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Abstract 

The experimental discovery by Dufour and Prunier that the Sagnac fringe displacement does not change when the source 
and fringe detector are locally transferred from the rotating platform to the laboratory frame is interpreted as a natural result 
of general relativity theory when one introduces non-zero mass photons into the theory of light. It also yields a proof of the 
reality of Langevin’s paradox as a natural consequence of assuming that non-zero mass photons (1) follow real space-time 
paths, (2) are associated with real physical internal clock-like motions, (3) imply the existence of an absolute local inertial 
frame 2, first associated by Lorentz with Maxwell’s equations. 0 Published by Elsevier Science B.V. 

1. Introduction 

In a recent paper Kelly [I I has suggested that the 
Dufour-Prunier experiments [2] (which confirm with 
a different set-up Sagnac’s discovery of fringe shifts 

displacements in rotating interferometers [3]) contra- 
dict one of the two basic requirements of special 

relativity theory, i.e., (1) that the speed of light is 
independent of the speed of its source, (2) that its 
value c is a constant for all observers in inertial 
frames travelling at uniform speed with respect to 

each other, since the second can be shown to clash 
with the observed existence of the same fringe dis- 
placement on the rotating disk and the enclosing 

laboratory. 
The aim of the present Letter is to show that the 

introduction of a small photon rest mass m,, # 0 into 
the theory of light explains this result within the 
frame of general relativity theory itself i.e., that it 

can be considered (a) as a particular experimental 
proof of the real existence of Langevin’s twin (clock)) 
paradox, (b) as evidence for the existence of an 
absolute local inertial frame, CO, recently revived in 
the literature [4], since one can show that, in that 

case, as a consequence of Lorentz’s real contraction 
and time slowing the Sagnac fringe shift only de- 

pends on the invariant phase shift (proper time dif- 
ference) of the two interfering light signals which 
travel clockwise and anticlockwise on the rotating 
disk. 

2. Sagnac effect 

The fact that a light signal, that is sent both 
clockwise and anticlockwise around a path on a 
rotating disc, takes different times to return to the 
source was discovered by Sagnac over eighty years 
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ago [3] (i.e. the Sagnac effect) is an unsolved funda- 

mental problem in physics. For example, in a recent 

review paper Hasselbach and Nicklaus [5] list many 
explanations of the Sagnac effect proposed by vari- 

ous authors over the intervening years. They sum up 

the situation as follows: “This great variety (if not 
disparity) in the derivation of the phase shift consti- 

tutes one of the several controversies that have been 

surrounding the Sagnac phase shift since the earliest 

days of studying interference in rotating frames of 

reference.” Several references to each suggested ex- 

planation are listed in their paper. In all of these 

references one finds attempts to explain the effect by 

assuming that the movement of the disc affects, in 

some way, the behaviour of the light. Kelly’s main 
new point is to show that the movement of the disc 

has no influence whatever on the behaviour of the 

light and that the appearance of the disk’s angular 

velocity is essentially related to delayed intervention 
of the measuring device only. 

A schematic representation [l] of the test done by 
Sagnac is shown in Fig. 1. A light source at point S 

emits light to a beam splitter at point C. Some of the 
light traverses the path SCDEFC, and is then re- 

flected to an “observer” at 0. Some of the light 

goes the other way, around SCFEDCO. The whole 
apparatus can rotate with an angular velocity w. The 
light source S and the “observer” 0 (in reality a 
photographic plate) are both fixed to the rotating 

apparatus, and rotate with it. 
When the disc is stationary, light sent around in 

opposite directions will arrive back at the same 

instant at point C. The beam splitter at C acts as an 
interferometer and is used to display this static situa- 
tion and to determine whether any change occurs 
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Fig. 1. Sagnac test. 

when the disc is set in motion [6]. In the static case, 
the interferometer produces fringes (dark and bright 

bands) where the light recombines, following its 
traversing of a circuit. 

When the disc is spinning, the observer detects a 

shift in the fringes to one side, indicating that the 

two light signals are out of phase and do not return 

to point C at the same instant. The shift is of the 

same magnitude, but in the opposite direction, when 
the direction of rotation is reversed. 

Sagnac derived the difference in time, dt, be- 

tween the times taken by the light to traverse the 

path in opposite directions, as 

dt = 4Aw/c2, (1) 

where terms of the order of w2 and less are ignored. 

In Eq. (1) A is the area enclosed by the light path, 
and c is the speed of light. Note that the interferome- 
ter that displays this time difference is on board the 
rotating disc. 

Sagnac [3] showed experimentally that the centre 
of rotation can be away from the geometric centre of 

the apparatus, without affecting the above result. He 
also showed that, although the mirrors move as the 

disc rotates and as the light moves around the circuit, 
this movement has a negligible effect on the magni- 
tude of the fringe shift. 

“Langevin, in 1921 [7], commented on the practi- 
cal tests done by Sagnac 131, and claimed that the 
effect, i.e., the observed time difference dr, had to be 
in accord with the theory of relativity. He said that 
because that theory fitted the “ whole of the known 
experimental facts’ ’ of physics in general, the tests 
had to be explicable by that theory. In 1935, how- 
ever, Prunier [8] published a note questioning 
Langevin’s reasoning and argued that the practical 
tests were not explained by relativity theory. There 
followed a series of papers, by Dufour [9] and 
Langevin [7] in which was debated the question 
whether, or not, the effect was in accord with the 
theory of special relativity and whether an apparatus 
could be constructed to settle the question. This first 
debate ended in stalemate” [l]. 

Dufour and Prunier [lo] then collaborated in a 
series of dissimilar Sagnac-type practical tests. First, 
in 1937, they rigorously repeated the original Sagnac 
tests. They then repeated the method used by Pogany 
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[ll], who had the light emitter fixed in the labora- 
tory, but had the photographic recorder on the disc. 
They then carried out the experiment with both the 

light emitter and the photographic recorder taken off 
the disc, and set up fixed in the laboratory [ 111, i.e., 

the set-up adopted by Harress [12]. 
It should be noted that, in all these cases, the 

interference of the light signals occurs on board the 
spinning disc, i.e., the interferometer (fringe detec- 

tor) is always fixed to the disc; the photographic 
recorder, which is either on or off the disc, then 

captures the image of the fringe shift. The experi- 

ment where the photographic equipment is off the 

disc is the more complicated of the two. Two extra 

lenses are required to send the image out from the 
disc and on to the photographic plate fixed in the 

laboratory, consequently, the spread of the readings 

widens from +5% in the case where the record is 
made on board the disc to & 15% off the disc [ 121. 

In 1939, Dufour and Prunier carried out their final 
experiment [ 101. They did a test with both the begin- 
ning and end of the light path on the spinning disc, 

but with the middle portion of the path reflected off 
mirrors fixed in the laboratory (directly above the 
disc). In this test, they had both the light emitter and 

the photographic recorder fixed in the laboratory. 
“On the spinning disc” means that the light is 

confined to a path by a set of mirrors which are fixed 
to, and rotate with the disc. 

The fringe shifts resulting from all the above 
Dufour and Prunier tests were the same as in their 
original Sagnac-type tests. This fact is of critical 
significance in understanding what is occurring, as 
will be discussed later. 

In 1942 Dufour and Prunier published a compos- 
ite paper [lo] reviewing their total experimental work 
to date. At the end of this paper they state that the 

relativity theory seems to be in complete disagree- 
ment with the result which was garnered from the 

experiment. For a time this was the end of the 
debate [ 11. 

In order to get an idea of the magnitude of the 
Sagnac effect, it is helpful to calculate the disc-rota- 

tion speeds necessary to obtain significant fringe 
shifts. Consider Fig. 2, where the light path is con- 
fined to a circle of radius r. The equation which 
expresses the relationship between interference 
fringes and time differences is F = d t (c/h), where 

F is the number of fringe shifts detected and A is the 

wavelength of the light used. From Eq. (1) and, since 
u = r-w for circular motion (where u is the tangential 

velocity of a point on the circle), one has 

4Ao 47rru 
F=-=- 

CA CA . 
(2) 

In order to obtain a fringe shift of one fringe, using a 
disc of 1 m radius, the velocity around the perimeter 

of the circuit has to be only about ’ 13 m/s. 

The first known Sagnac-type test performed was 

carried out in 1911 by Harress [ 121. His apparatus 

was similar to Sagnac’s, consisting of a rotating disc 

carrying a light emitter and photographic recorder 
(both fixed in the laboratory); light signals were sent 

around the disc in opposite directions. Von Laue, in 

1920, showed that the Sagnac effect could be de- 
tected in Harress’s numerical results [ 141. 

Pogany repeated the Sagnac tests [l 11. By using 

more sturdy apparatus and higher speeds of rotation 
he obtained a fringe shift 25 times greater than that 
achieved by Sagnac (F = 1.8 versus F = 0.07 

fringe), thus reducing the experimental error and 
allowing the fringe shift to be measured with greater 

accuracy. 
To indicate the accuracy of more modem 

Sagnac-type tests, Macek and Davis [13] give the 
accuracy of the laser equipment used as 1 in 10 I*. In 

1913, when Sagnac carried out his tests, the accuracy 
was about * 1 in IO*. 

With my = 0 the Sagnac effect is evidently not 
compatible with the initial assumption of restricted 
relativity theory where the velocity of light is con- 
stant. This is only to be expected of course since the 

corresponding motions of light are not along straight 
lines with constant velocity if m,, # 0. As one knows, 
following Einstein himself, motions along curved 
world lines imply the introduction of accelerations, 

i.e., the utilization of the mathematical formalism of 

Thathis is so can be seen by setting F = 1, r = 1, A = 5500 

X IO-” cm (a typical figure) and c = 3 X 10’ m/s in the above 

equation [l]. 

* The reader is referred to Ref. [ 141 for a historical review of 

the Sagnac effect. 
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general relativity. If one assumes with him [ 151 (a) 
that any curved world-line path can be approximated 

by a succession of small inertial straight lines with 

different specific constant velocities, i.e., can be 
analysed in terms of a succession of Lorentz trans- 

formations and (b) that the change in direction be- 

tween successive small segments (equivalent to 

point-like accelerations) does not influence the time 

evolution of observable physical quantities such as 

rod length, time, wave phase etc. measured with 

respect to other inertial frames 3, i.e., that one can 

thus approximate all non-inertial motions in terms of 

a succession of small inertial motions [4], we shall 

now show that one can interpret the Sagnac effect 

with a non-zero photon mass. 

3. Sagnac effect and non-zero photon mass 

The development of a new interpretation of the 

Sagnac effect with a non-zero mass photon within 

the frame of general relativity theory rests on the 

following assumptions: 
The existence of a non-zero photon mass my = 

1O-65 g first developed by de Broglie, Schriidinger, 

and in that case Einstein, has been recently reintro- 
duced into the literature [17]. As one knows 

(i) Light corresponds to spin 1 fields described by 

a four-vector density 

A, = RJ xa)exp[iS(x,)/fi]~ 
where R, is a real four vector density p’/*a, with 
aFaF = cons& a,acLS = apA,, = 0 and 0 A, = 
(rnt c4/h2) A, in vacuum. 

(ii) This field carries (and pilots) particle or soli- 
ton-like photons which move along average drift-lines 

tangent to the four-momenta pp = 6”‘s with an aver- 
age probability distribution p = R,R P and pfiaP = 
0. 

’ This assumption (b) has been experimentally confirmed, even 

in the case of light, by experiments made by Majorana, Beckman 

and Mandis, Michelson and Morley which showed that the instan- 

taneous acceleration of light by rotating mirrors does not modify 
the fringe shifts (i.e. phase or time delay) in interference set-ups 

(for a detailed justification see Ref. [16]). 

(iii) These photons (and the corresponding wave 
constitutive elements) are real extended clock-like 

structures, “ piloted’ ’ by their surrounding elements, 
which move within time-like tubes with a subluminal 
velocity c, < c and have c,V = c* where c, repre- 

sents the particle velocity corresponding to a given 

frequency v (i.e. E = hv= mFc*(l - c~/c*)-‘I* 
and V denotes the associated superluminal phase 

velocity. At the photon’s positions the phase of the 

photon’s pilot wave equals for a small time the phase 

(frequency) of the photon’s internal oscillations (so 

that mtc* = hv, in their rest frame), i.e., it coin- 

cides with the external phase of the piloting vector 

field A,: a basic assumption in quantum mechanics. 

Photons thus follow curved world paths L as a 

consequence of the influence of the quantum poten- 
tial generated by A, and behave like extended clocks 
moving with velocities < c. 

(iv) In general relativity the observed interference 

of light originating from the same sources arriving at 
the same world point 0 through different curved 

paths, corresponds to the phase difference generated 
by the corresponding propagation, when one utilizes 

the corresponding proper times as evolution parame- 

ters. If one now considers photons (and wave ele- 
ments) as real extended clocks with a rest frame 

frequency h v” = m” c* this implies, if one limits 
oneself to the considkration of two paths L, and L,, 
between S and 0, that the fringe shift S, - S, is 
proportional to the difference of proper times 7, - rb 
taken to pass from S to 0 along L, and L,: or, in 
other terms, to the difference of age of two Langevin 

twins travelling along L, and L,. In this model, 
Sagnac-type interference experiments thus corre- 
spond to a physical test (proof) of the Langevin 
paradox: where the rotating disk only determines the 
origin and final positions of the interfering clocks 
(i.e., photons or twins) following different world 
lines with different uelocities. As stated by Kelly [l] 
the Sagnac effect is a measure of the difference in 
proper times of the two light signals while they are 
away on their travel in the two opposite directions. 

As has been shown in the literature, my # 0 im- 
plies the real existence of an absolute space-time 
frame Co as a consequence of restricted relativity 
theory itself. In this frame C,, light, with frequency 
v, moves in all directions with the same velocity. 
When applied to clock retardation, in the case of two 



J.P. Vigier/ Physics Letters A 232 (1997) 75-85 79 

independent isolated clocks or photons (denoted A 

and B) moving in a region of the Universe in such a 

way that they coincide on at least two occasions at 
times t, and t2 in an inertial frame H,, then as 
Hafele and Keating have confirmed, this theory pre- 

dicts that in general one clock will become retarded 

with respect to the other as a consequence of the 

difference of their motions along different paths in 

2,. As shown by Builder [ 191 in a remarkable paper 

according to the restricted and general theory of 
relativity this retardation (a> cannot result from their 

individual accelerations (1) because in general rela- 

tivity the rate of a clock is not a function of its 

acceleration and (2) because one can consider any 
path as a succession of different inertial motions in 

vanishingly small time intervals, (b) cannot depend 
on the velocity of a clock relative to the other. 

Indeed if we denote by u and u the velocities (in 

SC,) of A and B at any time t and their coincidence 
occurs at times t, and I,, then the rates of the clocks 
at the instant q, are respectively 

dt,/dt, = (1 - u’/c~)“~, 

dt,/dt, = (1 - u~,‘c~)“~ 

and the proper times of the clocks 
coincidence are given respectively by 

t, = /( ” 1 - u’/c~)“~ dt,, 
*I 

t, = 
I( 

‘* 1 - u’/c’) dt,. 
fI 

Thus, in the interval between 

clocks become retarded relative 

amount 

t, - I, = 
I( 

r2 1 - u2,‘c2)‘12 dt, 
Ii 

(3) 

between their 

(4) 

- /( r2 1 - /J~/c~)“~ dt,, 
11 

their coincidences 

to clock B by the 

an invariant value which does not depend on the 

difference u - u of their respective velocities 4. 
It follows from this “that any physical explana- 

tion of the phenomena described in Eqs. (3), (4) 
must be sought in the form of these equations rather 
than in their numerical content as determined by the 

measures of the system C. The fact that the form of 
the equations is independent of the choice of the 

inertial reference system implies that the existence in 

nature of the phenomena described by the equations 
is independent of the existence of any such inertial 

reference systems, hypothetical or physical.” 

Yet the fact that the clocks do behave differently 
when their speeds are different requires that they 

interact physically with something, in a manner which 

depends on their speeds. For the context requires that 
the two clocks be ideal standard clocks which be- 

have identically in all respects when subject to the 

same conditions. Thus any difference in their be- 
haviour must be ascribed to a difference in their 

physical interaction with their environment. 
Since the context requires that the clocks be 

isolated from interaction with other actual bodies or 

physical systems in their vicinity, we are forced to 
conclude that they must interact with something 

universal; in our case the local Dirac “aether” which 

carries real physical waves of quantum theory [20]. 

As also noted by Builder [19]: 
“The only hypothesis that is tenable, and that is 

compatible with the foregoing considerations, is that 

a As also remarked by Builder [19] in this situation “any 

physical explanation of these causal relations must obviously be 

independent of the inertial reference system chosen for measure- 

ment (or calculation). This is clearly required by the fact that Eqs. 

(l)-(3) take precisely the same form when expressed in the 

measures of any inertial reference system whatsoever. It is also 

required by the context, for this precludes any physical interaction 

of the clocks with any such reference system. This may be 

illustrated as follows. We could, if we wished, regard u and u in 

Eq. (3) as the speeds of the clocks relative to the system Z,, as 

measured in 2. Yet we could not ascribe direct causal significance 

to these speeds relative to Z,, , because any corresponding interac- 

tion, between the clocks and 2 is precluded by the context. 

Indeed, the equations hold even if the system I,, is purely 
hypothetical and if the quantities in the equations are merely 

postulated, or if they are calculated from measurements made in 

some other system.” One must add that, since then [21] absolute 

motion has been shown to be detectable, as a consequence of 

Maxwell’s equations. 
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there exists a unique absolute inertial system C, 
which interacts with, and affects, the behaviour of 
the clocks in a manner dependent on their speeds 
relative to it, i.e., their absolute speeds. 

This hypothesis is clearly sufficient. A reference 
system &, at rest relative to this postulated absolute 
inertial system would be one of the reference sys- 
tems to which the restricted theory is applicable. We 
can therefore write for the rates of the clocks A and 
B, as measured in &,, 

dt,/dt, = (1 - u;/c’)“~, 

dt,/dt, = (1 - u;/c~)“~, 

and for the relative retardation 

(6) 

r, - fb = /,*( 1 - u;/c’)“~ dt, 
101 

- I’“‘( 1 - u;/c~)“~ dt,, (7) 
*01 

where uO and uO are the absolute speeds of the 
clocks at each absolute time t,.” 

We thus have in Eqs. (6) and (7) a causal account 
of the behaviour of the clocks given explicitly in 
terms of their absolute speed uO and uO. All the 
observable consequences of (6) and (7) can be veri- 
fied by measurements made in any inertial system C 
and by calculations using Eqs. (3) and (5). In other 
words, although Eqs. (1) and (3) do not contain u,, 
and uO explicitly, they do express, in terms of the 
speeds u and u, all the observable consequences of 
Eqs. (6) and (7). 

Thus we conclude that the relative retardation of 
clocks predicted by the restricted theory does indeed 
compel us to recognize the causal significance of 
absolute velocities and that this recognition is com- 
patible with the fact that these absolute velocities do 
not appear explicitly in the relativistic expression for 
the relative retardation.” 

As finally remarked by Builder [19]: 
“The relative retardation of clocks is an effect 

which seems to be unique in that its measure is an 
invariant for all observers, whatever their state of 
motion, However, it is important to realize that this 
unique character arises solely from the fact that each 
of the clocks considered in this context incorporates 
an integrating device which provides an observable 

record of the accumulated effects of variation in its 
rate. Were we considering the periodic processes in a 
single atom, we would be without such a cumulative 
record; but, as has been indicated above, Eq. (7) 
would still require us to postulate some absolute 
systems C, which would affect the rate of these 
periodic processes in accordance with the absolute 
speed of the atom.” 

4. Sagnac effect with non-zero photon mass 

We first directly justify relation (1) in the particu- 
lar set-up of Fig. 2. In the absolute local inertial 
frame X0 one can analyze the Sagnac-type experi- 
ment of Fig. 1 as follows. 

(1) We first assume that the center of the rotating 
disk is at rest in S, then as seen by an inertial 
observer S locally at rest on the circumference (which 
turns in &, with respect to an observer at rest at C 
with the velocity u = rw) its local time is contracted 
with respect to an observer at rest at C with the 
velocity u = TW by the factor y= (1 - u2/c2)‘12. In 
C,, the velocity of light c,” for a given frequency u,, 
in X0 is always isotropic and takes in c the values 

cf = 
c,” * rw 

Y 1 * ruc,O/c’ 

in the clockwise and anticlockwise directions where 
C is the instantaneous inertial rest frame of S. 

For most experiments of course we can write 
c* =const=c. 
(s) We then analyze the result of observations made 
in 2,. The light source and interferometer are at S 

whole apparatus turning at w clockwise 

Fig. 2. Circular Sagnac test. 
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(i.e., at rest in c or moving in Z&,) and both are 

fixed on the rotating disk. Let t, be the time taken 
by a light signal to traverse the circumference of the 
circle and to return to the source interferometer, 

when both the disk and the observer are stationary. 

Thus to is the path-length divided by the speed of 
light. If we assume that light travels at a constant 

velocity c,” in all directions we get to = 2rrr/cf. 

When a light signal is emitted from the light source a 

portion of the signal goes clockwise (denoted by the 

inner line of Fig. 2) and the rest goes anticlockwise. 

Following Kelly [l], let us then “consider” first the 

situation as observed by an observer stationary in the 

laboratory. The anticlockwise signal is going against 

the rotation of the equipment and will return to the 

light source when the source and interferometer are 

now at S’. The signal travelling clockwise, with the 
direction of rotation of the equipment, will return to 

the interferometer at S. 
Let ds’ be the distance SS’ and ds” the distance 

SS”. Let t’ be the time measured by an observer 
situated in the stationary laboratory for the light to 

go from S to S’ in the anticlockwise direction.The 
time measured by that observer is 

2rrr - ds 
t= 

c: . 
(8) 

But t’ is also the time taken by the disc to move a 
distance ds’ in the clockwise direction. Therefore 
t’ = ds’/u with u = rw, ds’ = t’ v and, from (8) 

ds=(2 
7rr-ds)v ds 2rrr 

c: 
, -=- 

V co’fv’ 

or 

2rrr 
t= - 

c,2+v’ 
(9) 

Note that Eqs. (8) and (9) both give the time recorded 
by a stationary observer; the equations simply state 
this time in different mathematical terms. 

Following similar calculations one gets for r”, the 
time measured by a stationary observer for the light 
to go from S to S” in a clockwise direction 

2rrr 
f = - 

c, fv’ 
(10) 

Substracting IQ. (9) from (lo), the difference be- 

tween the time for the light to go clockwise and 

anticlockwise is given by (assuming c: z c;) 

27i-r 2rrr 4Vv r 
dt=-__-----__ 

c; - v c; +v c2 - v 
2 ’ (lla) 

and, since v = rw, and A is the area rr2 of a circle, 

one has (with c,. z c> 

dr=4Ao(c2-v2)-‘. (llb) 

The v2 term is negligible for practical tests, and may 

be ignored, thus justifying Eq. (1) when the paths of 

light are on the disk. Evidently this is not true in 

general 5 and relation (11) does not apply to the case 

where the light path is not in the plane of the 

spinning disc: since the time spent by a light signal 

on its journey has to be calculated. This time will be 

different from the result obtained by using the pro- 

jected-area method. 
A practical example of a case where the signal is 

not solely in the plane of the disc is the 1939 Dufour 

and Prunier [lo] test mentioned above. They had the 
path of the light partly on the spinning disc, and 

partly in the fixed laboratory. The light firstly tra- 
versed a path on the spinning disc, was then reflected 

vertically up to a mirror fixed overhead in the labora- 
tory light, then traversed linear horizontal paths and 
came vertically back down to the disc: whereupon it 

completed the horizontal trajectory on the disc. Be- 
cause the overhead horizontal path was directly above 
the path adopted in the earlier test, done entirely on 
the spinning disc, the projected area of this circuit on 

to the plane of the disc was the same as before. 
The extra portions of interest are the two vertical 

connections, between that part of the circuit on the 

disc and that part overhead in the laboratory. The 22 
tests done gave an average fringe shift of F = 0.056, 

with the individual results varying from 0.046 to 
0.078. Using the projected area in Eq. (1 lb), one 
arrives at the theoretical result 0.053 against which 
to compare the test results. If the time for the light to 

To date, it has been assumed that, if the plane of the light path 
in a Sagnac-type test does not coincide with the plane of the 

rotating disc, the “area” A to be used in Eq. (1) is the projection 

of the area enclosed by the light path on to the plane of the disc 

[14]. It is here contended that this method is not correct, because 

the experimental results contradict the use of the projected area. 
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travel the vertical connections is taken into consider- 

ation (two lengths of 10 cm each), the result would 

be about 0.059 [ll. 
Incontrovertible proof that the projected area is 

not the correct criterion in general is provided in a 

paper by Dufour and Prunier [lo] published in 1941. 

They showed how they had, in the 1939 tests de- 

scribed above (but not published at the time), varied 

the path of the light in the fixed laboratory, to give a 

much reduced projected area on to the plane of the 

rotating disc. In one case, they changed the projected 

area by a factor of 2.5 without any observable change 
in fringe shift. Using the projection of the enclosed 

area onto the disc beneath, for area A in Eq. (1) 

could not be reconciled with the fact that the pro- 

jected area had changed so much, while the Sagnac 
effect had not altered. However, the path length for 

the light in both the in-plane and out-of-plane experi- 
ments was approximately the same (so that no change 

in the fringe shift is predicted by the “path-length” 

definition) Ill. 

5. Description of the Sagnac effect within general 
relativity with non-zero photon mass 

We first show, by applying our preceding analysis 
to the particular case of various Sagnac-type set ups, 
that its particular validity in the inertial set-up of Fig. 

1 implies the existence of a non-zero photon rest 
mass m,, # 0 i.e., that one can thus also justify 

relation (1) within relativity theory. We start from 
two coaxial flat disks interferometers S, and S where 

S rotates uniformly with respect to S, with an uni- 
form constant angular velocity w. An observer in- 
stantaneously at rest in S, (the laboratory frame for 
example) which sees units of length 1, and time I, 

will see different units 1 and t in S. Since S, and S 
are instantaneously inertial frames the transitions 
d I, + dl and dt, -+ dt, are (following Einstein’s 
argument) given by Lorentz transformations. In a 
polar system of coordinates (r, 19) in S the distance 
between two neighbouring points ( r, 13) and (I + 
dr, 8 + de), measured with rods and clocks of S, is 

always 

da2 = dr2 -t- r2 de2 

for an observer in S,. 

(12) 

For such an observer the measure of dl in S along 

a radial direction (v = 0) does not change but it 
contracts when perpendicular to the radius (when 
u = wr) so that dl, + d&(1 - w2r2/c2)“2. For an 

observer in S, the distance between (r, 0) and (r + 
dr, 8 + de) measured in the accelerated system S 

becomes 

da2 = dr2 + 
de 

1 - w2r2/c2 ’ (13) 

so that for example a circle of circumference S 

(u = const) measured with the Galilean measures of 

S, (w = 0), i.e., S, = 2s-r, changes when measured 

with the Galilean measures of S, i.e., S = S&l - 
r2w2/c2>-’ and the geometry tied to the “natural” 
units of a measure in S is no longer an Euclidean 
geometry. For example if we compare time measure- 

ment in S and S, using two clocks H and H, 
(synchronised at the initial instant where S and S, 

spatially coincide) one sees that the ratio of the 
measured times t and I,, in H and Ha, at a subse- 

quent time, is (following Einstein’s argument) given 
by the corresponding indications of two clocks H 

and H,: where H’ is an inertial clock in a system 
which coincides locally with A at this moment. This 
implies that 

I = te( 1 - r20/c2)“2, (14) 

so that if the clock H comes back on Ha, the 
observers in S and S, will both conclude that the 
clock H is retarted: exactly as predicted by 

Langevin’s clock paradox. 
For an observer in S, this retardation is just an effect 

resulting from the acceleration of H along its motion. 
For an observer tied to S, where H has been con- 
stantly at rest, this results from the existence of a 
gravitational field in S (which is motionless for him) 
resulting from a potential U = - r2w2/c2 so that 

1 = t,( 1 - 2u/c2)1’2 (15) 

as predicted by the general theory of relativity. 
The time t is thus variable in S and depends on 

the position of the clock H. All clocks located at the 
same distance r from the common center of S, and 
S thus observe the same “local time” t in S. 

This prediction of relativity theory is very remark- 
able since it implies (contrarily to one of its basic 
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postulates) that if one has my = 0 and one defines 
with c the velocity of light in S (i.e. utilizes the 
associated local time) this velocity is not constant in 
the inertial frame S. This “contradiction” (as men- 

tioned before) has been known (but swept under the 

rug) for a long time. For example to maintain the 

velocity c for light Langevin proposed the introduc- 
tion, in S, of a new time definition (called “natural 

time”), unrelated with Lorentz transformations, de- 

fined by the relation 

dr = (1 - r2~2,‘c2)“2 

x [dt, - r2w d8c2(1 - r2&_-2)], 

which varies with r and 19 and has never been 

justified physically. 
This contradiction can be illustrated as follows: In 

the inertial system S, we have by definition 

ds;= -d+dy;-dz;fc2 dto’ 

= -dri - ti de: - dzi + c2 dti = 0. (16) 

Since S, rotates with respect to S with the constant 

angular velocity -o we have 

r=r 0, e=o,--to, z=zo, 

so that 

-dr2 - r2 de2 - dz2 

2r2u de dt 
f (1 _ r2W2,C2)l/2 + c2 dt2 = O. (17) 

Introducing the usual spatial Euclidean element dcr, 
= dr2 + r2 de2 + dz2 this becomes 

2r2u2 
du,2 + 

(1 - r2u2/c2)“’ 
de dt - c= dt2 = 0, 

(18) 
which implies that in S the velocity of light V 
defined by V = da-/dt can be written 

V2=$T 
2r20 de 

(1 _ r2u2,C2)“2 dt + c2. 

Evidently this result is in contradiction with relativ- 
ity theory but this contradiction is bypassed [20] (i) if 
one drops the assumption m,, = 0, (ii> if one some- 
how modifies relativity theory. 

In this Letter we choose assumption (i) and will 

Fig. 3. 

now show that if my f 0 we can interpret all known 

Sagnac-type effects and justify relations (1) and (3). 

To justify relation (1) with my # 0 let us assume 

that the disk So is at rest in the absolute inertial 

frame ‘co with origin 0 at the disk center. In its 

neighbourhood, for a given frequency v. light trav- 

els with the same constant velocity u. in all direc- 
tions. Of course any result observed in V = d L/dr 

can be transposed in another inertial frame C by the 
Lorentz transformation 2 -+ 2,. The corresponding 

photons (and plane wave constitutive elements) can 
be compared to bilocal clocks with an intrinsic real 

time, i.e., frequency Y with 

hv= m,c2(1 - u~/c~)~“~. (19) 
One now considers a photon M which starts in MO 
and moves on the circle of radius r with a constant 
velocity u. with respect to So (co), i.e., V with 

respect to S. After a time dt, the axis OY of S 
becomes OY, and the photon is in M’ or M” through 
clockwise or anticlockwise notion. In So it travels, if 

dL, denotes in So the lengths M, M (or M, M), a 
distance 

da,=V, dt,=dL,+r,w dt,, 

since photon motion and disk rotation are indepen- 

dent physical processes. This yields 

dL0 

vO=dt*rOo. 0 

in the system S this velocity becomes 

v=z 

and Einstein’s law and addition of velocities (only 
valid when my f 0) yields 

V,fro Vfrw 
v= _ 

1 + rwVo/c2 ’ 
v, = 

1 _t rwV/c2. (20) 
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In S, when two photons start together from M, with 
uniform motions + V, and -V,, they return to the 
same point after a time r0 = 2rrr/Ve. 

In S,, if we call dL, and dL!L the distances M,M 
and M,M” travelled by photons moving in the anti- 

clockwise and clockwise directions, then the time I, 

to pass from M, to M’,, is 

2rrr - dL, 
2, = 

V0 ’ 

but t, is also the time taken by the disk to move a 

distance d L, in the clockwise direction so that t, = 

dL,/rw and dL, = (27rr - dL,) rw/VO, i.e., 

dL0 2rrr 2rrr 
-=- to = - 
rw V, + rw ’ V, + i-w. 

An identical argument yields for ii (i.e., the time, 

measured in S,, for light (photons) to travel from M, 
to M” in a clockwise direction) the values 

2rr 
r; = ~ 

V,--rw’ 

so that we finally obtain for the difference between 
the times for the light to move clockwise and anti- 
clockwise the expression 

23r 297r 4rrr’w 
dq,= ~ - - E 

V, - rw V,+rw V,-r2w2’ 

since A = r202 is the area of a circle S, in &, when 

we have r2m2/c2 = 0. 

If we have r2w2/c2 z 0, 

41rA 4Aw 
dt, = =- 

V,--r2w2 - c2 . (21) 

We shall now show that as experimentally estab- 
lished by Dufour and Pnmier (C.R.Acad.Sci. Paris 

204 (1937) 19251, the introduction of my # 0 implies 
that rhe j?inge displacement is the same when the 

light source and observer are located on S or in S, , 
i.e., at neighbouring points on the disk’s periphery. 

At first sight of course this appears very surpris- 
ing since the time t, of an inertial observer tied to S, 
in X0 located at the center 0 of the interferometer 
(called “central time” by Langevin 171) is different 
from the local time t of a tangent instantaneous 

inertial observer carried by the rotating disk at a 
distance r, since we have 

t = tO( 1 - r202/c2)“2 

in the restricted theory of relativity. We have shown, 

however, that in his rest frame C the corresponding 

invariant element can be written in the form 

ds2 = ( c2 - r’w’) dt2 - 2Wr2 dt9 dt 

- (dr2 + r2 de) (22) 

and thus see directly that the rectangular term d 13 d I 

implies an anisotropy in the velocity of light (given 
by the relations (20)) tied to a non-Euclidean metric. 

With this metric Langevin has shown that one 

recovers relation (1) so that the phase shift is a scalar 
invariant under Lorentz transformations. 

This is only to be expected since in S the times of 

motion of the two interfering paths (clockwise and 
anticlockwise) are different since the associated light 

velocities are different. On S the wavelengths are not 

equal and the period equal: contrarily to the S, case. 
This result thus confirms (1) the scalar invariant 

character of the phase of lights and (2) the existence 
of m,#O. 

We conclude with the remark that within this 
interpretation Sagnac-type interferometers can be 
considered as measuring devices to detect absolute 
space-time motions with respect to the local inertial 
frame C, where. the 2.7”K microwave radiation is 
isotropic for all light velocities [3]; a property shared 

with one piece Faraday generators [21] within the 
frame of Maxwell’s theory of light. The utilization of 
the Sagnac interferometer to detect locally absolute 

space time motions will be discussed in detail in a 
forthcoming paper. 

References 

[l] A.G. Kelly, Institute of Engineers of Ireland, Monograph 1 
(1995) 1. 

[2] A. Dufour and F. Prunier, C.R. Acad. Sci. Paris 204 (1937) 

1322; 208 (1939) 988; 212 (1941) 153. 

[3] G. Sagnac, CR. Acad. Sci. Paris 150 (1910) 1302, 1676; 157 

(1913) 708, 1410; J. Phys. (Paris) (1914) 177. 

[4] M.C. Combourieu and J.P. Vigier, Phys. Lett. A 175 (1993) 

269. 

[5] F. Hasselbach and M. Nicklaus, Phys. Rev. A 48 (1993) 143. 
[6] H.D. Young, University physics (Addison-Wesley, Reading, 

MA, 1992). 



J.P. Vigier/Physics Letters A 232 (1997) 75-85 85 

[7] P. Langevin, C.R. Acad. Sci. Paris 173 (1921) 831; 200 

(1935) 48, 1161, 1448; 205 (1937) 304. 

[8] F. Prunier, C.R. Acad. Sci. Paris 200 (1925) 46. 

[9] A. Dufour, C.R. Acad. Sci. Paris 200 (1935) 894, 1283. 

[IO] A. Dufour and F. Prunier, C.R. Acad. Sci. Paris 204 (1937) 

1322, 1925; 205 (1939) 658; 208 (1939) 988; 212 (1941) 

153; J. Phys. (Paris) 9 (1942) 153. 

[ll] B. Pogany, Ann. Phys. (Leipzig) 80 (1926) 217; 85 (1928) 

244. 

[12] F. Harress, Thesis, Jena University (1911). 

[13] W. Macek and D. Davis, Appl. Phys. Lett. 2 (1963) 63. 

[14] E.J. Post, Rev. Mod. Phys. 10 (1967) 475. 

[15] A. Einstein, The meaning of relativity (Methuen, London. 

1922). 

nouvelle theorie de la lumiere (Hermann, Paris, 1946) pp. 

121-165; 

S. Deser, Ann. Inst. H. Poincare 16 (1972); 

L. de Broglie and J.P. Vigier, Phys. Rev. Lett. 28 (1972) 

1001; 

J.P. Vigier, IEEE Trans. Plasma SC. 18 (1990); Proc. ISAT 

Shanxi (1992) 14; 

M. Moles and J.P. Vigier, C.R. Acad. Sci. Paris 276 (1974) 

697; 

J. Narlikar et al., Phys. Lett. A 154 (1991) 203; 

M. Evans et al., The enigmatic photon (Kluwer, Dordrecht. 

1996). 

[16] P. Beckman, Einstein plus two (Golem Press, Boulder, CO, 

1987) pp. 38-43. 

[18] J.C. Hafele and R.E. Keating, Science 177 (1972) 166. 

[19] G. Builder, Austr. J. Phys. 11 (1958) 279. 

[20] P. Sinha, E.C.G. Sudarshan and J.P. Vigier, Phys. Lett. A 

I14 (1986) 298. 

[17] A. Einstein, Ann. Phys. 18 (1917) 121; [21] M. Faraday, Phil. Trans. R. Sot. (1832) 125; 

I. Bass and E. Schriidinger, Proc. R. Sot. A 232 (1923);L. de M.J. Crooks, D.B. Litvin and P.W. Matthews, Am. J. Phys. 

Broglie, or La mecanique ondulatoire du photon 1 vers une (19781 729. 


