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[1]

 

INTRODUCTION

It seems at first that the aberration of light and related optical and electrical phenom-
ena will provide us with a means of determining the absolute motion of the Earth, or
rather its motion with respect to the aether, as opposed to its motion with respect to
other celestial bodies. Fresnel pursued this idea, but soon recognized that the Earth’s
motion does not alter the laws of refraction and reflection. Analogous experiments,
like that of the water-filled telescope, and all those considering terms no higher than
first order relative to the aberration, yielded only negative results; the explanation was
soon discovered. But Michelson, who conceived an experiment sensitive to terms
depending on the square of the aberration, failed in turn.

It appears that this impossibility to detect the absolute motion of the Earth by
experiment may be a general law of nature; we are naturally inclined to admit this
law, which we will call the 

 

Postulate of Relativity

 

 and admit without restriction.
Whether or not this postulate, which up to now agrees with experiment, may later be
corroborated or disproved by experiments of greater precision, it is interesting in any
case to ascertain its consequences.

An explanation was proposed by Lorentz and FitzGerald, who introduced the
hypothesis of a contraction of all bodies in the direction of the Earth’s motion and
proportional to the square of the aberration. This contraction, which we will call the

 

Lorentzian contraction

 

, would explain Michelson’s experiment and all others per-
formed up to now. The hypothesis would become insufficient, however, if we were to
admit the postulate of relativity in full generality.

Lorentz then sought to extend his hypothesis and to modify it in order to obtain
perfect agreement with this postulate. This is what he succeeded in doing in his arti-
cle entitled 

 

Electromagnetic phenomena in a system moving with any velocity smaller
than that of light 

 

(

 

Proceedings of the Amsterdam Academy

 

, 27 May, 1904).
The importance of the question persuaded me to take it up in turn; the results I |

obtained agree with those of Mr. Lorentz on all the significant points. I was led [130]
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merely to modify and extend them only in a few details; further on we will see the
points of divergence, which are of secondary importance.

Lorentz’s idea may be summed up like this: if we are able to impress a translation
upon an entire system without modifying any observable phenomena, it is because
the equations of an electromagnetic medium are unaltered by certain transformations,
which we will call 

 

Lorentz transformations

 

. Two systems, one of which is at rest, the
other in translation, become thereby exact images of each other.

Langevin

 

*

 

) sought to modify Lorentz’s idea; for both authors, the moving elec-
tron takes the form of a flattened ellipsoid. For Lorentz, two axes of the ellipsoid
remain constant, while for Langevin, ellipsoid volume remains constant. The two sci-
entists also showed that these two hypotheses are corroborated by Kaufmann’s exper-
iments to the same extent as the original hypothesis of Abraham (rigid-sphere
electron).

The advantage of Langevin’s theory is that it requires only electromagnetic
forces, and bonds; it is, however, incompatible with the postulate of relativity. This is
what Lorentz showed, and this is what I found in turn using a different method, which
calls on principles of group theory.

We must return therefore to Lorentz’s theory, but if we want to do this and avoid
intolerable contradictions, we must posit the existence of a special force that explains
both the contraction, and the constancy of two of the axes. I sought to determine this
force, and found that 

 

it may be assimilated to a constant external pressure on the
deformable and compressible electron, whose work is proportional to the electron’s
change in volume

 

.
If the inertia of matter is exclusively of electromagnetic origin, as generally

admitted in the wake of Kaufmann’s experiment, and all forces are of electromag-
netic origin (apart from this constant pressure that I just mentioned), the postulate of
relativity may be established with perfect rigor. This is what I show by a very simple
calculation based on the principle of least action.

But that is not all. In the article cited above, Lorentz judged it necessary to extend
his hypothesis in such a way that the postulate remains valid in case there are forces
of non-electromagnetic origin. According to Lorentz, all forces are affected by the
Lorentz transformation (and consequently by a translation) in the same way as elec-
tromagnetic forces.

It was important to examine this hypothesis closely, and in particular to ascertain
the modifications we would have to apply to the laws of gravitation.

We find first of all that it requires us to assume that gravitational propagation | is
not instantaneous, but occurs with the speed of light. One might think that this is rea-
son enough to reject the hypothesis, since Laplace demonstrated that this cannot be
the case. In reality, however, the effect of this propagation is compensated in large

 

* Langevin was anticipated by Mr. Bucherer of Bonn, who earlier advanced the same idea. (See:
Bucherer, 

 

Mathematische Einführung in die Elektronentheorie

 

, August, 1904. Teubner, Leipzig).
[Poincaré’s footnote.]
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part by a different cause, in such a way that no contradiction arises between the pro-
posed law and astronomical observations.

Is it possible to find a law satisfying Lorentz’s condition, and reducing to New-
ton’s law whenever the speeds of celestial bodies are small enough to allow us to
neglect their squares (as well as the product of acceleration and distance) with respect
to the square of the speed of light? 

To this question we must respond in the affirmative, as we will see later.
Modified in this way, is the law compatible with astronomical observations?
It seems so on first sight, but the question will be settled only after an extended

discussion.
Suppose, then, that this discussion is settled in favor of the new hypothesis, what

should we conclude? If propagation of attraction occurs with the speed of light, it
could not be a fortuitous accident. Rather, it must be because it is a function of the
aether, and then we would have to try to penetrate the nature of this function, and to
relate it to other fluid functions.

We cannot be content with a simple juxtaposition of formulas that agree with each
other by good fortune alone; these formulas must, in a manner of speaking, interpen-
etrate. The mind will be satisfied only when it believes it has perceived the reason for
this agreement, and the belief is strong enough to entertain the illusion that it could
have been predicted.

But the question may be viewed from a different perspective, better shown via an
analogy. Let us imagine a pre-Copernican astronomer who reflects on Ptolemy’s sys-
tem; he will notice that for all the planets, one of two circles—epicycle or deferent—
is traversed in the same time. This fact cannot be due to chance, and consequently
between all the planets there is a mysterious link we can only guess at.

Copernicus, however, destroys this apparent link by a simple change in the coor-
dinate axes that were considered fixed. Each planet now describes a single circle, and
orbital periods become independent (until Kepler reestablishes the link that was
believed to have been destroyed).

It is possible that something analogous is taking place here. If we were to admit
the postulate of relativity, we would find the same number in the law of gravitation
and the laws of electromagnetism—the speed of light—and we would find it again in
all other forces of any origin whatsoever. This state of affairs may be explained in one
of two ways: either everything in the universe would be of electromagnetic origin, or
this aspect—shared, as it were, by all physical phenomena—would be a mere epiphe-
nomenon, something due to our methods of | measurement. How do we go about
measuring? The first response will be: we transport objects considered to be invari-
able solids, one on top of the other. But that is no longer true in the current theory if
we admit the Lorentzian contraction. In this theory, two lengths are equal, by defini-
tion, if they are traversed by light in equal times.

Perhaps if we were to abandon this definition Lorentz’s theory would be as fully
overthrown as was Ptolemy’s system by Copernicus’s intervention. Should that hap-
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pen some day, it would not prove that Lorentz’s efforts were in vain, because regard-
less of what one may think, Ptolemy was useful to Copernicus.

I, too, have not hesitated to publish these few partial results, even if at this very
moment the discovery of magneto-cathode rays seems to threaten the entire theory.

1. LORENTZ TRANSFORMATION

Lorentz adopted a certain system of units in order to do away with  factors in for-
mulas. I will do the same, and in addition, select units of length and time in such a
way that the speed of light equals 1. Under these conditions, and denoting electric
displacement  magnetic intensity  vector potential  scalar
potential charge density  electron velocity  and current  the fun-
damental formulas become:

(1)

An elementary particle of matter of volume  is acted upon by a mechani-
cal force, the components of which are derived from the formula:

(2)

These equations admit a remarkable transformation discovered by Lorentz, which
owes its interest to the fact that it explains why no experiment can inform us of the
absolute motion of the universe. Let us put:

(3)

where  and  are two arbitrary constants, such that

 |

Now if we put:

we will have:

Let a sphere be carried along with the electron in uniform translation, and let the
equation of this mobile sphere be:

4π

f g h,, , α β γ ,, , F G H ,, ,
ψ, ρ, ξ η ζ,, , u v w,, ,
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xd

------∑ ρ,       ψd
td

------- Fd
xd

------∑+ 0,===–=
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⎪
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and the volume of the sphere be [2]

The transformation will change the sphere into an ellipsoid, the equation of which
is easy to find. We thus deduce easily from (3):

(3')

The equation of the ellipsoid then becomes:

This ellipsoid is in uniform motion; for  it reduces to

and has a volume:

If we want electron charge to be unaltered by the transformation, and if we desig-
nate the new charge density  we will find:

(4)

What will be the new velocity components  and  We should have:

whence:

(4')

Here is where I must point out for the first time a difference with Lorentz. In my
notation, Lorentz put (loc. cit., page 813, formulas 7 and 8):

 |

In this way we recover the formulas:

x ξt–( )2 y ηt–( )2 z ζt–( )2+ + r2,=

4
3
---πr3.

x
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l
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l
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k2 x′ εt′ ξt′ εξx′+––( )2 y′ ηkt′– ηkεx′+( )2 z′ ζkt′– ζkεx′+( )2+ + l2r2.=

t′ 0,=

k2x′2 1 ξε+( )2 y′ ηkεx′+( )2 z′ ζkεx′+( )2+ + l2r2.=
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-----------------------.

ρ′

ρ′
k
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ξ′, η′ ζ′?
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t εx+( )d
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ξ ε+

1 εξ+
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------- yd
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η
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ζ
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ρ′ξ′
k
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1
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1
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although the value of  differs.
It is important to notice that the formulas (4) and (4') satisfy the condition of con-

tinuity

To see this, let  be an undetermined coefficient and  the Jacobian of 

(5)

with respect to  It follows that:

with 

Let [3] then the 4 functions

(5')

are related to the functions (5) by the same linear relationships as the old variables to
the new ones. Therefore, if we denote  the Jacobian of the functions (5') with
respect to the new variables, it follows that:

and thereby:[4]

Under Lorentz’s hypothesis, this condition would not be met since  has a dif-
ferent value.

We will define the new vector and scalar potentials in such a way as to satisfy the
conditions

(6)

From this we deduce:

(7)

These formulas differ noticeably from those of Lorentz, although the divergence
stems ultimately from the definitions employed.

New electric and magnetic fields are now chosen in order to satisfy the equations:

(8)

| It is easy to see that:

ρ′
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-------------∑+ 0.=
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k
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and we deduce thereby:

(9)

These formulas are identical to those of Lorentz.
Our transformation does not alter (1). In fact, the condition of continuity, as well

as (6) and (8) were already featured in (1) (neglecting the primes).
Combining (6) with the condition of continuity, we obtain:

(10)

It remains for us to establish:

and it is easy to see that these are necessary consequences of (6), (8) and (10).
We must now compare forces before and after the transformation.
Let  be the force prior to the transformation, and  the force after

the transformation, both forces being per unit volume. In order for  to satisfy the
same equations as before the transformation, we must have:

or, replacing all quantities by their values (4), (4') and (9), and in light of (2):

(11)

Instead of representing the components of force per unit volume by 
we now let these terms represent the force per unit electron charge, and we let

 represent the latter force after transformation. It follows that:
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| and we obtain the equations:

(11')

Lorentz found (page 813, equation (10) with different notation):

(11'')

Before going any further, it is important to locate the source of this significant
divergence. It obviously springs from the fact that the formulas for  and  are
not the same, while the formulas for the electric and magnetic fields are the same.

If electron inertia is exclusively of electromagnetic origin, and if electrons are
subject only to forces of electromagnetic origin, then the conditions of equilibrium
require that:

inside the electrons.
According to (11), these relationships are equivalent to

The electron’s equilibrium conditions are therefore unaltered by the transforma-
tion.

Unfortunately, such a simple hypothesis is inadmissible. In fact, if we assume
 the condition  leads necessarily to

 and consequently, to  i.e.,  Similar results

obtain for the most general case. We must then admit that in addition to electromag-
netic forces there are either non-electromagnetic forces or bonds. Therefore, we need
to identify the conditions that these forces or these bonds must satisfy for electron
equilibrium to be undisturbed by the transformation. This will be the object of an
upcoming section.

[…]

X1 f ηγ ζβ,–+=    X′1 f′ η′γ′ ζ′β′,–+=    X ρX1,   = X′ ρ′X′1=
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9. HYPOTHESES CONCERNING GRAVITATION.

In this way Lorentz’s theory would fully explain the impossibility of detecting abso-
lute motion, if all forces were of electromagnetic origin.

But there exist other forces to which an electromagnetic origin cannot be attrib-
uted, such as gravitation, for example. It may in fact happen, that two systems of bod-
ies produce equivalent electromagnetic fields, i.e., exert the same action on electrified
bodies and on currents, and at the same time, these two systems do not exert the same
gravitational action on Newtonian masses. The gravitational field is therefore distinct
from the electromagnetic field. Lorentz was obliged thereby to extend his hypothesis
with the assumption that forces of any origin whatsoever, and gravitation in particu-
lar, are affected by a translation (or, if one prefers, by the Lorentz transformation) in
the same manner as electromagnetic forces.

It is now appropriate to enter into the details of this hypothesis, and to examine it
more closely. If we want the Newtonian force to be affected by the Lorentz transfor-
mation in this fashion, we can no longer suppose that it depends only on the relative
position of the attracting and attracted bodies at the instant considered. The force
should also depend on the velocities of the two bodies. And that is not all: it will be
natural to suppose that the force acting on the attracted body at the instant  depends
on the position and velocity of this body at this same instant  but it will also depend
on the position and velocity of the attracting body, not at the instant  but at an ear-
lier instant, as if gravitation had taken a certain time to propagate.

Let us now consider the position of the attracted body at the instant  and let
 be its coordinates, and  its velocity components at this instant; let us

consider also the attracting body at the corresponding instant  and let its coordi-
nates be  and its velocity components be  at this
instant.

First we should have a relationship

(1)

in order to define the time  This relationship will define the law of propagation of
gravitational action (I do not constrain myself by any means to a propagation velocity
equal in all directions).

Now let  be the three components of the action exerted on the attracted
body at the instant [5] we want to express  as functions of

(2)

What conditions must be satisfied? |
1° The condition (1) should not be altered by transformations of the Lorentz

group.
2° The components  should be affected by transformations of the

Lorentz group in the same manner as the electromagnetic forces designated by the
same letters, i.e., in accordance with (11') of section 1.

[166]

t
t ,

t ,
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x0 y0 z0, , ξ η ζ, ,

t0 t+
x0 x+ y0 y+ z0 z,+, , ξ1 η1 ζ1, ,

ϕ t x y z ξ η ζ ξ1 η1 ζ1, , , , , , , , ,( ) 0=

t .

X1 Y 1 Z1, ,
t0; X1 Y 1 Z1, ,

t x y z ξ η ζ ξ1 η1 ζ1., , , , , , , , ,

[167]

X1 Y 1 Z1, ,
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3° When the two bodies are at rest, the ordinary law of attraction will be recovered.
It is important to note that in the latter case, the relationship (1) vanishes, because

if the two bodies are at rest the time  plays no role.
Posed in this fashion the problem is obviously indeterminate. We will therefore

seek to satisfy to the utmost other, complementary conditions.
4° Since astronomical observations do not seem to show a sensible deviation from

Newton’s law, we will choose the solution that differs the least with this law for small
velocities of the two bodies.

5° We will make an effort to arrange matters in such a way that  is always nega-
tive. Although we can imagine that the effect of gravitation requires a certain time in
order to propagate, it would be difficult to understand how this effect could depend
on the position not yet attained by the attracting body.

There is one case where the indeterminacy of the problem vanishes; it is the one
where the two bodies are in mutual relative rest, i.e., where:

this is then the case we will examine first, by supposing that these velocities are con-
stant, such that the two bodies are engaged in a common uniform rectilinear transla-
tion.

We may suppose that the axis is parallel to this translation, such that
 and we will let 

If we apply the Lorentz transformation under these conditions, after the transfor-
mation the two bodies will be at rest, and it follows that:

The components  should then agree with Newton’s law and we will
have, apart from a constant factor:

         (3)

But according to section 1 we have:
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We have in addition:

and

(4)

which may be written:

(4')

It seems at first that the indeterminacy remains, since we made no hypotheses
concerning the value of  i.e., the transmission speed; and that besides,  is a func-
tion of  It is easy to see, however, that the terms appearing in our formulas,

 do not depend on 
We see that if the two bodies translate together, the force acting on the attracted

body is perpendicular to an ellipsoid, at the center of which lies the attracting body.
To advance further, we need to look for the invariants of the Lorentz group.
We know that the substitutions of this group (assuming  are linear substi-

tutions that leave unaltered the quadratic form

Let us also put:

we see that the Lorentz transformation will make  and
 undergo the same linear substitutions as 

Let us regard

as the coordinates of 3 points  in space of 4 dimensions. We see that the
Lorentz transformation is merely a rotation in this space about the origin, assumed
fixed. Consequently, we will have no distinct invariants apart from the 6 distances
between the 3 points  considered separately and with the origin, or, if one
prefers, | apart from the two expressions 
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[169]

x2 y2 z2 t2,–+ + x xδ y yδ z zδ t t ,δ–+ +
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or the 4 expressions of like form deduced from an arbitrary permutation of the 3
points 

But what we seek are invariants that are functions of the 10 variables (2). There-
fore, among the combinations of our 6 invariants we must find those depending only
on these 10 variables, i.e., those that are 0th degree homogeneous with respect both to

 and to  We will then be left with 4 distinct invariants:

(5)

Next let us see how the force components are transformed; we recall the equations
(11) of section 1, that refer not to the force  considered at present, but to
the force per unit volume: 

We designate moreover

we will see that (11) can be written  

(6)

in such a way that  undergo the same transformation as  Conse-
quently, the group invariants will be

However, it is not  that we need, but  with

We see that

Therefore, the Lorentz transformation will act in the same manner on
 as on  except that these expressions will be multiplied

moreover by

Likewise, the Lorentz transformation will act in the same way on  as on
 except that these expressions will be multiplied moreover by the same

factor:

P P′ P″., ,

xδ yδ zδ t ,δ, , , δ1x δ1y δ1z δ1t ., , ,

x2∑ t2,–
t xξ∑–

1 ξ2∑–
--------------------------,

t xξ1∑–

1 ξ1
2∑–

-------------------------,
1 ξξ1∑–

1 ξ2∑–( ) 1 ξ1
2∑–( )

---------------------------------------------------------.

X1 Y 1 Z1,, ,
X Y Z ., ,

T Xξ;∑=

l 1=( ):

X′ k X εT+( ),= T′ k T εX+( ),=

Y′ Y ,=                          Z′ Z ;= ⎭
⎬
⎫

X Y Z T, , , x y z t ., , ,

X2∑ T 2,– Xx∑ Tt ,– X xδ∑ T tδ ,– Xδ1x∑ T δ1t .–

X Y Z ,, , X1 Y 1 Z1,, ,

T 1 X1ξ.∑=

X1

X
------

Y 1

Y
------

Z1

Z
------

T 1

T
------

1
ρ
---.= = = =

X1 Y 1 Z1 T 1, , , X Y Z T ,, , ,

ρ
ρ′
----- 1

k 1 ξε+( )
-----------------------

tδ
t′δ

------.= =

ξ η ζ 1, , ,
xδ yδ zδ t ,δ, , ,
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Next we consider  as the coordinates of a fourth point |  the
invariants will then be functions of the mutual distances of the five points

and among these functions we must retain only those that are 0th degree
homogeneous with respect, on one hand, to

(variables that can be replaced further by  and on the other
hand, with respect to[6]

(variables that can be replaced further by 
In this way we find, beyond the four invariants (5), four distinct new invariants:

(7)

The latter invariant is always null according to the definition of 
These terms being settled, what conditions must be satisfied?
1° The first term of (1), defining the velocity of propagation, has to be a function

of the 4 invariants (5).
A wealth of hypotheses can obviously be entertained, of which we will examine

only two:
A) We can have

from whence  and, since  has to be negative,  This means that the
velocity of propagation is equal to that of light. It seems at first that this hypothesis
ought to be rejected outright. Laplace showed in effect that the propagation is either
instantaneous or much faster than that of light. However, Laplace examined the
hypothesis of finite propagation velocity ceteris non mutatis; here, on the contrary,
this hypothesis is conjoined with many others, and it may be that between them a
more or less perfect compensation takes place. The application of the Lorentz trans-
formation has already provided us with numerous examples of this.

B) We can have

tδ
t′δ

------
1

k 1 ξε+( )
-----------------------.=

X Y Z T 1–, , , [170]Q;

O,    P,    P′,    P″,    Q

X ,    Y ,    Z ,    T ,    x,    y,    z,    tδδδδ

X1 Y 1 Z1 T 1 ξ η ζ 1),, , , , , , ,

δ1x,    δ1y,    δ1z,    δ1t

ξ1 η1 ζ1 1)., , ,

X1
2∑ T 1

2–

1 ξ2∑–
--------------------------,    

X1x∑ T 1t–

1 ξ2∑–
-------------------------------,    

X1ξ1∑ T 1–

1 ξ2∑– 1 ξ1
2∑–

----------------------------------------------------,    
X1ξ∑ T 1–

1 ξ2∑–
-----------------------------.

T 1.

x2∑ t2– r2 t2– 0,= =

t r ,±= t t r .–=

t xξ1∑–

1 ξ1
2∑–

------------------------- 0,= t xξ1.∑=
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The propagation velocity is therefore much faster than that of light, but in certain
cases  could be positive, which, as we mentioned, seems hardly admissible.[7] We
will therefore stick with hypothesis (A).

2° The four invariants (7) ought to be functions of the invariants (5).
3° When the two bodies are at absolute rest,  ought to have the | values

given by Newton’s law, and when they are at relative rest, the values given by (4).
For the case of absolute rest, the first two invariants (7) ought to reduce to

or, by Newton’s law, to

in addition, according to hypothesis (A), the 2nd and 3rd invariants in (5) become:

that is, for absolute rest,

We may therefore admit, for example, that the first two invariants in (7) reduce
to[8]

although other combinations are possible.
A choice must be made among these combinations, and furthermore, we need a

3rd equation in order to define  In making such a choice, we should try to
come as close as possible to Newton’s law. Let us see what happens when we neglect
the squares of the velocities  etc. (still letting  The 4 invariants (5) then
become:

and the 4 invariants (7) become:

Before we can make a comparison with Newton’s law, another transformation is
required. In the case under consideration,  represent the coordi-
nates of the attracting body at the instant  and  With Newton’s law
we have to consider the coordinates of the attracting body  at
the instant  and the distance 

t

X1 Y 1 Z1, ,[171]

X1
2,∑ X1x,∑

1
r4
----,

1
r
---;–

r– xξ∑–

1 ξ2∑–
--------------------------,

r– xξ1∑–

1 ξ1
2∑–

----------------------------,

r ,– r .–

1 ξ1
2∑–( )2

r xξ1∑+( )4
--------------------------------,

1 ξ1
2∑–

r xξ1∑+
-------------------------;–

X1 Y 1 Z1., ,

ξ η,, t r).–=

0, r– xξ,∑– r– xξ1,∑– 1

X1
2,∑ X1 x ξr+( ),∑ X1 ξ1 ξ–( ),∑ 0.

x0 x+ y0 y+ z0 z,+, ,
t0 t ,+ r Σx2.=

x0 x1+ y0 y1+ z0 z1+, ,
t0, r1 x1

2∑ .=
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We may neglect the square of the time  required for propagation, and proceed,
consequently, as if the motion were uniform; we then have:

 |

or, since 

such that our 4 invariants (5) become:

and our 4 invariants (7) become:

In the second of these expressions I wrote  instead of  because  is multiplied by
 and because I neglect the square of 

For these 4 invariants (7), Newton’s law would yield

Therefore, if we designate the 2nd and 3rd of the invariants (5) as  and  and
the first 3 invariants of (7) as  we will satisfy Newton’s law to first-order
terms in the square of velocity by setting:

(8)

This solution is not unique. Let  be the 4th invariant in (5);  is of the order
of the square of  and it is the same with 

The solution (8) appears at first to be the simplest, nevertheless, it may not be
adopted. In fact, since  are functions of  and  the
values of  can be drawn from these three equations (8), but in certain cases
these values would become imaginary.

To avoid this difficulty we will proceed in a different manner. Let us put:

which is justified by analogy with the notation

featured in the Lorentz substitution.

t

x x1 ξ1t ,+=     y y1 η1t ,+=     z z1 ζ1t ,    r r r1–( ) xξ1t;∑=+=

[172]t r ,–=

x x1 ξ1r ,–=     y y1 η1r ,–=    z z1 ζ1r ,–=     r r1 xξ1;∑–=

0,    r1– x ξ1 ξ–( ),∑+     r1– ,    1

X1
2,∑     X1 x1 ξ ξ1–( )r1+[ ],∑     X1 ξ1 ξ–( ),∑     0.

r1 r , r
ξ ξ1– ξ.

1
r1

4
-----,    1

r1
----–

x1 ξ ξ1–( )∑
r1

2
--------------------------------,–     

x1 ξ ξ1–( )∑
r1

3
--------------------------------,    0.

A B,
M N P, ,

M
1

B4
------,= N

+A
B2
-------,= P

A B–
B3

-------------.=

C C 1–
ξ, A B–( )2.

M N P, , X1 Y 1 Z1,, , T 1 X1ξ,∑=
X1 Y 1 Z1, ,

k0
1

1 ξ2∑–
-------------------------,= k1

1

1 ξ1
2∑–

-------------------------,=

k
1

1 ε2–
------------------,=
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In this case, and in light of the condition  the invariants (5) become:

 |

Moreover, we notice that the following systems of quantities:

undergo the same linear substitutions when the transformations of the Lorentz group
are applied to them. We are led thereby to put:

(9)

It is clear that if  are invariants,  will satisfy the fundamen-
tal condition, i.e., the Lorentz transformations will make them undergo an appropri-
ate linear substitution.

However, for equations (9) to be compatible we must have

which becomes, replacing  with their values in (9) and multiplying by

(10)

What we would like is that the values of  remain in line with Newton’s
law when we neglect (as above) the squares of velocities  etc. with respect to the
square of the velocity of light, and the products of acceleration and distance.

We could select

To the adopted order of approximation, we obtain

r– t ,=

0,     A k0– r xξ∑+( ),     B k1– r xξ1∑+( ),     C k0k1 1 ξξ1∑–( ).===

[173]

x, y, z, r– t=

k0X1, k0Y 1, k0Z1, k0T 1

k0ξ, k0η, k0ζ, k0

k1ξ1, k1η1, k1ζ1, k1

X1 x
α
k0
----- ξβ ξ1

k1

k0
-----γ ,+ +=

Y 1 y
α
k0
----- ηβ η1

k1

k0
-----γ ,+ +=

Z1 z
α
k0
----- ζβ ζ1

k1

k0
-----γ ,+ +=

T 1 r
α
k0
-----– β

k1

k0
-----γ .+ +=

⎭
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎫

α β γ, , X1 Y 1 Z1 T 1, , ,

X1ξ∑ T 1– 0,=

X1 Y 1 Z1 T 1, , ,
k0

2,
Aα– β– Cγ– 0.=

X1 Y 1 Z1, ,
ξ,

β 0,= γ
Aα
C

--------.–=
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The 1st equation in (9) then becomes

But if the square of  is neglected,  can be replaced by  or | by 
which yields:

Newton’s law would yield

Consequently, we must select a value for the invariant  which reduces to 
in the adopted order of approximation, that is,  Equations (9) will become:

(11)

We notice first that the corrected attraction is composed of two components: one
parallel to the vector joining the positions of the two bodies, the other parallel to the
velocity of the attracting body.

Remember that when we speak of the position or velocity of the attracting body,
this refers to its position or velocity at the instant the gravitational wave takes off; for
the attracted body, on the contrary, this refers to the position or velocity at the instant
the gravitational wave arrives, assuming that this wave propagates with the velocity
of light.

I believe it would be premature to seek to push the discussion of these formulas
further; I will therefore confine myself to a few remarks.

1° The solutions (11) are not unique; we may, in fact, replace the global factor
 by

k0 k1 1,= = C 1,= A r1– x ξ1 ξ–( ),∑+= B r1,–=

x x1 ξ1t+ x1 ξ1r .–= =

X1 α x Aξ1–( ).=

ξ Aξ1 r1ξ1– [174]rξ1,–

X1 α x ξ1r+( ) αx1= .=

X1

x1

r1
3

-----.–=

α, 1
r1

3
-----–

1
B3------.

X1
x

k0B3
----------- ξ1

k1

k0
----- A

B3C
----------– ,=

Y 1
y

k0B3
----------- η1

k1

k0
----- A

B3C
----------– ,=

Z1
z

k0B3
----------- ζ1

k1

k0
----- A

B3C
----------– ,=

T 1
r

k0B3
-----------–

k1

k0
----- A

B3C
----------– .=

⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎫

1
B3
------,

1
B3
------ C 1–( ) f 1 A B C, ,( ) A B–( )2 f 2 A B C, ,( ),+ +
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where  and  are arbitrary functions of  Alternatively, we may forgo set-
ting  to zero, but add any complementary terms to  that satisfy condition
(10) and are of second order with respect to the  for  and of first order for 
and 

2° The first equation in (11) may be written:

(11')

and the quantity in brackets itself may be written:

(12)

| such that the total force may be separated into three components corresponding to
the three parentheses of expression (12); the first component is vaguely analogous to
the mechanical force due to the electric field, the two others to the mechanical force
due to the magnetic field; to extend the analogy I may, in light of the first remark,
replace  in (11) by  in such a way that  are linear functions
of the attracted body’s velocity  since  has vanished from the denominator
of (11').

Next we put:

(13)

and since  has vanished from the denominator of (11'), it will follow that:

(14)

and we will have moreover:

(15)

Now  or  is an electric field of sorts, while  or rather

 is a magnetic field of sorts.

3° The postulate of relativity would compel us to adopt solution (11), or solution
(14), or any solution at all among those derived on the basis of the first remark. How-
ever, the first question to ask is whether or not these solutions are compatible with
astronomical observations. The deviation from Newton’s law is of the order of 
i.e., 10000 times smaller than if it were of the order of  i.e., if the propagation were

f 1 f 2 A B C ., ,
β α β γ, ,

ξ α β
γ .

X1

k1

B3C
---------- x 1 ξξ1∑–( ) ξ1 r xξ∑+( )+[ ]=

x rξ1+( ) η ξ1y xη1–( ) ζ ξ1z xζ1–( ),+ +

[175]

1 B3⁄ C B3,( )⁄ X1 Y 1 Z1, ,
ξ η ζ,, , C

k1 x rξ1+( ) λ,= k1 y rη1+( ) µ,= k1 z rζ1+( ) ν,=

k1 η1z ζ1y–( ) λ′,= k1 ζ1x ξ1z–( ) µ′,= k1 ξ1y xη1–( ) ν′;= ⎭
⎬
⎫

C

X1
λ
B3
------ ην′ ζµ′–

B3
-----------------------+ ,=

Y 1
µ
B3
------ ζλ′ ξν′–

B3
----------------------+ ,=

Z1
ν
B3
------ ξµ′ ηλ′–

B3
-----------------------+ ;=

⎭
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎫

B2 λ2∑ λ′2.∑–=

λ µ ν,, ,
λ
B3------ µ

B3------ ν
B3------,, , λ′ µ′ ν′,, ,

λ′
B3
------ µ′

B3
------ ν′

B3
------,, ,

ξ2,
ξ,



ON THE DYNAMICS OF THE ELECTRON (EXCERPTS) 271

to take place with the velocity of light, ceteris non mutatis; consequently, it is legiti-
mate to hope that it will not be too large. To settle this question, however, would
require an extended discussion.

EDITORIAL NOTES

[1] Translated by Scott Walter from Rendiconti del Circolo Matematico di Palermo
21, 1906, 129–176. The original notation is faithfully reproduced, including the
use of “d” for both ordinary and partial differentiation. The translator’s endnote
calls are bracketed. For alternative translations of Poincaré’s memoir, see C. W.
Kilmister (Special Theory of Relativity, Oxford: Pergamon, 1970, 145–185), and
by H. M. Schwartz (American Journal of Physics 39:1287–1294; 40:862–872,
1282–1287).

[2] The original reads: “ ”.

[3] The original reads: “ ”.

[4] The original reads: “ ”.

[5] The original reads: “à l’instant ”.

[6] The original reads: “ ”

[7] The original reads: “  pourrait être négatif.”

[8] The original has (4) instead of (7).
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