
General Relativity and Gravitation, Vol. 31, No. 11, 1999

Spherically Symmetrical Models in General

Relativit y ²
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Received 1947 August 5.

The ® eld equations of general relativit y are applied to pressure-free spher-

ically symmetrical systems of particles. The equations of motion are de-

termined without the use of approximations and are compared with the

Newtonian equations. The total energy is found to be an imp ortant pa-

rameter, determining the geometry of 3-space and the ratio of eŒectiv e

gravitating to invariant mass. The Doppler shift is discussed and is found

to contain both the velocity shift and the Einstein shift combined in a

rather complex expression.

1. INTRODUCTION

The ® eld equations of the general theory of relativit y are very complex.

The only non-static solutions which have so far been obtained are either

approximations or are of the cosmological type. Since approximate solu-

tions apply only in the cases where the ® eld is almost Newtonian, their

use in pointing out intrinsic consequences of the theory is somewhat re-

stricted. Similarly cosmological solutions suŒer from the disadvantage that

the spatial part of space-time is supposed to be homogeneousand isotropic.

Therefore it is often di� cult, owing to the lack of independent variables,

to disentangle the causes of various eŒects.

The main purpose of the present paper is to derive the equation of

motion and to describe various properties of pressure-free spherically sym-

metrical systems. A rigorous solution of the ® eld equations has been ob-
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tained and it is hoped that the model presented can be of use in illustrating

and clarifying various points of interest in the theory.

The work may be considered to be an extension of the work of McCrea,

McVittie and Lemâõ tre2 on the problem of condensation. The applicabilit y

of the work of these authors is somewhat restricted by the fact that they

consider only small deviations from an Einstein universe. The work in the

present paper is more general in that the system need approximate neither

to a Newtonian system nor to an Einstein universe, but is more restricted

in its assumptions of zero pressure and of spherical symmetry . Since the

general trend in recent work in this ® eld seems to be towards pressure-free

systems the former assumption is not as restrictiv e as might appear at ® rst

sight.

Tolman3 considers a system identical with ours and derives equivalent

equations of motion. His discussion of it however is concerned with proper-

ties of the system very diŒerent from those to which detailed considerat ion

is given in this paper.

The assumption of spherical symmetry supplies us with a model which

lies between the completely homogeneous models of cosmology and the

actual universe with its irregularities .In this sense an advance has been

made which, though small, su� ces to show up a number of signi® cant

features such as the shift of the spectral lines discussed in Section 7 and

the connection between the geometry of 3-space and the energy of the

spherical shells of matter (Section 5).

The equation of motion obtained is very simple, and is, but for a dif-

ferent interpretation of the constants, identical with the Newtonian equa-

tion of energy (Section 4). The extreme simplicit y of this result is a very

attractiv e feature of the theory.

In connection with the problem of the equations of motion in general

relativit y, it is interesting to observe that the postulate of the motion of

matter along geodesics does not lead to any contradictions with the ® eld

equations in our system, which seems to be more complicated than any

other system yet examined without the use of approximations .

The question of boundary conditions at in® nity does not arise in our

model; the condition that the centre of the system is an ordinary point (we

exclude point masses) is found to be su� cient to determine the solutions

2 W. H. McCrea and G. C. McVittie, M. N. 91, 128, 1930; 92 , 7, 1931; G. C. McVittie

M. N. 91 , 274, 1931; 92, 500, 1932; 93 , 325, 1933; G. Lema õ̂ tre, M. N. 91 , 483,490,

1931. In the last named pap er Lema õ̂ tre studies a problem very closely related to

ours and many equations given in the appendix can be found in the pap er.
3 R. C. Tolman, Proc. Nat. Acad. Sci. 20, 169, 1934.
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of the equations uniquely.

Gravitational units are used throughout the paper, i.e. the velocity

of light and the constant of gravitation are put equal to unity.

The author wishes to express his gratitude to Mr. F. J. Dyson and to

Professor W. H. McCrea for many helpful suggestions.

2. THE METRIC

We now proceed to give a list of the assumptions made in order to

specify the system.

(i) The system is and remains spherically symmetrical, i.e. the mass

density and particle velocity are functions of a radial coordinate r and a

time coordinate t only, and the motion of each particle is purely radial.

(ii) Each particle moves under the in¯ uence of gravit y only. This

implies that there are no electromagnetic forces acting on the particles

and that there are no pressures.

(iii) The orbits of particles do not intersect. This means that they do

not overtake each other. If an imaginary observer moves outwards from

the centre he will therefore always pass the particles in the same order

irrespective of his starting-time and speed, provided he is faster than any

outward-moving particle. The exclusion of intersecting orbits does not

lack physical meaning, since if they did intersect pressures would certainly

arise.

(iv) The mass density is everywhere ® nite.

In addition to these assumptions we will also usually put the cosmo-

logical constant l = 0. This simpli® es the mathematics and leaves most

of the essential features of the theory unimpaired. All the important for-

mulae will however also be stated in the form they take when l does not

vanish.

In order to de® ne our system of coordinates, suppose that we have a

permanent source of light at the centre O of our spherically symmetrical

system and surround this source by a small sphere. By assumption (iv)

we can use a Galilean system of coordinates in the neighbourh ood O and

we can therefore introduce spherical polars on this sphere.

We now de® ne the coordinates h , w of any event in the following way:

consider the ray of light which went from O to the event. The h , w coor-

dinates of the event are the h , w coordinates of the point of intersection of

this ray and the small sphere.

In order to de® ne the coordinates t, r, we observe that by assumption

(ii) and by the fundamental postulates of general relativit y our particles

move along geodesics. If there are any points of space unoccupied by
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particles we will imagine these regions to be ® lled by very ® ne dust of

negligible mass moving so as to satisfy (i), (ii) and (iii). We will assume

that this is possible. On this understanding we have a family of non-

intersecting geodesics, such that there is one and only one member of the

family passing through each point of space-time. Accordingly we can draw

a family of hypersurfaces, orthogonal to this family of geodesics, one such

hypersurface passing through each point of space-time. We now de® ne

these hypersurfaces to be the hypersurfaces of constant t. As is well known

in cosmology, the fact that our orthogonal tra jectories are geodesics allows

us to choose t so that it measures proper time along each member of our

family of geodesics.

With assumption (i) and our choice of h and w , we already have the

h and w coordinates constant along each geodesic. We now choose our r
coordinate so that it too is constant along each geodesic and so as to make

the surfaces of constant r orthogonal to the other coordinate surfaces.

This is evidently possible. We also specify that r is positive and that

roughly speaking it increases with distance from the origin. More precisely

a point (t1 , r1 , h1 , w 1 ) is assumed to be between the origin O and a point

(t1 , r2 , h1 , w1 ) if, and only if, r1 < r2 . Otherwise r is arbitrary.

In concluding this de® nition of our system of coordinates it must

be mentioned that if assumption (iii) (non-intersection) does not hold

throughou t all space-time, but only throughou t a ® nite or in® nite region

of space-time including O for some period, then we can still introduce our

coordinates in at least part of that region and the theory will be valid

there.

It follows from our assumption and our de® nition of the coordinates

that our metric is

ds2
= dt2 ¡ X 2

(r, t)dr2 ¡ Y 2
(r, t)(dh

2
+ sin

2
h dw

2
), (1)

where X (r, t) and Y (r, t) are functions of r and t only.

Accordingly the metric tensor gmn is4

gm n =
é
ê
ë

1 0 0 0

0 ¡ X 2 0 0

0 0 ¡ Y 2 0

0 0 0 ¡ Y 2 sin
2

h

ù
ú
û

. (2)

The ® eld equations of general relativit y establish a connection between

this tensor and the energy tensor T mn . Since our system is without pressure

T mn
= r

dxm

ds
dxn

ds
, (3)

4 We use the su� xes (0 , 1, 2, 3) for (t, r, h , w ) in that order.
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where r is the invariant density and dsm /ds is the velocity of the matter.

In our system of coordinates each particle moves in a way which keeps its

r, h , w coordinates constant and makes the time component of its velocity

equal to unity. Accordingly

T mn
=

é
ê
ë

r 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ù
ú
û

, (4)

r is of course a function of r and t.
We will ® nd it advantageous to use in our work not r but M , the sum

of the invariant masses of all the particles with radial coordinate less than

r. By our non-intersection assumption this mass depends on r only, so

that M = M (r).

Clearly

M (r) = s
t

0

dr s
p

0

dh s
2p

0

dw T
p¡ g = 4p s

r

0

dr rX Y 2
, (5)

so that
dM
dr

= 4prX Y 2
. (6)

Then the ® eld equations of general relativit y take the form5

Rmn ¡ 1

2
gmn R = ¡ 8pTm n = ìí î

¡ 2M 9 ( r )

X Y 2 (m = n = 0),

0 (otherwise),

(7)

where Rmn is the Einstein tensor.

3. THE DEFINITION OF DISTANCE

Before we discuss the solution of the ® eld equations, it will be desirable

to investiage the main features of the propagation of light in our system,

so that we can de® ne distance.

5 In the app endix a more general problem is also discussed, viz. what system of

pressures is compatible with the motion of particles along our geodesics. While such

a system of pressures is in general more or less arbitrary , it is interesting to note that

the assumption of isotropic pressure (i.e. T 1
1 = T 2

2 = T 3
3 ) is easily seen to imply that

the pressure is a function of our time coordinate t only.
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Astronomically, the most important de® nition of distance is proba-

bly luminosity distance. 6 The apparent luminosity of a source of known

absolute luminosity is measured and is corrected for Doppler shift. The

distance of the source is then de® ned as being proportional to the square

root of the ratio of absolute and corrected apparent luminosity. As a result

of the researches of Tolman, v. Laue and Robertson,7 it is known that in

a homogeneous universe the square of the Doppler shift has to be taken

as the correcting factor. We shall now show that in our spherically sym-

metrical universe with the standard source at its centre, it is still correct

to use the square of the Doppler shift, and that the luminosity distance of

this standard source for an oberver at (t, r, h , w ) is Y (r, t).
By the de® nition of our system of coordiantes a ray of light travelling

outwards from the centre satis ® es the equations

dt
dr

= X (r, t), (8)

h = const., w = const. (9)

Consider now two rays with the same h and w values, and let the

equation of the ® rst ray be

t = T (r), (10)

while the equation of the second ray is

t = T (r) + t (r). (11)

We shall also assume that t (r) is small. Then by (8)

dT (r)

dr
= X f r, T (r) g ,

dt (r)

dr
= t (r)( ¶ X

¶ t )r,T ( r )

. (12)

This result gives the equation of a ray and the rate of variation of t (r)

along the ray. If we take t (0) to be the period of oscillation of some spectral

line at the origin, the Doppler shift in the Hubble-T olman notation will

be
t (r)

t (0)
=

n0

n
= 1 + z. (13)

6
W. H. McCrea, Z. f. Ap. 9, 290, 1935.

7 R. C. Tolman Proc. Nat. Acad. Sci. 16, 511 (para. 6), 1930; M. v. Laue, Z. f. Ap.,

12 , 208,1936 ; H. P. Robertson, Z. f. Ap., 15 , 69, 1937.
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Considering now z not as a function of r along a ray but as a function of t
and r throughout space-time, we see that it satis ® es the partial diŒerential

equation

¶ z

¶ r
+ X

¶ z

¶ t
= (1 + z)

¶ X

¶ t
; z = 0 at r = 0. (14)

A more detailed analysis of equations (12) will be given in Section 7;

for our present purposes equation (14) is su� cient.

In order to investigate the variation of intensit y with distance, we

adopt Robertson’ s procedure.8

Consider an observer at t1 , r1 , h1 , w 1 . For measuremen ts in his neigh-

bourhood he will use a local Galilean system Åt, Åx, Åy, Åz with

Åt = t ¡ t1 , Åx = X (r1 , t1 )(r ¡ r1 ), Åy = Y (r1 , t1 )(h ¡ h1 ) ,

Åz = Y (r1 , t1 )(w ¡ w 1 ) sin h1 ,

ds2
= d Åt2 ¡ d Åx2 ¡ d Åy2 ¡ d Åz2

.
ü
 

ý þ (15)

Assuming the wave-length of light to be minute compared with the

dimensions of our system, the wave coming from the origin will appear to

him to be plane, and hence his measurement of the electromagnetic energy

tensor will give

E 00 = E 01 = E 11 = U (say) , (16)

while all other components vanish, U will be his measurement of the ap-

parent luminosity of the source at O.

In our usual system of coordinates

E 00
= U, E 01

=
1

X
U, E 11

=
1

X 2
U. (17)

while all other E mn vanish. Applying the relativistic conservation law

(E mn )n = 0, we obtain one equation for U , viz.,9

¶ U

¶ r
+ X

¶ U

¶ t
+ 2( ¶ X

¶ t
+

X
Y

¶ Y

¶ t
+

1

Y
¶ Y

¶ r ) = 0 . (18)

Putting

U =
C

Y 2 (1 + z)2
, (19)

8 H. P. Robertson, Z. f. Ap., 15 , 69, 1937.
9 The three index sym bols are listed in the appendix (equation (3)).
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and making use of (14), we ® nd

¶ C

¶ r
+ X

¶ C

¶ t
= 0 . (20)

This means that C is constant along each ray. If the source at the

centre does not vary, then C will be constant throughou t all space-time.

Hence, by (19), Y can be found by observing the apparent luminosity of

a source of known absolute luminosity, and applying the square of the

Doppler shift as correcting factor.

The signi® cance of this result is twofold: First we note that the im-

portant concept of luminosity distance is equivalent to our Y , which, as

we shall see, is mathematically the most convenient dynamical variable in

our system.

Secondly it is interesting to ® nd that in our extension of the previously

known use of the correcting factor, we can still use the whole of the Doppler

shift, the eŒects of the Einstein and velocity shifts being indistinuish able.

Two other de® nitions of distance may be mentioned. If an observer

at O measures the distance of an object of known size at (t, r, h , w ) by

measuring its apparent size, he will evidently obtain Y . If an observer at

(t, r, h, w) measures his distance from O by measuring the parallax of O, it

can be shown that this result will be Y (X / Y 9 )1/ 2 . As we shall see in the

next section, X / Y 9 , the square of the ratio of this ª distance” to Y , is, as a

consequence of the ® eld equations, a function of r only, i.e. it is a constant

for every observer moving with the particles.

Finally, consider a test particle following an arbitrary geodesic. It can

easily be shown that we can turn the system of coordinates so that the

geodesic lies entirely in the surface h = p / 2, and then there is an integral

of angular momentum which is

Y 2 dw

ds
= const.

Again Y takes the part of the classical radius.

We see therefore that Y is a variable of considerable signi® cance oc-

cupying in many ways a position corresponding to the classical concept of

distance. Accordingly, we shall refer to Y (r, t) as the distance of the par-

ticle (r, h , w ) from the origin at time t and, since t measures the particle’ s

proper time, we shall refer to ¶ Y / ¶ t as its velocity.
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4. THE EQUATION OF MOTION

The equations (7) are discussed in the appendix, where it is shown

that they are equivalent to

X =
1

W (r)

¶ Y

¶ r
, (21)

( ¶ Y

¶ t )
2

= W 2
(r) ¡ 1 +

2

Y s
r

0

M 9 (r)W (r)dr, (22)

where W (r) is an arbitrary function of r. (21) merely expresses X in terms

of Y , while (22) supplies us with the equation of motion.10

In order to compare (22) with the Newtonian approximation, we have

to consider the case of small velocities and small masses. Accordingly W
will be near unity and we put

W 2
(r) = 1 + 2E (r), (23)

where E is small. Then, negleciting the product of M 9 and E , we have

1

2 ( ¶ Y

¶ t )
2

¡ M (r)

Y
= E (r), (24)

which is identical with the Newtonian equation of energy, E representing

the total energy per unit mass. The exact equation (22) may be re-written

1

2( ¶ Y

¶ t )
2

¡ 1

Y s
r

0

dr M 9 (r) f 1 + 2E (r) g 1/ 2
= E (r) , (25)

and we see, then, that with our de® nition of distance and velocity the only

diŒerence between our equation and the Newtonian equation is that the

eŒective gravitating mass is not the invariant mass. The most interesting

point of this result is that the ratio of eŒective gravitating mass and invari-

ant mass depends not on the kinetic energy but on the total11 energy E (r).

This suggests that the total energy and hence the potential energy have a

rather greater signi® cance in general relativit y than hitherto supposed, a

point which will be more fully discussed in the next section.

10
Equation (22) can be integrated again. The integration is carried out in the app endix,

but the result is of little imp ortance for us.
11 E. T. Whittak er, Proc. Roy. Soc. , A. 149 , 384, 1935, obtains similar results.
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The acceleration ¶ 2 Y / ¶ t2 can be determined by diŒerentiating (25).

The result is

¶ 2 Y

¶ t2
= ¡ 1

Y 2 s
r

0

M 9 (r)drf 1 + 2E (r) g 1 / 2
. (26)

Hence we still have an inverse square law. However, it is now impossible

to derive (25) from (26) without ambiguity, since E (r), the constant of

integration is already contained in (26).

An important similarit y between our equations and those of the New-

tonian theory is that in both theories the spherical shells of matter further

away from O than a particle P do not eŒect the motion of P at all.

We are now in a position to discuss how W (r) (and hence E (r)) are

determined. As is usual in dynamics, our system will be fully de® ned only

if, at some instant, the positions and velocities of all particles are given.

It will be seen that in our case it is unnecessary that the velocities and

positions of diŒerent particles are given at instan ts related in any particular

way.

Let t = t0 (r) prescrib e the value of t at which the position and velocity

of the particles at r are given as well as the density in their neighbourh ood.

We must of course assume that t0 (r) is a single valued function. Let

Y f r, t0 (r) g = R(r) , (27)

( ¶ Y

¶ t )r,t 0 ( r )

= V (r), (28)

and let us assume that the mass distribution is given by giving M (r) . (27)

is really only an equation de® ning r.

Then consider the equation of motion (22) at each point at the mo-

ment t = t0 (r). We have

V 2
= W 2 ¡ 1 +

2

R s
r

0

W (r)M 9 (r)dr. (29)

Multiplying by R and diŒerentiating (as we are allowed to do, since

each function in (29) is a function of r only),

RW
dW
dr

+
1

2
W 2 dR

dr
+ W M 9 =

1

2

d
dr

f R (V 2
+ 1) g . (30)

This ® rst-order equation combined with the boundary condition W = 1

at r = 0, determines W . (W = 1 at r = 0 because, by our assumptions



Spherically Symmetrical Models in General Relativit y 1793

V (0) = 0 and M 9 (r) = 0(r2 ) near r = 0). It is easily proved that the

equation and the boundary condition determine W uniquely in spite of

the singularity at r = 0.

If we are not given M (r) but r(r, t0 ), then (29) takes the form

V 2
= W 2 ¡ 1 +

8p

R s
r

0

rf r, t0 (r) g dr R 2{dR
dr

¡ V
dt0

dr }, (31)

and this immediately determines W . The simplicit y of this equation is a

direct consequence of (6) and (21).

Some remarks must be made about the sign of W . At r = 0 W = 1.

If (as we will assume) V is continuous, then W must be continuous and

hence cannot change sign without vanishing at some r. By the de® nition

of our metric W = 0 constitutes an impenetrable barrier, since ds2 = ¡ ¥
for any dr. It might be argued that this could be avoided if Y 9 = 0 at the

same point. It can however be easily proved from the equation of motion

that if W (r) has a nth order zero at some r, then Y 9 may have a permanent

(n ¡ 1)th order zero there but not a permanent nth order zero.

Hence in all the parts of our system which are connected with the

origin, we must have W > 0.

The theory can easily be extended so as to include the cosmological

constant l . As is well known, the ® eld equations with l are

Rm n ¡ 1
2 gm n R + lgmn = ¡ 8pTm n . (32)

With these ® eld equations we still have

X =
1

W
¶ Y

¶ r
, (33)

but the equation of motion is now

( ¶ Y

¶ t )
2

=
1

3
lY 2

+ W 2 ¡ 1 +
2

Y s
r

0

W M 9 dr. (34)

This equation brings out very clearly the non-classical character of the l

expansion of large regions. No term corresponding to the l term can be

found in the Newtonian approximation.

5. POTENTIAL ENERGY

One of the most remarkable feats of the general theory of relativit y is

that the laws of conservation of mass, energy and momentum are combined
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in the law of conservation of the tensor T mn and that hence it is the purely

kinetic energy which is conserved. The potential energy of Newtonian

theory is relegated to the position of a pseudo-tensor which can be made

to vanish by a suitable choice of the system of coordinates. It is also

well known that in many systems which are approximately Newtonian,

potential energy is directly connected with g00 if the most obvious system

of coordinates is used.

As will be shown in this section, total (and hence potential) energy

occupies a signi® cant position in our theory too, although our system need

not be approximately Newtonian.

In Section 2 space-time was divided into space and time in a very

signi® cant way. This division (by choosing the surfaces t = const. to

be orthogonal to the world lines of the particles) is possible whenever

the particles follow non-intersecting geodesics and is independent of the

assumption of spherical symmetry . This division is of physical signi® cance,

since it is determined by the orbits of the particles. Accordingly some

signi® cance can be attached to the 3-space so de® ned. In our model this

3-space has the metric

ds
2

= X 2dr2
+ Y 2

(dh
2

+ sin
2

h dw
2
), (35)

where

X =
1

W (r)

¶ Y

¶ r
.

Since we are dealing with a ® xed time section, Y may be regarded as

a function of r only. Moreover it is a monotonic function of r and hence

may be introduced as coordinate.

Then

ds
2

= (dY )
2
/H 2

+ Y 2
(dh

2
+ sin

2
h dw

2
), (36)

where

H (Y ) = W (r) .

The Riemann-Christo Œel tensor is easily seen to be given by

R121
2

= R131
3

= ¡ 1

H Y
dH
dY

, R 232
3

= 1 ¡ H 2
,

R122
3

= R121
3

= R 132
3

= 0 .

(37)

Hence the Einstein tensor is

R 1
1 = 2

H
Y

dH
dY

, R 2
2 = R 3

3 =
H 2 ¡ 1

Y 2
+

H
Y

dH
dY

,

R =
2

Y 2

d
dY

f Y (H 2 ¡ 1) g .

(38)
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The most striking consequence of these equations is that the 3-space

is ¯ at if, and only if, H = 1, i.e. W = 1. If W > 1 and does not vary

too rapidly (or more exactly if Y (H 2 ¡ 1) is an increasing function of Y ),

then the curvature of the 3-space is positive, while in the opposite case it

is negative.

It should be clearly understood that these statemen ts need not be

applied to the whole of space but may be applied to any group of particles

occupying a ® nite interval of r. If e.g. all the particles in the range

r1 £ r £ r2 have zero total energy, then they are embedded in a ¯ at

section of 3-space extending (at least) from r1 to r2 .

Hence the curvature of the 3-space is entirely determined by the total

energy of the particles. In our model, total (and hence potential) energy

has a direct geometrical signi® cance. We must remember that our division

of space and time, while by no means invariant, is a physically signi® cant

division.

In addition to this geometrical interpretation of W (i.e. of total en-

ergy), W is also (as mentioned in Section 3) the ratio of eŒective gravitating

to invariant mass.

We see, therefore, that we can, in our model, assign a de® nite place to

total (and hence potential) energy even in cases far removed from nearly

Newtonian ones.

6. COSMOLOGICALMODELS

Our theory can easily be linked with certain cosmological models.12

In these models the 3-space is supposed to be homogeneous and isotropic

and this is clearly a special case of spherical symmetry . On the other hand,

our theory deals only with pressure-free systems, so that we see that the

pressure-free models of relativistic cosmology must be special cases of our

models and we proceed to derive them.

Evidently r is a function of the time only and hence by (6) and (21)

s
r

0

W M 9 dr =
4p

3
rY 3

. (39)

It also follows from our expression for the curvature of the 3-space

(which must be independent of position) that

W 2
(r) = 1 + Y 2 f (t).

12 Cf. H. P. Robertson’ s article ª Relativistic Cosmology” , Rev. Mod. Phys., 5, No. 1,

1933.
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Therefore Y must be a product of a function of t only and a function of r
only, so that we may put

Y = rg(t) (40)

and

W 2
= 1 ¡ kr2

, (41)

and hence

Çg2
= ¡ k + 1

3 g2 f l + 8pr(t) g . (42)

Since ò r
0 W M 9 dr is a function of r only, it follows from (39) and (40)

that rg3 is a constant. Therefore (42) takes the form

3g( Çg2
+ k) ¡ lg3

= 8pg3
r = constant .

The various cases of relativistic cosmology arise for diŒerent values of the

constants. The metric is given by

ds2
= dt2 ¡ [g(t)]2{ dr2

1 ¡ kr2
+ r2dh

2
+ r2

sin
2

h dw
2}. (43)

The substitution r = R / (1 + 1
4 kR 2 ) turns (43) into the more familiar

form

ds2
= dt2 ¡ { g(t)

1 + 1
4 kR 2 }2

f dR2
+ R 2 dh

2
+ R 2

sin
2

h dw
2 g .

7. THE DOPPLER SHIFT

In Section 3 we found that Y (r, t) had direct physical signi® cance as

the value an observer at (r, t) would assign to his distance from O as a result

of his measuremen t of apparent luminosity of a source at O corrected for

Doppler shift. ¶ Y/ ¶ t was then called his velocity, being the rate of change

of distance from O with proper time. Now evidently his measuremen t of

the Doppler shift supplies him with another de® nition of velocity and the

relation between the Doppler shift and his velocity ¶ Y / ¶ t will be discussed

in this section.

We saw in Section 3 that the equation of a ray of light travelling

outwards from O was

h = const., w = const., t = T (r),

where
dT(r)

dr
= X f r, T (r) g , (44)
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and that the Doppler shift 1 + z satis ® ed

dz
dr

= (1 + z)( ¶ X

¶ t )r,T (r )

z = 0 at r = 0 .

Hence the Doppler shift 1 + z1 at r = r1 , t = t1 is given by

log(1 + z1 ) = s
r1

0

dr( ¶ X

¶ t )r,T ( r )

= s
r1

0

dr
dr

W (r) ( ¶ 2 Y

¶ r ¶ t)r,T ( r )

, (45)

where T (r) is the solution of (44) passing through r = r1 , t = t1 .

We can ® nd a more signi® cant expression for (45) if W + ÇY > 0 (as

will usually be the case). 13 For then Y f r, T (r) g is an increasing function of

r (its diŒerential quotient is Y 9 + T 9 ÇY = Y 9 (W + ÇY )/W ) and hence we are

allowed to re-label our r coordinate in such as way that Y f r, T (r) g = r.

Now let

( ¶ Y

¶ t )r,T ( r )

= v(r), ( ¶ 2 Y

¶ t2 )r,T ( r )

= f (r). (46)

Then expanding Y in a Taylor series in t ¡ T we have

Y (r, t) = r + v(r) f t ¡ T (r) g + 1
2 f (r) f t ¡ T (r) g 2 + . . . . (47)

Equation (44) for T becomes

W T 9 = 1 ¡ vT 9 or T 9 =
1

W + v
, (48)

while, from the equation of motion,

v2
= W 2 ¡ 1 +

2

r s
r

0

W M 9 dr, f = ¡ 1

r2 s
r

0

W M 9 dr.

Substituting into (45) we have

log(1 + z1 ) = s
r1

0

dr
v 9 ¡ f T 9

W
= s

r1

0

dr
W v 9 + vv 9 ¡ f

W (W + v)
. (49)

13 The mean ing of this restriction is discussed at the end of this section.
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Substituting for vv 9 ¡ f from the equation of motion we have

log(1 + z1 ) = s
r1

0

dr
v 9 + W 9 + M 9

r

v + W

= log(v1 + W 1 ) + s
r1

0

dr
M 9

r(W + v)
, (50)

since v0 = 0, W 0 = 1.

A little care is required in interpreting this expression. The shift

of spectral lines is due to two causes, viz. the velocity shift due to the

relative motion of source and observer, and the Einstein shift due to the

diŒerence between the potential energy per unit mass at the source and

at the observer. The velocity shift is, in our units, just equal to v1 and is

easily identi® ed in (50).

The Einstein shift is of a more complicated type. We have so far

identi ® ed

¡ s
r1

0

M 9 W dr/r 1 ,

with the potential energy per unit mass at r1 but this is only true in a

very restricted sense. For in bringing a particle from in® nity to r1 we have

tacitly assumed (by virture of the non-intersection hypothesis) that all the

spherical shells of matter outside r1 were moved to their positions from

in® nity in such a way that they were always beyond our particle.

We obtained the correct equation of motion for our particles with

this de® nition of potential energy only because the particle orbits do not

intersect. For a ray of light the situation is radically diŒerent, since it

passes matter on its way. Accordingly we now require a new de® nition of

potential energy, which we will ® rst obtain in the Newtonian analogue.

There the force per unit mass is ¡ M /r 2 and accordingly the diŒerence

in potential energy between the origin and r1 is

s
r1

0

M (r)

r2
dr = ¡ M (r1 )

r1

+ s
r1

0

M 9 dr
r

, (51)

by integration by parts.

But for small masses and velocities (50) becomes

v1 + W 1 + s
r1

0

M 9

r
dr ¡ 1 = v1 +

1

2
v2

1 ¡ M (r1 )

r1

+ s
r1

0

M 9 dr
r

, (52)

since W ¡ 1 is the energy per unit mass.
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The ® rst term on the right-hand side is the ordinary velocity shift, the

second term is small compared with it, while the last two terms describ e

the Einstein shift in terms of the Newtonian potential (51).

We see then that the exact expression (50) gives us an expression for

the combination of velocity shift and Einstein shift in our model.

An interesting, but as we have seen not a radically new, point in (50)

is the fact that the spectral shift does not only depend on conditions at

the source and at the observer but also on the distribution of matter in the

interv ening space. Note that any empty part of space does not contribute

to the integral in (50).

The sign of the velocity shift depends on the sign of v1 , but the Ein-

stein shift is easily seen to be towards the red, at least for reasonably small

masses and velocities.

For light proceeding in the opposite direction the velocity shift has

the same sign as before, but the Einstein shift changes sign. An analysis

similar to the one above gives for light travelling from r1 to the origin

log
t0

t1

= ¡ log(W 1 ¡ v1 ) ¡ s
r1

0

M 9 dr
r(W ¡ v)

.

Finally it might be mentioned that if we re-introduce the cosmological

constant l , no change is made in (50) or any of the subsequent arguments.

Hence there is no shift of the spectral lines explicitly due to l.

In this discussion of Doppler shift we have so far restricted ourselves

to the case W + ÇY > 0. What is the signi® cance of this conditon?

As we move along the ray, Y changes and

dY
dt

=
¶ Y

¶ t
+

¶ Y

¶ r
dr
dt

= W +
¶ Y

¶ t
. (53)

Hence Y increases along the ray only as long as W + Y > 0. This

is due to the curious way light is dragged along by matter (which is also

exempli ® ed by equation (48)). If matter is falling into the origin at very

high speed it may stop the ray and even reverse its direction. Of course this

applies only to the Y picture; the ray continues to reach matter with higher

and higher r values but only when this new matter has moved su� ciently

near to the origin. In the Y picture there is a barrier to outward-moving

rays of light and therefore our de® nition of Y does not apply beyond this

region. This barrier is not nearly as impenetrable as the W = 0 barrier

mentioned in Section 3, since e.g. inward-moving rays of light can easily

cross it.
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It might be mentioned that this reversal of the direction of light can

only occur if we have very high densities throughout very large regions.

For if ¡ ÇY > W > 0 then by (22)

W 2 ¡ 1 +
2

Y s
r

0

M 9 W dr > W 2
,

and hence we must have

s
r

0

M 9 (r)W (r)dr = 4p s
r

0

rY 2 ¶ Y

¶ r
dr >

1

2
Y. (54)

It is a remarkable fact that while inward-moving matter can in such

extreme circumstances reverse the direction of an outward-travelling ray,

such a ray will always catch up with outward-moving matter (no matter

how large its ÇY may be) provided it has not been held up previously by

the above-mentioned barrier.

8. LIMITATIONS OF THE THEORY

With the exception of the non-intersection hypothesis our assump-

tions, if correct initially, will necessarily remain correct as the motion pro-

gresses. However, a serious limitation of the validity of the theory arises

because the system may develop in such a way that the non-intersection

hypothesis, although initially true, is later violated.

We have to consider separately the case where the violation of the

hypothesis occurs at the origin and the case in which it occurs elsewhere.

If the orbits of particles intersect at any point other than O, this fact

would show itself in our notation by Y 9 vanishing at some point. For by

our de® nition of our metric this would imply that the distance between the

particles of two diŒerent shells has become zero. Accordingly our equations

apply only up to the minimum value of t for which Y 9 (r, t), considered now

as a function of r, has a zero. If however we assume that this intersection

does not upset the spherical symmetry , it seems that our theory will remain

valid even for larger t for all r < r1 (t), where r1 (t) is the least r at which

Y 9 (t, r) = 0. Our theory remains valid because the gravitational ® eld at a

point is independent of the spherical shells of matter beyond it.

A more srious violation of the non-intersection assumption may occur

at O. For if matter near O moves into O it will either pass through O

and re-emerge on the other side, its orbits intersecting the orbits of the

incoming matter, or a point mass will be formed at O. In both cases the

theory breaks down completely, in the ® rst case because of the intersections
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in the neighbourh ood of O, in the second case because of the singularity at

O. Although this singularit y might formally be included in the equations

the breakdown of the physical interpretation of Y would rob the theory of

much of its signi® cance.

No such di� culty at O will arise if originally there is a small empty

region round O and if the matter nearest to O does not move inwards at

® rst (for then it will never move inwards).

APPENDIX

Our ® rst step must be to ® nd the energy tensor corresponding to the

metric

ds2
= dt2 ¡ X 2

(r, t)dr2 ¡ Y 2
(r, t)dh

2 ¡ Y 2
(r, t) sin

2
h dw

2
. (1)

In this work we will use the ® eld equations including l.

We put (t, r, h, w ) = (x0 , x1 , x2 , x3 ). A dot will denote diŒerentiation

with respect to t. Then the ChristoŒel symbols

C
s
mn =

1

2
gsa( ¶ gna

¶ xm
+

¶ gma

¶ xn

¡ ¶ gm n

¶ xa ) (2)

are

C
1
11 =

X 9

X
, C

0
11 = X ÇX , C

1
01 =

ÇX
X

, C
2
02 = C

3
03 =

ÇY
Y

, C
0
22 = Y ÇY ,

C
2
12 = C

3
13 =

Y 9

Y
, C

1
22 = ¡ Y Y 9

X 2
, C

0
33 = Y ÇY sin

2
h ,

C
1
33 = ¡ Y Y 9

X 2
sin

2
h , C

2
33 = ¡ sin h cos h , C

3
23 = cot h.

ü
      

ý      þ (3)

All other Cs
m n vanish.

The mixed Einstein tensor has components

R 0
0 =

ÈX
X

+
2 ÈY
Y

, R 1
1 =

ÈX
X

+ 2
ÇX ÇY

X Y
+ 2

X 9 Y 9

X 3Y
¡ 2

Y 9 9

X 2 Y
,

R 2
2 = R 3

3 =
ÈY

Y
+

1 + ÇY 2

Y 2
+

ÈX ÇY
X Y

¡ 1

X 2 ( Y 9 9

Y
+

Y 9 2

Y 2
¡ X 9 Y 9

X Y ) ,

R 0
1 = ¡ X 2 R 1

0 = 2( ÇY 9

Y
¡

ÇX Y 9

X Y ) ,

R = 2
ÈX

X
+ 4

ÈY
Y

+ 4
ÇX ÇY

X Y
+ 2

1 + ÇY 2

Y 2
¡ 2

X 2 ( 2Y 9 9

Y
+

Y 9 2

Y 2
¡ 2

X 9 Y 9

X Y ) .

ü
            

ý            þ (4)
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All other components vanish.

Hence the components of the energy tensor are

l + 8pT 0
0 = 2

ÇX ÇY
X Y

+
1 + ÇY 2

Y 2
¡ 1

X 2 ( 2Y 9 9

Y
+

Y 9 2

Y 2
¡ 2

X 9 Y 9

X Y ) ,

l + 8pT 1
1 = 2

ÈY
Y

+
1 + ÇY 2

Y 2
¡ Y 9 2

X 2 Y 2
,

l + 8pT 2
2 = l + 8pT 3

3 =
ÈX

X
+

ÈY
Y

+
ÇX ÇY

X Y
¡ 1

X 2 ( Y 9 9

Y
¡ X 9 Y 9

X Y ) ,

8pT 0
1 = ¡ 8pX 2 T 1

0 = ¡ 2( ÇY 9

Y
¡

ÇX Y 9

X Y ) .

ü
            

ý            þ (5)

Owing to the assumption that matter moves without altering its

(r, h , w ) coordinates we must have, even in the presence of pressures, T 0
1 =

0.

Hence

X (r, t) =
1

W (r)

¶ Y (r, t)

¶ r
, (6)

where W (r) is an arbitrary function of r.

Then

l + 8pT 0
0 =

U 9

Y 2 Y 9
,

l + 8pT 1
1 =

ÇU

Y 2 ÇY
,

l + 8pT 2
2 = l + 8pT 3

3 =
1

2Y Y 9

¶
¶ r ( ÇU

ÇY ) ,

4l + 8pT =
1

Y 2 Y 9

¶
¶ r ( Y

ÇU
ÇY

+ U) ,

where U = Y (1 + ÇY 2 ¡ W 2
).

ü
              

ý              þ
(7)

As explained in Section 2 this set of equations de® nes the most general

set of pressures which will move the particles along our speci® ed geodesics.

If we assume the pressure to be isotropic then

T 1
1 = T 2

2 = T 3
3 , (8)

and therefore, by (7),

ÇU

Y 2 ÇY
=

1

2Y Y 9

¶
¶ r ( ÇU

ÇY ) .
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Hence

¶
¶ r( ÇU

Y 2 ÇY ) = 0, (9)

and so

T 1
1 = T 2

2 = T 3
3 = F (t). (10)

This means that the pressure is uniform.

We are mainly interested in the case of zero pressure, i.e. T 1
1 = T 2

2 =

T 3
3 = 0. Then

ÇU = lY 2 ÇY ,

so that

U = 1
3 lY 3 + S (r). (11)

Hence

8pT 0
0 = 8pT = S 9 (r)/ Y 2 Y 9 = S 9 (r)/X Y 2 W (r). (12)

By (6) of Section 2 this implies

S (r) = 2 s
r

0

M 9 (r)W (r)dr, (13)

since we have U = 0 at r = 0.

Hence

ÇY 2
= W 2 ¡ 1 +

1

3
lY 2

+
2

Y s
r

0

M 9 (r)W (r)dr. (14)

In the case l = 0 this reduces to

ÇY 2
= W 2 ¡ 1 +

2

Y s
r

0

M 9 (r)W (r)dr. (15)

These equations may be integrated again, viz.

t = s
Y { 1

3
lu2

+ (W 2 ¡ 1) +
2G
u } - 1/ 2

du, (16)

where

G(r) = s
r

0

M 9 W dr.
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The lower limit of integration is an arbitrary function of r. It is

frequently convenient to have Y f r, t0 (r) g = r, where t0 (r) is an arbitrary

function of r.

Then

t = t0 (r) + s
Y { 1

3
lu2

+ (W 2 ¡ 1) +
2G
u } - 1 / 2

du. (17)

The integral is elliptic unless l = 0 when it is elementary. On carrying

out the integration for l = 0 we ® nd that, when W > 1,

t = t0 (r) +
2G(r)

(W 2 ¡ 1)3 / 2 {F ( 2G
Y (W 2 ¡ 1) ) ¡ F ( 2G

r(W 2 ¡ 1) ) }, (18)

where

F (x) =

p
1 + x
x

+
1

2
log

p
1 + x ¡ 1p
1 + x + 1

,

while when W < 1,

t = t0 (r) +
2G

(1 ¡ W 2 )3/ 2 {H( 2G
Y (W 2 ¡ 1) ) ¡ H( 2G

r(W 2 ¡ 1) ) }, (19)

where

H (x) =

p
x ¡ 1

x
+ tan - 1

p
x ¡ 1 .

(In this case we must always have Y £ 2G
1 -W 2 ).

Finally, if W = 1,

t = t0 (r) +
Y 3/ 2 ¡ r3 / 2

q
9
2 G(r)

. (20)

We may conclude the appendix by giving the components of the

Riemann-Christo Œel tensor.

We ® nd that

R 1212 =
R1313

sin
2

h
= ¡ Y 9 2

W 2 ( l

3
Y 2

+
G 9

Y 9
¡ G

Y ) ,

R2323 = ¡ Y 2
sin

2
h( l

3
Y 2

+
2G
Y ) ,

R 0202 =
R0303

sin
2

h
=

l

3
Y 2 ¡ G

Y
,

R0101 =
Y 9 2

W 2Y 2 ( l

3
Y 2 ¡ G 9

Y 9
+ 2

G
Y ) .

ü
           

ý           þ (21)
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All other independent components vanish.

The invariant B = Rab c d Rab c d is given by

B =
8

3
l

2
+

8

3
l

G 9

Y 2 Y 9
+ 12

G 9 2

Y 4Y 9 2
¡ 32

GG 9

Y 5 Y 9
+ 48

G2

Y 6
. (22)
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