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Preface

Physics today is so strongly based on (quantum) models of the microworld that it is
difficult to imagine a time in which this was not so. Yet, until almost the beginning
of the twentieth century, the prevailing view, at least among those physicists who
worked predominantly in electromagnetism, was quite different. In Britain a method
held sway which not only avoided considerations of microstructure but was strongly
antagonistic to them. On the Continent, where there was more sympathy for micro-
models (and where the British method was neither used nor well understood), most
physicists nevertheless preferred a macroscopic approach to electromagnetism; as a
result, for a long time they had great difficulty in understanding how to meld field
equations with microscopic models. My purpose in this book is therefore twofold:
first, to explain the British method and to examine why, and how, it ultimately
proved to be a failure; second, to understand the manner in which microphysics first
penetrated electromagnetic theory on the Continent during the 1890s.

The words ‘‘microscopic’’ and ‘‘macroscopic’’ here have quite special meanings.
A ‘“‘microscopic’’ theory employs atomic or molecular entities in order to compute
macroscopic effects. It does not make any difference what the structure of these
entities may be. A ‘‘macroscopic’’ theory avoids employing atomic or molecular
entities for such purposes. Consider, for example, two theories of viscosity. The
“‘microscopic’’ one calculates a measurable quantity—the coefficient of viscosity—
by analyzing the invisible processes of molecular transport. The *‘macroscopic’’ the-
ory simply assumes the coefficient to exist and attempts to integrate it directly into
the structure of mechanics. In this sense, a macroscopic theory presupposes that all
variables are continuous functions of position, whereas some variables in the micro-
scopic theory may be discontinuous because they derive from the effects of discrete
atomic or molecular entities.

It is especially important to grasp the limited sense in which I shall use these two
adjectives because otherwise confusion may arise. For example, when we examine
Joseph Larmor’s theory of the electron we shall find that he considers its properties
to derive from the properties of the ether, in which the electron is a special kind of
singularity. Larmor’s electron might then seem to be macro- rather than microscopic
because it derives from the ether itself, whose own properties are not due to micro-
scopic processes. The problem here consists in confusing the nature of a microscopic
entity with the function of that entity in generating macroscopically measurable quan-
tities: Larmor’s electron theory is a microscopic one because he employed the elec-
tron to compute such things as inductive capacities. In contrast, Maxwellian theory
simply assumed that things like capacity exist. In deciding the type of a theory, the
central question, then, is this: Can one avoid employing entities which are atomic or
molecular in scale to generate, through an averaging process, quantities which are
defined over regions that are macroscopic in scale, whatever the ultimate structure of
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these unobservable entities may be? According to electron theory one cannot; accord-
ing to Maxwellian theory one can often do so.

In parts I and II, I have attempted to explain the structure of Maxwellian electro-
magnetic theory, a theory that British physicists learned by reading the major British
texts of the day and by discussion with one another. This theory is so unlike electro-
magnetism after the electron that it has occasioned much perplexity over the years.
One of my major goals here is to show why it has had this effect by examining the
theory’s physical and mathematical foundations, and by contrasting these foundations
with modern theory. I then take this understanding and use it to examine the work
of the Maxwellian community in the 1880s; here we shall see that the method they
employed to avoid microphysics was sufficiently successful to permit explanations of
several electromagnetic and optical phenomena in ways which are, to the modemn
eye, strikingly odd and even paradoxical. This forms the subject of part II.

Despite many influential successes, the British method contained an internal ten-
sion, linked to its treatments of electric conduction and field energies, which made it
extremely difficult—in the end impossible—both to reconcile disparate elements
within it and to fit increasingly well-known phenomena into it. Part III and the epi-
logue describe the demise of Maxwellian theory in its attempt to reconcile this ten-
sion and to explain the properties of light reflected from magnetized metallic sur-
faces. The results of this reconciliation attempt (carried out preeminently, and
unsuccessfully, by Joseph Larmor in 1894 and 1895) were the introduction in Britain
of the ‘“‘electron’’ and the abandonment of the macroscopic method which had guided
British research for over a quarter of a century.

In part iV I turn to the question of how Maxwellian theory, which became a
subject of intense interest outside Britain after Hertz’s 1888 discovery of electric
waves, was understood in Holland and Germany during the 1890s. Here we shall see
how Maxwellian terminology and mathematics were interpreted in ways which were
profoundly incompatible with their proper meanings. Nevertheless, we shall also see
that, despite their non-Maxwellian approach, it was still extremely difficult for
Dutch, French, and German physicists to understand how to link field equations with
microscopic models, despite Lorentz’s extensive work in this area in and after 1892.
Indeed, one of the results of our investigation will show that Lorentz’s own work
was poorly understood during the 1890s. In fact, microphysics was incorporated into
electromagnetic theory through rather general considerations which, though they
were not as detailed as Lorentz’s, provided German physicists with a cogent, simple
method for generating optical equations. (It is that method, not Lorentz’s, which
ultimately passed into intermediate texts on electromagnetism, including modern
ones, though Lorentz’s approach is universally used for purposes of rigorous deduc-
tion in advanced texts.)

Part V examines how this incorporation of microphysics into theory took place,
focusing on the immensely influential problems posed by magneto-optics; problems
which, it was first thought even in Germany, could be overcome without transgress-
ing macroscopic boundaries. By examining the theoretical and experimental devel-
opments in this area, particularly a controversy concerning the empirical adequacy of
certain macroscopic equations, we shall be able to understand how and why micro
physics became the received method in electromagnetism by 1900.
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I have dealt, then, with two rather different kinds of events. On the one hand,
there is the abandonment of a method—the Maxwellian—which is profoundly incom-
patible with microphysics. Here it is a question of the replacement of an entire set of
principles by a new set with which they cannot be reconciled. On the other hand,
there is—not the replacement of principles with new, incompatible ones—but the
gradual emergence of a method whereby new concepts are linked to already existing
methods, or, better, the emergence of a unified method where none had previously
existed. The former might well be thought of in the way one thinks of, say, the
replacement of the caloric theory of heat by energy conservation, whereas the latter
cannot be thought of in quite that way.

I have not attempted to examine how these two kinds of developments depend on
shared social experiences among groups of physicists but have confined myself to the
intellectual events that reveal those experiences. Since this book is already quite
lengthy, there is hardly space to address the many important social and institutional
questions which the material inevitably raises. I have indicated in the text where, in
my view, considerations of this kind are especially required.

I have also not attempted to pursue the intricate and difficult problem of ‘‘incom-
mensurability’” which my discussion unavoidably raises, particularly in part IV,
though I am convinced that this question is essential for a full understanding of the
events which took place during the 1890s. Part of the difficulty which readers will
have in grasping the structure of Maxwellian theory—which Dutch, French, and Ger-
man physicists did have in the 1890s—is due to the impossibility of adequately trans-
lating Maxwellian terminology and mathematics into modern terms. In fact, I believe
Maxwellian theory cannot be translated into anything familiar to the modern under-
standing because the very act of translation necessarily deprives it of its deepest
significance, and it was this significance which guided British research. This fact will
be abundantly evident by the end of part I and accounts in good measure for the
profound difficulties felt by most readers of Maxwellian texts since the turn of the
century.

Readers familiar with the development of electron theory and the early history of
relativity will perhaps be surprised that I do not directly address the questions posed
by the electrodynamics of moving bodies (though Hertz’s moving-body field equa-
tions do play a role in Germany in the 1890s, as we shall see in part V, chap. 27).
The reason for this is quite simple: with the exception of Lorentz, few physicists
either in Britain or on the Continent were actively interested in pursuing this problem
until ¢. 1900, when Lorentz’s own principles first achieved widespread understand-
ing. The vast preponderance of work in electromagnetism during the 1890s was con-
cerned with apparently more mundane questions, such as how to create a system of
equations capable of dealing with the reflection of light from magnets. These seem-
ingly limited types of questions were the ones within which concrete problems arose
that led, in Britain, to the abandonment of Maxwellian theory, and, in Germany, to
a widespread understanding of how to meld microphysics with field equations. The
deeper questions raised by electromagnetic processes in moving bodies were compar-
atively peripheral ones for most of the decade in much the same way that the question
of the mechanical origin of force was a peripheral question in Newton’s mathematical
work. If one cannot solve concrete problems concerned with relatively simple labo-
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ratory processes, it was felt, then how can one expect to solve a problem that de-
pends on the ‘‘great question,’” as FitzGerald once fermed it, of the relation of ether
to matter? Only Lorentz, whose microphysical techniques were in many respects
designed to encompass this problem, was able to tackle it during the 1890s. But his
principles, as we shall see in part V, were ill understood during those years even
where phenomena in stationary bodies were concerned.

I hope also that parts I through III will somewhat alter the ways in which histori-
ans, physicists, and philosophers of science have traditionally understood the mean-
ing of the ‘‘mechanical’”’—more properly, ‘‘dynamical’’—analyses prevalent in Brit-
ain during the last quarter of the nineteenth century. Perhaps unduly influenced by
such Continental critics of British work as Pierre Duhem, we have until recently
focused too closely on particular ‘‘mechanical’’ models without attempting to per-
ceive fully what unites them in a common ‘‘dynamical’’ method, and what it is about
that method that cannot be accepted after the introduction of the electron. This ques-
tion forms much of the substance of parts I and, especially, III, for I have attempted
to demonstrate that there is a premise underlying the British dynamical method which
fundamentally distinguishes it from electromagnetic theory after c. 1900. This prem-
ise concerns the primordial question of whether it is possible to treat the macroscopic
electromagnetic field, using energy principles, in precisely the same way one can
treat mechanical continua; particularly whether one can generally apply Hamilton’s
principle to it. That possibility, which the Maxwellians uniformly admitted, is no
longer granted after the electron, and the dynamical approach to physics necessarily
disappeared with it.

Maxwellian theory itself descended from a wider tradition of dynamical reasoning
in Britain which has been extensively analyzed in recent years. (See the bibliographic
essay.) I have taken the existence of this tradition very nearly for granted in order to
concentrate on what the Maxwellians did with it. Consequently, I have not attempted
to motivate Maxwellian science but have rather tried to unravel its inner workings.

Continental electrodynamics of the 1890s was not so tightly organized, both intel-
lectually and socially, as Maxwellian theory was in Britain. Here important questions
of motivation arise. However, I shall not be arguing that the magneto-optic problem
(which I treat in some detail) led physicists on the Continent directly to the kind of
theorizing about the structure of the electron which became quite common by 1905.
That involved a change in physicists’ outlook of the first order and could not have
been caused by anything so simple as a single technical problem. Rather, I shall
argue that it was through analysis of the magneto-optic problem that Continental
physicists learned how to link field equations with microphysical processes. They did
not know how to do so beforehand, but they were extremely well versed in the
techniques afterward.

My story introduces a sort of historical inversion which will disconcert many
readers. One often reads that Continental opposition to atomism during the 1890s
was quite powerful. One also reads that the British delighted in atomistics, even
going so far as to provide a method, with their vortex atom, for computing atomic
behavior. I shall argue, in apparent contradiction to this view, that the British were
strongly averse to using atoms in electromagnetism, whereas Continental physicists
were quite open to doing so. But, I think, the contradiction is only apparent. I do
not argue that the British did not believe in atoms, or even that they did not often
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use them outside of electromagnetism. Nor do I argue that Continental physicists
were quick to create elaborate atomistic explanations in electromagnetism. Rather,
my argument depends on a subtler distinction that can be encompassed by the cate-
gories ‘‘atomist’” and ‘‘anti-atomist.”’

The distinctions I intend will emerge during the course of my argument, but, since
the way is crooked, I shall loosely chart it here. The British did generally believe in
atoms, but they used them in rather special ways, particularly in electromagnetism.
The British physicist conceived of the universe as a continuum studded with struc-
tures called ‘‘atoms.’’ These things were built out of the continuum itself. In this
physical image, to modify an atom was to modify the continuum and vice versa. The
implication of this was striking: continuum mechanics could, in principle, be applied
to every type of problem because all phenomena emerge out of the continuum.

Thus the goal of many a British theory was to create a general dynamical formula
which would lead to large classes of observed phenomena. Having done so, one
could then try to envision ‘‘atomic’’ structures in and of the continuum which were
compatible with the dynamical formulation. But these structures were not thought to
operate on the continuum in the way, for example, that Lorentz’s or even Larmor’s
electrons acted on the fixed ether of their theories. Instead of creating a state in the
ether in the manner of Lorentz’s electron, the British ‘‘atom’” was itself an aspect of
an ether state. One could (very loosely) say that the British physicists of this period
were ‘‘inverted’’ atomists. Instead of building the world out of atoms, they built
atoms out of the world—their ‘‘world’’ being the continuum proper.

We shall see in detail how this view had practical effects which led to theories
strikingly at odds with postelectron views. But we can also see how British physicists
were able to make the transition from the macroscopic to the microscopic approach.
They already believed quite strongly in atoms, but they had to learn to use atoms to
build theories rather than to use preexisting theories for building atomic systems. The
mental change this required was obviously a subtle one, even though it had dramatic
effects; rendering incorrect, for example, the several theories of the Kerr, Hall, and
Faraday effects the Maxwellians created in the 1880s and early 1890s. In fact, I think
it quite likely that few Maxwellians in the late 1890s consciously understood the
profound changes implicit in adopting the electron, though there is ample evidence
of the kind of confusion one would expect given a conceptual change of this magni-
tude. In the epilogue I will give brief examples of the difficulties encountered.
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1
On Discussing Different Theories

When, at the age of thirteen or so, I first learned Newton’s third law of motion it
seemed to me impossible that anything could ever move. If every push were count-
ered by an equal and opposite push, I felt, then the final result must surely be a
standoff—or else I had no idea what a ‘‘push’’ was. Several weeks after reaching
this disquieting conclusion, I found myself on a train awaiting departure. The train
began to move, and the sudden jolt I received seemed all at once to resolve my
problem: obviously, I now saw, far from nothing moving, everything moves since
the equal and opposite forces act on different bodies. What only days before had
seemed to be an impossible situation suddenly seemed quite natural. I even had
difficulty grasping what had so troubled me earlier.

We are today in much the same position with respect to the subject of this book
(what I shall call ‘‘Maxwellian electrodynamics’’) as my thirteen-year-old self was
with respect to Newton’s third law of motion. Maxwellian theory is so different from
our present point of view that even its elementary hypotheses—those which are as
fundamental to it as the third law is to Newtonian dynamics—seem paradoxical to
us. The problem is compounded by the fact that words and even intricate equations
occur in the theory which we at first think we understand. But when we try carefully
to read the Treatise Maxwell wrote to explain his theory, or any of the large number
of articles written by the ‘‘Maxwellians’’ of the 1880s and 1890s, we almost at once
face seemingly paradoxical, even nonsensical sentences. A thirteen-year-old may
wonder how pushes can be equal and opposite and yet things can move. The modern
reader of a Maxwellian text encounters a similar difficulty in grasping what the word
‘‘charge’” means. He may even find whole paragraphs to be almost completely
opaque, though they may contain familiar words. What, for example, does one today
make of this statement by Oliver Heaviside, written in 1897 to correct a misappre-
hension of Maxwellian theory?

My Maxwell teaches me that no [electromotive force] can produce electri-
fication in a dielectric which is not a conductor; and that no [electromotive
force] can produce electrification in a homogeneous conducting dielectric;
but that the existence of heterogeneity is (as well as conductivity and per-
mittivity) necessary for the production of electrification. On the other hand,
my Maxwell teaches me that variations in div B are impossible, because of
the experimental absence of magnetic conductivity (. . .) and that div B
itself is zero as a connected experimental fact. (Heaviside 1893-1912, sec.
537)

(The words in brackets—*‘electromotive force’’—are represented by symbols in
Heaviside’s original text.)

However odd Heaviside’s statement may seem, it is in fact a rather simple Max-
wellian assertion. One of my goals in the first few chapters is to make it as simple
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to the reader as it was to Heaviside. To do so I must ask for patience and indulgence.
Modern eyes cannot be opened to Maxwellian theory by straightforward exposition
any more than a child can be taught dynamics by giving him the laws of motion.
We, like him, must explore several exemplary problems in order to develop a feel
for the theory. Only then can the shock of understanding be experienced.

Yet even if we acquire the knack of reading Maxwellian texts in a way that makes
consistent sense of them, a potential paradox always exists. We cannot entirely di-
vorce ourselves from a modern perspective, nor should we wish to do so. Every
problem, therefore, is almost certain to show us two faces—the modern and the
Maxwellian. The paradox is that we cannot see both faces at the same time. Put
more formally, we cannot, it seems, discourse about Maxwellian theory without
speaking in ‘‘Maxwelsh,”” but if we speak ‘‘Maxwelsh’’ then we cannot discourse
about modern theory. Were this literally true, our history could at most be a chroni-
cle—a reporting of events—and a critique from within Maxwellian science. We
could discuss theorems, discoveries, and controversies much as a Maxwellian sensi-
tive to conceptual issues might have done. This is a valuable and an illuminating
activity, but it cannot expose to modern eyes the deep structure of an abandoned
theory.

The situation is not hopeless, despite appearances. Modern theory and Maxwellian
theory, though different in fundamental ways, nevertheless make contact with one
another at several points. The most basic point of contact is experimental: the theo-
ries almost always imply the same effects. When they do not, we can compare them.
We can try to discover whether the difference derives from peripheral or from fun-
damental hypothcses. This way we can begin to strip away the common elements of
the theories, leaving behind their core differences. A second point of contact involves
the higher-order physical conceptions which the theories hold in common. Both mod-
ern and Maxwellian theories, for example, require energy conservation. But they do
not necessarily conserve energy in the same ways. If they do not—and they don’t—
then we can pursue the question to reveal differences. In this way we can localize
the fundamental points of divergence between the theories and concentrate on grasp-
ing their basic ideas.

In this first part I have accordingly chosen to present outlines of both modern and
Maxwellian theories. Many readers will already be familiar with modern principles.
They may, without encountering undue difficulties, turn to the section on Maxwellian
theory. However, I suggest at least glancing at the modern section because I have
attempted to highlight those aspects which contrast markedly with Maxwellian prin-
ciples. I have also presented several derivations which are today uncommon, but
which are critical for understanding how, even in modern theory, one can apply
dynamical principles to the microscopic field.



2
Modern Basics

2.1 Charge and Current

In modern electrodynamics—pace relativity and the quantum—we suppose that noth-
ing exists but charged particles and fields. The equations which govern the electro-
magnetic fields E, B and the interactions between charges and fields are, in Heavi-
side-Lorentz units:

1)) V x E = —(1/c)(3B/ar)

(D) V x B = (1/10)[p? + (9E/an)

(I10) V-E=p _

Iv) V-B = 0whichallowsB = V x A4
V) fem = p(E + ¥ X B)

By virtue of equations (I) and (IV) we may also write:
E = —(1/c)@Aln — Vo

These equations permit us to assume several relations between the vector potential,
A, and the Scalar potential, ¢. In what follows I shall always use the Coulomb gauge,
in which V - A vanishes. In this gauge we may accordingly write, by virtue of
equation (III):

V-A=0---Vi=—p

In these equations p is the net density of charged particles, v is the velocity of this
density, and f.,, is the force per unit volume exerted on it by the electromagnetic
field. The field itself contains energies whose volume densities are given by:

(VD) Ug = (112)E?
(VID) Ug = (112)B?

Finally, equations (II) and (III) imply that charge is conserved through an equation
of continuity:

(VIID) V- (pv) + @plar) = 0

To predict the behavior of macroscopic bodies, we must also construct models for
them on the basis of charged particles. This leads us to distinguish major macro-
scopic classes of bodies and to introduce two new vectors for them. These two vec-
tors—P and M—respectively represent the mean electric and magnetic moments per
unit volume. They are material vectors in the same sense that pv is a material vector.
To obtain them we assume that substances exist in which molecular electric dipoles,
P, can be generated; there are also substances which contain permanent molecular
magnetic dipoles, m, which may be orientable or nonorientable; finally, there are
substances in which orientable dipoles 7 can be generated. The electric dipole p
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consists, in a very simplified model, of equal but oppositely charged particles (charge
e) which are separated by a variable distance, 7:

=

(1 p=er
Because the charges of the dipole are generally at different distances from any given

point, F, a net E field will usually exist at F. If there are n dipoles per unit volume,
then we define the electric moment density, P, as follows:

) P=n

(Here and below angle brackets denote a space average.)

We construct magnetic media in a similar fashion. Our magnetic dipoles are al-
ways produced by charge motion because equation (IV) forbids magnetic sources.
Here we may imagine microscopic closed loops of current; each loop encircles an
area, d, and / units of charge per second circulate around it. We may produce such
a thing in various ways out of moving or rotating charges; here we need only to
assume it to be possible within our model. Then we define the molecular magnetic
moment, 7:

(3) m = lalc

Such a loop will, by equation (II), produce a B field. If there are n’ loops per unit
volume, we may define the magnetic moment density M:

“4) M = n'(i)
We can show from our basic equatlons and these definitions that the portion of pv

in equation (II) which involves M contributes the term V X M. Hence equation (II)
may now be written:

ar) V x (B - M) = (pv), + (3E/an)

Here (pv), excludes the microscopic current loops which produce magnetization. Sim-
ilarly, we can show that the electric polarization P contributes a term to the charge
density — V- P. So we may write equation (III) as:

)y VE+P) =

Here p, excludes the charge densities due to polarization.

Using (II') and (III') we can develop a macroscopic theory of electrodynamics.
Consider first the electric polarization. We divide substances into two major electric
classes:

1. Dielectrics: in which P may exist but in which charge cannot move over mac-
roscopic distances.

2. Conductors: in which charge may move over macroscopic distances against a
dissipative resistance.

To develop the macroscoplc theory we must make assumptions about the relationship
between P and E and about the relationship between the moving charge in conductors
and E. In isotropic dielectrics we assume that P is simply proportional to E:

(IX) P =3E
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Similarly, in isotropic conductors we assume that the net rate at which charge drifts
through them is also proportional to E. Introducing a new vector, C, to represent the
drift rate per unit volume, p.v, we have:

X) C = pv = oF
Next we consider magnetic substances. Here we distinguish three important spe-
cial cases:

1. Paramagnets: in which the magnetization M is parallel to the field B.
2. Diamagnets: in which M is antiparallel to B.
3. Permanent Magnets: in which the value of M is fixed.

Here, as with P and E, we must make assumptions concerning the relationship be-
tween M and B; this relationship can be justified on the basis of a simple microscopic
model. Conveniently, to represent this dependency of M on B we use equation (II")
to introduce a vector, 17, equal to B - M

V x #H = (pv), + GE/ar)
(XD B=H+M

Then the B field divides into two parts. One part, H, is due to currents and to dE/dr;
the other part, M, is due entirely to magnetization. Since the magnetization is engen-
dered in paramagnets and in diamagnets by applied B fields, we may for these
substances reasonably assume that M is proportional to H, the nonmagnetization
part of B:

(X11) M =3,H

Our first two magnetic classes will then correspond to values for the constant 3,
which are, respectively, greater than and less than zero. For further simplicity we
introduce a second constant, u, equal to 1 + X, to represent easily the relationship
between B and H:

(XI & XII) B=H0+M=Q+3,)H=pA
Experiment indicates that the constant w is always greater than zero.

We can generate a similar division for the electrlc case. Returning to equation
(III'), we introduce a vector, D, equal to the sum E+ P:

(XIII) D=E+ P
Then equation (III") may be written:
(1) V-D=p,
Here p. is, again, only the nonpolarization charge density. By virtue of equation
(IX), we may introduce a new constant, €, which links D with E:
(IX & XIII) D=E+P=(+3pE = &
From the standpoint of microscopic theory, the new vectors we have introduced—
P, D and M, Ai—serve solely to distinguish classes of current and charge. None of

them, including D, is in itself a fundamental field vector, because the field proper
consists only of £ and B. We employ the auxiliary vectors, which derive from mi-
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croscoplc models to facilitate computations. Consider, for example, how we may
use D and P to analyze a charged conducting sphere embedded within a homoge-
neous, infinite dielectric (see fig. 1).

When the conductor is charged, the particles implicated in p. will drift to its
surface since a system governed by inverse-square forces is unstable. They there
distribute themselves in such a fashion as to annul the E field within and tangent to
the surface of the conductor. Since the particles are extremely small in comparison
with macroscopic dimensions, we may consider that they there form a charge o, (the
+ in fig. 1) per unit area equal to Q/4mb*, where Q is the net charge added to the
conductor in the charging process, and b is the radius of the conductor.

The charge Q of the conductor causes a polarization charge o, (the — in fig. 1)
equal to —P - ¢, to arise on the dielectric at its interface with the conductor—this
follows from equations (III"), (IX), and (XIII) applied to the case of an abrupt tran-
sition between conductor and dielectric. Since o, is equal to /D/—all fields are ra-
dial—we find (just outside the surface):

= (1 + 3)E = Q/4nwb* - - - E = Q/[4mb*(1 + 3,)]
P =D — E = [3/(1 + 2p)Q/4mb?)

Whence we find for the ratio g,/0:
0,/0. = —2/(1 + 2p) = (1 — e)e

Since 2 is known to be greater than or equal to zero, we see that the polarization
charge engendered by o is smaller than and opposite in sign to o.. The E field in
every point of space, outside the sphere or inside it, would be the same as if we had
empty space except for the surface charge 0. + 0. In this configuration the E field
at a distance r greater than b will be:

E = (Qlerde,

This very simple example illustrates that, in modern electrostatics, we can if we like
replace macroscopic systems with fully equivalent systems consisting of conduction
and polarization charge distributed in the void: the D and P vectors are merely useful
macroscopic aids for computing the effects of microscopic charge distributions.

In magnetostatics the situation is in one major respect simpler than it is in electro-
statics. Since we do not consider magnetic charge to exist, we need only to treat the

FiG. 1 Conduction charge generates a smaller and opposite polarization charge
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case corresponding to polarization charge. Consequently, the theory is analytically
the same as electrostatic theory without conductors: the vectors B, H function like
the vectors D, E in the absence of conduction charge. Both B and D then have zero
divergence, whereas H and E will have nonzero divergence if there is magnetic or
electric polarization, respectively. Applying equations (II'), (IV), and (XI) to a sta-
tionary situation in which there are no currents, we have:
VxHB=0---H= -V,

B=HB+MadV-B=0---V-H=-V-M

We see that H will have a potential ¢y, and that the source of ¢,, is a magnetic
moment density — -V .M. Asin electrostatics, these implications follow at once from
the model, in which M represents the mean density of microscopic magnetic dipoles.
Like D and P, A and M are purely macroscopic vectors.

2.2 The Ampére Law
Return next to our basic equation (II) for vV x B, and write 70 for 7
ar) V x B = (1/0)jo + (3E/an]

In discussing (II") modern texts usually begin with (I), (III), and (IV), combining
them with the continuity equation to obtain:

(5) V- o + GE/n] =

The texts usually go on to argue that Jo + (0E/dr) must therefore be the curl of some
vector, and they guess that B is the vector, at once yleldlng equatlon ar.

But the choice is not unique. Suppose we write E; + E, for E, wherein E; is due
solely to electrodynamic effects, and Es is due solely to static effects. Then:

E=E, + E,
E, = —(1/c)(0Aldr)
(6) E, = -Vé

Then (5) may be written:
V- [Jo + @E/or) + QEJon) =
But since V - A is zero in the Coulomb gauge (which we always use), this becomes:
Vo + GEJan) =
In which case we could also guess:
@) &V X B = [j, + (9EJon)]

Equation (7) differs from (II”) in lacking the latter’s term 0E/or, but it is just as
consistent with the continuity equation, and it makes just as much sense in the ab-
sence of experimental evidence to the contrary. In fact, we will see that equation (7)
was historically used on the Continent, though never in Britain.

1. Several difficulties are encountered with our use of the vector A together with a model in which
magnetization is always due to microscopic currents. These difficulties are not of importance here, how-
ever, because we are concerned with interpretations common to all macroscopic theories. On these ques-
tions, see Fano, Chu, and Adler (1960, sec. 7.10).
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2.3 Energy and the Field

At this point we can gather together our results and rewrite the basic equations under
the macroscopic approximation:

Field equations:

(Io) v x E = —(1/c)(0B/on) (Faraday law)

(Io) V x A = (I0IC + @D/an] (Ampere law)

(IIo) V:D = p, (Gauss law)

(IVo) V-B=0

Material equations:

Q) P=D-E

Gi) M=B-H _ ~
(ii.) P = S =1+ 3 D = ¢
(iv.) A71=EMH b= Il 4 B = uH
v) C =oE

Note that I have not provided a macroscopic equation corresponding to the Lor-
entz force—equation (V) in our microscopic set—nor have I given expressions for
macroscopic field energies. The first lacuna depends on the second. In macroscopic
theory it is exceedingly difficult to determine the electromagnetic force on an object
by directly considering the actions on the polarization and conduction charges, over
which we have already averaged. However, two related methods are available for
avoiding considerations of this kind: by energy methods and by the ‘‘Maxwell
stress.”” To see the limitations of these methods we must begin by considering the
energy stored in the real field—the E and B of our microphysical equations.

2.3.1 Microscopic Theory

Our original equations (VI) and (VII) represent the electric and magnetic energy
densities of the microscopic field proper. These energies are considered to reside in
the field and to be correctly localized by (VI) and (VII) in every volume element.
That is, a volume V contains field energy in the amount (1/2)[(E* + BY)d’x. Now
we cannot obtain this general requirement from our other equations. We can, how-
ever, with some effort demonstrate the following two propositions by considering the
work done according to the Lorentz force in assembling collections of charge and
current:

a. The total energy due to the static fields E: of the particles is (1/2)f Eld’x,
integrating to infinity.

b. The total energy due to the vector potential fields A of the collection of steady
currents C is (1/2)JC - Ad°x, integrating to infinity.

(The second of these two results is remarkably difficult to obtain because of electro-
magnetic induction: unlike charges, currents do not naturally remain constant when
moved about, and volume currents present partlcular d1fﬁcult1es in this regard except
under highly artificial restrictions.) Replacing C with V x B, and recalling that B is
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V x 4 we may perform a partial integration to rewrite result b in terms of B—
again, only for the case of steady currents—as:

b’. The total energy due to the magnetic field B of a collection of steady currents
C is (1/2)B’d’x.

Obviously we have not in this way demonstrated that (1/2)(E* + B?) is the correct
function to use in computing the total energy of the field in the nonsteady state.
Much less have we shown that the energy in a finite volume V is actually (1/2)f,(E*
+ B?d’x. However, if we simply make these latter assumptions, then a bit of math-
ematics demonstrates that they are fully consistent with energy conservation, and that
they are physically meaningful.

Returning to the microscopic equations, we replace pv in equation (II) with a
general vector J. which incorporates all types of moving charges. Then we take the
scalar product of equation (I) with B, and the scalar product of equation (II) with E:

(A) B-(V x E)= —(112c)[8/0B - B
(B) E-(V x B) = (WE - J. + (112)3E - E)]

where 3/0tE - E = oE - Elor. Subtracting equation (B) from (A) and using a vector
identity, we obtain:

V- (ExB) = -E-J. — (1R)@E - E)
(©) — (1/2)(3/3B - B)

where 9/0tB -+ B = 0B - B/or. Now we may integrate equation (C) over any finite
volume V. Doing so, and using Green’s theorem, we find Poynting’s microscopic
theorem:

—JcE x By -dS = (112)a/atf(E* + BYdx + JE - Jd'x

The last term on the right-hand side is, without question, the rate at which the elec-
tromagnetic field performs work on the material charges in the volume of integration.
Our theorem asserts that the sum of this power with the rate of change of another
volume integral over pure field quantities is equal to an integral of field quantities
over the surface of the volume V. If we assume (defining U as the density [1/2]
[E? + BY)) that [,Ud’x is the true field energy in V, then cE x B can be taken to
be the rate per unit area and the time at which the field energy flows into V by energy
conservation.

This effectively permits us to treat the field of our microscopic equations as a
dynamical system. If we are permitted to localize energy in every volume element,
then we should also be able to use Lagrange’s equations and Hamilton’s principle.
We can in fact do so, as we shall see in a moment. If we assume that the Lagrangian
density is (1/2)(B*> — E?), and that no charges are present, then we may use Hamil-
ton’s principle together with equation (II) (the Ampere law with pv = 0) to deduce
equation (I) (the Faraday law).

What, though, of the charges? They are not part of the field; they are its sources.
They constitute, moreover, an independent dynamical system to which Hamilton’s
principle can be separately applied. Field and matter, one can say, are distinct sys-
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tems which cannot affect one another’s internal structure. By this I mean that the
energy density appropriate to each is not at all affected by the presence of the other
system.

Of course, the two systems do interact with one another, as we see from the
presence of the source terms in equations (II) and (III) and from the field terms in
equation (V). We can represent this interaction, without altering the energy density
of either field or matter considered independently, by including in our Hamiltonian
integral a term for the work done by the field upon matter. If this work is negative,
then matter is feeding energy into the field.

In order to operate in this way; we must know the constraints imposed on the
permissible variations by the fact that the source of the field is material charge. These
constraints are provided by equations (II) and (III). Another constraint on the varia-
tions is imposed by equation (IV): this constraint, of course, holds even in the ab-
sence of charge. Including in the Hamiltonian integral a term for the work of field
upon matter, we will be able to deduce equations (I) and (V). Equation (I) is a pure
field equation. Equation (V) determines the action of field upon charge. To clarify
these points, I shall give a précis of the calculation.

The Lagrangian of the field itself, Lgy, is given by:

6)) Lem = (1/2)f(B* — E)d’x

If ?EM is the electromagnetic force per unit charge which the field exerts on matter
during a displacement 87 of the charge density p, we have for the work done on
matter by the field during &7:

(9) W = fprM 1 8;d3X

While the material system is displaced point by point through 87, we also vary the
components of the electromagnetic field at any point by 3E and 8B.

In the absence of any constraints, 87 would be completely independent of 3E and
8B. However, we use equations (II) and (IIT) to impose constraints.’ After consider-
able simplification, we find:

(10) V-E =p...V-3E=238=-V-(pdF)
VxB =pv+ (3Emr . . .
V x 3B = d[pv + (9E/ar)]

a1 a1o1(pdF + SE) — V X (pv X dF)

Hamilton’s principle requires that the variation of the Lagrangian, from which we
subtract the work done by the field, between two given states and over a given time
interval must be stationary:

We first compute 3Lgy:
3Lem = [(B - 3B — E - 8E)d’x

2. One can show that:
3(pP) = (A(pdF) — V X (p? X 57)
by considering the variation [3(p¥) - dG in the current through the area enclosed by a loop because of its
displacement. I thank Philip Lervig and Ole Knudsen for pointing this out to me.
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Consider the magnetic part of 3Lgy. We use equation (IV) to replace B with V x A;
then a partial integration yields:
fB - 8Bd’x = JA - (V x 3B)d’x + surface terms

The surface terms vanish when we integrate to infinity. We can replace V x 3B by
using equation (11) to obtain:
(12) [(B - 3B)dx = [A - [a/0e(pd7 + BE) + V X (p¥ X 8F)ld’x
We can trzinsform the term in A - [? X (pv X &7)] by a partial integration to infinity,
replacing V X A with B:

JA - [V x (pv X 39))d’x = [(V x A) - (p¥ x dF)d’x + surface terms
[B - (pv x d3F)d’x
— Jpd7 - (v X B)d’x

[

(13)

From (12) and (13) we now have:

fdi(fB - 8Bd’x) =
(14) JadfIA - a/atpdF + BE) + pdF - (¥ x B)ld’x}

We can partially integrate over time in the first term on the right-hand side of (14)
to obtain:
(15) fat(fB - 8B)d’x = [{J[—0Al/at - (pdF + OE) + pdF + (v X B)ld’x}dr

Since the variation of E” is simply 2F - dE, we easily find from (9) and (15):

= fdff[—oAlor - (pdF + 3E)
(16) + pdF - (0 X B)—E - 8E — pfem - OF1d’x}

We cannot as yet separately bracket the terms because &7 and OE are connected
by equatlon (10). We can add this constraint to the integral by forming the zero sum
V. (OE + pdF), multiplying it by an undetermined scalar function ¢ and adding in
the result. We can then integrate ¢V (OE + pdF) partially:

[V - OE + pdF)d’x = — J(OF + pdF) - Vobd'x
So we must have:

0 = —0A/dr - (p&F + 3E) + pBr - (¥ X B)

(17) —E-8E — (OF + pdF) - Vb — pfem - OF

Setting separately to zero the coefficients of 87 and dE, we now obtain:
(18) E= —odot —Vo---VxE= —oBlar
(19) fem =E + Vv xB

Equation (18) is the microscopic Faraday law. Equation (19) is the Lorentz force.

I have taken the reader through this rather intricate exercise to demonstrate a
major point: in the microscopic theory we can treat matter and the electromagnetic
field as independent but interacting dynamical systems—systems which obey Hamil-
ton’s principle. We can in this way generate the Faraday law and the Lorentz force.
But that is all that we can do—the exercise needs never to be repeated because the
circumstances governing the interaction of field and matter at this level of detail
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never change. The constraints are always the same, and the field’s energy density is
always (12)(E* + B?). Of course the material systems we are concerned with may
be dramatically different from one another, ranging from semiconductors to plasmas.
But that is, in principle, a problem for the model builder. We have provided all of
the basic equations necessary to analyze the electromagnetic properties of any mate-
rial system. Obviously these results are not, by themselves, very useful in analyzing
most systems of interest to us. We are usually concerned with macroscopic behavior.
What we would therefore like to do is to provide a method based on energy principles
for deducing macroscopic forces. This requires generating an energy density in terms
of D and H. We shall now consider how this is done, and whether or not similar
principles hold for the macroscopic scheme as hold for the microscopic scheme.

2.3.2 Macroscopic Theory

The most direct route to macroscopic energy expressions is through a macroscopic
Poynting theorem. Consider equations (Iy) and (Ilp) of the macroscopic theory. Tak-
ing the product of H with (Ip) and of E with (ITy), we subtract the second result from
the first—proceeding as we did in the microscopic theory (sec. 2.3.1). This proce-
dure yields:

(D) V- (ExH = -E-C — E-(aDlary — H - (3Blar)
We may integrate over a finite volume V to obtain Poynting’s macroscopic theorem:
—fcE x H) - dS = [[E - @D/ar)y + H - (dBlon)d’x + [E - Cd’x

The last term on the right-hand side represents the rate at which the field does work
on the conduction current C. We are naturally led to the following interpretations:

a. o(E x H) represents the rate per unit area and the time at which energy flows
through the surface of V.

b. E - (65/61) + H - (6§/at) represents the time rate of change of the energy
density at a point within V.

Result b differs considerably from the corresponding result in the microscopic
theory. We can best see this difference by using equations (i) and (ii) of the macro-
scopic theory to replace D and B. Then the rate of change of the energy density
becomes:

(1/2)3/0t(E*> + H*) + E - (9P/ar) + H - (aM/dr)

The first term above, which contains E* and H?, evidently pertains to the electromag-
netic field only. But the second and third terms implicate electric and magnetic po-
larizations: they involve matter as well as field. To grasp the effect of the several
terms we may consider a simple example. We envision a quasi-static situation in
which we ignore the magnetic fields, and in which at time ¢ equal to zero both E and
P are also zero. If P is a linear function of E which is independent of time, then we
may integrate over time to obtain the energy density (12)E - P.

To make the situation concrete, we may consider a system consisting of two
conducting plates A and B separated by a dielectric slab (see fig. 2). We further
assume that A and B have been charged quasi-statically from the null state with
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total charges +Q, —Q, respectively. Then 1f each plate has an area s, and if the
slab fills the space between them, the field D therein will be (€; is always a unit

vector):
= (Q/s)e,
Since we are assuming that P is simply proportional to E, we have:

E = (Q/se)e,
energy density Uz = (E> + E - P)2 = eE¥2 = D - En

So, if the distance between the plates is z, we have for the total energy Wy between
them:

Wi = zsUg = Q%2/2s€

Therefore the macroscopic theory implies that, for fixed charges, the energy with the
slab in place is lower by a factor of 1/e from its value in the absence of the slab.
We may interpret the effect on the E field microscopically in terms of the polari-
zation charges induced by the plates on the dielectric’s surfaces. Since we assume
that the dielectric is homogeneous, it will have only surface charges —P, +P per
unit area on its upper and lower faces, respectively (see Fig. 3).
In effect we now have four planes of charge our two planes of conductlon

+Q(e — 1)/es above and below, respcctlvery. ‘We now ignore the physical dlelectrlc
and simply compute the E field for this configuration of charged planes. We see at
once that the polarization charges have dropped the E field in the region occupied by
the dielectric from its vacuum value of Q/s to Q/se. The E field in this configuration
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of charges is the same as in the real situation, but the energy is, of course, not at all
the same: we are missing the energy corresponding to P - E2. In the macroscopic
theory, unlike the microscopic, the energy is not fully accounted for by the term E%/2
in the electric field. Why is this so?

To answer this question we must first recall a cardinal point of the macroscopic
theory: the E and B fields which appear in macroscopic equations represent spatial
averages taken over the real fields, which vary markedly from molecule to molecule.
In our example, the real field E, (we shall hereafter denote microscopic fields with a
subscript r) varies radically from polarized molecule to polarized molecule, whereas
the macroscopic field E is uniform over the same region. This means that the energy
density E’,/2—the real density in the field—includes much energy missing from
E?/2, namely, the energy of polarization of the dielectric molecules. We take account
of the latter energy macroscopically in the term P - E/2. The answer to our question,
then, is simply that the macroscopic field E does not contain all the electric energy
because some is stored in material polarization against internal—presumably mechan-
ical—constraints. A similar remark can be made for magnetic substance in which M
varies linearly with H. Here we have macroscopic field energy density H%/2, and this
does not include the energy H - M2 of magnetic polarization.

The macroscopic distinction between the energies (E* + H»2and (E-P + H -
M)/2 powerfully illustrates the difference between the microscopic and macroscopic
theories. In the microscopic theory, all electromagnetic energy is stored in the field
as (E%, + B*)/2. In the macroscopic theory this is no longer true: we must divide
the energy into two distinct parts, only one of which pertains to the macroscopic field
proper. The latter, (E* + H?*)/2, is an average energy and is indeed stored in the
macroscopic field. But the expression (E - P + H - M)/2 is not macroscopic field
energy: it is material energy engendered by electromagnetic fields. Macroscopic the-
ory, through € and ., introduces a division of energy which is entirely foreign to the
microscopic point of view, but one which is very useful.

To see how useful the macroscopic energy is, consider the expression for the
electromagnetic force per unit volume, fgy, which is exerted in the stationary state
on a substance which has dielectric constant € and magnetic permeability w. To
obtain it we consider the virtual change 8Wgy, in the total electromagnetic energy—
il (12)(eE? + },LHZ)d3x—stored in a volume V wherein the material density is T when
the substance is displaced through a distance 87. We allow a conduction charge p, to
be present as well. Setting 3Wgy equal to — ffEM - 8Fd’x (e.g., Becker 1964, sec.
35), we find (considering for simplicity only the electric case):

3Wem = JE - 8Dd’x — (112)[8eE*dx
(20) = _f_?EM ‘ 87[131'

Since we ignore electrodynamic effects, we have E equal to —W), and p, is, of
course, V - D. Whence:

E-8D = —V(ddD) + oV - 3D) = —V - (43D) + $dp.
Then (20) becomes:

Q1) Wen = [ddp. — JV - (d3D)dx — (1/2)fE*sed’
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For a virtual displacement, &7, of the substance, we can easily show dp, and 37, the
variation in the material density 7, to be:

22) dp. = —V - (p.dF)
(23) or = =V - (7d7)
If € is a unique function of 7, then we also have:
(24) de = (—de/dm)[V - (157)]
Substituting (22)—(24) into (21) and using vector identities, we obtain:

— [Fem * OFd’x = dWpy

= — [V - {—dpdF + (1/2)[E*r(de/dr)dF] — $dD}d’x

25) — [57 - {p.Vé + (1/2y1V[EX(deldr)]}d x

Now, we argue, Gauss’s theorem for a surface at infinity eliminates the first integral
on the right-hand side of (25), yielding:

(26) 157 - {Fem — pE + (12)EWVe — (112)V[E*r(de/dn)]} = 0
Including the magnetic case, we have:

} EM — 58 .

p.E — (112)E*Ve + V[(1/2)tE*(de/dT)]
27 —(I2)HVw + V[(1/2)y1H(dp/d7)]

Equation (27) can be directly applied when we know the dependencies of € and p on
position and density.> Moreover, we can transform it into an even more useful form,
as follows. g

If we replace p, in (27) with V - D and manipulate the expression, we can in the
end write (with 7z and T), representing matrices):

.7EM = 6 *(Tg + Ty)
(TP); = NFF;ifi # j
(Tr)i = (U2NF? — F? — Fp) + (1/2)1F%0NoT where i # j + k
Here i, j, k = x,y, 2z
(27) BRI T = B =g Ty, ST =1 NS
We may partially integrate in (27') to obtain:
(28) [fem = J(@Tg + Ty) - dS

Equation (28) may be interpreted as asserting that the material substance is in a state
of “‘stress’” which consists of the following elements:

a. Two *‘tensions,”” E’¢/2 and H*w/2, parallel respectively to £ and H.
b. Two “‘pressures,”’ E’¢/2 and H*p/2, perpendicular respectively to E and H.
. A hydrostatic pressure, —(12)[EX(deldT) + Hz(dp./d'r)], in all directions.

(2]

3. See Jeans (1908, secs. 196 and 471) or any advanced text. Over the years much controversy has
surrounded equation (27) because it is entirely different from the force obtained by considering directly
the action on the polarization 2, namely, (P - V)E. The contemporary view seems to be that both methods
of computation are incorrect unless supplemented by ‘‘mechanical’’ forces. On this point, which will be
of some interest to us in our discussion of Larmor, see Penfield and Haus (1967, sec. 8.2).
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For simplicity we write (28) as:
(28" [Femd>x = —(U2)f(E-D + H - B)dS + [ED - dS) + [HB - dS)

Since we have used the macroscopic energy densities in the derivation, equation (28")
represents the combined effects of the macroscopic field and the internal polarizations
of the substance.

Computations based on the macroscopic energy densities, or upon equation (28’),
cannot account for phenomena which we now attribute to the behavior of the electron
as a driven harmonic oscillator. This is because such computations presume, in ef-
fect, that we can ignore the mass of the electron. As a result we do not allow energy
to be transferred from the electromagnetic field into electron motion. Otherwise the
position of the oscillating electron at a given instant will depend on the frequency,
as well as the magnitude, of the electromagnetic field. Analytically the requirement
is that € and p. may not depend on the frequency of radiation. For, if we did allow
such a dependence—if we implicitly recognized the electron’s mass, according to
modern theory—then our energy computations would have to take account of it, with
utterly ruinous results for the macroscopic theory.

But suppose we ignore microphysical reality and conceive that all phenomena
should be explicable macroscopically. We might assume that D and H constitute
fields properly speaking. We could then apply Hamilton’s principle to this system of
fields just as we applied it above to the microscopic field. We could construct a
Lagrangian density (1/2)H - B — E - D) and proceed as we did before, only now
using the macroscopic equations (Ilp) and (Illp). If we do so and take our surface at
infinity, then we will obtain equation (Iy), which is the macroscopic Faraday law.
This involves us in no difficulties. Moreover, we need not take our surface solely at
infinity if we believe that the Lagrangian properly characterizes the state of a single
system—the macroscopic field—at each point. We can take it also over an internal
boundary across which € and p may abruptly alter. And if we do this then we will
obtain boundary conditions. In fact, we obtain the usual conditions, namely, the
continuity of ET and Hy. (See appendix 4. Hereafter a subscript 7 denotes the tan-
gential component of a vector.)

Although this procedure works well here, it is based on a false premise: that we
are dealing with a simple, rather than a compound, dynamical system. In particular,
it ignores the fact that microphysical structure implicates other degrees of freedom
than our macroscopic equations can take into account. Nevertheless, as long as we
remain in quasi-static circumstances we will have little trouble. Of course, the point
of assuming that we may use Hamilton’s principle macroscopically is precisely to
give us a method for explaining processes which modern theory attributes to electron
mass—and for which the quasi-static approximation therefore fails. Consider, for
example, the Faraday effect.

In the Faraday effect the plane of polarization of light is rotated on passage
through a substance in the presence of a magnetic field. This fact obviously requires
the wave equation to be different from what it is in the absence of the Faraday effect.
Modern theory can explain the phenomenon by assuming a simple microphysical
model in which charged particles oscillate about positions of equilibrium. We need
to change only the relationship between P and E (or between C and E): the Faraday,
Ampere and Gauss laws remain sacrosanct. In the Faraday effect the P, E relation-
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ship (as we shall see in detail when we examine Continental electrodynamics in the
1890s) is fundamentally altered; it becomes a second-order differential equation
which includes B, the particles’ mass and charge, and the frequency of the incident
radiation. Combining this equation with the unchanged field equations generates a
new differential equation for the optically significant E field.

But suppose we did not demand that the basic field equations remain unchanged.
Then we could alter our expressions for the macroscopic field energy by adding new
terms, which we may regard as hypotheses to be tested by their effects. If we then
apply Hamilton’s principle to this new energy expression, we will obtain new, and
considerably different, field equations. In fact, we shall see that a properly chosen
addition to the field energy will even lead to a nearly correct second-order equation
for the E field. However, we will also obtain new boundary conditions: Z; and H,
will no longer be continuous. Modern theory forbids this: we never touch the basic
field equations or the boundary conditions which follow from them. We alter only
those relationships which depend on microphysical structure.

Nevertheless, in the last quarter of the nineteenth century—and not only in Brit-
ain—it was far from clear that macroscopic theory could not be made to work for all
phenomena (with the possible exception of dispersive ones). Three in particular did
not seem to require violating the macroscopic approach, and they are closely related
to one another: the Faraday, Kerr, and Hall effects. Indeed, Maxwellian electrody-
namics, which first explained these effects, was built on the very assumption we now
reject. It assumed that field and matter can always be treated as a single dynamical
system, subject to modification according to the circumstances, in which hidden de-
grees of freedom do not have observable consequences. Perhaps the most astonishing
characteristic of Maxwellian theory, given the twentieth century’s deep belief in the
importance of microphysics, was its empirical success.
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3.1 Model Making and Field Dynamics

Anyone who has read about optics or electromagnetism in the nineteenth century
thinks at once of the ‘‘mechanical model.”” Most histories of the period discuss the
ways in which electromagnetic and optical processes were thought to occur in a
substantial medium—the ‘‘ether’’—which was governed by the laws of ‘‘mechan-
ics.”” The major problem of the century would seem naturally to have been the con-
struction of a model capable of encompassing all optical and electromagnetic pro-
cesses by identifying them with processes in the ether. This picture of the period has,
as we shall frequently see, many elements of truth in it. But it is on the whole more
misleading than informative. When stated without careful qualification, it mistakes a
future hope of the era for a practical method of investigation. It is certainly true that
most British scientists hoped one day to obtain a structure for the ether. Nevertheless,
this was not generally required for immediate goals: the British were able to develop
a theory which is profoundly different from the modern one, but which does not rely
on an ether model. Instead, the theory employed Hamilton’s principle and Lagrange’s
equations in ways we no longer permit.

To clarify this most difficult point we shall begin with the comparatively simple
distinction between a mechanical model and a dynamical system. This can best be
approached by considering briefly Maxwell’s own work after c. 1860. In 1861 and
1862 Maxwell published a lengthy article, appropriately titled ‘‘On Physical Lines of
Force.”” It described an elaborate mechanism for the ether. This structure has been
extensively discussed over the years, and we will not spend much time on it except
to make one remark: it seems quite certain that Maxwell was deeply attached to the
mechanism despite certain problems with it, and that he remained throughout his life
(he died in 1879) strongly committed in principle to model building. Yet only two
years later (1864) he published another article, ‘A Dynamical Theory of the Electro-
magnetic Field,”” which avoided specifying the ether’s structure, but which neverthe-
less presumed the field to be governed by what he called ‘‘dynamical’’ laws. He
wrote:

We may therefore receive, as a datum derived from a branch of science
[viz., optics] independent of that with which we have to deal, the existence
of a pervading medium, of small but real density, capable of being set in
motion, and of transmitting motion from one part to another with great,
but not infinite velocity.

1. See the bibliographic essay for relevant discussions. Recently a number of historians have discussed
the use by Maxwellians of Lagrange’s equations (Moyer 1977, 1978; Siegel 1981; Topper 1970, 1971,
1980), and much that I have to say agrees with their general positions. I have chosen to concentrate
especially on what it is about the use of Lagrange’s equations that can no longer be accepted after the
electron.
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Hence the parts of this medium must be so connected that the motion of
one part depends in some way on the motion of the rest; and at the same
time these connexions must be capable of a certain kind of elastic yielding,
since the communication of motion is not instantaneous, but occupies time.
The medium is therefore capable of receiving and storing up two kinds of
energy, namely the ‘‘actual’’ energy depending on the motion of its parts,
and ‘‘potential’’ energy, consisting of the work which the medium will do
in recovering from displacement in virtue of its elasticity. (Maxwell 1865,
sec.6)

Maxwell’s description of the medium contains one of the two basic elements of a
‘‘dynamical’’ theory of the ether held by British scientists at the time: the assumption
that the medium contains kinetic energy (energy of substantial motion) and potential
energy (energy stored in some sort of substantial displacement). The second basic
element determines the dependence of the ether’s state upon time. If one has a me-
chanical model for it, then its state is completely determined by the positions of its
parts. Then the ether’s kinetic and potential energies can be expressed directly in
terms of its actual mechanical structure.

To be ‘‘dynamical,”” in the sense that word was used by late nineteenth-century
British scientists, a theory need not provide so much. It need only provide expres-
sions for kinetic and potential energy which may be employed in Lagrange’s equa-
tions. This means that the energies must be expressed in terms of some set of gen-
eralized coordinates and velocities. But these coordinates and velocities need not
directly represent an actual mechanical state. This greatly simplifies the problem if
we can somehow find a set of coordinates which express phenomena of interest to
us. Maxwell aptly captured the idea in a pretty Victorian metaphor:

In an ordinary belfry, each bell has one rope which comes down through
a hole in the floor to the bellringer’s room. But suppose that each rope,
instead of acting on one bell, contributes to the motion of many pieces of
machinery, and that the motion of each piece is determined not by the
motion of one rope alone, but by that of several, and suppose, further, that
all this machinery is silent and utterly unknown to the men at the ropes,
who can only see as far as the holes in the floor above them. Supposing
all this, what is the scientific duty of the men below? They have full com-
mand of the ropes, but of nothing else. They can give each rope any po-
sition and any velocity, and they can estimate its momentum by stopping
all the ropes at once, and feeling what sort of tug each rope gives. If they
take the trouble to ascertain how much work they have to do in order to
drag the ropes down to a given set of positions, they have found the poten-
tial energy of the known coordinates. If they then find the tug on any one
rope arising from a velocity equal to unity communicated to itself or to
any other rope, they can express the kinetic energy in terms of the co-
ordinates and velocities.

These data are sufficient to determine the motion of every one of the ropes
when it and all the others are acted on by any given forces. This is all that
the men at the ropes can ever know. If the machinery above has more
degrees of freedom than there are ropes, the co-ordinates which express
these degrees of freedom must be ignored. There is no help for it. (Max-
well 1879, 783-84)
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Maxwell’s metaphor readily applies to his theory of current-bearing linear circuits,
which we shall examine later. There Maxwell introduces, in addition to the position
coordinates of the circuits, a set of internal ‘‘electric’’ coordinates y;. The kinetic
field energy then depends entirely on the corresponding ‘‘electric’’ velocities—in
effect, the linear currents—and on the positions of the circuits. The ropes of the
metaphor correspond to the electric substance within the circuits whose coordinates
are the y;. (Though in the electric case the y; are cyclic, since they do not occur in
the energy.) Ignoring the electric field energy, that is, the field’s potential energy,
Maxwell treated the circuits as though the currents within them were linked by rigid
constraints to an intervening medium—the ether. The internal structure of the me-
dium does not have to be known as long as we have correctly expressed its energy
in terms of our chosen coordinates.

The coordinates used in linear circuit theory do not apply to the medium proper.
A more complex question, but the one with which we will be predominantly con-
cerned, addresses the coordinates appropriate to the medium itself. In an extension
of the method used for linear circuits, we may choose a set of generalized internal
coordinates for the medium; they need not determine its complete state, but they
must determine that part of it which appears as the electromagnetic field. Because
the coordinates may be extremely generalized, the resulting expressions for the field’s
energy densities may seem to defy mechanical interpretation.

For example, we might find that the medium can be characterized insofar as the
field is concerned by treating Hasa velocity and D as the curl of the corresponding
mechanical displacement. We might find that making such a substitution in the usual
field energies, and applying Hamilton’s principle or Lagrange’s equations, yields
correct field properties. Indeed, we may even be tempted (as the Maxwellians were)
to add terms to the energy expresswns to see whether we can generate new types of
processes. However, to assume that Hisa velocity and D a substantial curl does not
mean that the ether’s true structure is fully understood. The velocity which H repre-
sents may in fact involve exceedingly complicated but hidden ether processes. More-
over, if we make substitutions of this kind, our expressions for the energy of the
field, although given in terms of velocity and position coordinates, may be very hard
to embody in a visualized mechanical structure. Indeed, this last characteristic may
itself suggest that we have not captured the ether’s complete structure. Nevertheless,
the power of the method, as we shall see, more than compensates for this problem
of mechanical realization.

We will be concerned primarily with Maxwellian dynamical theories which do not
lend themselves to easy mechanical realizations. This permits us to concentrate on
that deep feature of Maxwellian theory which distinguishes it markedly from electro-
magnetism after the electron; namely, the assumption that all electromagnetic phe-
nomena, including boundary conditions, can be obtained by applying Hamilton’s
principle to suitably chosen field energy densities which contain appropriate medium
constants like € and p—there may be others (and, in the cases of the Hall, Kerr, and
Faraday effects, there must be). That procedure, modern theory implies, can at best
work only on occasion: the macroscopic field (D, H) is not a simple dynamical
system but a construct obtained by averaging over the true state and combining field
vectors (E, 79) with material vectors (P, M). But precisely because the Maxwellians
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always thought of the ether as a material continuum, they insisted on applying to it
the methods appropriate to continuous mechanical structures. This provided a very
powerful method for building theories of particular phenomena, and even for linking
theories together.

These theories, not surprisingly, often differ dramatically from modern ones for
the same phenomena: where modern theory introduces the electron, Maxwellian the-
ory invented new forms of energy. This was possible because the Maxwellians were
quite willing to invent modifications to the basic equations governing the electromag-
netic field—as long as the results held up experimentally (which, as we shall see,
they did in several cases well into the 1890s). Modern theory seeks unified explana-
tions in an unmodifiable set of field equations coupled through electron motion to
intricate microphysical models. Maxwellian theory sought unity through a highly
plastic set of field equations coupled to Hamilton’s principle.

3.2 The Elements of Maxwellian Charge and Current

The most difficult concepts for the modern reader to grasp in Maxwellian theory are
also the most basic ones; namely, its understanding of ‘‘charge’” and ‘‘current.’’ In
modern theory, charge is the source of the electric field, and current is a source of
the magnetic field. In Maxwellian theory, charge is produced by the electric field;
current, in the usual sense of rate of change of charge over time, is only indirectly
related to the magnetic field. These ideas, which we will explore in detail below, are
built into the foundation of Maxwellian theory. Like many fundamental concepts,
they are extremely difficult to explain in a straightforward manner. Indeed, no Max-
wellian text, including—perhaps especially—the Treatise, successfully conveyed the
theory’s foundation to those for whom the word ‘‘charge’’ necessarily evoked the
image of a substance.

We must begin our examination of Maxwellian ideas with a basic understanding:
the Maxwellian goal was to create a theory of electromagnetism which made no use
whatsoever of the microstructure of matter. This is not to say that the Maxwellians
were anti-atomists. They were not. Nevertheless, they believed strongly that electro-
magnetic theory—and, in fact, most other areas of physics—was more basic than
material microstructure. For the Maxwellians, the world was fundamentally a contin-
uum, and the laws which governed it had to be expressed in an appropriate mathe-
matical form. (The discrete structure of matter had, they felt, to be explained as an
emergent property of the underlying continuum; see below.) Accordingly, the vari-
ables in the equations had to represent properties of a continuum. These properties
might very well be contingent on the microstructure of matter, but that was a sec-
ondary consideration. The goal of the theory was a general set of equations contain-
ing variables whose values were defined at every point. Phenomena were to be gen-
erated by manipulating functions of these variables—in particular, energy functions.
In practice this meant that the Maxwellians were willing to alter what modern theory
considers to be basic equations and were unconcerned with the factors modern theory
uses to avoid modifying the basic equations, namely, material microstructure.

To understand Maxwell, we begin with the underlying image of the universal
continuum or ether. We do not need to know what the structure of this medium is.
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But we must assume that the medium can be assigned a vector field with zero diver-
gence:

) V-i=o0

We do not need to know what mechanical property of the field the vector J repre-
sents. However, we assume that it may vary over time. We therefore consider, in
virtue of equation (1), that J may be treated as though it represented the rate of flow
per unit area of a conserved quantity. We may introduce a vector X to represent the
shift in location of this quantity:

) 7 = aner

To facilitate the discussion I shall often write as though X represented the shift in
location of an incompressible substance, and J its rate of change with time. We are
allowed to speak this way by virtue of equation (1) and our assumption that J may
alter over time. Nevertheless, we must be very careful—as the Maxwellians tried to
be in the 1880s and 1890s—mnot to carry this mode of expression too far. We should
never go beyond what the continuity equation implies when we think in this way.
Indeed, we shall see that one of the problems which Continental physicists had in
understanding Maxwell was that they found it extremely difficult not to think of A
as, quite literally, the shift of a substance. We must not do so because we would
then be led to think incorrectly of other aspects of Maxwellian theory. The end result
would be to make it nearly impossible to perceive a consistent pattern in Maxwellian
texts.

So far we have said nothing about charge or current. Nor can we say much until
we develop a bit further the basic Maxwellian structure. We next assume that the
state of the ether at each point depends on three continuous scalar variables, which
we denote €, w, and o. Each of these variables is defined throughout all space. (They
are also, respectively, specific inductive capacity, magnetic permeability, and con-
ductivity. We shall see below how they may be interpreted in this way.) This requires
the assumption that the ether is ubiquitous: the ether exists even in the space occupied
by matter. In fact, alterations in the values of €, w, and o occur only in space also
occupied by matter. We do not bother ourselves with such questions as how matter
and ether can be thought to occupy the same space—for very nearly the same reason
that we do not worry about the microstructure of matter. Both problems were, for
the Maxwellians, secondary to the main issue, which was to create a theory contain-
ing only continuous variables. And it was implicitly assumed that both of these sec-
ondary problems would be solved together. If, for example, theory progressed to the
point that molecules could be fruitfully treated as ether vortices, then matter would
become a structure of and in the ether, and both questions could be answered to-
gether.

Though we have as yet barely touched the surface of Maxwellian theory, we shall
jump ahead somewhat in order to see how, at a very elementary level, it introduces

“‘charge.”” Without detailed discussion at this point, we introduce the Maxwellian
concept of “‘displacement.”” In essence, a displacement D implicates a X shift in the
sense of equation (2), but it is not identical with X. Unlike )\ which can be sustained
indefinitely anywhere, a displacement in the Maxwellian sense, though identical with
N when first produced, may disappear over time without A also returning to zero.




Maxwellian Basics 25

Later we will carefully discuss how this can occur. Here we need only assume that
it is possible, and that the process occurs at a rapid rate wherever the value of the
ratio o/e is large. This is the case in bodies called conductors; ill nonconductors, or
dielectrics, the ratio is small, and displacement will persist with A.

To grasp the Maxwellian concept of charge we examine a passage from Maxwell’s
Treatise which has puzzled many readers during the last century.” It concerns the
Leyden jar, and in it Maxwell uses the phrase ‘‘displacement of electricity’” where I
have used simply ‘‘displacement’’:

II. Surface charge of the particles of the dielectric. Conceive any portion
of the dielectric, large or small, to be separated (in imagination) from the
rest by a closed surface, then we must suppose that on every elementary
" portion of this surface there is a charge measured by the total displacement
of electricity through that element reckoned inwards.
In the case of the Leyden jar of which the inner coating is charged posi-
tively, any portion of the glass will have its inner side charged positively
and its outer side negatively. If this portion be entirely in the interior of
the glass, its surface charge will be neutralized by the opposite charge of
the parts in contact with it, but if it be in contact with a conducting body,
which is incapable of maintaining in itself the inductive state, the surface
charge of the dielectric will not be neutralized, but will constitute that
apparent charge which is commonly called the Charge of the Conductor.
The charge therefore at the bounding surface of a conductor and the sur-
rounding dielectric, which on the old theory was called the charge of the
conductor, must be called in the theory of induction [i.e., in Maxwell’s
theory] the surface charge of the surrounding dielectric. (Maxwell 1873,
vol. 1, Sec. 111)

To understand Maxwell’s odd discussion of the Leyden jar, consider a charged metal
sphere embedded in an infinite dielectric (see fig. 4). Suppose the sphere is positively
charged. According to modern theory we must begin our analysis with the positive
conduction charge on the sphere’s surface. This charge creates an electric field which
engenders polarization throughout the dielectric. Suppose next that we divide the
dielectric into two parts by an imaginary surface C. One part (A) of the dielectric
lies between the conducting sphere and C; the other part (B) lies between C and runs
out to infinity.

According to modern theory, the innermost boundary of part A—which actually
touches the sphere—bears a negative polarization charge which is smaller in mag-

2. Maxwell’s theory of charge has occasioned great confusion for decades. Some of this confusion
depends on Maxwell’s having altered at least once his choice for the sign of the charge density in the
equation which links it to the divergence of electric flux (D). This change reflects, no doubt, the great
difficulty of developing a mathematics for a new conception rather than problems inherent in the concep-
tion itself. The problems have been repeatedly pointed out since the 1890s: see, e.g., Duhem (1902).
Duhem’s angry study reflects his deep misunderstanding of the core of Maxwell’s theory—indeed, of
British dynamical theory in general; he has been in excellent company. A more balanced but still confused
account is Poincaré (1890). For more recent discussions of the same problem, see Bromberg (1968). See
also A. F. Chalmers (1973a, 142) and O’Rabhilly (1965, 1:78-80). O’Rahilly’s work is historically unre-
liable since he was arguing a brief for the complete replacement of traditional field theory by electron-
based retarded forces. In particular, his claim to have detected an inconsistency in Maxwell’s discussion
of the Leyden jar in the Treatise is simply incorrect, as I demonstrate below.
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FiG. 4 Conductmg sphere embedded in an infinite dielectric a)

nitude than the conduction charge on the sphere. The outermost boundary of part
A—surface C—then bears a positive polarization charge numerically equal to the
negative polarization charge on A’s inner surface. This charge on A’s outermost
boundary, however, is exactly compensated by a negative polarization charge on the
innermost boundary of part B—that is, by a charge on surface C considered as the
inner boundary of B. Accordingly, no space charge at all exists: we have only the
positive conduction charge and the numerically smaller negative polarization charge
on the surface of the dielectric which is immediately adjacent to it.

If we now look at the situation in the terms of Maxwell’s quotation, we obtain a
very different picture from the modern one. We again divide the dielectric into the
two parts, A and B (fig. 5). Here we begin with a displacement D which exists
throughout the dielectric and which points away from the center of the sphere.
Consider first part B, which is bounded on the inside by C and on the outside by
infinity. Since the displacement points away from the center of the sphere, it enters
B’s inner boundary in a direction parallel to that boundary’s inward-directed

Fi1G. § Maxwellian theory of an embedded conductor
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normal. According to Maxwell’s definition of charge, therefore, this inner bound-
ary of B has a positive charge on it which is, per unit area, numerically equal
to D.

Consider next part A of the dielectric. The outermost boundary of A—surface
C—coincides with the innermost boundary of B. But the displacement exits from A’s
outermost boundary in a direction opposite to that boundary’s inward-directed nor-
mal. Consequently the outermost boundary of A has on it a negative charge equal
and opposite to the positive charge on the inner boundary of B. Since the boundaries
coincide, no net charge can exist anywhere within the dielectric.

At the surface of the sphere, however, the situation is very different. Here we
must consider, first, the inner boundary of the dielectric, which touches the sphere,
and, second, the surface of the sphere itself. The displacement enters the dielectric
boundary parallel to its inward-directed normal, so we have on this surface a positive
charge. But, since no displacement at all exists within the sphere, its surface is
uncharged. Consequently the positive charge on the inner surface of the dielectric is
uncompensated. The result is that what modern theory calls the positive surface
charge of the conductor, Maxwell’s theory called the positive surface charge of the
inner surface of the dielectric.

This is obviously a disconcerting idea for the modern understanding. It at once
raises many questions, two of which are immediately pertinent: First, is this idea
consistent with charge conservation and the Coulomb force law? Second, how is it
to be understood—that is, how are we to understand the existence of a discontinuity
in displacement without a source? To answer both questions we must introduce the
Maxwellian concept of ‘‘current.’”’

A current can be considered in two basic ways. First, there is the fundamental
theoretical entity. Second, there is the interpretation of this entity in a way that
connects it to the phenomenon of electric charge. Theories which, unlike the Max-
wellian, consider the electric current to be a flow of charged particles have little
difficulty in making this step. In Maxwellian theory, by contrast, this step poses
grave difficulties. We begin our discussion with the basic Maxwellian current.

Return to the quantity J and the associated vector X, equal to the integral of J
over time. In its most elementary description, the Maxwelllan current is simply d—
the time rate of change of N\. Whenever and wherever J is nonzero, Maxwellian
theory requires that we have a current and a magnetic field H, such that:

3) Vx A=

We have already seen that the Maxwellian electric charge is not determined sim-
ply by the quantity A; it is linked to a quantity called displacement which is associ-
ated with but not identical to X. This has immediate significance for the relationship
between the basic Maxwellian current, J, and the phenomenon we know as the elec-
tric current. In order to see what is involved, we again bring in the scalars € and o.

We assume that the value of € at a given point determines the amount of potential
energy stored there for a given X shift. In particular, we assume that, for a given
force £ which causes a proportional X shift represented by €£ wherever € is non-
zero, the medium has stored in it per unit volume a quanuty (1/2)eE” of potential
energy. That is, we treat the force £, and the shift e£ of the medium, as a conser-
vative one modeled on the response to stress of linearly responsive elastic substances.
(In this analogy € corresponds to the reciprocal of elasticity.)
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We saw above that a charge in Maxwellian theory requires a discontinuity in
something called displacement. We now define this -'isplacement as the product €E.
Then, for a conduction charge to exist, we have two possibilities. We might assume
that, in conductors, € is strictly zero. Then we would, of course, always have a
discontinuity in D (though not in )\) at their surfaces. This assumptlon means that
potential energy cannot be stored in conductors as a result of a A shift through them.
Then the purpose of the scalar o would be to determine the rate of energy dissipa-
tion during a A shift. The problem with this alternative is that it fundamentally di-
vorces conducting from nonconducting bodies, whereas a basic goal of Maxwellian
theory is to pass continuously between classes of bodies. To the Maxwellian, a con-
ductor is not distinguishable absolutely from a nonconductor, as it would be if we
assigned it no inductive capacity whatsoever. Rather, the differences between the
bodies must derive from their possession in varying proportions of inductive capacity
and conductivity, that is, from their not having the same ratio o/e. This brings us to
the second possibility, which the Maxwellians adopt.

We assume (as stated above) that, in conductors, the ratio /e is extremely large,
whereas, in nonconductors or dielectrics it is comparatively small. Suppose we have
a substance whose left half has a ratio o,/€;, and whose right half has a ratio o/€,,
where the first ratio is vastly smaller than the second. Suppose next that we generate
by external means a \ directed to the right. Let us examine what occurs at the
interface between the two parts. At first the field will be identical in magnitude with
the displacement field: both are initially equal to €,E, on the left and to €,E, on the
right. Since, moreover, A is divergenceless, in this first instant we have €.k, equal
to eZEZ, reckoning E , and Ez normal to the interface. But as time goes on this will
no longer be true. If neither €; nor €, is zero, then, the Maxwellians reason, the
energy stored in the displacements will dissipate over time at a certain rate which is
greater in proportion to the ratios o/e. Until the external means are again active, no
new shifts occur to replace the dissipated potential energy. That is, even though the
original X shift may remain, nevertheless, the potential energy associated with it is
gradually lost to the medium (somehow turning into material heat). As a result the
values of the displacement on either side of and normal to the interface will no longer
be equal since the decay occurs at different rates in the two regions. The magnitude
of this discontinuity, at any instant, is the *‘charge’’ on the boundary. If we repeat
this process extremely frequently, we have a Maxwellian conduction current.

To grasp more clearly this difficult matter we can turn first to Maxwell’s remarks

- in the Treatise. He wrote:

If the medium is not a perfect insulator, the state of constraint, which we
call electric polarization is continually giving way. The medium yields to
the electromotive force, the electric stress is relaxed, and the potential en-
ergy of the state of constraint is converted into heat. The rate at which this
decay of the state of polarization takes place depends on the nature of the
medium. In some kinds of glass, days or years may elapse before the
polarization sinks to half its original value. In copper, a similar change is
effected in less than the billionth of a second. We have supposed the me-
dium after being polarized to be simply left to itself. In the phenomenon
called the electric current the constant passage of electricity [which here
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means of X] through the medium tends to restore the state of polarization
as fast as the conductivity of the medium allows it to decay. Thus the
external agency which maintains the current is always doing work in re-
storing the polarization of the medium, which is continually becoming re-
laxed, and the potential energy of this polarization is continually becoming
transformed into heat, so that the final result of the energy expended in
maintaining the current is to gradually raise the temperature of the conduc-
tor, till as much heat is lost by conduction and radiation from its surface
as is generated in the same time by the electric current.

(Maxwell 1873, vol. 1, sec. 111)

According to Maxwell, then, the current of conduction was effectively a continual
series of chargings and dischargings. Since no conductor, he reasoned, lacks induc-
tive capacity (indeed, we shall see that Maxwellians thought conductors actually have
capacities immensely greater than the capacities of dielectrics, but still small in pro-
portion to their conductivities), but since all conductors refuse to sustain induction
permanently, induction decays in all of them at rates determined by the ratio of their
conductivity to capacity. The conduction current is this process of growth and decay
of displacement, the latter measuring the state of strain associated with X\ in a given
medium. The question remaining is how to quantify this process.

That problem was readily solved by Maxwell, but at the expense of a certain
degree of conceptual obscurity. (Indeed, I shall argue in chapter 4 that the basic
element in the Maxwellian agenda of the 1880s was the removal of this obscurity.)
We begin with the Maxwell version of the Ampere law, equation (3). This equation
requires that magnetic intensity be produced only when A is changing. Now suppose
we have a closed conducting circuit bearing an electric current, as we ascertain from
the existence of a magnetic field. We could break the circuit and then measure elec-
trostatically the changing charge densities p at its ends. Then these densities, mea-
sured electroscopically, are related to the currents which produce them by the equa-
tion of charge continuity:

4) V-C+ aplat =0

But we also now know that p is V - D, by definition of D in Maxwellian theory. So
we may rewrite (4) as:

) V- [C + (8Dian)] =

Compare equation (3) with equatnon (5). From (3) we know—as our basic model,
in any case, requ1res—that V - J is zero. What is their rclatnon" Our model tells
us that V. x H necessarily includes aD/ot by the very nature of D (unless we are in
a place where there is absolutely no inductive capacny) On the other hand, we also
know empirically that V x H must include C where C exists. So we might write, as
Maxwell did:

(6) V x H=C+ oot

The problem posed by equatlon (6) is to understand what it means, in terms of J
and X, to have smultaneously C and 9D/ot, when we understand C as a process
which necessarily involves a X shift of some kind.
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3.3 The Problem of Conduction

We have arrived at perhaps the most difficult of all Maxwellian ideas, and the one
most responsible for the incomprehension with which Maxwell’s discussion of charge
was greeted on the Continent, namely, the concept of conduction. Although central
to the idea of charge and current (since it accounts for the discontinuities in displace-
ment which constitute charge), Maxwellian conduction nevertheless cannot be simply
explained; it can only be illustrated by analogy, as we shall presently see. (In fact, I
argue in some detail below that a central Maxwellian concern in the 1880s was to
ameliorate this difficulty—though not actually to overcome it—by linking conductiv-
ity directly to microscopic processes which all Maxwellians agreed led to macroscop-
ically dissipative results.)

The problem was to understand how conduct1v1ty in a region introduces an empir-
ically essential distinction between C and dD/dr. We begin by taking an extremely
fine time scale, say a billionth of a second or less, and consider what occurs, on
Maxwellian principles, when first we apply a very powerful electromotive force
across a gap which has conductivity and capacity. By external means we rapidly
generate a N shift such that the elastic reaction of the medium (viz., )\/e) balances
the external action. We now have a displacement D such that:

e
During this part of the process we have a current Nt equal to 6D/6t we need not,
at this point, introduce C at all.

However, we have assumed the external action to be so powerful, and our time
scale so small, that energy is stored reversibly in the X shift (with a density of D*/2¢).
As time passes this energy may dissipate—due to the mysterious property of ‘‘con-
ductivity’” possessed by material bodies. Then we have, in Maxwellian eyes, a
“‘strained’’ region which possesses a tendency, symbolized in o, to dissipate the
energy stored in the ‘‘strain.”” Conceiving the process to be like elastic relaxation,
Maxwellians argue that, during the next (exceedingly small) time interval, the energy
of strain is dissipated (into material heat) while the substantial shift—the A—remains
unaltered. Consequently, during this phase we have no current at all. That is, in this
two-part process, magnetic effect appears only during the first half; in the second
half no substantial motion occurs, whereas energy is dissipated in situ.

This entire process, repeated billions of times a second, constitutes a current of
conduction C. In reality, then, the magnetic effect of a conduction current is only
macroscopically constant: on a sufficiently small time scale we would see displace-
ment grow rapidly, suddenly cease growing, and then just as rapidly decay away.
But since our measuring instruments can detect only the net effect, we do not know
directly what the currents oD/or are. Consequently we must represent the effect by a
physically uninterpreted, but empirically meaningful, vector C. It is not that C rep-
resents an effect which we cannot explain by 8D/dt and dissipation; it is rather that
we can only measure directly the net effects of the billions of oD/ar which occur
every second.

Why, though, does Maxwell’s equation (6) contain both a oD/3t and a C? The
reason is quite simple: it may easily be the case that, in some region, we have, in
addition to the intermittent dD/dt which constitute the conduction current, other 62)/61
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which grow and decrease so rapidly that dissipation has no effect upon them (or, to
be precise, a negligible effect). In fact, whenever optical and higher frequencies
strike a metallic region bearing a conduction current, we have precisely this situation
(see appendix 5). Moreover, at the boundary between a conducting and a noncon-
ducting region, equation (6) simply ensures the continuity of the X shifts produced
by the aD/ot associated with the conduction current.

As it stands, of course, equation (6) is hardly useful: we must have some relation-
ship between C and E. That connection is Ohm’s law:

, pe =\
) o ‘VC — oFE f
Equation (7), as we shall see in a moment, permits us to quantify the Maxwellian
conduction current, but it remains mysterious. That is, we do not know physically
why the intermittent process of growth and decay of displacement, which constitutes
the conduction current, should depend on the strength of the applied electromotive
force in this way. Indeed, we do not even know whether it is the frequency of the
process, its intensity, or both that increase with E. Nevertheless, we can now illus-
trate Maxwellian charge and current through a quantitative example using equation
(7).

Consider a substance that exactly fills the space between two equally but oppo-
sitely charged plates. (For the present we ignore how the plates came to be charged.)
Suppose further that (as before) half the substance has constants €,, o, and the other
half has €,, 0,. The charge on the interface between the two regions is equal to the
sum (D; + D,) of the charges on the common boundary of the two regions and is
the result of displacement crossing out of region 1 (yielding D;) and into region 2
(yielding D;). Consider first region 1. If the region is perfectly homogeneous (as we
assume), then at every point in it the continuity equation requires that the conduction
and displacement currents be equal and opposite. That is, we may integrate the con-
tinuity equation throughout an indefinitely small volume (because of the assumed
homogeneity) to obtain C, equal to —d2,/dt, where 3, is the surface charge per unit
area, at any point. Since X, is just D,, we have C, equal and opposite to dD,/dt.

Using Ohm’s law we may therefore write:

oE, = (o/e)D, = C, = —aD,/ot
Integrating we obtain:
D, = —e "¢
Similarly we find for D,:
(DD
Consequently the charge 2 on the interface is, at any instant:
(8) 5= —e M) 4 om0

Clearly the charge alters with time as a function of the ratios o,/€,, o,/€,. Suppose
that the first ratio is so small that X, takes, say, twenty years to fall to half its value;
suppose further that the second ratio is so large that 3, falls to half its value in
several billionths of a second. Then we have, in effect, a surface charged nearly
permanently on a human time scale with amount 2.,.
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According to Maxwellian theory all charge emerges in a manner similar to this.
To form an image of the conduction current, one may consider the ‘‘bounding
plates’” of our example to be recharged billions of times a second—the plates would
then represent some unknown microscopic structure. Moreover, we saw above that,
during the process of decay of 3,, no magnetic field exists. The latter occurs only
during the unknown process which charges our microscopic analogs of the plates,
that is, only during the buildup, and not during the decay, of displacement. This
example of the leaky condenser was considered by Maxwell in the Treatise (vol. 2,
chap. 10, especially sec. 334: ‘“‘Mechanical Illustration of the Properties of a Dielec-
tric’’) and subsequently formed the basis for a great deal of discussion among Max-
wellians, as we shall see. In fact, most of the major conceptual changes in Maxwel-
lian theory that took place between 1885 and 1895 were in some way connected with
this type of situation. Poynting, for example, clarified similar concepts for Larmor
much later (1895):

About the decay of charge in a condenser. Perhaps I ought to have said
that it does not produce any external magnetic effect. I suppose there will
be fields of molecular dimensions as the tubes of force rearrange them-
selves & shift about among the atoms. But I think you do not mean this
do you? I take it that you would ascribe to the discharge an external mag-
netic field round the condenser. If so I may take shelter behind Max-
well. . . . In his chapter on the subject Vol I 3rd edi p 456 he puts u =
0 while the condenser is not connected externally & his u is the total cur-
rent p 453. ie he makes a conduction current from + to — equal and
opposite to & coinciding with the ‘‘displacement’ current which is here a
lessening of already existing displacement. But this is to my mind a mere
mathematical fiction. The one phenomenon is the decay of electric induc-
tion. I dont see why we should want to give it any magnetic effect. In its
youth when it was moving into the condenser it had a good magnetic time
of it. That was the time of true current when the circuit had integral 4wC
round every part, the condenser forming part of the circuit. But to give the
decaying charge in the condenser any more field is to give it a quite unfair
preference. (Larmor Letters, [R.S.] RR 1599 (scep. 774])

Perhaps the reader continues to be puzzled by the Maxwellian emphasis on the
intermittent concept of the conduction current. Why did they not simply treat the
conduction current as entirely unknown? Why bring in an intermittent process? I have
already implied one reason, which is perhaps the most important: that the Maxwel-
lians wished the conduction current to reduce ultimately to displacement changes
under particular circumstances. But there are other reasons as well. First, we shall
see that Maxwellians also wished to consider the thermal dissipation accompanying
conduction on the model of kinetic theory. This requires some kind of intermittent
microscopic process. Second, they were well aware that a purely macroscopic ap-
proach to conduction will not always work empirically (see appendix 5). Finally,
before the widespread acceptance on the Continent of Weber’s electrodynamics (or
variants thereof), the traditional view of the current, though certainly not Maxwel-
lian, nevertheless conceived it to involve intermittent electrostatic effects (Brown
1969).

We can now return to a question posed earlier: How does Maxwellian theory deal
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with charge conservation? In one sense the answer is obvious: since we have a con-
tinuity equation and Ohm’s law, Maxwellian theory, at this level of detail, implies
nothing which the field and constitutive equations of modern theory do not also im-
ply, and vice versa. However, in modern theory we go beyond the equations to
assert, on a microphysical basis, that charge conservation reflects the deeper reality
of particle conservation. In other words, not only is the net quantity of charge con-
served, so also are the individual positive and negative charges. Maxwellian theory
asserts the exact opposite: according to it charge reflects transient field conditions,
and it is perfectly possible for there to be literally no charge at all in the universe
(overlooking the difficulties posed by Faraday’s electrochemical laws, which always
troubled Maxwellians).

This difference between the modern and Maxwellian theories runs so deep that
the theories may make assertions which have exactly the same empirical conse-
quences but which are impossible to translate into one another’s languages. Consider
how a Maxwellian might explain the presence of conduction charge on a dielectric
surface placed in the presence of a heated metal cathode. He would say that, even
though the dielectric surface had originally only vanishingly small conductivity, the
metallic particles striking it from the cathode carried with them their conducting
property. To the Maxwellian, conduction charge was literally inconceivable without
the simultaneous presence of conductivity. Modern theory says simply that electrons
boiling off the cathode bind to the dielectric surface and denies that the dielectric
surface possesses conductivity. Which is correct? If we have no independent evi-
dence, then both are correct; but we must acknowledge that the words ‘‘charge’’ and
‘“‘conductivity’’ mean entirely different things in the two theories, even though there
are many situations which the two theories describe in almost exactly the same
words.

This accounts for the puzzlement one feels when reading the quotation from Heav-
iside with which I began (chap. 1). Yet we can now see how simple the statement
is. C. E. Curry and L. Boltzmann (the targets of Heaviside’s critique) had read
Maxwell’s theory as asserting that “‘real electricity’’—what Heaviside understands as
“‘true’’ charge (viz, V - D)—is created whenever an electric force due to internal
material processes (e.g., voltaic, chemical, thermal, or mechanical) acts on any body
which possesses conductivity. We have seen, however, that Maxwellian true charge
requires inductive capacity as well as conductivity to produce the essential disconti-
nuity. Heaviside’s objection made just that point. A true charge always requires in-
homogeneities in the ratio of conductivity to inductive capacity. With regard to mag-
netic processes, Curry had asserted that, in Maxwell’s theory, ‘‘real magnetism’’
(i.e., true magnetic charge) cannot be created because there are no internal material
forces for magnetism analogous, for example, to voltaic action. Again, Heaviside
disagreed on field theoretic grounds. For him, as for Maxwell, ‘‘real magnetism’’
cannot be created simply because there is no such thing as magnetic conductivity,
that is, there are no bodies which cause magnetic induction to decay over time. It is
therefore impossible to describe a region into which a different amount of magnetic
flux enters than leaves. One cannot create magnetic charge.

The Maxwellian theory of charge and current, based on its unique concept of
conductivity, clearly and sharply distinguishes Maxwell’s theory from theories which
assume that charge is a collection of intrinsically electric particles, and that the pro-
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cess of charging a body is one in which these particles move onto it. Maxwellian
theory is concerned solely with the continuity, or lack of it, in the displacement at a
given surface. We shall see in part IV how this difference between the particle the-
ories and Maxwell’s theory was alone sufficient to create a deep confusion among
those who did not learn electromagnetic theory directly from the Treatise, but read
Maxwellian accounts under the impression of an idea—the electric particle—which
is profoundly incompatible with them. In Britain and America, however, many were
trained in the 1870s directly from the Treatise. To them Maxwell’s ‘‘charge’” was
clear, and it was almost never discussed. When it was mentioned, the purpose was
to give a mathematically precise definition of charge in terms of displacement for
purposes of standardization (J. J. Thomson 1885a).

Although we have now discussed in some detail Maxwellian charge and current,
and though I have introduced aspects of the Maxwellian treatment of the magnetic
field, I have not answered the first question posed many pages ago—the place of the
Coulomb law of force in Maxwell’s theory—nor have I discussed the details of mag-
netic theory. To answer the first question, we must consider how Maxwellian theory
generates ponderomotive force—force which moves bodies—which we shall do in
section 3.4. The basis of magnetic theory has, however, already been given, since,
as in modern theory, magnetostatics is analytically equivalent to electrostatics with-
out conductivity. That is, Maxwellians employ two magnetic vectors, B and A,
which correspond analytlcally to D and E when o may be ignored. As D is propor-
tional to E, so is B to H (constant p of proportionality). There are, then, three
essential differences between magneto- and electrostatics (Maxwell 1873, vol. 2,
chap. 1):

First, unlike €,  can be less than one (a fact which poses problems for Maxwell’s
mechanical model of 1860 [see Knudsen 1976]).

Second, bodies exist which are permanently magnetic: this requ1res the introduc-
tion of another vector, M—the magnetization—such that B=H+ M.

Third, there is no such thing as magnetic conductivity.

Of course, the electric and magnetic fields are linked through the presence of the
displacement current in the Maxwellian Ampere law. Beyond this there is little to
say about Maxwellian magnetic theory that cannot also be said about modern theory
if we avoid discussing the microscopic sources of permanent and induced magne-
tism—which Maxwellians successfully did during the 1880s, but which they found
increasingly hard to avoid by the mid-1890s.

3.4 Local Action and Ponderomotive Forces

The dynamical basis of Maxwell’s theory rests upon an assertion which modern the-
ory limits to matter, but which Maxwell’s theory applies to the field as well: to wit,
that any surface whatsoever will be acted upon by a stress if there is a gradient in
energy density across it. It does not matter, to the Maxwellians, whether ponderable
matter is present or not: where there are energy gradients there must also be stresses.
This assertion reflects a core idea of field theory: that forces must be calculable from
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local conditions since all actions involve the transmission of energy through the con-
tinuum. In Maxwellian theory, whenever one region seems to act upon another at a
distance from it, in fact the action reflects local inhomogeneities in the energy distri-
butions about either region and is determined by their configuration and properties.
Consequently one should, in principle, be able to compute the force on a region
solely by examining the conditions on a surface surrounding it. Maxwell’s descriptive
terminology for this essential idea refers, for obvious reasons, to the internal
‘‘stress’” which characterizes the continuum, that is, to a function which yields force
by surface integration and which is intimately related to energy considerations (Max-
well 1873, vol. 1, secs. 105 and 110).

In Britain by 1873 all stress systems were thought of in terms of their associated
volume energy densities, which, by differentiation with respect to strain, yield stress
(W. Thomson and Tait 1895-1896, vol. 2, secs. 670-73, appendix C). Any system
that can be analyzed in terms of stress, it was supposed, must possess such an energy
density at every point, which is expressible as some function of the coordinate deriv-
atives which determine the strain state of the system. Conversely, if such a density
exists, then a specification of stress for the system must be possible which permits
deduction of moving force by surface integration.

The direct way to find the stress system for electrostatics would accordingly be to
express the energy density W as a quadratic function of the six nondegenerate com-
ponents of an electrostatic strain tensor, for then the corresponding six stress com-
ponents would be the derivatives of W with respect to the strain components. How-
ever, here we do not have an expression for strain because we do not know what
coordinates determine the state of the electrostatic field. That is, whereas we can
calculate forces from changes in [(D?/2€)d’x for virtual motions of a system’s mate-
rial parts, we do not know from this expression what the corresponding nonmaterial
(viz., ethereal) strain is. This is in striking contrast with the mechanics of elastic
substances where one begins with an expression for strain in terms of the coordinate
derivatives of material displacement and then expresses W as a quadratic function of
the strain components, thereby immediately determining the stress (see appendix 2).
Not having an expression for strain, we cannot do so here.

One must instead seek indirectly for the stress, and Maxwell did so in essentially
the same manner that one finds in modern elementary texts (Maxwell 1873, vol. 1,
part 1, chap. 5). This first requires, for electrostatics, the Coulomb force law. Where
does the Coulomb law come from? Maxwell takes it from experiment. He writes:

Coulomb shewed by experiment that the force between charged bodies
whose dimensions are small compared with the distance between them,
varies inversely as the square of the distance. Hence the repulsion between
two such bodies charged with quantities ¢ and e’ and placed at a distance
ris:
ee'/r’

. . . Our conviction of the accuracy of the law of the inverse square of
the distance may be considered to rest on experiments [involving hollow,

closed conductors], rather than on the direct measurements of Coulomb.
(Maxwell 1873, vol. 1, sec. 66)
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Maxwell, of course, generalizes, on the basis of Gauss’s law, to obtain for the
force F on a region V:

F = [EV - Edx

Then partial integration immediately transforms this into a surface integral over the
boundary of V, if we assume V X E to be zero:

F = —(112)fE*S + [EE - dS)

This is the same as the modern expression when we ignore €. Maxwell did not
generalize to media of other than unit capacity in the Treatise, nor did he explicitly
demonstrate that one can actually begin with the energy density and work directly
from it to the force integral (as we saw in chap. 2). However, the extension to
general values of € was rapidly effected by Maxwellians in the 1880s without com-
ment: to them it was obvious that one simply factors in € because the stresses must
be first-order derivatives with respect to the unknown strains of W (the electric energy
density), and W contains € as a factor (see, e.g., J. J. Thomson 1888, sec. 39).

Looked at the modern way, Maxwell’s expression for the force integral (which he
represented as a stress in the manner we discussed in chap. 2) is nothing more than
a mathematical transformation of the Coulomb force law. But in the eyes of Max-
wellians it was precisely the other way round, that is, the electrostatic force law was
thought of as an implication of the fundamental assumption that all forces are calcu-
lable from local energy gradients. (In fact, we saw in chap. 2 that taking the gradient
of the energy integrated throughout some volume yields the Coulomb force, together
with other forces, directly, and then manipulating this expression yields the Maxwell
stresses.) Heaviside succinctly summarized this quintessential Maxwellian position in
1891:

. we see that the localisation of the stored energies, according to the
square of the electric and magnetic force respectively, combined with the
two circuital laws, leads definitely to a stress existing in the electromag-
netic field, which is the natural concomitant of the stored energy, and
which is the immediate cause of the mechanical forces observed in certain
cases. (Heaviside 1893-1912, vol. 1, sec. 73)

In modern electrodynamics we do not regard the field itself as a material structure,
so we do not consider that stresses may act upon it. Rather, we assume that the field
can transmit energy without itself being subjected to forces that, were the field ma-
terial, would act upon it. Electromagnetic radiation, for example, transports energy
and momentum but stresses arise only when the radiation impinges on material struc-
tures. The Maxwellians did not think this way. For them energy inhomogeneity,
whether matter is present or not, implies stress. Indeed, after the discovery of Poynt-
ing’s theorem, they realized that the free ether must be stressed when transmitting
radiation, and so must move (though perhaps not sufficiently to be detectable). In
Maxwellian theory, the electromagnetic field transmits stress and is itself acted upon
by stress. In modern theory, the field only acts; it is not acted upon.

In most circumstances these several differences between the modern and the Max-
wellian views have no effect. But when complicated phenomena that modern theory
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attributes to electron mass are in question, then the theories diverge. Modern theory,
based on a macroscopic approximation, employs the (macroscopic) energy densities
only under strictly limited conditions. When these conditions are not fulfilled, then
recourse must be made to microphysical structure. Maxwellian theory always em-
ploys macroscopic energy densities, because it does not view these densities as mac-
roscopic in the modern sense. That is, Maxwellian theory conceives that these dens-
ities correctly characterize the state of the continuum itself, which, like material
continua, both exerts and is affected by stress; microphysical structure affects the
densities only through the medium constants which appear in them. If one is faced
with new phenomena that cannot be encompassed by the usual densities, Maxwellian
theory argues, then one must simply invent new ones—and one is then committed to
following out the implications of these new expressions.

To follow out the implications, the Maxwellians inserted their novel energy
expressions into Lagrange’s equations or, more fundamentally, into Hamilton’s prin-
ciple. The usual result was to yield, not only the effect for which the energy expres-
sion was constructed, but other effects as well, some of which seemed in fact to
exist. In the remainder of part I and especially in part II, we shall examine the
Maxwellians at work during the 1880s as they applied their methods to new situations
and attempted to integrate conductivity more directly into Maxwellian theory.

3.5 More on Leaky Condensers and Conductors in Maxwellian Theory

I have not attempted in this chapter to demonstrate my understanding of Maxwellian
theory through an exhaustive consideration of the available texts and correspondence.
However, since my point of view is a novel one, and since it may be thought at
variance with recent writing on the subject, I shall here provide somewhat more
support for it.

I emphasize that the Maxwellian understanding of ‘‘charge’’ is based on the dis-
continuity in the D vector, or “‘displacement.”” Further, I argue that Maxwellians
employ another vector, A which represents the physical displacement of the ether
and which, unlike D, is not discontinuous at charged surfaces. One problem this
distinction raises is that Maxwell did not introduce separate terminology or symbols
for D and X in the Treatise.

Nevertheless the distinction between the two vectors is clear in almost every pas-
sage. One must be careful to read ‘‘displacement’ in context: it may refer to the
physical shift of the medium ()\) whatever the circumstances, or it may refer only
to a X shift in which potential energy is reversibly stored (D). The following para-
graphs from Maxwell’s Treatise is an example:

It appears, therefore, that at the same time that a quantity Q of electricity
is being transferred along the wire by the electromotive force from B to-
wards A, so as to cross every section of the wire, the same quantity of
electricity crosses every section of the dielectric from A towards B by
reason of the electric displacement.

The displacements of electricity during the discharge of the accumulator
will be the reverse of these. In the wire the discharge will be Q from A to
B, and in the dielectric the displacement will subside, and a quantity of
electricity O will cross every section from B towards A. (vol. 1, sec. 60)
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Here Maxwell writes of transferrals of electricity in the wire, similar transferrals
in the dielectric as a result of ‘‘electric displacement,”’ ‘‘displacements of electric-
ity,”” subsidence of ‘‘displacement’’ in the dielectric, and quantities of electricity
“‘crossing’’ surfaces. Occasionally Maxwell writes of the ‘‘displacement’” of a quan-
tity of electricity, In general, what Maxwell calls “‘displacement of electricity’” cor-
responds to my A, whereas *‘electric displacement within a dielectric’’ is D.

This is, however, too loose a distinction to encompass all of Maxwell’s locutions.
Indeed, much of the difficulty in understanding Maxwell on charge and conduction
comes from his not having introduced different words for physical displacement (\)
and dielectric displacement (5). The closest Maxwell comes to such a distinction is
in using the phrase ‘‘electric polarization’’ (D) in conjunction with ‘‘displacement’’
(X), as in the following passage from the Treatise:

. . In the case of the charged conductor let us suppose the charge to be
positive, then if the surrounding dielectric extends on all sides beyond the
closed surface there will be electric polarization accompanied with dis-
placement from within outwards all over the closed surface. (vol. 1,
sec. 61)

Maxwell quite explicitly limits ‘‘electric polarization’’ to dielectrics, whereas *‘dis-
placement’” in the sense of an ether shift is ubiquitous. In my discussion I have
preferred modern terminology, in which ‘‘displacement’’ refers always to D.

The second major novelty of my discussion is the claim that Maxwell and the
Maxwellians understand conduction as a process in which Dis continually breaking
down, giving up its energy to material heat. I supported this contention in the first
instance by quoting Maxwell’s discussion of the Leyden jar from the Treatise. 1
emphasized Maxwell’s statement that ‘‘in the phenomenon called the electric current
the constant passage of electricity through the medium tends to restore the state of
polarization as fast as the conductivity of the medium allows it to decay. Thus the
external agency which maintains the current is always doing work in restoring the
polarization of the medium, which is continually becoming relaxed, and the potential
energy of this polarization is continually becoming transformed into heat’” (vol. 1,
sec. 111). I see no way to understand this other than that, for Maxwell, conductors
are equivalent to leaky condensers with extremely short relaxation periods. More-
over, in the Treatise he writes: ** . in the conducting wire the electric elasticity is
continually giving way, so that a current of true conduction is set up’’ (vol. 1,
sec. 62).

This way of understanding conduction introduces considerable difficulties which
Poynting and J. J. Thomson went to some lengths to ameliorate, as we shall see.
But it has the great advantage of providing a theory of charge: it explains that charge
appears as the end result of displacement (D) decay. Without this understanding the
appearance of ‘‘charge’’ is entirely mysterious; one would simply have to assume the
existence of sources and sinks at the appropriate places.

My argument depends critically upon the central importance of the ‘‘leaky con-
denser’’ analogy for Maxwell and for the Maxwellians. We need not rely entirely on
my reconstruction for its importance. Oliver Heaviside saw in it the original source
of Maxwell’s theory. Thus he wrote that it ‘‘was probably by a consideration of
conduction in a leaky condenser that Maxwell was led to his inimitable theory of the
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dielectric, by which he boldly cut the Gordian knot of electromagnetic theory’’
(Heaviside 1893-1912, vol. 1, sec. 31). Heaviside even wrote a lengthy account of
the relationship between displacement decay, conduction, and wave propagation
which contains an implicit criticism of J. J. Thomson’s theory of moving tubes of
displacement (Heaviside 1893-1912, vol. 1, secs. 193-196).

Secondary but related aspects of Maxwellian theory which I emphasize are (1)
that conductors should have enormous inductive capacities and (2) that the process
of conduction is intermittent. Appendix 5 discusses aspects of the first point; most
Maxwellians were familiar with, and accepted, the idea. Thus Andrew Gray—who
was far from being on the leading edge of Maxwellian research—wrote in Nature in
1891 (in a review of Poincaré’s Electricité et Optique): *‘. . . a difficulty is pointed
out as to the specific inductive capacity of a conducting substance. For such a sub-
stance the first term [conduction current] must predominate, and so K [€] must be
small; whereas K is generally regarded as very great in the case of a conductor”
[emphasis added]. Poincaré’s argument was that € had to be small in conductors in
order for the conduction current to dominate the displacement current. But this criti-
cism requires only that the ratio €/ be small: the value of € in relation to its value
in dielectrics is not at issue—as Gray understood. Nevertheless, Maxwellians were
generally aware that conductors are difficult beasts to tame, so that attributing large
€ and even larger o to them by no means solves the many problems they posed. Thus
Gray stated: ‘‘It is worth noticing that this [assuming large € in conductors] is really
only a conventional means of explaining the impossibility of charging a condenser
the space between the plates of which is filled with conducting substance; the true
explanation is, no doubt, very different.”

Gray’s last remark leads implicitly to my second contention: that the ‘‘true expla-
nation’” of conduction involves an intermittent process of displacement (D) growth
and decay. Gray did not discuss the point, but we need not rely entirely on Maxwell,
Poynting, J. J. Thomson, or Larmor to document my contention. In his Modern
Views of Electricity, Oliver Lodge remarked:

Consider . . . conduction. Connect the poles of a voltaic battery to the
two ends of a copper wire, and think of what we call ‘‘the current.”’ It is
a true flow of electricity among the molecules of the wire. If electricity
were a fluid, then it would be a transport of that fluid; if electricity is
nothing material, then a current is no material transfer; but it is certainly a
transfer of electricity, whatever electricity may be. Permitting ourselves
again the analogy of a liquid, we can picture it flowing through, or among,
the molecules of the metal. Does it flow through or between them? Or
does it get handed on from one to the next continually? We do not quite
know, but the last supposition is often believed to most nearly represent
the probable truth. The flow may be thought of as a perpetual attempt to
set up a strain like that in a dielectric, combined with an equally perpetual
breaking down of every trace of that strain. If the atoms be conceived as
little conductors vibrating about and knocking each other, so as to be
easily and completely able to pass on any electric charge they may possess,
then, through a medium so constituted, electric conduction could go on
much as it does go on in a metal. Each atom would receive a charge from
those behind it, and hand it on to those in front of it, and thus may elec-
tricity get conveyed along the wire. Do not, however, accept this as any-
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thing better than a possible mode of reducing conduction to a kind of
electrostatics—an interchange of electric charges among a series of con-
ductors. If such a series of vibrating and colliding particles existed, then
certainly a charge given to any point would rapidly distribute itself over
the whole, and the potential would quickly become uniform; but it by no
means follows that the actual process of conduction is anything like this.
Certainly it is not the simplest mode of picturing it for ordinary purposes.
The easiest and crudest idea is to liken a wire conveying electricity to a
pipe full of marbles or sand conveying water; and for many purposes,
though not for all, this crude idea suffices. (1889, pt. 2, sec. 3; emphasis
added)

This passage shows very clearly that the intermittent theory of conduction, involv-
ing the ‘‘breaking down of every trace of . . . strain,”’ was, for Lodge—as for J. J.
Thomson, Poynting, and, I argue, Maxwell—much closer to the true nature of the
process than the ‘‘crude’” image of a continuous flow against resistance. It is essen-
tial to understand that, from a modern point of view, nothing at all like this occurs
in conduction. Conductors are different from dielectrics, and only in the latter can
significant polarization occur: for Lodge and most other Maxwellians polarization
can, indeed almost certainly does, occur preeminently in conductors—but its life
therein is evanescent. (Note also that Lodge used the word ‘‘continual’’ for what is
clearly an intermittent process—as, I argue, Maxwell did as well.)

But it is also essential to note that the complex picture of conduction which I
attribute to Maxwell and the Maxwellians is not strictly inconsistent with mechanical
models in which conduction is represented by a viscous flow. Such models were
generally thought of as idealizations (Lodge himself offered one). In any model of
this kind one can replace continuous flow with elastically resisted flow followed by
in situ breakdown without altering anything else. The net result will be precisely the
same.
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The Electric Current and Poynting’s Theorem

4.1 Energy Flow and Localization in the Field

The principle of the continuity of energy is a special form of that of its
conservation. In the ordinary understanding of the conservation principle it
is the integral amount of energy that is conserved, and nothing is said about
its distribution or its motion. This involves continuity of existence in time,
but not necessarily in space also.

But if we can localise energy definitely in space, then we are bound to ask
how energy gets from place to place. If it possessed continuity in time
only, it might go out of existence at one place and come into existence
simultaneously at another. This is sufficient for its conservation. This view,
however, does not recommend itself. The alternative is to assert continuity
of existence in space also, and to enunciate the principle thus: —

When energy goes from place to place, it traverses the intermediate space.
(Heaviside 1893—-1912, vol. 1, sec. 67; written in 1891)

Among the several concepts of the quantum revolution which we are today accus-
tomed to thinking of as fundamentally novel is its insistence that a given portion of
energy cannot be precisely localized in either space or time. This might naturally
lead one to suppose that, between the discoveries of energy conservation and quan-
tum mechanics, all physicists believed that the motion of energy can be traced
through space at each instant. One might think that physicists believed that energy,
like matter, has identity and moves continuously through space. In fact, probably
few before the 1870s even thought of energy as a thing which flows; when that idea
was first broached, not everyone immediately accepted it. For to several of them
‘‘energy’’ in the abstract was a concept that apparently lacked the very basis for
assigning a location to it as a thing. A moment’s consideration suffices to show how
profoundly difficult the idea of the identity of energy may be, and, therefore, how
fundamentally novel it seemed to many when it was explicitly incorporated into Max-
wellian theory in 1884 by John Henry Poynting.

Consider, for example, a seemingly unambiguous situation described in 1891 by
Heinrich Hertz:

. . a steam engine . . . drives a dynamo by means of a strap running to
the dynamo and back, and which in turn works an arc lamp by means of a
wire reaching to the lamp and back again. In ordinary language we say—
and no exception need be taken to such a mode of expression—that the
energy is transferred from the steam engine by means of the strap to the
dynamo, and from this again to the lamp by the wire. But is there any
clear physical meaning in asserting that the energy travels from point to
point along the stretched strap in a direction opposite to that in which the
strap itself moves? And if not, can there be any more clear meaning in
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saying that the energy travels from point to point along the wires, or—as
Poynting says—in the space between the wires? There are difficulties here
which badly need clearing up. (Hertz [1893] 1962, note 31)

Hertz’s strap communicates energy to the dynamo not by giving up its energy,
which remains constant, but by communicating in some manner the potential energy
stored at each point in the half of the strap under tension. The paradox is that this
half of the strap moves from the dynamo fo the engine, whereas the energy must be
transferred to the dynamo from the engine (see fig. 6). ‘‘In the present state of our
knowledge respecting energy,”’ Hertz therefore remarked, ‘‘there appears to me
much doubt as to what significance can be attached to its localisation and the follow-
ing it from point to point. Considerations of this kind have not yet been successfully
applied to the simplest cases of transference of energy in ordinary mechanics; and
hence it is still an open question whether, and to what extent, the conception of
energy admits of being treated in this manner’’ (Hertz [1893] 1962, 220).

Hertz’s example is singularly interesting because it focuses immediately on the
central difficulty involved in conceiving energy to flow even in mechanics, much less
in the abstract field of electromagnetism: unless energy is entirely kinetic in form, it
is difficult to understand what it means physically for it to ‘‘flow.”” Unlike matter,
energy in the abstract is not an object with individual identity. One might say that,
since kinetic energy is, as it were, attached to matter, it can move. But what sense
is there in asserting that the potential energy of a particle subject to a force acting at
a distance moves with that particle? In continuum mechanics, where distant forces
are not used, the problem may be even worse, though it need not be if it is possible
to attach potential energy unambiguously to traveling matter (as a moving, com-
pressed spring carries potential energy). That is precisely what cannot easily be done
in Hertz’s example, since the motion of the tensed strap opposes the direction of
energy flow.

There are essentially two ways to solve the Hertz paradox; one physical, the other
mathematical. One can treat the strap as consisting of discrete particles which exert
central forces upon one another. Then the energy flow follows the propagation of
particulate displacement, and this will oppose the strap motion as a whole. (We
imagine the dynamo continually jerking the strap.) Or, we may ignore particulate
structure and invent a consistent mathematics, based on continuum mechanics, which
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expresses the flow of energy as a function of stress and strain. This second alternative
is commonly taken today. It solves the Hertz paradox analytically rather than physi-
cally.

The British had neither of these alternatives available to them: not the first, be-
cause they generally avoided recurring to discrete structure; nor the second, because
they would not have regarded a purely mathematical solution as fully satisfying. The
only remaining way to bypass difficulties like Hertz’s is always to somehow attach
energy to a physical entity whose motion can be directly traced. If all physical pro-
cesses involved only kinetic energy this would be easy, in principle, to accomplish.
One could trace the path of energy by following the motion of matter. Hertz, like
the whole of the British community at the time (Topper 1970), did generally believe
that an ultimate physical theory would involve only matter in motion—in other
words, that all potential energy would ultimately be derivable from purely kinetic
processes. That, however, was at best a hope.

Yet unless energy transfer can be treated as a continuous spatial flow, the foun-
dations of Maxwellian theory, even before the discovery of Poynting’s theorem, be-
come insecure. For energy to be localized, and so for electromagnetic forces to be
deducible from the Maxwell stress tensor (from inhomogeneities in localized ener-
gies), energy must not disappear at one place and then appear at another without
having existed at all points in between. Otherwise it would make no sense to treat
all interactions as local. I suggest, therefore, that the very concept of the ‘‘continuity
of energy’’—that energy flows continuously from one place to another—was an es-
sentially novel idea required by basic principles of Maxwell’s theory or, indeed, by
any continuum theory which deduces moving force from the local state of the me-
dium.

Moreover, the concept of energy continuity is itself incomprehensible unless one
adopts a theory which localizes energy in the medium. Both Hertz and Poynting
regarded the two ideas—that energy flows continuously and that it may be local-
ized—as essentially equivalent. That is, they felt that it was meaningless to think of
a given volume as containing a specific quantity of energy unless that energy has the
kind of identity which matter possesses, otherwise one could speak only of the field
energy as a whole. Poynting wrote:

If we believe in the continuity of energy, that is, if we believe that when
it disappears at one point and reappears at another it must have passed
through the intervening space, we are forced to conclude that the surround-
ing medium contains at least a part of the energy, and that it is capable of
transferring it from point to point. (Poynting 1884)

Both Poynting (in 1884) and Heaviside (independently a year later) examined
what the flow of energy must be in the electromagnetic fieldéwhen the localized
energies alter. That work, in Poynting’s hands, led directly to a mathematical repre-
sentation of the conduction current in terms of decaying displacement without re-
quiring a knowledge of the connection between ether and matter. It also led to a
method whereby Hertz’s type of critique—energy going one way and the substance
in which it exists another—can be avoided by attaching the energy to moving
displacement.
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4.2 Reinterpreting Maxwell’s Equations

Starting with Maxwell’s theory, we are naturally led to consider the prob-
lem: How does the energy about an electric current pass from point to
point—that is, by what paths and according to what law does it travel from
the part of the circuit where it is first recognisable as electric and magnetic
to the parts where it is changed into heat or other forms? (Poynting 1884)

Poynting’s deduction of the energy flow theorem is quite simple, but I shall sim-
plify it even further by assuming the wire to be at rest in the medium. (Poynting
considered the general case of motion, and this not only complicates his analysis but
raises a number of extremely difficult questions which he completely ignored by
choosing a stationary case for his examples.) Then the equations we need are:

(1) V x E= —poHiot
) VxH=7=C+ aDlar
3) field energy = W = (1/2)f(E - D + B - H)d’x

From these equations Poynting easily deduced the energy-flow theorem:
@) awior + [C - Ed’x = —[(E x H) - dS

Clearly the right-hand side of this equation must represent the rate at which energy
flows out to the volume across its surface, if we accept energy continuity. Poynting’s
conclusion (which is not strictly justified since one could add to E X H any vector
whose divergence vanishes and still satisfy equation [4]) was that ExH represents
the surface density of energy flow in the electromagnetic field: he concluded that
“‘wherever there is both magnetic and electromotive intensity there is flow of en-
ergy’’ (Poynting [1884] 1920, 181).

Scarcely pausing to discuss this striking result (which, e.g., implies that a charged
capacitor in a constant magnetic field which is not parallel to the electric field is the
seat of energy flows even though all macroscopic phenomena are static), Poynting
turned to the implications of his theorem for the conduction current. He at once
pointed out that energy does not flow along the wire: since the E field is parallel to
the wire, whereas the H field encircles the E lines, the energy flow E x H passes
radially into the wire at each point along it. In Poynting’s words*

It seems that none of the energy of a current travels along the wire, but
that it comes in from the non-conducting medium surrounding the wire,
that as soon as it enters it begins to be transformed into heat, the amount
crossing successive layers of the wire decreasing till by the time the centre
is reached, where there is no magnetic force, and therefore no energy pass-
ing, it has all been transformed into heat. A conduction current then may
be said to consist of the inward flow of energy with its accompanying
magnetic and electromotive forces, and the transformation of the energy
into heat within the conductor. (Poynting [1884] 1920, 182-83)

Note that Poynting limited his assertion to conduction currents; he did so because no
energy transformation into heat occurs for displacement currents. On this difference
between the two kinds of currents he constructed a theory which, though it modified
the Maxwellian interpretation of the circuital field equations, nevertheless embodied
the essential Maxwellian belief that conduction currents involve the decay, and not
the reversible decrease, of displacement.
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Scarcely a year after his groundbreaking theorem was published, Poynting devel-
oped these implications which were almost at once accepted by the majority of active
Maxwellians; in particular by J. J. Thomson and by George FitzGerald, who con-
structed a model which embodied the essentials of Poynting’s ideas (FitzGerald

1885a).
Poynting’s reinterpretation of Maxwell’s equations (Poynting 1885a) was sug-

gested to him by the implications of his energy flow theorem for condenser dis-
charge, which he discussed several times in detail. In his figure (see fig. 7), A and
B are the plates of a charged condenser; the region between them is nonconducting
and has capacity €. The curve LMN is a high-resistance conductor and is drawn along
a line of electromotive intensity before discharge. The remaining lines are the equi-
potential surfaces which exist before discharge, that is, before LMN is joined to A
and B. Before discharge, the greatest energy density exists between the plates and is
equal to (1/2)e E*. When LMN is connected across A and B, discharge begins. Dur-
ing the discharge we have a current C of conduction in LMN together with a dis-
placement current D/dr at each point outside LMN; Dot is greatest between the
plates. Consider the energy flow during discharge. Since LMN follows the E field,
energy must flow into it along the equipotential surfaces. Between A and B the
displacement current is in the opposite direction to the E field at each instant since
the displacement is decreasing. Hence energy must flow outward from the region
between the plates, following the equipotential surfaces, and it also laterally—that
is, along perpendiculars to the displacement at each instant—converges onto the wire
where it is converted into heat. (Note that the displacement current exists throughout
the condensor so that energy flows from left to right and from right to left. But there
are uncompensated flows at the termini of the plates and ultimate convergence on the
wire, since displacement is destroyed within it.)

This process suggested to Poynting that the energy flow could be associated di-
rectly with the motion of ‘‘tubes’’ of electric displacement. Instead of viewing the
process as one in which displacement disappears between the plates during discharge,

g

FiG. 7 Equipotential lines of a charged capacitor
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it was possible, Poynting reasoned, to envision a lateral flow of displacement from
the region between the plates outward to the wire, where the displacement is de-
stroyed:

In the neighbourhood of a wire containing a current, the electric tubes (D]
may in general be taken as parallel to the wire while the magnetic tubes
[B] encircle it. The hypothesis I propose is that the tubes move in upon the
wire, their places being supplied by fresh tubes sent out from the seat of
the so-called electromotive force [here simply the charged plates; else-
where, e.g., a voltaic pile]. The change in the point of view involved in
this hypothesis consists chiefly in this, that induction (D] is regarded as
being propagated sideways rather than along the tubes or lines of induction.
This seems natural if we are correct in supposing that the energy is so
propagated, and if we therefore cease to look upon current as merely some-
thing travelling along the conductor carrying it, and in its passage affecting
the surrounding medium. As we have no means of examining the medium,
to observe what goes on there, but have to be content with studying what
takes place in conductors bounded by the medium, the hypothesis is at
present incapable of verification. Its use, then, can only be justified if it
accounts for known facts better than any other hypothesis. (Poynting
[1885a] 1920, 195)

Briefly put, what Poynting proposed was to reinterpret Maxwell’s circuital equa-
tions in such a way that they always represent the effects of lateral motion of either
electric, D, or magnetic, B, induction. In this way the Poynting flow of energy could
be directly linked to a true motion of field entities rather than being a purely mathe-
matical result with perhaps uncertain physical meaning. One effect of this proposal
would be to circumvent any criticism like Hertz’s by attaching energy to an identifi-
able motion. (Though the electric energy transported by this motion is potential and
not Kinetic, it would transport potential energy in the same manner that a compressed
spring in motion transports potential energy.) This will be clear on examination of
Poynting’s interpretation of the circuital laws.

Maxwell’s two circuital laws may be written:

) Vx E = —dBlotor JE-dl = —a/on(JB - dS)
V x A=C + oD/t or
(6) fH - dl = [[C + (aD/an)] - dS

As they stand, these laws imply generation of electric or magnetic intensity around a
curve by any change, however produced, of magnetic or electric induction, respec-
tively, through the area bounded by the curve. If, for example, displacement in a
given area were simply to decay in situ, then one might expect that magnetic inten-
sity would be generated. That possibility was avoided by Maxwell in this case of
decaying displacement by setting C equal and opposite to aD/3r. This (implied by
the continuity equation) reflected Maxwell’s view that displacement decay does not
involve quantity shift. Poynting’s proposal was to obtain the result at once by requir-
ing that only flows of displacement across a curve could generate magnetic intensity
around it (with similar requirements for magnetic induction and electric intensity).
Return to our example of condenser discharge (fig. 7) and consider the process
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from the point of view Poynting now proposed. When the wire LMN is connected to
the plates A and B, Poynting now argued, the ‘‘tubes’’ of displacement between A
and B begin to diverge laterally, moving outward, their termini moving along A and
B and toward LMN. (A tube of induction is a closed surface with sides parallel to
the lines of electric intensity and with bases which terminate on the charged surfaces,
i.e., where displacement cannot be sustained indefinitely. The strength of the tube is
measured by the area of, and the discontinuity in displacement at, the base. Tubes
may also be closed, in which case their strength is measured simply by the product
of intensity by capacity by cross section.)

As the tubes diverge from the region between the plates, any curve surrounding
an area through which wire LMN passes will be cut by them in their motion; conse-
quently magnetic intensity will be generated around such a curve. The tubes of dis-
placement eventually penetrate laterally into the wire (i.e., radially into it) where
they are somehow ‘‘dissolved’’ due to conductivity. As the tubes dissolve, the lines
of magnetic intensity which encircle the wire shrink into it, thereby generating an
electric intensity along the wire opposite in direction to the tubes of electric induction
which are being dissolved in it. The energy flow of the process follows the lateral
motion of the induction tubes, and at any instant the total energy is half-magnetic
and half-electric. The magnetic energy is derived from the electric energy as the
potential energy of the tube decreases in its motion, with the electric energy thus lost
becoming magnetic. Within the wire both kinds of energy are converted into heat by
the dissolution of the displacement, which is attended by the inward shrinking of the
encircling magnetic induction. (The magnetic energy, however, is not directly trans-
formed into heat, as is the electric energy. Rather, as the encircling magnetic lines
shrink in and thereby generate electric intensity along the wire, this intensity pro-
duces displacement which has the effect of retarding the decay of the incoming dis-
placement from the condenser. Hence, the magnetic energy becomes heat via trans-
formation into electric energy.)

In effect, Poynting’s hypothesis completely bypassed the complicated questions
raised by Maxwell’s account of conduction by supposing that energy flow in the field
is accompanied by, indeed produced by, the lateral motion of induction. Where one
might initially wonder why displacement is implicated in conduction, given Max-
well’s terse account, the reason is at once obvious in Poynting’s theory. The very
existence of the magnetic intensity generated by a conduction current is due to con-
vergence of displacement on the wire and its dissolution in it. The dissolution permits
displacement to go on converging since, if the displacement were not dissolved, a
static balance would ultimately occur.

We may use this to easily distinguish C from aD/ar. If displacement flows contin-
uously into a region and there disappears, then we have a ‘‘conduction current’’ C
in the region; if displacement alters by means of lateral motion of induction tubes
without their dissolution, then we have a ‘‘displacement current’ oD/ot (e.g., if the
plates of a charged condenser recede from or approach one another, displacement
current exists in the region between them). If displacement is dissolved on entry into
a region, but not rapidly enough to maintain a steady balance with incoming flow,
then both displacement and conduction currents exist in the region.

Poynting’s theory was the most influential development in British electromagnetic
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theory since the publication of Maxwell’s Treatise twelve years before. John Hopkin-
son, a noted Maxwellian, wrote in his referee report to the Royal Society concerning
this new theory:

Prof. Poynting in a paper already published in the Transactions shewed
that energy reaches the points of a conductor where it is converted into
heat not by transference along the wire but by transference through the
insulating dielectric at each point in a direction at right angles to the tubes
of electric and magnetic induction. In the present paper Prof. Poynting
pursues the same theory further and shews that we may most conveniently
represent the reciprocal relation of electric and magnetic induction by sup-
posing that each are brought into or taken from the field by purely lateral
movements.

The first paper was very important and valuable, the present paper is a
natural sequel and is in my judgment not less important. ([R. S.] RR
9.300)

One reason for the contemporary importance of Poynting’s theory was that it pro-
vided a way to represent the role played by displacement in conduction clearly with-
out having to specify the presumptive microscopic link between ether and matter
which causes the dissolution of displacement. In Maxwell’s Treatise the role played
by displacement in conduction was deeply buried—though unquestionably present—
in a series of accounts of diverse phenomena such as electrolysis and the compound
condenser, where one could understand it only by always recalling that rate of quan-
tity shift (ax/at) determines magnetic intensity. Whereas, with Poynting’s theory one
does not have to recur directly to quantity shifts to understand the way in which
Maxwell’s equation (chap. 3, eq. [6]) is to be understood in any given process.
Moreover, since Poynting believed his theory to be a simple modification of Max-
well’s, it seems likely that the theory occurred to him, given his theorem on energy
flow, precisely because he so clearly understood Maxwell’s essential requirement that
magnetic intensity is not generated if quantity shifts do not occur, whether or not
displacement decays. Thus ten months after his theory was published, Poynting wrote
an article in which he gave a mathematical account of leaky condensers. His account

‘‘partially the same as Maxwell’s,”” but 1nstead of setting o) equal and opposite
to aD/at as Maxwell had, he simply set Vx| equal to zero on the grounds that in
the self-discharge of a homogeneous, ‘‘leaky’’ condenser no new tubes of induction
flow in (Poynting 1885b).

Perhaps the most significant result of Poynting’s theory for his British contempo-
raries was that it unambiguously demonstrated that, far from being of the essence,
the so-called flow of charge in a wire is merely a by-product of field processes which
involve the lateral motion of displacement. Poynting wrote:

The flowing of electric charges along the wire, which is usually considered
as the essential part of the phenomenon, or at least that to which attention
is to be chiefly directed, becomes on this hypothesis merely the last stage
in the process, which consists of a propagation from the surrounding di-
electric towards the wire of electric and magnetic induction, which we may
symbolize by the motion inwards of two sets of tubes, the electric tubes
being, on the whole, more or less in the direction of the wire, the magnetic
tubes being closed rings surrounding it. The wire plays the part of the
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refrigerator in a heat-engine, turning the energy it receives into heat—a
necessary condition for the working of the machinery. (Poynting [1885b]
1920, 227)

4.3 J. J. Thomson’s Theory of Conduction: A Phenomenological Account of
Microscopic Processes

Although Poynting’s work made explicit and embodied in a precise physical process
(lateral flow of displacement) the image of conduction which, I argued above, is
implicit in Maxwell’s Treatise, he did not discuss the question of how dissolution of
displacement occurs in conductors. One must be careful to understand, however, that
there are two questions here, only one of which Maxwellians addressed. First is the
deep question of the link between ether and matter which is ultimately responsible
for the dissolution. Maxwellians did not address this question. The question they did
consider concerns the microscopic rearrangements accompanying dissolution. Several
years after Poynting’s theory was published, J. J. Thomson considered the micro-
scopic processes in a way which at once broadened Poynting’s account and linked it
to molecular processes without specifying the connection between ether and matter.
Thomson’s theory strikingly embodied the Maxwellian consensus of the later 1880s:
namely, that conduction is a field process during which magnetic intensity is gener-
ated only by the lateral influx of displacement into the conductor. That single concept
is precisely what Larmor’s theory of 1893 violated in its first form. Because his
theory violated this criterion, Larmor was forced to produce an elaborate account of
conduction beset with difficulties that were ultimately resolved by his introduction of
the electron.

Thomson first discussed the conduction current in both electrolytes and metals in
1888, when he remarked that ‘‘the current consists of a series of intermittent dis-
charges caused by the rearrangement of molecular systems’’ (Thomson [1888] 1968,
297). At this time he embodied the essentials of Maxwell’s concept of displacement
buildup and decay in conduction in a general ionic model:

The forces between the atoms in a molecule are usually too strong to allow
of any arrangement under the electric field, but when the molecule breaks
up [as in electrolysis and even, Thomson assumed, in metals] and these
interatomic forces either vanish or become very small the constituents of
the molecule are free to move under the electromotive force, and they will
move so as to diminish the strength of the electric field. In order to form
a definite idea of the way in which the field gets discharged we may take
the usual view that the constituents into which the molecule splits up are
charged with opposite kinds of electricity and that when the molecule splits
up the positively charged constituent travels in one direction, the negatively
charged one in the other; in this way we get two layers of positive and
negative electricity formed, the electric force due to which neutralizes in
the region between the layers the external electric force [this corresponds
to displacement breakdown]. The positively charged particles soon come
into the neighbourhood of some negatively charged ones travelling in the
opposite direction and they recombine, while the negatively charged ones
do the same with some positive molecules, thus the force due to the layers
vanishes and the external electric field is re-established [this corresponds
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to displacement buildup after discharge] to be soon demolished again by
the decomposition and rearrangement of the molecules. (Thomson [1888]
1968, 294-95)

Thomson at this time did not discuss the magnetic field generated by the process,
but in view of both Maxwell’s account and Thomson’s own discussion in 1891 (see
below), to say nothing of Poynting’s theory, he did not connect magnetic intensity
directly with the motions of the charged molecular constituents. On the contrary,
their motion is merely the necessary condition for the establishment of displacement,
which is alone directly connected to magnetic intensity. Moreover, the magnetic field
is generated only during the process of displacement buildup, that is, as dissociated
molecules recombine, and not during the process of molecular dissolution.

These essential Maxwellian characteristics of Thomson’s theory are directly re-
vealed in his account of conduction (Thomson 1891), which was republished two
years later in his Recent Researches—intended to be the ‘‘third volume’’ of Max-
well’s Treatise. Thomson’s account was squarely based on the requirement that mag-
netic intensity is always associated only with the motion of tubes of displacement. If
a tube with displacement D moves with a velocity v, Thomson argued, it generates
a magnetic intensity H according to the following equation (an equation already im-
plicit in Poynting’s theory):

(7 Hoev xD

Equation (7) is consistent with the circuital law VxH= aD/at, if the tubes of
displacement are neither created nor destroyed. This limitation applies only to a re-
gion of zero conductivity. Elsewhere the tubes are destroyed, and this is the essence
of the conduction current. According to Thomson, in a conductor bearing a steady
current, positive tubes (+ to — in the direction of the electromotive source intensity)
are constantly moving radially inward to the wire, while, at the same time, an equal
number of negative tubes are moving radially outward. By equation (7), magnetic
intensity thus encircles the wire. When the positive tubes penetrate the wire, they
there ‘‘contract to a length comparable with that between the atoms of a molecule,’’
yielding up their electric (potential) and magnetic (kinetic) energy. This process of
inward radial motion followed by dissolution parallels Poynting’s earlier account, and
it is closely based on the theorem of energy flow—a connection Thomson made
explicit in 1893.

With this system Thomson was able to provide a limited theory of conduction. As
in 1888, displacement—represented in figure 8 by induction tubes entering the
wire—is continually breaking down as, now, the induction (or ‘‘Faraday’’ in Thom-
son’s terminology) tubes contract to molecular dimensions. This process of contrac-
tion, which is of course equivalent to dissolution, is due to molecular dissociation.

We may picture to ourselves the tubes of electrostatic induction shortening
in a conductor in some such way as the following: —Let us take the case
of a condenser discharging through the gas separating its plates. Then,
before discharge, we have a tube stretching from an atom O on the positive
plate to another atom P on the negative one. The molecules AB, CD, . . .
of the intervening gas will be polarized by the induction, the tubes of force
connecting the atoms in these molecules pointing in the negative direction;
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as the strength of the field increases the tube in the molecule AB will
lengthen and bend towards the tube OP, until when the field is sufficiently
strong the molecular tube runs up into the tube OP. The tubes then break
up into two tubes OA and PB, and the tube OA shortens to molecular
dimensions. The result of this operation is that the tube PO has shortened
to PB, and the atoms O and A have formed a molecule. The process is
then continued from molecule to molecule until the tube PO has contracted
to molecular dimensions. Instead of the tube PO jumping from molecule
to molecule, several molecules may form a chain and be affected at once;
in this case the tube would shorten by the length of the chain in the same
time as on the previous hypothesis it shortened by the distance between
two molecules. (Thomson 1891, 155; cf. Thomson 1893, sec. 31)

In Thomson’s theory of moving tubes of induction, magnetic intensity is generated
by the tubes’ motion into the conductor from the electromotive source. This occurs
when the displacement generated by the source moves radially inward from the sur-
rounding medium, after which the dissociation process occurs, thereby destroying the
tubes. That is, the source creates tubes of displacement which ultimately move lat-
erally into the conductor, where they are destroyed by molecular dissociation.

In Thomson’s opinion, this type of breakdown process occurs in all conductors—
gas, liquid, and solid—the only difference between them being whether the disso-
ciated atomic constituents are sufficiently mobile to appear as by-products:

The connection between electric conduction and chemical change is much
more evident in the case of liquid electrolytes and gases than it is in that
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of metals. There does not seem, however, to be sufficient difference be-
tween the laws in conduction through metals and electrolytes to seek an
entirely different explanation for metallic conduction. (Thomson 1893,
sec. 34)

We see, then, that in Thomson’s theory, as in Poynting’s, magnetic intensity is
produced solely by motion of displacement and not by its subsequent dissolution.
The breakdown process is essential to conduction—indeed, it is conduction—because
it permits new tubes to move in, but in itself it is only indirectly related to the
magnetic intensity generated by the current. This is well illustrated by Thomson’s
measure for resistivity, the reciprocal of conductivity, and for current quantity. Cur-
rent quantity is measured, according to Thomson, by the number of tubes of displace-
ment of unit strength which disappear in the conductor in unit time. For a conducting
medium with capacity € and subject to a source intensity Ey in which the ‘‘average
life’” of a tube is 7, the current quantity C is therefore €Ey/T. If p is the resistivity
of the medium, then, using Ohm’s law (a law which remained fundamentally mys-
terious in Maxwellian theory), E, = pC, we have:

(8) T = ¢€p

‘T is often called the time of relaxation of the medium,”’” Thomson remarked (1893,
sec. 32; referring to Maxwell).

To assume that the process of conduction—displacement dissolution—can be de-
scribed in terms of relaxation is to assume that the process of molecular dissociation
(discharge) which occasions this breakdown, according to Thomson’s theory, does
not involve anything like self-induction in electrodynamics. That is, even though the
dissociated atomic constituents produced by the breakdown are in motion, this mo-
tion of charged matter is not assumed to involve a substantial magnetic intensity. In
Thomson’s theory it is at once obvious why this is so: self-induction involves the
rate at which displacement is sent from one part of a circuit to another part; it has
nothing directly to do with the molecular process of the breakdown of displacement.
This point is of great significance because it unequivocally implies that—at least
through 1893, and perhaps even later—Thomson and most Maxwellians did not think
that charge motion or convection (which they well knew does generate magnetic
intensity; see appendix 1) is responsible for the magnetic field of the conduction
current. For if it were responsible for the field, then the entire theory of lateral flow
of displacement into the circuit followed by breakdown would have to be abandoned.

Perhaps the most interesting (and surprising) example of the implications of this
theory involves Thomson’s explanation of the deflection of the discharge in a rarefied
gas by a magnetic field. Thomson knew—indeed, he was the first to demonstrate it
using Maxwell’s principles (Thomson 1881)—that a moving charge in a magnetic
field behaves like an element of a conductor carrying a current. Yet in Recent Re-
searches he did not reason that the entire gaseous discharge consists of moving
charges (though he did link the so-called negative glow to moving charged particles;
Thomson 1893, sec. 1301). Rather, he saw the phenomenon as precisely analogous
to electrolytic and metallic conduction in that it involved processes of molecular
dissociation and attendant breakdown of displacement. The reason magnetic fields
deflect the discharge is then quite simple and has nothing at all to do with the deflec-



The Electric Current and Poynting’s Theorem 53

tion of moving charges. Rather, the phenomenon is equivalent to the deflection of a
current-bearing wire in that the path of the discharge, considered to be a conductor,
is deflected by the field during discharge, with subsequent discharge occurring along
the deflected path:

. when an electric discharge has passed through a gas, the supply of
dissociated molecules, or of molecules in a peculiar condition, left behind
in the line of discharge, has made that line so much better a conductor than
the rest of the gas, that when the particles composing it are displaced by
the action of the magnetic force, the discharge continues to pass through
them in their displaced positions, and maintains by its passage the higher
conductivity of this line of particles. On this view the case would be very
similar to that of a current along a wire, the line of particles along which
the discharge passes being made so much better a conductor than the rest
of the gas, that the case is analogous to a metal wire surrounded by a
dielectric. (Thomson 1893, sec. 127; also see sec. 89)

Poynting published a theory very similar to Thomson’s, which he termed ‘‘an
electrolytic account of metallic conduction’’ (Poynting 1895). The mysterious part of
both Thomson’s and Poynting’s theories was precisely what link between ether and
matter occasioned the molecular dissociation necessary for the breakdown of dis-
placement. Neither theory, moreover, even attempted to explain Ohm’s law because
that law seemed to involve so deeply this mysterious connection. What both theories
did do was to take Maxwell’s account of the conduction current in terms of displace-
ment buildup and breakdown and to amplify it, using Poynting’s theorem to argue
that displacement, like energy, flows radially into the conductor, generating magnetic
intensity at right angles to itself and to its motion. In order to explicate the process,
both Thomson and Poynting linked the dissolution of displacement to processes of
molecular dissociation. These processes, however, were entirely unexplained, nor
was any subsequent Maxwellian attempt made to explain them. In developing the
moving displacement account of conduction, Poynting and Thomson had, in essence,
provided a clear mathematical explication of the concept which Maxwell had implic-
itly used in the Treatise. The effect was to entrench that explanation and its attendant
lack of immediate concern with the link between the ether and the microscopic struc-
ture of matter.
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Electrodynamics

What I propose now to do is to examine the consequences of the assump-
tion that the phenomena of the electric current are those of a moving sys-
tem, the motion being communicated from one part of the system to an-
other by forces, the nature and laws of which we do not even attempt to
define, because we can eliminate these forces from the-equations of motion
by the method given by Lagrange for any connected system. (Maxwell
1873, vol. 2, sec. 552)

Except for the Faraday effect (Knudsen 1976), the only direct application of dy-
namics in Maxwell’s Treatise involves a limited theory of filamentary currents which
takes account only of the field’s kinetic, and not its potential, energy. Despite these
limitations, the theory provides a good example of how dynamical theory works—
and of how it can lead to surprising results.

Maxwell assumed that filamentary currents can be represented by generalized ve-
locities. He further assumed that the kinetic field energy associated with such currents
is spread throughout space, that it can be localized in every volume element, and
that one can specify what portion of the energy is controlled by a specific element of
the circuit. One can do this for mechanical structures: that is, one can determine both
the distribution of energy throughout them and the portions of the whole energy
controlled by those parts of the mechanism (the ‘‘driving points’’) on which external
forces act. The circuit itself demarcates the region in which external forces (viz.,
electromotive force) are applied, while the mechanism extends throughout space,
including the region occupied by the circuit. The problem now is to obtain an expres-
sion for the field energy as a function of the circuit positions, of the currents (gen-
eralized velocities) in them, and perhaps also of the coordinates which correspond to
the velocities.

Maxwell (1873, vol. 2, pt. 4, chap 6) assumed that a group of circuits bear-

ing currents /,, I, . . ., I; determines a distributed field energy, Kinetic in form,
equal to:
(1) T. = DSLE + (112)%4;L;11

The coefficients L;, L; of self- and mutual induction, respectively, represent the man-
ner in which the currents, as generalized velocities, are linked to the field energy 7.
These coefficients are functions solely of the configuration of the circuit system.
Maxwell settled on expression (1) only after an experimental consideration of
other possible terms in 7., terms which would, if they existed, represent a direct
connection between the electric currents as generalized velocities and the material
velocities of the circuits in which they occur. Thus one possible expression which is
quadratic in the currents and contains products of current quantities has the form of
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equation (2), wherein the e; are the generalized coordinates corresponding to the
generalized velocities /;:

T =
SIL(rie)l]] + (112)2; 4 ALi(rirjene)li1]
2) + (1/2)%,[M/(r;epldr/ot]

In equation (2) the r; represent the configuration of the circuits.

Maxwell rejected any dependence of the energy on the coordinates e;, however,
simply because if the currents are constant and the conductors at rest, then the field
does not change even though the e; do. Maxwell also rejected the third term in T,
which represents a possible interaction between currents and the material motion of
the circuits in which they occur. In essence, if this term existed, then changes in
currents would imply mechanical forces on the conductors which bear them, and the
current itself would have a quasi-material momentum that could be detected, for
example, by rapid rotation of an electromagnet. Maxwell had in fact performed the
latter type of experiment as early as 1858 and had obtained no indication of an
interaction. He consequently set this term to zero. By so doing he divorced the field
processes associated with currents from material motions. This divorce was deeply
embedded in Maxwellian theory and for over two decades precluded any direct link
between current processes and material motions. It thereby reinforced the distinct
aversion Maxwellians had to a consideration of the link between ether and matter.

Given equation (1) we can easily develop the theory of quasi-stationary filamen-
tary currents from Lagrange’s equations. For example, the electromotive intensity
induced in one of two circuits by a current change in the other is simply:

(3) E] = —-d/dt(aTJa[,) ot (aTJae,) = L]y212

Similarly, the electromagnetic or ponderomotive force on one circuit due to the cur-
rent in it and in a second circuit is:

F,=VT. = LLVL,,

Thus far Maxwell had not provided a connection to the magnetic field. To do so
he recurred to Hamilton’s equations and to Faraday’s law of electromagnetic induc-
tion. It is here, as we shall see, that the assumption of identifiable portions of field
energy comes strikingly to the fore. Maxwell considered the effect of current changes
in external circuits on the current in a given circuit, that is, the second term in
equation (1). In computing the induced intensity to link it to magnetic induction, it
is first essential, Maxwell asserted, to decompose the affected circuit into geometric
elements—not current elements. One then seeks the contribution of each circuit ele-
ment to a quantity which is a function of the currents in the external circuits and
which can be used in Hamilton’s equations as a generalized momentum to deduce
the intensity (eq. [3]), that is, Maxwell sought a p,(/,) such that dp,/dt is equal to
didt[oT (1,1,)/a1,].

Maxwell thus assumed that each element dl of the affected circuit contributes a
part dp, to the interaction portion of the generalized momentum. He then postulated
that dp, is proportional to the scalar product of some vector A with dl,, namely, that
dp, is equal to A - d71. In Maxwell’s words:



56 : Chapter Five

Since the quantity p depends on the form and position of the circuit, we
may suppose that each portion of the circuit contributes something to the
value of p, and that the part contributed by each portion of the circuit
depends on the form and position of that portion only, and not on the
position of other parts of the circuit. (Maxwell 1873, vol. 2, sec. 586)

Maxwell immediately integrated dp; about the circuit, and he then used the Stokes
theorem to obtain:

) pi = J(V x A) - d5,

In equation (4) the integration is, of course, over the area bounded by circuit one.
Consequently, by Hamilton’s equations —dp,/dt must be the electromotive intensity
induced in circuit one by relative motion with respect to, or by a current change in,
other circuits. By Faraday’s law this means that V x A must be the magnetic induc-
tion, B, which passes through the region bounded by circuit one.

This provides a method for calculating the coefficients of induction through the
field equation linking mductlon and current, namely, VxB-= wJ. In particular,
adopting the condmon V-A4=0 (see note at end of appendix 1) leads to the
expression A(r) wnf drr )d>x, where 7 is the current density in d’x, and the r' are
the distances from the field point 7 to the d°x. This gives, for example, for two
circuits:

pr = IV x [Jyr')d’x,) - dS,
WSl Irdx] - di,

Since we assume all circuits to be filamentary, we have:

) pi = whLffldl, - dlyr, ;)
Hence the part of 7. which is determined by /,/; is:
(6 TAhl) = phbffldl, - dlyr ]

Whence the coefficient of mutual induction L, , is simply wf [ [dl, - d72/r1,2]. Expres-
sion (6) is the so-called Neumann potential, and it implies an electromagnetic (pon-
deromotive) force between circuits equal to + V7., as well as an induced electro-
motive intensity — d/dt(dT/dl;).

The most important point here is that Maxwell based his analysis on the assump-
tion that circuit elements control, as individuals, specific quantities of generalized
momentum—and therefore of field kinetic energy. (One can carry through precisely
the same kind of calculation for the coefficient of self-induction.) This fact is lost
sight of in Maxwell’s calculation because he proceeded directly from the assumption
of elements to integrals taken round the circuits. Given the legitimacy of considering
individual circuit elements, however, the electromagnetic force, VT,, which is here
obtained from circuit integrals, is not the entire ponderable action of one current-
bearing circuit upon another. To see this, first note that + VT, gives an electromag-
netic force which, for each element, is perpendicular to that element:

+VT, = —pLLf (7 ori )], - dly)
@) = phiL[f{[dl, x (I, 71,2)]/”,23}
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(Equation [7] is Ampere’s law for the force between closed circuits.) If there were,
say, a material tension in circuit one which depended on the current in circuit two,
then its existence would be fully compatible with the integrated force (eq. [7]) since,
taken round a closed curve, the integrated tension vanishes.

This might be without historical significance were it not for two things. First, if
one assumes that circuit elements individually determine quantities of energy, as
Maxwell did, then this tension must in fact exist. Second, both J. J. Thomson and
Larmor were well aware of this fact, though only Larmor investigated it in detail, as
we shall see in part III (Thomson 1888, sec. 41). In other words, if we assume that
the field behaves literally like a mechanism, with the circuits as its driving points,
then we will necessarily obtain other forces than Ampere’s.

Let us examine how this circuit tension arises. For simplicity we shall limit our-
selves to the special case of rigid conductors. (In the general case one obtains even
more_terms, but the analysis is more complicated.) This assumption permits us to
hold 7 fixed in the circuits as we consider virtual dlsplacements of them. We begm
with the Maxwellian hypothe51s that any volume element d°x, in which a current J
and a vector potential A° (the latter externally applied) exist, controls a portion dT of
the total field energy:

dr = J - A%d’x

On Maxwell’s assumptions, the element dx controls dT geometrically but is not itself
a direct participant in the electric system, even if it is filled with conducting matter.
Hence, one can, by variation of dT through the element d’x, calculate the electro-
magnetic force which acts upon the element. For rigid circuit 7 is fixed in d’x geo-
metrically and is therefore not affected by the variation, which acts only upon Ac.
We find for the electromagnetic force on d°x:

8) Vi-A9 =T x (Vx4 + J - VA

We have already seen that, if V-A%is zero, then A° varies as J'/r, where J' is the
external current. Consequently, if we integrate equation (8) about a circuit of which
d’x forms an element, the second term necessarily vanishes, leaving only the inte-
grated first term which is just the Ampére force.

Clearly, though, (J - ﬁ)ﬁe behaves like a pressure or tension. As such, it can have
a mechanical effect even though, when integrated about a closed curve, it vanishes.
If a system, subject to internal pressure or tension of this sort, is bounded by a
framework, then that framework will be subjected to extensive or compressive force.
(Consider, e.g., a closed elastic wire stretched around the circumference of a disk.
Although the integral of the tension in the wire taken all round it vanishes, neverthe-
less, the wire exerts a compressive force on the disk which is equipollent to the disk’s
perimeter at each point. If the disk is compressible, one can measure its change in
volume and then, from a knowledge of its compressibility, deduce the tension in the
wire.) As we shall see in part II, Larmor suggested an experiment for detecting this
tension. J. J. Thomson was, to my knowledge, the first to point out that equation
(8), and not just its first term, must be considered. He, however, noting that the
second term vanishes on integration, missed the mechanical effects which Larmor
later discussed.
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It is instructive to examine how modern accounts (again limiting ourselves to rigid
conductors) avoid this extra term, for in doing so we shall be able to pinpoint why
Maxwellian theory could not avoid it. Modem accounts (see, e.g., Jefimenko 1966)
begin with the integral expression for the interaction energy of field and current,
namely, [J - A°d’x. One then takes the gradient of this expression with the operator
acting only upon A°. This procedure leads to the integrated form of equation (8) in
which the second term does not necessarily vanish since the currents may not all be
closed. However, one can partially integrate this second term to obtain:

) [T - WAdx = JAT - dS) — [(V - DAdx

In equation (9) the operator affects only A° 50 that the second term vanishes. In order
for the first term also to vanish, modern accounts assume that J does not exist
through all space and that the surface of integration is at infinity. As a result, one is
left only with the integrated first term of equation (8):

(10) V(I Adx = [[J x (Vx A9 = [T x B)dx

However, to be able to perform the partial integration with a boundary at infinity,
it is essential to assume that it is not legitimate to consider the element d°x in isola-
tlon (or indeed, any portion of the current system) as controlling a quantity of energy
(J - Ad°x. For if this were legitimate, then the surface mtegral could be taken over
any volume in the field. If this is done, then fA (.l dS) will not in general vanish
since A° may have different values at different parts of the boundary. Consequently,
to avoid the extra terms it is essential to assume that energy elements are not con-
trolled by circuit elements.

It is important to recognize that to assume the Maxwellian circuit element controls
a portion dT of energy is not necessarily to assume that dT is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>