
GNU Parallel 2018

Ole Tange

GNU Parallel 2018
First edition
Copyright © 2018 Ole Tange. Some rights reserved.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International
License. To view a copy of this license, visit https://creativecommons.org/licenses/by-sa/4.0/

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled "GNU Free Documentation License".

Published by: Ole Tange
http://ole.tange.dk
https://orcid.org/0000-0002-6345-1437

Cover: GNU Parallel's logo is inspired by the café wall illusion

DOI: http://dx.doi.org/10.5281/zenodo.1146014

ISBN: 978-1-387-50988-1

To people

who live life in the parallel lane

Contents

1 How to read this book..9

2 Learn GNU Parallel in 15 minutes..11
2.1 Input sources 11
2.2 Build the command line 12
2.3 Control the output 14
2.4 Control the execution 15
2.5 Pipe mode 16
2.6 That's it 16

3 Make test files..17

4 Input sources...19
4.1 A single input source 19
4.2 Multiple input sources 20
4.2.1 Link arguments from input sources 21
4.3 Change the argument separator. 22
4.4 Change the record delimiter 23
4.5 End-of-file value for input source 23
4.6 Skipping empty lines 23

5 Build the command line...25
5.1 No command means arguments are commands 25
5.2 Replacement strings 26
5.2.1 The 7 predefined replacement strings 26
5.2.2 Change the replacement strings 28
5.2.3 Perl expression replacement string 29
5.2.3.1 Functions for perl expression replacement strings 29
5.2.4 Dynamic replacement strings 31
5.2.5 Positional replacement strings 32
5.2.6 Positional perl expression replacement string 33
5.2.7 Input from columns 33
5.2.8 Header defined replacement strings 33
5.2.9 More pre-defined replacement strings with --plus 34
5.2.10 Dynamic replacement strings with --plus 35
5.3 Insert more than one argument 36
5.4 Quote the command line 39
5.5 Trim space from arguments 40

5.6 Respect the shell 40

6 Control the output..43
6.1 Tag output 43
6.2 See what is being run 44
6.3 Force same order as input 44
6.4 Output before jobs complete 45
6.4.1 Buffer on disk 47
6.5 Save output into files 47
6.6 Save to CSV/TSV 49
6.7 Save to an SQL base 49
6.7.1 CSV as SQL base 49
6.7.2 DBURL as table 51
6.7.3 Use multiple workers 51
6.8 Save output to shell variables 52
6.8.1 Do not read from a pipe 53
6.8.1.1 Use a temporary file 53
6.8.1.2 Use process substitution 53
6.8.1.3 Use a FIFO 53
6.8.2 env_parset 54

7 Control the execution...55
7.1 Number of simultaneous jobs 55
7.2 Shuffle job order 56
7.3 Interactivity 56
7.4 A terminal for every job 57
7.5 Timing 57
7.6 Progress information 58
7.7 Logfile 59
7.8 Resume jobs 59
7.9 Termination 61
7.9.1 Unconditional termination 61
7.9.2 Termination dependent on job status 61
7.10 Retry failing commands 62
7.10.1 Termination signals 63
7.11 Limit the resources 64
7.11.1 Make your own limitation 65

8 Remote execution..67
8.1 Sshlogin 67
8.1.1 SSH command to use 68
8.1.2 Multiple servers 68
8.1.3 Divide servers into groups 69
8.1.3.1 Host group defined by argument 70
8.2 Transfer files 70
8.3 Working dir 71
8.4 Avoid overloading sshd 72
8.5 Ignore hosts that are down 72
8.6 Run the same commands on all hosts 72
8.7 Transfer environment variables and functions 73
8.8 Show what is actually run 75

9 Pipe mode..77
9.1 Block size 77
9.2 Records 79
9.3 Record separators 79
9.4 Header 82
9.5 Fixed length records 82
9.6 Programs not reading from stdin 83
9.6.1 --cat 83
9.6.2 --fifo 83
9.7 Use --pipepart for high performance 84
9.8 Duplicate all input using --tee 84

10 Miscellaneous features...87
10.1 Shebang 87
10.1.1 Input data and parallel command in the same file 87
10.1.2 Parallelize existing scripts with --shebang-wrap 88
10.2 Semaphore 90
10.2.1 Mutex 91
10.2.2 Counting semaphore 92
10.2.3 Semaphore with timeout 92
10.3 Informational 93
10.4 Profiles 95

11 GNU Free Document License..97
 0. Preamble 97
 1. Applicability and definitions 98
 2. Verbatim copying 99
 3. Copying in quantity 100
 4. Modifications 100
 5. Combining documents 102
 6. Collections of documents 103
 7. Aggregation with independent works 103
 8. Translation 103
 9. Termination 104
 10. Future revisions of this license 104
 11. Relicensing 105
 Addendum: how to use this license for your documents 105

1
How to read this book
There are so few utilities/tools as elegant and amazingly useful

across a wide area of needs as GNU parallel
-- hrbrcoin hrbrmstr@twitter

If you write shell scripts to do the same processing for different input, then GNU Parallel will
make your life easier and make your scripts run faster.

Chapter 2 will get you started with the basics in 15 minutes. It will introduce you to the basic
concepts of GNU Parallel and will show you enough that you can run basic commands in parallel.
This will be enough for many tasks.

GNU Parallel has 6 major areas:

• Chapter 4 Input sources

• Chapter 5 Build the command line

• Chapter 6 Control the output

• Chapter 7 Control the execution

• Chapter 8 Remote execution

• Chapter 9 Pipe mode

On top of this, there are a few miscellaneous features

• Chapter 10 Miscellaneous features

After chapter 2 there is no need to read the chapters in sequence: If you need to know how to
control the output go right ahead and skip to chapter 6.

9

1 How to read this book GNU Parallel 2018

The book is written as a 5-in-1 book: You can read it as a beginner, as an intermediate, as an
advanced user, as an expert user, or a developer to get all the details. The marking in the border
will tell you which audience the section is written for.

Read this if you are level 1.

Read this if you are level 2.

Read this if you are level 3.

Read this if you are level 4.

Read this if you are level 5.

For instance, you do not need to have read anything at level 4 to understand the text at level 3.

Additionally, you do not have to be at the same level in each chapter. Maybe you need advanced
knowledge on controlling the execution (chapter 7), while you never use the remote execution

(chapter 8), and only use the basic features of --pipe (chapter 9).

You are expected to know basic UNIX commands: ls, wc, cat, pwd, seq, sleep, echo, wget,

printf, rm, and ssh. If any of those are new to you, you should type man programname and

familiarize yourself with those.

You are expected to know that \

at the end of the line means the line continues (but that there was no more space on the paper).

If you also have a basic understanding of what emacs, vi, perl, mkfifo, rsync, alias, and

export do, then you will have a much easier time understanding the book.

10

2
Learn GNU Parallel in 15 minutes

I don't care
I just need to get shit done

-- Sab

This chapter will teach you the most important concepts and what you need to run commands in
parallel when you do not care about fine-tuning.

To get going please run this to make some example files:

If your system does not have 'seq', replace 'seq' with 'jot'
seq 5 | parallel seq {} '>' example.{}

This will create the files example.1..5.

2.1 Input sources

GNU Parallel reads values from input sources. One input source is the command line. The

values are put after ::: :

parallel echo ::: 1 2 3 4 5

Output (order may be different):

1
2
3
4
5

This makes it easy to run the same program on some files:

11

2 Learn GNU Parallel in 15 minutes GNU Parallel 2018

parallel wc ::: example.*

Output (order may be different):

1 1 2 example.1
2 2 4 example.2
3 3 6 example.3
4 4 8 example.4
5 5 10 example.5

If you give multiple :::s, GNU Parallel will generate all combinations:

parallel echo ::: S M L ::: Green Red

Output (order may be different):

S Green
S Red
M Green
M Red
L Green
L Red

GNU Parallel can also read the values from stdin (standard input):

find example.* -print | parallel echo File

Output (order may be different):

File example.1
File example.2
File example.3
File example.4
File example.5

2.2 Build the command line

The command line is put before the :::. It can contain a command and options for the

command:

parallel wc -l ::: example.*

Output (order may be different):

1 example.1
2 example.2
3 example.3
4 example.4
5 example.5

The command can contain multiple programs. Just remember to quote characters that are

interpreted by the shell (such as ;):

12

GNU Parallel 2018 2 Learn GNU Parallel in 15 minutes

parallel echo counting lines';' wc -l ::: example.*

Output (order may be different):

counting lines
1 example.1
counting lines
2 example.2
counting lines
3 example.3
counting lines
4 example.4
counting lines
5 example.5

The value will normally be appended to the command but can be placed anywhere by using the

replacement string {}:

parallel echo counting {}';' wc -l {} ::: example.*

Output (order may be different):

counting example.1
1 example.1
counting example.2
2 example.2
counting example.3
3 example.3
counting example.4
4 example.4
counting example.5
5 example.5

When using multiple input sources you use the positional replacement strings {1} and {2}:

parallel echo count {1} in {2}';' wc {1} {2} ::: -l -c ::: example.*

Output (order may be different):

count -l in example.1
1 example.1
count -l in example.2
2 example.2
count -l in example.3
3 example.3
count -l in example.4
4 example.4
count -l in example.5
5 example.5
count -c in example.1
2 example.1
count -c in example.2
4 example.2
count -c in example.3
6 example.3

13

2 Learn GNU Parallel in 15 minutes GNU Parallel 2018

count -c in example.4
8 example.4
count -c in example.5
10 example.5

You can check what will be run with --dry-run:

parallel --dry-run echo count {1} in {2}';' wc {1} {2} ::: -l -c \
 ::: example.*

Output (order may be different):

echo count -l in example.1; wc -l example.1
echo count -l in example.2; wc -l example.2
echo count -l in example.3; wc -l example.3
echo count -l in example.4; wc -l example.4
echo count -l in example.5; wc -l example.5
echo count -c in example.1; wc -c example.1
echo count -c in example.2; wc -c example.2
echo count -c in example.3; wc -c example.3
echo count -c in example.4; wc -c example.4
echo count -c in example.5; wc -c example.5

This is a good idea to do for every command until you are comfortable with GNU Parallel.

2.3 Control the output

The output will be printed as soon as the command completes. This means the output may come
in a different order than the input:

parallel sleep {}';' echo {} done ::: 5 4 3 2 1

Output (order may be different):

1 done
2 done
3 done
4 done
5 done

You can force GNU Parallel to print in the order of the values with --keep-order/-k. This

will still run the commands in parallel.

The output of the later jobs will be delayed until the earlier jobs are printed:

parallel --keep-order sleep {}';' echo {} done ::: 5 4 3 2 1

Output:

14

GNU Parallel 2018 2 Learn GNU Parallel in 15 minutes

5 done
4 done
3 done
2 done
1 done

2.4 Control the execution

If your jobs are compute intensive, you will most likely run one job for each core in the system.
This is the default for GNU Parallel.

But sometimes you want more jobs running. You control the number of job slots with -j/--

jobs. Give --jobs the number of jobs to run in parallel. Here we run 2 in parallel:

parallel --jobs 2 sleep {}';' echo {} done ::: 5 4 3 1 2

Output:

4 done
5 done
1 done
3 done
2 done

The two job slots have to run 5 jobs that take 1-5 seconds: 55555 4444 333 1 22. They are

run in this sequence:

Job slot 1: 55555122

Job slot 2: 4444333

If you instead run 5 jobs in parallel, all the 5 jobs start at the same time and finish at different
times:

parallel --jobs 5 sleep {}';' echo {} done ::: 5 4 3 1 2

Output:

1 done
2 done
3 done
4 done
5 done

The jobs are all run in parallel:

Job slot 1: 55555

Job slot 2: 4444

15

2 Learn GNU Parallel in 15 minutes GNU Parallel 2018

Job slot 3: 333

Job slot 4: 1

Job slot 5: 22

Instead of giving the number of jobs to run, you can pass --jobs 0 which will run as many

jobs in parallel as possible.

2.5 Pipe mode

GNU Parallel can also pass blocks of data to commands on stdin (standard input):

seq 1000000 | parallel --pipe wc

Output (the order may be different):

165668 165668 1048571
149796 149796 1048572
149796 149796 1048572
149796 149796 1048572
149796 149796 1048572
149796 149796 1048572
 85352 85352 597465

This can be used to process big text files. By default, GNU Parallel splits on \n (newline) and

passes a block of around 1 MB to each job.

2.6 That's it
You have now mastered the basic use of GNU Parallel. This will probably cover most cases of
your use of GNU Parallel.

The rest of this document will go into more details on each of the sections and cover special use
cases.

16

3
Make test files

GNU Parallel is making me pretty happy this morning
-- satanpenguin satanpenguin@twitter

For the rest of the book we need some test files. They can be generated by running this:

parallel -k echo ::: A B C > abc-file
parallel -k echo ::: D E F > def-file
perl -e 'printf "A\0B\0C\0"' > abc0-file
perl -e 'printf "A_B_C_"' > abc_-file
perl -e 'printf "f1\tf2\nA\tB\nC\tD\n"' > tsv-file.tsv
perl -e 'for(1..8){print "$_\n"}' > num8
perl -e 'for(1..128){print "$_\n"}' > num128
perl -e 'for(1..30000){print "$_\n"}' > num30000
perl -e 'for(1..1000000){print "$_\n"}' > num1000000
(echo %head1; echo %head2; \
 perl -e 'for(1..10){print "$_\n"}') > num_%header
perl -e 'print "HHHHAAABBBCCC"' > fixedlen

You are encouraged to look at the contents of the files, so you understand what they contain.

17

4
Input sources

Just found out about this awesome syntax for GNU parallel:
`parallel -P20 fping {} ::: host{1..100}`

No need to pipe crap in!
-- Nick Pegg nickpegg@twitter

GNU Parallel reads input from input sources. These can be files, the command line, and stdin
(standard input or a pipe).

You will need the test files from chapter 3.

4.1 A single input source

Input can be read from the command line:

parallel echo ::: A B C

Output (the order may be different because the jobs are run in parallel):

A
B
C

The input source can be a file:

parallel -a abc-file echo

Output: Same as above.

Stdin (standard input) can be the input source:

cat abc-file | parallel echo

19

4 Input sources GNU Parallel 2018

Output: Same as above.

The file can also be a FIFO:

mkfifo myfifo
cat abc-file > myfifo &
parallel -a myfifo echo
rm myfifo

Output: Same as above.

Or command substitution in Bash/Zsh/Ksh:

parallel echo :::: <(cat abc-file)

Output: Same as above.

4.2 Multiple input sources

GNU Parallel can take multiple input sources given on the command line. GNU Parallel then
generates all combinations of the input sources:

parallel echo ::: A B C ::: D E F

Output (the order may be different):

A D
A E
A F
B D
B E
B F
C D
C E
C F

The input sources can be files:

parallel -a abc-file -a def-file echo

Output: Same as above.

Stdin (standard input) can be one of the input sources using -:

cat abc-file | parallel -a - -a def-file echo

Output: Same as above.

Instead of -a files can be given after :::::

20

GNU Parallel 2018 4 Input sources

cat abc-file | parallel echo :::: - def-file

Output: Same as above.

::: and :::: can be mixed:

parallel echo ::: A B C :::: def-file

Output: Same as above.

4.2.1 Link arguments from input sources

With --link you can link the input sources and get one argument from each input source:

parallel --link echo ::: A B C ::: D E F

Output (the order may be different):

A D
B E
C F

If one of the input sources is too short, its values will wrap:

parallel --link echo ::: A B C D E ::: F G

Output (the order may be different):

A F
B G
C F
D G
E F

For more flexible linking you can use :::+ and ::::+. They work like ::: and :::: except

they link the previous input source to this input source.

This will link ABC to GHI:

parallel echo :::: abc-file :::+ G H I :::: def-file

Output (the order may be different):

A G D
A G E
A G F
B H D
B H E
B H F
C I D
C I E
C I F

21

4 Input sources GNU Parallel 2018

This will link GHI to DEF:

parallel echo :::: abc-file ::: G H I ::::+ def-file

Output (the order may be different):

A G D
A H E
A I F
B G D
B H E
B I F
C G D
C H E
C I F

If one of the input sources is too short when using :::+ or ::::+, the rest will be ignored:

parallel echo ::: A B C D E :::+ F G

Output (the order may be different):

A F
B G

4.3 Change the argument separator.

GNU Parallel can use other separators than ::: or ::::. This is typically useful if ::: or

:::: is used in the command to run:

parallel --arg-sep ,, echo ,, A B C :::: def-file

Output (the order may be different):

A D
A E
A F
B D
B E
B F
C D
C E
C F

Changing the argument file separator:

parallel --arg-file-sep // echo ::: A B C // def-file

Output: Same as above.

22

GNU Parallel 2018 4 Input sources

4.4 Change the record delimiter

GNU Parallel will normally treat a full line as a single record: It uses \n as record delimiter.

This can be changed with -d:

parallel -d _ echo :::: abc_-file

Output (the order may be different):

A
B
C

NUL can be given as \0:

parallel -d '\0' echo :::: abc0-file

Output: Same as above.

A shorthand for -d '\0' is -0 (this will often be used to read files from find ...

-print0):

parallel -0 echo :::: abc0-file

Output: Same as above.

4.5 End-of-file value for input source

GNU Parallel can stop reading when it encounters a certain value:

parallel -E stop echo ::: A B stop C D

Output:

A
B

4.6 Skipping empty lines

Using --no-run-if-empty GNU Parallel will skip empty lines.

(echo 1; echo; echo 2) | parallel --no-run-if-empty echo

Output:

1
2

23

5
Build the command line

GNU Parallel is a very awesome tool to use in bash scripts.
It’s so easy to parallelize operations on files with it!

-- Mohammed S. Khoory 9a3eedi@twitter

GNU Parallel normally runs commands based on a template and have values from the input
sources inserted in the template.

You will need the test files from chapter 3.

5.1 No command means arguments are commands

If no command is given after parallel the arguments themselves are treated as commands:

parallel ::: ls 'echo foo' pwd

Output (the order may be different):

[list of files in current dir]
foo
[/path/to/current/working/dir]

The command can be a script, a binary or a Bash function if the function is exported using

export -f:

Only works in Bash
my_func() {
 echo in my_func $1
}
export -f my_func
parallel my_func ::: 1 2 3

25

5 Build the command line GNU Parallel 2018

Output (the order may be different):

in my_func 1
in my_func 2
in my_func 3

If you use env_parallel (see 8.7 Transfer environment variables and functions) then you

can also use aliases.

5.2 Replacement strings

5.2.1 The 7 predefined replacement strings

GNU Parallel has several replacement strings. The 7 predefined are:

Replacement string Value

{} mydir/mysubdir/myfile.myext

{.} mydir/mysubdir/myfile

{/} myfile.myext

{//} mydir/mysubdir

{/.} myfile

{#} the sequence number of the job

{%} the job slot number

If no replacement strings are used the default is to append {}:

parallel echo ::: A/B.C

Output:

A/B.C

The default replacement string is {}:

parallel echo {} ::: A/B.C

Output:

A/B.C

The replacement string {.} removes the extension:

parallel echo {.} ::: A/B.C

26

GNU Parallel 2018 5 Build the command line

Output:

A/B

The replacement string {/} removes the path:

parallel echo {/} ::: A/B.C

Output:

B.C

The replacement string {//} keeps only the path:

parallel echo {//} ::: A/B.C

Output:

A

The replacement string {/.} removes the path and the extension:

parallel echo {/.} ::: A/B.C

Output:

B

The replacement string {#} gives the job number. When a job is started it gets sequence number

that starts at 1 and increases with 1 for each new job.

parallel echo {#} ::: A B C

Output (the order may be different):

1
2
3

The replacement string {%} gives the job slot number (between 1 and number of jobs to run in

parallel). Each job gets assigned a slot number. This number is from 1 to the number of jobs
running in parallel. It is unique between the running jobs, but is re-used as soon as a job finishes.

parallel -j 2 echo {%} ::: A B C

Output (the order may be different and 1 and 2 may be swapped):

1
2
1

When inserted the replacement strings are quoted. So there is no need to worry about quoting
special characters:

echo 'No " needed' | parallel echo {}

27

5 Build the command line GNU Parallel 2018

Output:

No " needed

If you need to unquote the string, you can use eval:

echo 'echo foo; echo bar' | parallel echo baz\; eval {}

Output:

baz
foo
bar

5.2.2 Change the replacement strings

The replacement string {} can be changed with -I:

parallel -I ,, echo ,, ::: A/B.C

Output:

A/B.C

The replacement string {.} can be changed with --extensionreplace:

parallel --extensionreplace ,, echo ,, ::: A/B.C

Output:

A/B

The replacement string {/} can be replaced with --basenamereplace:

parallel --basenamereplace ,, echo ,, ::: A/B.C

Output:

B.C

The replacement string {//} can be changed with --dirnamereplace:

parallel --dirnamereplace ,, echo ,, ::: A/B.C

Output:

A

The replacement string {/.} can be changed with --basenameextensionreplace/--bner:

parallel --basenameextensionreplace ,, echo ,, ::: A/B.C

Output:

B

28

GNU Parallel 2018 5 Build the command line

The replacement string {#} can be changed with --seqreplace:

parallel --seqreplace ,, echo ,, ::: A B C

Output (the order may be different):

1
2
3

The replacement string {%} can be changed with --slotreplace:

parallel -j2 --slotreplace ,, echo ,, ::: A B C

Output (the order may be different and 1 and 2 may be swapped):

1
2
1

5.2.3 Perl expression replacement string

When predefined replacement strings are not flexible enough a perl expression can be used

instead. One example is to remove two extensions: foo.tar.gz becomes foo

parallel echo '{= s:\.[^.]+$::;s:\.[^.]+$::; =}' ::: foo.tar.gz

Output:

foo

5.2.3.1 Functions for perl expression replacement strings

In {= =} you can access all of GNU Parallel's internal functions and variables. A few are worth

mentioning.

total_jobs() returns the total number of jobs:

parallel echo Job {#} of {= '$_=total_jobs()' =} ::: {1..5}

Output:

Job 1 of 5
Job 2 of 5
Job 3 of 5
Job 4 of 5
Job 5 of 5

slot() returns the job slot:

parallel -j2 echo The job slot is {%} = {= '$_=slot()' =} ::: {1..5}

Output:

29

5 Build the command line GNU Parallel 2018

The job slot is 1 = 1
The job slot is 2 = 2
The job slot is 1 = 1
The job slot is 2 = 2
The job slot is 1 = 1

seq() returns the sequence number of the job:

parallel echo Job {#} = {= '$_=seq()' =} ::: a b c

Output:

Job 1 = 1
Job 2 = 2
Job 3 = 3

Q(...) shell quotes the string:

parallel echo {} shell quoted is {= '$_=Q($_)' =} ::: '*/!#$'

Output:

*/!#$ shell quoted is */\!\#\$

pQ(...) perl quotes the string, which is useful if the replacement string is used as part of a

Perl string, and you do not want Perl to do string substitution on it:

echo '@a' | parallel -q perl -e 'print "{= $_=pQ($_); =}\n"'

Output:

@a

skip() skips the job:

parallel echo {= 'if($_==3) { skip() }' =} ::: {1..5}

Output:

1
2
4
5

@arg contains the input source variables:

parallel echo {= 'if($arg[1]==$arg[2]) { skip() }' =} \
 ::: {1..3} ::: {1..3}

Output:

1 2
1 3
2 1
2 3
3 1

30

GNU Parallel 2018 5 Build the command line

3 2

If the strings {= and =} cause problems they can be replaced with --parens:

parallel --parens ,,,, echo ',, s:\.[^.]+$::;s:\.[^.]+$::; ,,' \
 ::: foo.tar.gz

Output:

foo

To define a shorthand replacement string use --rpl:

parallel --rpl '.. s:\.[^.]+$::;s:\.[^.]+$::;' echo '..' \
 ::: foo.tar.gz

Output: Same as above.

GNU Parallel's 7 replacement strings are implemented as this:

Replacement string Code

{}

{.} s:\.[^/.]+$::

{/} s:.*/::

{//}
$Global::use{"File::Basename"} ||=

eval "use File::Basename; 1;"; $_ = dirname($_);

{/.} s:.*/::; s:\.[^/.]+$::;

{#} $_=$job->seq()

{%} $_=$job->slot()

5.2.4 Dynamic replacement strings

If the shorthand contains matching parenthesis the replacement string becomes a dynamic

replacement string and the string in the parenthesis can be accessed as $$1. If there are

multiple matching parenthesis, the matched strings can be accessed using $$2, $$3 and so

on.

You can think of this as giving arguments to the replacement string. Here we give the

argument .tar.gz to the replacement string {%string} which removes string:

parallel --rpl '{%(.+?)} s/$$1$//;' echo {%.tar.gz}.zip ::: foo.tar.gz

Output:

31

5 Build the command line GNU Parallel 2018

foo.zip

Here we give the two arguments tar.gz and zip to the replacement string

{/string1/string2} which replaces string1 with string2:

parallel --rpl '{/(.+?)/(.*?)} s/$$1/$$2/;' echo {/tar.gz/zip} \
 ::: foo.tar.gz

Output:

foo.zip

5.2.5 Positional replacement strings

With multiple input sources the argument from the individual input sources can be accessed with

{number}:

parallel echo {1} and {2} ::: A B ::: C D

Output (the order may be different):

A and C
A and D
B and C
B and D

The positional replacement strings can also be modified using /, //, /., and ..

Replacement string Value

{3} mydir/mysubdir/myfile.myext

{3.} mydir/mysubdir/myfile

{3/} myfile.myext

{3//} mydir/mysubdir

{3/.} myfile

Like this:

parallel echo /={1/} //={1//} /.={1/.} .={1.} ::: A/B.C D/E.F

Output (the order may be different):

/=B.C //=A /.=B .=A/B
/=E.F //=D /.=E .=D/E

If a position is negative, it will refer to the input source counted from behind:

parallel echo 1={1} 2={2} 3={3} -1={-1} -2={-2} -3={-3} \
 ::: A B ::: C D ::: E F

32

GNU Parallel 2018 5 Build the command line

Output (the order may be different):

1=A 2=C 3=E -1=E -2=C -3=A
1=A 2=C 3=F -1=F -2=C -3=A
1=A 2=D 3=E -1=E -2=D -3=A
1=A 2=D 3=F -1=F -2=D -3=A
1=B 2=C 3=E -1=E -2=C -3=B
1=B 2=C 3=F -1=F -2=C -3=B
1=B 2=D 3=E -1=E -2=D -3=B
1=B 2=D 3=F -1=F -2=D -3=B

5.2.6 Positional perl expression replacement string

To use a perl expression as a positional replacement string simply prepend the perl expression
with number and space:

parallel echo '{=2 s:\.[^.]+$::;s:\.[^.]+$::; =} {1}' \
 ::: bar ::: foo.tar.gz

Output:

foo bar

If a shorthand defined using --rpl starts with { it can be used as a positional replacement

string, too:

parallel --rpl '{..} s:\.[^.]+$::;s:\.[^.]+$::;' echo {2..} {1} \
 ::: bar ::: foo.tar.gz

Output: Same as above.

5.2.7 Input from columns

The columns in a file can be bound to positional replacement strings using --colsep. Here the

columns are separated by TAB (\t):

parallel --colsep '\t' echo 1={1} 2={2} :::: tsv-file.tsv

Output (the order may be different):

1=f1 2=f2
1=A 2=B
1=C 2=D

5.2.8 Header defined replacement strings

With --header GNU Parallel will use the first value of the input source as the name of the

replacement string. Only the non-modified version {} is supported:

33

5 Build the command line GNU Parallel 2018

parallel --header : echo f1={f1} f2={f2} ::: f1 A B ::: f2 C D

Output (the order may be different):

f1=A f2=C
f1=A f2=D
f1=B f2=C
f1=B f2=D

It is useful with --colsep for processing files with TAB separated values:

parallel --header : --colsep '\t' echo f1={f1} f2={f2} \
 :::: tsv-file.tsv

Output (the order may be different):

f1=A f2=B
f1=C f2=D

5.2.9 More pre-defined replacement strings with --plus

--plus adds the replacement strings {+/} {+.} {+..} {+...} {..} {...} {/..}

{/...} {##}. The idea being that {+foo} matches the opposite of {foo} and {} = {+/}/

{/} = {.}.{+.} = {+/}/{/.}.{+.} = {..}.{+..} = {+/}/{/..}.{+..} = {...}.{+...}

= {+/}/{/...}.{+...}.

parallel --plus echo {} ::: dir/sub/file.ex1.ex2.ex3
parallel --plus echo {+/}/{/} ::: dir/sub/file.ex1.ex2.ex3
parallel --plus echo {.}.{+.} ::: dir/sub/file.ex1.ex2.ex3
parallel --plus echo {+/}/{/.}.{+.} ::: dir/sub/file.ex1.ex2.ex3
parallel --plus echo {..}.{+..} ::: dir/sub/file.ex1.ex2.ex3
parallel --plus echo {+/}/{/..}.{+..} ::: dir/sub/file.ex1.ex2.ex3
parallel --plus echo {...}.{+...} ::: dir/sub/file.ex1.ex2.ex3
parallel --plus echo {+/}/{/...}.{+...} ::: dir/sub/file.ex1.ex2.ex3

Output:

dir/sub/file.ex1.ex2.ex3

{##} is the total number of jobs:

parallel --plus echo Job {#} of {##} ::: {1..5}

Output:

Job 1 of 5
Job 2 of 5
Job 3 of 5
Job 4 of 5
Job 5 of 5

34

GNU Parallel 2018 5 Build the command line

5.2.10 Dynamic replacement strings with --plus

--plus also defines these dynamic replacement strings:

Replacement string Value Bash inspiration

{:-string} Default value is string if the argument
is empty.

${myvar:-myval}

{:number} Substring from number till end of
string.

${myvar:2}

{:number1:number2} Substring from number1 to number2. ${myvar:2:3}

{#string} If the argument starts with string,
remove it.

${myvar#bc}

{%string} If the argument ends with string,
remove it.

${myvar%de}

{/string1/string2} Replace string1 with string2. ${myvar/def/ghi}

{^string}
If the argument starts with string,
upper case it. string must be a single
letter.

${myvar^a}

{^^string} If the argument contains string, upper
case it. string must be a single letter.

${myvar^^a}

{,string} If the argument starts with string, lower
case it. string must be a single letter.

${myvar,A}

{,,string} If the argument contains string, lower
case it. string must be a single letter.

${myvar,,A}

They are inspired from Bash:

unset myvar
echo ${myvar:-myval}
parallel --plus echo {:-myval} ::: "$myvar"

myvar=abcAaAdef
echo ${myvar:2}
parallel --plus echo {:2} ::: "$myvar"

echo ${myvar:2:3}
parallel --plus echo {:2:3} ::: "$myvar"

echo ${myvar#bc}
parallel --plus echo {#bc} ::: "$myvar"
echo ${myvar#abc}
parallel --plus echo {#abc} ::: "$myvar"

35

5 Build the command line GNU Parallel 2018

echo ${myvar%de}
parallel --plus echo {%de} ::: "$myvar"
echo ${myvar%def}
parallel --plus echo {%def} ::: "$myvar"

echo ${myvar/def/ghi}
parallel --plus echo {/def/ghi} ::: "$myvar"

echo ${myvar^a}
parallel --plus echo {^a} ::: "$myvar"
echo ${myvar^^a}
parallel --plus echo {^^a} ::: "$myvar"

myvar=AbcAaAdef
echo ${myvar,A}
parallel --plus echo '{,A}' ::: "$myvar"
echo ${myvar,,A}
parallel --plus echo '{,,A}' ::: "$myvar"

Output:

myval
myval
cAaAdef
cAaAdef
cAa
cAa
abcAaAdef
abcAaAdef
AaAdef
AaAdef
abcAaAdef
abcAaAdef
abcAaA
abcAaA
abcAaAghi
abcAaAghi
AbcAaAdef
AbcAaAdef
AbcAAAdef
AbcAAAdef
abcAaAdef
abcAaAdef
abcaaadef
abcaaadef

5.3 Insert more than one argument

With --xargs GNU Parallel will fit as many arguments as possible on a single line:

cat num30000 | parallel --xargs 'echo {} | wc -w'

36

GNU Parallel 2018 5 Build the command line

Output (number of arguments can differ a some):

6309
23691

The 30000 arguments fit in 2 command lines: 23691 arguments for the first command and 6309
for the second.

The maximal length of a single line can be set with -s. With a maximal line length of 30000

chars, 6 commands will be run with around 5000 arguments for each command:

cat num30000 | parallel --xargs -s 30000 'echo {} | wc -w'

Output (number of arguments can differ some):

6218
4997
5628
4997
4997
3163

For better parallelism, GNU Parallel can distribute the arguments between all the parallel jobs
when end-of-file is met.

Below GNU Parallel reads the last argument when generating the second job. When GNU
Parallel reads the last argument, it spreads all the arguments for the second job over 4 jobs
instead, as 4 parallel jobs are requested.

Using -m the first job will be the same as the --xargs example above, but the second job will

be split into 4 evenly sized jobs, resulting in a total of 5 jobs:

cat num30000 | parallel -j 4 -m 'echo {} | wc -w'

Output (if you run this under Bash on GNU/Linux):

23691
1578
1578
1578
1575

This is even more visible when running 4 jobs with 10 arguments. The 10 arguments are being
spread over 4 jobs:

parallel --jobs 4 -m echo ::: 1 2 3 4 5 6 7 8 9 10

Output:

37

5 Build the command line GNU Parallel 2018

1 2 3
4 5 6
7 8 9
10

A replacement string can be part of a word. -m will not repeat the context, that touches the

replacement string:

parallel --jobs 4 -m echo pre-{}-post ::: A B C D E F G

Output (the order may be different):

pre-A B-post
pre-C D-post
pre-E F-post
pre-G-post

To repeat the context use -X which otherwise works like -m:

parallel --jobs 4 -X echo pre-{}-post ::: A B C D E F G

Output (the order may be different):

pre-A-post pre-B-post
pre-C-post pre-D-post
pre-E-post pre-F-post
pre-G-post

To limit the number of arguments use -N:

parallel -N3 echo ::: A B C D E F G H

Output (the order may be different):

A B C
D E F
G H

-N also sets the positional replacement strings:

parallel -N3 echo 1={1} 2={2} 3={3} ::: A B C D E F G H

Output (the order may be different):

1=A 2=B 3=C
1=D 2=E 3=F
1=G 2=H 3=

-N0 reads 1 argument but inserts none:

parallel -N0 echo foo ::: 1 2 3

Output:

foo
foo

38

GNU Parallel 2018 5 Build the command line

foo

This is useful for running the same command multiple times in parallel.

5.4 Quote the command line

Command lines that contain special characters may need to be protected from the shell.

The perl program print "@ARGV\n" basically works like echo.

perl -e 'print "@ARGV\n"' A

Output:

A

To run that in parallel the command needs to be quoted:

parallel perl -e 'print "@ARGV\n"' ::: This wont work

Output:

[Nothing – it did not work]

To quote the command use -q:

parallel -q perl -e 'print "@ARGV\n"' ::: This works

Output (the order may be different):

This
works

Or you can quote the critical part using \':

parallel perl -e \''print "@ARGV\n"'\' ::: This works, too

Output (the order may be different):

This
works,
too

GNU Parallel can also \-quote full lines. Simply run this:

parallel --shellquote
Warning: Input is read from the terminal. You either know what you
Warning: are doing (in which case: YOU ARE AWESOME!) or you forgot
Warning: ::: or :::: or to pipe data into parallel. If so
Warning: consider going through the tutorial: man parallel_tutorial
Warning: Press CTRL-D to exit.
perl -e 'print "@ARGV\n"'
[CTRL-D]

39

5 Build the command line GNU Parallel 2018

Output:

perl\ -e\ \'print\ \"@ARGV\\n\"\'

This can then be used as the command:

parallel perl\ -e\ \'print\ \"@ARGV\\n\"\' ::: This also works

Output (the order may be different):

This
also
works

5.5 Trim space from arguments

Space can be trimmed on the arguments using --trim:

parallel --trim r echo pre-{}-post ::: ' A '

Output:

pre- A-post

To trim on the left side:

parallel --trim l echo pre-{}-post ::: ' A '

Output:

pre-A -post

To trim on both sides:

parallel --trim lr echo pre-{}-post ::: ' A '

Output:

pre-A-post

5.6 Respect the shell

This tutorial uses Bash as the shell. GNU Parallel respects which shell you are using, so in zsh

you can do:

parallel echo \={} ::: zsh bash ls

Output:

/usr/bin/zsh
/bin/bash
/bin/ls

40

GNU Parallel 2018 5 Build the command line

In csh you can do:

parallel 'set a="{}"; if({ test -d "$a" }) echo "$a is a dir"' ::: *

Output:

[somedir] is a dir

This also becomes useful if you use GNU Parallel in a shell script: GNU Parallel will use the
same shell as the shell script.

41

6
Control the output

After analyzing the requirements
I'll re-implement whatever distributed system you got

with postgres, cron, and gnu parallel (ง -)'' '' ง
-- david karapetyan kontrol_theory@twitter

GNU Parallel normally prints the output from a job when it is done.

6.1 Tag output

The output can be prefixed with the argument:

parallel --tag echo foo-{} ::: A B C

Output (the order may be different):

A foo-A
B foo-B
C foo-C

--tag is a shorthand for --tagstring {}. To prefix it with another string use

--tagstring:

parallel --tagstring {}-bar echo foo-{} ::: A B C

Output (the order may be different):

A-bar foo-A
B-bar foo-B
C-bar foo-C

43

6 Control the output GNU Parallel 2018

6.2 See what is being run

To see what commands will be run without running them use --dryrun:

parallel --dryrun echo {} ::: A B C

Output (the order may be different):

echo A
echo B
echo C

To print the command before running them use --verbose:

parallel --verbose echo {} ::: A B C

Output (the order may be different):

echo A
echo B
A
echo C
B
C

This, however, is only half the truth. For further details see 8.8.

6.3 Force same order as input

This function:

half_line_print() {
 printf "%s-start\n%s" $1 $1
 sleep $1
 printf "%s\n" -middle
 echo $1-end
}
export -f half_line_print

takes a number (#) as argument. It prints a full line ‘#-start’ followed by half a line ‘#’. Then it
sleeps for # seconds, before it prints ‘-middle’ followed by ‘#-end’.

To force the output in the same order as the arguments use --keep-order/-k:

parallel -j2 -k half_line_print ::: 4 2 1

Output:

4-start
4-middle
4-end

44

GNU Parallel 2018 6 Control the output

2-start
2-middle
2-end
1-start
1-middle
1-end

6.4 Output before jobs complete

GNU Parallel will postpone the output until the command completes:

parallel -j2 half_line_print ::: 4 2 1

Output:

2-start
2-middle
2-end
1-start
1-middle
1-end
4-start
4-middle
4-end

This is because --group is the default. To get the output immediately use --ungroup/-u:

parallel -j2 --ungroup half_line_print ::: 4 2 1

Output:

4-start
42-start
2-middle
2-end
1-start
1-middle
1-end
-middle
4-end

--ungroup is fast, but it disables --tag and can cause half a line from one job to be mixed

with half a line of another job. That has happened in the second line, where the line '4-middle' is
mixed with '2-start'.

To avoid this use --linebuffer which only outputs full lines:

parallel -j2 --linebuffer half_line_print ::: 4 2 1

Output:

4-start

45

6 Control the output GNU Parallel 2018

2-start
2-middle
2-end
1-start
1-middle
1-end
4-middle
4-end

With --keep-order --line-buffer GNU Parallel will continuously output lines from the

first job until it finishes, then GNU Parallel will continuously output lines from the second job
while that is running. It will buffer full lines, but the output from different jobs will not mix.

Compare:

parallel -j4 'echo {}-a;sleep {};echo {}-b' ::: 1 3 2 4

Output:

1-a
1-b
2-a
2-b
3-a
3-b
4-a
4-b

To:

parallel -j4 --line-buffer 'echo {}-a;sleep {};echo {}-b' ::: 1 3 2 4

Output:

2-a
3-a
1-a
4-a
1-b
2-b
3-b
4-b

And:

parallel -j4 -k --line-buffer 'echo {}-a;sleep {};echo {}-b' ::: 1 3 2 4

Output:

1-a
1-b
3-a
3-b
2-a

46

GNU Parallel 2018 6 Control the output

2-b
4-a
4-b

6.4.1 Buffer on disk

GNU Parallel buffers output in temporary files. If a program has more output than there is free

disk space, the disk will fill when using --group or --line-buffer --keep-order. This

does not apply when using --line-buffer without --keep-order (which buffers a single

line in RAM) and --ungroup (which does not buffer).

6.5 Save output into files

GNU Parallel can save the output of each job into files:

parallel --files echo ::: A B C

Output will be similar to this:

/tmp/pAh6uWuQCg.par
/tmp/opjhZCzAX4.par
/tmp/W0AT_Rph2o.par

By default GNU Parallel will cache the output in files in /tmp. This can be changed by setting

$TMPDIR or --tmpdir:

parallel --tmpdir /var/tmp --files echo ::: A B C

Output will be similar to this:

/var/tmp/N_vk7phQRc.par
/var/tmp/7zA4Ccf3wZ.par
/var/tmp/Liuka_2LP.par

Or:

TMPDIR=/var/tmp parallel --files echo ::: A B C

Output: Same as above.

The output files can be saved in a structured way using --results:

parallel --results outdir echo ::: A B C

Output:

A
B
C

47

6 Control the output GNU Parallel 2018

These files were also generated containing the standard output (stdout), standard error (stderr),
and the sequence number (seq):

outdir/1/A/seq
outdir/1/A/stderr
outdir/1/A/stout
outdir/1/B/seq
outdir/1/B/stderr
outdir/1/B/stdout
outdir/1/C/seq
outdir/1/C/stderr
outdir/1/C/stdout

--header : will take the first value as name and use that in the directory structure. This is

useful if you are using multiple input sources:

parallel --header : --results outdir echo ::: f1 A B ::: f2 C D

Generated files:

outdir/f1/A/f2/C/seq
outdir/f1/A/f2/C/stderr
outdir/f1/A/f2/C/stdout
outdir/f1/A/f2/D/seq
outdir/f1/A/f2/D/stderr
outdir/f1/A/f2/D/stdout
outdir/f1/B/f2/C/seq
outdir/f1/B/f2/C/stderr
outdir/f1/B/f2/C/stdout
outdir/f1/B/f2/D/seq
outdir/f1/B/f2/D/stderr
outdir/f1/B/f2/D/stdout

The directories are named after the variables and their values.

If the argument for --results contains a replacement string, stdout will be saved in that

name:

parallel --results my{1}-{2}.out echo ::: A B ::: C D

Generated files:

myA-C.out
myA-D.out
myB-C.out
myB-D.out

If the argument for --results contains a replacement string and ends in /, output will be

saved in a dir of that name:

parallel --results my{1}-{2}-dir/ echo ::: A B ::: C D

Generated files:

48

GNU Parallel 2018 6 Control the output

myA-C-dir/stderr
myA-C-dir/seq
myA-C-dir/stdout
myA-D-dir/stderr
myA-D-dir/seq
myA-D-dir/stdout
myB-C-dir/stderr
myB-C-dir/seq
myB-C-dir/stdout
myB-D-dir/stderr
myB-D-dir/seq
myB-D-dir/stdout

6.6 Save to CSV/TSV

Many programs support files with Comma Separated Values/Tab Separated Values. GNU

Parallel is no exception. If the argument for --results ends in .csv or .tsv the output will be a

CSV/TSV file.

parallel --results my.csv echo ::: A B ::: C D

Content of my.csv:

Seq,Host,Starttime,JobRuntime,Send,Receive,Exitval,Signal,Command,V1,V2,St
dout,Stderr
1,:,1519688383.281,0.007,0,4,0,0,"echo A C",A,C,"A C
",
2,:,1519688383.283,0.006,0,4,0,0,"echo A D",A,D,"A D
",
3,:,1519688383.285,0.003,0,4,0,0,"echo B C",B,C,"B C
",
4,:,1519688383.287,0.002,0,4,0,0,"echo B D",B,D,"B D
",

This is faster than 6.7.1 CSV as SQL base.

6.7 Save to an SQL base

GNU Parallel can save into an SQL base. Point GNU Parallel to a table and it will put the
joblog there together with the variables and the output each in their own column.

6.7.1 CSV as SQL base

The simplest is to use a CSV file as the storage table:

parallel --sqlandworker csv:////%2Ftmp%2Flog.csv \

49

6 Control the output GNU Parallel 2018

 seq ::: 10 ::: 12 13 14
cat /tmp/log.csv

Note how '/' in the path must be written as %2F.

Output will be similar to:

Seq,Host,Starttime,JobRuntime,Send,Receive,Exitval,_Signal,
Command,V1,V2,Stdout,Stderr
1,:,1458254498.254,0.069,0,9,0,0,"seq 10 12",10,12,"10
11
12
",
2,:,1458254498.278,0.080,0,12,0,0,"seq 10 13",10,13,"10
11
12
13
",
3,:,1458254498.301,0.083,0,15,0,0,"seq 10 14",10,14,"10
11
12
13
14
",

The first columns are well known from --joblog (see 7.7 Logfile). V1 and V2 are data from

the input sources. Stdout and Stderr are standard output and standard error, respectively.

A proper CSV reader (like LibreOffice Calc or R's read.csv command) will read this format

correctly - even with fields containing newlines as above.

If the output is big you may want to put it into files using --results. The CSV file will then

contain the file names:

parallel --results outdir --sqlandworker csv:////%2Ftmp%2Flog2.csv \
 seq ::: 10 ::: 12 13 14
cat /tmp/log2.csv

Output will be similar to:

Seq,Host,Starttime,JobRuntime,Send,Receive,Exitval,_Signal,
Command,V1,V2,Stdout,Stderr
1,:,1458824738.287,0.029,0,9,0,0,
"seq 10 12",10,12,outdir/1/10/2/12/stdout,outdir/1/10/2/12/stderr
2,:,1458824738.298,0.025,0,12,0,0,
"seq 10 13",10,13,outdir/1/10/2/13/stdout,outdir/1/10/2/13/stderr
3,:,1458824738.309,0.026,0,15,0,0,
"seq 10 14",10,14,outdir/1/10/2/14/stdout,outdir/1/10/2/14/stderr

50

GNU Parallel 2018 6 Control the output

6.7.2 DBURL as table

The CSV file is an example of a DBURL.

GNU Parallel uses a DBURL to address the table. A DBURL has this format:

vendor://[[user][:password]@][host][:port]/[database[/table]

Example:

mysql://scott:tiger@my.example.com/mydatabase/mytable
postgresql://scott:tiger@pg.example.com/mydatabase/mytable
sqlite3:///%2Ftmp%2Fmydatabase/mytable
csv:////%2Ftmp%2Flog.csv

To refer to /tmp/mydatabase with sqlite or csv you need to encode the / as %2F.

Run a job using sqlite on mytable in /tmp/mydatabase:

DBURL=sqlite3:///%2Ftmp%2Fmydatabase
DBURLTABLE=$DBURL/mytable
parallel --sqlandworker $DBURLTABLE echo ::: foo bar ::: baz quux

To see the result:

sql $DBURL 'SELECT * FROM mytable ORDER BY Seq;'

Output will be similar to:

Seq|Host|Starttime|JobRuntime|Send|Receive|Exitval|_Signal|
Command|V1|V2|Stdout|Stderr
1|:|1451619638.903|0.806||8|0|0|echo foo baz|foo|baz|foo baz
|
2|:|1451619639.265|1.54||9|0|0|echo foo quux|foo|quux|foo quux
|
3|:|1451619640.378|1.43||8|0|0|echo bar baz|bar|baz|bar baz
|
4|:|1451619641.473|0.958||9|0|0|echo bar quux|bar|quux|bar quux
|

6.7.3 Use multiple workers

Using an SQL base as storage costs overhead in the order of 1 second per job.

One of the situations where this makes sense is if you have multiple workers.

You can then have a single master machine that submits jobs to the SQL base (but which
does not do any of the work):

parallel --sqlmaster $DBURLTABLE echo ::: foo bar ::: baz quux

51

6 Control the output GNU Parallel 2018

On the worker machines, you run exactly the same command except you replace

--sqlmaster with --sqlworker.

parallel --sqlworker $DBURLTABLE echo ::: foo bar ::: baz quux

To run a master and a worker on the same machine use --sqlandworker as shown earlier.

The --sqlmaster will exit as soon as the jobs are put into the database, unless --wait is

specified. This will make the --sqlmaster wait for all the jobs to complete before exiting.

The --sqlworker will exit when all jobs in the database is finished.

You can add more jobs to an existing table by prepending the DBURLTABLE with +:

parallel --sqlmaster +$DBURLTABLE echo ::: foo2 bar2 ::: baz2 quux2

6.8 Save output to shell variables

GNU Parset will set shell variables to the output of GNU Parallel. GNU Parset has one
important limitation: It cannot be part of a pipe. In particular, this means it cannot read anything
from standard input (stdin) or pipe output to another program.

GNU Parset is a shell function. You active it by running:

env_parallel --install

After which you start a new shell

Parset is supported for bash, dash, ash, sh, ksh, and zsh.

To use parset put the destination variables before the normal GNU Parallel options and

command:

parset myvar1,myvar2 -j2 echo ::: a b
echo $myvar1
echo $myvar2

Output:

a
b

If you only give a single variable, it will be treated as an array:

parset myarray seq {} 5 ::: 1 2 3
echo "${myarray[1]}"

Output:

52

GNU Parallel 2018 6 Control the output

2
3
4
5

The commands to run can be an array:

cmd=("echo '<<Joe \"double space\" cartoon>>'" "pwd")
parset data -j2 ::: "${cmd[@]}"
echo "${data[0]}"
echo "${data[1]}"

Output:

<<Joe "double space" cartoon>>
[current dir]

6.8.1 Do not read from a pipe

GNU Parset cannot read from a pipe. This is because parset would then be started in a

subshell and thus the output would not be seen in the starting shell. There are several
workarounds for that.

6.8.1.1 Use a temporary file

Instead of reading directly from a pipe, save the output to a file and let parset read from

that.

seq 3 > parallel_input
parset res1,res2,res3 echo :::: parallel_input
echo "$res1"
echo "$res2"
echo "$res3"
rm parallel_input

6.8.1.2 Use process substitution

If your shell supports process substitution (Bash, Zsh, and Ksh all do), then you can use that.

parset res echo :::: <(seq 100)
echo "${res[1]}"
echo "${res[99]}"

6.8.1.3 Use a FIFO

If the amount of data is big or you need GNU Parset to start reading before all output is
generated, then using a FIFO might be an option.

53

6 Control the output GNU Parallel 2018

mkfifo input_fifo
seq 3 > input_fifo &
parset res1,res2,res3 echo :::: input_fifo
echo "$res1"
echo "$res2"
echo "$res3"
rm input_fifo

6.8.2 env_parset

env_parset will do the same as parset but uses env_parallel (see 8.7 Transfer

environment variables and functions) instead of parallel, so you will have access to

aliases, unexported functions, and unexported variables.

54

7
Control the execution

So, you don't know you can use GNU parallel for most of your tasks/process/scripts
and still call yourself a DevOps Engineer?

Nice
-- Esparta Palma esparta@twitter

GNU Parallel will start one job per CPU core in parallel and finish when all jobs are done.

You will need the test files from chapter 3.

7.1 Number of simultaneous jobs

The number of concurrent jobs is given with --jobs/-j (-N0 reads a single argument, but

inserts none – so this runs sleep 1 many times in parallel):

/usr/bin/time parallel -N0 -j64 sleep 1 :::: num128

With 64 jobs in parallel, the 128 sleeps will take 2-8 seconds to run - depending on how fast

your machine is.

By default --jobs is the same as the number of CPU cores. So this:

/usr/bin/time parallel -N0 sleep 1 :::: num128

should take twice the time of running 2 jobs per CPU core:

/usr/bin/time parallel -N0 --jobs 200% sleep 1 :::: num128

--jobs 0 will run as many jobs in parallel as possible:

/usr/bin/time parallel -N0 --jobs 0 sleep 1 :::: num128

55

7 Control the execution GNU Parallel 2018

which should take 1-7 seconds depending on how fast your machine is.

--jobs can read from a file which is re-read when a job finishes:

echo 50% > my_jobs
/usr/bin/time parallel -N0 --jobs my_jobs sleep 1 :::: num128 &
sleep 1
echo 0 > my_jobs
wait

GNU Parallel will read my_jobs when starting. It contains 50%, so GNU Parallel will compute

50% of the number of cores and start this many jobs in parallel.

Because of the & GNU Parallel will be started in the background.

After one second 0 is put into my_jobs. When a job finishes, GNU Parallel re-reads my_jobs,

and then GNU Parallel starts as many jobs as possible.

Instead of basing the percentage on the number of CPU cores GNU Parallel can base it on the
number of CPUs:

parallel --use-cpus-instead-of-cores -N0 sleep 1 :::: num8

7.2 Shuffle job order

If you have many jobs (e.g. by multiple combinations of input sources), it can be handy to

shuffle the jobs, so you get different values run first. Use --shuf for that:

parallel --shuf echo ::: 1 2 3 ::: a b c ::: A B C

Output:

All combinations but different order for each run.

7.3 Interactivity

GNU Parallel can ask the user if a command should be run using --interactive:

parallel --interactive echo ::: 1 2 3

Output:

echo 1 ?...y
echo 2 ?...n
1
echo 3 ?...y

56

GNU Parallel 2018 7 Control the execution

3

GNU Parallel can be used to put arguments on the command line for an interactive command

such as emacs to edit one file at a time:

parallel --tty emacs ::: file1 file2 file3

Or give multiple arguments in one go to open multiple files:

parallel -X --tty vi ::: file1 file2 file3

7.4 A terminal for every job

Using --tmux GNU Parallel can start a terminal for every job run:

seq 10 20 | parallel --tmux 'echo start {}; sleep {}; echo done {}'

This will tell you to run something similar to:

tmux -S /tmp/tmsrPrO0 attach

Using normal tmux keystrokes (CTRL-b n or CTRL-b p) you can cycle between windows of

the running jobs. When a job is finished it will pause for 10 seconds before closing the
window.

To have GNU Parallel open each job in its own pane use --tmuxpane. --fg will connect to

tmux immediately:

parallel --tmuxpane --fg \
 'echo start {}; sleep {}; echo done {}' ::: 10 11 12 13 14 15 16 17

7.5 Timing

Some jobs do heavy I/O when they start. To avoid a thundering herd GNU Parallel can delay

starting new jobs. --delay X will make sure there is at least X seconds between each start:

parallel --delay 2.5 echo Starting {}\;date ::: 1 2 3

Output:

Starting 1
Thu Aug 15 16:24:33 CEST 2013
Starting 2
Thu Aug 15 16:24:35 CEST 2013
Starting 3
Thu Aug 15 16:24:38 CEST 2013

57

7 Control the execution GNU Parallel 2018

If jobs taking more than a certain amount of time are known to fail, they can be stopped with

--timeout. The accuracy of --timeout is 2 seconds. --timeout 100000 can be written as

--timeout 1d3.5h16.6m4s.

parallel --timeout 4.1 sleep {}\; echo {} ::: 2 4 6 8

Output:

2
4

GNU Parallel can compute the median runtime for jobs and kill those that take more than 200%
of the median runtime:

parallel --timeout 200% sleep {}\; echo {} ::: 2.1 2.2 3 7 2.3

Output:

2.1
2.2
3
2.3

This is useful if you have a few jobs that run amok and take much longer than the rest of the
jobs.

7.6 Progress information

Based on the runtime of completed jobs GNU Parallel can estimate the total runtime:

parallel --eta sleep ::: 1 3 2 2 1 3 3 2 1

Output:

Computers / CPU cores / Max jobs to run
1:local / 2 / 2

Computer:jobs running/jobs completed/%of started jobs/
Average seconds to complete
ETA: 2s 0left 1.11avg local:0/9/100%/1.1s

GNU Parallel can give progress information with --progress:

parallel --progress sleep ::: 1 3 2 2 1 3 3 2 1

Output:

Computers / CPU cores / Max jobs to run
1:local / 2 / 2

Computer:jobs running/jobs completed/%of started jobs/

58

GNU Parallel 2018 7 Control the execution

Average seconds to complete
local:0/9/100%/1.1s

A progress bar can be shown with --bar:

parallel --bar sleep ::: 1 3 2 2 1 3 3 2 1

And a graphic bar can be shown with --bar and zenity:

seq 1000 | parallel -j10 --bar '(echo -n {};sleep 0.1)' \
 2> >(zenity --progress --auto-kill --auto-close)

7.7 Logfile

A log-file of the jobs completed so far can be generated with --joblog:

parallel --joblog /tmp/log exit ::: 1 2 3 0
cat /tmp/log

Output:

Seq Host Starttime Runtime Send Receive Exitval Signal Command
1 : 1376577364.974 0.008 0 0 1 0 exit 1
2 : 1376577364.982 0.013 0 0 2 0 exit 2
3 : 1376577364.990 0.013 0 0 3 0 exit 3
4 : 1376577365.003 0.003 0 0 0 0 exit 0

The log contains the job sequence, which host the job was run on, the start time and run time,
how much data was transferred, the exit value, the signal that killed the job, and finally the
command being run.

7.8 Resume jobs

With a joblog GNU Parallel can be stopped and later pickup where it left off. It is important that
the input of the completed jobs is unchanged.

parallel --joblog /tmp/log exit ::: 1 2 3 0
cat /tmp/log
parallel --resume --joblog /tmp/log exit ::: 1 2 3 0 0 0
cat /tmp/log

Output:

Seq Host Starttime Runtime Send Receive Exitval Signal Command
1 : 1376580069.544 0.008 0 0 1 0 exit 1
2 : 1376580069.552 0.009 0 0 2 0 exit 2
3 : 1376580069.560 0.012 0 0 3 0 exit 3
4 : 1376580069.571 0.005 0 0 0 0 exit 0

59

7 Control the execution GNU Parallel 2018

Seq Host Starttime Runtime Send Receive Exitval Signal Command
1 : 1376580069.544 0.008 0 0 1 0 exit 1
2 : 1376580069.552 0.009 0 0 2 0 exit 2
3 : 1376580069.560 0.012 0 0 3 0 exit 3
4 : 1376580069.571 0.005 0 0 0 0 exit 0
5 : 1376580070.028 0.009 0 0 0 0 exit 0
6 : 1376580070.038 0.007 0 0 0 0 exit 0

Note how the start time of the last 2 jobs is clearly different from the first run.

With --resume-failed GNU Parallel will re-run the jobs that failed:

parallel --resume-failed --joblog /tmp/log exit ::: 1 2 3 0 0 0
cat /tmp/log

Output:

Seq Host Starttime Runtime Send Receive Exitval Signal Command
1 : 1376580069.544 0.008 0 0 1 0 exit 1
2 : 1376580069.552 0.009 0 0 2 0 exit 2
3 : 1376580069.560 0.012 0 0 3 0 exit 3
4 : 1376580069.571 0.005 0 0 0 0 exit 0
5 : 1376580070.028 0.009 0 0 0 0 exit 0
6 : 1376580070.038 0.007 0 0 0 0 exit 0
1 : 1376580154.433 0.010 0 0 1 0 exit 1
2 : 1376580154.444 0.022 0 0 2 0 exit 2
3 : 1376580154.466 0.005 0 0 3 0 exit 3

Note how seq 1 2 3 have been repeated because they had exit value different from 0.

--retry-failed does almost the same as --resume-failed. Where --resume-

failed reads the commands from the command line (and ignores the commands in the

joblog), --retry-failed ignores the command line and reruns the commands mentioned

in the joblog.

parallel --retry-failed --joblog /tmp/log
cat /tmp/log

Output:

Seq Host Starttime Runtime Send Receive Exitval Signal Command
1 : 1376580069.544 0.008 0 0 1 0 exit 1
2 : 1376580069.552 0.009 0 0 2 0 exit 2
3 : 1376580069.560 0.012 0 0 3 0 exit 3
4 : 1376580069.571 0.005 0 0 0 0 exit 0
5 : 1376580070.028 0.009 0 0 0 0 exit 0
6 : 1376580070.038 0.007 0 0 0 0 exit 0
1 : 1376580154.433 0.010 0 0 1 0 exit 1
2 : 1376580154.444 0.022 0 0 2 0 exit 2
3 : 1376580154.466 0.005 0 0 3 0 exit 3
1 : 1376580164.633 0.010 0 0 1 0 exit 1
2 : 1376580164.644 0.022 0 0 2 0 exit 2

60

GNU Parallel 2018 7 Control the execution

3 : 1376580164.666 0.005 0 0 3 0 exit 3

7.9 Termination

7.9.1 Unconditional termination

By default GNU Parallel will wait for all jobs to finish before exiting.

If you send GNU Parallel the TERM signal, GNU Parallel will stop spawning new jobs and

wait for the remaining jobs to finish. If you send GNU Parallel the TERM signal again, GNU

Parallel will kill all running jobs and exit.

7.9.2 Termination dependent on job status

For certain jobs, there is no need to continue if one of the jobs fails and has an exit code

different from 0. GNU Parallel will stop spawning new jobs with --halt soon,fail=1:

parallel -j2 --halt soon,fail=1 echo {}\; exit {} ::: 0 0 1 2 3

Output:

0
0
1
parallel: This job failed:
echo 1; exit 1
parallel: Starting no more jobs. Waiting for 1 jobs to finish.
2

With --halt now,fail=1 the running jobs will be killed immediately:

parallel -j2 --halt now,fail=1 echo {}\; exit {} ::: 0 0 1 2 3

Output:

0
0
1
parallel: This job failed:
echo 1; exit 1

If --halt is given a percentage this percentage of the jobs must fail before GNU Parallel stops

spawning more jobs:

parallel -j2 --halt soon,fail=20% echo {}\; exit {} \
 ::: 0 1 2 3 4 5 6 7 8 9

61

7 Control the execution GNU Parallel 2018

Output:

0
1
parallel: This job failed:
echo 1; exit 1
2
parallel: This job failed:
echo 2; exit 2
parallel: Starting no more jobs. Waiting for 1 jobs to finish.
3
parallel: This job failed:
echo 3; exit 3

If you are looking for success instead of failures, you can use success. This will finish as soon

as the first job succeeds:

parallel -j2 --halt now,success=1 echo {}\; exit {} ::: 1 2 3 0 4 5 6

Output:

1
2
3
0
parallel: This job succeeded:
echo 0; exit 0

If you do not care about the exit value, but you just want the first 3 to complete, you can use
done=3:

parallel -j2 --halt now,done=3 sleep {}\;echo {}\; exit {} \
 ::: 1 2 3 0 4 5 6

Output:

parallel: This job finished:
sleep 1;echo 1; exit 1
2
parallel: This job finished:
sleep 2;echo 2; exit 2
0
parallel: This job finished:
sleep 0;echo 0; exit 0

7.10 Retry failing commands

GNU Parallel can retry the command with --retries. This is useful if a command fails for

unknown reasons now and then.

parallel -k --retries 3 \
 'echo tried {} >>/tmp/runs; echo completed {}; exit {}' ::: 1 2 0

62

GNU Parallel 2018 7 Control the execution

cat /tmp/runs

Output:

completed 1
completed 2
completed 0

tried 1
tried 2
tried 1
tried 2
tried 1
tried 2
tried 0

Note how job 1 and 2 were tried 3 times, but 0 was not retried because it had exit code 0.

When used with remote execution (see chapter 8 Remote execution) the job will be retried
on another server if possible.

7.10.1 Termination signals

Using --termseq you can control which signals are sent when killing children. Normally

children will be killed by sending them SIGTERM, waiting 200 ms, then another SIGTERM,

waiting 100 ms, then another SIGTERM, waiting 50 ms, then a SIGKILL, finally waiting 25

ms before giving up. It looks like this:

show_signals() {
 perl -e 'for(keys %SIG) {
 $SIG{$_} = eval "sub { print \"Got $_\\n\"; }";
 }
 while(1){sleep 1}'
}
export -f show_signals
echo | parallel --termseq TERM,200,TERM,100,TERM,50,KILL,25 \
 -u --timeout 1 show_signals

Output:

Got TERM
Got TERM
Got TERM

Or just:

echo | parallel -u --timeout 1 show_signals

Output: Same as above.

63

7 Control the execution GNU Parallel 2018

You can change this to SIGINT, SIGTERM, SIGKILL:

echo | parallel --termseq INT,200,TERM,100,KILL,25 \
 -u --timeout 1 show_signals

Output:

Got INT
Got TERM

The SIGKILL does not show because it cannot be caught, and thus the child dies.

7.11 Limit the resources

GNU Parallel can run the jobs with a nice value. This will work both locally and remotely.

parallel --nice 17 echo this is being run with nice -n ::: 17

Output:

this is being run with nice -n 17

To avoid overloading systems GNU Parallel can look at the system load before starting another
job:

parallel --load 100% echo load is less than {} job per CPU ::: 1

Output:

[when the load is less than the number of CPU cores]
load is less than 1 job per CPU

GNU Parallel can also check if the system is swapping.

parallel --noswap echo the system is not swapping ::: now

Output:

[when then system is not swapping]
the system is not swapping now

Some jobs need a lot of memory, and should only be started when there is enough memory free.

Using --memfree GNU Parallel can check if there is enough memory free. Additionally, GNU

Parallel will kill off the youngest job if the memory free falls below 50% of the size. The killed

job will put back on the queue and retried later if --retries is given.

parallel --memfree 1G --retries 5 echo More than 1 GB is ::: free

64

GNU Parallel 2018 7 Control the execution

7.11.1 Make your own limitation

With --limit you can make your own limitations like --memfree and --load. You just

need to make a program that returns:

Exit value Meaning

0 Below limit. Start another job.

1 Over limit. Start no jobs.

2 Way over limit. Kill the youngest job.

There are 3 predefined commands:

Command Meaning

io n
Limit for I/O. The amount of disk I/O will be computed as a value
0-100, where 0 is no I/O and 100 is at least one disk is 100%
saturated. n sets the limit of when io should return 1.

mem n Similar to --memfree

load n Similar to --load

Examples:

parallel --limit "io 10" echo ::: less than 10% disk I/O
parallel --limit "mem 10g" echo ::: more than 10G free
parallel --limit "load 3" echo ::: less than 3 procs running

65

8
Remote execution

I should start a consultancy that makes Hadoop clusters 100x faster
by replacing them with GNU parallel + gnutools

-- Chris Allen bitemyapp@twitter

GNU Parallel can run jobs on remote servers. It uses ssh to communicate with the remote
machines.

In the following, we assume you have access to 2 servers: $SERVER1 and $SERVER2:

SERVER1=server.example.com
SERVER2=server2.example.net

So you must be able to do this:

ssh $SERVER1 echo works
ssh $SERVER2 echo works

It can be setup by running

ssh-keygen -t dsa; ssh-copy-id $SERVER1; ssh-copy-id $SERVER2

and using an empty passphrase.

8.1 Sshlogin

The most basic sshlogin is -S host/--sshlogin host:

parallel --sshlogin $SERVER1 echo running on ::: server1

Output:

67

8 Remote execution GNU Parallel 2018

running on server1

To use a different username prepend the server with username@:

parallel -S username@$SERVER1 echo running on ::: username@server1

Output:

running on username@server1

The special sshlogin : is the local machine:

parallel -S : echo running on ::: the_local_machine

Output:

running on the_local_machine

8.1.1 SSH command to use

If ssh is not in $PATH it can be prepended to $SERVER1:

parallel -S '/usr/bin/ssh '$SERVER1 echo custom ::: ssh

Output:

custom ssh

The ssh command can also be given using --ssh:

parallel --ssh /usr/bin/ssh -S $SERVER1 echo custom ::: ssh

or by setting $PARALLEL_SSH:

export PARALLEL_SSH=/usr/bin/ssh
parallel -S $SERVER1 echo custom ::: ssh

8.1.2 Multiple servers

Several servers can be given using multiple -S:

parallel -S $SERVER1 -S $SERVER2 echo ::: running on more hosts

Output (the order may be different):

running
on
more
hosts

Or they can be separated by ,:

parallel -S $SERVER1,$SERVER2 echo ::: running on more hosts

68

GNU Parallel 2018 8 Remote execution

Output: Same as above.

Or newline:

This gives a \n between $SERVER1 and $SERVER2
SERVERS="`echo $SERVER1; echo $SERVER2`"
parallel -S "$SERVERS" echo ::: running on more hosts

They can also be read from a file (replace user@ with the user on $SERVER2):

echo $SERVER1 > nodefile
Force special ssh-command, username
echo /usr/bin/ssh user@$SERVER2 >> nodefile
parallel --sshloginfile nodefile echo ::: running on more hosts

Output: Same as above.

Every time a job finished, the --sshloginfile will be re-read, so it is possible to both add

and remove hosts while running.

The special --sshloginfile .. reads from ~/.parallel/sshloginfile.

To force GNU Parallel to treat a server having a given number of CPU cores prepend the

number of core followed by / to the sshlogin:

parallel -S 4/$SERVER1 echo force {} CPUs on server ::: 4

Output:

force 4 CPUs on server

8.1.3 Divide servers into groups

Servers can be put into groups by prepending @groupname to the server and the group can

then be selected by appending @groupname to the argument if using --hostgroup:

parallel --hostgroup -S @grp1/$SERVER1 -S @grp2/$SERVER2 echo {} \
 ::: run_on_grp1@grp1 run_on_grp2@grp2

Output:

run_on_grp1
run_on_grp2

A host can be in multiple groups by separating the groups with +, and you can force GNU

Parallel to limit the groups on which the command can be run with -S @groupname:

parallel -S @grp1 -S @grp1+grp2/$SERVER1 -S @grp2/$SERVER2 echo {} \
 ::: run_on_grp1 also_grp1

69

8 Remote execution GNU Parallel 2018

Output:

run_on_grp1
also_grp1

8.1.3.1 Host group defined by argument

The host group can also be defined by the argument by appending @ and the sshlogin to the

argument:

parallel --hostgroup echo {} \
 ::: run_on_server1@$SERVER1 run_on_server2@$SERVER2

Output:

run_on_server1
run_on_server2

8.2 Transfer files

GNU Parallel can transfer the files to be processed to the remote host. It does that with

--transferfile using rsync.

echo This is input_file > input_file
parallel -S $SERVER1 --transferfile {} cat ::: input_file

Output:

This is input_file

You can control the options to rsync with --rsync-opts or $PARALLEL_RSYNC_OPTS.

Default is: -rlDzR

If the files are processed into another file, the resulting file can be returned using --return:

echo This is input_file > input_file
parallel -S $SERVER1 --transferfile {} --return {}.out \
 cat {} ">"{}.out ::: input_file
cat input_file.out

Output: Same as above.

To remove the input and output file on the remote server use --cleanup:

echo This is input_file > input_file
parallel -S $SERVER1 --transferfile {} --return {}.out --cleanup \
 cat {} ">"{}.out ::: input_file
cat input_file.out

Output: Same as above.

70

GNU Parallel 2018 8 Remote execution

There is a shorthand for --transferfile {} --return foo --cleanup called --trc

foo:

echo This is input_file > input_file
parallel -S $SERVER1 --trc {}.out cat {} ">"{}.out ::: input_file
cat input_file.out

Output: Same as above.

Some jobs need a common database for all jobs. GNU Parallel can transfer that using

--basefile which will transfer the file before the first job:

echo common data > common_file
parallel --basefile common_file -S $SERVER1 \
 cat common_file\; echo {} ::: foo

Output:

common data
foo

To remove it from the remote host after the last job use --cleanup.

Because GNU Parallel uses rsync for the transferring, you can use /./ to specify which dir

you want the file to be relative to. This will transfer foo/bar/file to ~/bar/file on

$SERVER1:

parallel -S $server1 --transfer wc {//} ::: foo/./bar/file

If you set --workdir (see 8.3 Working dir) then the transfer will be relative to that dir.

8.3 Working dir

The default working dir on the remote machines is the login dir. This can be changed with

--workdir mydir.

Files transferred using --transferfile and --return will be relative to mydir on remote

computers, and the command will be executed in the dir mydir.

The special mydir value ... will create working dirs under ~/.parallel/tmp on the remote

computers. If --cleanup is given these dirs will be removed.

The special mydir value . uses the current working dir. If the current working dir is beneath

your home dir, the value . is treated as the relative path to your home dir. This means that if

71

8 Remote execution GNU Parallel 2018

your home dir is different on the remote computers (e.g. if your login is different) the relative
path will still be relative to your home dir.

parallel -S $SERVER1 pwd ::: ""
parallel --workdir . -S $SERVER1 pwd ::: ""
parallel --workdir ... -S $SERVER1 pwd ::: ""

Output:

[the login dir on $SERVER1]
[current dir relative on $SERVER1]
[a dir in ~/.parallel/tmp/...]

8.4 Avoid overloading sshd

If many jobs are started on the same server, sshd can be overloaded. GNU Parallel can

insert a delay between each job run on the same server:

parallel -S $SERVER1 --sshdelay 0.2 echo ::: 1 2 3

Output (the order may be different):

1
2
3

sshd will be less overloaded if using --controlmaster, which will multiplex ssh

connections:

parallel --controlmaster -S $SERVER1 echo ::: 1 2 3

Output: Same as above.

8.5 Ignore hosts that are down

In clusters with many hosts, a few of them are often down. GNU Parallel can ignore those
hosts. In this case, the host 173.194.32.46 is down:

parallel --filter-hosts -S 173.194.32.46,$SERVER1 echo ::: bar

Output:

bar

8.6 Run the same commands on all hosts

GNU Parallel can run the same command on all the hosts:

72

GNU Parallel 2018 8 Remote execution

parallel --onall -S $SERVER1,$SERVER2 echo ::: foo bar

Output (the order may be different):

foo
bar
foo
bar

Often you will just want to run a single command on all hosts without arguments. --nonall is

a no argument --onall:

parallel --nonall -S $SERVER1,$SERVER2 echo foo bar

Output:

foo bar
foo bar

When --tag is used with --nonall and --onall the --tagstring is the host:

parallel --nonall --tag -S $SERVER1,$SERVER2 echo foo bar

Output (the order may be different):

$SERVER1 foo bar
$SERVER2 foo bar

--jobs sets the number of servers to log in to in parallel.

8.7 Transfer environment variables and functions

env_parallel is a shell function that transfers all aliases, functions, variables, and arrays.

You active it by running:

source `which env_parallel.bash`

Replace bash with the shell you use.

Now you can use env_parallel instead of parallel and still have your environment:

alias myecho=echo
myvar="Joe's var is"
env_parallel -S $SERVER1 'myecho $myvar' ::: green

Output:

Joe's var is green

The disadvantage is that if your environment is huge env_parallel will fail.

73

8 Remote execution GNU Parallel 2018

If env_parallel fails, you can use --env to tell GNU Parallel which names to transfer to

the remote system:

MYVAR='foo bar'
env_parallel --env MYVAR -S $SERVER1 echo '$MYVAR' ::: baz

Output:

foo bar baz

This works for functions, too, if your shell is Bash:

This only works in Bash
my_func() {
 echo in my_func $1
}
env_parallel --env my_func -S $SERVER1 my_func ::: baz

Output:

in my_func baz

Instead of naming the variables individually, GNU Parallel can record defined names in a
clean shell and only transfer names that are not on that list. GNU Parallel records the names

to ignore in ~/.parallel/ignored_vars by running:

env_parallel –record-env
cat ~/.parallel/ignored_vars

Output:

[list of variables to ignore - including $PATH and $HOME]

You only need to do this once.

After this you can use --env _ to tell GNU Parallel to transfer every name that is not

ignored in ~/.parallel/ignored_vars:

foo_func() {
 foo_alias $foo_var functions, ${foo_array[*]} are all "$@"
}
foo_var='variables,'
foo_array=(and arrays)
alias foo_alias='echo aliases,'

env_parallel --env _ -S $SERVER1 foo_func ::: copied

Output:

aliases, variables, functions, and arrays are all copied

74

GNU Parallel 2018 8 Remote execution

8.8 Show what is actually run

--verbose will show the command that would be run on the local machine.

When using --nice, --pipepart, or when a job is run on a remote machine, the command is

wrapped with helper scripts. -vv shows all of this.

parallel -vv --pipepart --block 1M wc :::: num30000

Output:

<num30000 perl -e 'while(@ARGV) { sysseek(STDIN,shift,0) || die;
$left = shift; while($read = sysread(STDIN,$buf, ($left > 131072
? 131072 : $left))){ $left -= $read; syswrite(STDOUT,$buf); } }'
0 0 0 168894 | (wc)
30000 30000 168894

You will normally not need to understand the code, but if you get unexpected results, it can be
useful to know what is actually being run.

When the command gets more complex, the output is so hard to read, that it is only useful for
debugging:

my_func3() {
 echo in my_func $1 > $1.out
}
export -f my_func3
parallel -vv --workdir ... --nice 17 --env _ --trc {}.out \
 -S $SERVER1 my_func3 {} ::: abc-file

The output will be similar to:

[1 kb of gobbly goob]

75

9
Pipe mode

I continuously find myself forgetting about GNU parallel,
especially --pipe, which solves so many problems so elegantly

-- Andrew Montalenti amontalenti@twitter

Instead of putting values in a command template GNU Parallel can pass stdin (standard input) on
a pipe to commands.

The --pipe functionality puts GNU Parallel in a different mode: Instead of treating the data on

stdin (standard input) as arguments for a command to run, the data will be sent to stdin (standard
input) of the command.

The typical situation is:

command_A | command_B | command_C

where command_B is slow, and you want to speed up command_B by running many of these in

parallel.

You will need the test files from chapter 3.

9.1 Block size

By default, GNU Parallel will start an instance of command_B, read a block of 1 MB, find the

closest record, and pass that chunk to the instance. Then start another instance, read another
block, find the closest record, and pass that chunk to the second instance.

cat num1000000 | parallel --pipe wc

77

9 Pipe mode GNU Parallel 2018

Output (the order may be different):

165668 165668 1048571
149797 149797 1048579
149796 149796 1048572
149797 149797 1048579
149797 149797 1048579
149796 149796 1048572
 85349 85349 597444

The size of the chunk is not exactly 1 MB because GNU Parallel only passes full lines - never
half a line, thus the block size is only 1 MB on average. You can change the block size to 2 MB

with --block:

cat num1000000 | parallel --pipe --block 2M wc

Output (the order may be different):

315465 315465 2097150
299593 299593 2097151
299593 299593 2097151
 85349 85349 597444

GNU Parallel treats each line as a record. If the order of records is unimportant (e.g. you need

all lines processed, but you do not care which is processed first), then you can use --round-

robin. Without --round-robin GNU Parallel will start a command per block; with

--round-robin only the requested number of jobs will be started (--jobs). The records will

then be distributed between the running jobs:

cat num1000000 | parallel --pipe -j4 --round-robin wc

Output will be similar to:

149797 149797 1048579
299593 299593 2097151
315465 315465 2097150
235145 235145 1646016

One of the 4 instances got a single chunk, 2 instances got 2 full chunks each, and one instance
got 1 full and 1 partial chunk.

--round-robin gives the chunk to the first process that is ready. You can force the order of

the chunks to be strictly one to each process by using --keep-order:

cat num1000000 | parallel --pipe -j4 --keep-order --round-robin wc

Output:

315464 315464 2097143
299592 299592 2097144
235148 235148 1646037

78

GNU Parallel 2018 9 Pipe mode

149796 149796 1048572

9.2 Records

GNU Parallel sees the input as records. The default record is a single line.

Using -N140000 GNU Parallel will read 140000 records at a time:

cat num1000000 | parallel --pipe -N140000 wc

Output (the order may be different):

140000 140000 868895
140000 140000 980000
140000 140000 980000
140000 140000 980000
140000 140000 980000
140000 140000 980000
140000 140000 980000
 20000 20000 140001

Note how that the last job could not get the full 140000 lines, but only 20000 lines.

If a record is 75 lines -L can be used:

cat num1000000 | parallel --pipe -L75 wc

Output (the order may be different):

165600 165600 1048095
149850 149850 1048950
149775 149775 1048425
149775 149775 1048425
149850 149850 1048950
149775 149775 1048425
 85350 85350 597450
25 25 176

Note how GNU Parallel still reads a block of around 1 MB, but instead of passing full lines to

wc it passes full 75 lines at a time. This, of course, does not hold for the last job (which in this

case got 25 lines).

9.3 Record separators

GNU Parallel uses separators to determine where two records split.

79

9 Pipe mode GNU Parallel 2018

--recstart gives the string that starts a record; --recend gives the string that ends a record.

The default is --recend '\n' (newline) and --recstart "".

If both --recend and --recstart are given, then the record will only split if the recend

string is immediately followed by the recstart string.

Let us assume we have the input:

/foo, bar/, /baz, qux/,

We want to split that into:

/foo, bar/,
/baz, qux/,

If we set --recend to ', ':

echo /foo, bar/, /baz, qux/, | \
 parallel -kN1 --recend ', ' --pipe echo JOB{#}\;cat\;echo END

Output:

JOB1
/foo, END
JOB2
bar/, END
JOB3
/baz, END
JOB4
qux/,
END

This is not exactly what we wanted. The problem is that the records contain ', '.

Here --recstart is set to /:

echo /foo, bar/, /baz, qux/, | \
 parallel -kN1 --recstart / --pipe echo JOB{#}\;cat\;echo END

Output:

JOB1
/foo, barEND
JOB2
/, END
JOB3
/baz, quxEND
JOB4
/,
END

This is also no good. Here both --recend and --recstart are set:

80

GNU Parallel 2018 9 Pipe mode

echo /foo, bar/, /baz, qux/, | \
 parallel -kN1 --recend ', ' --recstart / --pipe \
 echo JOB{#}\;cat\;echo END

Output:

JOB1
/foo, bar/, END
JOB2
/baz, qux/,
END

Note the difference between setting one string and setting both strings.

With --regexp the --recend and --recstart will be treated as regular expressions:

echo foo,bar,_baz,__qux | \
 parallel -kN1 --regexp --recend ,_* --pipe \
 echo JOB{#}\;cat\;echo END

Output:

JOB1
foo,END
JOB2
bar,_END
JOB3
baz,__END
JOB4
qux
END

GNU Parallel can remove the record separators with --remove-rec-sep/--rrs:

echo foo,bar,_baz,__qux | \
 parallel -kN1 --rrs --regexp --recend ,_* --pipe \
 echo JOB{#}\;cat\;echo END

Output:

JOB1
fooEND
JOB2
barEND
JOB3
bazEND
JOB4
qux
END

81

9 Pipe mode GNU Parallel 2018

9.4 Header

If the input data has a header, the header can be repeated for each job by matching the header

with --header. If headers start with % you can do this:

cat num_%header | \
 parallel --header '(%.*\n)*' --pipe -N3 echo JOB{#}\;cat

Output (the order may be different):

JOB1
%head1
%head2
1
2
3
JOB2
%head1
%head2
4
5
6
JOB3
%head1
%head2
7
8
9
JOB4
%head1
%head2
10

If the header is 2 lines, --header 2 will work:

cat num_%header | parallel --header 2 --pipe -N3 echo JOB{#}\;cat

Output: Same as above.

9.5 Fixed length records

Fixed length records can be processed by setting --recend '' and --block recordsize.

A header of size n can be processed with --header .{n}.

Here is how to process a file with a 4-byte header and a 3-byte record size:

cat fixedlen | parallel --pipe --header .{4} --block 3 --recend '' \
 'echo start; cat; echo'

82

GNU Parallel 2018 9 Pipe mode

Output:

start
HHHHAAA
start
HHHHCCC
start
HHHHBBB

9.6 Programs not reading from stdin
Some programs cannot read from stdin but must read from a file.

9.6.1 --cat

Using --cat GNU Parallel will create a temporary file that can be used for the command.

GNU Parallel will remove the file when the program finishes. Let us assume that wc needs a

file like wc file:

cat num1000000 | parallel --pipe --cat wc {}

Output similar to:

149796 149796 1048572 /tmp/par1jBpC
165668 165668 1048571 /tmp/parFXwWw
149796 149796 1048572 /tmp/parDLbDu
149796 149796 1048572 /tmp/parFRxVf
149796 149796 1048572 /tmp/paryUqkT
 85352 85352 597465 /tmp/parWvfXe
149796 149796 1048572 /tmp/par0Yl2R

GNU Parallel generates the /tmp/parXXXXX files, puts a chunk of data into each, and runs

wc on each of them before removing them again.

9.6.2 --fifo

--cat is rather slow because data first has to be stored on disk before it can be read by wc.

If the program can read from a FIFO (also known as a named pipe), then GNU Parallel can
avoid storing the temporary files on disk.

cat num1000000 | parallel --pipe --fifo wc {}

Output similar to:

149796 149796 1048572 /tmp/parr5MKa
165668 165668 1048571 /tmp/parJWpuV
149796 149796 1048572 /tmp/parJRMEJ

83

9 Pipe mode GNU Parallel 2018

149796 149796 1048572 /tmp/parbmm1K
149796 149796 1048572 /tmp/parT6QQf
149796 149796 1048572 /tmp/partfyPz
 85352 85352 597465 /tmp/parYybjk

The program, however, needs to read the whole file from start to finish. If it only reads the
first part, GNU Parallel will block.

9.7 Use --pipepart for high performance

--pipe is not very efficient. It maxes out at around 500 MB/s. --pipepart can easily deliver

more than 5 GB/s, but it has a few limitations. The input has to be a normal file or a block

device (not a pipe or a fifo) given by -a or :::: and -L/-l/-N do not work. --recend and

--recstart, however, do work, and records can often be split on that alone.

parallel --pipepart -a num1000000 --block 3m wc

Output (the order may be different):

 444443 444444 3000002
 428572 428572 3000004
 126985 126984 888890

By giving --block a negative number it is interpreted as the number of blocks each job slot

should have. So this will run 3*5 = 15 jobs in total:

parallel --pipepart -a num1000000 --block -3 -j5 wc

This is an efficient alternative to --round-robin because data is never read by GNU Parallel,

but you can still have very few job slots process a large amount of data.

In addition to that, you can use --keep-order to get the output in the same order as the input.

This cannot be done with --round-robin because the input is mixed.

9.8 Duplicate all input using --tee

With --tee you can duplicate the same input to a number of jobs:

seq 30 | parallel -v --pipe --tee --tag grep {} ::: 4 5 6

Output:

4 grep 4
4 4
4 14

84

GNU Parallel 2018 9 Pipe mode

4 24
5 grep 5
5 5
5 15
5 25
6 grep 6
6 6
6 16
6 26

85

10
Miscellaneous features

GNU Parallel never ceases to amaze me.
-- Tim Hopper tdhopper@twitter

A few of GNU Parallel's options are not related to the 6 main areas.

10.1 Shebang

10.1.1 Input data and parallel command in the same file

GNU Parallel is often called as this:

cat input_file | parallel command

With --shebang the input_file and parallel can be combined into the same script.

UNIX shell scripts start with a shebang line like this:

#!/bin/bash

GNU Parallel can do that, too. With --shebang the arguments can be listed in the file. The

Parallel command is the first line of the script:

#!/usr/bin/parallel --shebang -r echo

foo
bar
baz

Output (the order may be different):

87

10 Miscellaneous features GNU Parallel 2018

foo
bar
baz

10.1.2 Parallelize existing scripts with --shebang-wrap

GNU Parallel is often called as this:

cat input_file | parallel command
parallel command ::: foo bar

If command is a script, Parallel can be combined into a single file so this will run the script in

parallel:

cat input_file | command
command foo bar

This perl script perl_echo works like echo:

#!/usr/bin/perl

print "@ARGV\n"

It can be called as this:

parallel perl_echo ::: foo bar

By changing the #!-line it can be run in parallel:

#!/usr/bin/parallel --shebang-wrap /usr/bin/perl

print "@ARGV\n"

Thus this will work:

perl_echo foo bar

Output (the order may be different):

foo
bar

This technique can be used for:

Perl:

#!/usr/bin/parallel --shebang-wrap /usr/bin/perl

print "Arguments @ARGV\n";

Python:

#!/usr/bin/parallel --shebang-wrap /usr/bin/python

88

GNU Parallel 2018 10 Miscellaneous features

import sys
print 'Arguments', str(sys.argv)

Bash/sh/zsh/Korn shell:

#!/usr/bin/parallel --shebang-wrap /bin/bash

echo Arguments "$@"

csh/tcsh:

#!/usr/bin/parallel --shebang-wrap /bin/csh

echo Arguments "$argv"

Tcl:

#!/usr/bin/parallel --shebang-wrap /usr/bin/tclsh

puts "Arguments $argv"

R:

#!/usr/bin/parallel --shebang-wrap /usr/bin/Rscript --vanilla --slave

args <- commandArgs(trailingOnly = TRUE)
print(paste("Arguments ",args))

GNUplot:

#!/usr/bin/parallel --shebang-wrap ARG={} /usr/bin/gnuplot

print "Arguments ", system('echo $ARG')

Ruby:

#!/usr/bin/parallel --shebang-wrap /usr/bin/ruby

print "Arguments "
puts ARGV

Octave:

#!/usr/bin/parallel --shebang-wrap /usr/bin/octave

printf ("Arguments");
arg_list = argv ();
for i = 1:nargin
 printf (" %s", arg_list{i});
endfor
printf ("\n");

Common LISP:

#!/usr/bin/parallel --shebang-wrap /usr/bin/clisp

89

10 Miscellaneous features GNU Parallel 2018

(format t "~&~S~&" 'Arguments)
(format t "~&~S~&" *args*)

PHP:

#!/usr/bin/parallel --shebang-wrap /usr/bin/php
<?php
echo "Arguments";
foreach(array_slice($argv,1) as $v) {
 echo " $v";
}
echo "\n";
?>

Node.js:

#!/usr/bin/parallel --shebang-wrap /usr/bin/node

var myArgs = process.argv.slice(2);
console.log('Arguments ', myArgs);

LUA:

#!/usr/bin/parallel --shebang-wrap /usr/bin/lua

io.write "Arguments"
for a = 1, #arg do
 io.write(" ")
 io.write(arg[a])
end
print("")

C#:

#!/usr/bin/parallel --shebang-wrap ARGV={} /usr/bin/csharp

var argv = Environment.GetEnvironmentVariable("ARGV");
print("Arguments "+argv);

10.2 Semaphore

GNU Parallel can work as a counting semaphore. This is slower and less efficient than its
normal mode.

A counting semaphore is like a row of toilets. People needing a toilet can use any toilet, but if
there are more people than toilets, they will have to wait for one of the toilets to become
available.

An alias for parallel --semaphore is sem.

90

GNU Parallel 2018 10 Miscellaneous features

sem will follow a person to the toilets, wait until a toilet becomes available, leave the person in

the toilet and exit.

sem --fg will follow a person to the toilets, wait until a toilet becomes available, stay with the

person in the toilet and exit when the person exits.

sem --wait will wait for all persons to leave the toilets.

sem does not have a queue discipline, so the next person is chosen randomly.

-j sets the number of toilets.

10.2.1 Mutex

The default is to have only one toilet (this is called a mutex). The program is started in the

background and sem exits immediately. Use --wait to wait for all sems to finish:

sem 'sleep 1; echo The first finished' && \
echo The first is now running in the background && \
sem 'sleep 1; echo The second finished' && \
echo The second is now running in the background
sem --wait

Output:

The first is now running in the background
The first finished
The second is now running in the background
The second finished

The command can be run in the foreground with --fg, which will only exit when the command

completes:

sem --fg 'sleep 1; echo The first finished' && \
echo The first finished running in the foreground && \
sem --fg 'sleep 1; echo The second finished' && \
echo The second finished running in the foreground
sem --wait

Output:

The first finished
The first finished running in the foreground
The second finished
The second finished running in the foreground

91

10 Miscellaneous features GNU Parallel 2018

The difference between this and just running the command is that a mutex is set, so if other

sems were running in the background only one command would run at a time.

To control which semaphore is used, use --semaphorename/--id. Run this in one terminal:

sem --id my_id -u 'echo First started; sleep 10; echo First done'

and simultaneously this in another terminal:

sem --id my_id -u 'echo Second started; sleep 10; echo Second done'

Note how the second will only be started when the first has finished.

10.2.2 Counting semaphore

A mutex is like having a single toilet: When it is in use everyone else will have to wait. A
counting semaphore is like having multiple toilets: Several people can use the toilets, but
when they all are in use, everyone else will have to wait.

sem can emulate a counting semaphore. Use --jobs to set the number of toilets like this:

sem --jobs 3 --id my_id -u 'echo Start 1; sleep 5; echo 1 done' && \
 sem --jobs 3 --id my_id -u 'echo Start 2; sleep 6; echo 2 done' && \
 sem --jobs 3 --id my_id -u 'echo Start 3; sleep 7; echo 3 done' && \
 sem --jobs 3 --id my_id -u 'echo Start 4; sleep 8; echo 4 done' && \
 sem --wait --id my_id

Output:

Start 1
Start 2
Start 3
1 done
Start 4
2 done
3 done
4 done

10.2.3 Semaphore with timeout

With --semaphoretimeout you can force running the command anyway after a period

(positive number) or give up (negative number):

sem --id foo -u 'echo Slow started; sleep 5; echo Slow ended' && \
 sem --id foo --semaphoretimeout 1 'echo Forced running after 1 sec' && \
 sem --id foo --semaphoretimeout -2 'echo Give up after 2 secs'
sem --id foo --wait

Output:

92

GNU Parallel 2018 10 Miscellaneous features

Slow started
parallel: Warning: Semaphore timed out. Stealing the semaphore.
Forced running after 1 sec
parallel: Warning: Semaphore timed out. Exiting.
Slow ended

Note how the 'Give up' was not run.

10.3 Informational

GNU Parallel has some options to give information about the configuration.

--help will print a summary of the most important options:

parallel --help

Output:

Usage:

parallel [options] [command [arguments]] < list_of_arguments
parallel [options] [command [arguments]] (::: arguments|::::
argfile(s))...
cat ... | parallel --pipe [options] [command [arguments]]

-j n Run n jobs in parallel
-k Keep same order
-X Multiple arguments with context replace
--colsep regexp Split input on regexp for positional replacements
{} {.} {/} {/.} {#} {%} {= perl code =} Replacement strings
{3} {3.} {3/} {3/.} {=3 perl code =} Positional replacement strings
With --plus: {} = {+/}/{/} = {.}.{+.} = {+/}/{/.}.{+.} = {..}.{+..} =
{+/}/{/..}.{+..} = {...}.{+...} = {+/}/{/...}.{+...}

-S sshlogin Example: foo@server.example.com
--slf .. Use ~/.parallel/sshloginfile as the list of sshlogins
--trc {}.bar Shorthand for --transfer --return {}.bar --cleanup
--onall Run the given command with argument on all sshlogins
--nonall Run the given command with no arguments on all sshlogins

--pipe Split stdin (standard input) to multiple jobs.
--recend str Record end separator for --pipe.
--recstart str Record start separator for --pipe.

See 'man parallel' for details

Academic tradition requires you to cite works you base your article on.
When using programs that use GNU Parallel to process data for publication
please cite:

O. Tange (2011): GNU Parallel - The Command-Line Power Tool,

93

10 Miscellaneous features GNU Parallel 2018

;login: The USENIX Magazine, February 2011:42-47.

This helps funding further development; AND IT WON'T COST YOU A CENT.
If you pay 10000 EUR you should feel free to use GNU Parallel without
citing.

When asking for help, always report the full output of this:

parallel --version

Output:

GNU parallel 20160323
Copyright (C) 2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017
Ole Tange and Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
GNU parallel comes with no warranty.

Web site: http://www.gnu.org/software/parallel

When using programs that use GNU Parallel to process data for publication
please cite as described in 'parallel --citation'.

In scripts --minversion can be used to ensure the user has at least this version:

parallel --minversion 20130722 && \
 echo Your version is at least 20130722.

Output:

20160322
Your version is at least 20130722.

If you are using GNU Parallel for research the BibTeX citation can be generated using

--citation:

parallel --citation

Output:

Academic tradition requires you to cite works you base your article on.
When using programs that use GNU Parallel to process data for publication
please cite:

@article{Tange2011a,
title = {GNU Parallel - The Command-Line Power Tool},
author = {O. Tange},
address = {Frederiksberg, Denmark},
journal = {;login: The USENIX Magazine},
month = {Feb},
number = {1},
volume = {36},
url = {http://www.gnu.org/s/parallel},

94

GNU Parallel 2018 10 Miscellaneous features

year = {2011},
pages = {42-47},
doi = {10.5281/zenodo.16303}
}

(Feel free to use \nocite{Tange2011a})

This helps funding further development; AND IT WON'T COST YOU A CENT.
If you pay 10000 EUR you should feel free to use GNU Parallel without
citing.

If you send a copy of your published article to tange@gnu.org, it will be
mentioned in the release notes of next version of GNU Parallel.

With --max-line-length-allowed GNU Parallel will report the maximal size of the

command line:

parallel --max-line-length-allowed

Output (may vary on different systems):

131071

--number-of-cpus and --number-of-cores run system specific code to determine the

number of CPUs and CPU cores on the system. On unsupported platforms they will return 1:

parallel --number-of-cpus
parallel --number-of-cores

Output (may vary on different systems):

4
64

10.4 Profiles

The defaults for GNU Parallel can be changed system-wide by putting the command line

options in /etc/parallel/config. They can be changed for a user by putting them in

~/.parallel/config.

Profiles work the same way, but have to be referred to with --profile/-J:

echo '--nice 17' > ~/.parallel/nicetimeout
echo '--timeout 300%' >> ~/.parallel/nicetimeout
parallel --profile nicetimeout echo ::: A B C

Output:

A
B

95

10 Miscellaneous features GNU Parallel 2018

C

Profiles can be combined:

echo '-vv --dry-run' > ~/.parallel/dryverbose
parallel --profile dryverbose --profile nicetimeout echo ::: A B C

Output:

echo A
echo B
echo C

96

11
GNU Free Document License

An ode to GNU parallel
An ode to GNU parallel
An ode to GNU parallel
An ode to GNU parallel
An ode to GNU parallel
An ode to GNU parallel

-- Adam Stuckert PoisonEcology@twitter

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. Preamble
The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

97

https://fsf.org/

11 GNU Free Document License GNU Parallel 2018

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be
used for any textual work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is instruction or
reference.

1. Applicability and definitions
This License applies to any manual or other work, in any medium, that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the
conditions stated herein. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you". You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document's
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input to

98

GNU Parallel 2018 11 GNU Free Document License

text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A copy
that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference
in this License, but only as regards disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. Verbatim copying
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

99

11 GNU Free Document License GNU Parallel 2018

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. Copying in quantity
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. Modifications
You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

100

GNU Parallel 2018 11 GNU Free Document License

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for

authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the

publisher.

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.

• F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover

Texts given in the Document's license notice.

• H. Include an unaltered copy of this License.

• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled "History" in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a

Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four years
before the Document itself, or if the original publisher of the version it refers to gives
permission.

101

11 GNU Free Document License GNU Parallel 2018

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of

the section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their

titles. Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the

Modified Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title

with any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. Combining documents
You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

102

GNU Parallel 2018 11 GNU Free Document License

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. Collections of documents
You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. Aggregation with independent works
A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation's
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document's Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. Translation
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires

103

11 GNU Free Document License GNU Parallel 2018

special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. Termination
You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the same material does not give you
any rights to use it.

10. Future revisions of this license
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See
https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have the

104

https://www.gnu.org/licenses/

GNU Parallel 2018 11 GNU Free Document License

option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which
future versions of this License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. Relicensing
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A "Massive
Multiauthor Collaboration" (or "MMC") contained in the site means any set of copyrightable
works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business in
San Francisco, California, as well as future copyleft versions of that license published by that
same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were
first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on
the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

Addendum: how to use this license for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU Free
Documentation License".

105

11 GNU Free Document License GNU Parallel 2018

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with …
Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

106

����A	���	�����������"		�,-.�+������������

!'�����������������������
	�
�����	��������������������
���B �
��)�%'�	 �
�����	��
	���	���	�

�	
��	������	 �� ���	��������������
��������	���������6�

����"		�����������
������7#�
#��"		�)�C	 ���
��������������"���

��(�����
��
����������(�����
�

����
���� ���(�����
��3����� ���(�	���������	�����	�������������������������������
���
�����"	�����

����������	 �������� ���
������������	
����������
�'	��

?����������'�	 �������������

?����������'�	 �������������

?����������'�	 �����������1�

?����������'�	 �����������$�

?����������'�	 �����������7�

�	���
���
��(�	 ��	�
	��
�����	������������
���
�����������$��	�
������
��������3�����������1�

!�����	
���(�	 ��	�
	��������	�"���������������������
���������������@�"��	 �
��������
����

�
	�������	
��	
��	���
�������3�� ��	
�D��������8E(�������	 �
����� ����������	����3�� ��	
�

D����������E(��
��	
�� �������"�����'��� ����	'��������D��������<E�

C	 ������3��������	��
	��"�����.-%F��	���
��)���(���(��	
(����(����(������(����(����
(�

����
�(���(��
������%'��
�	'���	�������
����	�	 (�	 ���	 ��������	���������������
��

'��������;��	 ����'��������	���

C	 ������3��������	��
	��������

��������
��	'�������
�����
��������
���	
��
 ���D" �����������������
	��	���������	
����������E�

%'�	 ����	��������"�����
������
��
��	'��������	��(���(�����(�������(������(�	��	�(��
��

�����
��	(����
�	 �������������� ���������������
������
��
������"		��

�
��������	������������

�������������	�
���	��

���������
���������	����������������������

���������������������
����

!���	 �������
��	'�����	
���	�'���������	 �����"		��'�	��"���
�=������"		�����"���������'�	��

����	������
��

%'�	 ����������������������	��	������������	�����
��'	����''���
���
� �(����
�,-.�+�������������

�����	 ����'����������
�������	 �����������
�'������

�������������������	 ������������������"�������
��7���
 �����%��������
��	� ���	 ��	�����"�����

�	
������	'�,-.�+���������
���������	��	 ��
	 ��������	 ���
��
�"������	���
����
�����������

����������"���
	 ���'	����
�������

,-.�+������������6���>	�������)

���������$�%
� ���	 ����

���������7�4 ���������	���
����
�

���������6��	
��	������	 �� �

���������8��	
��	�������3�� ��	

�����������?��	����3�� ��	

���������<�+�����	��

�
��	��	'�����(�������������'�����������
�	 ��'��� ���

������������@�������
�	 ��'��� ���

����������	��
��

�����������	

�	��������������������
�����	�������������������

������	����������
����
������������������	��	
��!����" ��	
#�����!�����$���%
���
���	
���
&���
�����	���������	��	'����������
��(������������)**���������	��	
��	��*����
���*"#��*$��*

+�������	
�������
�����	��	�(�������" ����
�*	���	��'�������	� ��
��
��������������	'�����,-.�
�����/	� ��
����	
�&���
��(�0����	
���1�	���
������������	
�� "�������"�����������	'������
�	
����	
2������
	�%
�����
�������	
�(�
	���	
�#�	������3��(��
��
	�4���#�	������3����!��	��
	'���������
�������
�� �����
����������	
��
�������5,-.������/	� ��
����	
�&���
��5�

+ "�������")�������
��
����)**	�����
�����
�����)**	�����	��*����#����#61$7#�$18

�	���)�,-.�+�������9���	�	�����
�������"�������':��������� ��	

/�%)�����)**�3��	��	��*���7���*;�
	�	���$6��$

%�4-)��<8�#�#1�8#7�<��#�

����������	��
��

��	�����	

	1 How to read this book
	2 Learn GNU Parallel in 15 minutes
	2.1 Input sources
	2.2 Build the command line
	2.3 Control the output
	2.4 Control the execution
	2.5 Pipe mode
	2.6 That's it

	3 Make test files
	4 Input sources
	4.1 A single input source
	4.2 Multiple input sources
	4.2.1 Link arguments from input sources

	4.3 Change the argument separator.
	4.4 Change the record delimiter
	4.5 End-of-file value for input source
	4.6 Skipping empty lines

	5 Build the command line
	5.1 No command means arguments are commands
	5.2 Replacement strings
	5.2.1 The 7 predefined replacement strings
	5.2.2 Change the replacement strings
	5.2.3 Perl expression replacement string
	5.2.3.1 Functions for perl expression replacement strings

	5.2.4 Dynamic replacement strings
	5.2.5 Positional replacement strings
	5.2.6 Positional perl expression replacement string
	5.2.7 Input from columns
	5.2.8 Header defined replacement strings
	5.2.9 More pre-defined replacement strings with --plus
	5.2.10 Dynamic replacement strings with --plus

	5.3 Insert more than one argument
	5.4 Quote the command line
	5.5 Trim space from arguments
	5.6 Respect the shell

	6 Control the output
	6.1 Tag output
	6.2 See what is being run
	6.3 Force same order as input
	6.4 Output before jobs complete
	6.4.1 Buffer on disk

	6.5 Save output into files
	6.6 Save to CSV/TSV
	6.7 Save to an SQL base
	6.7.1 CSV as SQL base
	6.7.2 DBURL as table
	6.7.3 Use multiple workers

	6.8 Save output to shell variables
	6.8.1 Do not read from a pipe
	6.8.1.1 Use a temporary file
	6.8.1.2 Use process substitution
	6.8.1.3 Use a FIFO

	6.8.2 env_parset

	7 Control the execution
	7.1 Number of simultaneous jobs
	7.2 Shuffle job order
	7.3 Interactivity
	7.4 A terminal for every job
	7.5 Timing
	7.6 Progress information
	7.7 Logfile
	7.8 Resume jobs
	7.9 Termination
	7.9.1 Unconditional termination
	7.9.2 Termination dependent on job status

	7.10 Retry failing commands
	7.10.1 Termination signals

	7.11 Limit the resources
	7.11.1 Make your own limitation

	8 Remote execution
	8.1 Sshlogin
	8.1.1 SSH command to use
	8.1.2 Multiple servers
	8.1.3 Divide servers into groups
	8.1.3.1 Host group defined by argument

	8.2 Transfer files
	8.3 Working dir
	8.4 Avoid overloading sshd
	8.5 Ignore hosts that are down
	8.6 Run the same commands on all hosts
	8.7 Transfer environment variables and functions
	8.8 Show what is actually run

	9 Pipe mode
	9.1 Block size
	9.2 Records
	9.3 Record separators
	9.4 Header
	9.5 Fixed length records
	9.6 Programs not reading from stdin
	9.6.1 --cat
	9.6.2 --fifo

	9.7 Use --pipepart for high performance
	9.8 Duplicate all input using --tee

	10 Miscellaneous features
	10.1 Shebang
	10.1.1 Input data and parallel command in the same file
	10.1.2 Parallelize existing scripts with --shebang-wrap

	10.2 Semaphore
	10.2.1 Mutex
	10.2.2 Counting semaphore
	10.2.3 Semaphore with timeout

	10.3 Informational
	10.4 Profiles

	11 GNU Free Document License
	0. Preamble
	1. Applicability and definitions
	2. Verbatim copying
	3. Copying in quantity
	4. Modifications
	5. Combining documents
	6. Collections of documents
	7. Aggregation with independent works
	8. Translation
	9. Termination
	10. Future revisions of this license
	11. Relicensing
	Addendum: how to use this license for your documents

