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Traditional clock synchronisation on a rotating platform is shown 
to be incompatible with the experimentally established transforma- 
tion of time. The latter transformation leads directly to solve this 
problem through noninvariaa~t one-way speed of light. The conven- 
tionality of some features of relativity theory allows full compatibility 
with existing experimental evidence. 
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effect. 

1. M U O N  S T O R A G E - R I N G  E X P E R I M E N T  

We start by recalling a well known experiment in which the 
relativistic approach works perfectly, and take from it two lessons 
concerning the transformation of time between the laboratory and a 
rotating platform. 

Lifetimes of positive and negative muons were measured in 
CERN Storage-Ring experiment [1] for muon speed 0.9994 c, corre- 
sponding to a 7 factor of 29.33. Muons circulated in a 14 m diameter 
ring with an acceleration of 101st. Excellent agreement was found 
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with the relativistic formula 

"/'rest 
?'o = (:) 

where ?'0 is the observed muon lifetime, ?'rest is the lifetime of muons 
at rest, and fl = v/c, v being the laboratory speed of the muon  on 
its circular orbit. 

Consider an ideal platform rotating with the same angular 
velocity as the muon in the e.m. field (with respect to such a platform 
the muon is at rest). Consider also four different observers: 

1. Oz is the observer in the laboratory reference frame SL, assumed 
to be an inertial frame. Thus Oz could be the CERN storage ring 
experimenter. 
2. O~ is the accelerated but localized observer who lives on the rim 
of the platform Sa, very near the muon which looks constantly at 
rest to him; Oa has a local knowledge of the platform and of its 
physical properties extending only to the immediate surroundings of 
his position; 
3. Oa is a second accelerated observer. He knows everything about 
the platform (the accelerated frame S~) through which he can freely 
move; 
4. OT is an observer living in an inertial fra~ne ST in which at a 
certain time O~ and the muon are instantaneously at rest. ST will 
be called the "tangent" inertial frame. 

We give now the description of the muon lifetime from the 
point of view of these four observers. 

D1.  According to Oz the muon lifetime r0 is greatly enhanced with 
respect to that  (?'rest) of muons at rest in S L. His observations are 
expressed by Eq. (1). 
D2.  According to O~, who knows only the time marked by his local 
clock, the muon lifetime is ?'rest. Of course O~ is under the action of a 
large acceleration (101Sg), which he detects as a radial gravitational 
field, but  nevertheless his lifetime measurements give just ?'rest, as 
for muons at rest in SL observed by OL. 
D3.  According to the accelerated observer O~ the clocks on the 
platform have a pace dependent on their position, the fastest going 
one being that in the centre; in agreement with the equivalence prin- 
ciple he attributes this phenomenon to the presence of a position- 
dependent radial graviational field of cosmic origin. He can check 
that  the lifetime of muons near the rim of the platform is either ?'0 
or ?'rest depending on the clock chosen (in the centre or near the 
rim, respectively) for measuring it. Therefore he explains the value 
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r, est found by O. as a consequence of the cosmic gravitational field 
delaying in the same way muon decay and the clock used by O,  for 
lifetime measurements. 
D4.  According to the observer OT belonging to the tangent inertial 
frame ST the lifetime is rrest (measured of course for muons at rest 
in his frame). 

The first lesson to be learned from the previous conclusions 
concerns the transformation of time given by Eq. (1): The laboratory 
time interval Ato between two events taking place in a fixed position 
on the rotating disk (muon injection and decay, in the previous exam- 
ple) is seen dilated by the usual relativistic factor compared with the 
corresponding time interval A t  measured by the accelerated observer 
On: 

At  
ZXto = v f f  - (2 )  

The second lesson is that the observers Oa and OT agree on 
the laws of nature, for example on the decay rate of muons at rest, 
even though O. feels the presence of a radial gravitational field (of 
cosmic origin} while OT does not. Of course this conclusion is not 
new. For example Einstein [2], M~ller [3], and Vigier [4] assumed 
that  the acceleration of a clock C. relative to an inertial system has 
no influence on the rate of C. ,  and that the increase in the proper 
time of C~ at any time is the sanle as that  of the standard clocks of 
the inertial system in which Ca is momentarily at rest. Of course the 
situation is different for an observer considering acceleration due to a 
gravitational field, as shown above. Tile identical conclusions of O.  
and OT imply that  the speed of light found locally in the accelerated 
system should be the same as that observed in the "tangent" inertial 
frame. But in special relativity the latter speed is always c and we 
are so brought to conclude that the speed of light relative to an 
accelerated system should also be c. However this conclusion gives 
rise to endless trouble. 

2. T H E  T R A D I T I O N A L  C L O C K  S Y N C H R O N I Z A T I O N  
P R O C E D U R E  

If a disk is rotating with constant angular velocity with re- 
spect to an inertial frame, one can obtain the metric on the disk 
as follows: in the inertial system the invariant squared space-time 
distance ds 2 in cartesian coordinates is: 

d s  = c dtg - - - dz . ( 3 )  

In general relativity one is free to adopt any set of coordinates useful 
for solving a given problem, independently of their physical meaning. 
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In the case of the rotat ing disk it is simpler to use the coordinates 
in the r ight-hand side of the following transformations, as done for 
example by Langevin [5] and by some textbooks [6]: 

~0 ---- t, 

z0 = r cos(~ + wt), 

x0 = r sin(~o + wt), 

Z 0 ~ Z .  

(4) 

The variables t, r ,~ ,  z give a possible (although not the best) de- 
scription of physical events for an observer at rest on the disk. In 
(4) simplicity is a t ta ined at the price of provisionally neglecting t ime 
dilation a n d l e n g t h  contraction. By substituting (4) in (3) one can 
easily obtain: 

ds 2 = (1 - w2r 2/c2)(c  dr) 2 - - -  

2wr 2 
d~o(cd~) - d z  2 - d r  2 - r2 d¢2 2. ( 5 )  

Equation (5) defines a metric gli which is stationary, but  not static. 
If x ° = ct, x 1 - r, x 2 = ~o, x 3 = z, its elements are 

go0 - -  1 - -  w 2 r 2 / c 2 ,  g l l  - "  g33  - -  - - 1 ,  

go2  = g20  ---- - - r 2 w / c ,  g22 = - - r 2 ,  
(6) 

all other elements being zero. Note that  the space-time described 
by (6) is flat because R i j k t ( t ' , x ' , y ' , z ' )  = 0 =~ R i i k t ( t , r ,~o , z )  = 
0 [i,j,  k , l  = O, 1,2,3], where Riikt  is the Riemann tensor. For the 
same reason of covariance the metric defined in (6) is necessarily a 
solution of the  Einstein equations in empty  space Ri i  = 0 [i , j  = 
0,1,2,3],  where Rij is the Ricci tensor. 

The  proper t ime differential d r  of a clock located in a fixed 
point of the  disk of space coordinates (r, ~, z) is obtained by equalling 
all space differentials to 0 and taking into account that  d r  = ds /c ,  
so that  

dr  = v ~  dt = ~/1 - w2r2 /c  2 dr. (7) 

The length element dI between a point A of the three dimen- 
sional space with coordinates x ~ + dxa[a  = 1, 2, 3] and an infinites- 
imally near  point B of coordinates z ~ is found by sending a light 
signal from B to A and back, and assuming that  the ~wo-way veloc- 
ity of light on the disk is c in all directions. The proper t ime in B 
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needed for this operation (multiplied by c) is by definition twice the 
length dl between A and B. It is found that: 

r2d~ 2 
dl 2 = - g , #  + go~ +_._9o#. dx~dx# = dr 2 + d z  2 + (s) 

1 u) 2 r 2 / c  2 g00 / 

Note the r-dependent coefficient of r2d~a2: space is not flat. 
In relativity an observer on a rotating platform O,, can syn- 

chronise clocks placed in different points by assuming that the one. 
way velocity is c in all directions of his noninertial frame. This 
assumption is in agreement with the "second lesson" taken from the 
muon experiment, but becomes the source of a big problem which 
makes experts conclude that "the rotating platform in relativity is a 
mystery." By applying it, the "time" tB in B is called synchronous 
with the "time" ta in an infinitesimally near point A when 

tB = tA + A t  = ta 
1 goc, dx '~ wr2dqo 

- -  = t a  + " (9) 
C gO0 C2(1 - -  w 2 r 2 / C 2 )  

This definition is equivalent to the standard synchronisation proce- 
dure of SRT and is obtained by assuming that the point B receives 
a signal from A exactly at midtime between the times of light depar- 
ture from A and return in A. The assumption is that the one-way 
velocity of light is c. 

Notice that the points A and B chosen for defining the syn- 
chronisation (9) are totally arbitrary: in general they are not at the 
same distance r from the centre. The consequence is that At is not 
a total differential. In fact for all functions f ( r ,  ~p) one has 

At  = wr2d~ d/(r, T). (10) c2(1 -  2r2/c2) 

The proof is very simple. In fact, At is proportional to dT and 
does not contain dr. The coefficient of dT however does contain r. 
The two statements are incompatible for the total differential of any 
f ( r ,  T). A diffeomorphis,n of the type 

{ , - ,  = f ,  (r, + f (r, v) ,  
T :  r ~ ? = f a ( r , ~ , ) ,  

v -- ,  = v )  

is unable to transform At in a total differential (proof available by 
the authors upon request). [Physical meaning of T: the spatial part 
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is chosen time independent,  so that we remain on the disk; t ime un- 
dergoes the most general linear transformation; z plays no role]. The 
latter result agrees with Landau and Lifschitz [6] who stated that  the 
inequality (10) is not dependent on the choice (4) of transformations, 
but  is of general validity since 

I go~,dx '~ 
~ = (11) 

c g00 

can be a total differential only in very special and physically unin- 
teresting cases. Mzller [3] and Landau and Lifshtiz [6] say that  it is 
possible to define the standard synchronisation along a non closed 
curve, but  that  it is impossible along a closed curve when the met- 
ric is not static. In fact, given (10), this synchronisation procedure 
is path dependent,  so that one will generally not obtain the same 
result when synchronising a clock B with a clock A using two dif- 
ferent paths. This means also that  if a clock B is synchronised with 
A and a clock C is synchronised with B, C will generally not be 
synchronised with A. This mat ter  was investigated by Anandan [7] 
who admit ted the existence of a "time lag" in synchronising clocks 
around the circle and found for it a rather abstract interpretation, 
and by Ashtekar and Magnon [8] who limited themselves to a formal 
approach. 

The existence of a synchronisation problem is physically strange 
because if the whole disk is initially at rest in the laboratory (iner- 
tial) frame St., with clocks near its rim synchronised with the regular 
procedure used for all clocks of St., then when the disk moves, accel- 
erates, and attains a constant angular velocity, the clocks must  slow 
their rates but  cannot desynchronise for symmetry reasons, since 
they have at all times the same speed. From such a point of view 
it is difficult to see why there should be any difficulty in defining 
time on the rotating platform. The necessity to distinguish sharply 
between questions of clock phase (distant simultaneity) from those 
of clock rate was stressed by Phipps [9] with whom we fully agree on 
this point. 

3. N O N I N V A R I A N T  S P E E D  O F  L I G H T  

The laboratory is assumed to be an inertial frame in which 
clocks have been synchronised with the standard relativistic method.  

We consider only clocks on the uniformly rotating platform 
having radius R and angular velocity w that are near its rim. We 
assume them to be synchronised as follows: When the clocks of the 
laboratory show the time to = 0 then also the clocks on the platform 
are all set at the time t = 0. By symmetry reasons the clocks on 
the platform will share the following property during the uniform 
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rotation: any observer at rest in the laboratory near the rim of the 
platform whose clock marks the time to will see the clock on the 
platform passing by in that very moment marking the time 

t = t 0 ~ / 1  - Z~ .  (12) 

with fl = wR/c.  
Near the rim of the platform besides clocks there are also (i) A 

light source ~ placed in a fixed position; near E there is a clock Cz; 
(ii) A backward reflecting mirror M placed in diametrically opposite 
position with respect to E; near M there is a clock CM. At time ti of 
C z ~  emits a flash of light that  propagates circularly and (we assume) 
in the direction of rotation of the disk with respect to the laboratory, 
until it arrives at M at time t2 of CM. The flash is reflected back, 
propagates circularly in the opposite direction, arrives back at E at 
time t3 of Cz. 

In the theory of relativity it is assumed that  the one-way ve- 
locity of light has the same value from ~ to M as from M to E, so 
that t3 - t2 = t2 - t l ,  whence the CM time t2, carl be writ ten in 
terms of the two C~. times tl and t3 as follows: 

1 t t2 = t l  + 5 (  3 - h )  (13) 

Reichenbach commented [10]: "This definition is essential for the 
special theory of relativity, bu~ it is not epistemologically necessary. 
If  we were to follow an arbitrary rule restricted only to the form 

t 2 = t l + e ( t 3 - t l ) ,  0 < e < l  (14) 

it would likewise be adequate and could not be called false. I f  the 
special theory of relativity prefers the first definition, i.e., sets e equal 
to 1/~, it does so on the ground that this definition leads to simpler 
relations." On the possibility to choose freely e according to (14) 
agreed, ~ n o n g  others, Griinbaum [11], Jammer [12], Mansouri and 
Sexl [13], SjSdin [14], Cavalleri [15], and Ungar [16]. 

Clearly, different values of e correspond to different values of 
the one-way speed of light. In fact, one can write 

L L 
t2 - t ,  = )~2~'0--~ a~ld t3 - t~ = ~t2e'~ - - - - - ~ '  (15)  

where L/2 is the E - M distance measured along the rim of the disk, 
~(0) is the one-way velocity of light from E to M and ~(Tr) is the 
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one-way velocity f rom M to ~. By adding the previous relations,  
one gets 

L L L 
- -  = = - -  ( 1 6 )  

C ~ 

the last step being necessary, because the i, wo.way velocity of light 
has been measured with great precision and always found to be c. 
From (14), (15) and (16) one easily gets 

~2 -- ~1 C (17) = = 

Therefore freedom of choice of ~ means  freedom of choice of the 
one-way velocity of light! We believe tha t  it is necessary to exploit  
the  free choice of the one-way speed of light, which has never been 
measured,  given tha t  the s tandard  assumpt ion ~(0) - ~(~r) -- c leads 
to contradict ions as we saw, and as will become even clearer by the 
following considerations.  

T h e  descript ion of the light circulating along the r im of the  
disk given by the  laboratory observers will be the following: At t ime 
t01 the source emits  a light flash tha t  propagates circularly and ar- 
rives at M at t ime t02, is reflected back, propagates  circularly, arrives 
back at ~.. at t ime t03. These laboratory times are related to the cor- 
responding pla t form t imes by 

t l  
toi= ~ ,  i----1,2,3, (18) 

as a consequence of (12). 
If L0 is the disk circumference length measured in the  labo- 

ratory, light p ropaga t ing  in the rotat ional  direction of the disk mus t  
cover a dis tance larger than  Lo/2  by a quanti ty x = wR(to2 - t o 1 )  
equalling the shift of M dur ing  the t ime t02 - t01 taken by light to 
reach M.  Therefore 

L0 
--~--l-x--c(t02-t01), x=wR(to2--tol)  (19) 

From these equat ions it is easy to get 

L0 
t02 - t01 - 2c(1 - fl)" (20) 

After reflection light propagates  in the direction opposi te  to tha t  of 
rotat ion and mus t  now cover a distance smaller than  the disk semi- 
circumference length Lo/2  by a quant i ty  y = wR(tos - t02) equalling 
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the shift of ~ during the time t03 - t02 taken by light to reach ~. 
Therefore, 

L0 ~--y=C(to3-toz), y=wR(to3-to2). (21) 

One now gets 
L 0  

to3 - to2 - -  2 c ( 1  + f l )"  ( 2 2 )  

Summing together (20) and (22), it follows 

Lo I 
t03-t01 = c 1-/~2" (23) 

We show next that these relations fix the synchronisation on the 
disk. In fact (18) applied to (20) and (23) gives 

t2 - -  t l  = 
Zo v~  - Z2 Lo 

t3 - tl -- (24) 
2 c ( 1 -  Z) ' c 14 i -=-~-  ~ '  

so that 
tz - t l  l + f l  

= = (25) 
t3 --  ~1 2 

Comparing with (17), we get 

¢ 

e(0) - 1 + Z (26) 

An analogous reasoning made for light emitted by ~ in the direction 
opposite to disk rotation leads to 

c 

~(~r) - 1 - fl" (27) 

Equations (26)-(27) give the one-way speed of light on the platform. 
They are particular cases of the formula ~(8) = c/(1 + fl cos 8) dis- 
cussed at length in Ref. [17] and shown to be compatible with the 
experimental evidence at the special relativistic level (no accelera- 
tions). 
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4. T H E  S A G N A C  E F F E C T  

The reasoning of the previous section was made under  the 
assumption that  the platform clocks near the rim (the only ones we 
considered) were all synchronised with the laboratory clocks at the 
same (laboratory) time. This procedure clearly amounts also to a 
synchronisation of the platform clocks with respect to one another. 
It might lead to the incorrect idea that  the obtained one-way ve- 
locity of light different from c is only a consequence of the chosen 
synchronisation. In order to dispel this impression we repeat here 
the reasoning by using only the clock C~. on the platform. 

Two light flashes leave Z] at time tx. The first one propagates 
circularly in the sense opposite to the platform rotation and comes 
back to E after a 27r rotation at time t2. The second one propagates 
circularly in the same rotational sense of the platform and comes 
back to ~ after a 27r rotation at time t3. Quite generally we can 
write 

L L 
52 - 5, = ~ ( ~ ) ,  53 - 5, = ~- - (~ .  ( 2 s )  

It follows that  [I 1] 
t3 - t2 = c e~) C~) " (29) 

Describing the experiment from the point of view of the labo- 
ratory observer, one must give a treatment strictly analogous to that  
of the previous section. It results in 

Lo Lo 
to3-tol---- c ( l - ~ '  to2 - to , - -  c(14-fl)" (30) 

The time delay between the two arrivals back in E is therefore ob- 
served in the laboratory to be 

2Loft 
to3 - to2 ---- c(1 - ~2)' (31) 

which is the s tandard formula for the Sagnac effect. Noticing that 
(31) is the time difference between two events taking place in the 
same point E on the disk we can apply what we called the first 
lesson from the muon experiment [Eq. (2)] to the laboratory time 
interval t03 - t02 and also use (29) to get 

i ~__ = t 3 -  t_____~ = 2Co fl (32) 
~(0) ~(~) C Lc ~/1 - f12 
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Of course one has L0 = LV~ -- f12: The rotating disk circumference 
length appears contracted in the laboratory. Therefore 

1 1 2/~ 
(33) 

e(0) c 

It is enough to add to (33) the condition that the two-way velocity 
of light is c, 

1 1 2L 
~ = - - ,  ( 3 4 )  

+ c 

to arrive again at the results (26) and (27). There is absolutely no 
way of obtaining the relativistic condition ~(0) = ~(Tr) = c. By ac- 
cepting (26)-(27) w e  find instead a perfectly rational description of 
the $agnac effect on the rotating platform and overcome the long- 
standing "mystery" of the rotating platform. 

5. C O N C L U S I O N S  

The Sagnac effect [18] is essentially the observation of a phase 
shift between two coherent beams travelling on opposite paths in an 
interferometer placed on a rotating disk. Nowadays the Sagnac effect 
is observed with light (in ring lasers and in fiber optics interferom- 
eters [19]) and in interferometers built for electrons [20], neutrons 
[21], atoms [22] and superconducting Cooper pairs [23]. The phase 
shift in the interferometers is a consequence of the time delay be- 
tween the arrivals of two beams, so a Sagnac effect is also measured 
directly with atomic clocks timing light beams sent around the earth 
via satellites [24]. In the typical experiment for the study of the 
effect a monochromatic light source placed on the disk emits two 
coherent beams of light in opposite directions along the disk circum- 
ference until they reunite in a small region and interfere, after a 27r 
propagation. The positioning of the interference figure depends on 
the disk rotational velocity. Textbooks deduce the Sagnac formula 
in the laboratory (essentially our Eq. (31) above), but say nothing 
about the description of the phenomenon on the rotating platform. 
Exceptions to this trend are Langevin [5], Anandan [7], Dicks and 
Nienhtfis [25], and Post [26], but dissatisfaction remains widespread, 
because none of these treatments is free of ambiguities. For example 
Langevin's approach leads to all the difficulties we discussed in the 
second section [however in his 1937 paper he recognized the possibil- 
ity of a nonstandard velocity of light on the rotating platform and 
gave formulae which agree to first order with our results (26)-(27)]. 
As a second example, Post's relativistic formula is not generally valid, 
but limited to the arbitrary case where the origin of the "tangent" 
inertial frame coincides with the centre of the rotating disk. 
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It is well known, especially after the works of Reichenbach [10] 
and of Mansouri and Sexl [13], that clock synchronisation is a purely 
conventional procedure when only inertial frames are involved. In 
other words one is free to choose either the standard synchronisation, 
or a nonstandard one leading to a noninvariant one-way velocity of 
light. Either choice will allow full agreement with experimental facts. 
However we have shown that the conventionality of the synchroni- 
sation procedure is not preserved in accelerated systems, and that 
a theory free of logical contradictions must choose a one-way veloc- 
ity of light which is nonstandard when measured in the accelerated 
frame. By the way, this is exactly what is already done in practice by 
physicists synchronising clocks around the earth by means of light 
signals. "Thus one discards Einstein synchrolfisation in the rotat- 
ing frame" said Ashby in the opening talk of the 1993 International 
Frequency Control Symposilun [27]. 
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