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We present the theory, the experimental evidence andJundamental physical conse- 
quences concerning the existence of jitmilies of undistorted progressive waves 
( UPWs) of arbitrary sT)eeds 0 <<. v < oo, which are solutions of the homogeneous 
wave equation, the Maxwell equations, and Dirac, Weyl, and Klein-Gordon 
equations. 

1. I N T R O D U C T I O N  

In this p a p e r  we present  the theory,  the exper imenta l  evidence, and  the 
fundamen ta l  phys ica l  consequences  concerning  the existence of  families of  
und i s to r t ed  progress ive  waves ( U P W s )  3 moving  with  a rb i t r a ry  speeds 4 
0 <~ v < oo. We show tha t  the m a i n  equat ions  of  theore t ica l  physics,  namely  
the scalar  homogeneous  wave equation ( H W E ) ,  the Kle in -Gordon  equation 

( K G E ) ,  the  M a x w e l l  equations, and  the Dirac  and W e y l  equations,  have  
U P W s  solut ions  in a h o m o g e n e o u s  medium,  inc luding the vacuum.  By 
U P W ,  fol lowing C o u r a n t  and  Hi lbe r t  (1) we mean  tha t  the U P W  waves  are 
dis tor t ion-free,  i.e., they are t r ans la t iona l ly  invar ian t  and  thus do  no t  
spread,  or  they recons t ruc t  their  or ig inal  form after a cer ta in  pe r iod  of  
time. Explici t  examples  of  how to cons t ruc t  the U P W s  solut ions  for the 

~ Instituto de Matemfitica, Estatistica e Computa95.o Cientifica 1MECC-UNICAMP; CP 
6065, 13081-970, Campinas, SP, Brasil. 

2 Biodynamics Research Unit, Department of Physiology and Biophysics, Mayo Clinic and 
Foundation, Rochester, Minnesota 55905. 

3 UPW is used for the singular, i.e., for undistorted progressive wave. 
4 We use units where c = 1, c being the so-called velocity of light in vacuum. 
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HWE are found in Appendix A. The UPWs solutions to any field equa- 
tions have infinite energy. However, using the finite aperture approxima- 
tion (FAA) for diffraction (Appendix A), we can project quasi-undistorted 
progressive waves (QUPWs) for any field equation which have finite 
energy and can then in principle be launched in physical space. 

In Sec. 2 we show results of a recent experiment proposed and realized 
by us where the measurement of the speeds of a FAA to a subluminal 5 
Bessel pulse [ Eq. (2.1) ] and of the FAA to a superluminal X-wave [ Eq. (2.5) ] 
are done. The results are in excellent agreement with the theory. 

In Sec. 3 we discuss some examples of U P W  solutions of Maxwell 
equations; (i) subluminal solutions which are interesting concerning some 
recent attempts appearing in the literature ~2 4) of construction of purely 
electromagnetic particles (PEP)  and (ii) a superluminal U P W  solution of 
Maxwell equations called the superluminal electromagnetic X-wave ~s) 
(SEXW). We briefly discuss how to launch a FAA to SEXW. In view of the 
experimental results presented in Sec. 2 we are confident that such electro- 
magnetic waves will be produced in the next few years. In Sec. 4 we discuss 
the important question concerning the speed of propagation of the energy 
carried by superluminal U P W  solutions of Maxwell equations, clearing 
some misconceptions found in the literature. In Sec. 5 we show that the 
experimental production of a superluminal electromagnetic wave implies a 
breakdown of the principle of relativity. In Sec. 6 we present our conclusions. 

Appendix B presents a unified theory of how to construct UPWs of 
arbitrary speeds 0 ~< v < oo which are solutions of Maxwell, Dirac, and 
Weyl equations. Our unified theory is based on the Cliflbrd bundle for- 
malism~6-~0) where all fields quoted above are represented by objects of the 
same mathematical nature. We take the care of translating all results in the 
standard mathematical formalisms used by physicists in order for our work 
to be useful for a larger audience. 

Before starting the technical discussions, it is worthwhile to briefly 
recall the history of the UPWs of arbitrary speeds 0 ~< v < o% which are 
solutions of the main equations of theoretical physics. 

To the best of our knowledge, H. Bateman (~) in 1913 was the first 
person to present a subluminal UPW solution of the HWE. This solution 
corresponds to what we called the subluminal spherical Bessel beam in 
Appendix A [ see Eq. (A.31 ) ]. Apparently this solution has been rediscovered 
and used in diverse contexts many times in the literature. It appears, e.g., 
in the papers of Mackinnon (~2~ of 1978 and of Gueret and Vigier, (j3~ and 

In this experiment the waves are sound waves in water and, of course, the meaning of the 
words subluminal, luminal, and superluminal in this case is that the waves travel with speed 
less, equal, or greater than c~, the so-called velocity of sound in water. 
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more recently in the papers of Barut and collaborators. (~4' 15) In particular, 
Barut/~4) also showed that the HWE has superluminal solutions. In 1987 
Durnin and collaborators rediscovered a subluminal U P W  solution of the 
HWE in cylindrical coordinates/16 ~8~ These are the Bessel beams of 
Sec. A4 [ see Eq. (A.41)]. We said rediscovered because these solutions are 
known at least since 1941, as they are explicitly written down in Stratton's 
book. (~% The important point here is that Durnin (~6~ and collaborators 
constructed an optical subluminal Bessel beam. At that time they did not 
have the idea of measuring the speed of the beams, since they were inter- 
ested in the fact that the FAA to these beams were quasi-UPWs and could 
be very useful for optical devices. Indeed they used the term "diffraction- 
free beams," which has been adopted by some other authors later. Other 
authors still use for UPWs the term nondispersive beams. We quote also 
that Hsu and collaborators (2~ realized a FAA to the J0 Bessel beam 
[Eq. (A.41)] with a narrow-band PZT ultrasonic transducer of non- 
uniform polishing. Lu and Greenleaf (2~) produced the first J0 nondiffracting 
annular array transducers with a PZT ceramic/polymer composite and 
applied it to medical acoustic imaging and tissue characterization. (22'23~ 
Also Campbell et al. (24~ used an annular array to realize a FAA to a J0 
Bessel beam and compared the J0 beam to the so-called axicon beam. (25) 
For more on this topic, see Ref. 26. 

Luminal solutions of a new kind for the HWE and Maxwell equations, 
also known as focus wave mode [ F W M ]  (see Appendix A), have been dis- 
covered by Brittingham (27~ (1983), and his work inspired many interesting 
and important studies as, e.g., Refs. 29 to 40. 

To our knowledge, the first person to write about the possibility of a 
superluminal UP W solution of HWE and, more important, of Maxwell 
equations was Band. (41,42) He constructed a superluminal electromagnetic 
U P W  from the modified Bessel beam [Eq. (A.42)], which was used to 
generate in an appropriate way an electromagnetic potential in the Lorentz 
gauge. He suggested that his solution could be used to eventually launch 
a superluminal wave in the exterior of a conductor with cylindrical sym- 
metry with appropriate charge density. We discuss further some of Band's 
statements in Sec. 4. 

In 1992, Lu and Greenleat ~43) presented the first superluminal U P W  
solution of the HWE for acoustic waves which could be launched by a 
physical device/44) They discovered the so-called X-waves, a name due to 
their shape (see Fig. 3). In the same year Donnelly and Ziolkowski (45) 
presented a thoughtful method for generating U P W  solutions of 
homogeneous partial equations. In particular, they studied also U P W  solu- 
tions for the wave equation in a lossy infinite medium and to the KGE. 
They clearly stated also how to use these solutions to obtain through the 
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Hertz potential method (see Appendix B3) U P W  solutions of Maxwell 
equations. 

In 1993 Donnelly and Ziolkowski ~46) reinterpreted their study of Ref. 45 
and obtained subluminal, luminal, and superluminal U P W  solutions of the 
H W E  and of the KGE.  In Appendix A we make use of the methods of this 
important  paper  in order to obtain some U P W  solutions. Also in 1992 
Barut and Chandola ~47~ found superluminal U P W  solutions of the HWE. 
In 1995 Rodrigues and Vaz ~48) discovered in quite an independent way 6 
subluminal and superluminal U P W  solutions of Maxwell equations and 
the Weyl equation. At that time Lu and Greenleaf ~5) proposed also to 
launch a superluminal electromagnet X-wave. 7 

In September 1995 Professor Ziolkowski took knowledge of  (48) and 
informed one of the authors [ W A R ]  of his publications and also of Lu's 
contributions. Soon a collaboration with Lu started which produced this 
paper. To end this introduction, we must call to the reader's attention that 
in the last few years several important  experiments concerning the super- 
luminal tunneling of electromagnetic waves appeared in the literature/5~' 52) 
Particularly interesting is Nimtz's paper  ~53) announcing that he transmitted 
Mozart 's  Symphony #40  at 4.7c through a rectangular waveguide. The 
solutions of Maxwell equations in a waveguide led to solutions of Maxwell 
equations that propagate with subluminal or superluminal speeds. These 
solutions can be obtained with the methods discussed in this paper  and will 
be discussed in another publication. 

2. E X P E R I M E N T A L  D E T E R M I N A T I O N  OF T H E  SPEEDS OF 
ACOUSTIC  F I N I T E - A P E R T U R E  BESSEL PULSES AND 
X-WAVES 

In Appendix A we show the existence of several U P W  solutions to the 
HWE, in particular the subluminal UPWs Bessel beams [Eq. (A.36)] and 
the superluminal UPWs X-waves [Eq. (A.52)]. Theoretically the U P W  
X-waves, both the broad-band and band-limited [ see Eq. (2.4)], travel with 
speed v = c j c o s  r /> 1. Since only FAA to these X-waves can be launched 
with appropriate devices, the question arises if these FAA X-waves travel 
also with speed greater than c~, which can be answered only by experiment. 

6 Rodrigues and Vaz are interested in obtaining solutions of Maxwell equations characterized 
by non-null field invariants, since solutions of this kind are ~49'~~ necessary in proving a 
surprising relationship between Maxwell and Dirac equations. 

7 A version of Ref. 5 was submitted to 1EEE Trans. Antennas Propag. in 1991. See Ref. 40 of 
Ref. 43. 
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Here we present the results of measurements of the speeds of a FAA to a 
broad-band Bessel beam, called a Bessel pulse (see below), and of a FAA 
to a band-limited X-wave, both moving in water. We write the formulas for 
these beams, inserting into the HWE the parameter cs known as the speed 
of sound in water. In this way the dispersion relation [Eq. (A.37)] must 
read 

0 )  2 
- - - k 2 = ~  2 (2.1) 

Then we write for the Bessel beams 

45 ~(t, Y) = Jn(0~p) e ~k .. . . .  ~+~0), n = 0, 1, 2 .... (2.2) 

Bessel pulses are obtained from Eq. (2.2) by weighting it with a transmit- 
ting transfer function T(co) and then linearly superposing the result over 
angular frequency co, i.e., we have 

45 s< n( t, y) = 2~ei,,ojn(c~p ) ~ t[ T(CO) e iA-~ ] (2.3) 

where .@- ~ is the inverse Fourier transform. The FAA to 45 < JBBn 

denoted by FAA45j~B, (or 45*<'A J,,)" 
We recall that the X-waves are given by Eq. (A.52), i.e., 

will be 

45~,(t, 2) = e i'~ f f  B([c) J,,(kp sin q) e *E~0 ~~ . . . .  " ~*)3 d/~ (2.4) 

where /c =k/cos  ~/, /~ = co/c~.. By choosing B(/c)= a0 we have the infinite- 
aperture broad-bandwidth X-wave [ Eq. (A.53) ] given by 

ao(p sin q)" e in~ 

M = ( p s i n r l ) 2  + r ~, T = [ a o - - i ( z c o s q - - c , t ) ]  
(2.5) 

A FAA to q~x>BB,, will be denoted by FAA45fsz.  When B(/~) in Eq. (2.4) is 
different from a constant, e.g., if B(k)  is the Blackman window function, we 
denote the X-wave by 45XBL,,, where BL means band limited. A FAA to 
45X>~Ln will be denoted FAA45xsL~ ,. Also when T(co) in Eq. (2.3) is the 
Blackman window function, we denote the respective wave by 45J~L,,. 

As discussed in Appendix A and detailled in Refs. 26 and 44 to 
produce a FAA to a given beam, the aperture of the transducer used must 
be finite. In this case the beams produced, in our case FAA45.mL0 and 



440 Rodrigues and Lu 

FAAqSxsR 0, have a finite depth of field 126) (DF) 8 and can be approximately 
produced by truncating the infinite-aperture beams q~J~L0 and ~b~BB0 (or 
q~x~L0) at the transducer surface (z = 0). Broad-band pulses for z > 0 can be 
obtained by first calculating the fields at all frequencies with Eq. (A.28), i.e., 

1 [ [ [  p, -~ e i~R 

1 ('" ('~ e i~R 

+ jo j a- -3 (2.6) 

where the aperture weighting function ~((o, s is obtained from the tem- 
poral Fourier transform of Eqs. (2.3) and (2.4). If the aperture is circular 
of radius a [as in Eq. (2.6)], the depth of field of the FAA~j~L0 pulse, 
denoted B Z  . . . . .  and the depth of field of the FAA~xBs0 or FAA~0xsL0 
denoted by X Z  ..... are given b y  <26) 

B Z m , x  = a x/(COo/CsO:) 2 - -  1, X Z m ~  ~ = a cot q (2.7) 

For  the FAAqSjBL0 pulse we choose T(co) as the Blackman window 
function ~54/ that is peaked at the central frequency f o = 2 . 5  MHz with 
a relative bandwidth of about 81% ( - 6 d B  bandwidth divided by the 
central frequency). We have 

a0 0.42-0.5 +0.08cos o ], (2.8) 
0, otherwise 

The "scaling ~ctor"  in the experiment is 0c = 1202.45 m -1 and the weight- 
ing function ~je~0(e), :~) in Eq. (2.6) is approximated with stepwise func- 
tions. In practice this is done with the 10-element annular array transfer 
built by Lu and Greenleaf. (26'44~ The diameter of the array is 50mm. 
Figure 1 shows the block diagram for the production of F A A ~ s c ,  ' and 
FAA~.~eL0. 9 The measurement of the speed of the FAA Bessel pulse has 
been done by comparing the speed with which the peak of the FAA Bessel 
pulse travels with the speed of the peak of a pulse produced by a small 
circular element of the array (about 4 mm or 6.672 in diameter, where 
2 is 0.6 mm in water). This pulse travels with speed c, = 1.5 mm/~s. The 
distance between the peaks and the surface of the transducer are 

8 DF is the distance where the field maximum drops to half the value at the surface of the 
transducer. 

9 Reprinted with permission from Fig. 2 of Ref. 44. 
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104.33(9) mm and 103.70(5) mm for the single-element wave and the Bessel 
pulse, respectively, at the same instant t of measurement. The results can 
be seen in the pictures taken from of the experiment in Fig. 2. As predicted 
by the theory developed in Appendix A, the speed of the Bessel pulse is 
0.611(3)% slower than the speed cs of the usual sound wave produced by 
the single element. 

The measurement of the speed of the central peak of the FAA~x~L0 
wave obtained from Eq. (2.4) with a Blackman window function [ Eq. (2.8)] 
has been done in the same way as for the Bessel pulse. The FAAq~xeL0 
wave was produced by the 10-element array transducer of 50 mm diameter 
with the techniques developed by Lu and Greenleaf. (26'44) The distances 
traveled at the same instant t by the single-element wave and the X-wave 
are respectively 173.48(9)mm and 173.77(3)mm. Figure 3 shows the pic- 
tures taken from the experiment. In this experiment the axicon angle is 
t /= 4 ~ The theoretical speed of the infinite aperture X-wave is predicted to 
be 0.2242 % greater than c~.. We found that the FAAq~xee~ wave traveled 
with speed 0.267(6)% greater than c~.! 

These results, which we believe are the first experimental determina- 
tion of the speeds of subluminal and superluminal quasi-UPWs FAA~j>Rc0 
and FAAq~j<~0 solutions of the HWE, together with the fact that, as 
already quoted, Durnin (~6) produced subluminal optical Bessel beams, give 
us confidence that electromagnetic subluminal and superluminal waves 

I 
SteDDin• Motor 

Fig. 1. Block diagram of acoustic production of the Bessel pulse and X-waves. 
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may be physically launched with appropriate devices. In the next section 
we study in particular the superluminal electromagnetic X-wave (SEXW). 

It is important to observe here the following crucial points: (i) The 
FAAq~x~, ' is produced by the source (transducer) in a short period of time 
At. However, different parts of the transducer are activated at different 
times, from 0 to At, calculated from Eqs. (A.9) and (A.28). As a result 
the wave is born as an integral object for time At and propagates with the 
same speed as the peak. This is exactly what has been seen in the 
experiments and is corroborated by the computer simulations we did for 
the superluminal electromagnetic waves (see Sec. 3). (ii) One can find in 
almost all textbooks that the velocity of transport of energy for waves 
obeying the scalar wave equation 

is given by 

1 9 2 ) 
7 ~75-  V 2 ~b=O (2.9) 

57 
G~ = - (2.10) 

U 

where 57 is the flux of momentum and u is the energy density, given by 

1 #~21 (2.11) u =  \ & )  J 

from which it follows that 

G = - - < ~ c ,  (2.12) 
U 

Our acoustic experiment shows that for the X-waves the speed of transport 
of energy is G/cos ~/, since it is the energy of the wave that activates the 
detector (hydrophone). This shows explicitly that the definition of v~ is 
meaningless. This fundamental experimental result must be kept in mind 
when we discuss the meaning of the velocity of transport of electromagnetic 
waves in Sec. 4. 

3. SUBLUMINAL AND S U P E R L U M I N A L  U P W  SOLUTIONS OF 
MAXWELL EQUATIONS (ME) 

In this section we make full use of the Clifford bundle formalism 
(CBF) resumed in Appendix B, but we give translation of all the main 
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results in the standard vector formalism used by physicists. We start by 
reanalyzing in Sec. 3.1 the plane wave solutions (PWS) of ME with the 
CBF. We clarify some misconceptions and explain the fundamental role of 
the duality operator ~5 and the meaning of i = ~ 1 in standard formula- 
tions of electromagnetic theory. Next, in Sec. 3.2 we discuss subluminal 
UPW solutions of ME and an unexpected relation between these solutions 
and the possible existence of purely electromagnetic particles (PEPs) 
envisaged by Einstein, ~55~ Poincar6, ~5~'~ and Ehrenfest ~57~ and recently dis- 
cussed by Waite, Barut, and Zeni/2' 3~ In Sec. 3.3 we discuss in detail the 
theory of superluminal electromagnetic X-waves (SEXWs) and how to 
produce these waves by appropriate physical devices. 

3.1. Plane Wave Solutions of Maxwel l  Equations 

We recall that Maxwell equations in vacuum can be written as 
[Eq. (B.6)] 

0F=0  (3.1) 

where Fsec/~2 ( M ) c s e c C g d ( M ) .  The well-known PWS of Eq. (3.1) are 
obtained as follows. We write in a given Lorentzian chart ( x  ~) of the 
maximal atlas of M (See. B2) a PWS moving in the z-direction 

g =  yusxx  (3.2) 

k = k'y/~, k I = k 2 = O, X = Xr (3.3) 

where k, x e sec /~  ( M ) c s e c ~ d ( M )  and where f is a constant 2-form. 
From Eqs. (3.1) and (3.2) we obtain 

k F =  0 (3.4) 

Multiplying Eq. (3.4) by k we get 

k2F=0 (3.5) 

and since k e sec/~ (M) ~ sec ~ d ( M ) ,  then 

k2 =0*--~k~ + 1/~] = _+k 3 (3.6) 

i.e., the propagation vector is lightlike. Also 

F 2 = F . F + F / x  F = 0  (3.7) 
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as can be easily seen by multiplying both members of Eq. (3.4) by F and 
taking into account that k r 0. Equation (3.7) says that the field invariants 
are null. 

It is interesting to understand the fundamental role of the volume 
element Y5 (duality operator) in electromagnetic theory. In particular, 
since e ySk~ -- cos kx + Y5 sin kx, ~5 = i, writing F =  E +  i/~ [see Eq. (B.17)], 
f = ~ + iYz, we see that 

/~+ i/~-- ~ cos kx  - e2 sin kx  + i (~ sin kx  + ~2 cos kx) (3.8) 

From this equation, using #F = 0, it follows that Yl �9 ~ = 0,/~. Jl =/~" Y2 = 0 
and then 

/ ~ . / l =  0 (3.9) 

This equation is important because it shows that we must take care with 
the i = ~ -  that appears in the usual formulations of Maxwell theory 
using complex electric and magnetic fields. The i = x / - -1  in many cases 
unfolds a secret that can only be known through Eq. (3.8). It also follows 
that k.  E =/~. /q = 0, i.e., PWS of ME are transverse waves. We can rewrite 
Eq. (3.4) as 

kyoYoFyo = 0 

and since k~o = ko +/~, ~oF~0 = - / ~ +  i/? we have 

lcf = k o f  

(3.10) 

(3.11) 

Now, we recall that in ~ f + ( M )  (where, as we say in Appendix B, the 
typical fiber is isomorphic to the Pauli algebra (gE3.0) we can introduce the 
operator of space conjugation denoted by * such that writing f =  ~+  i/~ we 
have 

f * =  - -Y+ i/~, k * = k o ,  /~*= --/~ (3.12) 

We can now interpret the two solutions of k2=0 ,  i.e. k0=  1/~1 and 
k 0 = -[/~[, as corresponding to the solutions k o f  = lcf and k o f *  = --/~f*; 
f and f *  correspond in quantum theory to "photons" of positive or 
negative helicities. We can interpret k 0 = ]k[ as a particle and k0 = -[/~[ as 
an antiparticle. 

Summarizing we have the following important facts concerning PWS 
of ME: (i) the propagation vector is lightlike, k 2 = 0; (ii) the field invariants 
are null, F 2 = 0; (iii) the PWS are transverse waves, Le.,/~-/~ =/~-/~ = 0. 
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3.2. Subluminal Solutions of Maxwell  Equations and Purely Electromagnetic 
Particles 

We take q~ ~ sec(A ~ (M)  O A 4 (M))  c sec ~ ( ( M )  and consider the 
following Her tz  potent ia l  ~ e sec A 2 (M)  c sec <~((M) [Eq.  (B.25)] 

We now write 

g = ~ ) 1 ~ 2  (3.13) 

q)( t, Y)  = ~b( Yc) er5 a, (3.14) 

Since rc satisfies the wave equat ion,  we have 

V2~b(~) + g?Z~b(Y) = 0. (3.15) 

Solutions of  Eq. (3.15) (the He lmhol tz  equat ion)  are well known.  Here  
we consider the simplest  solution in spherical coordinates,  

sin s 
~b(Y) = C - - ,  r = x / x  2 + y2 + z 2 (3.16) 

r 

where C is an arb i t ra ry  real constant .  F r o m  the results of  Appendix  B we 
obta in  the following s ta t ionary  electromagnet ic  field, which is at rest in the 
reference frame Z where ( x  ~)  are natural ly  adap ted  coordinates  (Sec. B2): 

C 
Fo =75 [sin ~2t(0~ f2r sin 0 sin q~ - f i  sin 0 cos 0 cos cp) 7o71 

- sin s g2r sin 0 cos cp + f l  sin 0 cos 0 sin q~) 7o~2 

+ sin t2 t ( f l  sin 2 0 - 2~) )]o73 ~- COS s sin 2 0 -- 2e) Yl ~22 

+ cos ~ t ( f l  sin 0 cos 0 sin ~o + e f2r sin 0 cos q~) ~1 ~3 

+ cos g?t( - f l  sin 0 cos 0 cos ~o + ~ g?r sin 0 sin q~) ~2~3] (3.17) 

with e = s cos g2r - sin s and fl = 3~ + f22r 2 sin ~2r. Observe  that  F o is 
regular  at the origin and  vanishes at infinity. Let  us rewrite the solution 
using the Pauli  a lgebra in ~ ' + ( M ) .  Writ ing ( i - ~ s )  

Fo =/~0 +i/~0 (3.18) 

we get 

/~0 = l~s in  f2t, /~o = ffZcos g2t (3.19) 



448 Rodrigues and Lu 

with 

( ~ y  f lxz  or ~y~ ~(x ~+y~) 2~) ~=-C\ r3 r ~ '  r ~ ? '  r ~ 7 
(3.20) 

W e  verify that div W =  0, div/~0 = div/~o = 0, r o t / ~ o  + aBo/c~t = 0, ro t  Bo  - 
O~Po/St = 0, and 

rot l~=  ~ ffz (3.21) 

Now, from Eq. (B.88) we know that T 0 = �89 F is the 1-form repre- 
senting the energy density and the Poynting vector. It follows that 
/~o x /?o=0 ,  i.e., the solution has zero angular momentum. The energy 
density u = S ~176 is given by 

1 
u = ~  [sin 2 0(s 2 +f12 cos 2 0) + (fl sin 2 0 - 2 ~ )  2] (3.22) 

Then ~ u dv = oo. As explained in Sec. A6 a finite energy solution can 
be constructed by considering "wave packets" with a distribution of intrin- 
sic frequencies F(Q) satisfying appropriate conditions. Many possibilities 
exist, but they will not be discussed here. Instead, we prefer to direct our 
attention to Eq. (3.21). As is well known, this is a very important equation 
(called the force-free equation t2)) that appears, e.g., in hydrodynamics and 
in several different situations in plasma physics/sS) The following con- 
siderations are more important. 

Einstein, ~Ss~ among others (see Ref. 3 for a review), studied the 
possibility of constructing purely electromagnetic particles (PEPs). He 
started from Maxwell equations for a PEP configuration described by an 
electromagnetic field Fp and a current density Jp, where 

aFp = Jp (3.23) 

and rightly concluded that the condition for existence of PEPs is 

J,,.fp=O 

This condition implies in vector notation 

p,&=o, 

(3.24) 

(3.25) 

From Eq. (3.24) Einstein concluded that the only possible solution of 
Eq. (3.23) with the subsidiary condition given by Eq. (3.24) is Jp=0 .  
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However, this conclusion is correct, as pointed in Refs. 2 and 3, only if 
2 Jp > 0, i.e., if Jp is a timelike current density. However, if we suppose that 

Jp can be spacelike, i.e., j 2  < 0, there exists a reference frame where pp = 0, 
and a possible solution of Eq. (3.24) is 

pp = O, Ep. B~ = O, ]p = KCBp (3.26) 

where K =  + i is called the chirality of the solution and C is a real con- 
stant. In Refs. 2 and 3 static solutions of Eqs. (3.22) and (3.23) are 
exhibited where/~p = 0. In this case we can verify that/Tp satisfies 

V x gp = KCBp (3.27) 

Now, if we choose Foe  sec A 2 (M) : sec cg~(M) such that 

F0 : Eo + i/~o 
(3.28) 

/~o =/~p cos ~Qt, /~o =/~p sin f2t 

and g2 = KC > 0, we immediately realize that 

@Fo = 0 (3.29) 

This is an amazing result, since it means that the free Maxwell equations 
may have stationary solutions that may be used to model PEPs. In such 
solutions the structure of the field F0 is such that we can write 

F 0 = F'p + -P= i l~  cos ~ t  -- l~ sin ~?t 
! 0F~ = - #ff = Jp 

(3.30) 

i.e., ~F 0 = 0 is equivalent to a field plus a current. This fact opens several 
interesting possibilities for modeling PEPs (see also Ref. 4) and we discuss 
this issue further in another publication. 

We observe that moving subluminal solutions of ME can be easily 
obtained choosing as Hertz potential, e.g., 

sin t?~ < 
~ < ( t , Y ) = C - - e x p [ y s ( ~ o < t - k < z ) ]  ~1~2 (3.31) 

2 2 - -  2 co< - k  < - ( 2 <  

< z [.X.2 ~_ y 2  + y 2 ( Z  __ V < 0 2 ] (3.32) 

1 
y< ~ ,  ~ < = d~o < / d k  < 

825/27/3-9 
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We are not going to write explicitly the expression for F < corresponding 
to re < because it is very long and will not be used in what follows. 

We end this section with the following observations: (i) In general for 
subluminal solutions of ME (SSME) the propagation vector satisfies an 
equation like Eq. (3.30). (ii) As can be easily verified, for a SSME the field 
invariants are non-null. (iii) A SSME is not a transverse wave. This can be 
seen explicitly from Eq. (3.21). Conditions (i), (ii), and (iii) are in contrast 
with the case of the PWS of ME. In Refs. 49 and 50 Rodrigues and Vaz 
showed that for free electromagnetic fields (OF = 0) such that F 2 r 0, there 
exists a Dira~Hestenes  equation (see Sec. AS) for 0 e s e c ( A ~  
/~2 (M) +/~4 (M)) c sec (g#(M) where F= ~9y172~. This was the reason 
why Rodrigues and Vaz discovered subluminal and superluminal solutions 
of Maxwell equations (and also of Weyl equation) (48~ which solve the 
Dirac-Hestenes equation [ Eq. (B.40) ]. 

3.3. The Superluminal Electromagnetic  X-Wave  ( S E X W )  

To simplify the matter, in what follows we now suppose that the func- 
tions ~x,, [Eq. (A.52)] and q)XBBo [Eq. (A.53)], which are superluminal 
solutions of the scalar wave equation, are 0-form sections of the com- 
plexified Cliflbrd bundle ~ # c ( M ) =  C |  (see Sec. B4). We rewrite 
Eqs. (A.52) and (A.53) as l~ 

q>x,,(t,Y)=einO B([c) j ,(kpsintl)e-~E~o i( . . . .  ~1 O3d[ c (3.33) 

and choosing B(/~)= a0, we have 

. ,  ao(p sin ~/)~ e i~~ 
~XBS,,(t, X) = ~ (r + v/-M) " (3.34) 

M = ( p s i n r / ) 2 + v  2, v = [ a o - - i ( z c o s t l - - t ) ]  (3.35) 

As in Sec. 2, when a finite broadband X-wave is obtained from Eq. (3.31) 
with B(/~) given by the Blackman spectral function [Eq. (2.8)] we denote 
the resulting X-wave by qSXeLn (BL means band-limited wave). The finite 
aperture approximation (FAA) obtained with Eq. (A.28) to q~xBc, will be 
denoted FAA~xsc,  and the FAA to  q~XBB,, will be denoted FAA~xeB,. We 
use the same nomenclature for the electromagnetic fields derived from these 
functions. Further, we suppose now that the Hertz potential re, the vector 

~o In what follows, n = O, 1, 2 ..... 
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potential  A, and the corresponding electromagnetic field F are appropr ia te  
sections of  c6l'c(M). We take 

2 
: (/)~1 ~2 ~ sec C @ A (M) c sec (g(c(M) (3.36) 

where ~b can be q)x,, ~XBB,,, q)XBL~, FAAq~2CeB,, or FAA~xBL,,. Let  us start 
by giving the explicit form of  the FXB,,, i.e., the SEXWs. In this case 
Eq. (B.26) gives zc = iff,, and 

ft,., = ~ v ~ ,  z (3.37) 

where z is the versor of the z-axis. Also, let p, 0 be respectively the versors 
of  the p and 0 directions, where (p, 0, z) are the usual cylindrical coor- 
dinates. Writing 

Fxean = EXeRt, + ~5 BxBB,, (3.38 ) 

we obtain from Eqs. (A.53) and (B.25): 

E x e e , -  P 02 0~ 
p Ot O0 qSxee" + 0 ~ q~x..~ (3.39) 

0~ 01 0 2 [ e 2 a 2 ) 

(3.40) 

Explicitly we get for the components  in cylindrical coordinates:  

1 M 3 
(/~XBB~)p = ---- n ~ ~/i:cBs,, (3.41a) 

p ~/m 

1 i M6 
(ExeB.)o = P x / /~  M2 CbxBe. (3.41b) 

( B xBe~) p = COS ~l( ff, XB,,) o (3.41C) 

(Bx,~)o = -- cos q(/~2ce~,)p (3.41d) 

M7 
(/~XBB,)~ = -- sin2 t / ~  ~xB,,, (3.41e) 

~/M 
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The functions M~, i = 2  ..... 7, in (3.41) are 

M z = v + x / M  (3.42a) 

1 
M 3 = n q- - -  "c (3.42b) 

3 
M 4 = 2n + - -  r (3.42c) 

M s = r + n  v ~ (3.42d) 

M6 = p2 sm v / ~ -  - / / M  3 M 2 4- np - ~  sin 2 ~/ (3.42e) 

MT = (n2-1) x@M+ 3n l ' c  + 3 ~M3 r2 (3.42f) 

We immediately see from Eqs. (3.41) that the Fxel~, are indeed super- 
luminal UPW solutions of ME, propagating with speed 1/cos r/ in the 
z-direction. That  Fx~o are UPWs is trivial and that they propagate with 
speed c~ = 1/cos ~/follows because Fxe8, depends only on the combination 
of variables (z - c~ t) and any derivatives of qsxs~, will keep the (z - c~ t) 
dependence structure. 

Now, the Poynting vector /~xBs,, and the energy density UXRB, ' for 
Free,, are obtained by considering the real parts of/~xeR, and BjceB. We 
have 

(ffXBB~)p = -- Re{ (Exee,,)o} Re{ (/~xsB~)~} (3.43a) 

(ffxB~,,)o = Re{(/~xR~,,)p} Re{(/~xeen).~} (3.43b) 

( P ~ , , L  = cos ~[ IRe{(E~, , )p} 12 + IRe{(ExB~,)o} I 2] (3.43c) 

IAXBBn = (1 "4-COS 2 /7)[ IRe{ (/~xsB,)p} 12 + fRe{ (/~xs~n)o } 12 ] 

+ IRe{ (B:ces,,)_-} I z (3.44) 

The total energy of Fxs~,, is then 

;+5;o exeeo = dO dz p dp uxee,, (3.45) 
7 r  

Since as z ~  c~.>, /~XBB. decreases as 1/Iz--tcos t/I ~/2, what occurs for the 
X-branches of FxB,~,, ej,.sB,, may not be finite. Nevertheless, as in the case 
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Table I. Maxima and Minima of the Zeroth-Order Noudiffracting Electromagnetic X Waves 

(Units: MKSA) 

ae{e~,~,0} Re{(f~.o)0} Re{(&..0L } Re{(&.~&} (f,~.~o),, (Px~.,,)~ u,:,,o 

max 1.0 9.5•  6 2 .5x10  4 6.1 2.4•  7 2 .4•  H 1.6• 3 

rain 0.0 9.5•  6 - 2 . 5  x 10 4 1.5 - 2 . 4 •  7 0.0 0.0 

of the acoustic X-waves discussed in Sec. 2, we are quite sure that a 
FAAFxeL, ' can be launched over a large distance. Obviously in this case the 
total energy of the FAAFxeL~, is finite. 

We now restrict" our attention to FxReo. In this~ case from Eq. .(3"40)1j 
and Eqs. (3.43) we see that (fxeeo)t, = (Bxe.o)O = (Px..o)O = 0. In Fig. 4 
we see the amplitudes of Re{~x~.0} (1), Re{(Ex..o)O} (2), Re{(/~xee0)p} 
(3), and Re{(/~x.~0)~ } (4). Figure 5 shows respectively (Pxee0)p (1), 
(ffx--0)~ (2), and ux. .o (3). The size of each panel in Figs. 4 and 5 is 4 m 
(p -d i rec t ion)x2mm (z-direction) and the maxima and minima of the 
images in Figs. 4 and 5 (before scaling) are shown in Table I, in MKSA 
units. ,2 

Figure 6 shows the beam plots of Fx. .o  in Fig. 4 along one of the 
X-branches (from left to right). Figure 6(1) represents the beam plots of 
Re{~x. .0} (full line), Re{(/~xe.0)o } (dotted line), Re{(Bxsso)p} (dashed 
line), and Re{ (/~xu.o)~} ( longdashed line). Figure 6(2) represents the beam 
plots of (/~x.u,,)/, (full line), (Pxe~o)z (dotted line), and uxu.,, (dashed line). 

3.4. Finite Aperture Approximation to Fx.Bo and FxnLo 

From Eqs. (3.39) (3.40), (3.43), and (3.44) we see that/~x..~,  /~x.-0, 
fx.Bo, and ux88~ are related to the scalar field q~x.B,~. It follows that the 
depth of the field (5~ (or nondiffracting distance--see Sec. 2) of the FAAFxse0 
and of the FAAFxRL0, which of course are to be produced by a finite- 
aperture radiator, are equal and given by 

Z .. . .  = D/2 cot ~/ (3.46) 

where D is the diameter of the radiator and 7/ is the axicon angle. It can 
be proved also (5~ that, for ~XRL0 (and more generally for ~xsL~,), Z .... is 
independent of the central frequency of the spectrum B(k) in Eq. (3.47). 

I1 Figures 4 6 were reprinted with permission from Ref. 5. 
~2 Reprinted with permission from Table 1 of Rell 5. 
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Then if we want, e.g., that Fxseo or FxsL0 travel 115 km with a 20-m- 
diameter radiator, we need ~/= 0.005 ~ 

Figure 7 shows the envelope of Re{FAAqS/8~0} obtained with the 
finite aperture approximation (FAA) given by Eq. (A.28), with D = 2 0  m, 
ao=0.05 mm, and 1/= 0.005 ~ for distances z =  10 km (1) and z =  100 km 
(2), respectively, from the radiator which is located at the plane z =0 .  
Figures 7(3) and 7(4) show the envelope of Re{FAA~xRL~} for the same 
distances and the same parameters (D, ao, and r/) where B(/~) is the 
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following Blackman window function, peaked at the frequencyJo = 700 GHz 
with a 6-dB bandwidth about 576 GHz: 

B(k)= ta~  
0.5 cos ~oo + 0.08 cos /~o ] '  0 ~</c ~< 2/c0 

otherwise 

(3.47) 

where/~o =27rfo/c (c = 300,000 km/s). From Eq. (3.46) it follows that for 
the above choice of D, a0, and q 

Z ..... = 115 km (3.48) 

Figures 8(1) and 8(2) show the lateral beam plots and Figs. 8(3) and 8(4) 
show the axial beam plots respectively for Re{FAA~xBe0} and for 
Re{ FAAq~xRLo} used to calculate Fxseo and FXBLo. The full and dotted lines 
represent X-waves at distances z =  10 and 100 kin, respectively. Figure 9 
shows the peak values of Re{FAAq~x~0} (full line) and Re{FAAq~xeL0} 
(dotted line) along the z-axis from z =  3.45 to 230 km. The dashed line 
represents the result of the exact OsxsB, , solution. The 6-dB lateral and axial 
beam widths of q~xBe,,, which can be measured in Figs. 7(1) and 7(2), are 
about 1.96 m and 0.17 mm respectively, and those of the FAAq~xBc0 are 
about 2.5 m and 0.48 mm as can be measured from Figs. 7(3) and 7(4). For 
q~x~R0 we can calculate ~43'26t the theoretical values of the 6-dB lateral 
(BWL) and axial (BWA) beam widths, which are given by 

BWL -2v-a~*fg BWA 2 x / 3 a ~  (3.49) 
Isin ~/f ' Icos r/I 

With the values of D, a0, and q given above, we have BWL = 1.98 m and 
B WA = 0.17 mm. These are to be compared with the values of these quan- 
tities for the FAAqSxeL0. 

We remark also that Eq. (3.46) says that Z ... .  does not depend on ao. 
Then we can choose an arbitrarily small ao to increase the localization 
(reduced BW L and BWA) of the X-wave without altering Z . . . . .  . Smaller a 0 
requires that the FAA~bx~L0 be transmitted with broader bandwidth. The 
depths of field of q~xsBo and of ~bxsL0 that we can measure in Fig. 9 are 
approximately 109 and 110 km, very close to the value given by Eq. (3.46), 
which is 115 km. 

We conclude this section with the following observations. 

(i) In general both subluminal and superluminal UPW solutions 
of ME have non-null field invariants and are not transverse waves. In 
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particular, our solutions have a longitudinal component along the z-axis. 
This result is important because it shows that, contrary to the speculations 
of Evans, (59/ we do not need an electromagnetic theory with a nonzero 
photon-mass, i.e., with F satisfying the Proca equation in order to have 
an electromagnetic wave with a longitudinal component. Since Evans 
presents evidence (59~ of the existence on longitudinal magnetic fields in 
many different physical situations, we conclude that the theoretical and 
experimental study of subluminal and superluminal U P W  solutions of ME 
must be continued. 

(ii) We recall that in microwave and optics, as is well known, the 
electromagnetic intensity is approximately represented by the magnitude of 
a scalar field solution of the HWE. We already quoted in the introduction 
that Durnin ~16~ produced an optical Jo-beam, which as seen from Eq. (3.1) 
is related to ~xs~,, (~bxsL0). If we take into account this fact together with 
the results of the acoustic experiments described in Sec. 2, we arrive at 
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the conclusion that subluminal electromagnetic pulses Jo and also super- 
luminal X-waves can be launched with appropriate antennas using present 
technology. 

(iii) If we take a look at the structure of, e.g., the FAAOSx,8o 
[Eq. (3.40)] plus Eq. (A.28) we see that it is a "packet" of wavelets, each 
one traveling with speed c. Nevertheless, the electromagnetic X-wave that 
is an interference pattern is such that its peak travels with speed c/cos r/> 1. 
(This indeed happens in the acoustic experiment with c~--,c~; see Sec. 2.) 
Since, as discussed above, we can project an experiment to launch the peak 
of the FAAqS;<~8,, from a point zl to a point z2, the question arises: Is the 
existence of superluminal electromagnetic waves in conflict with Einstein's 
special relativity? We give our answer to this fundamental issue in Sec. 5, 
but first we discuss in Sec. 4 the speed of propagation of the energy 
associated with a superluminal electromagnetic wave. 

4. THE VELOCITY OF T R A N S P O R T  OF E N E R G Y  OF THE UPW 
SOLUTIONS OF MAXWELL EQUATIONS 

Motivated by the fact that the acoustic experiment of Sec. 2 shows 
that the energy of the FAA X-wave travels with speed greater than c, and 
since we found in this paper UPW solutions of Maxwell equations with 
speeds 0 ~< v < or, the following question arises naturally: Which is the 
velocity of transport of the energy of a superluminal UPW (or quasi- 
UPW) solution of ME? 

We can find in many physics textbooks (e.g., Ref. 10) and in scientific 
papers (41) the following argument. Consider an arbitrary solution of ME in 
vacuum, c3F=-O. Then if F = / ~ + i / ~  [see Eq. (B.17)] it follows that the 
Poynting vector and the energy density of the field are 

f i =  f x / ~ ,  u =  �89 2 ) (4.1) 

It is obvious that the following inequality always holds: 

v~ = I/~l ~< 1 (4.2) 
/// 

Now, the conservation of energy-momentum reads, in integral form over a 
finite volume V with boundary S = 0 V, 

�9 
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Equation (4.3) is interpreted saying that ~s dS. /~ is the field energy flux 
across the surface S = 8 V, so that f is the flux density the amount of field 
energy passing through a unit area of the surface in unit time. For  plane- 
wave solutions of Maxwell equations, 

v~ = 1 (4.4) 

and this result gives origin to the "dogma" that free electromagnetic fields 
transport energy at speed v~ = c = 1. 

However, v~ ~< 1 is true even for subluminal and superluminal solutions 
of ME, as the ones discussed in Sec. 3. The same is true for the super- 
luminal modified Bessel beam found by Band 141) in 1987. There he claims 
that since v~ ~< 1, there is no conflict between superluminal solutions of ME 
and relativity theory, since what relativity forbids is the propagation of 
energy with speed greater than c. 

Here we challenge this conclusion. The fact is that, as is well known, 
/~ is not uniquely defined. Equation (4.3) continues to hold true if we sub- 
stitute f~--, f i +  P' with V. P' = 0. But, of course, we can easily find for 
subluminal, luminal, or superluminal solutions of Maxwell equations a P' 
such that 

l e + e ' l  
U 

- - > ~ l  (4.5) 

We come to the conclusion that the question of the transport of energy in 
superluminal UP W solutions of ME is an experimental question. For  the 
acoustic superluminal X-solution of the HWE (see Sec. 2) the energy 
around the peak area flows together with the wave, i.e., with speed 
c = c j c o s  t / (al though the "canonical" formula [Eq. (2.0)] predicts that the 
energy flows with v~. < cs). Since we can see no possibility for the field 
energy of the superluminal electromagnetic wave to travel outside the 
wave, we are confident to state that the velocity of energy transport of 
superluminal electromagnetic waves is superluminal. 

Before ending, we give another example to illustrate that Eq. (4.2) 
[as is the case of Eq. (2.10)] is devoid of physical meaning. Consider a 
spherical conductor in electrostatic equilibrium with uniform superficial 
charge density (total charge Q) and with a dipole magnetic moment. Then, 
we have 

E=Q~, / ~ = ~  (2 cos 0r + sin 00) (4.6) 
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and 

Thus 

CQ 
P = E x B = ~ - s i n  0~, 

1(Q2 c2 ) 
u = ~  ~ + ~ -  (3 cos2 0 +  1) (4.7) 

[ff] 2 CQr sin 0 
-r2Q2+ C2(3 cos 2 0--~ 1) 

# 0  for r # 0  (4.8) 

Since the fields are static, the conservation law [Eq. (4.3)] continues to 
hold true, as there is no motion of charges and for any closed surface 
containing the spherical conductor we have 

~s dS. fi  = 0 (4.9) 

But nothing is in motion! In view of these results we must investigate 
whether the existence of superluminal UPW solutions of ME is compatible 
or not with the principle of relativity. We analyze this question in detail in 
the next section. 

To end this section we recall that in Sec. 2.19 of his book Stratton (19) 
presents a discussion of the Poynting vector and energy transfer which 
essentially agrees with the view presented above. Indeed he finished that 
section with the words: "By this standard there is every reason to retain the 
Poynting-Heaviside viewpoint until a clash with new experimental 
evidence shall call for its revision. ''13 

5. S U P E R L U M I N A L  SOLUTIONS OF MAXWELL EQUATIONS 
AND THE PRINCIPLE OF RELATIVITY 

In Sec. 3 we showed that it seems possible with present technology to 
launch in free space superluminal electromagnetic waves (SEXWs). We 
show in the following that the physical existence of SEXWs implies a 
breakdown of the principle of relativity (PR). Since this is a fundamental 
issue, with implications for all branches of theoretical physics, we will 
examine the problem with great care. In Sec. 5.1 we give a rigorous mathe- 
matical definition of the PR, and in Sec. 5.2 we present the proof of the 
above statement. 

13 Thanks are due to the referee for calling our attention to this point. 
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5.1. Mathematical Formulation of the Principle of Relativity and 
Its Physical Meaning 

In Appendix B we define Minkowski spacetime as the triple (M,  g, D >, 
where M _~ R 4, g is a Lorentzian metric, and D is the Levi-Civita connection 
ofg.  

Consider now GM, the group of all diffeomorphisms of M, called the 
manifold mapping group. Let T be a geometrical object defined in A c_ M. 
The diffeomorphism h E G~ induces a deforming mapping h , :  T ~-* h , T  = T 
such that: 

(i) If f :  M~_A ~ R, then h , f = f o h - ' :  h(A) ~ R 

(ii) If T ~ sec T (r,')(A) c sec T(M), where T{r'S)(A) is the sub-bundle 
of tensors of type (r, s) of the tensor bundle T(M), then 

(h, T)h e (h, 091 , . . . ,  h, (.Or, h, X 1 .. . . .  h g< Xs)  ----=- T e ( ( D  1 ,..., (Dr, X 1 ,. . . ,  X s )  

VX~T~A,  i = 1  ..... s, V(D/~T*A, j = l  ..... r, Ve~A 

(iii) If D is the Levi-Civita connection and X, Y~ sec TM, then 

(h ,Dh,xh,  Y L ~ h , / = ( D x Y ) ~ f ,  V e e M  (5.1) 

If {f~,=O/c?x ~'} is a coordinate basis for TA and {O~'=dx ~'} is the 
corresponding dual basis for T*A and if 

T=T~ ' " 'O~ ' (~  ... | 174  | ... |  (5.2) 
v I �9 �9 �9 v ~  + 

then 

h , T = [ T ~ ' . . ~ o h  ~]h,Ov'|174174174174 (5.3) 

Suppose now that A and h(A) can be covered by the local chart (U, t/) of 
the maximal atlas of M, and A ~_ U, h(A) ~_ U. Let <x ~'> be the coordinate 
functions associated with ( U, r/). The mapping 

x '~ = x l' o h 1: h(U) --> (5.4) 

defines a coordinate transformation <x ~> ~ <x '~> if h(U) ~ A  wh(A). 
Indeed <x '~ > are the coordinate functions associated with the local chart 
(V, ~o) where h(U)~_ V and Uc~ V # ~ .  Now, since it is well known that 
under the above conditions h,ct/~3x~-O/Ox '~ and h, dx ~ - d x  '~, Eqs. (5.3) 
and (5.4) imply that 

(h,T)<x',> (he) = T<x,>(e) (5.5) 



On the Existence of Undistorted Progressive Waves 465 

where T<~.,,>(e) means  the componen t s  of  T in the char t  (x/2)  at the event 
/2~ " / 2 ,  /2 , the e e M ,  i.e., T<x;>(e )=  T~  ..... ( x (e)) and where - ' v ' / 2 "  '/2 T~l ..... (x (he)) are 

componen t s  of  T = h , T  in the basis {h,cq/cnx~'=O/cnx'/2}, {h ,  dx*'=dx'/2}, 
at the poin t  hie). Then  Eq. (5.6) reads 

or, using Eq. (5.5), 

/21 "" ./2~ /2 T,{'.ii~"(x'/2(he)) = T v l  . . . . .  ,~(X (e)) (5.6) 

r ' / 2 1  " " / 2 ,  '/2 - -  - -  1 ) / 2 1  ['r176 . . . . .  ' i x ' / 2 ( h - I ' : ' ] ]  (5.7) 
VI . . . . .  ., i x ( e ) )  - -  C A / ~ l "  A v; ~,[~] .../2~1\ \ ~/,/, 

where A~ = c'~x'/2/c'~x ~, etc. 
In  Appendix  B we introduce the concept  of  inertial reference frames 

I t  sec TU, U g  M by 

g(I, I )  = 1 and D I =  0 (5.8) 

satisfies g(Z, Z)  = 1, with D Z  r O. I f  0~ = g(Z, ) A general f rame Z 
sec T ' U ,  we have 

e~ U ~  M (5.9) 

where a = g(A, ), A = D z Z  is the accelerat ion and where co,, is the ro ta t ion  
tensor, a ,  is the shear tensor, 0~. is the expansion,  and he=giH~ where 

T~.M = [Z~.] @ [H~,] (5.1o) 

H e, is the rest space of  an instantaneous observer at e, i.e., the pair  (e, Ze). 
Also he(X, Y)=g~(pX,  pY) ,  VX, Y ~ T e M ,  and p:TeM--+He. (Fo r  the 
explicit form ofo),  o-, 0, see Ref. 60). F r o m  Eqs. (5.9) and (5.10) we see that  
an inertial reference frame has no acceleration, no rotat ion,  no shear, and  
no expansion.  

We introduce also in Appendix  B the concept  of  a (nacs/I) .  A (nacs/ l )  
x/2) is said to be in the Lorentz  gauge if xG ~t = 0, 1, 2, 3 are the usual  

Lorentz  coordinates  and I =  ~/Ox~ sec TM. We recall tha t  it is a theorem 
tha t  put t ing  I =  e 0 = ~/~x ~ there exist three o ther  fields e i ~ sec T M  such 
tha t  g(ei, e,) = - 1, i = 1, 2, 3, and e, = O/Ox( 

Now,  let {x/2) be Lorentz  coordinate  functions as above.  We say that  
lE GM is a Lorentz mapping if and only if 

x'/2(e) = A1~x/2(e) (5.11 ) 

where A~ e2 '~+ is a Lorentz  t ransformat ion.  With  abuse of  no ta t ion  we 
denote  the subset {l} of  GM such that  Eq. (5.12) holds true also by  
5#++ c G M .  

8 2 5 / 2 7 / 3 - 1 0  
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When ( x " )  are Lorentz coordinate functions, ( x  '~) are also Lorentz 
coordinate functions. In this case we denote 

! ! 

e~ = #/Ox ~, e~ = #/#x '~, ~'~ = dx~, 7~ = dx'~ (5.12) 

When lE 5~+ ~ GM, we say that I , T  is the Lorentz deformed version of T. 
Let h ~ GM. If for a geometrical object T we have 

h , T = T  (5.13) 

then h is said to be a symmetry of T, and the set of all { h e GM} such that 
Eq. (5.13) holds is said to be the symmetry group of T. We can 
immediately verify that for 1 ~ 5~ ~+ c G M 

/ , g = g ,  I , D = D  (5.14) 

i.e., the special restricted orthochronous Lorentz group 5~ is a symmetry 
group of g and D. 

In Ref. 62 we maintain that a physical theory v is characterized by: 

(i) the theory of a certain "species of structure" in the sense of 
Boubarki(63); 

(ii) its physical interpretation; 

(iii) its present meaning and present applications. 

We recall that in the mathematical exposition of a given physical 
theory v, the postulates or basic axioms are presented as definitions. Such 
definitions mean that the physical phenomena described by T behave in a 
certain way. Then, the definitions require more motivation than the pure 
mathematical definitions. We call coordinative definitions the physical 
definitions, a term introduced by Reichenbach. (64) It is necessary also to 
make clear that completely convincing and genuine motivations for the 
coordinative definitions cannot be given, since they refer to nature as a 
whole and to the physical theory as a whole. 

The theoretical approach to physics behind (i), (ii), and (iii) above 
is then to admit the mathematical concepts of the "species of structure" 
defining ~ as primitives, and define coordinatively the observation entities 
from them. Reichenbach assumes that "physical knowledge is characterized 
by the fact that concepts are not only defined by other concepts, but are 
also coordinated to real objects." However, in our approach, each physical 
theory, when characterized as a species of structure, contains some implicit 
geometric objects, like some of the reference frame fields defined above, 
that cannot in general be coordinated to real objects. Indeed, it would be 
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absurd to suppose that all the infinity of IRF that exist in M must have a 
material support. 

We define a spacetime theory as a theory of a species of structure such 
that, if Mod T is the class of models of T, then each ](~ Mod T contains a 
substructure called spacetime (ST). More precisely, we have 

Y =  (ST, T, ,..., Tm} (5.15) 

where ST can be a very general structure/62~ In what follows we suppose 
that ST = J / /=  (M, g, D), i.e., that ST is Minkowski spacetime. The Ti, 
i = 1,..., m, are (explicit) geometrical objects defined in U_~ M characterizing 
the physical fields and particle trajectories that cannot be geometrized in ~. 
Here, to be geometrizable means to be a metric field or a connection on M 
or objects derived from these concepts as, e.g., the Riemann tensor or the 
torsion tensor. 

The reference frame fields will be called the implicit geometrical objects 
of r, since they are mathematical objects that do not necessarily correspond 
to properties of a physical system described by z. 

Now, with the Clifford bundle formalism we can formulate in cgf(M) 
all modern physical theories (see Appendix B) including Einstein's gravita- 
tional theory/6) We introduce now the Lorentz-Maxwell electrodynamics 
(LME) in ~#(M) as a theory of a species of structure. We say that LME 
has as model 

I"-LMe = (M,  g, D, F, J, { ~ ,  mi, e~} ) (5.16) 

where (M, g, D) is Minkowski spacetime, {~oe, mi, e~}, i =  1, 2,..., N, is the 
set of all charged particles, m~ and ei being the masses and charges of 
the particles and ~0i: ~ D I ~ M  being the world lines of the particles 
characterized by the fact that if q~i, ~ sec TM is the velocity vector, then 
c~i = g(~0i., ) ~ sec AI(M) = sec ~# (M)  and c~ i . c~i = 1. F E  sec A2(M) 
sec ~#(M) is the electromagnetic field and JG sec A~(M) c sec c~((M) is the 
current density. The proper axioms of the theory are 

~ F =  J 

miD~p~. O~ = eiOi" F 
(5.17) 

From a mathematical point of view it is a trivial result that TLM e has 
the following property: If h~GM and if Eqs. (5.16) have a solution 
(F ,J , (~ i ,  mi, ei) ) in U~_M, then (h ,F ,h ,J , (h ,cp i ,  mi, ei)) is also a 
solution of Eqs. (5.16) in h(U). Since the result is true for any h~ GM, it 
is true for l~ 5~++ ~ G~,  i.e., for any Lorentz mapping. 
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We must now make it clear that (F ,  J, {9~, mi, ei} ) ,  which is a solu- 
tion of Eq. (5.16) in U, can be obtained only by imposing mathematical 
boundary conditions which we denote by BU. The solution will be realizable 
in nature if and only if the mathematical boundary conditions are physi- 
cally realizable. This is indeed a nontrivial point (62) for in particular it says 
to us that even if ( h . F ,  h .  J, {h.  (p~, mi, ei} ) can be a solution of Eqs. (5.16) 
with mathematical boundary conditions Bh(U), it may happen that Bh(U) 
cannot be physically realizable in nature. The following statement, denoted 
PR~, is usually presented (621 as the principle of (special) relativity in active 
form: 

PRI" Let l e 5~+ ~ G~. If for a physical theory r and Y a Mod r, 
Y= (M,  g, D, T~ ..... T,,,) is a possible physical phenomenon, then l .  Y =  
(M,  g, D, I . T  l ..... I . T , , )  is also a possible physical phenomenon. 

It is clear that hidden in PR~ is the assumption that the boundary condi- 
tions that determine l ,  Y are physically realizable. Before we continue we 
introduce the statement denoted PR2, known as the principle of (special) 
relativity in passive form(621: 

PR2: "All inertial reference frames are physically equivalent or 
indistinguishable." 

We now give a precise mathematical meaning to the above statement. 
Let r be a spacetime theory and let ST = (M,  g, D )  be a substructure 

of Mod r representing spacetime. Let I e  sec TU and I' e sec TV, U, V~_ M, 
be two inertial reference frames. Let (U, ~/) and (V, q~) be two Lorentz 
charts of the maximal atlas of M that are naturally adapted respectively to 
I and I'. If ( x " )  and ( x " )  are the coordinate functions associated with 
(U, v/) and (V, cp), we have I =  O/Ox ~ I '= ~/ax '~ 

Definition. Two inertial reference frames I and I '  as above are said to 
be physically equivalent according to r if and only if the following condi- 
tions are satisfied: 

(i) G~SFT+~I: U--+I(U)~_ V, x ' ~ ' = x ~ ' o l - ~ I ' = l , I  

When YeModr, Y = ( M , g , D ,  T1,... ,Tm), is such that g and D 
are defined over all M and Ti~secC~d(U) csec~d(M), calling o =  
(g ,  D, T~ ..... T.7), o solves a set of differential equations in q(U) c R 4 with 
a given set of boundary conditions denoted b ~ which we write as 

D~x,>(o<_~,>),,=O, b ~ e~ U (5.18) 
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and we must have: 

(ii) If Y e M o d z < : ~ l ,  T e M o d T ,  then necessarily 

I . Y =  ( M ,  g, D, l . T i  ..... 1. T . , )  (5.19) 

is defined in 1(U) _c V and calling 1, o - { g, D, l ,  T ~ ,..., 1, T, ,}  we must have 

D~<~,~,>(l,o<x.~,>)l~:O, b I*~ lee l (U)  ~ V (5.20) 

In Eqs. (5.18) and (5.20) D ~ and D ~ ,  <x~> <x~> mean ~ = l , 2 , . . . , m  sets of 
differential equations in ~4. The system of differential equations (5.19) must 
have the same functional form as the system of differential equations (5.17), 
and b z.~ must be relative to ( x  '~) in the same as manner b ~ 
is relative to ( x ~ ) ,  and if b ~ is physically realizable, then b ~*~ 
must also be physically realizable. We say under these conditions that I ~ I '  
and that l ,  o is the Lorentz deformed version of the phenomena described 
by o. 

Since in the above definition I , Y = ( M , g , D ,  1,T1 ..... / ,T in) ,  it 
follows that when I ~  I ' ,  then l ,  g =g, l , D  = D (as we already know), and 
this means that the spacetime structure does not give a preferred status to 
I or I '  according to r. 

5.2. Proo f  that the Existence of  S E X W s  Implies a Breakdown of  P R  j 

and P R  2 

We are now able to prove the statement presented at the beginning of 
this section, that the existence of SEXWs implies a breakdown of the 
principle of relativity in both its active (PR1) and passive (PR2) versions. 

Let leST+~GM and let F, F e s e c A 2 ( M ) ~ s e c C g f ( M ) ,  F = I , F .  
Let F = I , F = R F R  -~, where P~=(1/2)F~(x<~(l-~e))?~7" and where 
R esec  Spin+(1, 3 ) ~ s e c ~ # ( M )  is a Lorentz mapping, such that ) /~= 
R?~R-  l i, ~ I, = A ~ 7 , A ~ e S t+, and let (x/~) and ( x  '~) be Lorentz coordinate 
functions as before such that 7 ~ = dx ~, )/~" = dx 'f' and x '~ = x ~ o I -  1. We write 

I 6 Fe = ~F~v(x (e)) r  

1 v 'c~  ' ' F~ = 5F,v(x (e)) 7 ~'7 ~ 

f e =  1 --: 'c~ ' ' 

(5.21a) 

(5.21b) 

(5.22a) 

(5.22b) 
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From (5.21a) and (5.21b) we get that 

F,=~(x'a(e)) l =(A L (A-');~F~(x~(~)) (5.23) 

From (5.21a) and (5.22b) we also get 

f f~(x~(e))  = A~A}F~v(xa(l  - 'e)) (5.24) 

Now, suppose that F is a superluminal solution of Maxwell equation, 
in particular a SEXW as discussed in Sec. 3. Suppose that F has been 
produced in the inertial frame I with ( x  ~) as (nacs/I), with the physical 
device described in Sec. 3. F is generated in the plane z = 0 and is traveling 
with speed ci = 1/cos ~/in the negative z-direction. It will then travel to the 
future in spacetime, according to the observers in L Now, there exists 
l e  S~+ such that 1 , F =  i f =  R F R  i will be a solution of Maxwell equations 
and such that if the velocity 1-form of F is VF= (C~-- 1) 1/2 (1, 0, 0, --Cl), 
then the velocity 1-form of F is VF=(C'I z -  1) -T/z (--1,  0, 0, --C'1), with 
C'l > 1, i.e., VF is pointing to the past. As is well known, F carries negative 
energy according to the observers in the I frame. 

We then arrive at the conclusion that to assume the validity of PR1 is 
to assume the physical possibility of sending to the past waves carrying 
negative energy. This seems to the authors an impossible task, and the 
reason is that there do not exist physically realizable boundary conditions 
that would allow the observers in I to launch ff in spacetime and such that 
it traveled to its own past. 

We now show that there is also a breakdown of PR2,  i.e., that it is not 
true that all inertial frames are physically equivalent. Suppose we have two 
inertial frames I and I '  as above, i.e., I = @/~x ~ I ' =  ~/Ox '~ 

Suppose that F is a SEXW which can be launched in I with velocity 
1-form as above and suppose F is a SEXW built in I '  at the plane z ' =  0 
and with velocity 1-form relative to ( x  >)  given by VF= V';y~ and 

vp= ,0, 0, - (5.25) 
1 

If F and ff are related as above, we see (see Fig. 10) that if, which has 
positive energy and is traveling to the future according to I ' ,  can be sent 
to the past of the observers at rest in the I frame. Obviously this is 
impossible and we conclude that F is not a physically realizable phenom- 
enon in nature. It cannot be realized in I '  but F can be realized in L It 
follows that PR2 does not hold. 
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F i g .  10. F cannot be launched by I ' .  

If the elements of the set of inertial reference frames are not equivalent, 
then there must exist a fundamental reference frame�9 Let I e  sec TM be that 
fundamental frame�9 If I' is moving with speed V relative to I, i.e., 

1 ~ V 
I' - ~ ~t ~ O/~z (5.26) 

then, if observers in I' are equipped with a generator of SEXWs and if they 
prepare their apparatus in order to send SEXWs with different velocity 
1-forms in all possible directions in spacetime, they will find a particular 
velocity 1-form in a given spacetime direction in which the device stops 
working. A simple calculation yields then, for the observes in I', the value 
of V! 

In Ref. 65 Recami argued that the principle of relativity continues to 
hold true even though superluminal phenomena exist in nature. In this 
theory of tachyons there exists, of course, a situation completely analogous to 
the one described above (called the Tolman-Regge paradox), and according 
to Recami's view PR 2 is valid because I' must interpret F as being an anti- 
SEXW carrying positive energy and going into the future according to him. 
In his theory of tachyons Recami was able to show that the dynamics of 
tachyons implies that no detector at rest in I can detect a tachyon (the 
same would be valid for a SEXW like F) sent by I' with velocity 1-form 
given by Eq. (4.26). Thus he claimed that PR2 is true. At first sight the 
argument seems good, but it is at least incomplete. Indeed, a detector in I 
does not need to be at rest in /. We can imagine a detector in periodic 
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motion in I which could absorb the /~ wave generated by I '  if this was 
indeed possible. It is enough for the detector to have relative to I the speed 
V of the I '  frame in the appropriate direction at the moment of absorption. 
This simple argument shows that there is no salvation for PR 2 (and for 
PRl)  if superluminal phenomena exist in nature. 

The attentive reader at this point probably has the following question 
in his/her mind: How could the authors start with Minkowski spacetime, 
with equations carrying the Lorentz symmetry, and yet arrive at the con- 
clusion that PR l and PR2 do not hold? 

The reason is that the Lorentzian structure of {M, g, D )  can be seen 
to exist directly from the Newtonian spacetime structure as proved in 
Ref. 66. In that paper Rodrigues and collaborators show that even if ~ +  
is not a symmetry group of Newtonian dynamics it is a symmetry group of 
the only possible coherent formulation of Lorentz Maxwell electrodynamic 
theory compatible with experimental results that can be formulated in the 
Newtonian spacetime. 14 

We finish by calling to the reader's attention that there are some 
experiments reported in the literature which suggest also a breakdown of 
PR2 for the roto-translational motion of solid bodies. A discussion and 
references can be found in Ref. 67. 

6. CONCLUSIONS 

In this paper we presented a unified theory showing that the homo- 
geneous wave equation, the Kle in-Gordon equation, Maxwell equations, 
and the Dirac and Weyl equations have solutions with the form of 
undistorted progressive waves (UPWs) of arbitrary speeds 0 ~< v < oo. 

We present also the results of an experiment which confirms that finite 
aperture approximations to a Bessel pulse and to an X-wave in water move 
as predicted by our theory, i.e., the Bessel pulse moves with speed less than 
c., and the X-wave moves with speed greater than c,, c,. being the sound 
velocity in water. 

We exhibit also some subluminal and superluminal solutions of 
Maxwell equations. We showed that subluminal solutions can in principle 
be used to model purely electromagnetic particles. A detailed discussion is 
given about the superluminal electromagnetic X-wave solution of Maxwell 
equations and we showed that it can in principle be launched with 
available technology. Here a point must be clear: the X-waves, both 

~4We recall that Maxwell equations have, as is well known, many symmetry groups 
besides 2'T+. 
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acoustic and electromagnetic, are signals in the sense defined by Nimtz. (74~ 
It  is a widespread misunderstanding that signals must have a front. A front 
can be defined only mathematically because it implies an infinite frequency 
spectrum. Every real signal does not have a well-defined front. 

The existence of superluminal electromagnetic waves implies the 
breakdown of the principle of relativity. 15 We observe that besides its 
fundamental theoretical implications, the practical implications of the exis- 
tence of U P W  solutions of the main field equations of theoretical physics 
(and their finite aperture realizations) are very important.  This practical 
importance ranges from applications in ultrasound medical imaging to the 
project of electromagnetic bullets and new communication devices. ~33~ Also 
we would like to conjecture that the existence of subluminal and super- 
luminal solutions of the Weyl equation may be important  to solve some of 
the mysteries associated with neutrinos. Indeed, if neutrinos can be 
produced in subluminal or superluminal modes see Refs. 75 and 76 for 
some experimental evidence concerning superluminal neutr inos-- they can 
eventually escape detection on earth after leaving the sun. Moreover, for 
neutrinos in a subluminal or superluminal mode it would be possible to 
define a kind of "effective mass." Recently some cosmological evidence that 
neutrinos have a nonvanishing mass has been discussed by, e.g., Pr imack 
et al. (77) One such "effective mass" could be responsible for the cosmologi- 
cal evidence, and in such a way that we can still have a left-handed 
neutrino since it would satisfy the Weyl equation. We discuss this issue 
further in another publication. 

A P P E N D I X  A. S O L U T I O N S  OF T H E  (SCALAR) H O M O G E N E O U S  
WAVE E Q U A T I O N  AND T H E I R  F I N I T E  
A P E R T U R E  R E A L I Z A T I O N S  

In this appendix we first recall briefly some well-known results con- 
cerning the fundamental (Green's functions) and the general solutions of the 
(scalar) homogeneous wave equation (HWE) and the theory of their finite 
aperture approximation (FAA). FAA is based on the Rayleigh-Sommerfeld 
formulation of difJ?action (RSFD) by a plane screen. We show that under 
certain conditions the RSFD is useful for designing physical devices to 
launch waves that travel with the characteristic velocity in a homogeneous 

~s It is important to recall that there exists the possibility of propagation of superluminal 
signals inside hadronic matter. In this case the ingenious construction of Santilli's iso- 
minkowskian spaces (see Refs. 68 73) is useful. 
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m e d i u m  (i.e., the speed c that  appears  in the wave equation).  M o r e  impor-  
tant, R S F D  is also useful for project ing physical  devices to launch some of 
the subluminal  and super luminal  solutions of  the H W E  (i.e., waves that  
p ropaga te  in a homogeneous  med ium with speeds respectively less and 
greater  than  c) tha t  we present  in this appendix.  We use units such tha t  
c = 1 and h = 1, where c is the so-called velocity of  light in v a c u u m  and h 
is P lanck ' s  cons tant  divided by 21r. 

A1. Green's Functions and the General Solution of the (Scalar) HWE 

Let ~ in wha t  follows be a complex  function in Minkowsk i  space- 
t ime M :  

~: M ~ x ~ - ~  ~ ( x )  E C (A.1) 

The inhomogeneous  wave equat ion  for ~ is 

[~qs=  ( ~ - V  2) r = 4~rp (A.2) 

where p is a complex function in Minkowski  spacetime. We define a two- 
poin t  Green 's  function for the wave equat ion  (A.2) as a solution of 

[] G(x  - x ' )  = 41rfi(x - x ' )  (A.3) 

As it is well known,  the fundamenta l  solutions of  (A.3) are: 

Retarded  Green's  funct ion:  GR(x  -- x ' )  = 2 H ( x -  x ' )  f i [ (x  - x ' )  2] (A.4a) 

Advanced  Green's  funct ion:  GA(X -- x ' )  = 2 H [  -- (x -- x ' )  ] fi[ (x -- x ' )  2] 

(A.4b) 

where ( x - x ' )  2 =_ ( x  ~ - x ' ~  2 - ( 2 - , 2 ' )  2, H ( x )  = H ( x  ~ is the step function, 
and x ~ = t, x '~ = t'. 

We can rewrite Eqs. (A.4) as ( R =  1 2 - ~ ' l ) :  

1 
GR(x  ~ -- x'~ ~f-- ~f') = ~ g (x  ~ -- x '~ -- R)  (A.4c) 

1 
GA(X ~ -- X'~ ~ - -  ~')  = ~ c~(X ~ -- X '~ -- R) (A.4d) 
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We define the Schwinger function by 

Gs = GR - -  G A : 2e(x) ~(X2); 

It has the properties 

[] Gs = O, Gs(x) = - Gs( - x), 

e(x) = H(x)  - H( - x) (A.5) 

Gs(x) = 0, if x 2 < 0 (A.6a) 

o< I 
Gs(0, 97) = 0 , ~5-x~ i:~,=o = 0, 0xO ix0=o = 600  (A.6b) 

For  the reader who is familiar with the material presented in Appendix 
B, we observe that these equations can be rewritten in a very elegant way 
in ~ ( c ( M ) .  (If you have not read Appendix B, go to Eq. (A.8').) We have 

f ~rdGs(x - y) = - fo dGs(x  - y) 75 = 1, if y e a (A.7) 

where a is any spacelike surface. Then i f f ~  sec C (9 A ~ ( M ) c  sec % ' c ( M )  
is any function defined on a spacelike surface a, we can write 

Io{ * d G s ( x -  y)]  f ( x )  = - f dG,(x -- y) f ( x )  ?5 = f ( y )  

Equations (A.7) and (A.8) appear in textbooks on field theory as 

(A.8) 

f � 9  da~ ' (x)=l ,  ; f ( x )  O . G s ( x - y ) d a " ( x ) = f ( y )  (A.8') 

We now express the general solution of Eq. (A.2), including the initial con- 
ditions, in a bounded constant time spacelike hypersurface a characterized 
by 71 /x 72/x 73 in terms of GR. We write the solution in the standard vector 
notation. Let the constant time hypersurface a be the volume V ~  R 3 and 
0 V=  S its boundary. We have 

q~( t, Y) = fi+ dt' I f l v d v '  G R( t - t', Y -  Y') p( t', 2') 

1 [GRIt ~ + ~ f f ; v d V  ' ,=0 ~ 7  (t', ~')1,,=0 

] - ~ ( t ' , X ' ) l , , = o o t ,  Rl,,=o 

1 
(A.9) 
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where grad' means that the gradient operator acts on Y', and where t+ 
means that the integral over t' must end on t '= t + e in order to avoid 
ending the integral exactly at the peak of the cS-function. The first term in 
Eq. (A.9) represents the effects of the sources, the second term represents 
the effects of the initial conditions (Cauchy problem), and the third term 
represents the effects of the boundary conditions on the space boundaries 
8 V= S. This term is essential for the theory of diffraction and in particular 
for the RSFD. 

Cauchy problem: Suppose that ~(0 ,2)  and (8/00 q~(t,:f)lt 0 are 
known at every point in space, and assume that there are no sources 
present, i.e., p = O. Then the solution of the HWE becomes 

8 0 ~ ' ]  q ~ ( t , y ) = l  f f f  dv ' GRl,,=o~qNt',2')l~,=o-~tGRlt,= q~(O, ) (A.IO) 

The integration extends over all space and we explicitly assume that the 
third term in Eq. (A.9) vanishes at infinity. 

We can give an intrinsic formulation of Eq. (A.10). Let xeo-, where a 
is a spacelike surface without boundary. Then the solution of the HWE can 
be written 

l 

_ 1 ~ dcr~(x)[Gs(x_x,) Onq~(x') -O~Gs(X-X ' )  ~0(x')] (A.11) 
4re 

where Gs is the Schwinger function [see Eqs. (A.7, A.8)]. ~(x) given by 
Eq. (A. 11 ) corresponds to "causal propagation" in the usual Einstein sense, 
i.e., q~(x) is influenced only by points of a which lie in the backward 
(forward) light cone of x', depending on whether x is "later" ("earlier") 
than a. 

A2. Huygen's Principle; the Kirchhoff and Rayleigh-Sommerfeld 
Formulations of Diffraction by a Plane Screen (79) 

Huygen's principle is essential for understanding Kirchhoff's formula- 
tion and the Rayleigh-Sommerfeld formulation (RSF) of diffraction by a 
plane screen. Consider again the general solution [Eq. (A.9)] of the HWE 
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which is non-null in the surface S = 0 V and suppose also that qs(0, )7) and 
(O/Ot) ~(t ,  )7)I~=0 are null for all 2 e  V. Then Eq. (A.9) gives 

~(t,  )7) = s dS' .  grad' #(t ' ,  e ' )  + ~5 q~(t, Z )  

~ ,  ~(t ' ,  )7') (1.12) 
t ' = t  R 

From Eq. (A.12) we see that if S is along a wavefront and the rest of it is 
at infinity or where ~ is zero, we can say that the field value ~ at (t, Y) is 
caused by the field q~ in the wave front at time ( t - R )  earlier. This is 
Huygen's principle. 

Kirehhoff's Theory. Now, consider a screen with a hole as in Fig. 11. 
Suppose that we have an exact solution of the HWE that can be 

written as 

~(t,  )7)= F()7) e TM (A.13) 

where we define also 

oJ =/~ (A.14) 

and /~ is not necessarily the propagation vector (see below). We want to 
find the field at )TeV, with O V = S I + S 2  (Fig. 11), with p = 0  V)TeV. 

rl 

Z 

$2 

Fig. l l. Diffraction from a finite aperture. 
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Kirchhoff proposed to use Eq. (A.12) to give an approximate solution for 
the problem. Under the so-called Sommerfeld radiation condition, 

rli+m _r ( ~ - -  i/7"F) = 0 (A.15) 

where _r= I_r~l = ~ - ~ ' ,  ~' being a point of $2, the integral in Eq. (A.12) is 
null over $2. Then, we get 

/OF @GK\ F(2)=l ffs, dS' [ ~n GK-F~n-n ) (A.16) 

e ikR 
GK-- , R =  ls163 ~ ' e S ,  (1.17) 

R 

Now, the "source" is opaque, except for the aperture which is denoted 
by Z" in Fig. 11. It is reasonable to suppose that the major contribution to 
the integral arises from points of S~ in the aperture Z" c $1. Kirchhoff then 
proposed the conditions: 

(i) Across Z', the fields F and c~F/On are exactly the same as they 
would be in the absence of sources. 

(ii) Over the portion of S~ that lies in the geometrical shadow of the 
screen the field F and ~F/~n are null. 

Conditions (i) plus (ii) are called Kirchhoff boundary conditions, and 
we end with 

f f• (OF FOGx ) (A.18) F.(~)= dS' ~ a K -  an 

where FK(s is the Kirchhoff approximation to the problem. As is well 
known, FK gives results that agree very well with experiments, if the dimen- 
sions of the aperture are large compared with the wavelength. Nevertheless, 
Kirchhoff's solution is inconsistent, since under the hypothesis given by 
Eq. (A.13), F(2) becomes a solution of the Helmholtz equation 

V 2 F +  (.o2F = 0 (A.19) 

and as is well known it is illicit for this equation to impose simultaneously 
arbitrary boundary conditions for both F and OF/On. 

A further shortcoming of FK is that it fails to reproduce the assumed 
boundary conditions when s  To avoid such inconsistencies 
Sommerfeld proposed to eliminate the necessity of imposing boundary 
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conditions on both F and iF/On simultaneously. This gives the so-called 
Rayleigh-Sommerfeld formulation of diffraction by a plane screen (RSFD). 
RSFD is obtained as follows. Consider again a solution of Eq. (A.18) under 
Sommerfeld radiation condition [ Eq. (A. 15) ] 

~n G R s - r ~ - n  ) dS' (a.20) 

where now GRs is a Green function for Eq. (A.19) different from Gx. GRs 
must provide an exact solution of Eq. (A.19), but we want in addition that  
G~s or OGRs/On vanish over the entire surface St,  since as we already said 
we cannot impose the values of F and OF/On simultaneously. 

A solution for this problem is to take Gas as a three-point function, 
i.e., as a solution of 

(V2 -[- (D 2) G;s('2, Y', Y")= 4~r6(Y--Y' ) -  4~r6(Y-- Y") (A.21) 

We get 

eil~R eikR ' 
G f~s(.~, x ,  R R' (A.22) 

R= I~-  ~'1, R'= [Y- ~"l (A.23) 

where Y~ S t and Y ' =  - Y "  are mirror image points relative to S 1 . This 
solution gives GRs]s, = 0 and OG~s/On Is, r O. 

Another solution for our problem such that G+s[s,r and 
~G~ds/On Is, = 0  is realized for G[~ s satisfying 

(V 2 + co 2) G+s(X, x ,  ~' Y") = 47r6(X-- 9~') + 4zrfi(Y- ~") (A.24) 

Then 

eikR eil~R ' 
a ~ y ,  x, =R- -+  R' " :~") - -  (A.25) 

with R and R' as in Eq. (A.23). 
We now use G~s in Eq. (A.25) and take S 1 as being the z = 0 plane. 

In this case r7 = - k ,  k being the versor of the z direction, /~ = 9~-Y',  
R .  r7 = z' - z cos(g, R) = (z' - z)/R, and we get 

F - f i ler  cikR ] 
1 ~Js" [ ikz R2 ~ zJ (A.26) g (Y)=  - - ~  (f dS' F(x', y', O) 
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A3. Finite Aperture Approximation for Waves Satisfying 
~( t ,  ~) = F(~) e - - i ~ t  

The finite aperture approximation to Eq. (A.26) consists in integrating 
only over Z : c S 1 ,  i.e., we suppose F (X)=0 ,  VXe(SI\Z') .  Taking into 
account that 

# = 2zc/2, O) = # (A.27) 

we get 

1 dS' F(x', /, O) ~ z + l  lJ" 0 ci#Rz 
dS' F(x',  y', ) ~-3 (A.28) 

In Sec. A4 we show some subluminal and superluminal solutions of 
the H W E  and then discuss for which solutions the FAA is valid. We show 
that there are indeed subluminal and superluminal solutions of the H W E  
for which (A.28) can be used. Even more important, we describe in Sec. 2 
the results of recent experiments, conducted by us, that confirm the predic- 
tions of the theory for acoustic waves in water. 

A4. Subluminal and Superluminal Solutions of the HWE 

Consider the H W E  (c = 1) 

~2 

0t ~ q5 _ V2q~ = 0 (A.2') 

We now present some subluminal and superluminal solutions of 
Eq. (A.2'). 18~ 

Subluminal and Superluminal Spherical Bessel Beams. 

these beams we define the variables 
To introduce 

y> - - -  

< = [ x  = + y= + v=<(z -  v< 0 =] '/= 

1 2 2 2 d o ) <  
~< ~ ,  O ) < - k <  = ~ < ,  V < = d k  < 

~-> = F --X2 -- y2 ~_ ) j 2 ( Z  __ V > t)  2 ] 1/2 

1 2 2 2 co> - k > = - ( 2 > ,  v> = do) > /dk > 
~ - 1 '  

(A.29a) 

(a.Z9b) 

(A.29c) 

(A.29d) 
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We can now easily verify that the functions q~1~ and ~/~' below are 
respectively subluminal and superluminal solutions of the HWE (see 
example 3 below for how to obtain these solutions). We have 

~;m(t, X)= Cljl(~2p~p) P~(cos 0) e*m~176 kpz) (1.30) 

where the index p = < ,  > ,  Cz are constants, Jz are the spherical Bessel func- 
tions, P~, are the Legendre functions, and (r, 0, ~o) are the usual spherical 
coordinates. ~b~' [~b~] has phase velocity (w</k<)  < 1 [ (w>/k>)  > 1] 
and the modulation function j i(s [ j~(f2>~>)]  moves with group 
velocity v< [v>] ,  where 0~<v< <1 [1 < v >  < o o ] .  Both ~bl~ ' and ~/~, are 
undistorted progressive waves (UPWs). This term was introduced by 
Courant and Hilbert(t); however, they did not suspect that UPWs move 
with speeds greater than c = 1. For  use in the main text we write the 
explicit form of q ~  and 00 ~ > ,  which we denote simply by q~< and ~>"  

~p(t,~)=cSin(f2p~p)e,(O,~,~ /~,~), p =  < or > (A.31) 

When v < = 0, we have q~ < ~ ~o, 

q S o ( t , Y ) = c S i n f 2  <re  ~cx<', r=(xZ + y2-1- z2)l/2 (A.32) 
r 

When v> =o% co> =0,  and 05 ~ --, q ~ ,  

q~,~(t, 2) = C~ sinh p ,~>~ (1.33) - -  e , p = (X 2 -[- y2)l/2 
P 

We observe that if our interpretation of phase and group velocities is 
correct, then there must be a Lorentz frame where ~<  is at rest. It is trivial 
to verify that in the coordinate chart <x '~> which is a (nacs/I '),  where 
I' = ( 1 - v 2)  ~/2 O/Ot + (v </x/1 - re< ) ~/Oz is a Lorentz frame moving with 
speed v< in the z direction relative to I = ~ / & ,  q~p goes in ~o(t', 2') given 
by Eq. (A.32) with t~--,t', .g~--~Y'. 

Subluminal and Superlurninal Bessel Beams. The solutions of the 
HWE in cylindrical coordinates are well known. (19) Here we recall how 
these solutions are obtained in order to present new subluminal and super- 
luminal solutions of the HWE. In what follows the cylindrical coordinate 
functions are denoted by (p, O, z), p = (x 2 + y2)1/2, x = p  cos 0, y = p  sin 0. 
We write for q~: 

q~(t, p, 0, z) = f l ( P )  f2(0) J3(t, z) (A.34) 

825/27/3- I I 
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Insert ing (A.34) in (A.2') gives 

p2 d2 d 
dp~ Ji + P jpp f ~ + ( BP 2 - v2) f l  = 0 (A.35a) 

(ff0~2 + v2) fa  = 0 (A.35b) 

+ B/f~ 0 (A.35c) 

In these equat ions B and v are separa t ion constants.  Since we wan t  ~b to 
be periodic in 0, we choose v = n an integer. Fo r  B we consider two cases: 

(i) Subluminal Bessel solution, B = / 2  2 > 0. In this case (A.35a) is a 
Bessel equat ion and we have 

qo~(t, p, O, z) = C . J n ( p / 2 < )  e i(k . . . . . .  <,+,,o), n = 0, 1, 2 .... (A.36) 

where C,, is a constant ,  J,, is the n th  order  Bessel function, and 

2 2 2 (A.37) ( o < - k <  = / 2 <  

In Ref. 43 the r < a,, are called the n th -order  nondiffract ing Bessel beams.  16 
Bessel beams  are examples  of  undis tor ted progressive waves (UPWs) .  

They  are "subluminal"  waves. Indeed,  the g roup  velocity for each wave is 

v< =doo</dk<, 0 < v <  < l (A.38) 

but  the phase  velocity of  the wave is (co</k< ) >  1. Tha t  this in terpre ta t ion 
is correct  follows f rom the results of  the acoustic exper iment  described in 
Sec. 2. 

I t  is convenient  for wha t  follows to define the variable t/, Called the 
axicon angle, (26) 

k<  =/7:< cos ~/, 

Then 

/2 < =/~ < sin ,/, 0 < t / <  re/2 (A.39) 

/~< =co<  > 0  (A.40) 

2 2 16The only difference is that k< is denoted by f l = ~  and co< is denoted by 
k' = oo/c > 0. (We use units where c= 1.) 
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and Eq. (A.36) can be rewritten as A~,- q~Jn, with 

r = C n J , ( k < p  sin 1/) e i(~ . . . . .  ~ ~t+,~o~ (A.41) 

In this form the solution is called in Ref. 43 the nth order nondiffracting 
portion of the axicon beam. The phase velocity v ph = 1/cos t/ is independent 
of /~<,  but, of course, it is dependent on k< .  We shall show below that 
waves constructed from the ~b < beams can be subluminal or superluminal! Jn 

(ii) Superluminal (Modif ied)  Bessel Solution, B = -s < 0. In this 
case (A.35a) is the modified Bessel equation and we denote the solutions by 

q~K>(t, p, O, z) = CnKn(f2 > p) e il~ . . . . . .  ,+ no~, n = 0, 1 .... (A.42) 

where K~ are the modified Bessel functions, C,, are constants, and 

2 2 2 (A.43) co> - k >  = - s  

We see that ~ , ,  ar also examples of UPWs, each of which has group 
velocity v > = do) >/dk > such that 1 < v > < oo and phase velocity 0 < 
(co>/k>) < 1. As in the case of the spherical Bessel beam [Eq. (A.31)], we 
see again that our interpretation of phase and group velocities is correct. 
Indeed, for the superluminal (modified) Bessel beam there is no Lorentz 
frame where the wave is stationary. 

The q~> beam was discussed by Band (4~) in 1988 as an example of K0 
superluminal motion. Band proposed to launch the ~/~>,, beam in the 
exterior of a cylinder of radius r~ on which there is an appropriate super- 
ficial charge density. Since Ko(f~>r~) is nonsingular, his solution works. 
In Sec. 3 we discuss some of Band's statements. 

We are now prepared to present some other very interesting solutions 
of the HWE, in particular the so-called X-waves, t43) which are super- 
luminal, as proved by the acoustic experiments described in Sec. 2. 

Theorem [Lu  and Greenleaf]  (43~. The three functions below are 
families of exact solutions of the H W E  [Eq. (A.2')] in cylindrical coor- 
dinates: 

I1; 1 q~K(s) = D(tl) ~ A((~) f(s) d(~ dq (A.45) 
7~ 7~ 

CrPL(p, 0 ,  Z - -  t) = q~(p,  0) ( / ) 2 ( Z  - -  t) (A.46) 
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where 

s=O~o([r pCos(O-~)+b(k<,F[)[Z~Cl(~2<,~l)t ] (A.47) 

and 

ci(#<, I/) =x /1  + [~o(#<, t/)/b(#<, r/)] 2 (A.48) 

In these formulas T(k <) is any complex function (well behaved) of # < and 
could include the temporal frequency transJerfunction of a radiator system, 
A(~b) is any complex function (well behaved) of ~b and represents a weight- 
ing function of the integration with respect to ~b, f (s)  is any complex func- 
tion (well behaved) of s [solution of Eq. (A.29)], D(q) is any complex 
function (well behaved) of v 1 and represents a weighting function of the 
integration with respect to 1/, called the axicon angle [see Eq. (A.39)], 
%(#<,  t/) is any complex function of #<,  and t/, b(#<, r/) is any complex 
function of # < and q. 

As in the previous solutions, we take c = 1. Note that #<,  r/, and the 
wave vector k< of the f (s )  solution of Eq. (A.29) are related by Eq. (A.39). 
Also q52(z - t) is any complex function of (z - t) and qSl( p, 0) is any solu- 
tion of the transverse Laplace equation, i.e., 

1 ~ l  q~(p, 0) = 0  (A.49) 

The proof is obtained by direct substitution of qs,  q~K, and q~L in the 
HWE. Obviously, the exact solution q5 L is an example of a luminal UPW, 
because if one "travels" with the speed c = 1, i.e., with z -  t = const, both 
the lateral and axial components ~I(P, 0) and ~b2(z-t) will be the same 
for all time t and distance z. When c1(#, 0) in Eq. (A.47) is real, ( + )  repre- 
sent respectively backward and forward propagating waves. 

We recall that qs,l(s ) and qSK(S ) represent families of UPWs if 
c1(/~<, t/) is independent of/~< and t/ respectively. These waves travel to 
infinity at speed cl. q~,(s) is a generalized function that contains some 
of the UPWs solutions of the HWE derived previously. In particular, 
if T(#<) 6(#< -' -' k<),  = o 9 > 0  is a constant and if f ( s ) = e  ~, 
~ o ( # < , t / ) = - i F 2 < ,  b( fc<,v)=i f l=Ro/c l ,  one obtains Durnin's UPW 
beam{~6~ 

] q~D,,rn~n(S) = f~  A(q~) e-i~<P eos(O +) dq5 e i(~Z ,, , t)  (A.50) 
- - T O  
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If A(~b)= ine i"~ we obtain the nth order U P W  Bessel beam ~b < given by J,, 
Eq. (A.36). qs~,(s) is obtained in the same way with the transformation 
k< =/~< cos r/; s =/~< sin t/. 

The X-waves. We now present a superluminal U P W  wave which, as 
discussed in Sec. 2, is physically realizable in an approximate way (FAA) 
in the acoustic case and can be used to generate Hertz potentials for the 
electromagnetic field (see Sec. 3). We take in Eq. (A.44): 

T(/c< ) = B(/~< ) e ~o~<, A(~b) = i~e i"~, ~o(/C<, 17) = -- i/~ < sin q 

b(fc < , tl) = ik cos~l, f ( s )  = e  s (A.51) 

We then get 

q ~ > = e  in~ B ( k < ) J ~ , ( [ c < p s i n q ) e  ]~< [ a 0  - -  i(  . . . .  I/ t~l d /~<  (A.52) x, 

In Eq. (A.52) B(/~<) is any well-behaved complex function of /~< and 
represents a transfer function o f  a practical radiator, /~< = co and ao is a 
constant, and q is again called the axicon angle. (26~ Equation (A.52) 
shows that q~ > is represented by a Laplace transform of the function x.  
B(/c<) Jn(/c< p sin q) and an azimuthal phase term e in~ The name X-waves 
for the q~ > xn comes from the fact that these waves have an X-like shape 
in a plane containing the axis of symmetry of the waves (the z-axis; see 
Fig. 4( 1 ) in Sec. 3). 

The ~xsB,, Waves. This wave is obtained from Eq. (A.44) putting 
B( /~<)=a  0. It is called the X-wave produced by an infinite aperture and 
broad bandwidth. We use in this case the notation q~x>B~,. Under these 
conditions we get 

ao(p sin tl) ~ e i~~ 
05xe~= ~ - ( z + ~ ) ,  x / M  x / M  n = 0 , 1 , 2  .... (A.53) 

where the subscript denotes "broadband." Also 

M = (p  sin t/) 2 + ~2 

z = [ao - i(z cos t / -  t)] 

(A.54) 

(A.55) 

> ~ For n = 0 we get ~xBs0. 

a~ (A.56) 
qs:r~B~ - x/-(P sin t/) 2 + [ao - i(z cos t / -  t)] 2 
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It is clear that all q~RB,, are UPWs which propagate with speed 
Cl = 1/cos ~/> 1 in the z-direction. Our statement is justified for as can be 
easily seen (as in the modified superluminal Bessel beam) there is no 
Lorentz frame where ~bx>B,o is at rest. Observe that this is the real speed 
of the wave; phase and group velocity concepts are not applicable here. 
Equation (A.56) does not give any dispersion relation. 

The r waves cannot be produced in practice as they have infinite 
energy (see Sec. A7), but as we shall show a good approximation for them 
can be realized with finite-aperture radiators. 

A5. Construction of �9 < and X-Waves with Finite-Aperture Radiators J, 

In Sec. A3 we study the condition under which the Rayleigh-Sommerfeld 
solution to HWE [Eq. (A.24)] can be derived. The condition is just that 
the wave ~ must be written as ~(t, Y)=F(Yc)e i~,~, which is true for the 
Bessel beams ~ .  In Sec. 2 we show that a finite-aperture approximation 
(FAA) to a braod-band Bessel beam or Bessel pulse denoted FAA~BBj, or 
~rAS,, [see Eq. (2.3)] can be physically realized and moves as predicted by 
the theory. 

At first sight it is not obvious that for the ~x~ waves we can use 
Eq. (A.26), but actually we can. This happens because we can write 

~ , ( t ,  Y)= 1 f + ~ ~ (oJ,)7) e i,~)~ do  (A.57) 

~,(co, y)=21reJ, OB(co) J~(o)psinq)H(co)e ~,)(ao ~ . . . .  ~, n = 0 ,  1,2,... 

(A.58) 

where H(~o) is the step function and each ~x~,(co, Y) is a solution of the 
transverse Helmholtz equation. Then the Rayleigh-Sommerfeld approxima- 
tion can be written and the FAA can be used. Denoting the FAA to ~ > x, 
by r and using Eq. (A.28) we get 

> -  l f ~ f j  ),''z e i'~<R 

~FAxn(k<,x)=~ dO' p ' d p ' ~ x n ( k < , p ' , r  

+ dp' ~x,(/~ <, p', 0') ~ z (A.59) 

q~FAX~(t,Y)=Y I[~FAX~,(CO, 2)], n = 0 ,  1,2 .... (A.60) 

where 2 is the wavelength and R =  ] . f -2 ' l .  Y l represents the inverse 
Fourier transform. The first and second terms in Eq. (A.59) represent 



O n  the Existence of Undistorted Progressive Waves 487 

respectively the contributions from high- and low-frequency components. 
We attached the symbol > to OF3X,,, meaning as before that the wave is 
superluminal. This is justified from the results of the experiment described 
in Sec. 2. 

A6. The Donnelly-Ziolkowski Method (DZM) for Designing Subluminal, 
Luminal, and Superluminal UPWs Solutions of the HWE and the 
Klein-Gordon Equation (KGE) 

Consider first the HWE for O [Eq. (A.2')] in a homogeneous 
medium. Let O(o),/~) be the Fourier transform of O(t, Y), i.e., 

~(O. ) ,  / / )  = d 3 x  d t  r ~ )  e --i(l~x-~)O (A.61a) 
R 3 co 

1 +c~ 
O(t'X)=(~S~)~fR3d3//f co d~176 ~'' (A.61b) 

Inserting (A.61a) in the HWE we get 

(,02 - / /2  / O(co, k~) = 0 (A.62) 

and we are going to look for solutions of the HWE and Eq. (1.62) in the 
sense of distributions. We rewrite Eq. (A.62) as 

(002 - k ~ - s  ~(co,//) = 0  (1.63) 

It is then obvious that any O(co,//) of the form 

O(eJ,/~) = ~(s c~[ co - (/~ + s ] 6[kz-( f i - f22/4f i )]  (1.64) 

where Z(s is an arbitrary weighting function, is a solution of Eq. (A.63) 
since the c~-functions imply that 

o92 - k~ = ~,~2 (A.65) 

In 1985 Ziolkowski (3~ found a luminal solution of the HWE called the 
focus wave mode. To obtain this solution, we choose, e.g., 

7-g 2 
3FW~(f2, ]?) = ~fi exp(--f22z0/4/~) (A.66) 
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whence we get, assuming fl > 0 and z0 > 0, 

q~Fw~(t, Y) = e i/~z + ') exp{ - p 2 f l / [ z  o + i(z - t)]} (A.67) 
4ni[z  o + i ( z -  t)] 

Despite the velocities v t = + 1 and v2= - 1  appearing in the phase, the 
modulat ion function of ~FPVM has very interesting properties, as discussed 
in detail in Ref. 46. It  remains to observe that Eq. (A.67) is a special case 
of Brittingham's formula.~26) 

Returning to Eq. (A.64) we see that the 6-functions make any function 
of the Fourier transform variables o9, kz and s lie in a line on the surface 
(o2 - -k  2 - - /2  2 =  0 [Eq. (A.63)]. Then, the support of the c5-functions is the 
line 

o9 = f l  q- f f 22 /4 f l ,  k z  = f l  - ["22/4 f l  (A.68) 

The projection of this line in th (o9, kz) plane is a straight line of slope + 1 
ending at the point (fl, fl). When fl = 0 we must have O = 0, and in this case 
the line is o9 = k,  and q~(t, Y) is simply a superposition of plane waves, each 
one having frequency co and traveling with speed c = 1 in the positive z 
direction. 

Luminal UPWs solutions can be easily constructed by the Z M  (46) 

but will not be discussed here. Instead, we now show how to use Z M  to 
construct subluminal and superluminal solutions of the HWE. 

First Example. Reconstruction of the subluminal Bessel Beams q ~  
and the superluminal q~> (X-wave). Starting from the "dispersion XBBo 
relation" o92 _ k~ - f22 = 0, we define 

O(o9,/~) = ~=(/~, ~/) 6(k~ - fc cos 1/) 6(o9 - fc) (A.69) 

This implies that 

k Z = ,/~ c o s  r/, 

We take moreover 

cos ~/= kz/o9, o9 > 0, - 1 < cos ~/< 1 (A.70) 

s =/~ sin ~/, /~>0 (A.71) 

We recall that 0 = (kx,  ky), f = (x, y) and we choose s f = f2p cos 0. 
Now, putting Eq. (A.69) in Eq. (A.61) we get 

] O(t, Y) = ( 2 n )  ~ d k k  sin 2 r/ dO ~__~(]17, ?]) e ilcpsinqc~ e i(~c~ 

(A.72) 
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Choosing 

kz0 sin r/ 
z ( L  ,1) = 

k sin t/ 
(A.73) 

where z o > 0 is a constant, we obtain 

g)(t,Y) Z o s i n q f ~ d k e  ~ ~  '~ l = dOeif:.,,si,~,~lcoso e,~(~os~-t) 
) 

Calling z 0 sin q = a0 > 0, the last equation becomes 

q~0(t, 2) = a  0 f ~  d#: e-k~~ p sin i/) e ik(c~ ~/~ t) (A.74) 

Writing/~ =/~< and taking into account Eq. (A.41) we see that 

Jo(/<< p sin,/) e ik<( . . . .  ,1 ') (A.75) 

is a subluminal Bessel beam, a solution of the HWE  moving in the positive 
z direction. Moreover, a comparison of Eq. (A.74) with Eq. (A.52) shows 
that (A.74) is a particular superluminal X-wave, with B( /~<)=e  -~~ In 
fact, it is the q~ceB0 U P W  given by Eq. (A.56). 

Second  Example. Choosing in (A.72) 

~ ( / ~ ,  t ])  = (2g) 3 e-=~ Icos ,I ~ cot (A,76) 

gives 

f 0  v~ - _ ~>( t , :~ )=cos2 j /  dkke-=Olcos,l~jo(#:psintl) e ik(oos~lz t) (A.77a) 

[z o -- i sgn(cos ~/)(z -- t/cos ~/)] 
[ p2 tan 2 t /+ [Zo + i sgn(cos q)(z - t/cos t/) ] 2] 3/2 

(A.77b) 

Comparing Eq. (A.77a) with Eq. (A.52), we discover that the ZM 
produced in this example a more general ~b~0 wave where B(/~<)= 
e z0mcos~l~<. Obviously ~>( t ,  2) given by Eq. (A.77b) moves with super- 
luminal speed ( 1/cos q) in the positive or negative z-direction depending on 
the sign of cos J/, denoted sgn(cos t/). 
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Fig. 12. Projection of the support  lines of the transforms of two members of a 
family of subluminal solutions of the HWE. 

In both examples studied above we see that the projection of the 
supporting line of  Eq. (A.69) in the (co, k=) plane is the straight line 
kz/co = cos r/, and cos ~/ is its reciprocal slope. This line is inside the "light 
cone" in the (co, k~) plane. 

Third Example. Consider two arbitrary lines with the same reciprocal 
slope that we denote by v > 1, both running between the lines co = _+ kz in 
the upper half-plane co > 0 and each one cutting the co-axis at different 
va lues /~  and ~2 (Fig. 12)). The two lines are projections of members of a 
family of H W E  solution lines and each one can be represented as a portion 
of the straight lines (between the lines co = + k~) 

kz=v(co-f i , ) ,  kz=v(co-fl2) (A.78) 

It is clear that on the solution line of the HWE, s takes values from zero 
up to a maximum value that depends on v and ]? and then back to zero. 

We see also that the maximum value of f2, given by , 6v /x /~ -  1, on 
any H W E  solution line occurs for those values of co and kz where the 
corresponding projection lines cut the line co = vkz. It is clear that there are 
two points on any H W E  solution line with the same value of ~2 in the 
interval 

0 < f2 < vfi/,,/~ -- 1 = s (A.79) 

It  follows that in this case the H W E  solution line breaks into two 
segments, as is the case of the projection lines. We can then associate two 
different weighting functions, one for each segment. We write 
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~)(/2' r176 kz) = '-'~'l(/2' v' fl) ~ [ kz - /2[fl -[- x/fi2/22 - / 2 2 ( v 2 - 1 )  1) 

X ~ [  ('0 - ['~/22 q- N//22f12 -/22(/22 - 1)] ] ( / 2 2 _ _  1) 

-}- [~--'2(~'~' /2' fl) {5 [ kz -- /2[ fl -}- N~f12/22 -- /22(v2 - -1)  ] ~ -1;  

fO,) -- [ flU2 -}- %/72/~2 --/22(/22 -- 1 )] c~ (A.80) x 
(V-  1) j 

Now, choosing 

we get 

~--~1 ( ~'~' /2' fl) = *--~'2(/2, ~, fi) = (2n)3/2 ~ 2  _/22 

q~,,,(t,P,Z)=/2oexp \ ~ /  s dZZJo(/2oPZ) 

x c o s ~  /20/2 (z--t~~2)] 

Then 

. /2(z-vt)] sin{/2 o ~(/22/(/22 1 ) ) ( z -  t//2) 2 +/)2} 
q~,,/~(t,p,z)=exp t [ 3 ~  { / 2 o ~ / ( / 2 2 1 ) ) ( z _ _ t / / 2 ) 2 4 _ p 2 }  

( 1 . 8 1 )  

If we call /2< = 1//2 < 1 and take into account the value of /20  given by 
Eq. (A.79), we can write Eq. (A.81) as 

qs<(t, p, z) -sin(/2~ <) e i~~ ,~o 

~ [ x 2 + y 2  1 ]1/2 
< = + l _ - - ~ ( z - / 2 <  t12 (A.82) 

which we recognize as the subluminal spherical Bessel beam of Sec. 4 
[Eq. (A.31)]. 
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Klein-Gordon Equation (KGE). We show here the existence of sub- 
luminal, luminal, and superluminal UPW solutions of the KGE. We want 
to solve 

( e2 - ) x) 0, m > \ 
&2 V2 + m2 q)xa( t, = 0 

with the Fourier transform method. We obtain for 
generalized function) the equation 

{0.) 2 - -  k 2 - -  ( O  2 -1- m2)} ~'VG(co,/~) = 0 

(A.83) 

~KG(CO, /~) (a 

(A.84) 

As in the case of the HWE, any solution of the KGE will have a trans- 
form ~(co,/~) such that its support line lies on the surface 

o92 _ k 2 _ (~,~2 _}_ m 2) = 0 (A.85) 

From Eq. (A.85), calling ( 2 2 + m 2 = K  2, w e  see that we are in a situation 
identical to the HWE for which we showed the existence of subluminal, 
superluminal, and luminal solutions. We write down as examples one solu- 
tion of each kind. 

Subluminal UP W solution of the KGE. To obtain this solution it is enough 
to change in Eq. (A.81) t20 = vfl/x/7 ~ -  1 -+ t'2xa= [(vfl/v/- ~ _  1 ) 2  m 2] 1/2. 
We have 

~iflv(z X vt); sin(SC2~:G ~ < ) 
~<G(t'P'z)=exp [ ~ _) ~ 7  

[ ' ] ~ <  ~- X 2 q - y 2 j r - ~ ( Z - - u < t )  2 , v< = 1/v (A.86) 

Luminal UP W solution of the KGE. To obtain a solution of this type 
it is enough, as in Eq. (A.64), to write 

~)KG : ~(~'~, # )  ( ~ [ k  z _ ( ~ 2  _~_ (m 2 __ f12) /2f l )  ] a[O.) - -  (~,~2 ..]_ (//,12 _[_/~2)/2fl) ] 

(A.87) 

Choosing 

Z(s fi) = ( 2 f  exp( - Zo~22/2fl), zo > 0 (A.88) 
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gives 

qb~c'( t, Y) = exp( iz(m 2 -- f12)/2fl) exp( -- i t (m 2 + fl)/2fl) 

x exp{ --p2fl/2[Zo -- i ( z - -  t ) ]  } (A.89) 
[Zo - i(z - t)] 

Superluminal  U P W  solution o f  the KGE.  To obta in  a solution of 
this k ind we introduce a pa rame te r  v such tha t  0 < v < 1 and write for #xG 
in (A.84) 

- - K G  I (--flv2-1-'~(~22 +m2)(1--v2)+v2f12). 1 
~, f~((o, s k~) = Z (Q ,  v, fl) 6 co 1 - -  I) 2 

x c~ [ k~ v(--fl + x/(f22 + mZ)(1--v2) + v2f12) 1 1  - - V  2 (A.90) 

Next  we choose 

2 ( ~ ,  v,/~) = 
(2re) 3 e x p ( - z 0  x/~2~ + -Q 2) 

(A.91) 

where z 0 > 0 is an arb i t ra ry  parameter ,  and where 

/•2V2 
~2 = 1 -- v ~ + m2 (A.92) 

Then  int roducing v> = 1/v > 1 and 7> = 1/x/7~> - 1, we get 

K G  > q~, re (t, Y) = exp{ i(g? 2 - mZ)(z -- vt)} 

x e x p { - s 1 7 6 1 7 6  (A.93) 

x / [ Z o - -  i 7 > ( z - - v >  0 ]  2 + x  2 +  y2 

which is a super luminal  U P W  solut ion of  the K G E  moving  with speed v> 
in the z direction. F r o m  Eq. (A.93) it is an easy task to reproduce the 
super luminal  spherical Bessel b e a m  which is a solution of  the H W E  
[Eq.  (A.30)].  
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A7. On the Energy of the UP W Solutions of the HWE 

Let ~r(t, 2) be a real solution of the H W E  Then, as is well known, 
the energy of the solution is given by 

e= fff~3dv [ (Oq~"~z-~brVZq~"] + 2im~: ffs, mdSq~rff " \ Ot ] (A.94) 

where S(R) is the 2-sphere of radius R. 
We can easily verify that the real or imaginary parts of all UPW solu- 

tions of the HWE presented above have infinite energy. The question arises 
of how to project superluminal waves, solutions of the HWE, with finite 
energy. This can be done if we recall that all UPWs discussed above can 
be indexed by at least one parameter that here we call e. Then, calling 
~b(t, 2) the real or imaginary parts of a given UPW solution, we may form 
"packets" of these solutions as 

q~(t, Y) = f d0c F(0~) q~(t, 2) (A.95) 

We now may test for a given solution 60 and for a weighting function 
F(c 0 if the integral in Eq. (A.94) is convergent. We can explicitly show for 
some (but not all) of the solutions shown above (subluminal, luminal, and 
superluminal) that for weighting functions satisfying certain integrability 
conditions the energy e is finite. It is particularly important in this context 
to quote that the finite aperture approximations for all UPWs have, of 
course, finite energy. For the case in which @ given by Eq. (A.95) is used 
to generate solutions for, e.g., Maxwell or Dirac fields (see Appendix B), 
the conditions for the energy of these fields to be finite will in general be 
different from the condition that gives for 60 a finite energy. This problem 
will be discussed in more detail in another paper. 

APPENDIX B. A UNIFIED THEORY FOR CONSTRUCTION OF 
UPW SOLUTIONS OF MAXWELL, DIRAC, AND 
WEYL EQUATIONS 

In this appendix we briefly recall the main results concerning the 
theory of Clifford algebras (and bundles) and their relationship with the 
Grassmann algebras (and bundles). Also the concept of Dirac-Hestenes 
spinors and their relationship with the usual Dirac spinors used by 
physicists is clarified. We introduce moreover the concepts of the Clifford 
and Spin Clifford bundles of spacetime and the Clifford calculus. As we 
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shall see, this formalism provides a unified theory for the construction of 
U P W  subluminal, luminal, and superluminal solutions of Maxwell, Dirac, 
and Weyl equations. More details on the topics of this appendix can be 
found in Refs. 6 9 and Ref. 81. 

B1. Mathemat ica l  Preliminaries 

Let ~ = (M, g, D) be Minkowski spacetime. (M, g) is a four-dimen- 
sional time-oriented and space-oriented Lorentzian manifold, with M ~- R4 
and g e  s e c ( T * M x  T 'M)  being a Lorentzian metric of signature (1, 3). 
T*M [TM] is the cotangent [ tangent]  bundle. T ' M =  U~,v~ T * M  and 
TM= U . ~  T~M, and TxM~_ P * M ~ - R  l's, where ~ , 3  is the Minkowski 
vector space. (6~ 62) D is the Levi-Civita connection of g, i.e., Dg=O, 
T(D) = 0. Also R ( D ) =  0, T and R being respectively the torsion and cur- 
vature tensors. Now, the Clifford bundle of differential forms ~d(M) is the 
bundle of algebras cgd(M) = U,  ~ M (g((T* M), where Vx e M, cg(( T~* M) = 
(g#~, 3, the so-called spacetime algebra/9, s~ ss) Locally as a linear space 
over the real field R, ~C(T~*(M)) is isomorphic to the Cartan algebra 
A ( T ' M )  of the cotangent space and/~  ( T ' M )  =~2k=04 /k k (T 'M) ,  where 
A k ( T ' M )  is the (4)-dimensional space of k-forms. The Cartan bundle 
A ( M ) = / k  ( T ' M )  can then be thought of as "embedded" in cgf(M). In 
this way sections of ~ ( (M)  can be represented as a sum of inhomogeneous 
differential forms. Let {e, =8/8x ~'} esec TM, (p =0,  1, 2, 3) be an ortho- 
normal basis g(ef , ,e~)=q~, ,=diag(1,-1,-1,-1)  and let {7~=dx ~} e 
sec A 1 ( M ) c  sec qTd(M) be the dual basis. Then, the fundamental Clifford 
product  (denoted in what follows by juxtaposition of symbols) is generated 
by 7~7 ~ + 7~y u = 2J//~" and if ~ e sec (gd(M) we have 

1 1 
cg = s  + vaT~' + ~  b~,,,Tu), ~ +~. a/,up)~7~7 p +p7 s (B.1) 

where 7s= ~?0~1~2))3 = d x  0 d x  I d x  2 dx3 is the volume element and s, v~, b/~,,, 
au~p, p e sec A ~ (M) c sec ~t '(M). For  Are  sec /V (M) c sec ~ f (M) ,  B, e 
sec /V (M) we define (9" 82) A,.. B~. = {A,.B,)Ir-sl and Ar A B,. = {ArB,.)~+.~,, 
where { )k is the component in /k ~ (M) of the Clifford field. 

Besides the vector bundle qf((M) we also need to introduce another 
vector bundle Cgdspi.+(~,3)(M) [Spin+(1, 3) -~ SL(2, C)]  called the Spin- 
Clifford bundle/8,~1,s4) We can show that (g{sv~+(~. 3)(M)-~ cgg(M)/~, i.e., 
it is a quotient bundle. This means that sections of (g#Sp~.+(1,3/(M) are 
equivalence classes of sections of the Clifford bundle, i.e., they are equiv- 
alence sections of nonhomogeneous differential forms (see Eqs. (B.2, B.3) 
below). 
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Now, as is well known, as electromagnetic field is represented by 
F e s e c  A 2 ( M ) ~  sec ~E(M). How to represent the Dirac spinor fields in 
this formalism? We can show that the even sections of r162 3)(M), 
called Dirac-Hestenes spinor fields, do the job. If we fix two orthonormal 
basis 27= {7"} as before, and Z = {);" = R~"R = A~7"} with A~ ~ SO+(1, 3) 
and R ( x ) e  Spin+(1, 3)Vx e M, R/~ =/~R = 1, and where - is the reversion 
operator in (ffdl, 3, then (8,81) the representatives of an even section 
0 ff sec  (-ffgaSpin+(i, 3)(M) are the sections Or and 0 2  of (~d(M)  related by 

0 ~ = 0 z - R  (B.2) 

and 

1 
O z  = s + ~. b.~7"7 ~ +p75 (B.3) 

Note that Or has the correct number of degrees of freedom in order to 
represent a Dirac spinor field, which is not the case with the so-called 
Dirac Kfihler spinor field (see Refs. 8 and 81). 

Let * be the Hodge star operator r ( M ) ~  A 4-k (M). We can 
show that if Ap E sec  A p (m)  ~ sec ~ f ( M )  we have ~rA = ~ys. Let d 
and d be respectively the differential and Hodge codifferential operators 
acting on sections of A (M). If COp e sec A p (M) c sec c~d(M), then cS(Op = 

( - - 1 )  p "tr with * /~r =identity.  
The Dirac operator acting on sections of cgd(M) is the invariant first- 

order differential operator 

a = 7"D,), (B.4) 

and we can show the very important result (see, e.g., Ref. 6): 

a = O / x  + O ' = d - c 5  (B.5) 

With these preliminaries we can write Maxwell and Dirac equations as 
follows (a2, ,5). 

3 F = 0  (B.6) 

00X~I~ 2 ~- m O x 7  ~ = 0 (B.7) 

We discuss further this last equation (Dirac-Hestenes equation) in Sec. B4. 
If m = 0 we have the massless Dirac equation 

o 0 ~  = o (B.8) 



On the Existence of Undistorted Progressive Waves 497 

which is Weyl's equation when 0 r  is reduced to a Weyl spinor field (see 
Eq. (B.12 below). Note that in this formalism Maxwell equations con- 
densed in a single equation! Also, the specification of 0= depends on the 
frame Z. When no confusion arises we represent 0z- simply by 0. 

When 0z~z.  # 0, where - is the reversion operator, we can show that 
0~ has the following canonical decomposition: 

0~ = x/P eZV5/2R (B.9) 

where p, f ie  sec A ~ (M) c sec ~ [ (M)  and R e Spin + (1, 3) c ~E ~. 3, Vx e M. 
fl is called the Takabayasi angle/s) 

If we want to work in terms of the usual spinor field formalism, we can 
tanslate our results by choosing, for example, the standard matrix represen- 
tation of {7"}, and for 0 r  given by Eq. (B.3) we have the following 
(standard) matrix representation (s, 49): 

where 

=~ s-ibl2 b,3-ib23~ 
01 \ -b l3 - ib23  s+ibl2 ]' 

with s, bl2,.., real functions; 
multiplication by 

gives the usual Dirac spinor field. 

-r (B.10) r / 

-bo3 + ip -bol + ibo2~, 
02 =- -bol - ibo2 b03 + ip ] 

(B.11) 

* denotes the complex conjugation. Right 

(i) 
We need also the concept of Weyl spinors. By definition, 0 e  

sec <##+(M) is a Weyl spinor if (s3) 

~50 = - 0V21 (B.12) 

The positive [negative] "eigenstate" of Ys will be denoted 0+  [0  ]. For 
a general 0 e sec cdf+(M) we can verify that 

1 _~_ 0_+=510 ~50~2~] (B.13) 

are Weyl spinors with eigenvalues +_ 1 of Eq. (B.12). 

825/27/3-12 
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We recall that the even subbundle ~ # + ( M )  of c~g'(M) is such that its 
typical fiber is the Pauli algebra ~3.0---=~q#~3 (which is isomorphic to 
C(2), the algebra of 2 x 2 complex matrices). The isomorphism ~ 3 ,  0--- 
cgf~. 3 is exhibited by putting a~= ?~7o, whence a~aj + aja~ = 26,..,.. We recall 
also ~8'8~ that the Dirac algebra is ~ 4 .  l - C ( 4 )  (see Sec. B4) and cg~. = 
C | ~ .  s.ls6) 

B2. Inertial Reference Frames (I),  Observers, and Naturally Adapted 
Coordinate Systems 

Let J///= (M, g, D) be Minkowski spacetime. An inertial reJerence 
Jrame (irf) I is a timelike vector field I ~  sec T M  pointing into the future 
such that g(I, I) = 1 and DI = 0. Each integral line of I is called an inertial 
observer. The coordinate functions (x~) , /~  = 0, 1, 2, 3, of the maximal atlas 
of M are said to be a naturally adapted coordinate system to I (nacs/I)  if 
I = ~/~X0. (61'62) Putting I =  e o we can find e i : ~/~X i, i =  1, 2, 3, such that 
g(e/,, e,,)=q/~v and the coordinate functions x/~ are the usual Einstein- 
Lorentz ones and have a precise operational meaning: x ~  ct ,  17 where t is 
measured by "ideal clocks" at rest on I and synchronized "/t la Einstein," 
and x ~, i =  1, 2, 3, are determined with ideal rules. (61'62) (We use units 
where c = 1.) 

B3. Maxwell Theory in c~f(M) and the Hertz Potential 

Let e ~ s e c T M  be an or thonormal  basis, g ( e ~ , e v ) = q ~  and 
e~=8/Sx  ~' ( / t , v = 0 ,  1,2,3) ,  such that  e0 determines an IRF. Let 
~ ~:sec /~2 ( m ) ~ s e c  ~ f ( m )  be the dual basis and let ?~ =~//,,y~ be the 
reciprocal basis to ~/~, i.e., ?~'. ?v = ~ .  We have ?~= dx ~'. 

As is well known, the electromagnetic field is represented by a two- 
form F ~  sec A 2 (M) ~ sec ~'#(M). We have 

0 - - E  I - E  ~ - -E3 / 

1 E 1 0 -- B s B 2 
F=-2 F/~''~/'yv' FlaY= E 2 B 3 0 --B1 (B.14) 

E s - - B  2 B 1 O 

~7c is the constant called velocity of light in vacuum. In view of the superluminal and sub- 
luminal solutions of Maxwell equations found in this paper we do not think the terminol- 
ogy to be still satisfactory. 
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where (E1, E 2, E 3) and (B', B 2, B 3) are respectively the Cartesian com- 
ponents of the electric and magnetic fields. Let J ~  sec A' (M) ~ sec c~P(M) 
be such that 

J = JI~Tl, = P7o + J'71 + J2y2 -~" J3y3 (B.15) 

where p and (j1, j2, j3) are respectively the Cartesian components of the 
charge and of the three-dimensional current densities. 

We now write the Maxwell equation given by B6 in ~ (  + (M), the even 
subalgebra of g#(M). The typical fiber of g ( + ( M ) ,  which is a vector 
bundle, is isomorphic to the Pauli algebra (see Sec. B1). We put 

5i=~i~/O , i = 5lrY2CY3 : 7071Y273 ~--- }: 5 (B.16) 

Recall that i commutes with bivectors and since iz=  - 1  it acts like 
the imaginary unit i =  x/Z- 1 in ~#+(M).  From Eq. (B.14), we get 

F = / ~ + i ~  (B.17) 

with E=Ei6 i ,  /~--= BJ6j, i, j =  1, 2, 3. Now, since O=?~O ~ we get 970= 
~/c3x~ 5/~ i= ~/Ox ~  V. Multiplying Eq. (B.6) on the right by 7o, we find 

~0~0F~;0 =J~o 

(O/Ox ~ -- V)( - / ~  + i/~) : p + f (B. 18) 

where we used r~ 0 : - / ~ + i / ~  and f=J~5~. From Eq. (B.18) we get 

-~o/~ + i8o/~ + V/~-  iV/~ = p + ] (B.19) 

-0o /~+i~0 /~+  V. /~+  V A/~ - - iV- /~ - i V  A # # = p + ]  (B.20) 

We also have 

- i V  A A = V  x A  (B.21) 

since the usual vector product between two vectorsff= a~5~, b= b~6~ can be 
identified with the dual of the bivector 6 A b through the formula 
6 x 6 = - i(6 A b). Observe that in this formalism 6 x b is a true vector and 
not the meaningless pseudovector of the Gibbs vector calculus. Using 
Eq. (B.21) and equating the terms with the same grade we obtain 

v.~=p, Vx~-O0f=Y 
(B.22) 

Vxs V-/7=O 

which are Maxwell equations in the usual vector notation. 
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W e  now in t roduce  the concept  of  Her tz  po ten t ia l  ~19) which permi t s  us 
to find nont r iv ia l  so lu t ions  of  the free "vacuum"  Maxwel l  equa t ion  

0 F = 0  (B.23) 

once we know nont r iv ia l  so lu t ions  of  the scalar  wave equat ion ,  

[ ]  ~ = ( 0 2 l O t  2 - -  V 2)  ~ = 0 ,  
0 

q~ E sec A (M)  ~ sec qfd(M) (B.24) 

Let  A s sec/~1 (M)  ~ sec ~ d ( M )  be the vec tor  potent ia l .  We  fix the 
Loren tz  gauge, i.e., ~ .  A = - 6 A  = 0 such tha t  F = 0A = ( d -  6) A = d A .  We 
have the fol lowing i m p o r t a n t  result:  

Theorem. Let  rce sec/~2 (M)  c sec <gd(M) be the so-cal led Her tz  
potent ia l .  If~r satisfies the wave equat ion ,  i.e., [ ~ r  = 02re = ( d -  c~) (d -  5) ~ = 

- ( d 6  + 6d )  ~r = 0 and  if we take  A = - &c, then F =  0A satisfies the Maxwel l  
equa t ion  0 F  = 0. 

The  p r o o f  is trivial. Indeed,  A = - & r  implies 6A = - - 6 2 ~ r  = 0  and  
F = OA = d A .  Then  OF = ( d -  6 ) ( d -  5)  A = 6 d ( & r )  = - (~2d~r = 0, since 
6 d n  = - d ~  f rom 0 2 ~  = 0. 

F r o m  this result  we see tha t  if q5 e sec/~0 (M)  c sec ~gY(M) satisfies 
02~ = 0, then we can find a nont r iv ia l  so lu t ion  of  O F =  0, using a Her tz  
po ten t i a l  given, e.g., by  

= q57/~2 (B.25) 

In Sec. 3 this equa t ion  is used to genera te  the super lumina l  e lec t romagnet ic  
X-wave. 

We now express the Her tz  po ten t ia l  and  its re la t ion with t h e / ~  a n d / ~  
fields, in o rde r  for our  reader  to see more  famil iar  formulas.  We  wri te  rc as 
a sum of  electric and  magnet ic  parts ,  i.e., 

~ e  = - -  7~Oi~i, 

rc = if,.  + i f f , .  

7~ m = - -  ~ 2 3 ~ 1  -~ ~ 1 3 ~ 2  - -  7r l2(~  D N. , 
(B.26) 

Then,  since A = &r we have 

A = �89 --  ~r~) (B.27) 

A),o = - 00ff~ + V.  fie - (V x fire) (B.28) 
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and, since A = A"L,, we also have 

8 
A ~ : V.  fie, d : A i ~ i  - -  8 x  0 '~e - -  V x "~m 

Since/~ = - VA ~ - (8/8x ~ ~ a n d / 1  = V x X, we obtain  

E =  - 8o(V x 7?m) + V x V x 7? e (B.29) 

/~= V x ( - 8 o f f c - - V  x fire) = --8o(V x f f ~ ) - - V -  V x r~ m (B.30) 

We define ~Pc, / l e , / ~ , / ~ m  by 

R e = V x V  XT~e, Be~--- -- 8o(V X 2"~e) 
(B.31) 

E~= -8o(V x ~m), ~m= - v  xVx<n 

We now introduce the 1-forms of  stress-energy. Since 8F= 0 we have 
F8 = 0. Multiplying the first of  these equat ion on the left by  P and the 
second on the right by P and summing, we have 

(1/2)(PSF+ fSF)=8. ( (1 /2 )  PT"F)=8~T"=O (B.32) 

where F8 = - (8,�89 ~) 7". Now,  

- I (FT"F  ) 7 ~ = -- �89 ~) (B.33) 

Since 7"" F = l ( 7 ~ F - / 7 7 " )  = F .  7", we have 

T"~= - <(F.  7") FT~}o - �89 0 

= - ( F .  7")" ( F .  7") --  �89 F)  7"' 7 ~ 

= F  "~F ~tl~ ~ + �88 ~ (B.34) 

which we recognize as the stress-energy m o m e n t u m  tensor of  the electro- 
magnet ic  field, and T " =  T"~7~. 

By writing F = / ~  + i/~ as before, we can immediately verify that  

T o =  --  �89 

= [1(~2 _{_ ~2) _[_ (EX/~)]  70 (B.35) 

We have already shown that  8 ,  T " - - 0 ,  and we can easily show that  

9 .  T" = 0 (B.36) 
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We now define the density of angular momentum. Choose as before a 
Lorentzian chart ~ x " )  of the maximal atlas of M and consider the l-form 
x = x"y,  = x~ 7". Define 

M . = x /x T , = V~t. ) /x 

It  is trivial to verify that as T.,, = T~. and ~ T "~ = 0, we have 

0"M,  = 0 (B.37) 

The invariants of the electromagnetic field F are F .  F and F/x  F and 

F 2 = F . F + F A  F 
(B.38) 

F.  F =  - �89 F / x  F =  -- 75F~F~nG,~ ~ 

Writing as before F = / ~ +  i/~ we have 

F 2 = ( F , 2 - -  B2) + 2iff~. B =  F.  F + F A F (B.39) 

B4. Dirac  Theory in ~f(M) 

Let 22 = {y"} ~ sec A I (M) c sec ~ f ( M )  be an or thonormal  basis. Let 
~b s ~ sec(A ~ (M) +/~2 (M) +/~4 (M)) ~ sec Z f ( M )  be the representative of 
a Dirac-Hestenes spinor field in the basis 22. Then, the representative of the 
Dirac equation in ~ f ( M )  is the following equation (h = c = 1): 

~1~X72~1 + .l@x)20 = 0 (B.40) 

The proof  is as follows: 
Consider the complexification GPdc(M) of ~ d ( M )  called the complex 

ClifJbrd bundle. Then ~ d c ( M ) =  C |  and by the results of Sec. B1 
it is trivial to see that the typical fiber of ~ d c ( M  ) is c6~E4, ! = C @ ~ d l ,  37 the 
Dirac algebra. Now let {F0, F 1 , / 2 ,  F 3 , / " 4 }  c sec AI (M)  ~ sec ~ d c ( M )  be 
an or thonormal  basis with 

F,,Fb + r b F ,  = 2g,h (B.41) 

g , ~ , = d i a g ( + l ,  +1 ,  +1 ,  +1 ,  - 1 )  

Let us identify 7~ = F,~F4 and call I =  F o F I F I F B F 4 .  Since I 2 = -  1 
and I commutes with all elements of ~ 4 ,  l we identify I with i = ~ - 1  and 
7~ with the fundamental set of ~g~(M). Then if ~4 ~ sec ~fdc (M)  we have 

1 1 
~ = ~ s + A c Y . _  2 c ~ . 7 , , + ~ r  c 7/,yvy,,+qSp75 (B.42) 
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where qs, q~p, A~., B~ ', r~'9 ~ sec C | A ~ (M) c sec ~ c ( M ) ,  i.e., Vx ~ M, 
qS (x), q~p(s), A~c(X), B~c~(x), T'cV"(x) are complex numbers. 

Now, 

/ =  �89 + ~o) l ( l  + i7172), f 2 = f  

is a primitive idempotent field of ~#c(M).  We can show that i f =  7271f' 
From (B.40) we can write the following equation in Z (c (M) :  

0r + mCz 7o f  = 0 (B.43) 

OCrif + m C z f  = 0 (B.44) 

and we have the following equation for ~u = Cz f :  

i0!P+ m ~ =  0 (B.45) 

Using for 7r the standard matrix representation (denoted here by Z~) 
we get that the matrix representation of Eq. (B.45) is 

i7~'0 ~, ] ~P> + rn 17"> = 0 (B.46) 

where now ]~b) is a usual Dirac spinor field. 
We now define a potential for the Dirac-Hestenes field Cr- Since 

r  it is clear that there exist A and B e s e c A J ( M ) c  
sec cg((M) such that 

r = O(A + 75B) (B.47) 

since 

0(A + 7 5 B ) = 0 . A  + 0 / x  A - 7 5 0 . B - 7 5 0 / x  B (B.48) 

= S + B + 75P (B.49) 

S = O . A ,  B = O / x A - - 7 5 0 / x B ,  P = - - O . B  

We see that when m = 0, Cz satisfies the Weyl equation 

0 r  (B.50t 

Using Eq. (B.50) we see that 

02A = 02B = 0 (B.51) 
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This last equation allows us to find U P W  solutions for the Weyl equation 
once we know U P W  solutions of the scalar wave equation [2~  = 0, 

e sec A ~ (M) c sec ~#(M).  Indeed, it is enough to put ~4 = (A + ~sB) = 
q~(1 + ?~5) v, where v is a constant 1-form field. This result has been be used 
in Ref. 48 to present subluminal and superluminal solutions of the Weyl 
equation. 

We know (see Appendix A5) that the Klein-Gordon equation has super- 
luminal solutions. Let q~> be a superluminal solution of [] q~> + mZ(P> = 0. 
Suppose q~> is a section of ~fc(M). Then in ~#c(M) we have the following 
factorization: 

([] + rn 2) q~=(O + im)(O- im) 4 = 0  (B.52) 

Now 

~ >  = (c~--im) ~ > f  (B.53) 

is a Dirac spinor field in ~f#c(M), since 

(0 + im) ~ >  = 0 (B.54) 

If  we use for q~ in Eq. (B.52) a subluminal or a luminal U P W  solution and 
then use Eq. (B.53), we see that the Dirac equation also has U P W  solu- 
tions with arbitrary speed 0 ~< v < oo. 
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