4.7) (viz., H = 4ttv X D). This then gives for the

field energy:

(24) (\/Stt)[lH
2 = 2i!\i\v X D\

2

From Hamilton's equations, if px is, for example, the momentum along the x axis,

and T is the corresponding kinetic energy, then px = dTldvx . Since magnetic energy

is assumed to be kinetic, Thomson obtained from equation (24) the momentum den-

sity:

(25) Pfield
= b x £

This equation can be used to calculate the extra "mass" me of the moving charge

due to field processes. If the sphere moves slowly then at each instant the displace-
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ment in the field is D = (e/4ir)r/r
3

. Constantly from equation (25), in a medium of

unit permeability we find:

(26) field D x B = (^/W^v - r(v • r)]

Next Thomson argued that "the resultant momentum in the whole of the dielectric

is evidently parallel to the direction of motion." That is, only the component of P field

which is parallel to v gives a net contribution to the entire field momentum. (Sym-

metry easily shows this to be true by consideration of r
2
v - r(v • r) = r X [v x r]

on either side of the velocity vector.) In sum:

net field momentum

(27)

(v/v)/(Pfield
• v)lvd\

(e
2
v/a)fsin

3
QdQ = 2e

2
v/3a

Hence the mass of the sphere is apparently increased by 2e
2
/3a, and this is precisely

Heaviside's result of several years before, which he had obtained by integrating the

square of the magnetic intensity outside the sphere. (The fact that Thomson's and

Heaviside's calculations give the same result is easily understood since Thomson's

use of Hamilton's equations was based on the assumption that the field kinetic energy

density is [\/Stt][lH
2

, i.e., Heaviside's expression.)

Despite Thomson's new agreement with Heaviside (unacknowledged, as was

usual with Thomson) concerning the self-energy, he still did not obtain the "Lorentz

force." Instead of his previous factor o (x/2, he now obtained, not unity, but 1/3.

This new calculation was based on consideration of momentum convection and not

on field energies and Lagrange's equations.

In particular, Thomson split the H field into an external part and a part due to the

moving charge: H = //ext + He , so that now Pfield
= D x (Hext + He ). He then

projected the momentum onto the direction of motion of the sphere and multiplied

the component by the product of the velocity and element of surface. That is, he

calculated /(Pfieid * v)dS over the sphere and regarded the result as the rate of trans-

mission of momentum by the field across the sphere's surface, and hence as the force

on the sphere. The result gave (\/3)ev X §ext as the force. The problem with Thom-

son's calculation is that it incorrectly estimates the momentum. That is, an element

of the sphere sees, in its motion, dPrie]d/dt = dPneld/dt + (v • V)Pfield , and not, as

Thomson assumed, Pfield
• v.

Table 3 Formulae for Charge Convection

Analysis Vector Potential Magnetic Induction Self-Energy

Thorn 1 \Le(r
2
l6 - a

2
/10)(v V)V(l/r) not calculated not calculated

Thom2 2|xev/3r + \Le(r
2
/6 - a

2
/ 10)

(v • V)V(l/r)

\xeV(\/r) X v 2\xe
2
v
2
/\5a

Fitzl (jxe/6)[(r
2 - a

2
)(v • V)V(l/r) - not calculated not calculated

2v/r]

Fitz2 2^v/3r + (|xe/6)(r
2 - a

2
)(v • V)V(l/r) |xeV(l/r) x v not calculated

Heavi. \xev/r + (|xe/2r)[-v + ?(v • ?)/r
2
] u,eV(l/r) X v [ie

2
v
2
/3a

For a = 0, Heaviside's vector potential, as he remarked, is the same as Thomson's

second expression (Thom2).
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Note: On V • A = as a Condition in Maxwellian Theory

Maxwell used this condition in the Treatise (vol. 2, sec. 616), which he justified as

follows. He begins with the equations for B and J in terms of A and H:

(28) B = V x A = \lH

(29) 4tt7 = V x H

These give:

(30) 4ttjjJ = V x (V x A) = V(V • A) - V2A

Maxwell then writes the general solution of equation (30) under the assumptions that

A vanishes at infinity and has zero divergence outside of a finite region:

(31) A = |x/(?7r)J
3
jc' - (l/4<7r)v7(l/r)v" • A'dh' = A' - f*

In equation (31) r is the distance from a field point to a volume element d3
x' in

which J'', A'^xist. V here operates only on r.

We have V x (V x A) = V x (V x A') since V x Vi|/ = 0. Hence A and A'

yield the same B field, and they^both satisfy equation (30). Maxwell therefore

concluded by discarding the^term Vi|i in the general solution as unimportant for the

field equations (i.e., he set V • A = 0).

Now Maxwell (1873, vol. 2, sec. 783) used the field equations to deduce the

general propagation equation (32) for the vector potential:

(32) 4tt|xC + e|id
2
A/df

2 + €|xVd4>/df - V2A + V(V • A) =

Taking the divergence and assuming the medium is a nonconductor (C = 0):

(33) e^a
2V • A/dt

2 + e*idV
2
(t>/dr =

Thus if V • A is zero, then V2
$ is constant over time, that is, the scalar potential is

evidently not propagated. To Maxwellians this condition was equivalent to the in-

compressibility of electric quantity: the pressure (()>) associated with quantity shift

must be transmitted instantaneously throughout the medium.

This raised a number of questions among Maxwellians which were usually treated

by the concept of "end-thrust." In essence, the idea was that quantity shift along the

axis of a "tube" of displacement is indeed transmitted instantaneously from one

charged surface to another, but that in electromagnetic waves the displacement,

which there occurs in closed tubes, propagates by lateral motion (i.e., transverse to

its length). Propagation takes place by shrinkage of the displacement tube generating

magnetic tubes linking it, and subsequent shrinkage of the magnetic tubes generating

new tubes of displacement, and so on. This process, of course, does not involve end-

thrust in the sense just described since the tubes of displacement are here closed.

J. J. Thomson (1893, sec. 302) discussed the generation and propagation of these

closed tubes by electric oscillations on spheres and cylinders, as well as by Hertzian

oscillators. Essentially, the tubes initially stretch from one point to another of the

surface of the oscillator (always assumed to be a conductor), that is, from a + to a

— region of the surface, and they detach themselves as oscillation occurs, thereafter

propagating as closed tubes through the medium.
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Continuum Theories of Optics

Every continuum theory of optics after Green's (1838) was based on a volume poten-

tial function and either "d'Alembert's principle" or Lagrange's equations, which

latter were frequently deduced from Hamilton's "action" integral. These theories

constitute the immediate optical background to Larmor's work and were vital aspects

of physics as late as 1890. Most of them were able to yield Fresnel's laws for bire-

fringence, but they could not all also give his reflection laws:

light polarized in the plane of incidence

(1) (sine law) Rs = -sin(/ - r)/sin(/ + r)

light polarized perpendicularly to the plane of incidence

(2) (tangent law) Rt
= + tan(/ - r)/tan(z + r)

In equations (1) and (2) Rst are the ratios of reflected to incident amplitudes, and i,

r are, respectively, the angles of incidence and refraction.

The various theories can best be understood in terms of the potential functions

which they employed. In isotropic media, Green (1838) demonstrated that the poten-

tial function W has the following general form (here u is the displacement, and A, B
are elastic constants):

W = (l/2)A(c« + e
yy
+ ezz)

2 + (\/2)B[e% + e% + e\z - 4(eyyezz + €„€„ + evvej]

ey = duJdXj + dUj/dXj for i =£ j

(3) en = dujdx,

For simplicity we may write equation (3) in the equivalent form:

(4) w = (1/2M(V • uf + 2B(V x uf + 2#X (duJdxjdUjdx, - duJdXidujIdXj)
ij

The equations of motion of the medium can be obtained from Hamilton's "ac-

tion" integral in which T is the volume kinetic energy:

(5) 8/[J(r - W)d3
x]dt =

If T has the form (l/2)p|dw/df|
2

, where p is the density, then equation (5) is equivalent

to what Green termed "d'Alembert's principle":

(6) J(pd
2
u/dt

2
• bu)d

3
x = fbWd3

x

Boundary conditions can be obtained from either equation (5) or (6) by partial inte-

gration coupled to the requirement that the resulting surface integrals are continuous

across the boundary between media of different A, B, or p. One also needs conditions

on the continuity of ti at the boundary. The equation of motion is obtained by sepa-

ration of terms in the volume integrals.

If the displacement u is continuous at a boundary, then the equality of the surface
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integrals is equivalent to the continuity of stress. (The nine components of the sym-

metric stress tensor o^ are determined by partial differentiation of W with respect to

the components etj of strain, i.e., o^ = dW/deijt so that dW is assumed to be a perfect

differential equal to 2 &ijdeij-
This requirement, of course, postulates that the me-

i.j

dium is conservative.)

If we perform the variations (eq. [6]) and equate corresponding integrals for

Green's potential (eq. [4]), we find:

(7) pi? = (A - B)V(V • u) + BV2
u = AV(V - u) - BV x (V x u)

u = u' (an independent condition)

(8) o-y, = (j'
u (from u = u' and continuity of surface integrals)

In equation (8) u, cr^ and u , cr'y are the values of the displacement and stress on

either side of the boundary. These equations are used to obtain Fresnel's laws of

reflection.

Note that, if V • u is zero, the wave, which is then entirely transverse, is governed

only by the constant B, whereas, if V x u is zero, the wave, now entirely compres-

sional, is governed only by the constant A. Hence we may call A the compressional,

and B the distortional, elastic constants. Equation (6) is also equivalent to the general

stress differential equation:

(6') pS = 2 n
}

f2 dv./dx)

Here hj is a unit vector along they axis of coordinates.

Green's theory

To obtain the sine law (eq. [1] in Green's theory, let vz be the boundary and xy the

plane of incidence, and let u be normal to the plane of incidence. Then ux = u
y
=

0, and we have:

(9) pH2
= B(d

2
/dx

2 + d
2
/dy

2
)uz

Equation (9) does not contain the compressional constant, which is not here in ques-

tion. If, with Green, we assume that B = B' , but that p is not equal to p\ then we
easily obtain the sine law from equation (8), implying that optical vibrations are

normal to the plane of polarization. That is, for the sine law in Green's theory, the

distortional elasticities must be the same, the densities must be different, the com-

pressional elasticities are irrelevant, and the wave vector must be normal to the plane

of incidence.

The tangent law poses a problem. Here we must assume the wave vector to be in

the plane of incidence (i.e., uz
= 0). This implicates both elastic constants (and

therefore requires compressional as well as distortional waves in order to satisfy the

boundary condition [8]):

pix = Ad/dxie^ + e
yy)

+ Bd/dy(dujdy - dUy/dx)

(10) pU
y
= Ad/dyie^ + e

yy ) + Bd/dxidUy/dx - dujdy)
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Boundary conditions are:

ux = u'x and u
y
= u

y

Me^c + eyy) - IBeyy = A'ie'n + e'yy) - IB'e'yy

(11) B{e„ + e„) = B'ie'^ + e'
yy)

As they stand, the boundary conditions (11) do not imply Fresnel's tangent law. We
already know that we must equate the distortional elasticities and assume discontin-

uous densities in order to get the sine law, so that we are left free to manipulate only

the compressional elasticities. Green cannot set them to zero because this implies

instability. (Indeed if A is less than or equal to 4B/3, the medium is unstable.) He
assumed, instead, that the compressional constants are much larger than the distor-

tional constants, implying that small compressions store large amounts of energy. In

conjunction with the condition that the densities are discontinuous, this enabled

Green to obtain a law of reflection which is not Fresnel's equation (2) but which

seemed to him to be sufficiently close for known data. It was, however, soon shown
to be empirically inadequate by Haughton (1853).

Kirchhoff 's Theory

Kirchhoff (1876) assumed that the medium is incompressible; that is, that V • u

vanishes, thereby giving him the potential function:

WK = B(V X u)
2 + B^Z (dUi/dXjdu/dx, - e^)

He did not detour through either d'Alembert's or Hamilton's principle but obtained

the stress directly by partial differentiation of WK with respect to the strain. He then

obtained the equation of motion by direct substitution into the stress differential equa-

tion (6').

Kirchhoff s results are most easily represented by splitting WK in two. Let G
represent the part Z?(V X u)

2
. Then equation (6') yields at once:

(12) pd'w/df
2 = V x V^G

In equation (12) o> represents V x u and V^ represents the operator (d/dco^, d/do)v ,

d/da>z). That is, the equation of motion for the incompressible, isotropic medium

involves only the G term in WK .

To generate Fresnel's laws, Kirchhoff at firstjequired continuity of displacement

and density, which also implied continuity of V X V^G from equation (12). The

problem, he at once pointed out, is that these conditions are "incompatible" with

the boundary conditions implied by the continuity of stress. He did not state what

the "incompatibility" is, but we can easily show that it is an empirical one. In fact,

Rayleigh demonstrated in 1872 that continuity of stress and density together imply

that, for small differences between indices of refraction across the boundary, there

should be two polarizing angles for a wave vector in the plane of incidence instead

of the one that is always observed in accordance with Fresnel's tangent law. (Stress

continuity and continuity of density immediately give Fresnel's sine law for vibra-

tions perpendicular to the plane of incidence—the reverse of Green's theory, which

assumes discontinuous density.)
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Kirchhoff, in a radical and extremely controversial move, abandoned continuity

of stress and interpreted the traction and pressure imbalance which results at the

boundary as the reaction to forces ''exerted by the ponderable particles of the two

media on the ether," thereby making his theory, unlike all others, dependent on a

complex interaction between ether and matter which goes beyond an effect on the

elastic constants and density of the ether. To obtain another boundary condition (he

continued to assume continuity of displacement and density), Kirchhoff remarked

that if the components of the displacement ti are all functions of the same function

of jc, v, z; t, then, limiting his theory to plane waves, the time derivative of the work

performed by the difference in stress at the boundary vanishes, that is:

(13) {uxz - v'jdujdt + (crvz
- <j'

yz)dUyldt + (<tZ2
- v'zz)dujdt =

This result was later termed "Kirchhoff s principle," and it yields the remaining

boundary condition. One then obtains Fresnel's sine law for vibrations in the plane

of incidence, and exactly obtains Fresnel's tangent law for vibrations normal to the

plane of incidence.

Kelvin's Labile Ether

Kelvin (1884) began, as everyone else except MacCullagh did, with Green's iso-

tropic potential. He then partially integrated its term obtaining:

S(eyyezz + e^^Jt e^e^x =

(14) f[u X (V x w)] • dS + fidujdzdujdy + dujdxdujdz + duxJdyduy
Jdx)d

3
x

Kelvin noted that if u vanishes on the boundary, then Green's potential becomes, by

virtue of equation (14):

(15) WT = (1/2)A(V • m)
2 + (1/2)£(V x u)

2

Since both terms in WT are squares, nonnegative work is always necessary to gener-

ate any state of strain as long as the elastic constants are not negative. That is,

Kelvin's partial integration of the IB term in Green's isotropic potential implies that,

//the resulting surface integral vanishes, then the medium is stable whatever the ratio

of the elastic constants as long as neither one is negative.

Given stability, Kelvin rapidly demonstrated, using continuity of displacement and

stress, that if the distortional elasticities are continuous, but the densities are not,

then Fresnel's sine law emerges whatever the value of the compressional constant for

displacements normal to the plane of incidence; and the tangent law emerges, if the

compressional elasticity is always zero, for displacements in the plane of incidence.

The condition on the compressional constant implies that no energy is stored in a

pure compression, a condition Kelvin termed "labile"—a word which traditionally

only meant a lack of resistance.

Now, as Glazebrook (1885) shortly pointed out, Kelvin had ignored the surface

integrals in equation (14) which pertain to the interface between media by consider-

ing only a boundary at infinity where, to ensure stability, he set u to zero. Obviously

the same condition cannot hold for media boundaries so that another, more general,

assumption is essential if the compressional constant is to be set to zero. If, Glaze-

brook remarked, the components of the displacement are functions of the same func-
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tion of x, y, z; t then the surface integral always vanishes. That is, one requires u to

be thus limited in order to ensure stability under Kelvin's assumptions. This is ex-

actly the condition Kirchhoff had used, and the two theories are therefore analytically

quite similar.

The Labile Ether and Birefringence

Before the discovery of the labile ether most continuum accounts of birefringence

had required unequal elasticities and constant densities. This, however, was in con-

flict with Green's reflection theory, for which distortional elasticity remained un-

changed but density altered across media boundaries. (Kirchhoff s theory was an

exception because in it density remained unaltered whereas distortional elasticity did

not.) Kelvin's labile ether postulated constant distortional elasticity and altered den-

sity in reflection theory. For consistency the same should be postulated for birefrin-

gence. This at first posed a problem.

Rayleigh (1871) had considered whether birefringence could be explained on the

assumption of anisotropic inertia and isotropic elasticity. His analysis was based on

Green's assumption that the compressional constant cannot vanish because of stabil-

ity considerations, and the result he obtained was different from Fresnel's normal

surface in birefringent media. The latter, which determines wave velocity as a func-

tion of direction of propagation, can be written as follows:

(.6) #^£- + 4^^ +4^ =
(v

2 - Bla) (v
2 - Bib) (v

2 - Blc)

Here ex , ey , ez are unit vectors along the coordinate axes; en is a unit vector normal

to a (plane) wave front, and B, a, b, c are characteristic constants of the birefringent

medium.

Rayleigh assumed, first, that the crystal is elastically isotropic, and, second, that

the kinetic energy density T involves anisotropic inertia coefficients which, reduced

to principal axes, yield:

(17) T = (V2)J[a(ex duldt)
2 + b(e

y
duldt)

2 + c(ez duldt)
2
]d

3
x

Using Green's isotropic potential and Lagrange's equations, Rayleigh thereby ob-

tained:

(18) [I^u/dt2 = (A - £)V(V • u) + BV 2
u

Here [//,] is a third-rank diagonal matrix with elements a, b, c.

Consider a plane wave with velocity ven . Then equation (18) yields for transverse

waves:

(p • p \
2

(p • p \
2

(p • p }
2

(19) [A/(A - B)](\/v
2
) = 7 n)

+ 7 n) + 7 n)

(v
2 - Bla) (v

2 - Bib) (v
2 - Blc)

In Green's theory of reflection it is assumed that A is much larger than B. Hence the

left-hand side of equation (19) reduces to 1/v
2

, and we can put it in the form:

(20) ^f^ + ^f^ + ^f^- = 1

(av
2 - B) (bv

2 - B) (cv
2 - B)

Comparing with Fresnel's equation (16), we see that there is evidently a significant

difference. Rayleigh, however, at first hoped that his equation (20) would be as
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empirically justified as equation 16. Stokes, who had himself considered equation

(20), soon wrote Rayleigh that experiments he had performed excluded (20) but fully

confirmed (16) (Stokes 1907, 2:99-100).

But Rayleigh had used the condition that A must be much larger than B. If instead,

Glazebrook (1888) now remarked, we use Kelvin's stability proof and permit A to

vanish, then we obtain exactly Fresnel's surface (eq. [16]) from equation (19). That

is, Kelvin's labile ether, with A zero and an inertia tensor, consistently explains both

reflection and birefringence. This important result made the labile ether a significant

issue in the late 1880s which Larmor took great pains to discuss and to compare with

Kirchhoff's theory, to which the labile ether is essentially equivalent, and with

MacCullagh's theory, from which it differs.

MacCullagh's Theory of Reflection

Unlike all other continuum theories—Green's, Kirchhoff's, and Kelvin's being the

main ones—MacCullagh's (1839) is not based on the full form of Green's isotropic

potential function. Green and Kelvin both used the isotropic potential and stress con-

tinuity but employed different conditions on the compressibility; both also assumed

constant distortional elasticity and variable density. Kirchhoff used the isotropic po-

tential but abandoned stress continuity for "Kirchhoff's principle"; he then assumed

constant density and variable distortional elasticity as well as incompressibility,

which latter neither Green nor Kelvin had used, though Green had assumed that a

small compression stores a large energy compared to the energy stored by a small

distortion.

MacCullagh abandoned the full material potential and instead assumed that the

medium resists elastically only absolute differential rotation V X u, that is, no resis-

tance is offered to pure compression or shear. This peculiar assumption, difficult to

conceive mechanically, reduces Green's isotropic potential to its second term,

namely:

WM = B(V x u)
2

Using either d'Alembert's principle, in Green's sense, or Hamilton's "action" inte-

gral with isotropic inertia, the equation of motion is then:

(21) pH = -#V x (V x u)

(Note that V • u is not involved; i.e., in MacCullagh's medium, compressional waves

never concur with distortional waves whatever the compressibility, or lack of it, may
be.) Equation (21) is also implied by Green's potential if either V • u vanishes, as

Kirchhoff assumed, or A vanishes, as Kelvin assumed. That is, all three of Kelvin's,

Kirchhoff's, and MacCullagh's media have the same equation of motion. Where they

differ is in their boundary conditions.

In MacCullagh's theory the density is assumed to be everywhere continuous, and

the rotational resistance, B, varies from medium to medium as a scalar, or becomes

a tensor in birefringence. This immediately distinguishes his theory from Kelvin's,

which makes precisely the opposite assumption. However, both theories require

"stress" continuity in that, effectively, both require the continuity of the surface

integrals which result from partial integration of the action function. (Since Mac-
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Cullagh's potential cannot be written in terms of strain, his theory does not involve

anything like the ordinary sense of a "stress.")

In Kelvin's theory altered densities across the boundary immediately yield Snel's

law by requiring phase continuity, and this then affects the condition implied by

stress continuity, ultimately yielding the sine and tangent laws, respectively, for vi-

brations normal to and in the plane of incidence. Of course, continuity of displace-

ment is also assumed.

In MacCullagh's theory, on the other hand, we have different expressions for

"stress" continuity because of the different potential functions. For example, stress

continuity for reflection at the xy plane implies, using the isotropic potential:

(A + 2£)(V • u) + IBeyy = (A' + 2B')(V • u') + 2B'e'
yy

Beyz = B'e'yz

Bexz = B'e'xz

MacCullagh's potential, by contrast, cannot be expressed in terms of the strain etj so

that stress cr^ cannot be determined. Rather, one must recur directly to the surface

integral implied by Hamilton's principle, and this yields:

B(dujdy - dUy/dz) = B'{du'zldy - du
y
./dz)

Bidujdz - dujdx) = B\du'xldz - du'Jdx)

These equations are the same as the ones which Kirchhoff had obtained from his

energy principle ("Kichhoff's principle"). Since, moreover, both Kirchhoff and

MacCullagh assume constant density and different elasticities, we see that their the-

ories must yield the same (and the correct) reflection laws.

Examination of MacCullagh's Boundary Conditions

First perform the variation:

5{/[(l/2)p|a«/af - B\V x u\
2
]d

3
x}dt =

We obtain first:

fpd^/dt
2

• hud\ = -Bf{[V x (V x w)] • bu}d
3
x - Bf[(V x u) x bu) • dS

From the volume integrals, we have the equation of motion (eq. [21]). For two

contingent media we have two sets of integrals by splitting T and WM into parts T
x ,

T2 and W l

M , W2
M . For continuity at the boundary we must have:

-B,/[(V x u
x ) x 5w,] • dS = B2f[(V x u2 ) x hu2 \

• dS

To obtain the reflection laws, MacCullagh used two sets of conditions:

(22) u^ continuous

(23) [£(V x «)] tan continuous

Condition (23) results from the continuity of surface integrals and from equation

(22). That is, the values of the normal components of Z?(V x u) and ti are not

relevant to reflection. However, MacCullagh also demonstrated that, given phase

continuity, equations (22) and (23) together imply continuity of the normal compo-

nent of u, so that the displacement is completely continuous if p is also continuous.
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Electron Theory of the Hall Effect

The Hall effect is a complicated process which can be treated adequately only with

statistical mechanics; in strongly ferromagnetic materials, quantum statistics are nec-

essary. However its basic features can be simply explained. Two actions are in-

volved: first, the forces exerted by electric and magnetic fields on the conduction

electrons of the metal; second, in experiments which directly measure the transverse

voltage and not the transverse current, one must consider the action of the electrons

which have "drifted" in the conductor along paths determined, on the average, by

the magnetic and the electric forces.

Consider a simplified experiment in which the magnetic field is normal to the

plane of figure 32 and above it. Using the Lorentz force, e~(E + v X B), where v

is the velocity of the electron, one can show that a free electron will describe a

cycloidal path from c to d at a constant speed; it will not move from a to b, where

the electrodes are located, as long as the magnetic field is present. If the electron

cannot escape at d, then charge will build up there, and a potential drop from c to d

occurs. Eventually there are a sufficient number of particles at d to counteract the

Lorentz force. At this point the action of the electric field is again able to move

particles directly from a to b, thereby reestablishing the interrupted primary current.

To analyze the phenomenon in greater depth one must take into account the col-

lisions between free electrons and between free electrons and the atomic lattice of

the metal. These collisions account for the metal's resistance. In the Hall effect they

decrease the rate at which electrons drift across the plate from c to d.

If a circuit were completed through c and d, one would obtain a transverse current

equal to e~

v

d , where vd is the drift velocity. This current is not produced by a distinct

electric field acting at right angles to the E and B fields. It is, rather, a product of

the combined action of both fields, through the Lorentz force, upon the electron.

Moreover, the transverse current is always produced at the expense of the primary

current. The current decreases because there is a potential drop due to the resistance

in the transverse circuit. This can be detected, in principle, as a drop in the primary

current and is now called magnetoresistance.

One can readily quantify the Hall effect in a first approximation. When the trans-

verse drift is checked, the sum of the transverse force on a particle, say e~F„ and

the magnetic deflection force, e~(v x §), must vanish. Hence, F
t

is equal to v X

B. When v, B are mutually perpendicular, we have F, = v • B. Now if J is the

primary current density, and n is the number of free electrons per unit volume, we
have ne v = J. Consequently, ne~ (a constant for a given metal) is equal to the

ratio J - BIF
t

. Hall had settled on this ratio as a constant for a given metal.

With the simplified electron theory in hand, we can circumvent Hall's criticisms

of Boltzmann's idea that a force on hypothetical electric particles can explain the

force of a magnet on a current-bearing wire. Hall had argued, in part, that the minute
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Fig. 32 Charge drift in a Hall experiment

voltages corresponding to the transverse currents he had measured could not possibly

accunt for the immensely larger electromagnetic force. Using our simple model,

however, we see that the transverse voltage merely measures the intensity of the

transverse force, and this must be multiplied by the product ne~ to obtain the elec-

tromagnetic force J - B. Moreover, as Ole Knudsen pointed out to me, the second

part of Hall's objection—that the mechanical force associated with the primary elec-

tromotive force would be much larger than the transverse force and so should reveal

itself—is also readily countered by electron theory: there will be no net force in the

primary direction because the action on the positive and negative particles would

annul one another. The same does not occur for the transverse force because the

latter depends on particulate motion, and the positive particles remain at rest.
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FitzGerald's Electromagnetic Theory

of Reflection

FitzGerald's (1880) theory was not based directly on the usual boundary conditions

in electromagnetism implied by the field equations for abrupt discontinuities. Rather,

he formulated it in terms of an auxiliary vector and Hamilton's principle; his bound-

ary conditions follow from the principle. This will be clear on examining the ele-

ments of the theory.

FitzGerald began with Maxwell's expressions for the potential (W) and the kinetic

(T) energies of the electromagnetic field:

W = (l/2)/£ • Dd3
x where D = e£

(1) T = (1/2)J7/ • Bd3
x where B = \iH

He then introduced the auxiliary vector u:

(2) du/dt = H

Since V X Wis equal to dD/dt we have:

(3) V x ti = D

Consequently, equation (1) can be rewritten in terms of u:

W = (l/2e)/|V x u\
2
d

3
x

(4) T = (iL/2)j\du/dt\
2
d

3
x

FitzGerald identified w as the light vector, and he therefore sought its equation of

propagation. To find it he applied Hamilton's principle to the field; that is, he re-

quired J(T — W)dt between two fixed states and over a fixed time interval to be

stationary. He obtained in this way:

= a + £ + c where

a = fiL(d
2
u/dt

2
) • hud

3
x

1 = (1/€)/8m • [V x (V x u)]d
3
x

(5) c = (l/€)/[(V x u) x 8m] • dS

In terms of electromagnetic variables (which FitzGerald did not use after introducing

w) this is:

= a' + V + c' where

a' = J\LdH/dt • hud
3
x

V = (1/€)/8m • (V x D)d3
x

(5') c' = (l/€)/(D X 8m) • dS

If the medium is divided internally by a surface across which e, (ji change, then

equation (5') requires continuity of the surface integrals there, and we may set sep-

arately to zero the volume integrals, obtaining:

(6) tiidfi/dt = V x D (the Faraday law)
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//tan continuous

(7) (D/eJnn continuous

These are the usual boundary conditions in electromagnetic theory. However,

FitzGerald here had a problem in that if uv (the component of ti normal to the inter-

face), and therefore Hv , is continuous, then \lHv cannot be continuous if |x changes

abruptly at the boundary. This would imply a breach in the medium, if, as usual, B v

is continuous; or else, if no breach occurs, then B v cannot be continuous, in which

case there must be sources and sinks for B. FitzGerald was puzzled by the problem

but he ignored it. Its dynamical origin lies in the fact that FitzGerald had not taken

account, in the variation, of the incompressibility constraint (V • u = 0), as Leathern

(1898) showed in detail (see epilogue). If that is taken explicitly into account then

the problem does not arise.

To explain the Kerr effect, FitzGerald added the Maxwell term T to the field's

kinetic energy:

(8) T = Cf[(Hexl u) • d(V x u)/dt]d
3
x

Carrying out the variation now gives the following propagation equation and bound-

ary conditions:

(9) e^H/dt1 + 2C[V x (#ext
• V)dH/dt] = - V x (V x H)

(10) //tan continuous

[(l/e)(V x H) + C(#ext ' V)dH/dt + C(Hext
• dS/\dS\)(V x //)] tan continuous

These give the following expressions for the magneto-optic component divided by

the (usual Fresnel expressions for the) component perpendicular to it:

Polar Case

MpW = alb where

a = C7/ext(i)sin(20

b = sine^sin
2
(0/ + O^cos^/ - 0*)

a = C//exta)sin(20/)sin
2

/cos
2

/?

Equatorial Case

A/
6* 1 = A^ lr

tan0;

The magneto-optic phase is always 90°. Comparing with the Lorentz-van Loghem
equations (part IV, chap. 21) for 0^ real, we at once see that there is a marked

difference.

FitzGerald attributed the failure of his theory to yield rotations to metallicity. The

theoretical underpinnings of metallic reflection (see appendix 8) was an exceedingly

difficult problem for optical theories at this time; the Maxwellians were plagued by

it more than most were because it seemed directly to involve the great question of

the link between matter and ether through the transformation of ethereal into material

energy. Taking a typical Maxwellian tack, FitzGerald here remarked: "I hardly think

it worth while going into this more fully as it is treading so closely upon unknown

ground—namely, the connexion between matter and ether—that our hypotheses are

to a great extent merely conveniences."
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The Inductive Capacity of Conductors

A cardinal point of Larmor's theory is that metals must have inductive capacities

much larger than the capacities of dielectrics. This, at first, seems to be a startling

requirement. Nevertheless Larmor was hardly unique in his opinion; by 1893 it was

common among Maxwellians.

One might reason that metals have small capacities, on Maxwellian principles,

because the relaxation time T in them should be exceedingly small, and T is propor-

tional to e/a, where ct is conductivity. Yet even Maxwell did not require e in metals

to be small, say, in comparison to e in dielectrics: thus Maxwell (1873, vol. 2, sees.

801-805) considered the diffusion equation for the vector potential in a medium

—

including metals proper
—

"in which the conductivity is large in proportion to the

inductive capacity," but no constraints are placed on emetai/^dieiectric- Glazebrook

(1881) treated metals as bodies without capacity, but his analysis in fact presumed

only that, in them, o>>e, so that the effects of conductivity are paramount. Pre-

cisely what the capacities of metals are could not be determined through static ex-

periments, as could be done for dielectrics, because of the exceedingly small relax-

ation time. What, then, permitted Larmor (1893) to presume that emetal>>edielectric?

There was an external reason which dates to a problem first mentioned by Max-

well (1873, vol. 2, sec. 800). Just before section 800 Maxwell developed the rudi-

ments of a theory of wave propagation in media which possess both capacity and

conductivity, having deduced:

(1) ^ed
2
A/dt

2 = V2A - \xvdA/dt

A wave propagating in the z direction will be attenuated by a factor e~^ayz , where 7
is the phase velocity.

Obviously the opacity of a medium increases with its conductivity, so that good

conductors should be opaque. This is true in many instances, but it is not always

true. There are at least two important exceptions, one of which was quite puzzling.

First, although, as Maxwell remarked, currents pass readily through all electrolytes,

the electrolytes are nevertheless generally quite transparent. Maxwell explained this

apparent contradiction by recurring to the nature of conduction in electrolytes, which

he thought somehow involved ionic convection engendered by the splitting up of

neutral molecules into charged constituents. In a light wave the vibrations are too

rapid to effect the separation; hence conduction does not occur and the medium is

therefore transparent.

The second problem was more serious. It was well known that, though gold and

silver are excellent conductors, in thin plates they are quite transparent, though the

transmitted light is colored. Maxwell suggested therefore that "there is less loss of

energy when the electromotive forces are reversed for every semivibration of light

than when they act for sensible times, as in our ordinary experiments."
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J. J. Thomson (1893, sec. 32) adapted Maxwell's suggestion and argued that

metals must have high enough capacities that displacement decay would not be sig-

nificant at optical frequencies. That is, if T is a macroscopic time period then, in

metals, e/a<<T, but if T is on the order of an optical period then e/cr>>7\ A quick

calculation then shows that gold's capacity must be vastly greater than the capacity

of any known dielectric. (The electron theory explanation has nothing to do with

presumed metallic capacities but involves the mass of the electron considered as a

discrete body. This, in effect, alters the absorption coefficient to a/(b + ra
2
a>

2
/e

2
),

where a) is the wave's angular frequency.)

There is yet another reason Maxwellians might have had for assuming the induc-

tive capacity of a metal to be effectively infinite. Consider a wire circuit with a

voltaic source in line. In Maxwellian theory the current consists of the rapid buildup

and collapse of displacement. But one might wonder, given that we treat the field as

a continuum, why the displacement preferentially builds in the wire rather than in

the surrounding dielectric? Two possible answers come to mind. One might argue

that the unknown link between ether and matter, which is especially at work within

conductors, is somehow responsible. This hardly satisfies since that link presumably

becomes significant only during displacement decay and not during displacement

buildup, when the conductor behaves like a dielectric. The second possibility invokes

the extremely large capacity of the conductor. Since for a given electromotive force

one has a greater displacement the greater the capacity, and since the capacity of the

conducting region is vastly larger than that of the bounding dielectric, it clearly fol-

lows that most of the displacement will be created within the wire.
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Vortex and Current Systems Compared

The analytical parallel between magnetic forces and fluid velocities due to vorticity

was first pointed out by Helmholtz (1858) and is a deceptively simple one. Consider

first an incompressible liquid with a distribution co of (twice) the vorticity. We then

seek a velocity field v such that:

(1) V x v = w

(2) V • v =

To find such a field we may, by virtue of equation (2), introduce a vector A such

that:

(3) v = V X A

From equation (1) we then obtain:

£ = V x v = V(V • A) - V2A

We may suppose that V • A everywhere vanishes to find:

(4) w = -V 2A

This is a vector form of Poisson's equation and has the following general solution

(5) 4ttA = J57p - x'\(?x'

Using equation (3) we may solve equation (5) for v;

(6) 4ttv = -f(x - x') x »7|l - x'\d
3
x'

That is, the velocity at any point in the liquid depends on the vorticity throughout it.

There is a close analogy between equation (6) and the magnetic field of a current.

For a current of density J the field B of induction is:

(7) B = -\lS(x - x') x J/\x - jt'|VY

That is, if current is supposed proportional to the vorticity in an incompressible liq-

uid, then the magnetic field has the same analytical form as the velocity field.

However, the analogy extends only to the equivalence of magnetic and velocity

fields. Unlike currents in closed circuits, closed vortices cannot exist without under-

going translational motion, even if no other vortices are present. A closer analogy is

based on a rigid ring with small cross section and large aperture, with fluid circula-

tion through the aperture. First analyzed by Kelvin, these perforated solids with flow

through their apertures experience pressural forces which depend on other solids and

the fluid circulations through them. These forces can be obtained from a Lagrangian

analysis.
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This type of system was analyzed by Larmor (1884, sec. II).
1

Analysis discloses

that, for a fluid in a bounded medium (with a boundary at infinity permissible) only

the surface coordinates appear in the Lagrangian. Elimination of the fluid coordinates

thus yields equations of motion for the solids immersed in it. If the solids have no

apertures, then the fluid momenta, which correspond to the ignored coordinates, must

themselves vanish unless the solids are in motion. If, on the other hand, the solids

are perforated, then fluid circulation can occur even if they remain at rest, and the

fluid momenta are then linear functions of the so-called cyclic constants of the cir-

cuits through and around the perforations.

To analyze this sytem one can adapt, as Larmor did, E. J. Routh's (1877) method

of "coordinate ignoration" to the liquid. If the Lagrangian function L does not con-

tain a set of coordinates ijr
7

, then we may define a new Lagrangian L' (the "modi-

fied" Lagrangian) equal to L - di|/7dfdL/d(di|//df) (summing over j) such that it alone

satisfies Lagrange's equations with respect to the coordinates 6* which do appear in

L, namely:

(8) d/dt[dL'/d(d&/dt)] - dL'/dtf =

In the case of fluid circulation through perforated, immersed solids, the conjugate

momenta due to the circulations are constant.

In such a system the entire kinetic energy is the sum of a quadratic function of

the velocities of the solids with a quadratic function T of the cyclic constants k
7
equal

to fju - di for the /
h

aperture. The modified Lagrangian is then L — T, and La-

grange's equations have the form of equation (8) where the 6,, dQ'/dt are the position

and velocity coordinates of the immersed solids. If the solids are held fixed in place

by an external force, then this force must be equal to -dL/d0', and the part of this

which opposes the internal forces due to the circulations is + 6T/d0'. That is, the

internal forces due to circulation with fixed solids are -dI7d6'.

Consider now two, narrow, solid rings with circulations k,, k2 through their ap-

ertures. Then T is:

(9) T = K
2
JSdl 1

• dl
x
lrXA + 2K.KJ7J7, • dl2/ru2 + K

2

2ffdl2 dl2lr2a

Here dl
x , dl2 are elements of each ring. The first and third terms in equation (9) are,

in essence, the self-energies of the rings; the second term is the interaction energy of

the two rings. Hence for stationary rings the force between them is:

(10) F = -2k,k2V//^T 1

• d12/ru2

(See, e.g., Basset, 1888, vol. 1, sees. 88-92).

In the case of constant currents in two circuits, the mutual force is the positive

gradient of their interaction energy, namely:

(11) F = +IJ2VJSdl l
-dl2/ru2

1. The version of Larmor (1884) printed in the Papers (Larmor 1929) has a parenthetical correction

of Larmor' s erroneous conclusion that solid-core vortices and current systems at rest exert forces in the

same directions. Larmor did not at this time (1884) recognize that the forces are opposite to one another;

he was informed of the difference by Kelvin in 1893.
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If the currents are treated analytically as fluid circulations, then we see that the force

between circuits is equal but opposite to the force between the rings. This difference

in sign cannot be avoided. The reason for it is significant. In the case of the rings,

the circulations are maintained simply by virtue of internal fluid constraints and pres-

sures. In the case of the currents, an external source of electromotive intensity must

do work to maintain the currents constant against the electromagnetic induction in-

volved in the virtual displacement implicit in the Lagrangian calculation.
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Lorentz's Dispersion Theory

V • E =
P

V B =

V x B = 4tt(pv + dEldt)

4ttc
2V x E -- BB/dl

c*V
2E - d

2
E/dt

2 = c
2Vp + dpv/dt

c
2 '

V
2B - d

2
B/dt

2 = c\v X Vp)

Lorentz's (1892) theory of dispersion epitomizes the two central characteristics of his

electromagnetic investigations after 1892: (1) it computes interparticle actions di-

rectly by using retarded forces, and (2) it employs careful microphysical averaging

procedures. (These last are space averages and not the sorts of averages employed in

statistical mechanics.)

Beginning with the field equations (l)-(4) below, which include the ionic current

pv, Lorentz deduced the wave equations (5) and (6) for E and B which obtain when

only one particle with charge density p exists:

(1)

(2)

(3)

(4)

(5)

(6)

Lorentz supposed that each molecule of a dielectric medium contains a single

vibrating particle and that the displacement 7 of the particle from equilibrium is much

less than the dimensions, not merely of the molecule, but of the particle itself. (He

proved later, however, that his results hold even if/ is much smaller than the dimen-

sions of the molecule only.) If the equilibrium locus of the particle is r , where the

charge density (assumed continuous) is p , then displacement of the particle through

7 alters the charge density to (since p[x] = p [jc - /]);

(7) p = Po - (T • V)Po

Assuming that the particle moves as a rigid body (V • 7 = 0), we have, from

equations (5)-(7), treating 7 as small to first order and dl/dt as small to second order:

(8) c
2V2E - d

2
E/dt

2 = c
2VPo - c

2V[V • (p 7)] + d
2

p 7/df
2

(9) c
2V2B - d

2
B/dt

2 = -4ttc
2
(V x dp 7/df)

Next Lorentz took an essential step and introduced a scalar o> and a vector X
through the definitions (10)—(13):

(10) E = c
2
Vo> - c

2V(V X) + d^/dt
2

(11) B= -4ttc
2V X dX/dt

(12) p = c
2V2

co - d
2
a)/dr

2 = c
2V2

o) since p = p (r )

(13) p 7 = c
2V2X - d^/dt

2

With these definitions, E and B satisfy equations (8) and (9) as well as the field

equations (l)-(4). This permitted Lorentz to proceed by solving equations (12) and

(13) for co and X, for then the state of the field is uniquely determined by equations

(10) and (11). Lorentz's model at once yields a condition on the equations for points

outside the molecule. When the mobile charge is in equilibrium, the molecule as a



Appendix Seven 295

whole exerts no external action, whence E must vanish outside it under _these circum-

stances. This means that the molecule proper must generate a field -c2
Va) to counter

the field of the particle. Hence outside the molecule equation (10) becomes:

(10') E = -c2V(V -X) + d
2
X/dt

2

At this point Lorentz paused to prove two theorems which are extremely important

for his subsequent analysis:

Theorem I. If U(r, r') is a finite, continuous function defined throughout a region

|x except at points F = f, where r is given, then, defining the volume integral /

throughout fx except for a spherical region b of radius X centered on r, Lorentz

proved the following, in which dvb is a surface element of b:

Vr/ = -(1/X)J(F - r)Ud<rb + Sx-^UdV

Theorem II. Given a finite, continuous vector function F(t — [F — 7}lc, r'), then,

if X is defined as -(1/4ttc
2
)/(1/[F - r])Fd

3
r' , it satisfies the inhomogeneous wave

equation:

c
2V2X - d

2
Xldt

2 = F(t, r)

In effect, theorem I allowed Lorentz to carve out microphysical regions, while theo-

rem II allowed him to use retarded vectors. He could, for example, at once solve

equation (13):

(13') X(P) = -(V4irc
2
)S(?o/Cr' ~ r])1(t~ [r' - T]/c)d

3
r'

(Hereafter the subscript "ret" will denote a function of t — [F — T\lc.)

The Self-Force

With equation (13') Lorentz could calculate the self-force exerted on the mobile

particle by the field it itself generates:

(14) Fs = 4<nc
2
fpEd

3
r' + v X Jpft/V

Considering [F - r\ to be the diameter of the particle proper, Lorentz allowed that

it is sufficiently small that/ret may be approximated by 7(0 — ([F — T\lc)dlldt where

dl/dt is the particle's velocity v. Since equation (12) yields w as -(1/4ttc
2

)/p /

[F - r])d
3
r' , Lorentz found from equation (13'):

(15) X = 7(o + (e/4-rrc
3
)v where e = JW/V

Using equations (7), (10), (11), (14), and (15) Lorentz now had:

£s = 4ttc
2

/[Po - (7 • V)p ]G<fV where

6 = c
2
Vo> - c

2V[V • (7co) + (<?/4ttc
3
)V • v] + d^l/dt

2 + {elAnc^vldt2

(16) - 4itc
2
v x {V X [dluldt + (e/4-nc*)dv/dt]}

Since 7 is independent of position, and o> is not propagated, if we assume that the

particle does not rotate (V X v = 0) and is, again, rigid (V • v = 0) this simplifies

greatly to:

(17) fs = 4-nc
2
dv/dtfp u>d\' + (e^crfv/dt

2

This is the first calculation of radiation reaction.
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The Dispersion Equation

Lorentz next assumed the dielectric to be composed of molecules uniformly distrib-

uted in space with a density N, so that, if m equal to el is the mean molecular

moment, then the delectric polarization density M is Nm . Lorentz 's goal was to find

a propagation equation for M. He began by decomposing the force on any given

mobile particle into three parts, to which end he cut out a small sphere B centered

on the molecule in question; B is sufficiently small that M is sensibly constant

throughout it. Then the total force consists of three parts:

i. from molecules outside B.

ii. from molecules inside B except the given molecule.

iii. from radiation reaction, mechanical actions, and external fields not due to

other molecules.

To compute part i Lorentz had to consider retarded actions. He began with equa-

tions (10') and (11) for fields subsisting outside the molecules whose actions are

considered in part i. First we rewrite equations (10') and (11) in terms of m ret
=

elKt , and we employ expression (13') for X, which, integrating over a mobile parti-

cle, reduces to elTJ\r' - r\. Then (10') and (11) become:

Efi) = (1/4tt)V[V • {mJ[T - r])]

(18) - (\/4TTC
2
)d

2
/dt

2
(m rJ[r' - r])

(19) Btf) = V x dldt{mj[~r' - ?])

To find the total £, and §, simply replace m ret with A/ret and carry out a volume

integration outside the surface of B.

Next Lorentz proved two additional theorems, making use of his previous theorem

I, which are necessary to introduce the value of M at the locus r of the given mole-

cule. Using theorem I and symmetry, he showed, integrating here between the sur-

face of B and of the dielectric, that:

/v r

2(Mret
/[;' - ;mV =

(III) 4>nM(7) + V 2
f(MTJ[?' - T])d

3
r'

V r[Vr
• }(MTJ[?' - r])d\'] =

(IV) -(4tt/3)M(?) + /V r[V r
• (MJ[T - ?]))d

3
r'

Since B is small, M(r) is the value at time t of the polarization density at the center

of B. Note, however, that retarded polarization is necessarily present in the integrals.

Defining a vector L as:

L = ${MJ[r - T])d\'

Lorentz found from equations (18), (19), and (IV):

£,(?) = (l/3)M(r) + (1/4tt)[V(V • L)

(20) - {\lc
2
)d

2
Lldt

2

]

(21) B,(r) = V X dt/dt

Lorentz then considered a wave with amplitude small in comparison to wavelength

and showed that the force due to equation (21) is much smaller than the force due to

equation (20), yielding:

F,(r) = (4TT/3)c
2
eM(r)

(22) + c
2
e[V (V • l) - (\/c

2
)d

2
L/dt

2
]
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Considering a system which is either isotropic or has cubic symmetry, Lorentz

demonstrated that the forces of part ii due to molecules in B vanish. Moreover, the

magnetic action due to external fields is negligible. Allowing for a harmonic force

(constant k), introducing the mass m of the vibrating particle, and incorporating the

radiation reaction (17), Lorentz in the end obtained:

Fi(r) = mdv/dt

= -kl + 4-7TC
2
v/p a>dV + (elc)dvldt

(23) + (4TT/3)c
2
eM(?) + ec

2
[V(V • L) - (Vc^l/dt2

] + 4irc
2eEext

Lorentz showed that the radiation reaction is small, and, introducing the constants

k, q as below, he obtained equation (24) by factoring Ne into equation (23):

k = m — 4Trc
2

/p codV

q m Ne2
cl{k - 4irAte

2
c/3)

(l/q)M(r) + (K/Ne
2
c)d

2
M/dt

2

(24) = c[V(V • I) - (Vc
2
)d

2
L/dt

2
] + 4<7Tc£ext

We can at once see how completely Lorentz 's theory was founded upon retarded

actions. Suppose that we disregarded the effects of the molecules beyond B, setting

thereby the terms in L to zero. Then equation (24) would reduce simply to an ordi-

nary differential equation, and no wave at all would result. It is only because of the

terms in L that polarization satisfies a wave equation. But it is essential to remove

the retarded dependencies from equation (24) to solve the equation. To do so Lorentz

used theorem HI and the definition of L to find:

(25) [V
2 - (l/c

2
)a

2
/ar

2
]L(r) = -4irA/(r)

+ /[V
2 - (l/c

2
)d

2
/d/

2
](Mret

/[;' - T])dV

Since Mret is a retarded vector, it follows analytically that MTJ\f' — r] satisfies the

wave equation:

(26) [V
2 - (l/c

2
)a

2
/ar

2
](Mret/[r'

- r]) =

Moreover, £ext is, we presume, also propagated at c:

(27) [V
2 - (\/c

2
)d

2
/dt

2
]Eext

=

Combining equations (25) and (26) we have:

(28) [V
2 - (l/c

2
)d

2
/d/

2
]I = -4ttM

Finally, equations (24), (27), and (28) give Lorentz 's dispersive wave equation if we
operate with V2 - (\/c

2
)d

2
/dt

2
on equation (24):

(29) [\lq + (KlNe
2
lc)d

2
Jd?][V

2 - (\/c
2
)d

2
/dt

2]M
= -4ttc[V(V • M) - (i/c

2
)a

2
M/ar

2
]

Note that equation (29) is actually of fourth order in the time derivatives.

Returning to equations (24) and (28) and using V • £ext
= we find:

(30) [\lq + 4-rrc 4- {KlNe
2
c)d

2
ld?](V • M) =

Lorentz simply set V • M to zero, which is equivalent to assuming that only trans-

verse waves of polarization occur. If V • M is not zero, as it will not be in an

inhomogeneous body, one necessarily has longitudinal waves as well as transverse



298 Appendix Seven

waves. Finally, assuming a wave form Acos(gt — by), Lorentz obtained from equa-

tion (29) with V • M zero the phase velocity vM :

vW =

(31) (1 - K
2

qg
2
/Ne

2
c)/(\ + 4-ncq - Kqg

2
/Ne

2
c)

The reciprocal of equation (31) is the squared index of refraction, so (31) is the

Lorentz dispersion equation in dielectrics. Its form is the same as the form of the

Helmholtz dispersion equation (appendix 8, eq. [22]) when Helmholtz's ku which

represents conductivity, vanishes.

The structure of Lorentz' s theory, however, is entirely different from the structure

of the Helmholtz theory because Lorentz used the field equations for one purpose

only: to calculate the retarded actions due to changing polarization. By contrast, in

the Helmholtz theory we do not directly consider retarded effects at all: we form the

polarization current, express it in terms of the driving E field, and feed the result into

the Ampere law.

To see how entirely different these procedures are, consider that, to approach the

problem in Helmholtz's fashion, Lorentz would have had to group the terms in L
with the term in Eext in his equation (23) and to have considered the sum as the very

same E field that one employs in the field equations. What Lorentz did instead was

to distinguish the external driving field from the internal driving field due to retarded

polarization actions. To anyone who thought in terms of Helmholtz's electromagnetic

dispersion theory, this could only have been deeply confusing, especially since one

seems to obtain both transverse and longitudinal waves when the body is inhomoge-

neous. To understand the physical significance of Lorentz's theory fully, one must

consider in some detail the interference process which gives rise to sequential phase

retardations in the total E field in the dielectric, and this Lorentz did not do. In fact

the editor of his work had to supply the missing argument (see part V, chap. 29

above; also see Rosenfeld 1951, chap. 6). It is hardly surprising that Lorentz's theory

had so little influence throughout the 1890s.
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Metallic Reflection and Dispersion

Before the late 1880s metallic reflection theory was based on formulae deduced by

Cauchy (1839) on the assumption that, in metals, the index of refraction becomes

complex, but that the usual Fresnel expressions for the reflected amplitudes remain

the same in form. (MacCullagh independently hit on the same idea; see MacCullagh

[1880, 58, 132, 230]; and Whittaker [1910, 1:161-62].) This required introducing a

complex angle of refraction and intricate manipulations to obtain empirically signifi-

cant quantities. This approach reached its fullest mathematical form in Friedrich Ei-

senlohr's (1858) treatment. With the exception of Drude's, Continental work on mag-

neto-optics employed Eisenlohr's formulae.

We begin with the complex Snel law and the Fresnel ratios:

(1) sine/sine* = Reia = n(\ + ik)

(2) AllA'v = -sin(8, - e*)/sin(8, + 8*)

(3) A*LIA'L = tan(0, - e^)/tan(07 + 6*)

Here A!

L , Ay are, respectively, incident amplitudes for waves polarized parallel and

perpendicular to the plane of incidence; Af , Ay are the corresponding complex re-

flected amplitudes.

To obtain empirically meaningful expressions, we must obtain the magnitudes and

moduli of the complex reflections. To do so we introduce pv , Pl and 4>v , (fo,:

(4) AR
VIA'V = Pve'+v

AR
JA'L = ?Le»L

Using equations (l)-(4) it is possible to solve exactly for the real amplitudes and

phases, and this is what Eisenlohr did. His lengthy results consist of the following

equations:

(5) qL = -V{[1 + tan
2A - 2tan(a + s)]/[\ + tan

2

/L + 2tan(a + s)]}

(6) pv = + V{[1 + tan% - 2tan(a - s)]/[\ + tan
2

fv + 2tan(a - s)]}

(7) tan<t>L = sin(a + s)tan(2fL) requiring <$>L<2fL

(8) tan<|v = sin(a - s)tan(2/v) requiring
<f>v<2/V

In these equations we have:

tan(2j) = sin
2
0,sin(2a)/[/?

2 - sin
2
0/cos(2a)] requiring

(9) 0<5<ir/4

(10) tan/L = cos0,//ta requiring 0<tan/L<l

(11) tan/v = a/Rcosti, requiring tan/v>0

(12) a = {[\ - sinVos(2a)//?
2

]

2 + sin
4
0,sin

2
(2a)//?

4

}

l/4

Note that the following relations also hold:

(i) sin(0, + 0*) = sin0^os0/[l + cotfLe'
(a + s)

]/R
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(ii) cos(8, - 8*) = cos
2
e,[tan

2
e, + cotfLe

i(a + s)
]/R

(iii) tan6* = sin6re~
iia + s)

/aR

(iv) cosOk = ae
ls

In the Lorentz-van Loghem equations for magneto-optics certain auxiliary quantities

rlt r2 , 81, and 82 appear which are functions of 0/, a, s, and/L :

(v) r] = 1 + cot
2

/L + 2cot/Lcos(a + s)

(vi) r2 = +V[tan4
87 + cot

2

/L + 2cot/Ltan
2
0/Cos(a + s)]

(vii) tan8j = cot/Lsin(a + s)/[\ + cot/icos(a + s)]

(viii) tan82 = cot/Lsin(a + s)/[tan
2
8/ -I- cot/Lcos(a -I- s)]

Thus using equations (5)—(12) and (i)-(viii) in the Lorentz-van Loghem equations

(see part V, chap. 24, eqs. [I] and [II], above) for the amplitudes and phases in terms

of the complex angle QR of refraction leads directly to the real expressions ( 13)—(16).
Obviously considerable computation is required in practical application.

These equations exactly determine the amplitudes and phases of the metallic re-

flections for given incident amplitudes. They require knowledge of the metallic con-

stants R and a. As an example I have graphed the phases for the case of cobalt,

where R, a are, respectively, 3.82, 57°50'40" in white light (see appendix 9, fig.

33.)

To determine the metallic constants from experiments, and to see the effects of

the phase changes produced by metallic reflection, is easily done (see, e.g., Born

and Wolf 1975, chap. 13). In essence, if two waves polarized at right angles to one

another and with amplitudes pLAL , pvA v have a phase difference 4>L -
<t>v , then they

compound to form an elliptically polarized resultant, one of whose axes makes the

angle T with piAL :

(13) tan(2H = 2pLpvAzA vcos((t>L - ^> v)l{p
2
vA

2
v - p

2

LA
2

L )

We may rewrite T in terms of the ratio P of pv to pL and the incident azimuth of

polarization a)7 , where tanw, is simply A V/AL , as:

(14) tan(2H = {tan[2arctan(/>
tana)/)]}cos(<J>L - <tv)

The ratio bla of the semiaxis (at angle T) to the other semiaxis satisfies:

(15) sin{2arctan[( + /-)b/a]} = - sin[2arctan(Ptana)/)]sin(<J)L - <$>v)

Clearly the reflection is elliptically polarized unless <&L - <\>v is an integral mul-

tiple of it. Suppose that, in an experiment, we set W; at 45° and alter the angle of

incidence until (at 6f) the semiaxes of the reflection lie in and perpendicular to the

plane of incidence. Then, since Y vanishes, <\>L — <\>v is an odd multiple of ir/2, and

the ratio A*/A* becomes simply PellT/2
. One can now employ a device like a Babinet

compensator to introduce an additional ir/2 phase difference between the components

of the reflection, which thereupon becomes plane polarized at an angle (op to the

plane of incidence equal to arctanfPJ. The angle 6f and o)P were, in Germany, usu-

ally called the "principal" incidence and azimuth, respectively. Using equations (5)-

(12) with
<J)L — <\>v equal to tt/2, we may solve for the real and imaginary parts of

R2
e
2ia

:

(16) /?
2
cos(2a) = n

2
(l - k

2
) = sin

2
6f[l + tan^ftcos^cop) - sin

2
(2o)P))]
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(17) /?
2
sin(2a) = 2n

2
K = - sin

2

8ftan
2

8fsinV

The British, and Drude, generally preferred approximations based on either R 2
or R4

much greater than one, whereas it was usual on the Continent to employ the exact

equations (5)—(12).

So we see that R, a or n, k are fully determined by the principal measurements.

Jamin (1852) was the first to compile tables of the metallic constants for various

metals and wavelengths, but by the late 1880s a great deal of experimental work,

including extensive investigations by Drude, had been done on the subject. Indeed it

was a favorite topic to give a student (see, e.g., Quincke 1866-72). It was widely

known that for all known metals k is greater than one, so that /?
2
cos(2a) is always

negative. Moreover, /teosa, or n, always decreases with frequency.

To see what this implies theoretically we must first turn to the transverse wave

equation in the metal:

(18) d^/dt
2 = R- 2eR~ 2iaV2

u

If the wave normal is en , and the angular frequency is co, this yields:

(19) % = I^Jv>l(7„-'ryRcosa-tn
e
-(e n ''r)ioRsma

The wave is attenuated with distance, and its speed vm (c is the vacuum speed) is:

(20) vm = \c/Rcosa\

Since /fcosa decreases with frequency, it follows that metals must exhibit precisely

the opposite dispersion that ordinarily dispersing transparent bodies possess. More-

over, for silver and sodium light R is 3.68 and a is 87?2, so that vm should be over

5.5 times as great as the speed of light in vacuo.

Nor are these the most serious peculiarities. On Maxwell's equations we would

have:

(21) R2
e
2ia = em\xjea^a

- zK,a/u>|j,a€a

Here ea , em are inductive capacities, and |xa , \Lm are magnetic permeabilities, for air

and the metal, respectively; cr is the conductivity. Experiment requires fl
2
cos(2a) to

be negative, but this would mean that em has to be negative as well (since (xm/|xa is,

everyone agreed, optically unimportant). Yet em is an inductive capacity and so

should, in Maxwellian theory, be positive.

All of these problems, with the exception of the wave speed in metals, are re-

solved by a simple dispersion theory such as Helmholtz (1893; see part V, sec. 27.2

above). For we then have the wave equation:

(22) d^/dt2 = {(1/8 - m,co
2

-/o)K,)/[l + €(1/8 - m,w2 - /o)K,)]}V
2D

At once we see that /?
2
cos(2a) is no longer simply e because of the mass coefficient

rri\. Moreover the inverted dispersion of the metals, wherein we set 1/0 to zero,

follows for optical frequencies less than a critical frequency V[(w, - €K
2
)/e/n

2
] at

which /?
2
cos(2a) changes sign and below which it is negative. However, the problem

that vm is greater than c remains, but this seems not to have bothered many people

before the turn of the century. It is not an easy problem to solve because it requires

distinguishing carefully between the group and the phase velocities of the wave: the
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phase velocity is actually greater than c, but the group velocity is always less

than c.

The British were well aware of the problems posed by the sign of /?
2
cos(2a), and

they also knew where to look for a solution, but they were not very interested in

constructing one. J. J. Thomson wrote:

The direction in which to look for an improvement of the theory seems

pretty obvious. The preceding table of metallic constants shows how rap-

idly the effects vary with the frequency of the light vibrations; they are in

this respect analogous to the effects of "anomalous dispersion" . . .

which have been accounted for by assuming that the molecules of the sub-

stance through which the light passes have free periods of vibration com-

parable with the frequency of the light vibrations. The energy absorbed by

such molecules is then a function of the frequency of the light vibrations,

and the optical character of the medium cannot be fixed by one or two

constants, such as the specific inductive capacity or the specific resistance;

we require to know in addition the free periods of the molecules. (Thomson

1893, sec. 356)

But once molecular theory seemed called for, Maxwellian interest ceased, and J. J.

Thomson wrote nothing more on the subject.
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Magneto-Optic Equations

Deducing the Amplitude and Phase

The basic form of the wave equation is the same in all theories, as are the boundary
-*

conditions. In terms of//:

(1) d
2
H/dt

2 = R- 2
e~

2iaV2H + e^R- 2
e-

2ia
(Ji V)(V X (dH/dt))

where |x, h are real.

continuity of

(a) //.an

(!') (b) {/rV 2ia
[(V x H) + tMi x (V x (dH/dt))]}^

For the several theories we must set:

Lorentz: Ti = R2
Ji' ; u, = 2a — tt

J. J. Thomson-Drude: S = efi' ; |x =

Goldhammer: Ti = R~ 2
Ji' ; \l = 2a — 7T — 85

We begin with definitions:

kA = wave vector in air.

kM = wave vector in metal when h is nonzero.

^o = wave vector in metal when h is zero (usual metallic reflection).

Subscript / denotes an incident quantity.

Subscript R denotes a reflected quantity.

Superscript P denotes a component parallel to the interface.

Superscript N denotes a component normal to the interface.

Sub- or superscript LP denotes a component parallel to both interface and plane of

incidence.

Sub- or superscript VP denotes a component parallel to interface and normal to plane

of incidence.

Superscript L denotes a component parallel to plane of incidence.

Superscript V denotes a component normal to plane of incidence.

With these definitions we can broadly follow the Drude (18936) analysis to pro-

vide a comparatively simple deduction of the ratios of the components. Let the wave

in the metal be:

(2) fiM = Sy*-***

Then substitute in equation (1) to obtain:

(3) uM = [\ - fMIR 2
e
2la

) = m[Ti' - lM][uM x tM]
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Additionally, we have by transversality:

(4) V • HM = which implies uM • H.M =

Together equations (3) and (4) yield:

(5) [1 - k
2
M/R

2
e
2ia

]

2 = a>
2
[£' • lMf M̂

This is the basic equation for the wave vector. We at once approximate by assum-

ing that V is sufficiently small to allow replacing £M on the right-hand side of equa-

tion (5) with kl, its value for h' zero:

R2
e
2ia = k

2

(5') [1 - k
2
MIR

2ia
f = a>

2
[£' • lM]

2R2
e
2ia

Defining cash' • kM , we have from equation (5'):

(6) 1 - tfMIR
2
e
2ia ± ucRe'

a =

Since kM lies in the plane of incidence it is equal to V£ + lc
N
M , whence Icjf is just

(kM*)
2 + (&m)

2
. Since the wave is attenuated in the metal, we must have the imagi-

nary part of kM less than zero if its real part is greater than zero. Then equation (6)

has two solutions for k^ (of course, kff equals k
L£ since refractions affect only the

interface normal wave number) which we denote %m + and k^-'-

(7) (k
L
f)

2 + {k
N
M± f = R2

e
2,a

[\ ± <*cRe'
a

]

We again approximate. If c were zero, then we would have from equation (7):

(k
L
/)

2 = ~(k N)

2 + R2
e
2ta

We replace (kf)
2
with this expression:

(8) (k"M± )

2 = (k")

2 ± axtfV*

For our third approximation, since c is small:

ksi ± + k — 2a^)

From equation (8), this gives:

(9) k
N
M ^ = k% ± o*cRVia

/2k
3 „3i'a /<)#,#

Note that to obtain equation (9) we used three successive approximations all assum-

ing only that c is small.

We must next obtain a complete expression for HM in terms of the two refracted

waves, for which we employ transversality (4) and also equation (3) to find:

(*a# x uM)[\ - k
2
M/R

2
e
2ia

] = mck2
MuM

Set uM equal to wjjf + u^f + wJJ. Then this gives:

a(b + d) = iu>ck
2
M[u

L
M + u^ + u

N
M] wherein

a = \ - k
2
MIR

2
e
2ia

b = k
L
M(u

L
MeN - Um^ls)

(3') d = kfriffeyp - uTeLP)
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Here the e are unit vectors. Simultaneous solution of equation (3') with (5) yields:

(10) u
v
M
p
lu
N
M = ±ikM/k

L
M
p

And, as above, & is just (k
L
M
p

)

2 + {k
N
Mf since left is zero (i.e., the refraction lies

in the plane of incidence). Equation (10) allows us to replace u£f with a term in ifM .

Similarly, by transversality we can replace vt£ with -{k
N
Mlk

L
M)u

N
M . Whence if we

write:

u
N
M± = D ± *{,V

(W
'-V'>

We have, finally, for HM :

TtM ± = D± £'<?* where

K = ( — kM± , ± kM± , kM )

P = ((0/ - lM± r)

tLP _ TIP

(11) (kM±f = (k?)
2 + (*£± )

2

In air we have HA as:

HA = Je" + ge"' where

J =
( -kM. uf, k

LM)
g = (*M, £ kfuL

R)

a

(12) a' = oof

If 0/ is the angle of incidence then:

k
L
A
p = sin0,

k
N
A = cose,

(13) (k
L
/)

2 + (k")

2 = R2
e
2ia

We now use the boundary conditions (!')• Condition (l'a) gives, from equations

(11) and (12):

B\ k M+D + + k
N
M -D- = k

NM - u
L
R )

Bi - iD + + kM + + iD-kM - = u] + uR

Condition (l'b) gives:

Bi ik
N
A{u) - u

v
R) = a + b + d where

a = kM+ h
N
M+D + - kM -kM-D.

b = h'
vp
[-ikM+ k

L
A
P
i»D + + ikM_k

L/o>D_)

d = -h'
N[-D + t*(kM+ )

2 + D_o)fe_)
2

]

B* ii + i£ = D+ + D.

Our goal is to eliminate all but the incident and reflected terms from B
x
— B4 . To

do so we must first use equation (9) to express &^ +
in terms of R, a, c, and k .

We then discard, in our fourth approximation, all terms containing factors quadratic

in h' . This gives:

B'\ k
NM - u

L
R) = k

N
{D + + D_) + u)c/?e

,a
(D + - D_)/2*?

fl'2 w,
v + m£ = -iReia

(D + - D_) - /a>c(D + + D_)/2
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(To obtain B'2 we have also approximated kM± , equal to V[(&a/±)
2 + {k*f)

2
], as

Reia + coc/2 using V(l + x) = 1 + x/2 for small x.)

B'3 ik
N
A {ul - u

N
R ) = a + b + d where

a = /te
fa
*?(l + iuh'

vp
k
L
A
p
lk
N
Q ){D + - D_)

fc = R2
e

2,<x
k
N
{D + + D_)cco/2

J = {m){h ,LP
u>k?lk% - h'

Nu)(D + + D_)

(#3 uses the same approximation as BJ.) £4 remains the same.

We now make our fifth approximation in B[ - B'3 , B4 . We solve them for [D + ]

+ [D-] and [D + ]
- [D_], the square brackets here denoting the values for the case

of h' zero, and we eliminate u] and u
v
R from the results to find:

[D + ] + [D_] = 2nft2 + (*? + *?)

[D + ]
- [D_] = 2M/̂ ?/(*J[ + k

N
IR

2
e
2ia

)

We now substitute these last expressions in the boundary conditions, but only in

those terms which contain c as a factor, and we then eliminate D+ and D_ to obtain

the basic component relations:

(14) k
NM - u

L
R ) = kM + «fc) + iu]c<»k

N
Alk

N
o{k

N
A + A#//te''°)

(15) likJCw}' - mJ) = a + 6 + d where

a = *Sf(n#

v + uR)IRe
,a

b = 2iu]h'
vp^kL

A
p
k
N
A l{k

N
AR

2
e
2ta + k

N
)

d = -iu1{ftfh
,LP

<*lk% - h'
N
u)k

N
A l{k

N
A + *?)

In the usual experiments the incident wave is polarized in {u] = 0) or perpendic-

ular (wf = 0) to the plane of incidence. We solve equations (14) and (15) for these

two cases, noting that c is h'
LP
k
LP + h'

N
k
N
My and, in our sixth and last approxima-

tion, we replace k
N
M with k%\nc. We obtain:

Incident polarisation normal to plane of incidence {i/f = 0).

(16) u
l
rIu

V
r = ~dl(k

N
A - kZ/RVXkt + *?)

Incident polarisation parallel to plane of incidence (u] = 0).

ullitk = +<0(*J + *?/tfV*")(*? - *o) wherein

(17) d = /[tfS'V*?)/^ - A'"©]*?

Note that /*'
v/>

does not appear in these ratios, which means that a magnetic field

normal to the plane of incidence does not generate a component normal to the origi-

nal direction of polarization and so does not rotate waves which are initially polarized

in or normal to the plane of incidence. However, h'
vp

does appear in equation (15),

and it does have a detectable effect, as Wind was the first to demonstrate (see below).

To obtain empirically significant ratios we use equation (13), denote ti
LP

, h'
N

respectively by h
E
and h

p
, and define:

A + Bi = {a - d/R
2
e
2ia

)(f + d)

A' + B'i = (a + d/R
2
e
2ia

)(f - d)

a = cos0/

d = V[R2
e
2ia - sin

2
e,]

(18) / = sin0,
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Then equations (16) and (17) become:

u\ = 0.

(16') ifcu
v
R = h

E
af(B + Ai)l{A

2 + B2
)d - ih

p
al{A + Bi)

u] = 0.

(17') uWr = h
E
aj{B' + A'i)l{A'

2 + B ,2
)d + itfa/CA' + fl'i)

Note that, if the magneto-optic component (w£ in [16'] and u
v
R in [17']) is very small,

as it is, then the angle of the semimajor axis of the elliptically polarized reflection

with respect to the original direction of linear polarization will (in radians) be very

nearly the real part of the ratios (16'), (17'). (See appendix 8, equation [13] and

discard one of pyAy, p\a\; approximating IT = tan2I\ we see that T in radians is

simply the real part of the complex component ratio.)

It is obviously a lengthy task to find the real parts in equations (16'), (17'), though

it can be done. In fact that is what van Loghem and Goldhammer did, but they did

not solve equations (14) and (15) simply for the ratios. Rather, they first solved

directly for the reflected components in terms of the usual metallic complex angle of

refraction and then used the exact Eisenlohr equations to obtain expressions for the

amplitudes and phases. Rotations were then obtained as the product of the ratio of

the amplitudes by the cosine of the phase difference. Drude and J.J. Thomson chose

instead to approximate by assuming that R2
is large (J. J. Thomson), or that R4

is

large (Drude). In Drude's approximation we find for A, B, A', B'

:

A = na[\ - q] —r
B = «Kfl[l + q] + s

A' = -na[\ - q] - r

B' = A2Kfl[l + q] + s

a = cos6/

q = 1 + (l/2)(sin
2

/)//?
2

r = -(sin
2
6/)[l + (k

2 - 1)/K
2
(k

2 + 1)]

s = 2(sin
2
67)K//?

2
(K

2 + 1)

Here, as usual, R2
e
2ia = n

2
(\ - k

2
)
- 2n

2
Ki.

We can obtain minimum rotations from these and the ratios (16'), (17') by finding

real parts—now a simple task since we have expressions for A, B, A', B' . To find

null rotations is also simple, but we use equations (14), (15) with the condition that

the ratio of components in the reflection is real. In this way one obtains the following

formulae which can be used for any theory by choosing the proper value for \l\

Equatorial magnetization.

iT = iP = g[a(B' - kA') + b{A' + KB')]/d(AB' - A'B)

H?> g[a(B - kA ) + b(A + KB)]/d(AB' - A'B)
ppol pana = g[B(b -

Kfl) "- A(a + Kb)]/d(A
2 + B2

)

rpo. m pana = g[B'(b -
Kfl) - A' (a + Kb)]/d(A

' 2 + B 2
)

g = /i
£
sin0/cos6/

a = sin(x

b = COSJJL

d = n(\ + k
2

)
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Polar magnetization

y™a = -yPp 1 = _/(A& + £tf)/(A£' - A'#)

7
p°! = 7

™a = y^'fc + B'a)l{AB' - A'B)
ppol = pana =^ _ Bby(A

* + fl
2

}

f = h
p
cosQ,

If one wishes to use the Lorentz-van Loghem equations to calculate null rotations

7, the simplest procedure is to find from them the amplitudes and phases and then to

employ Sissingh's equations (Part V, chap. 25) to find 7. One thereby obtains:

7
p°' = AP°(sinfl)/Aj(sinfc)

7
». =

(Ar/Af)[(coti7)(sina) + (com)]

yT = AF(sind)/Afainb)

tP" = (AV°/A
R
L)[(cotb)(s'ma) + (cosa)]

„ imo 1 met
a - <pL - <pL

1 J. met Xmet

J X mo 1 met
a = <pv - <pL

Phases can be calculated directly from the biconstant formulae (16'), (17') as fol-

lows:

Equatorial magnetization.

tan(<t>
mo - 4>D =

[B'(a + Kb) + A'(b - Ka)]/[B'(b - ko) - A'{a + k^)]

Polar magnetization.

tan(<t>v° ~ 4>r') = {A'b + B'a)l{B'b - A'a)

where a = sinu, and b = cos(x. To find §™° simply substitute <\>y
et

for (f)^
61
and A,

B for A', B' . These last equations provide a method for calculating |jl when the

magneto-optic phases are found from experiment using Sissingh's equations.

As a check for consistency, I have computed null and minimum angles using the

biconstant expressions and the generalized Lorentz-van Loghem equations; I find that

they differ only in the hundredths of seconds. This difference is due to Drude's

approximation, in which R4
is large.

To compare theory with experiment one needs values for h and (jl. In Drude's

theory [x is at once given as zero, but it is an unknown in Goldhammer's theory.

The procedure, then, in Drude's theory is to compute rotations for h unity and to

take the ratio of the empirical to the calculated values. The mean of the set gives h,

which one then uses to recompute the rotations. One can then tabulate the differences

between theory and experiment. In the case of the biconstant theory, one first com-

putes phases with \x zero and then subtracts the calculated from the measured phases;

the mean of the set is |x. Similarly, one computes amplitudes for h unity and takes

the mean of the ratios of the empirical to the calculated amplitudes to find h. The

procedure is tedious even with desktop computers today, and it is a testimony to the

computational abilities of the time that in no case do I find computational errors

greater than a second or two.
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To exhibit the effects I have computed the metallic and magneto-optic phases and

amplitudes for cobalt which, from Zeeman's data, have the following constants for

white light and cgs magnetization of 850:

nc
= 2.034 Rc

= 3.82

ncKc
= -3.236 a = 57°50'54"

hc
= .016 at 850 cgs

H,
= - 15°4'

The phase-difference graphs (see figs. 33-37) pinpoint the incidences at which rota-

tions can reverse.

For comparison, in the case of iron at the same magnetization /z7 is 1.7 times as

great as hc , and (x is +8°9'18". Iron is, therefore, almost twice as active, magneto-

optically, as cobalt, even though Zeeman used cobalt to show the inadequacy of

Drude's theory. However, for iron the magnitude of the difference between the em-

pirical (x and Drude's (jl is only about 8°, whereas for cobalt the difference is about

15°. Even though cobalt is less active than iron, it provides a more sensitive test of

theory.

The Wind Effect

/V7>>We saw above that magnetization normal to the plane of incidence (h
f

) does not

affect the reflection ratios when the incident light is polarized in or perpendicular to

the plane of incidence. However, h'
vp

does appear in equation (15). If we solve
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equations (14) and (15) for the case in which only h'
vp

occurs, then we find that it

still has no effect if the incident polarization is in the plane of incidence. If, on the

other hand, the polarization is normal to the plane of incidence, then h'
vp

alters both

the amplitude and the phase of the reflection: that is, in this case a magneto-optic

component in the original plane of polarization is produced. One can easily find from

(14) and (15), as Leathern (1897) did, that the effect is to multiply the usual complex

reflection (for u*f = 0) by the following factor:

1 + [ih'
vp
[sm(2Q/)]/[R

2
e
2ia

(b - f){b + /)]

b = cos0/

/ = /rV 2
'°V[/?V'

a - d
2
]

d = sin0/

If we set the extra term equal to Qeiq we find:

Q = h'
vp

[sin(2Q/)]/R
2
YY'

q = 3tt/2 + 2a - |x - y — y'

where we have:

a' = — a + tt/4

a = cos(4>/2 - 2a')

Y
2 = b

2 + g
2
/R

4 - IbgaIR
2

Y'
2 = b

2 + g
2
/R

4 + IbgaIR
2

tany = -g[sin((J>/2 - 2a')]/[R
2
(b - gaIR

2

)]

tany' = + g[sin(4>/2 - 2a' )]/[R
2
(b + gaIR

2

)]

g
4 = R4 - 2/?

2
[cos(2a')](sin

2
e/) + (sin

4
7)

tan<|> = fl
2
[sin(2a')]/{/?

2
[cos(2a')] - [sin

2
(0,)]}

Suppose that the incident wave has components normal and parallel to the plane

of incidence. Then the reflected components will be:

AW^W + Qe'q)

AR
Le^L

Here Ay, Af and (t>™
et

, (J)^
et

are the usual amplitudes and phases in ordinary metallic

reflection. Consequently, the resultant reflection polarized normal to the plane of

incidence has the following amplitude;

KV[\ + Q
2 + 2Qq(cosq)]

If Q is small, as it is, then the phase of this component will be:

4>1T + 2(sin<?)

If we now set up a principal experiment (incident azimuth of polarization equal to

45°) for iron in sodium light (R = 3.9824, a = 53?67 and so principal incidence of

75°) with magnetization 1100 cgs (whereupon the amplitude of h'
vp

becomes about

-0.0179 if we take it as proportional to magnetization and use previous magneto-

optic experiments with iron for its specific value), then the Wind effect produces a

5' difference in the principal azimuth. Figure 38 shows the phase difference Q(sinq)

and the amplitude ratio for cobalt.
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Miscellaneous Derivations

The Helmholtz Polarization Theory

I shall derive equations (6)-(8) of part IV, chapter 21.

¥(jc) = (V4ir)S[d/dt4>f (x')]Vl\x
- x'\d

3
x'

V2U = (1 - kjVdfyldt - 4tt7

v • = -kdtyidt

(21.6)

(21.7)

(21.8)

We are given:

(i)

(ii)

(iii)

^(*) = p(x') • Vx.p - x'\d
3
x'

U = fJ(x')/\x - x'\d
3
x' + (1/2)(1 " *)V^

d/drV
2

^/ = 4-rrV • 7

For equation (21.6) we have from (i) and (iii) and two partial integrations in which

we discard the surface integrals under the assumptions that both J and dcjydf vanish

at infinity (I thank Ole Knudsen for the succinct derivation which follows):

¥(*) = p{x') Vx\x - x'\d
3
x'

= -fVx.-J(x')\x - F|rfV

= (\/4-n)f[d/dtV
2

f̂ (x')]\x
- x'\(?x'

= -(\/4TT)J[d/dt f̂(x')]V
2

x]x - x'\d
3
x

We also obtain from (21.6):

(21.6') V(x) = (\/2TT)f[d/dt4>f (x')]/\x
- x'\d

3
x'

So we see that (l/27r)d<tydr acts as a source density for the scalar ^, whence we

have at once:

(21.6") V2^ = 2d<\>f/dt

Equation (21.7) for V2U follows immediately from (21.6")jind the fact that J(x') acts

in (ii) as a vector potential. We obtain equation (21.8) for V • U as follows, perform-

ing only one partial integration under the assumption that J vanishes at infinity:

V • U = J"V, [J(x')/\x - x'\]d
3
x' + (1/2X1 - k)V

2V
= ttO(x') ' Vx)(l/|3t -x'\)]d

3
x' + (1 - kjdfyldt

= -/[Vx< • J(x')][V\x - x'\]d
3
x' + (1 - k) dfyfldt

= -(\/4>n)f[d/dtVto/x')]/\x - x'\]d
3
x' + (1 - k)d<$>f/dt

= -kdfy/dt

Sissingh's Magneto-Optic Equations

Sissingh's goal was to use the observable angles to calculate the magneto-optic phase

and amplitude. To see how this may be done we shall closely examine his deduction
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of the equations for observations in which the incident light is polarized in the plane

of incidence (minimum) or is nearly so polarized (null). We shall assume the incident

amplitude to be unity as a reference. The deduction yields equations which can be

applied to all cases, so we shall use the symbol P for the angles and specialize later.

Begin by rotating the polarizer away from the plane of incidence through a small

angle p£ , where p may be T (minimum) or 7 (null), so that very nearly:

sinpr = pr

cospf = 1

Then the incident light consists of two components:

A*L = component amplitude parallel to plane of incidence = 1

.

Ay = component amplitude normal to plane of incidence = p£

.

In reflection one has in general to consider four independent components if one takes

it as given by previous experiments that the magneto-optic component is always

perpendicular to the direction of incident polarization. They are: (1) the usual metal-

lic reflection of A!

L , (2) the usual metallic reflection of Ay, (3) the magneto-optic

component in the plane of incidence and due to Ay, and (4) the magneto-optic com-

ponent normal to the plane of incidence and due to A'L . Since, however, the magneto-

optic amplitude depends on the incident amplitude, and since pf is small, as is the

effect itself, we may, with Sissingh, ignore the third component of the reflection.

Consequently, if we take the phase of the usual metallic reflection component (1) as

a reference, and denote its amplitude by Af , the reflection consists of the following

components:

In the plane of incidence

.

amplitude A^ ; reference phase.

Normal to the plane of incidence

.

metallic: amplitude Ay$pL ; phase 4>™
et

relative to reference phase.

magneto-optic:

amplitude A™°; phase $™° relative to reference phase.

(Here Ay is the amplitude of the usual metallic reflection normal to the plane of

incidence.) All of Ay, A*[, <(>™
et

, and the reference phase are determined by the usual

metallic equations.

Suppose the analyzer is set at the small angle p£ with respect to the normal to the

plane of incidence. Then, by projecting the three components of the reflection onto

the plane of the analyzer, we see (fig. 39) that through it will pass the following

three waves. (Here we define the signs of p£ and p£ as positive for clockwise rota-

tions away from the plane of incidence; note that the subscript V on the analyzer

angle and on the magneto-optic quantities always means that they derive from inci-

dent polarization parallel, or nearly so, to the plane of incidence.)

(i) Ar
lcos(tt/2 + 4>£) = -AR

L$
A
L ; reference phase

(ii) A v$
p
Lcos<b

A
L = A V$

P
L ; relative phase fy™

1

(iii) A?°cos$
A
L = A?°; relative phase <|>J

mo

The sum of equations (i)-(iii), incorporating phases, is the optical vector RL of the

analyzed reflection for a wave with angular frequency eo:

RL = ->4fpjcos(w0 + 4fcosM -
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POLARIZER
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PLANE OF INCIDENCE
ft*

REFLECTED INCIDENT

Fig. 39 Analyzer and polarizer positions in the Sissingh experiments

Whence, splitting RL into two terms in cos(cof) and sin(a>0, we find for the squared

intensity, l\, in the analyzer:

l\ = a
2 + b

2
where

a = -AR
L$

A
L + AfficosbT + AT°cos^>

(1)
^aPcb = ASPZsimKT + Arsin^T

We can do precisely the same calculation for the squared intensity, Iv , for an incident

wave in which the polarizer is set at an angle p£ near the normal to the plane of

incidence:

l\ = a'
2 + b'

2

a = -AR
L$

P
V + A?°cos<|>r + Aj(3^cos(t)v

et

b' = AP°sin4>r + AR
v$

A
vsm<bT(2)

Here the magneto-optic component is parallel to the plane of incidence, and the

analyzer is nearly parallel to it.

Sissingh could now find expressions for the phase and amplitude in both minimum

and null experiments. In minimum experiments IL or Iv are to be minimized as func-

tions of either p£ v or p£>v , depending on whether one first fixes, respectively, the

analyzer or the polarizer and then rotates the other. Setting the variations 57L v to

zero, from equations (1) and (2) we have:

min
L

(3)

(4)

fixed polariser:

-Afp2 + AW?***/?" + At
MO

cos<J>r =

fixed analyser:

-AL$L coscjv + Ajtf + Ar°cos(d>^
ET iMOx

<?L )
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7
rnin

fixed polariser:

(5) AvPv ~ ALpv coscjv + A v cos(<pv ~ <Pv )
= U

fixed analyser:

(6) -AL$
P
V + AR

v$l\os<$
ET + i4{?°cos4>5?° =

Examining equations (3)-(6) we see that, if one assumes with Sissingh on purely

empirical grounds that reversal of the magnetic field alters only the sign of the mag-

neto-optic amplitude but has no phase effect, then, in general, the minimum positions

of the polarizer and analyzer are not symmetrical about the principal planes (the plane

of incidence and its normal plane). In order for symmetry to obtain, the fixed angles

must accurately vanish. That is, the variable rotations can simply change sign on

field reversal only if the fixed settings (denoted by superscript F in equations [3]-

[6]) are accurately in or normal to the plane of incidence. This would make precise

observation difficult because it is hard to set the positions exactly. However, we also

see that, if field reversal merely alters the amplitude's sign, then, if we calculate the

difference between, for example, p£,v for one field direction, and p£>v for the re-

versed direction, from equation (3), then the term in pf
p
v is removed. This holds as

well for equation (5), and, similarly, the term in p£V drops out of equations (4) and

(6). Consequently, we do not need to set the fixed positions accurately because we
can simply measure the angles between the variable positions which arise from field

reversal. This is what Sissingh did; we shall, therefore, now redefine our previous

angles T to denote the angular separation or double rotation obtained on field rever-

sal. With this understanding, equations (3)-(6) may be solved for the amplitudes and

phases; the results are equations (l)-(4) of part V, chapter 25.

The Goldhammer Theory

Recall that the final Goldhammer wave equation reads

(7) d
2
H/dt

2 = R2
e~

2,aV 2H + (X' X dH/dt)

Here the vector X' is intrinsically complex. But recall also that Goldhammer' s theory

in effect begins with equation (8):

(8) d
2
A'/dt

2 + d/d/V[<j> -I- dio/dt] = -V 2
[A7(€ + /p/o>) - X' X dA'/dt]

Now in order to reach equation (7) (which also holds for the vectors A and A' since

HisV X A, which is equal to V X ,4'), Goldhammer had to remove the terms in $
and a). To do so he first split <)> into the sum ((>' + <\>" and imposed three conditions:

(9) V 2

(f>'
=

(10) (}>' + dto/dt =

(11) W m J' • (V X A')

This involved Goldhammer' s theory in great complications, including several

mathematically doubtful steps. To see this, we shall take a simple example which

derives from equation £15) of section 26.2 for the continuity of A. Since the optical

vector is A\ or A — Voo, this continuity equation implicates o>, which satisfies the
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Laplace equation. As a result Goldhammer had to introduce a complex exponential

expression for a) as well as for A' in order to satisfy phase continuity.

Suppose, for example, that the plane of separation is x = 0. Let z = be the

plane of incidence. Then we know from equation (7) that there will be one reflected

and two refracted waves:

a; = (Aj
x

, A'/, A',
z
)e

i0c
*i
+y"r at)

A'R = (AR\ A'R
y

, A&e*-*"^'-*

t> _ f(A&, A&, AMe^i^-*
A =Ar

[ + (A£, , A'R\, A'R
z

2)e**
k
«2
+^2- a

(12)

Moreover, as a result of absorption kR] and kR2 are both complex. Introduce the real

angle of incidence 0/, equal to the angle of reflection, and the complex angles of

refraction

refraction:

refraction 0^, QR , as well as the wavelengths \7 , \r
2

in the media of incidence and

1, = (2ir/\,)(cos8,, sine,, 0)

(13) VR 2 = (2ir/\i'
2
)(cose*, sine*, 0)

This is, so far, standard in magneto-optics, but Goldhammer also had to introduce

an expression for the scalar o>, which is not propagated since V 2
o> vanishes. To do

so Goldhammer split w into "reflected" (ix>R ) and "refracted" (o^'
2

) parts and as-

sumed, despite the Laplace equation, that they can be expressed exponentially with

corresponding "wavelengths" //, l)'
2

:

(14) <*R
2 = iDl

2^- 2

CD* = iDRe'^

>i

Here the D amplitudes are real and for the r\ we have:

r\R = 2tt( - jccos^/ + ysin^/)/// - at

(15) t^ 2 = 27r(jtcos^
2 + ysin^i-

2
)/^

2 - at

However, since oo is not propagated, Goldhammer, in a rather doubtful step, required

that the "wavelengths" / must be infinite:

(16) // and lR
2
are both infinite

As a result of phase continuity at the boundary x = 0, Goldhammer obtained

from equations (12)—(15):

sinBi/X-i = sinG^/X
2
?
= sinO/X/

(17) = sinco,//, = sin^X = sinV
2
R/l

2
R

Equations (16) and (17) then provide relations between the and ^ angles. (Gold-

hammer gave only the results—equations [22] and [23].) For example, since /7 is

infinite we might argue as follows:

(18) \/lfios
2V, = (from [16])

(19) (l//
2
)[l/cos^

2 - 1] = -l//
2
(from [18])

(20) (\/l,)V[\/cosVl - 1] = ill, (from [19])

(21) sin^y/, = /cosily// (from [20])
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Then equations (17) and (21) together yield:

(22) cos^y// = -isinOi/X/

Similarly we find:

(23) cos^X = cos¥j//| = -isinOAi

Equations (22) and (23) allowed Goldhammer to remove the ^, / variables from the

boundary conditions. For example, continuity of Ax requires, by virtue of equations

(12M15) and (22)-(23):

(24) A}* + A'R
X = A'R\ + A'R

X
2 + 2irisineKAi + £>i + Dj)/X7

This was Goldhammer' s result.

We see that, although we can eliminate the peculiar angles and wavelengths ^, /

from the boundary conditions, we still have the amplitudes D and the variables <(>',

<(>". To remove these Goldhammer turned to equations (9)—( 11) and used the conti-

nuity of (|), assuming that X' vanishes in the medium of incidence and that <\>j is zero.

In this way he obtained:

(25) iDRd/dte'^
=
iDRe

iJ]

R + iD
2
Re'^l - X' • (V x A'Rl) - X' • (V x A'R2 )

Since we can use equations (22) and (23) to eliminate the j) phases, equation (25),

together with the remaining boundary conditions, including continuity of VAx>yiZ ,

ultimately permits elimination also of the D amplitudes: in the end Goldhammer had

fifteen amplitudes ( A7
', A'R , A'RXj2 , DR , DR

2
) and twelve equations between them,

which at once permit elimination of the D terms and expression of the remaining

nine reflected and refracted components in terms of A\, 67 , X', 6/?, and the complex

Snel's law if approximations are introduced which permit the expression of kRl 2 in

terms of the kR which obtains when the magneto-optic vector vanishes and which

corresponds to the usual complex angle of refraction tiR . (See appendix 9 for an

example of how the latter type of approximation works.)
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Polarization Theory and Fluid Dielectrics

I thank Philip Lervig for the following reconstruction of Larmor's argument (Larmor

1897, part III, sees. 36-37). Consider the surface of a fluid dielectric bounded above

by a conducting plane with charge ct per unit area and below by another conducting

plane with area charge -cr . To find the force on a small volume of liquid at the

surface, one must compute:

force = f(P • V)Ed3
x = fE(P • dS) - /£(V • P)d3

x.

If the fields are normal to the surface, and E
x , E2 are the fields just above and below

it, then we have:

-fE(V • P)d3
x = fEppd

3
x = (l/2)/(£, + E2)<jpdS

where <jp is the polarization surface charge by which we approximate the charge in

the volume of integration. Whence for the force per unit area we have:

F = (E2P2
- £,/>,) + (l/2)(£, + E2){P X

- P2 )

But E2 - Ei is equal to 4tt(P
1

- P2 ), so we have:

F = 2ir(/>
2 - P\) = (1/2)[(4tt(7o)

2
/47t](1 - 1/e)

2

This is clearly not the same as the force implied by the Maxwell stress, which

requires (1 - 1/e), and not its square, as a factor. But, argues Larmor, this is not

the only force involved. Since the dielectric is a liquid in equilibrium, we must set

the force equal to a pressure gradient:

(P • V)£ = (1/2)2£VE
2 = v>

Integrating, we have, since 2£ is just (e - 1)/4it:

p = (1/2)(1/4tt)(€ - 1)£
2

Since the E field is due to two planes of charge, we know that E is equal to 4iTcro/e,

whence the pressure becomes:

p = (l/2)[(47ra )

2
/47Te](l - 1/e)

We must now add p to the force F per unit area we calculated above, obtaining,

finally, exactly the same result that the Maxwell stress gives:

p + F = (1/2)[(4w )

2
/47t](1 - 1/e).
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Bibliographic Essay

The first major study of Maxwellian electrodynamics was Whittaker's History (1910), now

nearly three-quarters of a century old. Whittaker personally knew many of the Maxwellians,

and he was himself trained as a physicist not long after Maxwellian theory collapsed. This

gives his work its great strength: more than anyone else, Whittaker has understood the deep

structure of Maxwellian theory. But because he was so closely linked to the Maxwellians, his

History reads on occasion like a Maxwellian text. Consequently, to understand Whittaker one

must first have grasped Maxwellian theory.

Whittaker does not provide much background to Maxwellian theory, though he does men-

tion Kelvin's and Maxwell's efforts to create a mathematical theory out of Faraday's insights.

For background one must turn to more recent work, in particular that of M. Norton Wise

(1977, 1979). Wise was the first to emphasize the central place of the flux concept in Faraday's

work, and to show how William Thomson (later Lord Kelvin) and, above all, Maxwell were

able to unite the concept with energy considerations to form a coherent mathematical theory.

Wise's analysis provides the immediate background for the Maxwellian concepts of charge

and current which I discuss in detail.

A major issue which continually arises in discussions of Maxwellian work concerns its use

of "dynamical" reasoning. This has been the subject of much historical work. Everitt (1975),

Moyer (1977), Simpson (1970), Topper (1970, 1971, 1980) and Turner (1956a, b) have all

discussed the use by Maxwell and Maxwellians of Lagrange's equations. They have pointed

out that this use permitted the Maxwellians to avoid specifying the structure of the ether while

nevertheless assuming it to be mechanical and applying "dynamical" laws to it. My goal,

given this background, is to show what there is about Maxwellian "dynamical" theory which

cannot be accepted after the electron. In this way we can see what is unique about the theory

and what passes over into subsequent developments. Furthermore, I shall argue that the Max-

wellians' use of Lagrangian and Hamiltonian theory was more than a technique used to avoid

specifying the structure of the medium. That for the Maxwellians (if not for Maxwell), this

method very nearly exhausted the goal of physics.

Because I have decided to focus upon the Maxwellians and not upon the background to

their work, I have also decided not to address a major question which has long interested

historians, and which most major histories of the period at least mention: the views of Stokes

and W. Thomson (Lord Kelvin) on Maxwellian theory. Neither of them can be called a Max-

wellian, and it is even likely that neither fully grasped the radical aspects of Maxwell's theory,

despite Kelvin's having been instrumental in elaborating the concept of local action on which

much of Maxwell's work depends. It is well known that Kelvin always insisted on constructing

mechanical representations, and it is likely that the radical "dynamicism" of Maxwellian

theory did not appeal to him, and that the grave difficulties involved in forming a consistent

mechanical image of Maxwell's concept of charge further alienated Kelvin. This question,

which involves not only Stokes and Kelvin but other British physicists educated before the

1870s and productive through the 1890s, requires careful investigation.

My reconstruction of Maxwellian theory includes as a central element a peculiar conception

of "charge." I argue that for the Maxwellians "charge" is always due to the decay of dis-

placement in regions within which the ratio of conductivity to inductive capacity varies from

point to point. Though I do not think that any historian has quite seen this before, nevertheless,

Mary Hesse (1973) has come closest. She has argued that Maxwell's charge is an epiphe-

nomenon of polarization, and that claim certainly captures a part of the Maxwellian concept.
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I have pursued the question to show how the field-theoretic image of charge raised enigmatic

questions about the nature of conduction. These questions ultimately proved to be the undoing

of Maxwellian theory.

Notes

The following bibliography contains references to manuscript collections, primary sources, and

secondary sources which were used in preparing this book. I have not included among the

primary sources the many dozens of Maxwellian articles which one must consult to obtain a

strong understanding of the Maxwellian program. I list only those works of direct significance

here. Similarly, the list of secondary sources makes no attempt at comprehensiveness. Again,

it contains only materials that have a fairly direct bearing on the matters at hand. Both lists

could be easily and greatly expanded.
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Campbell, L. L. 1923. Galvanometric and thermomagnetic effects—The Hall and allied phe-

nomena. London: Longmans, Green & Co.

Kristenova, D. and I. Seidlerova. 1966. The beginnings of magnetooptics. Acta histohae

rerum naturalium necnon technicarum (Prague) special issue 2, 25-41.

Figure 40 is reproduced from Kristenova and Seidlerova (1966).
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Fig. 40 Number of works on magneto-optics during 1845-1900 (unit on horizontal axis rep-

resents two years)

Manuscript Collections
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Primary Sources
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1961. New York: Dover.
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conditions and J. J. Thomson's theory of the

Kerr effect; Current of conduction in J. J.

Thomson's theory; Discharge deflection by a

magnetic field in J. J. Thomson's theory;

Electrolytes, conduction in, J. J. Thomson's

theory of; Hall effect and J.J. Thomson's use

of Glazebrook's energy term; Intermittent

processes and J. J. Thomson's theory of

conduction; Kerr effect, J. J. Thomson's theory

of; Ohm's law in J. J. Thomson's theory; Tubes

of force, J.J. Thomson's theory

Tubes of force: and the leaky condenser, 32; J. J.

Thomson's theory of, 39

Vector potential: and convection theory, 269-77;

in Goldhammer's theory, 220-22; in

Helmholtz's theory, 178-79; Maxwell's use of,

55-56; in modern theory, 5, 10, 13; and the

non-Amperean circuit tension, 57-58, 169-71;

and Rowland's equations, 103-5; zero

divergence condition on, 277

Viscous flow and conduction, 40
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Vortices: compared with electric currents, 291-93;

Drude's remarks concerning, 230; energy of

magnetic, see Energy of magnetic vortices; in

Glazebrook's theory, 65-66, 112-13; in

Larmor's theory, 145; in Maxwell's theory, 66,

111-12

Wind effect, 242, 264, 306, 309, 312-13. See

also Zeeman's experiments on the Wind effect

Zeeman effect, 171, 248-49, 257, 259

Zeeman's experiments: on the Kerr effect, 226; on

the Wind effect, 243

Weber electric particle theory. See Fechner

hypothesis and the Hall effect
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