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“Sur la dynamique de Délectron,” published in 1906
in Rendiconti del Circolo Matematico di Palermo, is
Poincaré’s principal publication dealing with relativity.
It is, among other things, of very considerable historical
interest. To make it more readily accessible, the contents
of this comprehensive paper will be presented, in a mod-
ernized version, in three parts that correspond to the three
major topics treated in the paper. The first part, presented
here, deals with the principle of relativity and the Lorentz
group as well as with the action principle of Mazwell-
Lorentz systems.

Henri Poincaré’s comprehensive paper, “Sur
la dynamique de l'électron” [Rendiconti del
Cireolo Matematico di Palermo 21, 129 (1906);
dated: Paris, July 19057] contains the illustrious
mathematician’s principal contributions to the
theory of relativity. It is of considerable historic
as well as Intrinsic interest and deserves to be
more fully and more widely known. It has not
been easily accessible to physicists both because
of the journal in which it is published and the
style in which it is written. A presentation of the
paper in the pages of this Journal, true to its
content but modifying its form whenever indi-
cated, is therefore in order.}?

As its title indicates, the principal subject of
the paper is the mechanics of the electron, the
“elementary particle physics” topic around the
turn of this century, which engaged the attention
of leading theorists of that period such as J. J.
Thomson, H. A. Lorentz, and M. Abraham. The
underlying considerations relating to the principles
of relativity and of the Lorentz group, as con-
ceived by Poincaré, are presented in the Intro-
duction and in introductory sections of the

paper. In addition, the last section of the paper
contains a discussion of a relativistically covariant
theory of gravitation—the first such published
theory.

The contributions of the paper fall thus into
three groups: (I) foundations of special relativity,
(II) theory of the electron, and (III) relativistic
theory of gravitation. The present rendition of
the Introduction and Pt. I is intended to be an
accurate representation of both the text and the
mathematical analysis. However, direct transla-
tions are given only of selected portions of the
text. Nor is the mathematical part reproduced
verbatim whenever changes in arrangement of
the argument facilitate its understanding. To
the same end the notation is modernized through-
out, including the employment of the vector
formalism.

These minor changes from the original, and
also the different numbering of formulas which
they have necessitated, need not introduce undue
difficulties when comparison with the original is
desired ; because all the results in the original and
the essential ideas in the derivations are left
intact, and all comments that are not in the
original are enclosed in braces or are given in
footnotes. To facilitate further such comparisons,
each formula that corresponds exactly to one in
the original is numbered also as in the original,
this numbering being enclosed in square brackets,
with the first digit indicating the section (not
shown in the original). In addition, a dictionary
of symbols is presented in Table I. Last, for ease
of future reference, some translated portions are
listed by bracketed numbers.

ON THE DYNAMICS OF THE ELECTRON
Introduction

[1] “It seems at first sight that the aberration
of light and the related optical and electrical
phenomena would provide us with a means of
determining the absolute motion of the earth,
or rather its motion not with respect to the other
stars, but with respect to the ether.”
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But all experiments including that of Michelson
do not disclose such motion. Hence—

[2] “It seems that this impossibility to disclose
experimentally the absolute motion of the earth
is a general law of nature; we are led naturally
to admit this law, which we shall call the Postulate
of Relativity, and to admit it unrestrictedly.
Although this postulate, which up till now agrees
with experiment, must be confirmed or disproved
by later more precise experiments, it is in any
case of interest to see what consequences can
flow from it.”

[8] “An explanation has been proposed by
Lorentz and by FitzGerald, who have introduced
the hypothesis of a contraction experienced by all
bodies in the direction of motion of the earth
and proportional to the square of the aberration
{i.e., (v/c)?}; this contraction, which we shall
call the Lorentz contraction, accounts for Michel-
son’s experiment and for all other experiments
performed to date.”

Lorentz has sought to complete the contraction
hypothesis so as to obtain full agreement with the
postulate of relativity.

[4] “This is what he succeeded in accom-
plishing in his article entitled: ‘Electromagnetic
Phenomena in a System Moving with Any
Velocity Smaller than that of Light’ (Proceedings
of the Amsterdam Academy, 27 May 1904).”

“The importance of the question impelled me
to reconsider it; the results I have obtained agree
with those of Mr. Lorentz in all the important
points; I was led to modify and to complete them
only in a few points of detail; the differences,
which are of secondary importance, will be seen
later on.”

[5] “Lorentz’s idea can be summarized thus: If
it is possible to impress a common translation on
an entire system without any of the sensible
{“apparent” in the original} phenomena being
altered, this means that the equations of an
electrodynamie medium are unchanged by certain
transformations, which we - shall call Lorentz
transformations; two systems, one stationary, the
other in a state of translation, become thus the
exact image of each other.”
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Lorentz’s theory faces a serious obstacle in the
problem of the “moving electron.” In this
respect Langevin’s theory, involving an ellipsoidal
electron of unchanging volume rather than un-
changing axes normal to the electron’s velocity,
has the advantage of invoking only electro-
magnetic and binding forces. However, the theory
disagrees with the relativity postulate, as was
shown by Lorentz and as is shown here by a
group-theoretical method. It is therefore necessary
to complete Lorentz’s theory of the electron—

[6] “It is necessary to assume a special force
which explains simultaneously both the con-
traction and the constancy of two of the axes. I
have sought to determine this force, and I have
found that <t can be represented by a constant
external pressure acting on the deformable and
compressible electron, whose work is proportional
to the change in volume of this electron.”

If one adopts this postulate of constant pres-
sure, and if one also assumes, as is suggested
by Kaufman’s experiments, that all of the elec-
tron’s inertia is of purely electromagnetic origin,
then the theory of the electron can be made to
agree fully with the postulate of relativity. This
is what is shown here using the principle of least
action.

Lorentz has also deemed it necessary to
assume that all forces, of whatever origin, trans-
form under Lorentz transformations in the same
way as the electromagnetic forces. This idea is
applied here to the force of gravitation. It is
shown that it follows that gravitational action
propagates with the speed of light and that this
conclusion can be reconciled with Laplace’s
proof of the impossibility of such propagation.
The law of gravitation which is here developed
satisfies Lorentz’s condition and it reduces to the
Newtonian law for sufficiently small velocities
of the bodies. It also appears to agree with astro-
nomical observations, “but the question can be
decided only by a penetrating discussion.”

[7] “But even admitting that this discussion
would uphold the new hypothesis, what must we
conclude? If gravitational propagation takes
place with the speed of light, this cannot be
fortuitous, it must be so because it is a function
of the ether; and so, it becomes necessary to



penetrate the nature of this funection, and to
connect it with other functions of the fluid.”

How are we to understand this conclusion from
the relativity postulate that the speed of light
enters both in the laws of electrodynamies and in
the laws of gravitation or of any other type of
foree? Only two explanations are possible:

[8] “Either there is nothing in the world that
is not of electromagnetic origin, or this part
{i.e., the speed of light}, which is so to speak
common to all physical phenomena, is only an
appearance, something stemming from our
methods of measurement. How do we make our
measurements? By transporting to mutual juxta-
position objects considered as invariable solids,
one would reply at first; but this is no longer
true in the present theory if one admits Lorentzian
contraction. In this theory two equal lengths are
by definition two lengths which are traversed by
light in equal times.”

“Perhaps it would suffice to renounce this
definition for the theory of Lorentz to be as
completely overthrown as was the system of
Ptolemy by the intervention of Copernicus. If
this should happen one day, this would not prove
the uselessness of Lorentz’s effort; for Ptolemy,
whatever one may think of him, was not useless
to Copernicus.”

TABLE 1. Dictionary of notation employed in Poincaré’s
paper.
Poincaré’s Present

Quantity notation notation
Electric field» f, g, b) E
Magnetic fields (@, B, 7v) B
Scalar potential ¥ ¢
Vector potential (F, G, H) A
Total electric current density®  (u, v, w) i
Velocity of electrone &m0 u
Displacement vector v, v, w) £
Force per unit volume X, Y, 2) f
Force per unit charge (X1, Y1, Z1) F
Relative velocity of two (iner- e —B

tial) reference framese

(1—poy-ue & v

& Electric displacement and magnetic inlensity vectors in the original
are here represented for the sake of agreement with present common
practice, by current symbols for eleetric intensity and magnetic induc-
tion vectors, respectively.

b This includes Maxwell’s displacement current density.

¢ In units of the speed of light in vacuo (i.e.,in units such that ¢ =1).
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{97 “I have likewise not hesitated to publish
these few partial results, even if at this very
moment the entire theory may appear to be in
danger by the discovery of cathode rays.”?

1. Lorentz Transformation

The “fundamental formulas” {of the Maxwell-
Lorentz theory}, using rationalized Gaussian
units and choosing the units of length and of
time so that the speed of light equals unity, are
{see Table T}

i=(0E/dt) +pu=V xB, (1)
B=VxA, E=—(3A/dt)— Ve, (2)
oB/dt=—V xE, (3)
(8p/dt) + V- pu=0, bo[11] 4)
V.-E=p, (5)
d¢/dt+V-A=0, (6)
[Jg=—p, [JA=—pu, (M)
(O=v2—(8*/62) J;
f=p[E+(uxB)] [1.2] (8)

[10] “These equations admit of a remarkable
transformation discovered by Lorentz, which is
of interest because it explains why no experiment
is capable of making known to us the absolute
motion of the universe.”

This transformation has the form {see Table I}

t' =~1(i—Bz),

2 =lz,

7' =yl(z—pt),

y =1y, [1.3] (9)

where I=[(8) is, to begin with, an arbitrary
constant.’ The associated transformation of our
Egs. (1)-(8) can be deduced step by step,
beginning with Eqs. (7).

We determine first the transformation of the
charge density p. This is accomplished by com-
bining the kinematic law of transformation of
volumes with the following physical assumption®:

The charge of an electron vs an tnvariant

of our transformation. (10)
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The law of transformation of volumes can be ob-
tained as follows:

“Let us consider a sphere carried along with
the electron in its uniform translational motion,
and let

(x—ut)2=12

be the equation of this moving sphere, whose
volume is 477%/3. The transformation will change
it into an ellipsoid whose equation is easily found.
In fact, one easily deduces from Egs. (9)

z=vl"1(a'+B),
t=~l"1 (' 4-82),
e=1". [L.3 bis] (99)
Thus the equation of the ellipsoid becomes
v [+ (B—w )t — Busz’ P
+ iz L&/ —yu; (' +Bz:") =172
-

This ellipsoid moves uniformly; for ¢=0 it
{i.e., its equation} reduces to

3
Yo' (1=Bu)’+ 2 (2 —vBuay) =17,
=2
and it has the volume (4xr3/3)83/v(1—Buy).”

From the ratio of volumes thus obtained and
our assumption (10) it follows that the trans-
formed density p’ satisfies the equation

o =3 (1—Bur)p.  [1.4]

Sinee by Egs. (9) the transformation equations
for the particle velocity vector u are given by the
following “rule for addition of velocities,”
w'=(u—B)/(1—=pu),  u=u;/v(1—Bu)
(7=2,3), (12)

(11)

we have also

p'u =y (u1—B) p,

o'u =1"*ou; (7=2,3). [l.4bis] (138)

Comparing these results with those of Lorentz’s
paper [loc. cit., BEqgs. (7) and (8)7], it is seen that
there is agreement for the transformation of pu,
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but not of p. In addition, the equation of con-
servation of charge, Eq. (4), cannot hold for the
primed quantities of Lorentz since they do hold
in the present case.
In faect, consider the Jacobian D of (4 Mp,
x+Mpu) with respect to (¢, x). We find that
OD/ON lamo=D1= (9p/3t) +V-pu.  (14)
On the other hand, since ('-+M\p', xX'4+Np't)
is for M =UI"\ conneected with the corresponding
unprimed quantities by the Lorentz transforma-
tion (9), it follows that D’ =D .5 Hence Dy =1*D;,
and our result follows from Eq. (4) and the
definition (14) of D,.
Now, it is found from (9) that [notation
in (7)]
O =t-C.

Hence it can be deduced from Eqs. (11) and (13)
that the solution of Eqs. (7) in the primed
quantities is®
¢’ =yl (¢—B41),
Ay =47 (41—B9),
A/ =l"4; (7=2,3).

(15)

[1.7]

[117] “These formulas differ considerably from
those of Lorentz, but the difference bears in the
last analysis only on the definitions.”

(16)

Applying the relations (2) to the primed
quantities, we obtain the transformation equa-
tions for the field vectors,

B, =1,
Ey, = ’YZ-Z(Ey_BBZ> s
£ = VZ—2<E2+BBZI) y

B,'=1"B,,

B =~+1"%(B,+BE.),

B/ =+I1*(B.—BE,),
[1.97 (17)

which are identical with those of Lorentz.

The proof of the wvalidity of the remaining
equations [1.17] in the primed quantities {i.e., the
proof of their covariance under Lorentz trans-
formations} now follows from the covariance
results already obtained. In fact, Eq. (6) can be
deduced from Egs. (7) and (4); and Egs. (1),
(3), and (5) can be deduced from Egs. (7), (2),
and (6).



It remains to discover the law of transformation
of the force density f of Eq. (8). This is accom-~
plished by assuming the covariance of Eq. (8).
Use of Egs. (11), (13), (17), and (8) then yields
the result

A =~+173( fi—pBu-1),
= (7=2,3).

{For instance,

[1.11] (18)

A =%y
X [(1—Bu1) By+uz (Bs—BEz) —us(Ba—BEs) ]
=["yp(E1+uBs—usB;—pu-E),

then using Eq. (8).}

By combining Eqgs. (18) and (11) we obtain
the transformation equations for the force F per
unit charge:

Fy =~I7%pp" L (F1—Bu-F),

F{=1"%pp"F; (7=2,3). [1.11bis] (19)
These equations differ significantly from those

found by Lorentz [loc. cit., Eq. (10)].

[127 “Before going further it is of importance
to seek the cause of this significant divergence.
It evidently derives from the fact that the
formulas for u;/ are not the same, whereas the
formulas for the electric and magnetic fields are
the same.”

Considering now the stability of the electron, it
is seen that on the assumption of an exclusively
electromagnetic origin of its inertia, the condition
of its equilibrium requires the vanishing of f
in its interior, and in view of KEqs. (18), this
is indeed a covariant condition. Unfortunately,
it is not an admissible condition; for instance
when u=0, we must have E=0, and hence
p=V:E=0. So we must look for additional
nonelectromagnetic forces that insure the elec-
tron’s equilibrium and find conditions that they
must satisfy “in order that the equilibrium of
electrons is not disturbed by the transformation.”

2. Principle of Least Action

The principle of least action for Lorentz’s
equations is formulated here in a form that
differs slightly from that presented by Lorentz.?

Poincaré’s Paper on Relativity. T

We start with the action integral
J = [difdr[ (E*+B?)/2—A-i]
(dr=d*z), [2.1]

where the quantities to be varied are taken to be
connected by the relations

(20)

V-E=p, B=VxA, i= (0E/al) +pu.

[2.2]

J is to be minimized subject to the following
additional conditions:

(21

The state of the system is fixed at the
integration limits =14, and {=4.
“All our funetions vanish at infinity.”” 1

(22)
(23)

Varying at first only A, we find after integrating
by parts, and using the second relation in (21)
and condition (23),

0=5J = [didr[B- (V x6A) —i-5A]

= — [didr(i—V xB) - 8A, (24)
which implies the field equation (1).

When the latter equation is substituted in
Eq. (20), we obtain, again by an integration by
parts and use of the second of Egs. (21), the
alternative expression

J=[didr;(E*—B?) [2.4] (25)
{which serves as the starting point for the rela-
tivistic diseussion in the next section}.

Returning to the expression (20), we now vary
the other quantities. We apply Eq. (1) [see Eq.
(24) ] and allow for the first of Egs. (21) with the
aid of the Lagrange multiplier ¢. Our variation
assumes then the form

5] = [didr[ (E-3E—A-6i—¢(V+-3E—8p) ].

Replacing here 6i by the expression obtained
from the last of Eqgs. (21), and integrating by
parts both spatially and with respect to ¢, we find
upon applying conditions (22) and (23),

5J = [didr{[E+ (9A/0t) + V¢ - oE
+dp—A-d(pu)}. [2.7] (26)
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When 8p=0 and §(pu) =0, the vanishing of this
variation yields the second of Egs. (2).

If we now allow also for this equation, then
Eq. (26) reduces to

o = [dtdr[pdp—A-8(pun)], [2.9] (27)

and this expression must lead to our remaining
equation, Eq. (8). Indeed, if E=E&(xo, t) denotes
the displacement of the volume element dr from a
given initial position X, and f is as defined in
Table I, then we have by a generalization of
D’Alembert’s principle,

8J = —[didrf-88, [2.10] (28)
where 6/ is given in Eq. (27).

In order to transform &J, Eq. (27), into a form
involving only the variations é%;, we apply the
principle of conservation of charge, in the sense
that the charge inside a given element of volume is
unchanged during the variation in the position or
shape of the volume, whether the variation be
actual or virtual. It follows that in addition to
the usual “equation of continuity” (i.e., equation
of conservation of charge)

(8p/0t) + (pus) ,i=0

[ f.:=(8f/dx:); repeated-index summation

convention ] (29)

we have the similar equation for the virtual
motion of the charges (noting that u=dg/d¢
since x=Xxp+§),

(3p/0€) +[p(dE:s/de) ],:=0, (30)

where ¢ is the parameter for the virtual changes
(as t is for the actual changes), and we dis-
tinguish by the respective symbols ¢ and d
local variation (i.e., keeping z constant) and
convective variation (i.e., keeping X, constant).
Hence

(9p/8€)de=8p= — (pdts) i, (31)
since, of course, the 6§ in Eq. (28) are of con-~
vective character, so that,

58 = (dE/de) be. (32)

Again, using the familiar connection between
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local and convective derivatives, and Eq. (32),
we have

81 =8¢ (dus/ de)

=8¢ (dui/de) —wu,;(dE;/de) ]

= e[ (d%:i/dedt) — -+ -]

=be[ (d%:/dtde) — -+ -]

= (d/dt)8&i—ui ;8¢

= (/1) 88+ (8:) . ju— i, /BE;.
Hence, adding the zero represented by Eq. (30),
and using Eq. (31), we find'?
8 (pus) =uibp+ pdu,

= — (pudt;) ;4 (9/0t) (pdE:)

+ (pdkiug) 5 [2.18] (33)

When we substitute the results (31) and (33)
into HEq. (27) and perform the appropriate
integrations by parts with due aceount of condi-
tions (22) and (23), we obtain

8J = [dtdro[¢,;— A, ui+ (8A;/9t) + A, 10E;
= — [dtdrp[ — ¢;— (94;/8t) + (A ;— A ;) ui J6&;
= — [didrp[E+ (1 xB) J- 8§,

Eq. (8) now follows at once upon substituting
this result in Hq. (28).

3. Lorentz Transformation and the Principle of
Least Action ‘

[137] “Let us see if the principle of least action
gives us the reason for the suceess of the Lorentz
transformation.”

We consider first the behavior of expression
(25) under the transformations (9). We find that
the Jacobian of ', ¥/, 2/, ¢’ with respect to z, y, 2, ¢
is I4, so that

di’dr" =14didr. (34)

On the other hand, Eqs. (17) imply the identity
Z4(E/2_Bl2) =E2__B2_ (35)

Consequently, if we take fp= — and { =, so
that the limits of integration do not change



under our transformations, then
7= [[[faars@e—pn =1 @)

We investigate next the transformation prop-
erties of Eq. (28).

[147] “For this, it is at first necessary to com-
pare 8§ and 8E. Let us consider an electron
whose initial coordinates are zy, ¥, 20; its coordi-
nates at the instant ¢ will be

=20+ (i=1, 2, 3).

If one considers the corresponding electron after
the Lorentz transformation, it will have the
coordinates

(7=1,2),

2;1’=’yl(.771—6t), :c/zl:r,]-

where

x =08/ (=1, 2,3); (36)
but it will only attain these coordinates at the

instant,

¢ =yl (t—Bz;).”

It is therefore necessary to consider the varia-
tions dz; when we also vary ¢; so that, using
the same notation as before, we have

8x = 0E +-ust,
and correspondingly,
ox' =o' +u'st'.

Combining the latter equation with the trans-
formation equations (9) for (éx, 6t), we obtain
upon setting =0, and using Eqs. (12) (recalling
that 1—g2=~"2),
8= (1—Bur) 81/, 88y =172 (8 — Byusdty').
When these equations and Eq. (34) are applied
to the integral in Eq. (28), the result is an integral
of the same form in the primed quantities, pro-
vided f;” are connected with f; by Eqgs. (18).

Thus ““the principle of least action leads to the
same result as the analysis in See. 1.”

Poincaré's Paper on Relativity. I

Referring to Eqgs. (17),

[15] “we see that E2—B? is not changed by the
Lorentz transformation, except for a constant
factor; the same is not true of the expression
E?-+B? which appears in the energy.”

4. The Lorentz Group

The Lorentz transformations form a group.
In faet, if we combine the transformation (9)
with the transformation

xlllz’ylll(xll_ﬁlt/)’ l‘j//:llﬂlj,
1 = ,yll/ (If’ "‘,3’9?') ,
the resultant transformation is

9,:l/l — ’y/llll (.771—,3”15),

t” — 'Y”ZH (t_ﬁ,,x) ,

xj/l — l”xj,

where
"= (B+8')/(1+88"), =1,
v =y (1486") = (1—p") 12

If we set I=1, and take —pB=e¢ infinitesimal,
then by Eqs. (9) applied to z;/—z;=éx:, ¢’ —t=06l,
we have

dri=0x=¢l, or;=0, ot =ex

This is an “infinitesimal generating transforma-

tion”” of the group, call it 74, In Lie’s notation we
can write

Ty=t(8/dx) +x(3/dt). 37)
If we take ¢e=0 and set I=1-+6l, we find that

dx;=x:0l, 6t=1t5l. We have thus another infini-

tesimal transformation of the group, 7Ty, where

To=1:(0/0xz:) +t(d/at). (38)

Because the Maxwell-Lorentz equations are
invariant under spatial rotations we also have the
infinitesimal transformations

T;=t(8/0x;) +xz;(/0t)

(7=2,3). (39)

In addition, the Lie commutators, [T, T;]=
T:7;— 1T, reduce to
[T’h TJ] = Ii(a/f}(l}j) - xj(a/axi) s (40)
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which are easily verified to correspond to rotations
in the i, z; plane.

“We are thus led to envisage a continuous
group, which we shall call the Lorentz group.”
It is generated by the seven infinitesimal trans-
formations represented in Eqs. (37)-(40).

Every transformation of this group can be
decomposed into a transformation of the form

.’I}i’ = l(l?i, t, =]

and a linear transformation that leaves invariant
the quadratic form x2— 8.

It can also be represented by o transformation of
the form (9) preceded and followed by a suitable
rotation.

[16] “But for our purpose we need only con-
sider a portion of the transformations of this
group; we have to suppose that ! is a funetion of e,
and it is a question of choosing this function in

1 A mere outline of Poincaré’s paper—as suggested
some time ago [H. M. Schwartz, Amer. J. Phys. 33, 170
(1965) 1—would hardly serve the needs of historical re-
search relating to special relativity. This is not contra-
dicted, in my opinion, by a recent paper on the subject
[C. Cuvaj, Amer. J. Phys. 86, 1102 (1968)7]. The extent
of the richness of information provided by the Rendiconti
paper on Poincaré’s role in the history of relativity is
made evident in a historic study now in preparation.

2 After the manuscript of the present paper was com-
pleted my attention was called to a literal translation of
Pts. I and III of Poincaré’s paper in C. W. Kilmister,
Special Theory of Relativity (Pergamon, New York, 1970).
This now makes these two parts more readily physically
accessible, but the utility of the present and projected
précis remains; in particular, Pt. IT (which forms 409, of
the original paper), dealing with the frequently quoted
“Poincaré stresses,”’ is certainly of considerable interest.

3 Poincaré uses here the curious term rayons magnélo-
cathodiques.

¢ Equations (1)-(6) are of course not all independent,
and their arrangement in [1.17] may appear strange ai
this point. Considerations developed in Secs. 2 and 3
provide at least partial clarification.

5 The significance of the transformation parameter 8 is
obvious from the context. Poincaré refers to both I and 8
as “two arbitrary constants,” but the intension is obvious.

¢ Although this assumption is not set off in the original
exposition, Poincaré’s recognition of its primary sig-
nificance is implicit in his discussion.

7 Because of its historical interest, Poincaré’s roundabout
method of deriving this kinematic result is reproduced
verbatim.
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such a way that this group portion, which 1 shall
call P, forms also a group.

Let us turn the {coordinate} system by 180°
around the y axis: we rediscover a transformation
that must also belong to P. But this amounts to
changing the sign of », #/, 2, and 2’; one finds thus
{in our present notation, but writing here e
for —B}

Y =ly,
t' =yl (t—ex)

¥=~l{z—e),

2 =lg, [8.2]
Hence I does not change when ¢ is replaced by —e.
On the other hand, if P is a group, then the
transformation inverse to (9), which is

(41)

¥ = 'Yl—l (-E - ét) ) y/ = Z_Iy)

2 =11, ¢ =yl (t—ex)

must also belong to P; it must therefore be
identical to (2) {our (41)}; ie., I=["" One
must thus have [=1."

8 The original text has M=\ (and later, D’ =1"2Dy)
which is an obvious (and harmless) misprint.

That D'=D can be seen, for instance, if we denote ¢
by o, dzo/dt by us (@=0, 1, 2, 3), and write X, for z,+
Mouq; we have then, letting L stand for the matrix of a
Lorentz transformation (9), and using the repeated-index
summation convention:

X'/ 8xg" = Lay(8 X/ 025) L%,
det || 9X.'/ozy’ ||=D'= detL-detZ-++D=D.

1t is a little curious that Poincaré does not give here the
much simpler and direct proof of the Lorentz covariance
of Eq. (4), which in the above notation, and writing J.
for pua, is as follows: Jo' =1"*LagJ 5,

B3J . [ 82s" = Lagdd 3/ 02, L e = 6,39J 3/ 02y = 8J s/ 2.

9 In the notation of footnote 8, 1724, = —I*Lagfg=
I"Las[Ap, ie., [J(Ae’ —ILasAp) =0. An argument for
discarding possible additive functions of the A4, that
satisfy the wave equation is therefore required to complete
the proof that A,'=1"2L,s4 s. The same type of argument
also enters in other similar deductions that follow.

10 Poincaré has reference probably to Lorentz’s varia-
tional treatment in his paper “Contributions to the Theory
of Electrons,” Proc. Acad. Amsterdam 6, 608 (1903).

11 Understood here of course is sufficient rapidity of
tending to zero at spatial infinity, so that surface integrals
obtained from integration by parts tend to zero.

12 This derivation of Eq. (33) is a more direct version of
that given in the original text.
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4 See, for example, Ref. 1 or W. H. Louisell, Badiation
and Noise in Quantum Electronics (MeGraw-Hill, New
York, 1964), pp. 191 ff and 255 ff. v

& The behavior of b(¢) or b(s),A is of course much more
complicated than this. That b6(s) has, among other
singularities, a simple pole at s=—v [see Eq. (3.13)]
can be seen from the exponentially decaying behavior of
b(t) shown by Egs. (4.1) and (5.1).

8 R. J. Glauber, Phys. Rev. 131, 2766 (1963).

7 This enhancement is not shown by the solutions of
linearized equations of motion, which show the same
behavior as the harmonic oscillator. See, for example,
B. R. Mollow and M. M. Miller [Ann. Phys. 52, 464
(1969) ] who explicitly drop the higher order terms in the
equations of motion, or H. Sauermann [Z. Physik 188, 480
(1965) ] who neglects the dependence of the Langevin
forces on the state of the atomic system, and thus effec-
tively linearizes the equations of motion.
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This is a continuation of the modernized presentation
of Poincaré’s Rendiconii paper (begun in the November
1971 issue of this Journal). It covers Secs. 5-8 of that
paper, dealing with its ceniral theme, as indicated by its
title, “On the dynamics of the electron,” the subject being
of interest to both the historian of the classical theory of the
electron and the historian of relativity.
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The purpose and scope of the present modernized
rendition of Poincaré’s Rendiconti paper is
described in the introductory remarks to Pt. I.' A
few additional words are needed to introduce
Pt. IL.

Although the contents of Pt. II (Sec 5-8 of the
original work) deal with the structure and
dynamics of ““electrons,” and are, therefore, in the
first place, of interest to the historian of the
development of the theory of charged particles at
the turn of the century, there is also a great deal
here which is relevant to the early history of
relativity theory.

Because of the latter fact, the listing of some of
the translated portions with the aid of bracketed
numbers, begun in Pt. I, is continued. In general,
all numberings in Pt. IT (except for the references)
are a continuation of those in Pt. I, so that in
referring to Pt. I, no explicit mention of ‘“Pt. I”
is needed.

Although a number of new symbols arise in
Pt. II, it seemed unnecessary to extend Table I
of Pt. I. Wherever at all feasible, the original
notation is retained, and the few nontrivial
changes that are introduced are explained in the
references. However, no reference is made (nor
was it made in Pt. I) to the replacement of
Poincaré’s antiquated notation for different types
of differentiation.

Because Pt. II contains material which is
somewhat intricate and not now too familiar, and
explanations and references in the original text are



not always ample, the number of explanatory
footnotes to Pt. II is rather large.

Helpful consultation on a number of points with
my colleague, Lieber, is gratefully acknowledged.

ON THE DYNAMICS OF THE ELECTRON

5. Langevin's Waves

The inhomogeneous wave equations (7) are
known to have the retarded-potential solutions

é=(4m)7 (pn/r)dm,

A= (4r)"1 (o /7) drs (dn=d*x), [5.2]
(42)
where ¢=¢ (X, 1), p=p(Xy, t1), ete., and
h=i—r, = (x—x)2 (43)

Langevin has shown that Kqgs. (42) admit of a
“particularly elegant form’’ when applied to the
field “produced by a single electron.’”

Let xo=x%,(f) describe the motion of a given
“molecule of the electron,”? and set x;=x,(t;) =
xp+§ for given fixed x and {. Then*

dxh‘ = dxo,—l— (a&/a(l)o]) dxo,-—{— (a&/atl) dtl, (44:)

and by (43),
n=(x—xp)/r.

dt1= —dr =n-0lx1, (45)

Since 0§/t =u(l;) =u;, we find from (44) that

(81— wring) dws; = (845~ 08+/Dxoj) dirog,  (46)
from which it follows that
J1dT1 =J0d7'o, [53] (47)

where J1, Jo are the determinants of the respective
matrices in the left and right sides of (46). An
immediate expansion gives’

Ji=14w, w= —Up-n. (48)
On the other hand, if we denote by x the position
vectors of the “molecules of the electron” in the
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neighborhood of the chosen molecule, all taken at
the time # associated with this molecule, then the
corresponding element of electric charge isf

dgy=pd7 (d7=d%). (49)
When we apply Eq. (44) to determine the d#;, the
last term is absent since now di; =0, and instead of
(47) we have the relation

d7 =J odro,

where J, involves X—x,. In substituting this
equation into Eq. (49) we may set Jo=Jo.
Combining Egs. (49), {(47), (48), and (42) we
obtain then the desired result:

¢=(47)7 f[dgr/r(1+w) ],

A= (4r) 7 [[wdg/r(1+w) ] (50)

“If we deal with a single electron, our integrals
reduce to a single element, provided only suf-
ficiently distant points x are considered for which
7 and w have sensibly the same values at every
point of the electron.”

Referring to Eqgs. (2), we see that the expressions
for the electric and magnetic fields contain terms
that involve the velocity but not the acceleration
of the electron, as well as terms that involve the
acceleration, and in fact, linearly. Langevin calls
the former terms collectively ‘‘velocity wave,”
and the latter terms, “acceleration wave.”

We consider first the velocity wave. By a
Lorentz transformation we can bring the electron
instantaneously to rest at the instant &. In this
reference frame, S’, Eqgs. (50) reduce to”

A'=0, ¢’ =e/4rr’ (50")

(7',:: l X,—Xll I)J
and therefore,
B'=0, E' = (e/4nr"3) (X' —x/).

Transforming back to the original reference frame
it is then found that?

B=BxE,
E—=vP(e/4n") [x—x—B(i—1)].  [5.4] (51)
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Turning to the acceleration wave, it will now be
shown that the fields satisfy the following three
conditions:
|E|=|B|, E-B=0, E:n=B-.-n=0. (52)

This result can likewise be derived by the
application of a Lorentz transformation, in this
instance, to an electron which oscillates in such a
way “that the displacements and the velocities are
infinitely small, but the accelerations are finite.””
For such an electron the relations (52) follow from
the corresponding results in “Hertz’s celebrated
paper Die Krifte elektrischer Schwingungen nach
der Maxwell’schen Theorie,® in the case of a very
distant point.”

In fact, the general validity (i.e., for finite
electron velocity) of the first of Egs. (52) is an
immediate consequence of Eq. (35). Similarly, the
second of Egs. (52) follows from the relation
ME'-B'=E-B, that is, deducible from Eqgs. (17).

To prove the Lorentz covariance of the last of
Egs. (52), we note that the first two of these
equations imply that

E=B xn, B=n«xE, [5.6] (53)
where n is defined in (45), and that by Eqgs. (9)
and (43),

1 =1 —x)/ =vl(r.—fr),

) =lry, v =Ir, [5.7]

(54)
so that!!

E.-t'=vI"E-1, B'-t'=+F"B-r. (55)
Another derivation of the Lorentz covariance of
the relations (52) is based on “simple considera-

tions of homogeneity.”*?

In fact, ¢, A; are functions of x;— x1; and
u;=dx;1/dt, homogeneous of order —1 with
respect to &;, I, T1;, 4 and their differentials.

Hence the derivatives of ¢, A; with respect
to z;, ¢t (and consequently also the two fields
E and B) are homogeneous of degree —2
with respect to the same quantities, when we
recall, moreover, that the expression {—# =
r= | x—3%; | is homogeneous {i.e., of degree 1}
with respect to these quantities.
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Now these derivatives or these fields
depend on the x—x;, the velocities dxi/dt, and
accelerations d’x/dt,?; they consist of a term
independent of the accelerations (velocity
wave) and a term linear with respect to the’
accelerations (acceleration wave). But dx;/d4
is homogeneous of degree 0 and d2x;/dt;? is
homogeneous of degree —1; from which it
follows that the velocity wave is homogene-
ous of degree —2 with respect to z,—1; and
the acceleration wave is homogeneous of
degree —1. Therefore, at a very distant point
the acceleration wave predominates and can
therefore be identified with the total wave.
Furthermore, the homogeneity law shows that
the acceleration wave is similar to itself at a
distant point and at an arbitrary point. It is
therefore similar at an arbitrary point to the
total wave at a distant point. But at a distant
point the perturbation {i.e., the electro-
magnetic field} can propagate itself only in
plane waves, so that the two fields must be
equal, mutually perpendicular, and perpendic-
ular to the direction of propagation.

6. Contraction of Electrons

[17] Let us consider a uniformly and
rectilinearly moving electron. We have seen
that with the aid of a Lorentz transformation
one can reduce the study of the field pro-
duced by such an electron to the case of a
stationary electron; the Lorentz transforma-
tion replaces thus a moving real electron by a
motionless ideal electron.®

We wish now to calculate the “electromagnetic
masses of the electron.” It is necessary, therefore,
to determine the “total energy due to the motion
of the electron” as well as the corresponding
electromagnetic momentum. We cannot employ
Eqs. (51) because they apply only to distant
field points when it is permissible to treat the
electron effectively as a point structure. But “the
energy is located principally in the parts of the
ether that are nearest to the electron.”

[187] Concerning this subject many hypoth-
eses can be made. According to that of
Abraham the electrons are spherical and
nondeformable. Then upon applying the



Lorentz transformation since the real electron
is spherical, the ideal electron will become an
ellipsoid—
v 2z 24yt 2t =22 (r is the radius of real
electron). (56)

Lorentz assumed, on the contrary, that it is the
ideal electron which is spherical and that “elec-
trons in motion become deformed.” Thus it is the
real electron which becomes an ellipsoid, whose
semiaxes are r/ly, r/l, r/l, where r is the radius of
the ideal eleetron.

Now the field produced by the ideal electron,
Le., the field in the rest-frame S’ of the electron,
satisfies the equations'

E'=—Vv'¢/, (57)
and by (17), we have therefore for the ‘real
field":
B,=0, By=—K;, B;=gE;

[6.1] (58)

(.j=2) 3)

E1=Z2E1', Ej="/l2Ej’

It follows that if we write!®

A=3[E¢dr, B=3f(B2+Eg)dr,

C=3J(B+By*)dr, (59)
then, in the first place,
¢'=0, C=pB, (60)
and since dr' =~idr,
A'=~I"4, B =y"1"18, (61)

Moreover, by the spherical symmetry in the charge
distribution of the Lorentz ideal electron,

B =24'. (62)
Thus, the “total energy,” E, the “action per unit

time,”*® L, and the & component of the electro-
magnetic momentum, D, are given by the follow-
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ing equations [using (58) in the last equation]:
E=A+B+C=(3+8)ly4’,
L=A+4B—-C=3ly4’,

D=[(E xB) . dr=26B=48~lA’". (63)
“But one ought to have certain relations”
between K, L, and D, namely,?®

E=L—g(dL/dB),  dD/dB=p"'(dE/dB), (64)

“from which’’20

D=—dL/dg, E=IL+8D. [6.2] (65)

[197 The second of equations (2) {Egs.

[6.27]} is always satisfied; but the first one
is satisfied only if#

l=(1—p)o=y153 (66)

i.e., if the volume of the ideal electron is equal

to that of the real electron, or also, if the

electron’s volume is a constant; this is
Langevin’s hypothesis.2

“This 18 in contradietion with the result of Sec. 4
and with the result obtained by Lorentz in a
different way. It is this contradiction that needs to
be explained.”

To begin with, let us note that whatever the
chosen hypothesis, we have [since by (60) and
(61), B—C=(1—)B=Ily"B"]

L=ty (4'+B),

or since ' =0,

L=Iy1L". [6.3] (67)

This result can be related to Eq. (35") by noting
that by (9), ¢=Ily%—pz’, and hence dtf =
Iy\dt (dz’ =0).

Let us consider now a general hypothesis, which
embraces those of Abraham, ILorentz, and
Langevin as special cases: the semiaxes of the real
electron are

r, Or, Or,
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and hence those of the 7deal electron are

vlr, 16r, 1r. (68)
The three special models under consideration are
then given by the following determinations:

r=const., =1 (Abraham)

=1, yr=const., 8=y (Lorentz)

I=+"8, ylr=const.,, 6=+ (Langevin). (69)

Whether the electron’s charge is supposed to be

distributed on its surface as on a conductor, or

uniformly throughout its volume, we have?

E'=A"+B =¢(0y) /lyr. (70)

The function ¢ can be determined by combining
Eqgs. (70) and (67),

_e0/v)

L
Y

; (71)

and noting that for Abraham’s model we have®

L= (a/n[(#*—1)/81Im[(1—p)/(1+8) ] (a const).

Taking into account the first set of Eqgs. (69), it
follows then that ¢ is defined by the relation

(v =(a/B) n[(1+8)/(1—B) ] [65] (72)

Now, all the electron-structure models (69)
involve a constraint represented by a relation
between r and 8 of the form

r=hgm (b const). (73)
In fact, corresponding to the three cases in (69),
we have, respectively,

m arbitrary, m=—1, m=—3%. (74)
By Egs. (71) and (73),
_e(8/v)
L= Do (75)
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The condition of equilibrium for the electron
“when one does not assume the intervention of any
other forces except those of constraint” is given by
the equation

aL/38=0, [6.6] (76)
which combined with Eq. (75), yields for the
logarithmic derivative of ¢ the expression

o' /o=my/0. (77)
On the other hand, by expansion in powers of 3,
we obtain from (72) that
(d/du) lng(u) =—%, when u=1. (77")
Comparing with (77), we see [bearing in mind
that the argument of ¢ in (77) in 8/y] that if
equilibrium is to hold for 8=+, then relation (73)
must be combined with the last equation in (74),
which represents Langevin’s hypothesis.

Recalling the discussion concerning the relation
(66), it is to be expected that the present result is
related to the first of Eqs. (65), and we now show
that there is in fact equivalence between the two
results.

By the definition of D [see the last of Eqgs.
(63) ], the equation of motion of the center of
mass of the electron is*

dD/di= [Xdr [X =/, (see Pt. I, Table 1],

(78)

and hence the principle of least action can be
written (see Pt. I, Table I):

8J = [ X6t drdt= f Xdrétdt = [ (dD/dt)sg.di. ~ (79)
On the other hand,
J = [Ldt,

and by our assumption that r=r(6), L can be
congidered as a function of 8 and 8. Hence,

8J = [[(8L/6B)868+ (8L/86)60 dt. (80)



Since 88=d(5¢,)/di, we find by integration by
parts,

— [Dégdt= [ (dD/dt)s¢.dt.
Comparison of Eqs. (79) and (80) show that

—D=0L/38, dL/30=0, (80"

and since
dL/dB = (dL/d8) + (3L/a9) (d8/dB),

we see that Egs. (76) and the first of Eqs. (65) are
indeed equivalent.

[207] The conclusion is that if the electron
is subject to a constraint between its three
axes, and if no other forces intervene except the
forces of constraini, then the shape assumed
by this electron when it is in uniform motion,
cannot be such that the corresponding ideal
electron is spherical, except when the con-
straint is that the volume be constant, in
agreement with Langevin’s hypothesis.

What additional forces, then, are needed ‘“to
account for Lorentz’s law, or more generally, for
every law different from that of Langevin?”

[217] The simplest hypothesis and the
first that we should examine, is that these
supplementary foreces admit of a special
potential depending on the three axes of the
ellipsoid, and hence on @ and .

Denoting this potential by F (8, r), and retain-
ing the symbol L for our previous Lagrangian
function, the new expression for our action integral
is

J=[[L+F 1),

and the equilibrium conditions are represented by
the equations

(8/30) (L+F) =0,  (3/ar) (L+F) =0.

[6.8] (81)

If we assume the connection (73), then only the
first of Eqs. (81) needs to be retained, with L
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taking on the expression (75) so that dL/df=
(=mb~'o+~7¢") /by*8™. By (72) and (77"),
o(1) =a,

o (1) =—(2/3)a.  (82)

Therefore, for §=1v, dF/df=—dL/d8 = (m+2) X
a/b6™*3, and hence (the integration constant being
immaterial),

F=—(m+%)a/(m+2)bemt2, (83)

For the Lorentz model [second of Eqs. (74) ] this
is ‘

F=a/3b0. (84)

On the other hand,® if r, 6 are treated as inde-

pendent variables, then by Egs. (71) and (81),

we find for the case where =+ and relation (73)
holds, that

OF [ar=a/b%mte,  OF /a9 =2(a/bgmt3).

[6.97 (85)

One can satisfy these equations by an expression
of the form

F=Areg8, [6.10] (86)
where A, a, 8 are constants. For the case §=v and
(73) one finds then in a few simple steps,

B=2s, s=—(m+2)/(3m+2),

a=3s,

A=a/ab*t, [6.11] (87)

We now note, that sinece the volume of the
ellipsoid is proportional to 7%6?%, it follows from
Eqgs. (86) and (87) that F is proportional to the
volume raised to the power s. But for the Lorentz
model, s=1.

[227 One recovers thus Lorentz’s hypo-
thesis provided one adds a supplementary
potential proportional to the volume of the
electron.

7. Quasistationary Motion

It remains to be seen if this hypothesis on
the contraction of electrons accounts for the
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impossibility of manifesting absolute motion,
and I shall begin with studying the quasi-
stationary motion of an isolated electron, or
one subjected only to the action of other
distant electrons.

By quasistationary motion of an electron one
understands “motion involving sufficiently small
variations of the velocity so that the magnetic
and electric energies due to the electron’s motion
differ little from what they would be in the case of
uniform motion.”

More precisely, and confining ourselves for the
moment to the case of an isolated electron, we can
define this motion in terms of our Lagrangian
function L. When the electron motion is uniform,
i.e., when the velocity, u, of its center of mass is
constant, then I depends only on the u; and on the
shape parameters r and 6. In the case of general
nonuniform motion, L will depend not only on
these five variables but also on their time deriva-
tives of all orders. But for quasistationary
motion “the partial derivatives of L with respect
to the successive derivatives of u;, r, 6 are negligible
compared with the partial derivatives of L with
respect to the quantities u;, r,  themselves.”

“The equations of such motion can be written”:

(8/96) (L+F) = (8/3r) (L+F) =0,
[7.1]

(d/dt) (8L/ous) = — [fudr.

(88)

(89)

Here F has the same significance as in Sec. 6, and
the force f is that produced by all the other elec-
trons of our system.

Since L depends on the u; only through u=
|u ], therefore, retaining the symbol D for the
magnitude of the electromagnetic momentum, we
have,*

OL/0u;= (0L/du) (u:/u) =—D(us/u), (90)

and hence,
~ u,-~Du2 -+ i [7.2] (91)

where we use the dot to indicate differentiation
with respect to .
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In particular, when u; =ud;, then:

— (d/dt) (0L/0u;) = (dD/du)u

(i=1)
(i:‘_),’ 3)7
(92)

which, recalling (89), explains why Abraham calls
dD/du and D/u the longitudinal and the irans-
verse masses, respectively.
In the case of Lorentz’s model we have?
D=—9L/ou=—dL/du. (93)
On the other hand, upon substituting in L for r
and 6 their functions of % as deduced from Egs.
(88), we find that® L=A(1—u?)"?, and by a
proper choice of units,® we can arrange to have
the constant A =1. Therefore, if we set

L=h=(1—u)! (94)

and

M=u(du/dt)=u-u,

we find by Egs. (91) and (89) that our equation of
quasistationary motion is of the form

ha+kMu=F, [7.5] (95)

where?®

F=[fd+. (95)
In proving Eq. (95) we make use of the following
relations implied by Tgs. (93) and (94):
dD/du="h>3, (1/4?) (dD/du) — (D/u?) =h~2.
We now prove the theorem that Eq. (95) is
covariant under Lorentz transformations.
First we note that Eqs. (12) can be written:
( .7 =2, 3) ’ (96)

pud =wi—B,  pui =ui/v

where

p=1—pu, (96/)

and that, therefore,

uh! =h/vy.



Using also the relation3

At =yudt,
we find that
duy' /At = /v,

d Y .. 0
Eq’;i_ — [u.1+ (B!’:)u]ulj (j=2, 3)'

v
By somewhat lengthy but straightforward algebra,
we then obtain the relations:

M’ = — Bk /v*u*+ M /v,
=1 (du’ [3) B -3us’ MY = [ig -+ B2 (uy— 8) M )/ uh

[7.6]
(97)

R (duy fdt) R 3 MY = (ko 2uM ) [uh?
[7.77]

Again, since Eq. (95) implies that F-u=M/h?,
Egs. (19) and (11) with =1, and (96") yield:
Fy = (F1—Bh=3M) /p,

Fi{=Fi/vu (7=2,3).

[7.97 (98)

Combining Kqs. (97), (95), and (98), we see the
truth of our theorem.

We now sharpen this theorem by showing that
among the members of the class of models under
consideration, that of Lorentz is the only one that
satisfies the theorem.

First we observe that if one supposes that L=h
then one finds immediately that one must have
I=1. In fact, with this assumption Egs. (97),
(98), and the primed version of (95) subsist with
the right-hand sides multiplied, respectively, by
4, 12, and 7. If then Eq. (95) is to be identical
with its primed version (i.e., if it is to be Lorentz
covariant) then I=1 is obviously a necessary
condition.

In general, we may of course in proving our
uniqueness theorem restrict ourselves to the
special case 4;=0 (7=2,3) and hence deal with
the equations of motion (92). Introducing the
notation,

dD/du=f(u),

D/u=g(u), (99)
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we have then [recalling Eqgs. (89) and (95"), and
noting that wi=u]:

fu=F, gw=F; (7=2,3), (100)

and for the transformed equations we have:
fydw' /A =Fy =F1(1— ) /Bu=F,/P,

gu)dui/dt' =Fj =F;/Pyu  (j=2,3). (101)

Therefore,
f)t=Lf(u")dw'/dV,
g(u);=Lyug(u'Ydu/d’. [7.11] (102)
But, by Eqgs. (96) and (96),
dut /At =va/v¥?,  dui/dt’ =i;/vu?,
Hence we deduce from Egs. (102) the identity

vy (U) /g(u)=f(U) /f(w),  (103)

where
U= (u—B)/(1—Bu).
By letting
g(u)/f(u) =2(u),
the identity (103) in % and 8, becomes
QU) =2 (w) [+

But for u=0 we have U= —8 and p=1. Hence,

Q(—B) =02(0) /+*=2(0) (1—4). (104)
Since by Eq. (99),

D{u)
udD/du’

Q(u) =

we deduce from the differential equation (104),
setting —B=wu, and £(0) =m™!, that
D(u) =A[u(1—u2)V2]n, A const,
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and hence from Eqs. (99) and (96) that2

g(w) = (4/w) [u/(A—w)"* ],

Au ( u—p )’”
u—p (1-—’!1,2)1/2(1-—,82)”2 :

But by Eqgs. (101) and (100), ¢g(u") =g (u)vu/P.
Hence,

g(u') =

(u_ﬂ) m—1 ( 1 ,_62) —mf? = um——~l ( 1 ___ﬂ2) ~l/2l——2_

This identity clearly implies that m=1, I=1.

[23] Thus, Lorentz’s hypothesis is the
only one which is compatible with the im-
possibility of manifesting absolute motion;
if one admits this impossibility one must
admit that electrons when in motion contract
so as to become ellipsoids of revolution whose
two axes remain constant; one must then
admit, as we have shown in the preceding
section, the existence of a supplementary
potential proportional to the volume of the
electron.

[24] Lorentz’s analysis is thus fully
confirmed, but we can better account for the
true reason of the matter under considera-
tion; this reason must be sought among the
considerations of Sec. 4. The transformations
which do not change the equations of motion
must form a group, and this eannot take place
except when [=1.

Since we must not be able to recognize if an elec-
tron is at rest or in a state of absolute motion, it is
necessary that when it is in motion, it undergoes a
deformation which must be precisely that which is
imposed on it by the corresponding transformation
of the group. '

8. Arbitrary Motion

The extension of. the preceding results to .the
general case of arbitrary motion of an electron is
easily accomplished with the aid of the action
principle developed in Sec. 3. It suffices to add to
the action J given by Eq. (25), “a term represent-
ing the supplementary potential F of Sec. 6,” of
the form

Ji=[ 3 Fdt,
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the > extending over all the electrons of the
system under consideration.

Since the covariance of J under Lorentz trans-
formations has been proved in Sec. 3, that of the
total action, J+Jy, will be established, when this
covariance is shown ito hold for Ji. This is ac-
complished by noting first that inasmuch as for
each electron,

F=wyr,

““wp being a coeflicient special to the electron and =
its volume,” we can write:

Z F= fwodT,

where the integral is extended over all of space and
the function wp ““vanishes outside of the electrons,
and inside each electron it is equal to the coefficient
appropriate to that electron.”’® Thus,

J1 = fwodet.

Now, by Eq. (34) for I=1, dr'dt’ =drdi. Hence,
the equality of Ji and the Loretnz-transformed
action Jy" will be assured provided wy’=wy. But
this is so—

[25] because if a point belongs to an
electron, the corresponding point after the
Lorentz transformation still belongs to the
same electron.?

This proof that J'+J1' =J+J1 provides also an
answer to the question posed at the end of Sec. 1.

[26] If the inertia of electrons is exclusively
of electromagnetic origin, if they are subject
only to forces of electromagnetic origin or to
forces that generate the supplementary
potential F, then no experiment can disclose
absolute motion.

What are these forces that generate the
potential F? They can be evidently identified
with a pressure acting in the interior of the
electron; it is as if each electron were hollow
and subject to a constant internal pressure
{(independent of volume) ; the work of such a
pressure would evidently be proportional to
the change in volume.



Now, by Eqgs. (86) and (87) applied to Lorentz’s
model (m=1),
F=Arg,
where
A=a/3b%,

so that “our pressure is equal to 4, up to a constant
coeflicient, which is moreover negative.”

Let us now evaluate the “experimental mass of
the electron’ (i.e., its rest mass). By Egs. (71),
(82), and (73),

(105)

L=a(1—u*)"?/b,
so that for u<l1,

. L=(a/b)[1— (u2/2)],

and conseqeuently “the mass whether longitudinal
or trangverse, will be a/b.”

Since @ is a ‘“numerical constant,” it follows
from Eq. (105) that “the pressure which is
generated by our supplementary potential is
proportional to the fourth power of the experi-
mental mass of the electron.”

“Since the Newtonian attraction is propor-
tional to this experimental mass, one is tempted to
conclude that there exists some relationship
between the causes which generate gravitation
and this supplementary potential.”

1 H. M. Schwartz, Amer. J. Phys. 39, 1287 (1971).

2 P. Langevin, J. Phys. 4, 165 (1905). Poincaré refers to
this paper at the end of this section: “I shall content myself
with referring for further details to the article of Mr.
Langevin in the Journal de Physique (the year 1905).”
He does not mention earlier derivations relating to Egs.
(50), but references to Lienard, Wiechert, and Schwartz-
schild are contained in Langevin’s paper.

3 A more literal translation of Poincaré’s molécule in the
present context would be “particle,” but ‘“particle of the
electron’’ sounds no less strange to us. What is meant here,
of course, is an infinitesimal element of charge at the
point under consideration.

4 We employ the repeated-indices summation convention,
Free Roman indices range over 1, 2, 3.

Sdet || 85;4-a:b; || =esqn(8s1+asb1) (8j2+a:b2) (5ra+arbs)

=1+4asb;.

¢ Poincaré uses the symbol u instead of ¢, and later
[in Eq. (50’) ] he introduces the symbol u; for the electron
charge, although the symbol ¢ for that quantity was already
then used by most investigators in electrodynamics (in-
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cluding Lorentz and Langevin). It should be noted that
“electron” meant then an elementary charged particle of
either sign.

7 See Ref. 6.

8 Equations [5.47] in the original text are written for the
special case B=(8, 0, 0), when they follow from Egs.
(17) and (9): The first set, namely, B; =0, Bs ;= F8B;,s
is deducible directly from the transformation (17) and its
inverse, while the second set is obtained by using these
equations together with Eqs. (17) and (9). The general
form given in (51) can be proved easily by using the
general transformation formulas corresponding to Egs.
(17) and (9).

9 The electron’s motion may be thought of as represented
by the equation £ =a sinwt with aw? finite and ¢ infinitesi-
mal,

1o H, Hertz, Ann. Phys. Chem. 36, 1 (1888).

1 By Eqgs. (17) and (54),

E'.r =l—2[E:c’Yl (rz _37') +v (Ey _ﬂBz) l'ry +y (Ez‘*"BBy) lrz:l
=y H{E-r—p[rE,— (BX1): 1},

and the first of Egs. (55) follows from (53), remembering
that r=rn. The second of Eqgs. (55) is obtained in similar
fashion.

12 The contents of the present section deal not with new
results, but with methods of proving old results. The
preceding method serves to illustrate the application of
Lorentz transformations. The following method shows the
flavor of Poincaré’s mathematical style. It is therefore
presented verbatim (except for change in mathematical
notation).

13 The italics are not in the original. Note also that the
statement [177] must have reference to the center of mass
of the electron, unless the electron is assumed to be in some
sense absolutely rigid.

14 We arrive by means of our Lorentz transformation to
the equation following Fq. (9'), which reduces to Eq. (56)
when 41 =8, ug=u;=0.

15 Cf, the last remark in Ref. 13.

16 Qur retention in (59) of Poincaré’s symbols 4, B need
cause no confusion with the magnitudes of the vectors
A, B (see Pt. I, Table I).

17 The Jacobian d(z') /8(x) for the transformation (9)
when ¢ =const is vI3.

18 That is, the field Lagrangian. Poincaré’s symbol for
this quantity, H, is even in conflict with his own symbol
for'd, (see Pt. I, Table I). )

18 Unfortunately, Poincaré gives no indication as to how
he arrived at these relations, nor any references. To present.
here any discussion of these developments would be in-
consistent with the avowed purpose of the present work, as
stated in the introduction to Part I. Perhaps the most
useful single reference in this connection is M. Abraham,
Theorie der Elektrizitit (B. G. Teubner, 1905), Chap. 3,
Vol. 11, Eqgs. (64) correspond to Egs. (IITa) and (IIIb)
in the latter book. One must note that Abraham’s and
Poincaré’s definitions of the Lagrangian function differ in
sign, and bear in mind the differences in the underlying
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basic assumptions. One must also remember that Poin-
caré’s discussion in the present and in the following two
sections presupposes (as does also Abraham’s discussion)
that the electron’s mass is purely electromagnetic.

2 The converse is also true, so that Egs. (64) and (65)
are actually equivalent. In fact, by the two equations in
(64), dE /dB = —Bd2L./dp*=pdD /dB, i.e., dD/dG8 = — 2L /dB?
so that D= —dL/d8-}-const=(E—L)/84const. But
(E—L)/8=2C/8—0 as 8—0 [by (60) and (59) since F is
finite]; therefore, since D—0 as f—0, the constant vanishes
and we get the first of Eqs. (65). Then the second of
Eqgs. (65) is equivalent to the first of Egs. (64). It follows
then conversely that Eqgs. (65) imply the first of Egs. (64),
and that the latter equation together with the first of
Eqgs. (65) imply the second of Eqgs. (64).

21 The second of Eqs. (65) is identically satisfied by
virtue of the relations (63), but applying the latter to the
first of Eqs. (65), we get the equation:

0=D+dL/dB
A'TI(4By4-3dv1/dp) +-3v1dl/dB]

=A'(Ipy-+3v"1dl/dp),
or,

dl/l=~gdp/3(1—p%).

Hence I= (1—8%)1¢ the multiplicative integration con-
stant being unity, since obviously we must have [=1
when 8 =0.

22 See Ref. 17.

28 M. Abraham, Gottinger Nachrichten 1, 20 (1902),
p- 37. See also Ref. 19.
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* Bearing in mind also that a purely electromagnetic
origin of the electron’s inertia is being assumed.

% The purpose of this treatment is to obtain F explicitly
in terms of r and 6 so as to arrive at the result cited in [22].
The result (84) is in fact obtained from the general ex-
pression (86) [and (87)] when the conditions for the
Lorentz model are introduced. Note also that the result
(83) is consistent with Langevin’s model involving no
supplementary potential [see third equation in (74)7].

2 See Ref. 19. If we denote the electromagnetic momen-
tum by P, then D=| P |, while in See. 6, D = P,. The rela-
tion, D= —0L/du, introduced in (90), is seen to be
equivalent to the first equation in (80"), when we note that
u can be identified there with (8, 0, 0).

¥ See equation below (80’) and the second equation in
(807).

2By Eqg. (73), since 8=+ and m= —1 for Lorentz’s
model.

2 As is shown in Sec. 8, A =a/b=rest mass of the elec-
tron.

% That we can use this notation and also apply (as we do
presently) the transformation Eq. (19) without contradic-
tion with the meaning of the symbol F given in Table I,
follows from assumption (10).

# By (9) forl=1, &’ =v(dt—Bdzx) =~vdi(1—Bu,).

% Noting the identity:

(1—pu)2— (u—p)*= (1—u* (1—5%).

# The symbol wg is thus now used as a é-type function.

3 This appears to involve the tacit assumption of the
absolute invariance of the coefficient wo, similar to the
invariance stated in (10) for electric charge.
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This is the concluding part of a modernized rendition of
Poincaré’s Rendiconti paper on relativity, of which the
first two paris appeared in the November 1971 and June
1972 1ssues of this Journal. It covers the last section of that
paper, in which Poincaré develops in masterful, even if
incomplete, fashion, a generalization of Newtonian gravi-
tational theory, tnvolving retarded action-ai-a-distance
interaction that is covariant under the Lorentz group. As
the first such attempt it is of obvious historical significance.
In addition, just as the first two parts, so this part, foo,
contains material of independent interest to the historian
of the genests of special relativity.

For the purpose and scope of the present
modernized rendition of Poincaré’s Rendiconti
paper on relativity, and for the notation that is
being employed, the reader is referred to the
introductory remarks to Pt. 1 of this study
[Amer. J. Phys. 39, 1287 (1971) ]. The additional
remarks concerning notation made in the introduc-
tion to Pt. II [Amer. J. Phys. 40, 862 (1972)]
are also applicable here. Because this part of
Poincaré’s paper is of particular interest in con-
nection with its methodological aspects, including
an anticipation of the four-vector calculus, certain
relevant portions of the original text are repro-
duced here more closely than would have been
otherwise indicated.

As for the notes or comments—which, as in the
earlier parts, are either given in footnotes or
enclosed in braces in the text—these are intended
in general, ag previously, to serve only as explana-
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tion of the original text. In addition, there are
included here a few footnotes that point out
nontrivial misprints in existing French and
English literal reproductions of Poincaré’s paper
and a footnote containing references to later
work on the subject of Poincaré’s pioneering
investigation in relativistic gravitational theory.

9. HYPOTHESES CONCERNING
GRAVITATION

[277 “Thus the impossibility of making evident
the existence of absolute motion would be fully
explained by Lorentz’s theory, if all forces were of
electromagnetic origin.”

But there exist forces, such as gravitation,
which are not of electromagnetic origin.

(28] “Lorentz was therefore obliged to com-
plete his hypothesis by supposing that forces of
any origin, and in particular, gravitotion, are
affected by a translation (or, if one prefers, by a
Lorentz transformation) in the same way as are the
electromagnelic forces.”

It follows from this assumption, as applied to
gravitation, that we can no longer retain the
Newtonian theory involving an attraction between
two bodies that depends only on their relative
position at each instant under consideration. The
gravitational attraction must also depend on
“the velocities of the two bodies.” In addition,
it is to be expected that “the force which acts on
the attracted body at an instant ¢ depends on the
position and velocity of that body at the instant ¢;
but also on the position and velocity of the ai-
tracting body, not at the instant #, but at an
earlier instant, as if it took gravitation a certain
time to propagate itself.”

The equation for this propagation must there-
fore be of the form

6t x,u,m) =0, [9.1] (106)
where, x=X;—X,, X, is the position vector of
attracted body at time ¢y, x; is the position vector
of attracting body at time &, =61, and u, uy are



the velocities of the attracted body at time ¢ and
of the attracting body at time .

Let now F represent the force exerted upon the
attracted body at the time #,.! It must be expressed
in terms of

[9.2] (107)

t; X, u, uy

and the following conditions must be satisfied:

(1) Equation (106) must be covariant under
the Lorentz group.

(2) F must transform under the Lorentz
transformations (9) in the same way as the
electromagnetic force denoted in Sec. 1 by the
same symbol, i.e., according to Eqgs. (19).

(3) “When the two bodies are at rest one must
regain the usual law of attraction.” [Relation
(108) becomes then, of course, irrelevant. ]

These conditions cbviously do not suffice. The
following additional ones naturally come into
consideration:

(4) “Since astronomiecal observations do not
seem to disclose significant deviations from
Newton’s law, we shall choose the solution that
deviates least from this law when the velocities of
the two bodies are small.”

(5) “We shall attempt to arrange for ¢ to be
always negative; for if, in fact, one conceives of
the gravitational effect as requiring a certain time
for its propagation, it is hard to understand how
this effect could depend on the position which has
not yet been atiained by the attracting body.”

[297 “There is one case when the indeterminacy
of the problem disappears; this is the case of
relative rest of the two bodies; i.e., when u=uy;
this then is the case which we shall examine first,
on the assumption that these velocities are con-
stant, so that the two bodies are involved in a
common state of rectilinear, uniform, transla-
tional motion.”

By choosing for the direction of our z; axis that
of the ecommon velocity of our bodies, so that
u;=0 (j=2,3), then taking =wu in Egs. (9),
the transformed reference frame 8’ becomes the
rest frame of the bodies,? and consequently by
condition (3), we have to within a constant factor,

Fr=—x'/r®, rt=x'2

[9.3] (108)
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In applying Eqs. (19) (where it is now being
tacitly assumed that pertinent equations in Pt. I
are taken with [=1), we note that Eq. (11) now
gives

P /p=y(1—Bu) =vy(1—42) =y,

and that F.-u=gFy, so that the transformation
equations for F reduce to

F/=Fy, Fj=~F; (7=2,3).

Hence, using Egs. (108) and (9), we find

Fi=—ny(zi—ut) /r%,  Fi=—a;/yr’
(7=2,3) [94] (109)
or
F=vV, V=1/y’, [9.4bis] (109")
where

72 = (2 — ut) 2Pt gt (109"

This result would appear to depend upon our
choice of an hypothesis concerning ¢, “but it is
easy to see that x;—u,t, which alone appear in our
formulas, do not depend on £.7?

We also see that the force acting on the at-
tracted body is normal to an ellipsoid whose
center is at the position of the attracting body.

“In order to make further progress, it is
necessary to look for the wnvariants of the Lorente
g,)/.a‘up'Jl

“We know that the transformations of this
group (taking I=1) are the linear transformations
which do not change the quadratic form x*>—¢2’
But this form can be written as apz,+ (48)2=
Zal, (=1, 2, 3, 4), introducing the notation
24=11.5 1t can therefore be seen, since the quad-
ruplets (z.), (dz,), (dx1,)® transform in the same
way under Lorentz transformations, that these
quadruplets may be considered as ‘‘the coordinates
of three points P, P/, P” in four-dimensional
space,” and that ‘“the Lorentz transformation is
but a rotation of this space about a fixed origin.
It follows that the only independent invariants
are “the six distances of the three points P, P’, P”
from each other and from the origin”; in other
words,” the six scalar products z,t., Z.dz., ete.,
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that can be formed from the four-vectors cor-
responding to P, P’, and P".

But what we actually need are not these in-
variants themselves but the invariant combina-
tions which are homogeneous of degree zero with
respect to the dz, and the diy,, since what we
must find are suitable “invariant functions of the
variables’”’ (107). There are only four such com-
binations, namely,?

Lala; (t—x-u) (1_u2)—1/2?
(t—x-u) (1—u?) 3

(1—u-u)[(1—u?) (1—-u?) T2 [9.5] (110)

Turning now our attention to the transforma-
tion properties of the force components, we are
guided first by Eqgs. (18), which show that if we
write f-u=f, then

(.7.227 3)
[9.6]

H=v(f1—8f), [i=f;

' =7 fo—Bf1), (111)

so that f, (=0, 1, 2, 3) are the components of a
(real) four-vector. On the other hand,

F,=f./p (»=0,1,2,3; Fo=F-u), (112)
and by Eq. (11) {I=1),
p/p'=1/y(1—Bur) =di/dt". (1127)

Hence (1—u?)~12F, are the components of a
four-vector, and by reasoning similar to that used
previously we find the additional four invariants®

(Fr—F)(1—w),  (F-x—Fyf) (1—u?)~7,
(Fru—Fo)[(1-u?) (1—us) ]2,

(F-u—Fo) (1—uw®), [9.7] (113)
of which the last vanishes identically by virtue of
the definition of Fy [in Eq. (112)].

Wenow have to satisfy the following conditions:

(a) The left-hand side of Eq. (106) must be a
function of the four invariants (110).

(b) The invariants (113) must be funetions of
the invariants (110).

(¢) “When the two bodies are in a state of
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absolute rest, F must have the value deduced from
Newton’s law, and when they are in a state of
relative rest, it must have the value deduced from
Eqgs. (109).”

As to condition (a), “many hypotheses can
obviously be made, of which we shall only examine
two” [given by the vanishing of the first two
invariants in Eq. (110) T

(A) X=12=12, (B) x-u=t.

At first sight it might appear that (A) has to be
rejected on the basis of Laplace’s proof that the
propagation speed of gravitation, if not infinite,

must exceed that of light—

7307 “But Laplace has examined the hypothesis
of a finite propagation velocity ceteris non mutatis;
here, on the contrary, this hypothesis is entangled
with many others, and it can transpire that there
exists between them a more or less perfect mutual
compensation of the kind for which the applica-
tions of the Lorentz transformation have already
provided us with so many examples.”

At the same time, hypothesis (B) must be
rejected because although it agrees with Laplace’s
result, it can 1n some instances conflict with
condition (5).° Hypothesis (A), on the other
hand, always agrees with that condition, upon our
choice of the solution

t=—r. (114)
We therefore adopt hypothesis (A).

Combining now conditions (b) and (¢) “for
the case of absolute rest, the first two invariants
(113) must reduce to F? and F . x, or, by Newton’s
law to

g4

, —rt (115)

on the other hand, by hypothesis (A) [i.e., by
Eq. (114) ] the second and third invariants (110)
become

(—r—xem) (1—u) e,

(116)

(—r—x-u)(1—u?)717

1.e., for absolute rest
(117)

—r,



We can therefore assume, for example, that the
first two invariants (113) reduce to'

(1—a?) (r+x-uy) ™,

— (1 —uad) 2 (r+xu)

but other combinations are possible.”

“Tt is necessary to make a choice between these
combinations, and we require also a third equation
in order to determine F.” We take now into
account condition (4). First we note that if we
neglect the squares of w; and w, and use Eg.
(114), then the invariants (110) and (113)
become, respectively,

(118)

0, —r—x-u, —r—X-1y, 1,

and

F?, F-(x+r), F(u;—u), 0. (119)

But we must also bear in mind that in the
Newtonian theory we have =0, where ¢ is defined
in connection with Eq. (106), so that in the
present approximation we can neglect higher
powers of { than the first, and we may thus
“proceed as if the motion were uniform.” Con-
sequently,?

x=x%:(0) Fuid, r{r—r) =X-uy,

where x,(0) is the position vector of the attracting
body relative to the attracted body at the time #,
r=|x(0)], and r= | x| [See (A)]; or by Eq.
(114),

x=x%(0) —uyr, r=ri—X-u;. (120)
Eqgs. (118) and (119) thus become
0, —r+ X (mp—u), -1y, 1 (121)

and [writing now x; for x,(0)]

F2) F. [X1+ (u—~u1)7"1], F- (lll_u) ’ O:

(122)

where in the second of expressions (122) we have
replaced r by 7y, since it is multiplied by u—u,.
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On the other hand, with F given by Newton’s
law, the expressions (119) take the form
r, —rrt—xe (u—u) i, X (u—w)rd, 0.
“If then we denote the second and third invariants
(110) by A and B, and the first three invariants
(113) by M, N, P, we shall satisfy Newton’s law
to within terms of the second order in the velocities
by putting’’*?
M =B,

N=A4B—  P=(A-B)B—

[9.8] (123)

This solution is, however, not unique: since

(A~ B)2and C'—1, where € is the fourth invariant
(110), are of the second order in the velocities,
“we may add to the right-hand sides of each of
Egs. (123) a term”
(C-D)fi(4, B,C)+(A—B)fe(4, B, (), (124)
where fi and f, are arbitrary functions. On the
other hand, the solution (123) as it stands is not
acceptable, because it can lead in some cases to
nonreal values of the F;, since the quantities M, N,
P are functions of the F; as well as of Fo=F-u.

“In order to avoid this inconvenience, we shall
proceed in a different manner.” We observe that
the invariants (110) can be put [using Fq. (114) ]
in the form

0, A=—y(rt+xu), B=-n(+zuw),

C=ym(1—u-u),
where we have introduced the symbols

Yo=(L—w)=2,  y=(l—u?)7, (124
“by analogy to the notation v = (1—43?)~*/? which
appears in the Lorentz transformation,” and that
“the following systems of quantities

(X7 t= _,") ’ ('YOF) 70F0); ('YO“: 'YO)) ('Yluly 'Yl)
undergo the same linear transformations when

they are subjected to the transformations of the
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Lorentz group. We are then led to put”

F,. = a'yO"‘x,.-{- bup+ C’YO—I'Ylulv

(»=0,1,2,3; uo=up=1), [9.9]

(125)
which is obviously a four-vector provided a, b, ¢
are four-scalars (i.e., Lorentz invariants).

“But for the compatibility of Eqs. (125) it is
necessary {in order to agree with the definition of
Fy [see (112)7]} that

F'u—F():O,

which becomes upon replacing the F, by their
values (125) and multiplying by v '*:
aA+b+cC=0. [9.10] (126)
“What we want is that if we neglect in com-
parison with the square of the velocity of light,
the squares of the velocities u., as well as products
of accelerations and distances, then the values of
the F, remain in agreement with Newton’s law.”’1s
To this order of approximation, we have

C=1,
B=—-T1.

Yo=v1=1,

= ——7'1+X' (ul—u),

If we make then the simple choice [compatible

with Eq. (126) ]
b=0, c=—aA/C,

we find, using Fgs. (120), that the three-vector

part of Eq. (125) becomes

F=a(x—Aw) =a(x+ru) =ax,(0).

Since by Newton’s law, F=—x;(0) /r, “we must
choose for the invariant a the quantity which
reduces to —r~% within the adopted order of
approximation, that is B—%.” Equations (125)
agsume then the form

F, =B, — vy AB=C g, [9.117 (127)
[31] “We see at first that the corrected attraction
consists of two components; one parallel to the
vector joining the positions of the two bodies, the
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other parallel to the velocity of the attracting
body.”

“Let us recall that when we speak of the posi-
tion or the velocity of the attracting body, we
refer to its position or velocity at the instant the
gravitational wave leaves it {i.e., at the retarded
time, #} ; whereas the position and velocity of the
attracted body are referred to the instant when
the gravitational wave reaches it, this wave being
assumed to propagate with the velocity of light.”

“T believe that it would be premature to wish to
push the discussion of these formulas any further;
I shall therefore confine myself to a few remarks.”

1. “The solutions (127) are not unique’ since
we can add to the common factor B3 the quantity
(124); “or not take b =0, but add arbitrary terms
to a, b, ¢ provided they satify condition (126)
and are of second order in u, as far as a is con-
cerned, and of the first order as far as b and ¢ are
concerned.”

2. The three-vector part of Eq. (127) can be
written'®

F=vB3C ' [(1—u-u)x+ (r+x-0)u ],

[9.11bis] (128)

and the quantity in brackets can be written as

(x+ru)+[ux (uyxx)], [9.12] (129)

so that F appears to consist of two components,
the first having ‘“‘a vague analogy to the me-
chanical force due to the electric field,” and the
second to “the mechanical force due to the
magnetic field.” This analogy can be improved by
getting rid of the factor C—* in Eq. (128), the
resulting expression depending then only linearly
on u. This can be done by applying remark 1
“to replace B~ by CB~%in Eqgs. (127).'7
“Setting now
vi(x+ru) =\,  wm(wxx)=N, [9.13]
it follows, since C has disappeared from the
denominator of (128), that

F=B-\+B-3ux\), [9.14] (130)



and one also has (as is easily checked)
[9.15]

Then X or B—*\ is a kind of electric field, while A’/
or, rather B—3)\, is a kind of magnetie field.”

3. “The postulate of relativity would force us to
adopt either the solution (127) or the solution
(130), or any one of the solutions that can be
deduced from them by using remark 1. But the
primary question is whether they are consistent
with astronomical observations. The deviation
from Newton’s law is of the order of «?, that is,
10 000 times smaller than if it were of the order of
u, that is, if the velocity of propagation were equal
to that of light, ceteris non mutatis.’® It is therefore
permissible to hope that it will not be too great;
however, only a more penetrating discussion could
tell us that.”™s

Br=\2— )",

1 The original text contains here the phrase ‘“‘at the
instant ¢,”’ a misprint which has not been corrected in either
the French or English (partly edited) reproductions of the
original paper, namely, those contained in H. Poincaré,
La Mécanique Nouvelle [conférence, mémoire et notes sur la
théorie de relativité. Introduction de m. Eduward Guillaume ]
(Gauthier-Villars, Paris, 1924), and in C. W. Kilmister,
Special Theory of Relativity (Pergamon, New York, 1970).
These will be referred to by the respective symbols (G)
and (K).

2z The original statement here reads: ““the two bodies will
be at rest after the transformation,” i.e., the bodies will be
in a state of absolute rest, this being clearly implicit in the
wording of condition (3).

3 Since assumption (3) is being used, we could simply set
t=01in Egs. (109), or (109’) and (109").

4 See the discussion following the third paragraph after
Eq. (40).

5 No such symbol is introduced in the original text.

¢ The original symbols 8.z, 81y, 82z and & are replaced
here by dx; and df;. The convenient symbol & to represent
to+¢ is not introduced in the original text, but from its
context it is clear that §;x =34z, etc., in Poincaré’s notation
for differentials. The reproduction of this notation in the
present connection in () and (K) (see Ref. 1) is incon-
sistent with the editing of Poincaré’s notation for deriva-
tives found elsewhere in these references.

7 We introduce at this point the convenient four-vector
formalism. Had Poincaré adopted the ordinary vector
calculus that was already in use by theoretical physicists—
for example, Lorentz and Abraham—for some time, he
would have in all likelihood introduced explicitly in the
present connection the convenient four-dimensional vector
caleulus.
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8 The second expression in (110) can be written
yo(t—X+1) (vo—vo?u?) "2, where v, is defined later in
(124’). Bince (o, vou) is a (real) four-vector (in fact, the
velocity four-vector, in modern terminology), the invari-
ance of this expression—and in a similar way, of the last
two expressions—is apparent.

¢ Compare Ref. 8. The proof in the original text is based
directly on Eq. (112’), which implies that F, and 4, (u¢=1)
transform in the same way under Lorentz transformations
(as four-vectors except for the missing factor ).

0 There is a misprint here in the original text, which
reads ‘‘but in certain cases, ¢ could be negative’” (instead of
“positive’’), which has been reproduced in (G) and (K).

11 By choosing the second expression in (116) to com-
pare with (117), and then taking account of (115).
The misprints “invariants (4)”" [for “invariant (7)”7] is
reproduced in (K) and changed to the wrong “invariants
(5)” in (G).

12 The second equation follows from the first, when higher
powers than the first in the material velocities are neglected.
We introduce here temporarily the symbol z;(0) to replace
the symbol z; in the original text, because the latter symbol
has been employed here previously in connection with
Eq. (106).

13 There is a misprint in (K) in the second equation of
[9.8].

U With g-b=aby—abd: (=a,b*), we have v?F-u=
ayer-u-+byusu-+cyoyiurru, and by (110), vyomeu=A4,
vyoyrureu =C, while vo?u-u as the ‘‘square’” of the “four-
velocity’” vou is 1 (remembering that we are using units
with ¢=1.)

15 This is a more precise statement of condition (4)
introduced in the beginning of this section.

16 Recalling that 4 =ve(t—x-u), C=voy1(1—u-u), and
using Eq. (114).

1 By taking f1=B"% and f,=0 in expression (124).

18 This sentence is rather obscure. Tts meaning becomes
clear when we read the corresponding part of the con-
cluding paragraph in Poincaré’s note on the subject of his
Rendiconti article [Compt. Rend. 140, 1504 (1905)]:
“The deviation from the ordinary law of gravitation is, as
I have said, of the order of £2 {i.e., ¥?}; if one only assumes,
as was done by Laplace, that the velocity of propagation
is that of light, this deviation would be of the order of £,
that is, 10 000 times larger.” (Cf. [307).

18 Such a discussion was presented a few years later by
W. de Sitter [Monthly Notices Roy. Astron. Soc. 71, 388
{1911) ] and quite recently, as part of a general discussion
of special relativistic theories of gravitation, by G. J.
Whitrow and G. E. Morduch [Nature 118, 790 (1960);
also, “Relativistic Theories of Gravitation” in Vistas n
Astronomy, edited by A. Beer, Editor, (Pergamon, New
York, 1965), Vol. 6, pp. 1-687. A brief summary of special
relativistic theories of gravitation is contained in H. M.
Schwartz, Iniroduction to Special Relativity (McGraw-Hill,
New York, 1968), Appendix 7B (errata sheets can be
obtained from the author).
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