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We consider an isotropical inertial reference frame ("stat ionary")  and 
in it a uniformly rotat ing circular platform of radius R. The velocity 
of light 5 relative to the rim of the platform is calculated and found to 
have values necessarily different from c. This 5 remains the same if R 
is increased but the peripherM velocity is kept constant. Since by so 
doing any small piece of the circumference can be considered bet ter  
mxd bet ter  at rest in a ("moving") inertial system, the velocity of 
light relative to this system can be deduced. Noninvariant values are 
obtained and shown to coincide with the predictions of our recently 
published "inertial transformations". 
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1. S P A C E  A N D  T I M E  O N  A R O T A T I N G  P L A T F O R M  

The basic idea of the present paper is that  every time one learns 
something new about accelerated reference frames, one learns some- 
thing new also about inertial frames. In fact the lat ter  frames can 
always be considered as particular cases of the former ones with zero 
acceleration. The limit a --~ O does not need to be taken literally, 
mathematically.  In fact no perfectly inertial frames exist in practice, 
e.g., because of Ear th  rotation around its axis, of orbital motion 
around the Sun, of Galactic rotation. All we know about inertial 
frames (which is certainly a lot) has actually been learned in fraanes 
having a small but  nonzero acceleration. Of course the mathemat ica l  
limit a ~ 0 in the theoretical schemes can be taken, if one so wishes, 
but it becomes then essential that it be a smooth limit and that  no 
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discontinuities arise between systems with small but nonzero accel- 
eration and inertial systems. From such a point of view our existing 
theories will be seen to be wmlting. 

Consider an inertial reference frame So and assume that  it is 
isotropic. Therefore the one-way velocity of light relative to So can 
be taken to have the usual value c in all directions. In relativity the 
latter assumption is true in all inertial frames, while in other theo- 
ries only one such frmne exists [1]. A laboratory in which physical 
experiments are performed is assmned to be at rest in So, and in it 
clocks have been synchronised with the Einstein method,  that  is by 
using light signals. 

In this laboratory there is a perfectly circular platform having 
radius R which rotates around its axis with angular velocity w and 
peripheral velocity v = wR.  On its rim we consider a clock Cr~ and 
we assume it to be set as follows: When a clock of the laboratory 
momentarily very near Or. shows time to --- 0 then also Cs is set at 
time t -- 0. If the platform were not rotating C~. would always show 
the same time a.s the laboratory clocks. When it rotates, however, 
motion modifies the pace of Cr. and the relationship between the 
times t and to is then taken to have the general form 

t o = t F l ( v , a ) ,  (1) 

where F1 is a function of velocity v, acceleration a = v2 /R ,  and 
eventually of higher derivatives of position (not shown). 

The circumference length is assumed to be L0 a~ld L, mea- 
sured from the laboratory So and on the platform, respectively. Mo- 
tion can modify length as well, and we assume the relationship 

Lo = CF2(v, a), (2) 

where Fs is another fimction of the said arguments. Notice that  
the assumed isotropy of the laboratory frame implies that  function 
FI(F2) does not depend on the position on the rim of the disk where 
the clock is placed (where the measurement of length is started). It 
only depends on velocity, acceleration, etc., and these axe the same 
in all points of the border of the rotating circular platform. 

We are of course far from ignora~lt about the nature of the 
fimctions F1 and F2. In the limit of small acceleration and constar~t 
velocity they are expected to become the usual time dilation and 
length conctraction factors, respectively: 

F,(v,0) = .,/i F2(v,O) = X/1 - v2/c ~ • (3) 

There are even strong indications, at least in the case of F1. that  
the dependence on acceleration is practically absent [9.]. All this is 
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however unimportant  for our present purposes, because the results 
obtained below hold for all possible functions F1 and F2. 

2. V E L O C I T Y  O F  L I G H T  O N  R O T A T I N G  P L A T F O R M S  

On the rim of the platform besides the clock Cs there is also 
a light source E placed in a fixed position very near Cs.  Two light 
flashes leave 5-I, at the time tl of C~. and are forced to move circularly 
by "sliding" on the internal surface of a cylindrical mirror placed at 
rest on the platform all around it and very near its border. Mirror 
apart, the light flashes propagate in the vacuum. The motion of the 
rein'or cannot change the velocity of light, because the mirror is like 
a source (a "virtual" one) and the motion of a source never changes 
the velocity of the light signals originating from it. Thus, relative to 
the laboratory, the light flashes propagate with the usual velocity c. 

The description of light propagation given by the laboratory 
observers is the following: Two light flashes leave E at time t01. The 
first one propagates circularly in the sense opposite to the platform 
rotation aa~d comes back to ~ at time t0s after a full rotation around 
the platform. The second one propagates circularly in the same 
rotational sense of the platform and comes back to E at t ime t03 
after a full rotation around the platform. These laboratory times, 
all relative to events taking place in a fixed point of the platform 
very near Cs,  are related to the corresponding platform times via 
(1): 

tOi = t i F  1 (v,  a) ,  i : 1, 2, 3. (4) 

Light propagating in the direction opposite to the disk rotation must  
cover a distance smaller than L0 by a quantity z = w R ( t o 2  - to1)  
equalling the shift of ~ during the time t0~ - t01 taken by light to 
reach E. Therefore 

L o  - x = c ( t o 2  - t o , ) ,  • = ~ R ( t o 2  - t o 1 ) .  (5) 

From these equations one gets 

L0 
to2 - to, = c ( l " +  f l ) "  (6) 

Light propagating in the rotationM direction of the disk must instead 
cover a distance larger than the disk circumference length L0 by a 
quantity y = w R ( t o 3  - to1) equalling the shift of ~ during the time 
t03 - t01 taken by light to reach 5-I.. Therefore 

L0 + ~ = c(t03 - t0 , ) ,  y = ~R(t03  - t0 , ) .  (7) 



76 Selleri 

One now gets 
L0 

to3-to~ = c ( 1 - ~ ) "  (8) 

By taking the difference between (8) and (6) we see that the time de- 
lay between the arrivals of the two light flashes back in ~ is observed 
in the laboratory to be 

2L0/3 
to3 - to2 = c(1  - f12)" (9)  

This is the well known time delay for the Sagnac effect [3] calculated 
in the laboratory. 

We show next that these relations fix to some extent the ve- 
locity of light relative to the disk. In fact (2) and (4) applied to (6) 
and (8) give 

LF2 LF2 
[t2 - tl]F1 - c(l +/3)' [t3 - tllF1 = c(l -/~)' (I0) 

whence 

1 t2 - t l  F2 1 t3 - t l  F2 

~(.---~ - - - T -  - F , c ( 1  + ~ ) '  ~ ( 0 ) -  - - - Y -  = F lc (1  - ~)' 
(11) 

if ~(0) and ~(~') are the light velocities, relative to the rim of the disk, 
for the flash propagating in the direction of the disk rotation, and 
in the opposite direction, respectively. From (11) it follows that the 
velocities of the two light flashes relative to the disk must satisfy 

~(~) 1 + 
m 

~(o) 1 - ~" (12) 

Notice that the unknown functions F1 and F2 cancel from the ratio 
(12). The consequences of (12) will be found in the next section. As 
of now two important comments nmst be added. 

Firstly, one should realise that (12) does not only give the ra- 
tio of the two global light velocities for a fllll trip around the platform 
in the two opposite directions, but the local ratio as well: isotropy of 
space insures that the velocities of light are the same in all points of 
the rim, and therefore that the average velocities coincide with the 
local ones. 

Secondly, the result (12) holds for platforms having different 
radius but the same peripheral velocity v. Suppose that one builds 
a set of circular platfomns with radiuses R1,R2, . . .Ri , . . . (R1 < 
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.R2 < . . .  < -Ri < . . . )  and makes them spin with angular  veloci- 
ties wl, w2, . . ,  w i , . . ,  in such a way that  

W l R 1  = w 2 R 2  = . . .  = w i R i  = . . .  = ?3, (13) 

where v is a constant  velocity. Obviously (12) applies to all such 
platforms with the same fl(fl = v / c ) .  The  respective centr ipetal  
accelerations will be 

?32 ?32 ?32 
R,' R-S""" (14) 

mad w i l l  t e n d  to zero w i t h  g r o w i n g  R i .  By the way this is so for all 
higher derivatives of position: if r0 (t0) identifies a point  of the r im of 
the i- th p la t form seen from in the laboratory system, one can easily 
show that  

d n ro v" 
= n > 1. ( 1 5 )  

Therefore, a little piece of the r im of a platform having peripheral  
velocity v and very large radius for a short  t ime will be practically 
equivalent to an inertial reference frame, which is endowed of a ve- 
locity only. For all practical purposes the "little piece of the r im 
of a plat form" will be at rest in an inertial reference frame. But  if 
this is accepted, it follows also that  the velocity of light relative to 
a moving inertial fraane cannot  be c (otherwise the left-hand side of 
(12) should take the value 1). 

3. S P E E D  O F  L I G H T  R E L A T I V E  T O  I N E R T I A L  F R A M E S  

As shown in [1] one can always choose Cartesian coordinate 
systems in two inertial reference frames S and So and assume: 

(1) tha t  space is homogeneous and isotropic, and that  t ime is 
also homogeneous;  

(2) that  relative to So the velocity of light is the same in 
all directions, so that  Einstein 's  synchronisat ion can be used in this 
frame mad the velocity v of S relative to So can be measured;  

3) tha t  the origins of S and So coincide at t = to = 0; 
4) that  planes (x0, y0) and (x, y) coincide at all t imes to ; 

tha t  also planes (x0, z0) and (x, z) coincide at all t imes to; bu t  tha t  
planes (y0, z0) and (y, z) coincide at t ime to = 0 only. 
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It then  follows [1] that  the t ransformat ion law from So to S 
is necessmily 

x = f ,  (~o  - ~ t o ) ,  

V = g2Yo, (16) 
z = g2zo, 

t = e l x 0  + e 4 t o ,  

where the coefficients f l , g2 , e4 ,  a~ld ex can depend on v. If at this 
point  one assumes the validity of the relativity principle ( including 
invaxiance of light speed) these t ransformations reduce necessarily to 
the Lorentz ones. It was shown in [1] that  the mos t  general transfor- 
mat ions  of the general type (16) satisfying the condit ions of cons tant  
two-way velocity of light and of t ime dilation according to the  usual  
relativistic factor are such tha t  

1 
y ,  = ~ , , , , ,  g~ = 1, e ,  = R ( # )  - e , /5~ ,  

/-~l,p) 

where/5  = v /c ,  and 

so tha t  

R(/5) = x/1 - /52 ,  (17) 

zo - /scto  

R( /5 )  ' 

y = y0,  ( 1 8 )  

Z = ZO~ 

t = R( /5 ) t0  + e l ( z 0  - / s c t 0 ) .  

In (18) only el remains unk,~own. Length contraction by the 
factor R(/5) is also a consequence of (IS). The inverse speed of light 
conlpatible with (18) was shown to be [1]: 

~ ( e )  c 

where O is the angle between the direction of propagat ion  of light 
and the absolute velocity v of S. The  t ransfonnat ions  (18) repre- 
sent the complete  set of theories "equivalent" to the Special Theory  
of Relativity (STR):  if el is varied, different elements of this set axe 
obtained.  The  Lorentz t ransformat ion is found as a par t icular  case 
with el = - / 5 / c R ( f l ) .  Different values of el axe obta ined f rom differ- 
ent clock-synchronisation conventions. In all cases but  tha t  of S T R  
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such values exclude the validity of the relativity principle, and imply 
the existence of a privileged frame [1]. For all these theories only 
subhuninal motions are possible (fl < 1). 

In the previous sections we found a ratio of the one-way ve- 
locities of light along the rim of the disk, and relative to the disk 
itself, different fl'om 1 and given by Eq (12). Our principle of local 
equivalence between the rim of the disk and the "tangent" inertial 
fl-aane requires (12) to apply in the latter frame as well. Eq. (19) 
applied to the c~ses ~ = 0 and 8 -- 7r gives 

_ _ _  [_~ )] (I = -cl [ ~ + e I R ( fl ) " 1 1+ +e,R(fl , _Tr) 
This gives 

(20)  

~(0) 1 - f l  - -  c e i R ( f l ) '  

which caal agree with (12) for fl < 1 if and only if 

el = 0. (21) 

The space dependent term in the transformation of time is thus seen 
to disappear fl'om (18). The same result (21) was obtained in [1] by 
requiring that the Sagnac effect be explained also on the rotating 
disk, and not only in the laboratory. See also Ref. [4] for a detailed 
discussion of the problem both from the special and the general rel- 
ativistic point of view. 

4. T H E  I N E R T I A L  T R A N S F O R M A T I O N S  

111 the previous section we showed that the condition el = 0 
has necessarily to be used. This generates a transformation different 
fl'om the Lorentz one [1]: 

I zo - flC~o 
x =  n ( # ) '  

Y = Y0, 

Z ~---Z0, 

t n(f)to. 

(22)  

The velocity of light predicted by (22) can easily be found by taking 
el = 0 in (19): 

1 1 +f lcosO 
- (23)  

c 
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The transformation (22) can be inverted and gives: 

Y0 : Y ,  

;gO = Z ~  

1 
to = R ( f )  t. 

(24)  

Note the formal difference between (22) and (24). The  lat ter  implies, 
for example, that  the origin of So(Xo = y0 = z0 = 0) in S is described 
by y = z = 0 and by 

x ~  - - t .  
1 - #2 

This origin is thus seen to move with speed t ic~(1 - f12), which can 
exceed c, but  ca~mot be superlmninal. In fact a light pulse seen from 
S to propagate in the same direction as So has O = ~r and thus [using 
(23)] ha.s speed ~(~r) = c/(1 - #), which can easily be checked to 
satisfy 

c c# 

1 - #  - 1 - # ~ "  

One of the typical features of these transformations is of course the 
presence of relative velocities exceeding c. Absolute velocities are 
instead always smaller thaal c [1]. It is clear from (25) tha t  the 
velocity of So relative to S is not equal and opposite to tha t  of S 
relative to So. In STR one is used to relative velocities tha t  are 
always equal and opposite, but  this symmetry  is a consequence of 
the part icular  synchronisation used and cannot be expected to hold 
more generally [1]. 

Consider now a third inertial system S ~ moving with velocity 
~ c  and its transformation from So, which of course is given by (18) 
with ~8 ~ replacing ft. By eliminating the So variables one can obtain 
the traalsformation between the two moving systems S a~ld S~: 

I, R(#) = R (# ' )  [~ 
y' = y, 

Z I ~ Z ,  

t' R (# ' )~  
= - R - - ( - ~  " 

#' - # .1 
, 

(26) 



Speed of T,i~l~t Sl 

The name for (22)-(24)-(26) is "inertial transformations". In its most 
general form (26) the inertial transformation depends on two veloc- 
ities (v and v~). When one of them is zero, either S or S t coincide 
with the privileged system So and the transformation (26) becomes 
either (22) or (24). 

A feature characterising the transformations (22)-(24)-(26) is 
absolute simultaneity: two events taking place in different points of 
S but at the same t are judged to be simultaneous also in S ~ (and 
viceversa). Of course the existence of absolute simultaneity does 
not imply that  time is absolute: on the contrary, the fl-dependent 
factor in the transformation of time gives rise to time-dilation phe- 
nomena similar to those of STR. Time dilation in another sense is 
however also absolute: a clock at rest in S is seen from So to run 
slower, but a clock at rest in So is seen from S to run faster so that  
both observers will agree that motion relative to So slows down the 
pace of clocks. The difference with respect to STR exists because a 
meaningful comparison of rates implies that  a clock To at rest in So 
nmst be compared with clocks at rest in different points of S, and 
the result is therefore dependent on the "convention" adopted for 
synchronising the latter clocks. 

Absolute length contraction can also be deduced from (25): 
All observers agree that motion relative to So leads to contraction. 
The discrepancy with the STR is due to the different conventions 
concerning clock synchronisation: the length of a moving rod can 
only be obtained by nmrking the simultaneous positions of its end 
points, aa:d therefore depends on the very definition of simultaneity 
of distm:t events. 

5. C O N C L U S I O N S  

Our choice of synchronisation (called "absolute" by Mansouri 
and Sexl [5]) has been made by considez~ng rotating platforms. The 
main result of this paper is Eq. (12): The ratio 

P = e(0)  

has been calculated along the rim of the platforms and shown, under 
very general conditions, to have the value (12) which in general is 
different fi'om unity. Therefore the velocities of light parallel and 
antiparallel to the disk peripheral velocity are not the same. For 
SRT this is a very serious problem because a set of platforms with 
growing radius, but  all with the same peripheral velocity, approaches 
locally better and better an inertial frame. To say that  the radius 
becomes very large with constant velocity is the same as saying that  
the centripetal acceleration goes to zero with constant velocity. The 
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1 4 - - -  SRT 

acceleration 

Fig. 1. The ratio p = ~(a')/~(0) plotted a.s a function of 
acceleration for rotating platforms of constant periph- 
eral velocity and increasing radius (decreasing accelera- 
tion). The prediction of SRT is discontinuous. 

logical situation is shown in Fig. 1 where one can easily see that SRT 
predicts a discontinuity at zero acceleration, a sudden jump from the 
accelerated to the "inertial" reference frames. While all experiments 
are performed in the real physical world (a ~ 0, p = (1 + fl)/(1 - fl)), 
our theoretical physics seems so to have gone out of the world (a = 
0, p = 1)[ Very probably the above discontinuity is the origin of the 
synchronisation problems met with the Global Positioning System: 
after all our Earth is also a rotating platform. 

It should be stressed that a noninvariant velocity of light is 
required for all (but one!) inertial systems. In fact given any such 
system and a small region of it, it is always possible to conceive 
a large and rotating circular platform locally at rest in that region, 
and the result (12) must then apply. Therefore the velocity of light is 
nonisotropical in all the inertial reference frames with the exception 
of one (So) where isotropy can be postulated. 

Finally we must also conclude that the famous synchronisa- 
tion problem [6] is solved by nature itself: it is not true that the 
synchronisation procedure can be choosen freely because Einstein's 
convention leads to an unacceptable discontinuity in the physical 
theory. 

The kinematics of high energy particle interactions was stud- 
ied in Ref. [7] showing that, in this case, complete equivalence exists 
between our predictions and those of STR. Therefore the kinematics 
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of high energy processes, the determination of particle masses, and 
so on, do not require a different analysis from the one successfully 
carried out up to the present time. In fact energy and momentum 
are defined in such a way as to coincide numerically with those of 
STR for all particles and in all inertial frames, once they coincide 
in the fundamental frame. The coincidence is only numerical (and 
not also analytical) because the dependence on the "conventional" 
one-way velocity of the particle is different in the two theories. 
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