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Abstract

Weber-Wesley electrodynamics predicts all of the usual results of the

Mazwell theory including electromagnetic radiation. It also predicts

results where the Mixwell theory fails or is not applicable: 1) the force
on Ampere's bridge in agreement with the measurements of Moyssides and

Pappas, 2) the tenation required to rupture current carrying uwires as

observed by Graneau, 3) the force to drive the Graneau-Hering submarine,

4) the force to drive the mercury in Hering's pump, 5) the zero self-

torque observed by Pappas and Vaughan on a 2-shaped atenna, 6) the

localized unipolar induction observed by Kennard and Miiller, ?7) the

result of Kaufmann's measurement of e/m without mass change with velocity,
8) a nonradiating hydrogen atom, and 9) the fine-structure splitting of

hydrogen-atom energy levels without mass change with velocity. It 1is

concluded that there is, thus, no evidence supporting mass change with

velocity. Experiments are suggested.

1. WEBER-WESLEY ELECTRODYNAMICS

Weber“) wrote his original theory in 1848 to fit the then known
facts: Coulomb's law, Ampere's original empirical law for the force
between current elements, and Faraday's law of electromagnetic induction.
Weber introduced the idea that electric current was composed of flowing
charges, where each charge was quantized to fit Faraday's law of
electrochemical deposition (e = Q/N, where Q is the net charge to
deposit a gram atomic equivalent and N0 is Avogadro's number). Weber
postulated a velocity dependent potential between two moving charges, q
at r and q' at r', as

U= (qq'R)[1 - (@r/at)?/2¢?), m
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where R = |r - r'| and the constant ¢ was assumed to be the velocity of
light. The first term on the right of Eq. (1) is simply the Coulomb
potential. Following a suggestion by Phipps(z) to correct an objection
by Helmholtz(a) that Eq. (1) predicts a 'negative" mass when a particle
moves with a velocity greater than ~/Zc, the Weber potential, Eq. (1),

may be written as
U= (qq'/R)V1 - (dR/dt)?/c? . (2)

This generates all of the observed results for small wvelocities given
by Eq. (1); and, in addition it puts the limiting wvelocity at c where
it belongs. Taking a time derivative of Eq. (2} or (1) gives

du/dt = - V-F,, (3)

where V = v - v' is the relative velocity between the charges and F' is
the Weber force on charge q at T due to q' at r' given to order v2/c? by

c?F, = (qa'R/R*)(c* + V2 - 3(V:R)*/2R* + R-dV/dt], €))

This force (4) clearly obeys Newton's third law, being directed along
R and changing sign when primed and unprimed coordinates are exchanged.
Since the force is derived from a potential; energy is conserved. It
is the only electromagnetic theory ever proposed that can conserve
energy for an isolated system of moving charges. This result (4) is
found to be in agreement with an amazingly large mmber of different

experimental situations(. ¢)(s)

It works for slowly changing effects
where time retardation is not required and action at a distance remains
valid. Time intervals of interest are assumed to be such that At>>L/c,
where L is the dimension of the laboratory.
1.1 Weber force for conductors

The force on an element of a conductor at r containing a, stationary
positive ions and - qemobile negative electrons due to an element of
a conductor at r' containing q'i stationary positive ions and - q; mobile
negative electrons is obtained by adding the four forces involved, as
given by Eq. (4); thus,

eF, = W) {era, - a)(a) - a) - (@ - 9)a)(v'? - 3y R)/2Re
- Redv'/dt] - () - a)a,[v? - 3(v-R)?/2R? + R-dv/dt)

5)
+qai(- v+ 3RV RI/RY } (
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where v and v' are the velocities of the electrons. The first term on
the Tight of Eq. (5) is simply the Coulomb's law for the force between
charged conductors.

Ampere's original empirical force law“) is given by Eq. (5) when no

net static charges are on the conductors, or when q; = q, and qi = q;;

thus,

c*F, = (qeq;R/RJ)[-Zv-v' + 3(v.R)(v'.R)/Rz]_ 6)

As for the general Weber theory, Eqs. (4) or (5), the Ampere law (6) is

seen to obey Newton's third law.
Faraday electromagnetic induction involves the electromotive force

around a loop induced by the time rate of change of current dI'/dt in
another loop. From Eq. (5) this e.m.f. becomes

-§ds-ﬁ(dI'/dt)R(R-ds‘)/c’R’ = -'(a/at)§®-§l'$'/czR Q)

which is seen to be equal to-2®/3t where ¢ is the magnetic flux through
the unprimed loop due to the primed loop. The more general unipolar
induction is considered in Section 7 below. It may be noted from Eq. (5)
that there is also a ponderomotive force due to —q; accelerating when
(q; - qe) is nonzero. In addition, there is an inverse effect given by
the force on electrons -q, with an acceleration dv/dt due to a static
charge (q; - q;).

The velocity squared temms, involving v'Z, (v'- R)2/R?*, v?, and
(v - R)*/R?, represent very small forces( that are always exactly
cancelled out by static charges induced in the current carrying conductor,
as proved in Section 1.3 below. These velocity squared tems may, thus,
always be neglected for conduction currents.

Replacing point charges by charge and current densities, the Weber
force on a unit volume d°r at T containing the charge and current
densities p and J due to charge and current densities p' and J' in a
volume element d3r' at r' becomes from Eq. (5), dropping the velocity
squared terms,

cldﬁFw/d’r d3r' = (R/R’)[czpp‘ - 2J:J' + 3(R-J)(R.-J')/R?

{(8)
- pR-3J'/3t + gR-2J/31).
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)

Pseudo-effects, where charge and current densities change but there is
(3)

The effect of moving conductors may be also deduced from Eq. (4). @

no corresponding charge motion, may also be taken into account.
1.2 Wesley's generalization of Weber's theory to fields and
radiation

Weber's original theory, given by Eqs. (1), (4) and (5), refers to
slowly changing effects where time retardation may be neglected. In
particular, no significant changes occur during time intervals of the
order of At = L/c, where L represents the linear size of the laboratory.
Wesley(z)(a) has generalized this Weber theory to include electromagnetic
fields and time retardation. Thus, Eq. (8) may be written as

cd’F /d°r = - cV® + Jx(VXA) - ppA/at - JV-A + (8J/3t)0/c
+ (JVIVT + pVar/at - (23/3t)V]6/c,

where the scalar and vector potentials ® and A have their usual meanings,

q) =J‘dsr| P'(r')t*)/R’

(10)
CA =fd’r'J'(r',t*)/R,

where
t* =t - R/c, an

is the retarded time and the scalar and vector potentials I' and G are
defined by

cr =fd’r'R-J'(r',t*)/R,
(1z)
G = ‘/‘d’r' RP'(r',t*)/R.

Due to the time retardation the fields defined by Eqs. (10) and (12) can
include fields propagating and radiating with the velocity c.

A further modification is needed to include the effect of absolute
space or the lumeniferous ether. The velocity of energy propagation of
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electromagnetic waves is known to be ¢ fixed with respect to absolute

space from the observations of Roemer, (s) Bradley,fs] Sagnac, (7
Michelson and Gale,{sl Conklin,(g){m] Marinov with his coupled mirrors
experiment,“ b and Marinov with his toothed wheels experiment.“?] The

Michelson-Morley rcsult[”} was predicted by \)‘oigt“HI

nonclassical Doppler effect using absolute space and time. As shown
by Wesley,(a)“s) the Voigt-Doppler effect for an observer moving with
the absolute velocity v, in the positive X direction and source moving

with the absolute velocity v, is given by

in 1887 as a

Yolcy, - Vole, *t cyey *+ C,€,

k' =k ,
¢ cy (1 - v,c/c?)(1 - vs-c/cz)

o' = wsys(I - vo.c/c’)/ys(1 - v, -«c/c?), (13)
€' = (cy- Ve, * (ce * c,€,)/ Yo»
c*=c-v,

where ¥' is the observed propagation constant, kg = w,/c where v ¢ is the
angular frequency of the source, c' is the observed phase velocity, <*
is the observed velocity of energy propagation, e,, €, and e, are unit
vectors in the Cartesian coordinate directions, v, = 1 ‘/1 - v;/c2 and
v,= 1 -‘/i_-—v_;F, and o' is the observed angular frequency. The motion
of the source only modifies the frequency and wavelength of emitted
radiation as a function of direction. The light, once emitted, then
propagates without change with the fixed velocity ¢ with respect to
absolute space. The major effect arises from the motion of the observer
with respect to absolute space. For most purposes Eq. (11) for the
retarded time need only be modified by replacing ¢ by the phase velocity

c', thus
c > c' =c(l - v,-c/c?), (14)

to take into account this effect of the motion of the observer with

respect to absolute space.
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1.3 Force on a static charge due to a steady conduction

current

It has been argued that the Weber theory is wrong, because it
predicts a force between a stationary charge and a steady current; and
no such force has ever been cbserved. More precisely, no force between
a conduction current and a stationary charge has been observed. The
Fechner hypothesis that a conduction current consists of equal amounts
of positive and negative charges flowing in opposite directions (which
is now known to be false) was introduced to yield zero force between a
stationary charge and a conduction current. The Fechner hypothesis is,
however, unnecessary. The "velocity squared" forces are simply much too
small to be readily observed.

From Eq. (5) the Weber force on a stationary charge q due to a
charge q' moving with the steady velocity v' is given by

CZFw = - (qq'R/Rs)(vvz - S(VI.R)Z/ZRz]. (15)

Although this force can be observed on an isolated moving charge in the
presence of a static charge distribution, as discussed in Sections 8
and 9 below; it is not clearly seen using conduction currents. To show
why it will be sufficient to consider a special case of an infinitely
long straight wire carrying a steady current I. It may be shown from
Eq. (15) that the force per wnit charge, the electric field E, is radial
and at the distance r from the c.enter of the wire it is(s)

E=-1Iv'/cr = - (Il/c’epNA)/r, (16)

where e is the electron charge, Py is the mnumber density of electronic
carriers and A =ma? is the cross-sectional area of the wire of radius
a. This is equivalent to the wire with a negative charge Q per umit
length L; thus,

QL = - Iz/CzePN A. (17)

If a metal cylinder of radius 5 > a and length L is put around the
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wire, a cylindrical capacitor is formed which will have a potential

V = Q/C = - in(b/a) I*/c2e p A, (18)

where the capacitance is C = L/in(b/a). The magnitude of this Weber
force may then be estimated by considering the potential induced for a
copper wire of A = 1 cm? cross sectional area carrying a current. of
1=1"° amp where b/a = 1.1. Assuming the number of electron carriers

in copper per atomic weight is roughly Avogadro's number, for this case

V= 7x10"* volt, (19)

which seems mich too small to ever be detected. However, Edwards(w)
claims to have observed an effect of this order of magnitude varying as
12. Unfortunately it is quite impossible to discover from his badly
written paper what his experiment might have been; and there is no way

to make a proper evaluation of his claims.

The charges inside the metal wire also experience the Weber force.
In particular, the electric field due to this force inside the infinitely
long wire at a distance r from the center of the wire, as determined by

the moving charges inside this radius, is
E = - nrJ?/c’egy, (20)

where a uniform current density J = I/A has been assumed. As is well
known a static electric field cannot be maintained in a conductor,
because charges flow until the field is zero. Consequently, a uniform
positive charge density is induced in the conductor that exactly cancels
the field produced by the Weber force between a stationary charge and

a current; thus,
p (charge) = + J*/c?epy . (21)

The net radial electric field inside the wire is then zero, as it should

be.
Outside the wire the radial electric field produced by this positive

charge distribution (21) is
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E(charge) = + p(charge)A/r = (12/cep, A)/T. (22)

To conserve charge a negative surface charge density must be induced on
the surface of the wire, which is precisely equal to Eq.(17). Thus,
there are three sources of an electric field present: the velocity
squared force given by Eq.(16), the internal uniform positive charge
distribution given by Eq.(21), and the negative surface charge density
given by Eq.(17). Inside the wire these three fields yield a zero net
electric field, as they should. Outside the wire the field due to the
charge separation is zero (the net charge on the wire being zero),
leaving only the velocity squared field alone, which is given by

Eq.(16).

2. MAXWELL-LORENTZ ELECTRODYNAMICS

According to Maxwell-Lorentz electrodynamics(19)(20)(21)

the force on
an element of volume d’r at r containing a charge and current density
e and J is given by the Lorentz force

c d’FH/d’r = -cpVo - pPA/at + Jx (VXA), (23)

where the scalar and magnetic potentials ¢ and A are defined by Eqs. (10).
Combining Eqs. (23) and (10), the Maxwell-Lorentz force on a volume
element d°r at r with charge and current densities p and J due to a
volume element d°r' at r' with charge and current densities p' and J'

becomes
(24)
c2d°F, /AT d°1' = c?pp R/R® - p(8J'/at)/R - (J-TJIR/R® + (R-J)J'/RS.

In terms of charges, the Maxwell-Lorentz force on a charge q with
velocity v at r due to a charge q' with velocity v' at r' is given by

C*F, = qq' [CZR/R’ - (dv'/dt)/R - (v-v')R/R + (R-v)v'/R’]. (25)

These Eqs. (24) and (25) may be compared with the corresponding Weber
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expressions given by Egs. (8) and (4). Time retardation has been
neglected here; Egs. (24), (25), (8), and (4) all refer to slowly
varying effects.

It may be seen from the second and fourth terms on the right of Eq.
(25) that the Maxwell-Lorentz force between point charges vidlates Newton's
third law; as these forces do not act along the line R joining the two
charges, and interchanging primes and unprimes does not yield merely a
change of sign. It should be remarked that a failure to obey Newton's
third law is a very serious matter; as it implies drastic consequences,
such as the violation of the conservation of energy, the ability to
propel a space craft using only forces internal to the space craft
itself, and the ability to 1ift oneself by ones own boot straps. Even
a casual glance at Eq. (25) is, thus, sufficient to show that the
Maxwell-Lorentz theory cannot be based solely upon the forces between
isolated point charges, in contrast to the Weber theory. In addition,
as will be shown below, Egs. (24) ar;d (25) do not agree with the
experimental evidence. The Maxwell theory, being incapable of
prescribing the correct force between two moving point charges, cannot
be regarded as a fundamental theory. The special situations and limiting
conditions under which the Maxwell theory works are outlined below in
Section 2.3.

2.1 Biot-Savart law
The Biot-Savart law is given by the last two terms on the right of

Eq. (24) or (25),
cszFB/dSr d*r' = Jx (J'xR)/R’, or c?Fy = qq'vx(v' xR)/R*. (26)

This is the Maxwell-Lorentz force for steady currents, the magnetostatic
case. As is well known, this law (26) violates Newton's third law.
Grassmann(zo) (who apparently was the first to propose the Biot-Savart
law) justified the law as follows: 1) It is mathematically simpler than
Ampere's law (6). 2) It yields precisely the same result as the Ampere
law (6) when the source current J' is integrated around a closed current
loop; and, thus, it obeys Newton's third law when integrated around a
closed current loop. 3) And all currents necessarily form closed current
loops.

Considering Grassmann's first point, it is not at all apparent that
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the Biot-Savart law is mathematically simpler; in some instances it
yields greater mathematical difficulties. Considering Grassmann's second
point, if the Ampere and Biot-Savart laws were equivalent (which they
are not), the Ampere law, obeying Newton's third law from the outset,
should be chosen in preference to the Biot-Savart law, which violates
Newton's third law and can only satisfy Newton's third law after being
integrated around a closed current loop. Considering Grassmann's third
point, not all currents form closed current loops. For example, the
currents in the Z-shaped Pappas-Vaughan antenna, considered below, do
not form closed current loops. Moving point charges need not form closed
current loops. In addition, it is the mechanical force that must be
integrated around a closed loop to make the Biot-Savart law satisfy
Newton's third law; the existence or nonexistence of a closed current
loop is not necessarily relevant.

Ampere ()
force on a hairpin shaped wire (the Ampere bridge) with ends making
electrical contact in two troughs with mercury, as shown in Fig. 1.

recognized this point early. He demonstrated this with the

/ Force

e

Figure 1. Diagram of the experiment Ampere performed to refute the Biot-
Savart law. The force on the bridge when current flows is in the

direction indicated.

299

The bridge is repelled down the troughs when current is sent through the
bridge. Although a closed current loop is involved; the net force on
the bridge is ocbtained by integrating the elements of force only over
the bridge and not around the entire current loop. The Ampere bridge
is propelled by the repulsive forces between colinear current elements
as given by Ampere's law (6). No such force is predicted by the Biot-
Savart law (26); as the force on a current element is suppose to be
always normal to the element. The Ampere tension or repulsion between
colinear current elements also accounts quantitatively for the force
necessary to rupture current carrying wires as observed by Graneau.(z”
(22)(23) In addition, the Ampere repulsion accounts for the force that
drives the Graneau-Hering submarine.(z”(zs) And finally, the Ampere
repulsion yields the force that drives the mercury in Hering's pump.(zs)

It may be readily demonstrated that the Biot-Savart law is absurd!?®)
The Biot-Savart law predicts a net nonvanishing self force on a closed
current loop. Dividing a current carrying loop mathematically into two
portions 1 and 2 , the element of force on a current element Ids on
portion 1 (due to a current element Ids') plus the element of force on
current element Ids' on portion 2 (due to a current element I1ds); as
given by Eq. (26), may be integrated to yield the total self force on the

current loop as
CF, = szf{ (dsx (ds' xB))/R* - [ds* x(dsxk)]/R’}
12 ;

- - sz Rx (dsxds')/R3.
1 2

(27

Depending upon how one chooses portions 1 and 2, one can obtain a
nonvanishing force with any value at all (within limits). Such a loop
would be very convenient to drive an automobile or propel a space ship.
One could cbtain the desired magnitude of the force without having to
change anything physically; one need only alter the mathematical labels.
In addition, using the criteria that Grassmann provides that the force
between current elements, when integrated around a closed current loop
should yield the Ampere result, a completely equivalent 'Biot-Savart law"

is given by
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c*d*F, = I%ds' x (ds xR)/R*, (28)

where ds and ds' are interchanged as compared with Eq. (26) or (27).
Using this equivalent 'Biot-Savart law" the net self force on a closed
current loop becomes the negative of Eq. (27). The absurdity is complete.
2.2 Faraday's law of electromagnetic induction

The Maxwell-Lorentz force on a charge due to a time changing current
or an accelerating charge, the second term in Eq. (24) or (25), does not
(.>bey Newton's third law. Thus, the Maxwell-Lorentz theory again fails;
1t cannot correctly predict the force between a stationary charge and
an accelerating charge. However. it can predict the correct electro-
motive force around a closed loop due to another closed loop with current
changing with time, the Faraday law of electromagnetic induction; thus,

em.f. = - '¢' ds-9A/3t = - (a/at)l/‘dan-B = -39/3t. (29)

This integral result (29) satisfies Newton's third law. Again, as for
the Biot-Savart law, it is a matter of integrating an incorrect formula
around a closed loop to get a correct result. This result (29) is
identical to the Weber result (7).

Both the Maxwell-Lorentz theory and the Weber theory(‘” can predict
pseudo-effects where no charge acceleration occurs, but the source loop

is moved with a velocity v'; so dA/dt = DA/3t + W'-V)A # 0; and an
e.m.f. is induced.

The Maxwell-Lorentz theory is completely incapable of predicting
localized wnipolar induction (discussed in Section 7 below). The Weber
theory, on the other hand, easily predicts all of the experimental
results of Kennard and Miiller.

2.3 Limitations of the Maxwell-Lorentz theory

From the discussion above (and to follow) it may be seen that for
slowly varying effects the Maxwell-Lorentz theory is valid only for
limited situations where:

1) The interaction between moving point charges is not involved. It
does not, thus, provide valid expressions for the interaction between
moving point charges in submicroscopic systems, where quantum theory is
required. .

2) Macroscopic quantities of material and macroscopic distributions
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of charge and currents are involved.
3) A source is confined to a finite volume, and it vanishes on the

surface of this volume.
4) A detector is confined to another finite volume. Sources and
detectors do not occur in the same volume.
5) As implied by limitations 3) and 4}, source currents form closed

current loops so that Y-A =T =0.

6) The force on an accelerating charge or time varying current due
to a static charge distribution is not involved.

7) Induction is limited to closed current loops due to the net time
rate of change of the magnetic flux (produced eleswhere) through the
loop.

8) Induction in only a portion of a closed loop is not involved.

9) Induction in open circuits is not involved.

For rapidly varying effects, where time retardation is required, the
limitations listed above still appear to be valid. It is not evident,
however, that retarded fields ¢ and A, Egs. (10),
It may be that the retarded fields T and G, Egs. (12), are also needed
for completeness, such as for the self-torque on the Pappas-Vaughan

are ever sufficient.

antenna (Section 6 below).
In contrast to these limitations, the Weber-Wesley theory, being a

fundatmental theory, appears to have no limitations at all.

3. QUANTITATIVE DETERMINATION OF THE FORCE ON AMPERE'S BRIDGE
A crucial experiment that decides between Ampere's original empirical
law (6), (30), or (31) for the force between current elements and the

Biot-Savart law (26) (and, thus, helps to decide between the Maxwell-

Lorentz theory and the Weber-Wesley theory) involves the measurement of
the force on Ampere's bridge, as indicated in Fig. 1. Ampere, (4)
Hering,(zs]Cleveland,(z” Robertson,(za) Pappas,(zg)(ao) and Graneau (14)
(31)-(33) have shown that the bridge is repelled by the remainder of the
circuit, as would be expected from Ampere's law. But these earlier
experiments yielded no adequate quantitative measurements.

The difficulties in obtaining quantitative results have been both

experimental and theoretical. A valid expression for the force on

Ampere's bridge derived from Ampere's law (31) that can be compared
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titatively with ; h : not occur, the force on the lower portion is simply the negative of Eq.
antita i
quantitatively wi expe.rlment as only(sEeen recently available. And (32). The net force on the current loop is zero; and Newton's third law
only recently have Moyssides and Pappas ' obtained quantitative results

(3)

. i isfied.
for the force on Ampere's bridge that can be adequately compared with 1s satistie
. g . . 7)-
the theory. The theoretical difficulties in the past(n)(Z -33) arose
from using Ampere's law written for linear current elements, which from

Eq. (6), letting qv = Ids and q'v' = I'ds’', is
c2d?F, = (II'R/R®) - 2ds-ds' + 3(ds-R)(ds' -R)/R?). (30)

This linear form (30) yields an <nfinite force when two colinear current
elements are brought together, the force varying as the inverse square
of the separation distance. This infinite force arises from having
assumed infinite current densities, finite currents I and I' being
confined to wires of vanishing cross section. The infinities can be
avoided by turning to volume current densities, where the Ampere law (6)
or (30) becomes

c2d°F,/d°r d°r' = (R/R*)[-2J0-0" + 3(I-R)(J'R)/R). (31)

It may be readily shown that integrating this form of Ampere's law (31),
using continuous finite current densities J and J', can yield no
infinities, in agreement with laboratory observations.
3.1 Ampere prediction of the force on Ampere's bridge with
straight ends

The force on Ampere's bridge with straight ends with the geometry
shown in Fig. 2 has been calculated(a) by performing all 6 of the
integrations indicated in Eq. (31). The analysis is lengthy but straight-
forward. All integrations yield expressions in closed form. When the
width w, equal to the laminar thickness, is small the magnitude of the

force is given by

CF,/AUAF = C+ YT+ LM - In(1 + /1 + M) + In(L/w),  (32)

where C = 13/12 - n/3 + (2/3) In2 = 0.49822 ... , and the dimensions L,
M, N, and w are indicated in Fig. 2.

The lower portion of the circuit diagrammed in Fig. 2 also forms an
Ampere's bridge. The force on this lower portion is given by merely

changing the sign of Eq. (32) and replacing N by M - N. Since N does

FORCE
| A
BRIDGE

—_—| w <—

I M
N
l Y

-, —>

Figure 2. Diagram of Ampere's bridge with straight ends showing the

dimensions L, M, N, and w.

3.2 Biot-Savart prediction of the force on Ampere's bridge

with straight ends
Carrying out the 6 necessary integrations indicated by the first of
Eqs. (26) for the Ampere bridge as diagrammed in Fig. 2, the Biot-Savarat
law predicts a force on the bridge for the width w, equal to the laminar

thickness, small equal to
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CF/212 = =1+ TS LI - In(1 + /T 7 L AR) GE/21% = (L - PI/P) + tn(Q/(Q - P)) + YT+ @A - V1@
(1 + /1 + L/(M-N Y ST Q/M =N - AT L QN AT (L - Qe
+ + /1 + L2/(M-N)2). = 3
n( (M-N}?) VT T - -ME - TP - 1+ Q-P)/M- W
This result (33) is quite different from the Ampere result (32); as may + 5T+ (L-Q-P)2/(M-N)? + +/1 + (L-P)2/N? - Zn[(L‘Q)/(L -Q‘P)]

be readily seen for the case where L/M and L/(M - N) = 0. In this case I+ '\/I_W . 1+ @] (35)
the Ampere result is large and varies as in (L/w), while the“})}%tl)s + 7"1[ Y e YT } b "[_]_Tm
Savart result becomes zero. The strong repulsive force observed ———
(25)(27)-(33) is in agreement with the Ampere prediction. The experimen- T Vi1 + (L'P)Z/Nz] - Zn{ 1> V1 * /(M- N)F ]
tal observations do not agree with the weak or zero Biot-Savart ' 1+ 1 +P/N 1+ V1 (Q-P)/(M-N)?
prediction. . In[ 1+ Wm ] A

1+ 1+ (L-Q-P)2/(M-N)?

Actually this result (33) is absurd: From symmetry the lower portion
of the circuit diagrammed in Fig. 2 also forms an Ampere's bridge which
experiences a Biot-Savart force given by changing the sign of Eq. (33) Although this result (35) is a bit lengthy with § parameters; mumerical
and replacing M - N by N. The net Biot-Savart self force on the entire results may be readily obtained to compare with experiment.
circuit is then suppose to be nonzero and equal to :

FORCE
C*Fp(net}/21% = n(1 + /1 + Lz/(M-N)z) - (1 + 1+ LZ/N2). (34) T
[

Newton's third law is not obeyed. This force (34) could be used to lift
oneself by ones own boot straps, to violate the conservation of energy,
etc. This result (34) is a specific example of the absurdity already BRIDGE l.‘.p.;l
demonstrated above by Eqs. (27) and (28). ! = ¥ e ;

3.3 The force on Ampere's bridge with bent ends L A

Moyssides and Pappas(al') also measured the force on Ampere's bridge J

with bent ends, as shown in Fig. 3. Using Ampere's law as given by Eq.
(31), the 6 integrations may again be carried out in closed form. For M I
the width w, equal to the laminar thickness, small the force on the

< Q —>|

bridge becomes

A4

| Figure 3. Diagram of Ampere's bridge with bent ends showing the

dimensions L, M, N, P, Q, and w.
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3.4 Comparison of theory with experiment for the force on
Ampere's bridge with straight ends
The theory assumes a rectangular cross section for the wire used;

(34) actually used wires of circular cross

whereas Moyssides and Pappas
section. To an adequate approximation the small cross-sectional areas

may be equated; or
W= +/mnd/2, (36)

where d is the diameter of the circular wire used. Moyssides and Pappas
used L = 48 an and M = 120 cm. They used units of gram weight for the
force F“; so Eq. (32) must be divided by the acceleration of gravity
980.0 an/sec?. They used units of ampere for the current instead of
electrostatic units; so Eq. (32) must also be multiplied by c2/100.
Using Eq. (36) and the above facts, Eq. (32) yields the theoretical

formula
FA/I2 = (14.569 - 2.0408 In d) x 10‘5, 37)

where FA is the force in gram weight units, I is the current in amperes,
and d is the wire diameter in millimeters. This theoretical result (37)
is plotted in Fig. 4, where it is compared with the experimental points
of Moyssides and Pappas(“) (as presented in their Fig. 3).
3.5 Comparison of theory with experiment for Ampere's bridge
with bent ends .

For the case of 1 cm bent ends Q -P=1an, L = 52 cm, P = 1 cm,
M = 120 an, and N = 43 cm Moyssides and Pappas(”) report a force on the
Ampere bridge per current squared of 7.04 * 0.14 x 107° gm weight/amp?,
where the error has been estimated from their Fig. 11. Substituting the
dimensions reported by Moyssides and Pappas into Eq. (35) yields the
theoret ical prediction of 9.500 x 107° gm weight/amp?. Similarly for the
case of 2 an bent ends where Q - P =2cm, L =54 an, P=1an, M = 120
amn, and N = 43 cm Moyssides and Pappas report a force per current squared
of 6.06 £0.12 x 10°° gn weight/amp?. The theoretical prediction in this
case from Eq. (35) is 9.019 x 1075 gm weight/amp?. Results are summerized
in Table 1.
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Figure 4. Force on Ampere's bridge with straight ends, theory (solid
curve), Eq. (37), compared with the experimental points.

. -5
Table 1. Force on Ampere's bridge with bent ends (gm weight/amp?) x 10

length of bent ends experiment theory, Eq. (35)

1 cm 7.04 £ 0.14 9.500
2 cm 6.06 £ 0.12 9.019
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3.6 Discussion and conclusions concerning the measurement
of the force on Ampere's bridge

Examining Fig. 4 and Table 1, it may be seen that the predicted force
exceeds the force reported by Moyssides and Pappas by about 2.4 x 10 -5
gm weight/amp? or 20 percent. Considering the well established success
of vthe original Ampere law (30) or (31) in accurately predicting a vast
amount of experimental data where the force on a closed current loop is
involved (the Maxwell case), a reason must be sought for the discrepancy.
The discrepancy is found to behave 1n a very regular way. For all 11
observations of the force on Ampere's bridge as a function of the wire
diammeter for the case of straight ends, as well as for the case of bent
ends, the discrepancy, A = (FA /1) (theory) - (FA /1*)(experiment), is
given quite accrately to within the experimental error by

8 = 4.57 - 0.2(F,/1*)(theory), (38)

in (gm weight/amp?) x 107%. Since this result (38) is independent of the
many independent variables, the shape and dimensions of the circuit and
the diameter of the wire; there must be a systematic error involved in
the measurement of the force F A and or else the current I. Since it
seems unlikely that there could be any systematic error involving the
current I; only the measurement of the force FA comes into question.
The systematic error might arise from phenomena in the mercury cup. The
current may spread out in the cup, thereby reducing the force. Surface
tension of the mercury may restrain the free motion of the bridge,
resulting in apparent smaller forces. The fractional effect of surface
tension should be greater for smaller forces as is observed.

Since the discrepancy between theory and experiment does not depend
uwpon the particular expression used, Eq. (32) or (35), nor upon a
variation of the parameters; it is quite legitimate to use Eq. (38) to
correct for the systematic experimental error that is clearly present.
Making the correction, it is concluded that the experimental determina-
tion of the force on Ampere's bridge by Moyssides and Pappas(al') confirms
Ampere's original force law (6) or (31) quantitatively to within the
experimental error of about 2 percent. Even without the correction the
result confirms Ampere's law quantitatively to within a 20 percent error.
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4. AMPERE REPULSION AND GRANEAU'S EXPLODING WIRES

Graneau(“)(”) reports the breaking of wires (and 1iquids(23) ) when
loaded with large currents. He attributes this explosion of wires (and
liquids) to the Ampere repulsion between colinear current elements. In
an attempt to estimate the tension Graneau incorrectly uses the linear
form of Ampere's law (30). To avoid the inevitable infinities Graneau
introduces into his computer calculations a nonvanishing arbitrary
finite length for his current elements. He adjusts this finite length
to agree with experiment. His estimates of the Ampere tension are, thus,
not valid. No arbitrary adjustable parameter arises in the correct
physical theory based upon the three dimensional form of Ampere's law
Eq. (31).

The present paper derives for the first time a correct theoretical
estimate of the Ampere tension available to rupture a current carrying
wire using the three dimensional form of Ampere's law (31). Since no
infinities can arise; there is no need to introduce an arbitrary finite
current element. The correct theoretical prediction supports Graneau's
claim that the wires are ruptured by Ampere repulsion between colinear
current elements.

The force on Ampere's bridge due to the remainder of the circuit
obtained by integrating Eq. (31) for the geometry shown in Fig. 2 is
given by Eq. (32). This force is independent of where the mercury cups
occur along the sides of length M (shown as gaps in Fig. 2). To estimate
the Ampere tension T for Graneau's setup a square circuit (without
mercury cups) may be considered, where L = M; thus, from Eq. (32)

T = (I*/c?)[C + In(L/w)]), (39)

where C = 13/12 + /2 -n/3 + (2/3) In2 - In(1 + +/2) =1.0311... . The
tension in a circular loop may then be approximated by a square circuit
of the same area. A wire of circular cross section may be approximated
by a wire of square cross section of the same area, Eq. (36). The
tensile stress S created by Ampere repulsion in a circular loop of
diameter D carrying a current I in a wire of circular cross section of

diameter d may then be approximated as

S = 4T/nd* = (412/c*nd?)[(1.0311 + 1n (D/d)). (40)
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4.1 Comparison of the Ampere stress in a current carrying
wire (‘Zﬂ:h the stress needed to break the wire

Graneau considers the case of the breaking of a current carrying
straight wire of diameter d = 1 mm and length L = 150 an carrying a
current of 101'amp. Approximating this case by a circular circuit of
diameter D = ZL/ﬁ = 169 am, Eq. (40) yields the estimate of the Ampere
tension in the wire as 8.64 kgm, or an Ampere tensile stress of 11.0
kgm/mm?. This is about 1/4th the tensile stress needed to break cold
copper; but it is undoubtedly sufficient to impulsively break copper
weakened by Joule heating.

Graneau(21)

also considers the case of a curved circuit which may be
Iapproxjmated by a circle of diameter D = 50 am of 99% pure aluminum wire
of diameter d = 1.2 mm carrying a current of 5 x 10° amp. According to
Eq. (40) the Ampere tensile stress in the wire is 2.29 kgn/mm?. This
is about 1/9th the tensile stress needed to break cold aluminum; but
it is undoubtedly sufficient to impulsively break aluminum greatly
weakened by Joule heating.

4.2 Discussion and conclusions concerning exploding wires

Microscopic appearance of the clean right angle breaks that Graneau
obtains indicate that rupturing occurs as a result of impulsive tensile
loading and that no radial pinch effect, which would have yielded a
necking-down, could be responsible for the observed ruptures.

It is sometimes speculated thgt the explosion of wires carrying large
currents is due entirely to Joule heating of occluded gases on grain
boundaries of the metal. Although this mechanism may contribute to the
weakenning of the tensile strength of metals; it cannot account for the
explosion. No alternative methods of heating, such as microwaves, even
to melting, have ever been observed to produce such explosions in metals.
If it were merely a matter of Joule heating, rupturing in the radial
direction should also be observed. Radial rupturing, providing less
resistance to expansion, would seem to be preferred if it were mérely a
matter of Joule heating alone. If the effect were due to Joule heating,
the ends of the broken wires should be ragged and should show some signs
of melting instead of showing clean right-angle breaks indicating

(23)

impulsive tensile loading. In addition, Graneau's observation of

ruptures in liquids due to Ampere tension cannot be attributed to Joule
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heating of occluded gases on grain boundaries.

Ampere tension is the only force available to give rise to the
observed tensile ruptures. The magnitude of the Ampere tension estimated
here is of the correct order of magnitude to account for the ruptures
observed. If some weakenning by Joule heating is assumed, the match
between theory and experiment is adequate. The absence of data on the
rupture strength of metals as a function of temperature and the absence
of the temperature of the wires when exploding make it impossible to
check this point. In conclusion, Graneau's claim that his wires carrying
large currents break due to Ampere tension is undoubtedly correct.

5. AMPERE REPULSION DRIVES THE GRANEAU-HERING SUBMARINE AND

HERING'S PUMP

Hering(zs) performed a number of interesting experiments that he
claimed could not be adequately explained by traditional Maxwell theory.
Among these experiments is the propulsion of a wedged-shaped piece of
copper, or 'submarine', when laid in a trough of current carrying
meTCury. Graneau(“) repeated this experiment and ascribed the
propelling force to the repulsion between colinear current elements
given by Ampere's original force law (6) or (31). Graneau did not derive
a theoretical expression for the force on the submarine; nor did he
measure the force quantitatively. The present paper derives for the
first time an estimate of the force on the Graneau-Hering submarine from
Ampere's original force law. A very simple experiment is proposed to
verify the theory quantitatively.

Hering(zs) also performed an experiment in which mercury is pumped
uphill from a central reservoir into a narrow current carrying channel
vhere the mercury then flows in two opposite directions into large
reservoirs at either end of the narrow channel. The electric current
flows in only one direction down the narrow channel; the effect is
independent of the direction of the current flow. In principle, this
experiment again demonstrates the propulsive force on a current carrying
metal wedge. In this case the wedge is formed by the mercury from the
narrow channel toward the large reservoirs. The theory derived here
for the Graneau-Hering submarine is, thus, equally applicable to Hering's
pump. The very simple experiment proposed below for the quantitative
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force on the submarine will then also test the theory quantitatively
for the Hering pump.
5.1 Theory for the Propulsion of the Graneau-Hering submarine
and Hering's pump

The result (32) or (39) yields the Ampere tension as proportional to
the logarithm of the ratio of the size or diameter of the circuit to the
size or diameter of the wire. The size of the wire enters in from the
integration of Eq. (31) only in the neighborhood of the point where the
tension is to be calculated. Away from this point the size of the wire
is 4 matter of indifference in the integrations when the size of the
wire is small compared with the other dimensions of the circuit. For
the Graneau-Hering submarine, assuming that all of the current is
funnelled through the higher conducting copper submarine, the tension,
or force, Tl at the rear end of width w, of the submarine is

T, = (Iz/cz)(c' + ln(L/wl)], (41)

where C' is a constant, which may be obtained from Eq. (32). The tension
or force at the forward end of width W, > W, is

T, = (I2/c?)(c' + ln(L/wz)]. (42)

As suming W, and W, small compared with the other dimensions of the

circuit, the net force F to propel the submarine is simply
F=T -T, = (1/c*)1n (wz/wl). (43)

This force propels the submarine in the direction of the broader end as
observed.

This result (43) may also be used to obtain the force on the mercury
in Hering's pump.
5.2 Proposed experiment to measure the force available to

propel a submarine or to drive a pump

The observed results of Graneau(?%) and Hering(zs) for the force on
the Graneau-Hering submarine and the force to drive the Hering pump have
been only qualitative. An appropriate quantitative prediction derived
from Ampere's law as given by Eq. (32) or by Egs. '(41) and (42) can be
obtained by measuring the pressure difference between the ends of a
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closed wedged shape container of square cross section containing current
carrying mercury as indicated in Fig. 5. The difference in tension per
can be determined by the difference in the

unit area, the pressure, . .
indicated in

height Ah to which the mercury rises in the two columns as

Fig. 5. Since the static pressure in the mercury must be the same
throughout; the mercury will rise on the end of width Wy, where the

internal Ampere pressure is less to match the higher Ampere pressure at

the other end of width w,; thus,

Py &8 = (12/ctw)(C' + Tn (LAvD) - (12/ct3) (€ + Tm (LAw))], (44)

where P is the density of mercury, g is the acceleration of gravity,
and C' is a constant that can be obtained from Eq. (32).

The difference in height Ah would be best measured interferometrically
by comparing the optical path difference between coherent light .bearns
reflected vertically from the mercury cqlumns at w, and W . ?n this way
large currents I with extraneous heating effects could be avoided.

€3>

N e
7

e '//////////////////4%%}}%/////// / / //A .

w W2

Figure 5. Proposed experiment to determine quantitatively. the .forfe
available to drive the Graneau-Hering submarine or to drive He.rmg s
pump by measuring the pressure difference between 'Fhe ends of side w,
and w, in a wedge shaped container of current carrying mercury.
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6. MAXWELL-LORENTZ THEORY PREDICTS A NONZERO SELF-TORQUE ON
THE PAPPAS-VAUGHAN ANTENNA

Pappas and Vaughan (35)

have suspended a Z-shaped antenna, as shown
in Fig. 6, by a 5 m long nylon fiber. No other mechanical connection
to the antenna is involved. The antenna is driven inductively by an air
core transformer at the center at a frequency (= 150 Mhz) such that the
standing electromagnetic waves along the antenna have a wavelength A
(~ 2 m) matching the dimensions of the antenna as shown in Fig. 6. When
driven the antenna shows zero self-torque. The torsion balance formed
by the suspended antenna is sufficiently sensitive to detect torques of
only 10 "Nt m.

Integrating Eq. (23), using Eqs. (10) and (11), the Maxwell-Lorentz
theory predicts a readily measurable nonzero self-torque on the antenna.
This predicted self-torque, which violates Newton's third law, arises
from the fact that the Maxwell-Lorentz theory violates Newton's third
law from the outset. The antenna does not form a closed current loop.
The Pappas-Vaughan experiment, thus, provides another example of where
the Maxwell-Lorentz theory fails or does not apply. In contrast,
integrating Eq. (9), using Eqs. (10)-(12)}, the Weber-Wesley theory,
satisfying Newton's third law, predicts a zero self-torque on the antenna
in agreement with the experimental result.

This experiment is of special interest for comparing the Weber-Wesley
theory with the Maxwell-Lorentz theory; because time retardation is
involved together with electromagﬁetic fields. The other experimental
situations considered in this paper involve slowly varying effects only
where time retardation is not needed. Time retardation does mnot
necessarily alter the agreement with (or violation of) Newton's third
law; as the time for an effect to travel from element d®r' at r' to
element d®r at r equals the time for an effect to travel in the opposite
direction from dr at r to d°r' at r'. Thus for example, for the time
harmonic case when source and detector are in phase (the case of
interest here) Newton's third law can be satisfied. However, in general
time retardation does imply an instantaneous violation of Newton's third
law vwhen only the source and the detector are considered. To satisfy
Newton's third law instantaneously time retardation implies that inertial
properties must be ascribed to the electromagnetic field itself.
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y
y = A/4
portion 1
x = - A/2
r —> x
portion 2 x = A/2
on 3

porti /
y = - A/4
b4

Figure 6. The Pappas-Vaughan Z-shaped antenna showing the choice of
coordinates with the three portions of ‘the antenna: portion 1 at x = A/2

from y = O to A/4, portion 2 at ¥y =0 from x = - A/2 to A/2, and portion

3atx =- A2 fromy =0 toy =~ A/4.

6.1 ‘Description of the Pappas-Vaughan antenna

The Pappas—Vaughan(as) Z-shaped antenna is shown in Fig. 6 with the

three portions involved and the choice of coordinates. The antemna is

suspended along the z axis. The current and charge densities induced

by an air core transformer at the center are time hammonic with all

portions of the antenna in phase; thus,

J(r,t) = J(r) coswt and p(r,t) = p(r) sinwt, (45)
where © = 21 f is the angular frequency. To satisfy the equation of

continuity for charge, V+J + 2p/3t =0, the time harmonic variation

for the charge is taken as sinwt, when the time variation of the current

is taken as coswt. The space part of the current density J(r) induced

in the various portions of the antenna are
J, = e, Icoskyd(x - A/2) u(y)u(-y + A/4),

J,= -exIcoskxu(x + A/2) u(~x + A/2)8(y), (46)

J,= e, Tcos kyd(x + A/2) u(-y)uly + A/4),
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where &(x) is the delta function, u(x) is the unit step function, zero
for x = 0 and unity for x » 0, and I is the peak current. The space

part of the charge density p(r) induced on the various portions of the
antenna are

¢p, = Isinky &(x -~ A/2) u(y) u(-y + A/4),
¢p, =~ Isinkxu(x + A/2) u(-x + A/2)6(y), 47)
€py = Isinky 8(x + A/2) u(-y) u(y + A/2).

6.2 The net self-torque on the antenna due to forces obeying
Newton's third law are zero
A force F(r,r') acting on an unprimed particle (or volume element d’r)
at r due to a primed particle (or volume element dr') at r' that
satisfies Newton's third law is of the form

E(r,r') = (r - r')6(r,r') = - F(r,r') = - (¢' - r)G(r',r), (48)

where G(r,r') = G(r',r) is a function symmetric to an interchange of
primed and unprimed coordinates, and F(r',r) is the force acting on the
primed particle (or volume element) at r' due to the unprimed particle
(or volume element) at r. The torque T(r,r') about an axis, which may
be taken as the z axis, produced by the force F(r,r') acting on the
unprimed particle (or volume element) is given, using equation (48), by

T(r.r') = (s x F(r,r))e, = (x(y - y') - y(x - xJ6(r,r'), (49

where

s =Xe +
xtre, (50)
is the radial distance i
; ‘ from the z axis, the lever arm, and e, , ey, , and
€, are unit vectors in the cartesian coordinate directions. The net

self-torque on the system, the torque due to the force acting on the
unprimed particle plus the torque due to the force acting on the primed
particle, then becomes, using equations (48), (49), and (50),

T(r,r') + T(r',r) = [s x F(r,r') +s' x F(r',r)]-e
: ’ (s1)
= Ox' - xy")G(x,r') *+ (y'x - x'Y)G(r',1) = O.
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A sunmation over all particle pairs or an integration over both primed
and unprimed volume elements then also yields zero.
6.3 Weber-Wesley theory predicts a zero self-torque on the
Pappas-Vaughan antenna

Substituting Eqs. (45) into Eqs. (9) through (12), the Weber-Wesley
force on an element of volume d°r at r due to a volume d3r' at r' may
be obtained at any instant t. Experimentally only the time average force
is of interest. Averaging over a cycle involves the integrals

2n/w
f dt sin wt sin(wt - kR) = (cos kR)/2,
0

(52)

2nfw
f dt cos wt cos(wt ~ kR) = (cos kR)/2,
0

where k = w/c = 2n/A is the propagation constant.
Using this result (52) the time average force between volume elements
from Eqs. (9) through (12), which is appropriate for the Pappas-Vaughan

antenna, is given by

2ct (d°F,/dr* dr*) =R {[czpp' - 2J-J" + 3(R-J)(R-J')/R? + LPR-J'

- mp'R-J]Q(R) -k [(R-J)(R-J')/RZJP(RJ} , (53)

vhere p, p', J, and J' refer here to only the space parts, Eqs. (46) and
(47), and where

P(R) = (coskR)/R  and  Q(R) = (coskR *+ kRsinkR)/R®. 54

This time average result (53) is seen to satisfy Newton's third law;
as it is directed along R and interchanging primes and unprimes yields
only a change of sign, the functions P(R)} and Q(R) being invariant to
an interchange of primes and unprimes. Considering the result of
Section 6.2 above the Weber-Wesley theory predicts a zero self-torque
on the Pappas-Vaughan antenna.

6.4 Integrals for the Maxwell-Lorentz self-torque on the
Pappas-Vaughan antenna

Substituting the time harmonic variations specified by Eqs. (45)

into Eqs. (23) and (10) and taking a time average over a cycle, using
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Eqs. (52), the time average Maxwell-Lorentz force between volume elements
becomes

(55)
23 (R /AT drD = 0pd'PR) + [cRpp! - RWHJ') + J'(J'R)JQ(R),

where P(R) and Q(R) are defined by Eqs. (54) and e, P', J, and J' refer
to the space parts as given by Eqs. (46) and (47).

It may be seen that the second and third terms on the right of
Eq. (55) satisfy Newton's third law, Considering Section 6.2, these
terms will contribute nothing to the self-torque on the Pappas-Vaughan
antenna. Only the first and fourth temms on the right of Eq. (55),
violating Newton's third law, can contribute to a nonzero self-torque.

It is convenient to write the self-torque T as the sum of two temms:
U the contribution from charge-current interactions given by the first
term on the right of Eq. (55) and V the contribution from current-current
interactions given by the fourth term on the right of Eq. (55); thus,

T=U~+YV, (56)

where

U= (w/2?) [fasrar pe,.(sxd') PR),
(57}

<l
"

(1/2¢) ff asr dorve, - (s x 07y QR

where the p's and J's are given by Eqs. (46) and (47), s is defined by
Eq. (50), and P(R) and Q(R) are given by Eqs. (54).

The labor of evaluating the integrals in Eqs. (57) is considerably
reduced by noting that the charge and current densities are all confined
to the xy-plane; so J has only x and y components; and the volume
integrations reduce to integrations over X, ¥, x', and y'. Equations
(57) may be written as

U= (o/22) ff'dx dy dx' dy* P () - yI1)P(R), 58

V= (1/2er) fiffaxdy axt dyt (uly -y [ox - x')J, * (v = y' ), ] Q.

The 1integrals (58) may be broken down in terms of contributions from
the various portions of the antenna. Thus, U13 is the torque arising
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from charge-current interactions due to portion 3 acting on portion 1 ,
U21 is the torque due to portion 1 acting on port10r.1 2, etc. From
symmetry it may be seen that the torque involving portion 3 equals the
torque involving portion 1. In particular, to evaluate the torque on
portion 3 a mathematical rotation of the antenna through 180° may be
made that brings portion 3 into the original position of portion 1.
Only the signs of the charges and currents are reversed as compared with
the original situation before the rotation. But since the integrals
involve a product of two currents or a product of a charge density and
a current density; the integrals remain precisely the same as before the
rotation. The torque involving portion 3 must, therefore, be identical
to that produced by portion 1. It is sufficient to merely double the
contributions involving portion 1 to obtain the net torque. The
contributions due to charge-current and current-current interactions may

then be written as

(59)

Substituting Egs. (46), (47), and (54} into the first of Egs. (58)
yields

Me 0 '
U0, = (n I‘/cz)f dyf "dy' sin ky cos ky' (coskR'/R')
S8 “Jo “A/4
x/2 by ,
0 = (kIz/cz)J‘ dxf dy y sin ky cos kx (cos kR/R), (60)
12 A2 0
z/2 A4
W = (-kI’/c‘)f dxf dy x sin kx cos ky (cos kR/R),
2 a2 do
where here
R'2 = A2 + (y - y')? and R = (x - A/2)? + y2, (61)

Similarly substituting Eqs. (46), (47), and (54) into the second of

Eqs. (58) yields
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w

A4 0
V= (12 )\/Zcz)fo dyf)‘/ dy' (y - y') cosky cosky' Q(R'),
- M4

X2 X/4
Vv, = (Iz/Cz)f dxf dy y? cos kx cos ky Q(R), (62)
- A2 0
A2 A4
Wy = (- 12/c1)fm dXI dy x(x =A/2) cos kx cos ky Q(R),
- 0

where R' and R are given by Egs. (61) and Q(R) is defined by the second
of Eqgs. (54).
6.5 Evaluation of the Maxwell-Lorentz integrals for the self-
torque on the Pappas-Vaughan antenna

The net Maxwell-Lorentz self-torque on the Pappas-Vaughan antenna
given by Eq. (56) involves the integration of the 'integrals found in
Eqs. (60) and (62). It may be noted from the definition of Q(R),
Eq. (54), and Egs. (61) that

(r - y")QR') = - 3/3y (coskR'/R"),
y Q(R) = - 3/3y (cos kR/R}), (63)
(x - A/2)QR) = - 3/3x (cos kR/R).

Using this result (63), the integ.rals in equations (62) may be integrated
by parts yielding

0
y=M4
V= (I*A/2c?) f” dy' cos ky' {-cos ky (cos kR'/R")
-)/6

y=0

A
- kj; dy sinky (cos kR’/R')}

A2

y=Xx/4
&V, = (I*/c?) dxcoskx{-ycosky(coskR/R)

=1/2

y=0.
(64)

A4
+ j; dy (cosky - ky sinky)(cos kR/R)}
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A4 x= A2
NV, = (I’/Cz)f dy cos ky{xcos kx {cos kR/R)
0 x=-1/2
22
= dx (cos kx - kx sinkx)(cos kR/R) } .
-x/2

It may be seen that the last term on the right of the first of
Eqs. (64) equals - ZU”, as given by the first of Eqs. (60); the last
term on the right of the second of Eqs. (64) equals - 2U12, as given by
the second of Eqs. (60); and the last term on the right of the third of
Eqs. (64) equals - 2U21, as given by the third of Eqs. (60). Moreover,
it may be seen that the second term on the right of the second of
Eqs. (64) equals minus the second term on the right of the third of
Eqs. (64). Combining terms for the total self-torque, using Eqs. (56),
(59), (60), and (64), therefore, yields only the sum of the first terms
appearing on the right of the three Egs: (64), which involve only single
integrations. Putting in the 1limits of integration arising from the
first integrations and adding the resulting single integration terms in
Eq. (26) yields the net time average Maxwell-Lorentz self-torque on the

Pappas-Vaughan antenna as
A4
T= (- IZA/ZCZ)I dy (coszky)/y. (65)
0

This result (65), which arises primarily from the corners of the
antenna, predicts an infinite Maxwell-Lorentz self-torque on the Pappas-
Vaughan antenna, there being a logarithmic singularity as y -> 0. The
infinity arises from the fact that the current densities were assumed
to be infinite, a finite current being confined to wires of infinitesimal
cross sections. If the wires are assumed to be of finite cross section
and to be bent around small curves instead of forming sharp corners,
the integral in Eq. (65) can be replaced by a rough realistic estimate
by letting y > b, where b is a small nonzero parameter. In particular,
for the Pappas-Vaughan setup b may be taken as roughly equal to A/100
(which is about 1 an for the antenna actually used). Thus,

(66)

A4 x4 A4
f dy cos?ky/y —> dy cos?ky/y = dy (1/2)/y = 1.610;
0 PR 2/100
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6.6 Discussion and conclusions concerning the self-torque on
the Pappas-Vaughan antenna
Pappas and Vaughan(35) found from the power fed to their antenna of
at least 35 watts and its impedance of 70 ohms that the peak current was
at least 1 ampere. Substituting this value into Eqs. (65) and (66),
where A = 2m, yields the estimate of the self-torque on the Pappas-

Vaughan antenna predicted by the Maxwell-Lorentz theory of at least
T ~ -0.805 I*A/c> >-10"% Nem. (67)

This is 5 orders of magnitude greater than the minimum torque of 1077 Ntm
that could have been observed.

As an experimental check they had no difficulty in obtaining a strong
deflection when a half-wavelength straight wire was brought into the
neighborhood of one end of their antenna. The dipole induced in the
wire by their antenna would be expected to produce and effect of the
same order of magnitude, but smaller, than that predicted by the Maxwell-
Lorentz theory.

It 1s concluded that the nonzero self-torque predicted by the Maxwell-
Lorentz theory does not agree at all with the experimental result of
Pappas and Vaughan; while the zero torque predicted by the Weber-Wesley
thoery and Newton's third law does agree with their result to within the
limits of the sensitivity of their setup.

7. WEBER THEORY OF UNIPOLAR INDUCTION AND THE EXPERIMENTS OF

MOLLER AND KENNARD

Much confusion exists today concerning unipolar induction, because
the traditional theories of Faraday and Maxwell camnot give unequivocal
answers. These theories also do not agree with the important experimental
results of Mi.iller(aﬁ) and Kennard.m) In contrast, the Weber theory,
based upon the interaction between point charges, yields unequivocal
agreement with all of the experimental results.

It is frequently attempted to use Maxwell's flux rule, Eq. (29), for
all induction phenomena; but this type of induction is limited to the
case of a changing magnetic flux through a closed loop produced by
closed current loop sources. The more general Weber theory predicts
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induction where no magnetic flux can be defined and no closed current

loops at all need be involved. For example, unipolar induction involves

no change of magnetic flux (which remains zero) through the loop in

(39 cut1iwick, 3 and

which current is induced, as recognized by Cohn, and

Feyman (40) (Although others, such as Savage,(“) Panofsky and Phillips,
and Scanlon et al,(“) try to see a change in flux.). The Maxwell flux
rule, involving the net flux through a closed loop, either assumes that
the induced emf occurs uniformly around the loop; or else it fails to
predict where the seat of the emf might be in the closed loop. The
experiment of Mﬁller(aﬁ)reveals the fact that the seat of emf can be
localized and just where in a closed loop it can occur.

Faraday(“') performed his famous rotating disk experiment in 183Z.

A copper disk is rotated near the pole of a magnet. Stationary wires

touch the center and rim of the disk through sliding contacts, as shown

in Fig.7. This produces an emf, which can be detected by inserting a

volt meter in the circuit.

Fig. 7. Faraday's rotating disk experiment. The magnetic field B is
perpendicular to the disk. The induced emf is registered on the volt

meter.
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Faraday attributed this "motional' emf to the disk "cutting" magnetic
field lines, the induced electric field at a point in the disk being
glven by

cE = vxB, (68)

where v 1s the velocity of the disk and B is the magnetic field at the
point in question. Faraday originally assumed that the magnetic field
lines were rigidly fixed to the magnet; and, thus, relative motion
between the disk and the source of the magnetic field was needed to
generate an emf. This is a view still found in most textbooks and held
by many physicists such as Trocheris(ﬁ) and Cullwickfsg) But it is not
true. When the magnet is rotated with the disk, precisely the same emf
is induced, as soon discovered by Faraday himself. Faraday then changed
his mind: He decided that the magnetic field lines remained fixed in
space; even though the magnet itself rotated. In this way the "cutting"
hypothesis could sti‘ll work. In 1851 Faraday(bﬁ)
He decided that the magnetic field lines did, in fact, rotate with the
magnet after all. The 'moving" magnetic field lines, "cutting” the

again changed his mind:

stationary external circuit rs in Fig. 7, generated the observed emf.

. (39
Cu11w1ck( )
occurs in that wire which is in motion relative to the magnet. This

agrees with this view of Faraday. He says that the emf

conclusion is not supported by Miiller's experiment nor Weber's theory.
7.1 Weber's theory of unipolar induction

Induction involves the force on the mobile electrons - q, in the
detector conductor. For unipolar induction the electrons in the detector
have only the velocity of the detector v, (conduction currents in the
detector are not considered). For unipolar induction only steady current
sources are involved where dv;/dt = 0. The net force on the detector
electrons is then the sum of the force due to the source ions q; moving
with a velocity vi', the velocity of the source conductor, plus the force
due to the source electrons - q; moving with a velocity ve' v, where
v; is the steady electron velocity relative to the source conductor. For
the case of the source carrying no net charge, qi = qe', Eq. (4) vyields

the Weber force on the detector electrons as
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c?F, = (q,qR/R*) (- 2v v} + 3RV )(R-V))/R? + v? + 2Vl v} .

- 3(R-V))(R-V!)/R? - 3(R-v;)2/2R=].

The last four terms on the right of Eq. (69) involve the force due
to velocity squared currents on a static charge. Such effects cannot
be observed as they are exactly cancelled inside the source conductor
itself by an induced static charge distribution as explained in Section
1.3 above. The cbservable unipolar induction between point charges then

becomes
CF, = (@R/R) [ - 2v, v) + 3RV )RV (70)

An interesting feature of this result (70) is that the motion of the
source conductor v, does not enter in. Only the velocity of the source
i 'ois i . It may be

electrons relative to the source conductor v, is 1nV01Vf:,‘d . y
noted that moving a current carrying wire parallel to itself with the
velocity v! does not change the net current in the wire, the electron

! . .

current - q;_ (v; +vi') plus the ion current qi'vi' yielding - q;v; when

When extended sources are moved with a velocity vi' an additional
effect, a "pseudo-effect", occurs, which yields the appearance of a time
rate of change of current or accelerating charges due to a variation in
the electromagnetic field at the detector with time. This force per

unit charge is given by
- (viV)(A - VT). (71)

It vanishes for point charges. TFor extended sources this result (71)
must be added to Eq. (70) for the unipolar induced force per unit charge
given in terms of electromagnetic fields; thus,

cE(induction) = v, X (VxA) - viV-A + (vi <ONVr -
- V)4 - V).

This Weber-Wesley result (72) can predict the induced electric field
in a detector for many possible situations; but the experiments of
interest here require only the Maxwell case of closed current loop
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sources where V:A = T' = 0, Ip addition, in these experiments the
motion of the source ¥' is confined to situations where - (v'-y)A = Q.
For the experimental situations of interest here the wnipolar induction
then reduces to

cE=vx(VxA). (73)

Using the fact that B = v x A, Eq. (73) yields the original Faraday
result (68). It might, thus, seem that the Weber-Wesley theory offers
nothing more than the Faraday theory; but this is not true. The
derivation of Eq. (68) from the Weber-Wesley theory now makes the meaning
of the magnetic field clear. The interpretation of the magnetic field
by Faraday and Maxwell as physically tangible rigid lines of force
attached to a source is seen to be physically untenable. The B field,
like the vector potential A, is merely a mathematical artifact, a
mathematical device, of no particular direct physical significance, used
to help solve the problem of how moving point source charges affect
moving point detector charges.

To make it abundantly clear that magnetic field lines can never "move'
to ""cut" a stationary wire, it may be noted from Eq. (70) and (73) that
the induced electric field is entirely independent of the state of
rotational motion of the source solenoid (or permanent magnet) about the
axis of the solenoid. Rotating the solenoid merely moves the wires of
the solenoid parallel to themselv'es; S0, as explained above following
Eq. (70), the net current in the solenoid remains the same.

The question remains: What is the frame of reference in which the
velocity V. is to be measured? It is not to be measured with respect
to the current electrons in the source solenoid nor with respect to the
moving solenoid itself. Experimentally the velocity v, is measured with
respect to the laboratory. When the disk is stationary in the laboratory
no induced electric field is observed.

It my be seen that Eq. (70), which yields the induction formula (73),
arises from the cross product terms of the squares of relative velocities:
Wy - v - vDE R0y - v - vD)E, oy - w7, and Re(v, - vi)le.
The squared terms drop out as unobserable leaving only the cross product
terms 2v, v, and Z(R-vi)(R-v;). Thus, the Weber theory starts out using
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only relative velocities to derive a result which has only an absolute
velocity (The reference frame is experimentally the laboratory). The
same thing happens in deriving Ampere's law, Eq. (6). The cross product
terms yield a result in which source and detector electron velocities
become independently prescribed. In both cases the systems involved
may be still implicitly physically determined by the velocity squared
terms whose effect has been dropped as not observable.
7.2 Unipolar induction experiments of Kennard and Miiller

Kennard®7) eliminated the circuit pars, as shown in Fig. 7. No
current flow was involved. He measured directly the static voltage
difference induced across pq. There was then no doubt that the seat of
the emf was across pq. Since the static voltage difference is extremely
small; the effect was enhanced by introducing a capacitor across pq.
The capacitor consisted of two concentric cylinders. They were connected
by a radial wire which functioned like the radius pq of the Faraday disk.
The magnetic field was not produced by a permanent magnet but by a
concentric solenoid outside the capacitor. The solenoid was free to
rotate independently. With this setup Kennard observed the following:
1} A voltage difference was induced when the radial wire together with
the capacitor were rotated and the current carrying solenoid was
stationary. 2) No voltage was induced when the solenoid was rotated and
the radial wire with capacitor were stationary. And 3) the same voltage
difference as in case 1) above was generated when the radial wire,
capacitor, and solenoid were all rotated together at the same rate as
in case 1). Kennard, thus, demonstrated that unipolar induction occurred
when there was no relative motion what-so-ever between any portions of
the apparatus. The induced voltage depended in this case only upon the
absolute rotational velocity with respect to the laboratory of the whole
apparatus as a unit. More precisely, in agreement with the Weber theory
above, the induced voltage was only a function of the rotational velocity
with respect to the laboratory of the radial wire with capacitor and was
independent of the rate of rotation of the solenoid. Kennard's result
clearly shows that magnetic field lines do not rotate with the solenoid
as assumed by Faraday in 1851. .

Miller(¥®) obtained the same results as Kennard using a permanent
magnet and the setup shown in Fig. 8. In addition, Miller was able to
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Figure 8. Diagram of the Miller experiment to determine the seat of
unipolar induction using an annular shaped permanent magnet with a gap
as shown. Portions pq and rs of the circuit and the magnet can be
oscillated rotationally back and forth independently. An oscillating
voltage Vl across R1 indicates an emf 1 induced in the portion pq, and
an oscillating voltage V2 across R2 indicates an emf 2 induced in the
portion rs.
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localize the seat of the emf. Like Kennard, Miller replaced Faraday's
disk with a straight wire pq. Instead of having the equipment perform
complete rotations, Miiller simply oscillated the various portions of
his setup back and forth. The portion pq, the portion rs, and the magnet
could be oscillated independently.

Considering Fig. 8, if portion pq is oscillated rotationally back and
forth rapidly in comparison to the RC decay time of the circuit, while
the portion rs is held stationary, an emf 1 will be induced across pq
and none will be induced across rs. This will cause an oscillating
voltage V, to appear across R; and essentially no voltage signal across
R,. When rs is rotated while pq remains stationary a signal V, will
appear across R2 and essentially no signal across R, indicating an emf
is induced in rs and none in pq. In this way he was able to distinguish
in which branch of the circuit qpt or grst an emf arose. The seat of
the emf in the closed loop pqrstp could, thus, be localized.

To eliminate the possibilty that when the magnet is oscillated
"moving' magnetic field lines might also induce an emf in the capacitor
branch of the circuit giving spurious results the experiment was also
performed using an iron yoke around the magnet extending outward and
inward to the plane of Fig. 8. With the yoke most of the magnetic field
remains in the yoke; and the wire qrs and capacitor branch of the circuit
were shielded from the magnetic field. With the yoke no magnetic field
existed in the capacitor branch; and no emf could possibly be induced
in the branch.

The experimental results are summarized in Table 2. The symbol -
signifies no angular oscillation and the symbol w signifies an angular
oscillation, where, if two or more portions were oscillated at the same
time, they were mechanically coupled together to oscillate as a unit.
The symbol + means an emf was observed and the symbol O means that no
emf was observed. For the cases 5 and 8 no signal was observed, as the
emf's in pq and in rs, being the same, acted like two batteries back to
back, which prohibited any current from flowing and any voltage from

being registered.
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Table 2. Seat of the unipolar emf induced for different cases

case oscillating no yoke with yoke
magnet wire pq wire rs emf pq emf rs emf pq emf rs
1 - - - 0 0 0 0
2 - - w 0 + [¢] 0
3 - © - + 0 + 0
4 3] - - 0 0 0 0
5 - W cancelled + 0
6 - w 0 + 0 0
7 - + 0 + 0
8 © [A) © cancelled + 0

7.3 Discussion and conclusions concerning imipolar induction

The experimental results of Kennard and those of Miiller, as summarized
in Table 2, agree jin all particulars with the Weber-Wesley theory. Their
results do not agree in all particulars with the theories of Maxwell and
Faraday.

The Maxwell flux rule does not work; as the amount of flux through
the loop pqrstp remains zero for all cases; and the emf is localized and
not wiformly distributed around the whole loop.

The fact that unipolar induction depends solely upon the absolute (or
laboratory) rotational velocity. of the detector and does not depend at
all won the rotational velocity of the source of the magnetic field
contradicts the usual traditional Faraday theory that induction arises
only by virtue of the relative rotational motion of the source and the
detector.

8. WEBER THEORY PREDICTS THE RESULT OF KAUFMANN'S EXPERIMENT

Assis®?) has shown that the Weber theory predicts the result

of the Kaufmann((sa)experiment (which has been repeated by Bucherer (54)
55)-(61 :

and others,( ) ) as reviewed by Faragd and Jénossy(“)). The

experiment involves high velocity electrons. Kaufmann used a natural
radioactive B-source. The electrons are passed bBetween the plates of
a condenser with an electric field and simultaneously a perpendicular
magnetic field, In order for the electrons to pass between the plates
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the electric and magnetic forces must cancel each other. After passing
out of the condenser only the magnetic field acts. From the electric
and magnetic fields and the radius of curvature when the magnetic field
acts alone the ratio e/m can be measured as a function of the presumed
velocity of the electrons.

The force on an electron moving between two infinite condenser
plates with a wniform surface charge density -o at z'= + z_ /2 and + ¢
at z'= - z_/2 may be obtained from Eq. (4) for the case of a charge
q=e on the z-axis, x = y = 0, moving with the velocity v and

acceleration a; thus,

c2d?’F = (cedx'dy')(G, - G_}, (74)
where
Gy = (Ru/RY)[c? + v - 3(v-Ry)?/2R] + R, a), (79)
and
Ry =x'i +y'j + (2 * zD/Z)k, (76)

where i, j, and k are unit vectors in the cartesian coordinate directions.
Substituting Eqs. (75) and (76) into (74) and integrating over the
infinite x',y'-plane yields the force on the electron predicted by the
Weber theory as

F = eE(1 + v'/2¢” + zaz/c’) and F =- eE(vzvr + zar)/c , (1IN
2

where v_ is the velocity component perpendicular to the condenser plates
z
and v_ is the velocity component parallel to the condenser plates, where
r

vz = V’Z + Vf_. a and a_ are acceleration components perpendicular and

parallel to the condenser plates, and E = 4wo. This result agrees with

Assis' result, his Eq. (3).

The force on the electron due to the
magnetic field B is given by the usual Lorentz expression; since the
source of the steady magnetic field B are closed current loops and the
general Weber theory reduces to the special Maxwell case. When the
electric and magnetic forces cancle each other, then Eq. (77) gives

simultaneous transverse

eE(1 + v?/2c?) = evB/c, (78)

where E = 4o is the electric field for a zero velocity charge.
Outside of the condenser the electron moves in a circular path of
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of radius r such that the magnetic force is balanced by the Newtonian
centrifugal force; or

m v3/r = evB/c. (79)
Combining Egs. (78) and (79) then yields the result

erB2/c’E = m (1 + E2/2B2 + E/28"), (80)
to order E*/B*.

This result (80) may be compared with the result obtained when
Maxwell electrodynamics and mass change with velocity are assumed.
Summarizing the equations for this case,

eE = evB/c =m v v?/r, (81)

Y= 1A -V = 1w viacr o+ St et e e . (82)

Combining Eqs. (81) and (82) yields the result

where

erB2/c*E = m (1 + E*/2B* + 3E*/8B* + - - - ), (83)

Comparing Eqs. (80) and (83), it is seen that they are identical to
order E?/B? and that they differ in the 4th power term E"/Bl', the Weber
theory giving a coefficient of 1/2 and the Maxwell plus mass-change with
velocity theory giving a coefficient of 3/8.

To compare these results with the literature(sa)'(sz)it is necessary
to convert Egs. (80) and (83) into the language of a presumed 'mass" m
and a presumed 'velocity" v. The Kaufmann experiment does not actually
measure the electron velocity nor the electron mass directly. The 'mass"
m and 'velocity' v reported in the literature are merely quantities
inferred from the data for E, B, and r and the theory. As seen above
the Maxwell theory, Eq. (80), and the Weber theory, Eq. (78), predict
two different velocities. To oompare with the literature Fqs. (80) and
(83) may be converted to the "velocity" v and "mass' m defined in the

literature, namely,
v/c = E/B and m = erB? /c2E. (84)

The results to be compared are then to order v'/c’ from Eq. (80) for the
Weber theory
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m=m(i+ v2/2c2 + vl'/Zch), (85)
and from Eq. (83) for the Maxwell plus mass change with velocity theory

m=m,(1 + vyt + svt/ect). (86)

The experiments of the Kaufmann type(sa)'(ﬁz) have only been able

to confirm the coefficient 1/2 of the first term varying as 13-2/]32 in
Eq. (80) or vz/c 2 in Eq. (85) to any reasonable degree of accuracy. The
coefficients of EI'/B[’or vi/e" and higher order terms remain essentially
unknown.  Unfortunately it is often erroneously assumed that, since
accelerators deliver particles with velocities greater than 0.9c, that
the wefficients of E‘/B‘and higher order terms must be accurately kmown
experimentally. The reason the accuracy is so limited is that
coefficients of the expansion Eq. (80) or (85) must be deduced from the
derivatives of a scatter plot of the data for m/m;, as a function of
vz/c 2, the derivative yielding the coefficient of vz/cz, the second
derivative yielding the coefficient of vl'/cl' , etc. The accuracy is,
therefore, not so mich determined by the magnitude of the parameter
vi/e 2, but by the scatter of the data. The scatter increases as m/m,
increases. The error in the coefficient 1/2 of the first term varying
as vz/c2 is undoubtedly greater than 20 percent for the original
Kaufmann(sa) and Bucherer(sl’) experiments. The error in the coefficient

for the better experiments today is still probably greater than about

S percem..(“)

It is concluded that Weber electrodynamics predicts as a natural
consequence of the theory without amy need to postulate an ad hoc mass
change with velocity the result of the Kaufmann experiment to within the

experimental error.

9. WEBER THEORY FOR THE HYDROGEN ATOM

The old Bohr model of the hydrogen atom assumes circular orbits of
the negative charged electron, - e, about the positive charged mucleus,
+ Ze, of atomic rumber Z. For circular orbits where drR/dt = O the Weber
potential, Eq. (1), reduces to the Coulomb potential. The Weber theory
is compatible with the old Bohr hydrogen atom théory. Quantizing the

angular momentum in the usuval way,
mrv = nf, (87
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(miz/2) = E + Ze*/r - 1?/2mr?, (92)

where m is the reduced electron-nucleus mass, r is the relative
where E is the zeroth approximation for the total energy given by Eq.

(88). Introducing Eq. (92) into Eq. (91) the total energy becomes to a
first approximation in Ze?/mc?r

separation, v is the relative velocity, and M is Planck's constant, the
hydrogen atom is found to exist in discrete emergy states E given by
E, = - me*/2’n, (88)
E, =E+ AF, 93)
where n is an integer, the total quantum number.
Weber electrodynamics, being based upon a potential, Eq. (1) or (2), where the perturbation energy AE is given by
is the only electrodynamic theory ever proposed that conserves energy
- - 2
for an isolated system of moving charges. The Weber theory predicts a AE = (E + Ze*/r - L#/2mr®) (Ze? /mc?1). o4

stable nonradiating hydrogen atom. In contrast, the Maxwell theory says Using the usual Schroedinger perturbation method Eq. (94) may be

. . approximated by
When circular orbits are not assumed then the radial separation rate (95)

dR/dt in the Weber potential, Eq. (1) enters in to affect the energy | AE = (Ze’lEI/mc’)<r'l> - (Zze"/mc‘)<r'2> + (Ze2L1/2m1c=)<r_3> y
levels predicted. Each of the energy levels of the Bohr model, Eq. (88),
becomes split into a number of discrete levels clustered very near the

the electron in the Bohr model should radiate and spiral into the mcleus.

where the expectation values are given by

original Bohr level. The accurate Schroedinger quantum theory is needed . L P
here. Since only small deviations from the Coulomb potential are ' <r'~‘> =[ Ro,r rdr, (96)
produced by the velocity dependent part of the Weber potential; the |

usual approximate technique, the Schroedinger perturbation method, may ' where R , are the usual normalized radial wave functions for the

be used to cbtain the energy levels deviating from the Bohr levels. hydrogen atom, n is the total quantum number, and L is t]"1e azlmuf.:hal
The Weber potential for the hydrogen atom from Eq. (1) becomes quantum rumber. As is well known, the angular momentum L 1is quantized
such that
V= -(Ze?/r)(1 - 1?/2c?), (89) | Lz =2 0L +1), 97)
where r is the separation distance and r is the radial velocity. Solving as in the unperturbed case. It may be shown (see Pauling and Wilson(“))
the classical mechanics problem, the two integrals of the motion for the that Eq. (96) vields
angular momentum L and the total energy E, are 1 = Z/an?,
. . - -2\ _
g = L, - @ /r)(1 - 1/2c%) + m(* + 1%97)/2 = E,,  (90) (r72) = w/aw L+ 1/2), (98)
(r?) = z/ain L (£ + (L +1/2),
where E, is the total energy and where the motion is confined to the °
rp-plane. From Eqs. (90) eliminating ¢, the total energy becomes _ where the first Bohr radius a, is given by
E, = (mr2/2)(1 + Ze?/mc?r) + L?/2mr - Ze?/r. 91) a = W2 /me2. (99)
Since the rest energy mc? is much larger than the Coulomb energy Ze?/r; Substituting Eqs. (98) and (99) into (95) yields the perturbation energy
to a first approximation in powers of Ze?/mc2r the zeroth approximation | AE,, due to the velocity squared term in the Weber potential; thus,

of mi?/2 may be introduced, where
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BBy, = (2B /mc?)(1 - n/(L + 1/2)), (100)

where E is given by Eq. (88).

This result (100) agrees with the cbservations of the fine structure
splitting of the hydrogen spectrum. To obtain the total multiplicity
of lines observed the spin and magnetic moment of the electron must also
be included. The matter is taken no further here.

It may be noted that the first term in the square bracket on the
right of Eq. (100) is 1 instead of 3/4 as given when the Maxwell theory
and mass change with velocity are assumed. The difference cannot be
detected; as the separation between the values of E, for different
values of n is so much larger than the very small shift, or perturbation,
of the ''center" of the fine-structure pattern. Thus, [E[(1 + 2|E|/mc?)
camnot be distinguished from [E|(1 + 3|E|/2mc?).

In conclusion it is seen that the fine structure splitting of the
Bohr energy levels is given as a natural consequence of Weber electro-
dynamics without it being necessary to assume an ad hoc mass change with
velocity.

10. CONCERNING THE POSSIBILITY OF MASS CHANGE WITH VELOCITY

The evidence usually cited(sz) for mass change with velocity is the
Kaufmann experiment and the fine structure energy levels of the hydrogen
atom. In the foregoing Sections 8 and 9 it is shown that these results
are better explained as a natural consequence of the fimmly empirically
established Weber electrodynamics without any ad hoc mass change with
velocity being necessary. The usual evidence cited for mass change with
velocity is, thus, no longer sufficient. The question then arises: Does
mass really change with velocity? Is there any other empirical evidence
that might support mass change with velocity?

The axthor(ss) has shown that the correct frequency and propagation
constant for the Voigt-Doppler effect, Eqs. (13), which explain the
Michelson-Morley mull result, can be derived by considering the emission
and absorption of a photon of energy Kw and momentum Awc /c? with a
massive body of emergy M_yc? and momentum M, yv. This would seem to
support mass change with velocity M = M y. Unfortunately, the Voigt
relations (incofrectly called the 'Lorentz transformation") are not
unique. Any power of y can multiply the relations and still yield the
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Voigt-Doppler effect and, thus, a mull Michelson-Morley result. Thus,
no unique momentum or energy for a body with nonzero mass is implied by
the Voigt-Doppler effect; and it can yield no indirect evidence for mass
change with velocity.

It might be thought that the principle of mass-energy equivalence,
E = mc?, might somehow imply mass change with velocity. Unfortunately,
many types of energy can be defined. If a mass is to be associated with
each of these types of energy, mass-energy equivalence becomes a
tautology with no predictive value beyond the usual conservation of
energy. The principle of mass-energy equivalence does not per se seem
to imply mass change with velocity.

It is well known that very fast particles produce very large effects
as they approach the velocity of light. It might be thought that this
infinite limit effect implies mass change with velocity; because m = my
goes to infinity as v -» c. But other types of reactions can also go
to infinity as the velocity approaches c. The force implied by the
Weber potential in the form given by Eq. (2) can go to infinity as
v = c. The Weber force on a particle moving in a constant electric
field E (for a zero wvelocity charge), as given by Bq. (78) may also be

written as
F = eEvy, (101)

which becomes infinite as v —» c.

If it is discovered from appropriate experiments (such as proposed
in Section 12 below) that mass actually does change with velocity in the
usually assumed way, then the following explanation might be possible:
If fundamental forces are all of the form

F=Fv, (102)
o

where F is the force when the velocity of the particle on which the
force acts is small or zero, thenm it might be postulated that the

kinetic reaction is not dp/dt but ydp/dt. Following this speculation

then gives
F=Fy = yd(m yv)/dt (103)

and
F, = d(m,yv)/dt, (104)

as is usually assumed.
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11. THE WEBER VELOCITY SQUARED FORCES EXIST

The only serious objection to Weber electrodynamics that has ever
been raised is the fact that the Weber forces between a stationary
charge and a charge moving with a velocity squared, as given by Eq. (15),
had never been cbserved. As discussed in Section 1.3 above this force
between a conduction current and a stationary charge is extremely small
(making the Fechner hypothesis unnecessary). Now, however, it has been
shown here in Sections 8 and 9 above from the prediction of the Kaufmann
experiment and the prediction of the fine structure of the energy levels
of the hydrogen atom that the velocity squared Weber forces do, in fact,
exist,

In addition, these forces must exist to conserve energy for an
isolated system of moving charges. These forces permit a stable
nonradiating hydrogen atom, as discussed in Section 9 above. A wniverse
filled with moving charges in isolated systems conserving energy is
tacit proof of the existence of these velocity squared Weber forces
(which are, of course, completely lacking in Maxwell electrodynamics),

12. PROPOSED EXPERIMENTS TO DETECT MASS CHANGE WITH VELOCITY

The problem in trying to deduce theories appropriate for fast
particles from past experiments has been the fact that in these
experiments particle velocities have not actually been measured. The
velocities assumed have been a function of the electrodynamics assumed.
For example, it has been assumed that crossed electric and magnetic
fields select a known velocity prescribed by Maxwell electrodynamics,
v = cE/B. But, as seen above, Eq. (78), Weber electrodynamics yields
a different velocity. Not only is the inertial force dp/dt to be
determined as a function of large velocities; but also the electro-
dynamics must be determined as a function of large velocities.

The only possible way of avoiding theoretical errors is to measure
particle velocities directly with a chopping device. The only sure way
of measuring a meaningful velocity for a fast particle is to use a
mechanical device such as Marinov's(66) toothed-wheels setup. Marinov
mounted two toothed wheels on the ends of a rotating shaft. Particles
passing through a gap between the teeth of the ‘first wheel can pass
through a gap between the teeth of the second vheel only if the velocity
of the particles'is such that
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v =1Q/s, (105)

where L is the length of the shaft rotating with the angular velocity
Q and 9 is the angular position of the gap between the teeth of t}?e
second wheel relative.to the gap in the first wheel when the shaft is
With no particular care Marinov has measured the oneway
With a little more care

stationary.
velocity of photons to a first place accuracy. -
it should be possible to measure the actual velocity of particles near
the velocity of light ¢ to 2 or 3 places by this method.

Assuming such a toothed-wheels device is available, then the actual
velocity of a fast particle can be measured as a function of the state
in which it is prepared, as proposed below.

12.1 The velocity of a charged particle accelerated by an

electric field .
According to all theories when the velocity is small enough the
differential equation for the motion of a particle of charge e and mass
m_ in a wniform electric field E in the x direction is
o

eE = modv/dt. (106}
Multiplying by v and integrating, assuming v = v whenx = Oand t = O,
m (v2 - v2)/2 - eV =0, (107)

[ ]

where V = Ex is the potential difference through which the particle
0 to x. The quantities Vs Vs and V are to be m‘easured.
Weber electrodynamics and Newtonian mechanics the

moves from x =

According to
differential equation for the motion may be taken from Eq. (78) as

eEy = modv/dt. (108)
The energy integral becomes
(109)

m (v -v2)/2 - eV = eV(v? + v2)/4c?.
o 0

Assuming Maxwell electrodynamics and mass change with velocity the

differential equation for the particle motion becomes

eE = m d(yv)/dt. (110)
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The energy integral becomes
m (v - v2)/2 - eV = - 3eV(v? + v2)/dc3. (mn

It should not be difficult to distinguish between these two
possibilities, Eq. (109) or (111).  Weber electrodynamics predicts a
+ 1 for the coefficient of the right side of Eq. (109); vhile the Maxwell
theory plus mass change with velocity i)redicts a - 3 for the coefficient
of the right side of Eq. (111). According to the best evidence presently
available the Weber result (109) is to be expected.

12.2 The velocity of a charged particle in a magnetic field

According to Weber electrodynamics and Newtonian mechanics a particle
of charge e and mss m oMoving transverse to a magnetic field B moves
in a circle of radius r such that

m v?/r = evB/c, (112)

which yields
m v - erB/c = 0. (113)

According to Maxwell electrodynamics and mass change with velocity
Eq. (112) nust be replaced by

mosz/r = evB/c; (114)
and to first power in v2/c?
m v - erB/c = - m°v5/2c2. (11s)

Here the velocity v, the magnetic field B, and the radius r are to be
determined experimentally to distinguish between Eq. (113) with no mass
change with velocity and Eq. (115) with mass change with velocity. From
the evidence presently available the Weber result (113) is to be
expected.
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