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Abstract
This paper looks at how inhomogeneous spacetime models may be significant
for cosmology. First it addresses how the averaging process may affect large-
scale dynamics, with backreaction effects leading to effective contributions
to the averaged energy–momentum tensor. Second, it considers how local
inhomogeneities may affect cosmological observations in cosmology, possibly
significantly affecting the concordance model parameters. Third, it presents
the possibility that the universe is spatially inhomogeneous on Hubble scales,
with a violation of the Copernican principle leading to an apparent acceleration
of the universe. This could perhaps even remove the need for the postulate of
dark energy.

PACS numbers: 98.80.Jk, 04.25.−g

1. Introduction

The standard models of present day cosmology are perturbed FLRW (Friedmann–Lemaı̂tre–
Robertson–Walker) models. These models, developed by Einstein, de Sitter, Friedmann,
Lemaı̂tre, Robertson, and Walker in the period from 1917 to 1935, are exactly spatially
homogeneous and isotropic, with an implied smooth fluid approximation; an early standard
reference on their properties is by Robertson [111]. The main developments since then
are, first, consideration of much more complex matter content than considered at that time,
in particular considering inclusion of background radiation interacting with multiple matter
components and scalar fields, allowing in particular an inflationary early epoch; second, and
consequent on this, a sophisticated history of the physical evolution of the contents of the
universe, including in particular nucleosynthesis and matter–radiation decoupling; and third,
following the pioneering work of Lifschitz, the extension of these models to perturbed models,
where linearized structure formation and its effects on the background radiation can be studied.
Observational relations can be calculated in these models and compared with astronomical
data, confirming that they give good physical models that account satisfactorily for these
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observations. Summaries are given in many texts, e.g. Dodelson [45], Peters and Uzan [106],
Ellis, Maartens and MacCallum [61].

The basic model is very successful, but has major mysteries: particularly the nature of dark
matter on the one hand, and the nature of the dark energy causing acceleration of the universe
at recent times on the other. However, like all models, it is an idealization: it represents the
background model and linear perturbations around it very well, but the real universe has a
nonlinear structure and voids at scales smaller than the Hubble scale [66], which are not well
represented by these models.

The FLRW model is a large-scale approximation to these nonlinear structures that is
supposed to represent the result of global averaging of inhomogeneities. There are three key
issues here:

• local inhomogeneities may affect the averaged large-scale dynamics,

• local inhomogeneities affect photon propagation, and so may affect cosmological
observations,

• maybe the universe is after all not spatially homogeneous on the largest scales and is better
represented at late times by a Lemaı̂tre–Tolman–Bondi (LTB) spherically symmetric
model, where we are situated near the centre of a Hubble scale void.

These concerns, which are not mutually exclusive, gain traction because of the mysterious
issue of dark energy, whose nature is completely unknown. So the question is not just whether
inhomogeneities may significantly affect the interpretation of observations in cosmology; it is
whether they can affect the need for dark energy, or at least significantly affect the concordance
model parameter values. In brief: is inhomogeneity important for cosmology itself, apart from
being central to the study of structure growth?

These are the issues I shall introduce here. There is a large literature on these topics,
so I can only refer to representative publications on them in the following sections; most of
the relevant papers will be mentioned in the further articles in this focus section. Note that
this is not a paper on the use of inhomogeneous models to explore structure formation in the
expanding universe: that is a separate, though related, issue.

1.1. Preliminaries

The Einstein field equations (EFE) algebraically determine Rab from the matter tensor Tab:1

Rab = Tab − 1
2 T gab + �gab ⇒ R = − T + 4 � . (1)

When the matter takes a ‘perfect fluid’ form

Tab = (μ + p) ua ub + p gab ⇒ T = − (μ − 3p) (2)

with μ the total energy density and p the isotropic pressure, the Ricci tensor expression is

Rab = (μ + p) ua ub + 1
2 (μ − p + 2�) gab ⇒ R = (μ − 3p) + 4 � . (3)

This is necessarily the case in a FLRW model. The cosmological constant � is equivalent to
a Ricci tensor contribution (3) with μ� + p� = 0. That is, one can represent � either on the
left-hand side of the EFE as in (1) or on the right-hand side of the EFE as a fluid (2) with the
equation of state p = −μ.

1 Geometrized units, characterized by c = 1 = 8πG/c2, are used throughout.
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2. Backreaction effects

2.1. The basic idea

The concept of backreaction from smaller to larger scales was developed in a paper by Brill
and Hartle [17] in the context of John Wheeler’s idea of geons. It was extended to the
case of gravitational radiation in two beautiful papers by Isaacson [77, 78]. He envisaged
high-frequency waves superimposed on a slowly varying background:

gμν = γμν + εhμν, ∂γ � γ /L, ∂h � h/λ, (4)

where L is the lengthscale of variation of the background metric and λ that of the gravitational
waves superimposed on the background. Then

Rμν(γ + εh) = R(0)
μν + εR(1)

μν + ε2R(2)
μν + ε3R(3+)

μν (5)

where R(0)
μν = R(0)

μν (γ ) and the others are functions of hμν . Thus, if the actual spacetime is
empty: Rμν(g) = 0, the background metric is not that of an empty spacetime: R(0)

μν �= 0, and
there is an effective matter term on the right-hand side of the EFE. One finds R(1)

μν = 0 and

R(0)
μν − 1

2R(0)γμν = −8πT eff
μν , (6)

T eff
μν = ε2

8π

(
R(2)

μν − 1

2
R(2)γμν

)
(7)

so the gravitational wave appears as a source of the background. This is backreaction from
the small-scale structure to the large-scale structure.

This illustrates the basic backreaction proposal: coarse-graining microstructure results
in effective matter components at macro scales that can influence the macro (coarse-grained)
dynamics. The issue was taken up inter alia by Szekeres [118], who showed that this
averaging effect could be expressed in a weak-field polarization formalism in analogy with
the electromagnetic case, by MacCallum and Taub [97] who derived Isaacson’s results using
a two-time Lagrangian formalism and by Noonan [105] who extended Isaacson’s formulation
to include matter (an astronomical ‘medium’).

2.2. Non-commutativity of EFE and averaging

The basic point is that averaging the geometry and calculating the field equations do not
commute [57, 59]. We use angle brackets to denote averaging over a suitable volume V, so
gab ≡ 〈gab〉 is the background metric with inverse gab given by gabgbc = δa

c , and indices
should be raised and lowered using the full metric gab, gab. Then

gab = gab + δgab gabgbc = δa
c , gab = gab + hab (8)

shows that

(gab + hab)(gbc + δgbc) = δa
c (9)

so gab �= 〈gab〉 and hab �= δgab ≡ gaegbf (δgef ). Consequently, the Christoffel symbols gain
extra terms relative to the averaged Christoffel symbols: 
a

bc = 

a

bc + δ
a
bc and the Ricci

and Einstein tensors in turn gain extra terms:

Rab = Rab + δRab ⇒ Gab = Gab + δGab ; (10)
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hence, the averaged EFE gain an extra term:

Gab = Tab + �gab ⇒ Gab + δGab = T ab + �gab. (11)

These extra terms are effective matter terms in the large-scale field equations, consequent on
the coarse-graining of small-scale inhomogeneities; this is called the backreaction from the
smaller to the larger scales, and is consequent on the fact that coarse-graining (or averaging)
does not commute with calculating the EFE from the metric tensor:

Gab = T̃ab + �gab, T̃ab := T ab − δGab, (12)

where T̃ab is the effective coarse-grained source term, the second term on the right being
the effect of matter averaging and the third term the geometric backreaction effect. The
Isaacson gravitational radiation calculation summarized above is a specific example (a vacuum
spacetime with a rapidly varying gravitational wave appears to have an effective matter content
when viewed on larger scales).

In principle, carrying out that calculation is straightforward but very complex. However,
to be certain of the result, one needs to average in the real universe, not the background
spacetime. The basic problem then is that averaging involves integration of tensor quantities
over a spacetime volume, and so is not a well-defined tensorial operation: changing the
coordinates will change the result in an arbitrary way. One can try to handle this by:

1. defining a covariant averaging of tensors via bitensors, or
2. using only field equations involving averaged scalars, perhaps involving a convolution

rather than simple averaging, or
3. carrying out the calculation in a weak-field approximation where the integrals can be

well defined in a highly symmetric background spacetime, and the difference between the
integral in the background spacetime and the real spacetime is negligible, or

4. choosing a uniquely defined physically motivated coordinate system in the fully nonlinear
spacetime.

All have been tried. There are problems in each case:

1. there is no uniquely defined usable bitensor, as the Synge parallel transport bitensor does
not work (it leaves the metric tensor invariant);

2. it is not easy to find well-defined scalars that fully define the geometry and dynamics in a
generic case;

3. the linearized procedure may not accurately reflect the needed integral in the real
spacetime;

4. one is breaking general covariance in this procedure; one has to motivate that the result is
physically meaningful.

2.3. Cosmological applications: fitting and averaging

The application of the idea of backreaction to cosmology was raised in [57], see also [64], and
then taken up inter alia by Futamase [8, 67, 68], Stoeger et al [116, 136], and particularly by
Buchert and collaborators, first in the Newtonian case [18] and then in the GR case [19]. The
implications for cosmology have been discussed more recently by Kolb, Matarrese, Wiltshire,
Räsänen, Sussman, and others.

The key point from the discussion above is that backreaction from small-scale
inhomogeneity to the large-scale geometry can generate a dynamic effect in the effective
Friedmann equation for the cosmology, allowing an acceleration contribution due to
backreaction from ‘small-scale’ inhomogeneities. This has a potential effect on cosmological
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parameters [20, 22]; the question is whether it is large enough to give a significant contribution
to dark energy. Kolb and Wiltshire propose that it can provide a sufficient source of all the
effective dark energy, leading to the possibility of concordance cosmology without �. In
contrast, as discussed below, many others deny that the effect is important.

The further issue that arises is that while some form of averaging process is in principle
what one should do to arrive at the large-scale geometry of the universe on the basis of
observations, in practice what is normally done is the inverse. One assumes a priori a FLRW
model as a background model, and then uses some form of observationally based fitting
process to determine its basic parameters [64]. This in effect defines a mapping from the
smooth background model into the perturbed more realistic space time, which then defines
the specific perturbations that occur about the background model [60], for if you change the
fitting—what is often called the —you change the perturbations.

Now there are many ways one can conceive of to perform such a fitting, and indeed
averaging is one of them: in principle one can average energy densities, pressures, expansion
rates, etc, to arrive at a FLRW model from a more accurate representation. However, in
practice, fitting is done via astronomical observations down the past null cone, leading to
fitting procedures for the FLRW parameters as set out in the paradigmatic paper by Sandage
[112], updated by all the myriad other data now used to determine the best-fit FLRW model
[4]. Once one has fitted a specific FLRW model to the observable region of the universe, one
can then try to determine the specific local deviations from the background model—as for
example in all the studies trying to identify the great attractor [6, 90, 95]. Ideally, what one
would do is show that both a coarse-graining procedure and a suitable fitting procedure for
a realistic lumpy universe model—depicting all the great walls, voids, etc—would give the
same result. No one has so far shown how this might work.

An interesting question here is whether (i) there is a scale above which the universe is
exactly FLRW, or (ii) at all scales the universe is only ever approximately FLRW. In fact
while averaging can in principle lead to an almost homogeneous model to any degree of
approximation, it can never lead to exact homogeneity, if the initial model is not homogeneous
[116]: there will always remain residual traces of those inhomogeneities. Fitting of course
starts off with such an exactly homogeneous model. Thus, in this sense the two cannot be exact
inverses of each other, and there cannot be any scale where the universe is exactly FLRW—but
it can be very closely so.

Whether these effects are sufficient to significantly alter the cosmological parameters
determined from supernova observations [71] is an important ongoing debate involving
interesting modelling and general relativity issues, and particularly how one models a universe
with genuinely large-scale voids, as well as the nature of the Newtonian limit in cosmology
(see the papers by Buchert, Clarkson, Kolb, Räsänen, and Wiltshire in this special section
[21, 39, 86, 108, 130]). In this section we consider various approaches to averaging and
determining backreaction.

2.3.1. The Zalaletdinov approach. The problem with employing a tensorial averaging
procedure is that the result is not covariant: one obtains coordinate-dependent results unless
one uses bitensors to define covariant averaging in a local domain, as proposed by Zalaletdinov
[132, 133]. This can be done for curvature and matter, but is difficult to do in a unique way
for metric itself, because the metric is invariant under parallel propagation, so the Synge
bitensor will not work. In any case this approach leads to complex equations that have not
yet been productive in terms of the cosmological backreaction problem, despite some valiant
attempts [44].
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2.3.2. The Buchert approach. Alternatively, one can avoid this problem by only averaging
scalars, as Buchert [19, 20] does. He shows this can in principle provide an effective
acceleration term in the averaged equations.

The key point is that expansion and averaging do not commute: in any domain D, for any
field ψ ,

∂t 〈ψ〉D − 〈∂tψ〉D = 〈�ψ〉D − 〈θ〉D〈ψ〉D, (13)

where � is the expansion rate. This leads to Buchert’s modified Friedmann and Raychaudhuri
equations: e.g.

∂t 〈�〉D = � − 4πGρD + 2〈II 〉D − 〈I 〉2
D, (14)

where II = �2/3 − σ 2 and I = �, σ being the shear. This in principle allows acceleration
terms to arise from the averaging process, through the term 〈II 〉D . To complete the dynamical
equations, one needs the shear evolution, but this cannot easily be obtained from the full set of
1+3 dynamic equations through such averaging of scalars. Hence, Buchert’s analysis relies on
an ansatz for this evolution, which is not fully justified from the underlying dynamics. There
are integrability conditions linking the shear to the curvature that give a combined conservation
law for curvature plus fluctuations. This forms the basis for the assumed closure conditions,
leading to exact classes of solutions where the evolution of the averaged shear is determined.
The closure condition replaces what in Friedmannian cosmology would be the equation of
state for the sources; here it is the equation of state for the effective sources.

The Buchert equations indicate the broad nature of the effect and are widely used as the
basis of further studies, for instance by Kolb et al, Wiltshire, and Räsänen. Buchert presents
his approach in his article in this focus section. The use of scalars more generally is proposed
by Coley [43].

2.3.3. The renormalization group approach. Carfora and Piotrkowska have developed
a sophisticated geodesic-ball based averaging approach, inter alia using the ideas of the
renormalization group [30]. This has led to intriguing analyses of the effects of such averaging
on cosmology [23–25, 27], giving formula for averaged effects on cosmic parameters. This
is a very sophisticated extension of the basic Buchert programme; indeed it is something of a
technical tour de force [29]. Its relation to practical cosmological observations is still to be
developed.

2.4. Nonlinear models

The previous approaches are not tied in to specific geometric models of the universe. The key
issue however is how good the linear models are at representing the nonlinear inhomogeneities
in the real universe, with gigantic voids, walls, and so on at larger scales, and mainly empty
space at smaller scales [125].

• Voids have been known as a feature of the Megaparsec universe since the first galaxy
redshift surveys were compiled. Voids are enormous regions with sizes in the range of
20–50/h Mpc that are practically devoid of any galaxy, usually roundish in shape and
occupying the major share of space in the universe [38]. Forming an essential ingredient
of the cosmic web, they are surrounded by elongated filaments, sheetlike walls, and dense
compact clusters.

Various nonlinear models have been developed that try to approximate this kind of situation
without using a linearization procedure; they are discussed in the articles by Bolejko, Célérier,
and Krasinski (and see [12, 75, 91] for discussions of exact inhomogeneous models). The
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original such models were the ‘Swiss cheese’ models of Einstein and Straus [52, 53], where
spherical ‘vacuoles’ with a spherical mass at the centre are cut out of an expanding FLRW
universe model. This gives an exact solution of the EFE with static voids embedded in an
expanding universe. However, there is no dynamical backreaction from the inhomogeneities in
these models, because the matching conditions between the voids and the expanding universe
require that the mass at the centre of each vacuole is the same as would have been there if
there were no vacuole.

Models with voids have been developed in depth by Wiltshire [126–128] who has
emphasized that time runs differently in the voids, potentially leading to a substantial effect
when integrated over long times. Furthermore voids expand while clusters collapse or stay the
same size, so the universe becomes void dominated, and the region we live in is increasingly
not representative or ‘average’. These models can potentially lead to apparent acceleration of
the universe [113]. However, the degree to which the models represent the real universe is not
clear. These models are discussed in the article by Wiltshire.

A completely different approach is to construct the expanding model from an aggregation
of local spherical vacuum regions, joined together at boundary surfaces, as developed first
by Wheeler and Lindquist [94]. These models are radically different from all the others in
that here one does not start with a FLRW model and then perturb it or excise regions from it:
rather a FLRW-like structure emerges at large scales as an approximation to the small-scale
vacuum domains with embedded static masses. Thus, there is no backreaction to a large-scale
model because there was no such model to begin with. Rather the junctions between local
inhomogeneities underlie the large-scale dynamics, which is emergent rather than the result
of averaging. This approach has been developed interestingly at recent times by Clifton and
Fereira [40, 42]. These models are discussed in the article by Clifton (and see also [121],
discussed further below).

2.5. Perturbative approach

In contrast to these attempts at nonlinear models, there is a large literature studying
backreaction effects on the basis of linearly perturbed FLRW models. Differing views are
held as to the result, reviewed recently by Clarkson and Maartens [37] (and see also [36]).
Some workers claim that the weak-field approximation is adequate to describe the nonlinear
structures, because the gravitational potential is very small even though the density contrasts
are very large, and consequently the backreaction effect is negligible (see [5] for this view).
Counter claim by Kolb, Wiltshire, Matarrese and others (see e.g. [87, 129]) emphasize that
as there are major voids in the expanding universe, a weak-field kind of approximation to a
spatially homogeneous model is not adequate: you have to properly model (possibly quasi-
static) voids and their junctions to the expanding external universe, and the linear models
are not adequate for this purpose. An in-between view is given by Clarkson, Ananda, and
Larena [33].

A recent contribution from the skeptical side is by Green and Wald [74], using an
ultra-local averaging procedure to show—in direct contradiction of Buchert’s claim—that
no acceleration can result from backreaction associated with such averaging, because the
effect is trace free. The limiting process embodied in this elegant work probably does not
adequately represent the results of averaging over finite volumes, as represented by the other
methods discussed here, because it does not in fact involve any such averaging, so this method
does not disprove Buchert’s results. Indeed it is unlikely that this ‘trace-free’ result is true for
models that genuinely represent averaging over finite volumes, as their short wavelength limit
is not obviously related to smoothing over finite size volumes.
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There are many workers skeptical of any significant effect, with strong arguments based
on the perturbed FLRW approach: the gravitational potentials involved are so small that a
quasi-Newtonian analysis is adequate, and the backreaction effect does indeed occur but is
negligible. However, others suggest it may be at least large enough to affect the cosmic relation
between energy densities and expansion that leads us to deduce that the spatial curvature is
almost flat. Greater conceptual clarity on the modelling issues involved is required; the issue
is discussed in the articles by Kolb and Clarkson. Three specific issues arise that suggest
caution is advisable before accepting the pessimistic view.

2.5.1. The averaging process. In the weak-field case, the perturbed quantities can be averaged
in the background unperturbed Robertson–Walker geometry: a linearized calculations in the
background spacetime. This is central to the weak-field approach. But that procedure is
inadequate for truly nonlinear cases, where the integral needs to be done over a generic lumpy
(nonlinearly perturbed) spacetime that is not ‘perturbations’ of a high-symmetry background.
It is precisely in these cases that the most interesting effects will occur.

2.5.2. Global coordinates: models with genuine voids. The response often given is that even
though the density may be highly nonlinear, in a suitable non-comoving quasi-Newtonian
frame the gravitational potential remains very small. Then one has δρ/ρ � 10+28 but
δφ/φ � 10−5. This is possible because the second derivatives of the potential are not small,
and they are what enter the field equations to balance the very large density perturbations [26];
so a suitable linearized approach is acceptable.

Underlying this is the issue of global existence of the quasi-Newtonian coordinates in
situations of real inhomogeneity with locally static almost empty spacetimes joining together
to form an expanding universe, as envisaged by Lindquist and Wheeler. The case for global
validity of these coordinates is put for example by Ishibashi and Wald [80] and by Baumann
et al [5]. In the Poisson gauge to second order in scalar perturbations the metric is

ds2 = −(1 + 2� + �(2))dt2 − a(t)Vi dxi dt + a2(t)[(1 − 2� − �(2))δij + hij ]dxi dxj . (15)

The first-order scalar perturbations are given by �,�, and the second-order ones by �(2), �(2),
which are needed for a consistent analysis of backreaction, as are the vector perturbation Vi

and trace-free tensor perturbation hij.
But the fact that such coordinates can on the one hand be used globally in an asymptotically

flat inhomogeneous region, such as the solar system, and on the other in a linearly perturbed
FLRW model does not mean it can be used globally for a genuinely inhomogeneous expanding
universe model including both kinds of domains, as claimed by Wald and Ishibashi. For
example Lindquist and Wheeler [94] do not give a global coordinate system: they match
local coordinates to each other across a boundary. But this is not done exactly, because the
geometry is too complex to do so. The one case where one can do the job exactly is an
expanding two-mass solution with locally static voids joined to create an expanding universe
with compact space sections [121]. The surprising result is that the join can only be done
across a null surface (a ‘horizon’), with intermediate spatially homogeneous anisotropically
expanding vacuum regions—it is the existence of these regions that allows the universe to
expand. It is not possible to find global coordinates of the form (15) in such a spacetime,
as posited by Wald and Ishibashi. Thus, in that case the weak-field arguments do not apply
because the coordinate system on which they rely does not exist globally. They may however
be possible in Swiss Cheese models, where it is the intervening fluid domains that allow the
static vacuum domains to move way from each other, but these are not the kind of situation

8
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we consider here, with galaxies everywhere embedded in genuinely vacuum regions and no
fluid-filled domains acting as buffers between them.

So real inhomogeneities have properties that are not the same as perturbed FLRW models
that are fluid filled everywhere. The key issue underlying the two-mass result is the rigidity of
local spherical vacuum regions that is embodied in Birkhoff’s theorem. So a criticism might
be that Birkhoff’s theorem applies only to exact spherically symmetry vacuum solutions; the
argument will not apply to more realistic solutions with almost spherically symmetric vacuum
domains. However, this argument is invalid: an ‘almost Birkhoff’ theorem shows that the
Birkhoff result is stable [73]. On this view, the issue is whether (on appropriate averaging
scales) the real universe is globally filled with an intergalactic medium that can serve as
the substratum allowing expansion to take place in a way compatible with the weak-field
view (because there are then in fact no vacuum regions, such as those represented in the
Lindquist–Wheeler-type models). This may or may not be the case.

In [26], it is shown that the second derivatives can be of order 1 in the situation given by the
other numbers for metrical perturbations. Curvature is thus important and not a perturbation
of a flat model, but it is the curvature that drives the backreaction effect. The degree to
which a suitable linearized approach is acceptable as a model of genuinely inhomogeneous
regions thus remains open to debate, particularly in the case of a linearized treatment on a flat
background, where the curvature remains small.

2.5.3. The gauge issue. Finally, underlying this all is the gauge issue: to what degree are
the results dependent on the choice of how the background metric is mapped into the more
realistic model? One can after all always find a gauge where the density perturbation δρ is
zero [60]. The key is to find a gauge-invariant formalism to tackle the problem—if that is
possible [62]. The major attempt to tackle this so far is by Gasperini, Marozzi, and Venziano
[69, 70]. This has not yet however led to specific conclusions about cosmological acceleration.
This issue is related to the complexities of appropriately defining the background spacetime
[64, 88].

The overall conclusion is that while it may at first seem rather unlikely that dynamical
backreaction is of significance in the late universe, there are some unresolved questions, so that
one should keep an open mind. The issue is debated in some of the following papers in this
focus section. Furthermore, it may be important in the early universe: for example Mukhanov
et al have shown that the backreaction of cosmological perturbations on the background can
become important already at energies below the self-reproduction scale in inflationary universe
scenarios [102]. However, I will not discuss that context here.

3. Optical effects of local inhomogeneity

Small-scale inhomogeneity can have significant effects on the propagation of photons in a
lumpy universe, with potentially important effects on observations. There are three issues
here.

3.1. Redshift effects

Firstly, inhomogeneities can affect redshifts, as for example in the Rees–Sciama effect [109]
where CMB photons falling into a time-dependent gravitational potential well experience an
overall change in redshift because they climb out of a different shaped well than when they
fell in. Also if light is emitted from a source within a potential well, it will be redshifted as it
climbs out; this effect lies behind the ‘timescape cosmology’ proposal of Wiltshire [127] who
points out that the associated time dilation effect is cumulative over the history of the source.
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3.2. Area distance effects

Secondly inhomogeneities can affect area distances, which underlie the apparent angular
diameter, and hence apparent luminosity, of images [54]. The key point is the difference
between Ricci focusing and Weyl focusing, as emphasized by Bertotti [7]. The focussing of
an irrotational bundle of null geodesics with tangent vector Ka is given by

dθ̂/dv = −RabK
aKb − 2σ̂ 2 − θ̂2 (16)

dσ̂mn/dv = −Emn, (17)

where θ̂ is the expansion and σ̂ the shear of the null rays, Rab is the Ricci tensor, determined
pointwise by the matter distribution, and Eab the electric part of the Weyl tensor, determined
non-locally by matter elsewhere.

In the case of Robertson–Walker observations, there is zero Weyl tensor and a non-zero
Ricci tensor, so (16), (17) become

dθ̂/dv = −RabK
aKb − θ̂2 (18)

dσ̂mn/dv = 0 (19)

which are the standard equations underlying observations in a FLRW model. Actual
observations however are the opposite: photons travel through empty space (on small scales),
described by the zero Ricci tensor and non-zero Weyl tensor: so (16), (17) become

dθ̂/dv = −2σ̂ 2 − θ̂2 (20)

dσ̂mn/dv = −Emn. (21)

This averages out to FLRW equations when averaged over whole sky, which is not obvious!
This does not follow from energy conservation per se, but rather depends on how area distances
average out over the sky. But supernova observations are preferentially made in directions
where there is no matter in between to interfere with the observations; hence, area distances,
and so cosmological observations, will be different in this case.

The usual way of handling this is to use the Dyer–Roeder (DR) equation [47, 48, 51]
that takes matter into account but not shear, because the shear enters the focusing equation
quadratically, and so is negligible if shear is small. Thus, the DR equation takes into account
only the Ricci focusing due to a specified fraction f (v) of the uniform density of matter in the
universe:

dθ̂/dv = −f (v)RabK
aKb − θ̂2. (22)

When f = 1 one has the FLRW result; when f = 0 one has photons travelling through
vacuum regions in the clumpy universe.

How this works out depends on how dark matter is clustered, which differs on different
scales. The Dyer–Roeder approximation is good if the Weyl focusing term (causing
gravitational lensing) can always be neglected in this way; this needs investigation in the
light of the expected clustering pattern; many examples are given by Mortsell [100], showing
that the effect is potentially significant, and analytic forms by Kantowski [84]. When this
approximation is valid, the outcome depends crucially on what fraction of the overall cosmic
density (baryonic and non-baryonic) occurs in a smooth form along the line of sight on different
scales. Note that on some angular scales the clumping experienced along the line of sight
will be partially compensated, in that each void (a low density region on the line of sight)
will be matched by a wall (a high-density region) so that the overall density is the same as the
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background density. However, they will not exactly compensate because three-dimensionally
compensated voids do not reduce to a one-dimensionally compensated distribution of matter
along the line of sight [10]. It will also have some impact on the CMB observations [11].

One can investigate these effects in nonlinear models. How it works out in Swiss cheese
models is investigated inter alia in [83, 85], confirming that there can indeed be a significant
effect. The case of observations in a Wheeler–Lindquist-type model is investigated in
[40, 42].

The key issue is how empty the voids really are, from supergalactic scales down to the
‘vacuum’ regions in the solar system. There are some galaxies in the large-scale voids, but
are they embedded in an intergalactic gas of baryons and CDM? If so what fraction is its
density of the global average density of the model (when smoothed on the largest scales)? The
answer does not seem to be known: but the outcome depends crucially on these figures. On
the small scales relevant to the supernova observations, one may expect mostly empty space,
except perhaps for CDM left over from structure formation, but it is unclear what the relevant
fractional density is on these scales.

3.3. Affine parameter effects

Finally, there are effects that arise through altering the relation z(v) between the affine
parameter z and the redshift z. These effects have been little studied. However, it is
worth noting that it is only through this relation that the cosmological constant can affect
observation relations such as the area distance redshift relation (� does not explicitly enter
the null Raychaudhuri relation (16)). Thus, this may well be interesting to investigate.

Overall these effects are indeed likely to be significant: that is, they may be significant
enough to appreciably affect the parameter values of the concordance model of cosmology
[81, 105]. How this works out is crucially dependent on how matter is distributed on small
scales, and how empty the voids really are. This is an important area for investigation and is
discussed by Mattsson.

4. Spatial homogeneity?

So far, I have considered the effect of local inhomogeneities on global dynamics and
observations, where ‘local’ means sufficiently small that we can claim that overall the
Copernican principle—the claim that the universe is the same everywhere—still holds when
we coarse-grain on large enough scales. The further issue of interest is whether this is in fact
the case: might it be that the Copernican principle does not hold, so the FLRW models are in
fact misleading models of the large-scale geometry of the visible region of the universe?

The cosmological principle was introduced by Milne in the 1930s, and then formalized in
a technical sense by Robertson and Walker. It was the foundation of cosmology in the 1960s
to 1980s, see Bondi [15] and Weinberg [124]. But it is an a priori philosophical principle. It
produces world models that work—namely the standard models of cosmology. But is it true?
Can it be tested? Maybe there are inhomogeneous models that would fit the observations as
well—or even better.

4.1. The argument for homogeneity

It is not obvious that the universe is spatially homogeneous [55, 56]. We can directly observe
isotropy, but not homogeneity, firstly because we effectively observe the universe from one
spacetime point, and secondly because when undertaking astronomical observations, the finite
speed of light inextricably mixes spatial distance with time.
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Arguments for homogeneity are discussed in [58]. Direct determination of homogeneity
from number counts is in principle possible, but fails in practice because of the look-back
time necessarily associated with all cosmological observations: we cannot uniquely separate
out spatial inhomogeneity from a time evolution of sources [55, 103]. Similarly in principle
an observational verification of the Mattig magnitude-redshift relation for galaxies in FLRW
models [54, 112] (or its generalization to non-zero �) would suffice [63]. This in-principle
direct determination of homogeneity depends on being precisely fit by FLRW data functions,
and does not depend on observations by other fundamental observers. But again this is not
practicable. So how can one proceed?

The high degree of isotropy of astronomical observations (averaged on a large enough
scale) suggests an observational basis for the assumption of spatial homogeneity. Indeed a
universe which is isotropic everywhere is necessarily a FLRW model (Walker [123], Ehlers
[49]). But we cannot check if this is true or not: it is an assumption, because we can only
test isotropy where we are. However, we can attain a weaker version of the Walker result:
Ehlers, Geren and Sachs [50] proved the EGS theorem that isotropy everywhere of the CBR
only is sufficient to prove a FLRW geometry, if the universe is expanding. This result has been
strengthened even further through generalizations of the EGS theorem to almost isotropy and to
models with matter and dark energy [37, 117]. This provides a stronger motivation for spatial
homogeneity, but until recently still relied on an untested philosophical assumption: addition
of a Copernican principle, assuming that we are not in a special position in the universe, so
everyone else will also see isotropic background radiation. The result then follows. However,
it is now known that this assumption is indeed at least partly testable via measurements of
CMB spectrum distortions, as will be discussed below.

There are a number of other observational tests of the Copernican principle that are now
possible, because of observational improvements in the past decade. Before coming to them,
I will first discuss the inhomogeneous models that make this an interesting possibility.

4.2. Large-scale inhomogeneity?

The proposal that inhomogeneous models can explain the supernova observations without any
dark energy is discussed by Célérier [31] and Tanimoto and Nambu [119]. The idea is that
there is a large-scale inhomogeneity of the observable universe such as that described by the
Lemaı̂tre–Tolman–Bondi (LTB) pressure-free spherically symmetric models ([14], see also
see [12, 75, 91]), and we are near the centre of a void. The LTB models have comoving
coordinates

ds2 = −dt2 + B2(r, t) + A2(r, t)(dθ2 + sin2 θ dφ2),

where

B2(r, t) = A′(r, t)2(1 − k(r))−1

and the evolution equation is

(Ȧ/A)2 = F(r)/A3 + 8pGρ�/3 − k(r)/A2

with the energy density given by F ′(A′A2)−1 = 8pGρM . There are two arbitrary functions
of the spatial coordinate r: namely k(r) (curvature) and F(r) (matter). That this freedom
enables us to fit the supernova observations with no dark energy or other exotic physics is a
consequence of a theorem proved by Mustapha et al [103], updated in [96, 98]. One can also
fit the basic nucleosynthesis data and CBR observations because they refer to much larger
values of r, see e.g. Alexander et al [2]. The key point is that different scales are probed
by different astronomical observations and can in principle all be fitted by adjusting the free
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spatial functions at different distances. One can also use baryon acoustic oscillation (BAO)
measurements to estimate distances [38], but note that to calculate the CBR and BAO results
with precision, one must use the LTB perturbation theory [35], not the theory of FLRW
perturbations.

A typical observationally viable model is one in which we live roughly centrally (within
10% of the central position) in a large void with a compensated underdense region stretching
to z � 0.08 with δρ/ρ � −0.4 and size 160/h Mpc to 250/h Mpc, a jump in the Hubble
constant of about 1.20 at that distance, and no dark energy or quintessence field [3, 9, 131].
Actually you do not need a void to explain the observations; more general models can do the
job [32, 75]. One can also use the more complex Szekeres universes to obtain observationally
viable models [79].

One ends up with a degeneracy: both FLRW and LTB models can explain the basic
cosmological observations, as was confirmed for example by the SDSS team [114]. One needs
more detailed modelling to distinguish which is the better model when precision cosmological
observations are taken into account. Before I address these tests, some theoretical objections
must be faced.

4.3. Dynamical origins and probability

Given that we can fit the observations by such a model, is there a plausible dynamic scenario
for them? Because evolution along individual world lines in such models is governed by
the Friedmann equation, inflation followed by a Hot Big Bang era can have the same basic
dynamics as in the standard model, but with position-dependent parameters. One argument for
homogeneity is that inflation creates a high degree of uniformity, and in the subsequent cosmic
evolution, perturbations can only grow to a certain size. Above that scale, we should have
the inflation-created uniformity. But that depends on the details supposed for the inflationary
epoch. If there are multiple inflaton fields and appropriate inflationary potential and initial
conditions, then it should certainly be possible to arrive at an inhomogeneous situation, for
example, multi-stream inflation [1] gives such a mechanism. This involves two inflaton fields,
a hill in the potential, and tunnelling between different paths from initial to final states, resulting
in different numbers of e-foldings in different places. This mechanism can create large over-
or under-densities of the kind envisaged here.

Many dismiss these models on probability grounds: it is improbable that we are near
the centre of such a model. But there is always improbability in cosmology: we can
shift it around, but it is always there. Three comments are in order. First, there simply
is no proof that the universe is probable, that is, a philosophical assumption, which may
not be true. Second, a study by Linde et al [93] shows that (given a particular choice of
measure) this kind of inhomogeneity actually is a probable outcome of inflationary theory,
with ourselves being located near the centre. And third, Boljeko and Sussman argue [13] that
the problem of improbability is ameliorated if one has for example a Szekeres rather than LTB
solution.

Overall, one cannot simply dismiss such models out of hand. Philosophical opinions and
probability arguments will have to give way to the results of observational testing of these
models.

4.4. Observational tests of spatial homogeneity

Given that we can find both inhomogeneous models to reproduce the observations without any
exotic energy and homogeneous models with some form of dark energy that explain the same
observations, can we distinguish between the two? Ideally, we need a model-independent
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test: is a RW geometry the correct metric for the observed universe region, irrespective of
assumptions about the dynamics and matter content? Four kinds of tests are possible.

4.4.1. Behaviour near the origin. The universe must not have a geometric cusp at the origin,
as this implies a singularity there. Thus it has been claimed that there are centrality conditions
that must be fulfilled in the inhomogeneous models (Vanderveld et al [122]). The distance
modulus behaves as �dm(z) = −(5/2)q0z in standard �CDM models, but if this were true
in a LTB void model without � this has been said to imply a singularity (Clifton et al [41]);
observational tests of this requirement will be available from intermediate redshift supernovae
in the future. However, [65] and [92] show that this is not a real issue.

4.4.2. Area distance versus Hubble parameter. Measures of the area distance and Hubble
parameter as a function of redshift can give a direct test of spatial homogeneity. There are
two geometric effects on distance measurements: curvature �k bends null geodesics and
expansion H(z) changes radial distances. In RW geometries, we can combine the Hubble rate
and distance data to find the curvature today:

�k = [H(z)D′(z)]2 − 1

[H0D(z)]2
.

This relation is independent of all other cosmological parameters, including dark energy model
and theory of gravity. It can be used at a single redshift to determine �k , but must give the
same result for all redshifts. The important result of Clarkson et al [34] is that since �k is
independent of z, we can differentiate to get the consistency relation

C(z) := 1 + H 2(DD′′ − D′2) + HH ′DD′ = 0,

which depends only on a RW geometry: it is independent of curvature, dark energy, nature of
matter, and theory of gravity. Thus, it gives the desired consistency test for spatial homogeneity.
In realistic models we should expect C(z) � 10−5, reflecting perturbations about the RW model
related to structure formation. Errors may be estimated from a series expansion

C(z) = [
q

(D)
0 − q

(H)
0

]
z + O(z2),

where q
(D)
0 is measured from distance data and q

(H)
0 from the Hubble parameter. It is simplest

to measure H(z) from BAO data. It is only as difficult carrying out this test as carrying out
dark energy measurements of w(z) from Hubble data, which requires H ′(z) from distance
measurements or the second derivative D′′(z). Another promising approach is to use the time
drift of cosmological redshifts as a way of determining these functions [120]. An analysis of
how well the time drift of redshift ż can distinguish an LTB model from a FLRW model is
given in [46].

This is the simplest direct test of spatial homogeneity, and its implementation should be
regarded as a high priority: for if it confirms spatial homogeneity, that reinforces the evidence
for the standard view in a satisfying way, but if it does not, it has the possibility of undermining
the entire project of searching for a physical form of dark energy.

In the future, the same measurements can potentially be carried out by gravitational wave
observations of black hole binary mergers [76, 82, 107].

4.4.3. The CMB spectrum: verifying the EGS theorem conditions. The peaks in the CMB
anisotropy power spectrum can be adequately accommodated in the LTB family of models
[38]. The key further point is that one can use scattered CMB photons to check CMB isotropy
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at points away from the origin (Goodman [72]; Caldwell and Stebbins [28]), thus checking
some of the conditions required by the EGS theorem.

If the CMB radiation is anisotropic around distant observers (as will be true in
inhomogeneous models), then the Sunyaev–Zeldovich scattered photons will cause a distorted
CMB spectrum, as anisotropy of the CMB out there will cause a mixing of temperatures in
the scattered photons. Such anisotropy can arise in two ways [28]. First, the kinematic SZ
effect occurs due to relative motion between matter and the CMB at distant points. Gradients
in the void gravitational potential causes gas to move relative to CMB frame; hence, there
will be a CMB dipole out there. This violates the EGS conditions, and scattering mixes these
temperatures, causing a spectral distortion. Second, potential wells cause anisotropy due to
gravitational redshift effects. If some photons originate inside the void and others outside,
this again causes a locally anisotropic CMB out there, and SZ scattering compares potentials
at the two locations.

It has recently been claimed by two groups that such CMB observations disprove
inhomogeneity [101, 134], but counter claims [38] give specific models where the CMB
observations are acceptably accounted for.

The problem seems to be first that the papers [101, 134] refer to restricted families of
LTB models, which have to be generalized to include radiation effects in order to handle the
CMB observations; the radiation and the matter may not be comoving [38]. Also if one only
considers LTB models with fixed bang time, one has removed half the freedom of the LTB
models; it is then hardly surprising if fitting the observations is difficult. Generic analysis
should allow varying the bang time. Second, these are not self-consistent studies, as they use
FLRW perturbation theory to study structure formation in LTB models. One needs to use LTB
perturbation theory [35] to get consistent results.

Future work of interest here will be to check to what degree such tests can verify the
full requirements of the extended versions of the EGS theorem discussed by Clarkson and
Maartens [37]. Can they fully test the needed anisotropy requirements for one of the extended
versions of the EGS results, or do they only serve as partial checks of the needed conditions,
because they only check mixing of lower order CMB multipoles?

4.4.4. Thermal history-based tests. If the kinds of structures that occur in distant regions
are similar to those nearby, this indicates that the thermal histories leading to the existence of
those structures must have been the same, and this suggests that the universe must have been
spatially homogeneous at the relevant early times—which will imply that it is homogeneous
today. This is the postulate of uniform thermal histories (PUTH) [16]. Conversely, if the kinds
of objects that have come into being far away look different from those nearby, this indicates
spatial inhomogeneity.

In principle this can be applied for example to studies of galaxies and and large-scale
structure; this has not yet been formally done. However, a present application is to element
abundances. There are now claims of some anomalies in the abundance of lithium with
distance (see e.g. [89]). Regis and Clarkson [110] show that this can be taken as indirect
evidence for spatial inhomogeneity.

Observations in inhomogeneous models are discussed in the papers by Zibin and Moss
[135], and by Marra and Notari [99].

5. Conclusion

An implicit averaging is effectively at the foundation of how the standard model deals
with matter and structure formation, while being uniform on large scales. The problem
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of averaging is far from being solved—but it is a problem that will not go away. Small-scale
inhomogeneities may possibly cause observable effects through dynamical backreaction, but
this is a controversial suggestion. Ultimately, we probably need a general relativistic simulation
of structure formation to resolve the issue of averaging. However, such inhomogeneities
certainly can significantly affect the observational determination of the parameters of the
concordance cosmological model. Whether this is the case or not depends on the detailed
nature of clustering of dark matter, on small scales, in the universe, which is not known at
present.

Additionally, we must take seriously the idea that the acceleration apparently indicated by
supernova data could be due to large-scale inhomogeneity with no dark energy. Observational
tests of the latter possibility are as important as pursuing the dark energy (exotic physics) option
in a homogeneous universe. Theoretical prejudices as to the universe’s geometry, and our place
in it, must bow to such observational tests. Precisely because of the foundational nature of the
Copernican principle for standard cosmology, we need to fully check this foundation. And
one must emphasize here that standard CMB anisotropy studies do not prove the Copernican
principle: they assume it at the start.

Whatever the outcome of these studies, the point remains that inhomogeneity is a critical
topic in cosmology. Simplified models of inhomogeneity such as LTB models, where we
can actually calculate dynamics and predict observational relations, are an important part of
the necessity to probe every aspect of the standard model, as are studies of the nature of the
backreaction effect and the effects of inhomogeneities on observations.

5.1. To be done

To complete our understanding of this issue inter alia we need to

• develop a general relativistic simulation of structure formation,
• develop perturbation studies of the LTB models, and hence CMB anisotropies and LSS

observations, in a self-consistent way,
• develop the PUTH approach [16] for galaxies and LSS,
• use observations and simulations to characterize in detail the DM inhomogeneity on small

scales, and find out to what degree it clusters with baryons on these scales,
• hence to characterize in detail the DM and baryonic IGM (inter-galactic medium) that

may permeate the ‘voids’ in the cosmic web, at different scales,
• along with determining homogeneity, we really need to determine the smallest length scale

on which the universe is almost FLRW, if indeed it is almost FLRW on large scales. This
is related to the possibility that some of the data we use for determining the cosmology
may not be probing almost FLRW scales of the universe—e.g. may not be probing the
Hubble flow.

Finally on should remember that the issues mentioned here are not mutually exclusive. If
we do live in a Hubble scale inhomogeneity, the universe is additionally inhomogeneous on
smaller scales. Hence, the eventual aim must be to investigate the combination of all these
effects.
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[66] Forero-Romero J E, Hoffman Y, Gottlöber S, Klypin A and Yepes G 2009 A dynamical classification of the

cosmic web Mon. Not. R. Astron. Soc. 396 1815–24 (arXiv:0809.4135)
[67] Futamase T 1988 Approximation scheme for constructing a clumpy universe in general relativity Phys. Rev.

Lett. 61 2175–8
[68] Futamase T 1996 Averaging of a locally inhomogeneous realistic universe Phys. Rev. D 53 681–9
[69] Gasperini M, Marozzi G and Veneziano G 2009 Gauge invariant averages for the cosmological backreaction

J. Cosmol. Astropart. Phys. JCAP03(2009)011 (arXiv:0901.1303)
[70] Gasperini M, Marozzi G and Veneziano G 2010 A covariant and gauge invariant formulation of the cosmological

‘backreaction’ J. Cosmol. Astropart. Phys. JCAP02(2010)009 (arXiv:0912.3244)
[71] Goobar A and Leibundgut B 2011 Supernova cosmology: legacy and future (invited review) Annu. Rev. Nucl.

Part. Sci. submitted (arXiv:1102.1431v1)
[72] Goodman J 1995 Geocentrism reexamined Phys. Rev. D 52 1821 (arXiv:astro-ph/9506068)
[73] Goswami R and Ellis G F R 2011 Almost Birkhoff theorem in general relativity arXiv:1101.4520
[74] Green S R and Wald R M 2011 A new framework for analyzing the effects of small scale inhomogeneities in

cosmology arXiv:1011.4920
[75] Hellaby C 2009 Modelling inhomogeneity in the universe Proc. Sci. PoS(ISFTG)005 (arXiv:0910.0350v1)
[76] Hughes S A, Marka S, Bender P L and Hogan C J 2001 New physics and astronomy with the new gravitational-

wave observatories eConf C010630: P402 (arXiv:astro-ph/0110349v2)
[77] Isaacson R A 1968 Gravitational radiation in the limit of high frequency: I. The linear approximation and

geometrical optics Phys. Rev. 166 1263–71
[78] Isaacson R A 1968 Gravitational radiation in the limit of high frequency: II. Nonlinear terms and the effective

stress tensor Phys. Rev. 166 1272–80
[79] Ishak M, Richardson J, D Whittington D and Garred D 2008 Dark energy or apparent acceleration due to a

relativistic cosmological model more complex than FLRW? Phys. Rev. D 78 123531 (arXiv:0708.2943)
[80] Ishibashi A and Wald R M 2006 Can the acceleration of our universe be explained by the effects of

inhomogeneities? Class. Quantum Grav. 23 235–50 (arXiv:gr-qc/0509108v3)
[81] Jarosik N et al 2010 Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps,

systematic errors and basic results Astrophys. J. Suppl. Ser. 192 14 (arXiv:1001.4744)
[82] Jonsson J, Goobar A and Mortsell E 2007 Tuning gravitationally lensed standard sirens Astrophys. J. 658 52–9

(arXiv:astro-ph/0611334)
[83] Kantowski R 1998 The effects of inhomogeneities on evaluating the mass parameter �m and the cosmological

constant � Astrophys. J. 507 483–96 (arXiv:astro-ph/9802208)
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[91] Krasiński A 1997 Inhomogeneous Cosmological Models (Cambridge: Cambridge University Press)
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