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1.1 Cosmological models and their hypotheses

1.1.1 Introduction

The progresses of physical cosmology during the past ten years have led

to a “standard” cosmological model in agreement with all available data.

Its parameters are measured with increasing precision but it requires the

introduction of a dark sector, including both dark matter and dark energy,

attracting the attention of both observers and theoreticians.

Among all the observational conclusions, the existence of a recent accel-

eration phase of the cosmic expansion is more and more robust. The quest

for the understanding of its physical origin is however just starting (Peebles

and Ratra, 2003; Peter and Uzan, 2005; Copeland et al. , 2006; Uzan, 2007).

Models and speculations are flourishing and we may wonder to which extent

the observations of our local Universe may reveal the physical nature of the

dark energy. In particular, there exist limitations to this quest intrinsic to

cosmology, related to the fact that most observations are located on our past
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2 Dark energy, gravitation and the Copernican principle

light-cone (Ellis, 1975), and to finite volume effects (Bernardeau and Uzan,

2004) that can make many physically acceptable possibilities undistinguish-

able in practice.

This text aims at discussing the relations between the cosmic acceleration

and the theory of gravitation and more generally with the hypotheses un-

derlying the construction of our cosmological model, such as the validity of

general relativity on astrophysical scales and the Copernican principle. We

hope to illustrate that cosmological data have now the potential of testing

these hypotheses, which go beyond the measurements of its parameters.

1.1.2 Cosmology, physics and astronomy

Cosmology seats at the cross-road between theoretical physics and astron-

omy.

Theoretical physics, based on physical laws, tries to describe the funda-

mental components of nature and their interactions. These laws can be

probed locally by experiments. These laws need to be extrapolated to con-

struct cosmological models. Hence any new idea or discovery concerning

these laws can naturally call for an extension of our cosmological model

(e.g. introducing massive neutrinos in cosmology is now mandatory).

Astronomy confronts us with phenomena that we have to understand

and explain consistently. This often requires the introduction of hypotheses

beyond those of the physical theories (§ 1.1.3) in order to “save the phe-

nomena” (Duhem, 1908), as is actually the case with the dark sector of our

cosmological model. Needless to remind that even if a cosmological model

is in agreement with all observations, whatever their accuracy, it does not

prove that it is the “correct” model of the Universe, in the sense that it

is the correct cosmological extrapolation and solution of the local physical

laws.

Dark energy confronts us with a compatibility problem since, in order to

“save the phenomena” of the observations, we have to include new ingredi-

ents (constant, matter fields or interactions) beyond those of our established

physical theories. However the required value for the simplest dark energy

model, i.e. the cosmological constant, is more than 60 order of magnitude

smaller to what is expected from theoretical grounds (§ 1.1.6). This tension

between what is required by astronomy and what is expected from physics

reminds us of the twenty centuries long debate between Aristotelians and

Ptolemeans (Duhem, 1913), that was resolved not only by the Copernican

model but more important by a better understanding of the physics since
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Newton gravity was compatible only with one of these three models that, at

the time, could not be distinguished observationally.

1.1.3 hypotheses of our cosmological model

The construction of any cosmological model relies on 4 main hypotheses,

(H1) a theory of gravity,

(H2) a description of the matter contained in the Universe and their non-

gravitational interactions,

(H3) symmetry hypotheses, and

(H4) an hypothesis on the global structure, i.e. the topology, of the Universe.

These hypotheses are not on the same footing since H1 and H2 refer to the

physical theories. These two hypotheses are however not sufficient to solve

the field equations and we must make an assumption on the symmetries

(H3) of the solutions describing our Universe on large scales while H4 is an

assumption on some global properties of these cosmological solutions, with

same local geometry.

Our reference cosmological model is the ΛCDM model. It assumes that

gravity is described by general relativity (H1), that the Universe contains

the fields of the standard model of particle physics plus some dark matter

and a cosmological constant, the latter two having no physical explana-

tion at the moment. Note that in the cosmological context this involves an

extra-assumption since what will be required by the Einstein equations is

the effective stress-energy tensor averaged on large scales. It thus implicitly

refers to a, usually not explicited, averaging procedure (Ellis and Buchert,

2005). It also deeply involves the Copernican principle as a symmetry hy-

potheses (H3), without which the Einstein equations usually can not been

solved, and usually assumes that the spatial sections are simply connected

(H4). H2 and H3 imply that the description of standard matter reduces to

a mixture of a pressureless and a radiation perfect fluids.

1.1.4 Copernican principle

The cosmological principle supposes that the Universe is spatially isotropic

and homogeneous. In particular, this implies that there exists a privileged

class of observers, called fundamental observers, who all see an isotropic

universe around them. It implies the existence of a cosmic time and states

that all the properties of the universe are the same everywhere at the same
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cosmic time. It is supposed to hold for the smooth-out structure of the Uni-

verse on large scales. Indeed, this principle has to be applied in a statistical

sense since there exist structures in the universe.

We can distinguish it from the Copernican principle which merely states

that we do not live in a special place (the center) of the Universe. As long as

isotropy around the observer holds, the principle actually leads to the same

conclusion than the cosmological principle.

The cosmological principle makes definite predictions about all unobserv-

able regions beyond the observable universe. It completely determines the

entire structure of the Universe, even for regions that cannot be observed.

From this point of view, this hypothesis, which cannot be tested, is very

strong. On the other hand it leads to a complete model of the universe. The

Copernican principle has more modest consequences and leads to the same

conclusions but only for the observable universe where isotropy has been

verified. It does not make any prediction on the structure of the Universe

for unobserved regions (in particular, space could be homogeneous and non

isotropic on scales larger than the observable Universe). We refer to Bondi

(1960), North (1965) and Ellis (1975) for further discussions on the definition

of these two principles.

We emphasized that, as shall be discussed in the next section, our ref-

erence cosmological model includes a primordial phase of inflation in order

to explain the origin of the large scale structures of the Universe. Inflation

gives a theoretical prejudice in favor of the Copernican principle since it

predicts that all classical (i.e. non-quantum) inhomogeneities (curvature,

shear, . . . ) have been washed-out during this phase. If it is sufficiently

long, we expect the principle to hold on scales much larger than those of

the observable universe, hence backing-up the cosmological principle, since

unobservable regions today arise from the same causal process that affected

the conditions in our local Universe. While the standard predictions of in-

flation are in agreement with all astronomical data, we should not forget it

is only a theoretical argument on which we shall come back in the case we

find observable evidences against isotropy (Pereira et al. , 2007; Pitrou et

al. , 2008), curvature (Uzan et al. , 2003) and homogeneity (e.g. such as a

spatial topology of the Universe).

This principles leads to a Robertson-Walker (RW) geometry with metric

ds2 = −dt2 + a2(t)γijdx
idxj, (1.1)

where t is the cosmic time and γij is the spatial metric on the constant time

hypersurfaces, which are homogeneous and isotropic, and thus of constant

curvature. It follows that the metric is reduced to a single function of time,



1.1 Cosmological models and their hypotheses 5

the scale factor. This implies that there is a one-to-one mapping between

the cosmic time and the redshift

1 + z =
a0

a(t)
, (1.2)

if the expansion is monotonous.

1.1.5 ΛCDM reference model

The dynamics of the scale factor can be determined from the Einstein equa-

tions which reduce for the metric (1.1) to the Friedmann equations

H2 =
8πG

3
ρ− K

a2
+

Λ

3
, (1.3)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
. (1.4)

H ≡ ȧ/a is the Hubble function and K = 0,±1 is the curvature of the

spatial sections. G and Λ are the Newton and cosmological constants. ρ

and P are respectively the energy density and pressure of the cosmic fluids

and are related by

ρ̇+ 3H(ρ+ P ) = 0.

Defining the dimensionless density parameters as

Ω =
8πGρ

3H2
, ΩΛ =

Λ

3H2
, ΩK = − K

H2a2
, (1.5)

respectively for the matter, the cosmological constant and the curvature,

the first Friedmann equation can be rewritten as

E2(z) ≡
(

H

H0

)2

= Ωrad0(1 + z)4 + Ωmat0(1 + z)3 + ΩK0(1 + z)2 + ΩΛ0 , (1.6)

with ΩK0 = 1 − Ωrad0 − Ωmat0 − ΩΛ0. All background observables, such as

the luminosity distance, the angular distance,. . . , are functions of E(z) and

are thus not independent.

Besides this background description, the ΛCDM also accounts for an un-

derstanding of the large scale structure of our universe (galaxy distribution,

cosmic microwave background anisotropy) by using the theory of cosmolog-

ical perturbations at linear order. In particular, in the sub-Hubble regime,

the growth rate of the density perturbation is also a function of E(z).

One must, however, extend this minimal description by a primordial phase

in order to solve the standard cosmological problems (flatness, horizon...).
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In our reference model, we assume that this phase is described by an in-

flationary period during which the expansion of the universe is almost-

exponentially accelerated. In such a case, the initial conditions for the

gravitational dynamics that will lead to the large scale structure are also

determined so that our model is completely predictive. We refer to the

chapter 8 of Peter and Uzan (2005) for a detailed description of these issues

that are part of our cosmological model but not directly related to our actual

discussion.

In this framework, the dark energy is well defined and reduces to a single

number equivalent to a fluid with equation of state w = P/ρ = −1. This

model is compatible with all astronomical data which roughly indicates that

ΩΛ0 ≃ 0.73, Ωmat0 ≃ 0.27, ΩΛ0 ≃ 0.

1.1.6 The cosmological constant problem

This model is theoretically well-defined, observationally acceptable, phe-

nomenologically simple and economical. From the perspective of general

relativity the value of Λ is completely free and there is no argument allow-

ing us to fix it, or equivalently, the length scale ℓΛ = |Λ0|−1/2, where Λ0 is

the astronomically deduced value of the cosmological constant. Cosmology

roughly imposes that

|Λ0| ≤ H2
0 ⇐⇒ ℓΛ ≤ H−1

0 ∼ 1026 m ∼ 1041 GeV−1 .

In itself this value is no problem, as long as we only consider classical physics.

Notice however that it is disproportionately large compared to the natural

scale fixed by the Planck length

ℓΛ > 1060ℓP ⇐⇒ Λ0

M2
Pl

< 10−120 ⇐⇒ ρΛ0
< 10−120M4

Pl ∼ 10−47 GeV4 ,

(1.7)

when expressed in terms of energy density.

The main problem arises from the interpretation of the cosmological con-

stant. The local Lorentz invariance of the vacuum implies that its energy-

momentum tensor must take the form (Zel’dovich, 1988) 〈T vac
µν 〉 = −〈ρ〉gµν ,

that is equivalent to the one of a cosmological constant. From the quantum

point of view, the vacuum energy receives a contribution of the order of

〈ρ〉EW
vac ∼ (200GeV)4 , 〈ρ〉Pl

vac ∼ (1018 GeV)4 , (1.8)

arising from the zero point energy, respectively fixing the cutoff frequency of

the theory to the electroweak scale or to the Planck scale. This contribution
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implies a disagreement of respectively 60 to 120 orders of magnitude with

astronomical observations!

This is the cosmological constant problem (Weinberg, 1989). It amounts

to understanding why

|ρΛ0
| = |ρΛ + 〈ρ〉vac| < 10−47 GeV4 (1.9)

or equivalently,

|Λ0| = |Λ + 8πG〈ρ〉vac| < 10−120M2
Pl , (1.10)

i.e. why ρΛ0
is so small today, but non-zero.

Today, there is no known solution to this problem and two approaches

have been designed. One the one hand one sticks to this model and extend

the cosmological model in order to explain why we observe a so small value

of the cosmological constant (Garriga and Vilenkin, 2004 ; Carr and Ellis,

2008). We shall come back on this approach later. On the other hand,

one hopes that there should exist a physical mechanism to exactly cancel

the cosmological constant and looks for another mechanism to explain the

observed acceleration of the Universe.

1.1.7 The equation of state of dark energy

The equation of state of the dark energy is obtained from the expansion

history, assuming the standard Friedmann equation. It is thus given by the

general expression (Martin et al. , 2006)

3Ωdewde = −1 + ΩK + 2q, (1.11)

q being the deceleration parameter,

q ≡ −aä
ȧ2

= −1 +
1

2
(1 + z)

d lnH2

dz
. (1.12)

This expression (1.11) does not assume the validity of general relativity or

any theory of gravity but gives the relation between the dynamics of the

expansion history and the property of the matter that would lead to this

acceleration if general relativity described gravity. Thus, the equation of

state, as defined in Eq. (1.11), reduces to the ratio of the pressure, Pde, to

the energy density ρde of an effective dark energy fluid under this assumption

only, that is if

H2 =
8πG

3
(ρ+ ρde) −

K

a2
, (1.13)

ä

a
= −4πG

3
(ρ+ ρde + 3P + 3Pde). (1.14)
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All the background information about dark energy is thus encapsulated in

the single function wde(z). Most observational constraints on the dark en-

ergy equation of states refer to this definition.

1.2 Modifying the minimal ΛCDM

The Copernican principle implies that the spacetime metric reduces to a

single function, the scale factor a(t) that can be Taylor expanded as a(t) =

a0 +H0(t− t0)− 1
2q0H

2
0 (t− t0)2 + . . .. It follows that the conclusions that the

cosmic expansion is accelerating (q0 < 0) does not involve any hypothesis

about the theory of gravity (other than the one that the spacetime geometry

can be described by a metric) or the matter content, as long as this principle

holds.

The assumption that the Copernican principle holds, and the fact that

it is so central in drawing our conclusion on the acceleration of the expan-

sion, splits our investigation into two avenues. Either we assume that the

Copernican principle holds and we have to modify the laws of fundamental

physics or we abandon the Copernican principle, hoping to explain dark

energy without any new physics but at the expense of living in a particu-

lar place in the Universe. While the first solution is more orthodox from a

cosmological point of view, the second is indeed more conservative from a

physical point of view. It will be addressed in § 1.2.4. We are thus in front

of a choice between “simple” cosmological solutions with new physics and

more involved cosmological solutions of standard physics.

This section focuses on the first approach. If general relativity holds then

Eq. (1.4) tells us that the dynamics has to be dominated by a dark energy

fluid with wde < −1
3 for the expansion to be accelerated. The simplest

solution is indeed the cosmological constant Λ for which wde = −1 and

which is the only model not introducing new degrees of freedom.

1.2.1 General classification of physical models

1.2.1.1 General Relativity

Einstein’s theory of gravity relies on two independent hypotheses.

First, the theory rests on the Einstein equivalence principle, which in-

cludes the universality of free fall, the local position and local Lorentz in-

variances in its weak form (as other metric theories) and is conjectured to

satisfy it in its strong form. We refer to Will (1981) for a detailed ex-

planation of these principles and their implications. The weak equivalence

principle can be mathematically implemented by assuming that all matter
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fields are minimally coupled to a single metric tensor gµν . This metric de-

fines the length and times measured by laboratory clocks and rods so that

it can be called the physical metric. This implies that the action for any

matter field, ψ say, can be written as Smatter[ψ, gµν ]. This so-called metric

coupling ensures in particular the validity of the universality of free-fall.

The action for the gravitational sector is given by the Einstein-Hilbert

action

Sgravity =
c3

16πG

∫

d4x
√−g∗R∗, (1.15)

where g∗µν is a massless spin-2 field called the Einstein metric. The second

hypothesis states that both metrics coincide

gµν = g∗µν .

The underlying physics of our reference cosmological model (i.e. hypothe-

ses H1 and H2) is thus described by the action

Sgravity =
c3

16πG

∫

d4x
√−g(R− 2Λ) +

∑

standard model+CDM

Smatter[ψi, gµν ],

(1.16)

which includes all known matter fields plus two unknown components (in

bold face).

1.2.1.2 Local experimental constraints

The assumption of a metric coupling is well tested in the Solar system.

First it implies that all non-gravitational constants are spacetime indepen-

dent, which have been tested to a very high accuracy in many physical sys-

tems and for various fundamental constants (Uzan, 2003; Uzan, 2004; Uzan

and Leclercq, 2008), e.g. at the 10−7 level for the fine structure constant

on time scales ranging to 2-4 Gyrs. Second, the isotropy has been tested

from the constraint on the possible quadrupolar shift of nuclear energy lev-

els (Prestage et al. , 1985; Chupp et al. , 1989; Lamoreaux et al. , 1986)

proving that matter couples to a unique metric tensor at the 10−27 level.

Third, the universality of free fall of test bodies in an external gravitational

field at the 10−13 level in the laboratory (Baessler et al. , 1999; Adelberger,

et al. 2001). The Lunar Laser ranging experiment (Williams et al. , 2004),

which compares the relative acceleration of the Earth and Moon in the grav-

itational field of the Sun, also probe the strong equivalence principle at the

10−4 level. Fourth, the Einstein effect (or gravitational redshift) states that

two identical clocks located at two different positions in a static Newton

potential U and compared by means of electromagnetic signals shall exhibit
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a difference in clock rates of 1 + [U1 − U2]/c
2, where U is the gravitational

potential. This effect has been measured at the 2 × 10−4 level (Vessot and

Levine, 1978).

The parameterized post-Newtonian formalism (PPN) is a general formal-

ism that introduces 10 phenomenological parameters to describe any possi-

ble deviation from general relativity at the first post-Newtonian order (Will,

1981). The formalism assumes that gravity is described by a metric and that

it does not involve any characteristic scale. In its simplest form, it reduces

to the two Eddington parameters entering the metric of the Schwartzschild

metric in isotropic coordinates

g00 = −1 +
2Gm

rc2
− 2βPPN

(

2Gm

rc2

)2

, gij =

(

1 + 2γPPN 2Gm

rc2

)

δij .

Indeed, general relativity predicts βPPN = γPPN = 1. These two phe-

nomenological parameters are constrained (1) by the shift of the Mercury

perihelion (Shapiro et al. , 1990) which implies that |2γPPN − βPPN − 1| <
3 × 10−3, (2) the Lunar laser ranging experiments (Williams et al. , 2004)

which implies |4βPPN − γPPN − 3| = (4.4 ± 4.5) × 10−4 and (3) by the de-

flection of electromagnetic signals which are all controlled by γPPN. For

instance the very long baseline interferometry (Shapiro et al. , 2004) im-

plies that |γPPN − 1| = 4 × 10−4 while the measurement of the time delay

variation to the Cassini spacecraft (Bertotti et al. , 2003) sets γPPN − 1 =

(2.1 ± 2.3) × 10−5.

The PPN formalism does not allow to test finite range effects that could

be caused e.g. by a massive degree of freedom. In that case one expects a

Yukawa-type deviation from the Newton potential,

V =
Gm

r

(

1 + αe−r/λ
)

,

that can be probed by “fifth force” experimental searches. λ characterizes

the range of the Yukawa deviation while its strength α may also include a

composition-dependence (Uzan, 2003). The constraints on (λ, α) are sum-

marized in Hoyle et al. (2004) which typically shows that α < 10−2 on scales

ranging from the millimeter to the Solar system size.

In general relativity, the graviton is massless. One can however give it

a mass, but this is very constrained. In particular, around a Minkowski

background, the mass term must have the very specific form of the Pauli-

Fierz type in order to avoid ghosts (see below for a more precise definition)

to be excited. This mass term is however inconsistent with Solar system

constraints because there exists a discontinuity (van Dam and Veltman,



1.2 Modifying the minimal ΛCDM 11

1970; Zakharov, 1970) between the case of a strictly massless graviton and a

very light one. In particular, such a term can be ruled out from the Mercury

perihelion shift.

General relativity is also tested with pulsars (Damour, and Esposito-

Farèse, 1998; Esposito-Farèse, 2005) and in the strong field regime (Psaltis,

2008). For more details we refer to Will (1981), Damour and Lilley (2008)

and Turyshev (2008). Needless to say that any extension of general relativ-

ity has to pass these constraints. However, deviations from general relativity

can be larger in the past, as we shall see, which makes cosmology an inter-

esting physical system to extend these constraints.

1.2.1.3 Universality classes

There are many possibilities to extend this minimal physical framework.

Let us start by defining universality classes (Uzan, 2007) by restricting our

discussion to field theories. This has the advantage to identify the new

degrees of freedom and their couplings.

The first two classes assume that gravitation is well described by general

relativity and introduce new degrees of freedom beyond those of the standard

model of particle physics. This means that one adds a new term Sde[ψ; gµν ] in

the action (1.16) while keeping the Einstein-Hilbert action and the coupling

of all the fields (standard matter and dark matter) unchanged. They are:

1. Class A consists of models in which the acceleration is driven by

the gravitational effect of the new fields. They thus must have an

equation of state smaller than −1
3 . They are not coupled to the

standard matter fields or to dark matter so that one is adding a new

sector

Sde[φ; gµν ]

to the action (1.16), where φ stands for the dark energy field (not

necessarily a scalar field). Standard examples include quintessence

models (Wetterich, 1988; Ratra and Peebles, 1988) which invoke

a canonical scalar field slow-rolling today, solid dark matter mod-

els (Battye et al. , 1999) induced by frustrated topological defects

networks, tachyon models (Sen, 1999), Chaplygin gas (Kamenshchik

et al. , 2001) and K-essence (Armendariz-Picon et al. , 2000; Chiba et

al. , 2000) models invoking scalar fields with a non-canonical kinetic

term.

2. Class B introduces new fields which do not dominate the matter con-

tent so that they do not change the expansion rate of the universe.

They are thus not required to have an equation of state smaller than
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Fig. 1.1. Summary of the different classes of physical dark energy models. As dis-
cussed in the text, various tests can be designed to distinguish between them. The
classes differ according to the nature of the new degrees of freedom and their cou-
plings. Left column accounts for models where gravitation is described by general
relativity while right column models describe a modification of general relativity.
In the upper line classes, the new fields dominate the matter content of the uni-
verse at low redshift. Upper-left models (class A) consist of models in which a new
kind of gravitating matter is introduced. In the upper-right models (class C), a
light field induces a long-range force so that gravity is not described by a mass-
less spin-2 graviton only. In this class, Einstein equations are modified and there
may be a variation of the fundamental constants. The lower-right models (class D)
correspond to models in which there may exist an infinite number of new degrees
of freedom, such as in some class of braneworld scenarios. These models predict a
modification of the Poisson equation on large scales. In the last class (lower-left,
class B), the distance duality relation may be violated. From Uzan (2007).

−1
3 . These fields are however coupled to photons and thus affect the

observations. An example (Csaki et al. , 2002; Deffayet et al. , 2002)

is provided by photon-axion oscillations which aims at explaining the

dimming of supernovae not by an accelerated expansion but by the

fact that part of the photons has oscillated into invisible axions. In

that particular case, the electromagnetic sector is modified according

to

Sem[Aµ; gµν ] → Sem[Aµ, aµ; gµν ].
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A specific signature of these models would be a violation of the dis-

tance duality relation (see § 1.3.3.1).

Then come models with a modification of general relativity. Once such a

possibility is considered, many new models arise (Will, 1981). They are:

3. Class C includes models in which a finite number of new fields are

introduced. These fields couple to the standard model fields and some

of them dominate the matter content (at least at late time). This is

the case in particular of scalar-tensor theories in which a scalar field

couples universally and leads to the class of extended quintessence

models, chameleon models or f(R) models depending on the choice

of the coupling function and potential (see § 1.2.3). For these models,

one has a new sector

Sϕ[ϕ; gµν ]

and the couplings of the matter fields will be modified according to

Smatter[ψi; gµν ] → Smatter[ψi;A
2
i (ϕ)gµν ].

If the coupling is not universal, a signature may be the variation

of fundamental constants and a violation of the universality of free

fall. This class also offers the possibility to enjoy wde < −1 with a

well-defined field theory and includes models in which a scalar field

couples differently to standard matter field and dark matter.

4. Class D includes more drastic modifications of general relativity with

e.g. the possibility to have more types of gravitons (massive or not

and most probably an infinite number of them). This is for instance

the case of models involving extra-dimensions such as e.g. multi-

brane models (Gregory et al. , 2000), multigravity (Kogan et al. ,

2000), brane induced gravity (Dvali et al. , 2000) or simulated grav-

ity (Carter et al. , 2001). In these cases, the new fields modified the

gravitational interaction on large scale but do not necessarily domi-

nate the matter content of the universe. Some of these models may

also offer the possibility to mimic an equation of state wde < −1.

These various modifications, summarized on Fig. 1.1 can indeed be com-

bined to get more exotic models.

1.2.1.4 “Modified gravity” vs new matter

The different models in the literature are often categorized as “modified

gravity” or “new matter”. This distinction may however be subtle.

First, we shall define gravity as the long range force that cannot be
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screened. We are used to describe this interaction by general relativity

so that it is associated with a massless spin-2 graviton. In our view, grav-

ity cannot be modified but only its description, i.e. general relativity. As

an example, scalar-tensor theories (see § 1.2.3) extend general relativity by

a spin-0 interaction which can be long-range according to the mass of the

scalar field. In this case, the interaction is even universal so that it does not

imply any violation of the weak Einstein equivalence principle.

Note also that whatever the model, it requires the introduction of new

fields beyond those of the standard model. The crucial difference is that

in models with “new matter” (e.g. class A), the amount of dark energy is

imposed by initial conditions and its gravitational effect induces the acceler-

ation of the Universe. In a “modified gravity” model (e.g. classes C and D)

the standard matter and cold dark matter generate an effective dark energy

component. The acceleration may thus be a consequence of the fact that

the gravitational interaction is weaker than expected on large scales. But, it

may be that the energy density of the new field also dominates the dynamics

but still be determined by the energy density of the standard field.

1.2.2 Modifying General Relativity

1.2.2.1 In which regime?

Before investigating gravity beyond general relativity, let us try to sketch

the regimes in which these modifications may (or shall) appear. We can

distinguish the following regimes.

• Weak-strong field regimes can be characterized by the amplitude of the

gravitational potential. For a spherical static spacetime, Φ = GM/rc2. It

is of order of Φ⊙ ∼ 2 × 10−6 at the surface of the Sun and equal to 1
2 for

a black-hole.

• Small-large distances. Such modifications can be induced by a massive

degree of freedom that will induce a Yukawa like coupling. While con-

strained on the size of the solar system, we have no constraints on scales

larger that 10h−1 Mpc.

• Low-high acceleration regimes are of importance to discuss galaxy rota-

tion curves and (galactic) dark matter, as suggested by the MOND phe-

nomenology (Milgrom, 1983). In particular the kind of modification of the

gravitation theory that could account for the dark matter cannot occur

at a characteristic distance because of the Tully-Fischer law.

• Low-high curvature regimes will distinguish the possible extensions of the

Einstein-Hilbert action. For instance a quadratic term of the form αR2
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becomes significant compared to R when GM/r3c2 ≫ α−1 even if Φ re-

mains small. In the Solar system R⊙ ∼ 4 × 10−28cm−2.

In cosmology, we can suspect various possible regimes in which to modify

general relativity. The dark matter problem can be accounted for by a mod-

ification of Newton gravity below the typical acceleration a0 ∼ 10−8cm.s−2.

It follows that the regime for which a dark matter component is required

can be characterized by

ΦR < a2
0 ∼ 3 × 10−31R⊙. (1.17)

Concerning the homogeneous universe, one can sort out from the Friedmann

equations that

RFL(z) = 3H2
0 [Ωm0(1 + z)3 + 4ΩΛ0], (1.18)

from which we deduce that RFL ∼ 10−5R⊙ at the time of nucleosynthesis,

RFL ∼ 10−20R⊙ at the time of decoupling and RFL ∼ 10−28R⊙ at z = 1.

The curvature scale associated to a cosmological constant is RΛ = 1
6Λ and

the cosmological constant (or dark energy) problem corresponds to a low

curvature regime,

R < RΛ ∼ 1.2 × 10−30R⊙. (1.19)

The fact that the limits (1.17) and (1.19) intersect illustrates the coincidence

problem, that is ao ∼ cH0 and Ωm0 ∼ ΩΛ0. Note that both arise on curvature

scales much smaller than those probed in the solar system.

Let us now turn to the cosmological perturbations. The gravitational

potential at the time of the decoupling (z ∼ 103) is of the order of Φ ∼ 10−5.

During the matter era, the Poisson equation imposes that ∆Φ ∝ δρma
2

which is almost constant. It follows that we never expect a potential larger

than Φ ∼ 10−5 on cosmological scales. We are thus always in a weak field

regime. The characteristic distance scale is fixed by the Hubble radius c/H0.

The curvature perturbation associated with the large scale structures is, in

the linear theory, of the order

δR =
6

a2
∆Φ ∼ 3H2

0Ωm0(1 + z)3δm(z).

Since at redshift zero, 〈δ2m〉 = σ8 ∼ 1 in a ball of radius of 8 Mpc, we conclude

that 〈δR2〉1/2 ∼ 3H2
0Ωm0σ8 while RFL = 3H2

0Ωm0 if Λ = 0. This means that

the curvature perturbation becomes of the order of the background curvature

at a redshift z ∼ 0, even if we are still in the weak field limit. This implies

that the effect of the large scale structures on the background dynamics

may be non-negligible. This effect has been argued to be at the origin of
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the acceleration of the universe (Ellis and Buchert, 2005; Ellis, 2008) but

no convincing formalism to describe this backreaction has been constructed

yet. Note that in this picture, the onset of the acceleration phase will be

determined by the amplitude of the initial power spectrum.

In conclusion, to address the dark energy or dark matter problem by

a modification of general relativity, we are interested in modifications on

large scales (typically Hubble scales), low acceleration (below a0) or small

curvature (typically RΛ).

1.2.2.2 General constraints

In modifying general relativity, we shall demand that the new theory

• does not contain ghosts, i.e. degrees of freedom with negative kinetic en-

ergy. The problem with such a ghost is that the theory would be unstable.

In particular, the vacuum can decay in an arbitrary amount of positive

energy (standard) gravitons whose energy would be balanced by negative

energy ghosts.

• has a Hamiltonian bounded from below. Otherwise, the theory would be

unstable, even if one cannot explicitly identify a ghost degree of freedom.

• the new degrees of freedom are not tachyon, i.e. do not have a negative

mass.

• is compatible with local tests of deviation from general relativity, in par-

ticular in the Solar system described in § 1.2.1.2.

Then, starting from the action (1.16), we see that we can either modify

the Einstein-Hilbert action while letting the coupling of all matter fields to

the metric unchanged or modify the coupling(s) in the matter action. The

possibilities are numerous (Will, 1981; Esposito-Farèse and Bruneton, 2007;

Uzan, 2007) and we cannot start an extensive review of the models here. We

shall thus consider some examples that will illustrate the constraints cited

above, but with no goal of exhaustivity.

1.2.2.3 Modifying the Einstein-Hilbert action

Let us start with the example of higher order gravity models based on the

quadratic action (here we follow the very clear analysis of Esposito-Farèse

and Bruneton (2007) for our discussion)

Sgravity =
c3

16πG

∫

d4x
√−g

[

R+ αC2
µνρσ + βR2 + γGB

]

, (1.20)

where Cµνρσ is the Weyl tensor and GB ≡ R2
µνρσ − 4R2

µν +R2 is the Gauss-

Bonnet term. α, β and γ are three constants with dimension of an inverse
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mass square. Since GB does not contribute to the local field equations of

motion, we will not consider it further. The action (1.20) gives a renormal-

isable theory of quantum gravity at all order provided α and β are non-

vanishing (Stelle, 1978). However, such theories contain ghosts. This can

be seen from the graviton propagator which takes the form 1/(p2 +αp4). It

can indeed be decomposed in irreducible fractions as

1

p2 + αp4
=

1

p2
− 1

p2 + 1
α

.

The first term is nothing but the standard propagator of the usual massless

graviton. The second term correspond to an extra-massive degree of freedom

with mass α−1 and its negative sign indicates that it carries negative energy:

it is a ghost. Moreover if α is negative, this ghost is also a tachyon! The

only viable such modification arises from βR2, which introduces a massive

spin-0 degree of freedom.

These considerations can be extended to more general theories involving

an arbitrary function of the metric invariants, f(R,Rµν , Rµνρσ), which also

generically (Hindawi et al. , 1996; Tomboulis, 1996) contain a massive spin-2

ghost. They are thus not stable theories with the exception of f(R) theories,

discussed in § 1.2.3.3.

A possibility may seem to consider models designed such that their second-

order expansion never shows any negative energy kinetic term. As recalled

in Esposito-Farèse and Bruneton (2007) and Woodard (2006), these models

still exhibit instabilities the origin of which can be related to a theorem

by Ostrogradsky (1850) showing that their Hamiltonian is generically not

bounded from below.

We summarized this theorem following the presentation by Woodard (2006).

Consider a Lagrangian depending on a variable q and its first two time

derivatives L(q, q̇, q̈) and assume that it is not degenerate, i.e. that q̈ cannot

be eliminated by an integration by part. Then the definition p2 ≡ ∂L/∂q̈
can be inverted to get q̈ as a function q, q̇ and p2, q̈[q, q̇, p2], and the ini-

tial data must be specified by two pairs of conjugate momenta defined by

(q1, p1) ≡ (q, ∂L/∂q̇ − d(∂L/∂q̈)/dt) and (q2, p2) ≡ (q̇, ∂L/∂q̈). The Hamil-

tonian defined as H = p1q̇1 + p2q̇2 − L can be shown to be the generator

of time translations and the Hamilton equations which derive from H are

indeed equivalent to the Euler-Lagrange equations derived from L. In terms

of qi and pi, the Hamiltonian takes the form

H = p1q2 + p2q̈[q1, q2, p2] − L(q1, q2, q̈[q1, q2, p2]).

This expression is however linear in p1 so that the Hamiltonian is not
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bounded from below and the theory is necessarily unstable. Let us note

that this constraint can be avoided by non-local theories, that is if the La-

grangian depends on an infinite number of derivatives, as e.g. string theory,

even though its expansion may look pathological.

1.2.2.4 Modifying the matter action

Many other possibilities, known as bi-metric theories of gravity, arise if one

assumes that gµν 6= g∗µν . Instead one can postulate that the physical metric

is a combination of various fields, e.g.

gµν [g∗µν , ϕ,Aµ, Bµν , . . .] = A2(ϕ)
[

g∗µν + α1AµAν + α2g
∗
µνg

αβ
∗ AαAβ + . . .

]

.

As long as these new fields enter quadratically, their field equation is gener-

ically of the form (∇µ∇µ)A = AT where T is the matter source. It follows

that matter cannot generate them if their background value vanishes. On

the other hand, if their background value does not vanish then these fields

define a preferred frame and Lorentz invariance is violated.

Such modifications have however drawn some attention, in particular in

the attempts of constructing a field theory reproducing the MOND phe-

nomenology (Milgrom, 1983). In particular, in order to increase light de-

flection in scalar-tensor theories of gravity, a disformal coupling (Beken-

stein, 1993), gµν = A2(ϕ)g∗µν + B(ϕ)∂µϕ∂νϕ, was introduced. It was gen-

eralized to stratified theory (Sanders, 1997). by replacing the gradient of

the scalar field by a dynamical unit vector field (g∗µνA
µAν = −1), gµν =

A2(ϕ)g∗µν + B(ϕ)AµAν . This is at the basis of the TeVeS theory proposed

by Bekenstein (Bekenstein, 2004). The mathematical consistency and the

stability of these field theories were investigated in depth in the excellent

analysis of Esposito-Farèse and Bruneton (2007). It was shown that no

present theory passes all available experimental constraints while being sta-

ble and admitting a well-posed Cauchy problem.

Esposito-Farèse and Bruneton (2007) also notice that while couplings of

the form gµν [g∗µν , R
∗
µν , R

∗
µναβ , . . .] seem to lead to well-defined theories in

vacuum (in particular) when linearizing around a Minkowsky background,

they are unstable inside matter, because the Ostrogradsky theorem strikes

back.

The case in which only a scalar partner, gµν = A2(ϕ)g∗µν , is introduced

leads to consistent field theories and is the safest way to modify the matter

coupling. We shall discuss these scalar-tensor theories of gravity in § 1.2.3.
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1.2.2.5 Higher-dimensional theories

Higher-dimensional models of gravity, among which string theory (see e.g.

Damour and Lilley (2008)) predict non-metric coupling as those discussed

in the previous section. Many scalar fields, known as moduli, appear in the

dimensional reduction to four dimensions.

As a simple example, let us consider a five-dimensional spacetime and

assume that gravity is described by the Einstein-Hilbert action

S =
1

12π2G5

∫

R̄
√

|ḡ|d5x, (1.21)

where we denote by a bar quantities in 5 dimensions to distinguish them

with the analogous quantities with no bar in 4 dimensions. The aim is to

determine the independent elements of the metric gAB, which are 15 in five

dimensions. We decompose the metric into a symmetric tensor part gµν ,

with 10 independent components, a vector part, Aα, with four components

and finally a scalar field, φ, to complete the counting of the number of

degrees of freedom (15 = 10 + 4 + 1). The metric is thus decomposed as

ḡAB =

(

gµν + 1
M2φ

2AµAν
1
M φ2Aµ

1
M φ2Aν φ2

)

, (1.22)

where the different components depend a priori both on the usual space-

time coordinates xα and the coordinate in the extra-dimension y. The con-

stant M has dimensions of a mass, so that Aα also has dimensions of mass,

whereas the scalar field φ is here dimensionless. Finally, while capital latin

indices vary in the entire 5-dimensional space-time, A,B = 0, · · · , 4, greek

indices span the 4-dimensional space-time, namely µ, ν = 0, · · · , 3. Com-

pactifying on a circle and assuming that none of the variables depends on

the transverse direction y (cylinder condition), the action (1.21) reduces to

the four-dimensional action

S =
1

16πG

∫

d4x
√−gφ

(

R− φ2

4M2
FαβF

αβ

)

, (1.23)

where Fαβ ≡ ∂αAβ − ∂βAα and where we have set

G =
3πḠ5

4V(5)
,

and factored out the finite volume of the fifth dimension, V(5) =
∫

dy. The

scalar field couples explicitly to the kinetic term of the vector field. It can be

checked that this coupling cannot be eliminated by a redefinition of the met-

ric, whatever the function A(φ): this is the well-known conformal invariance
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of electromagnetism in four dimensions. Such a term induces a variation of

the fine structure constant as well as a violation of the universality of free-

fall (Uzan, 2003). Such dependencies of the masses and couplings are generic

for higher-dimensional theories and in particular string theory.

The cylinder condition is justified as long as we consider the fifth dimen-

sion to be topologically compact with the topology of a circle. In this case,

all the fields which are defined in this space, i.e. the four-dimensional metric

gµν , the vector Aα and the dilaton φ, and any additional matter fields that

the theory should describe, are periodic functions of the extra-dimension

and can therefore be expanded into Fourier modes. The radius R of this

dimension then turns out to be naturally R ∼ M−1. For large enough M ,

the radius is too small to have observable consequences: to be sensitive to

the fifth dimension, the energies involved must be comparable to M . De-

composing all the fields in Fourier modes a e.g.

φ (xµ, y) =
+∞
∑

n=−∞
φn (xµ) einMy, with φ−n = φ⋆

n (1.24)

(φ real), we conclude that the four-dimensional theory will also contain a

infinite tower of modes of increasing mass.

While these tree-level predictions of string theory are in contradiction

with experimental constraints, many mechanisms can reconcile it with ex-

periment. In particular, it has been claimed that quantum loop corrections

to the tree-level action may modify the coupling in such a way that it has

a minimum (Damour and Polyakov, 1994). The scalar field can thus be at-

tracted toward this minimum during the cosmological evolution so that the

theory is attracted toward general relativity. Another possibility is to in-

voke an environmental dependence, as can be implemented in scalar-tensor

theories by the chameleon mechanism (Khoury and Weltman, 2004) which

invokes a potential with a minimum not coinciding with the one of the cou-

pling function.

In higher dimensions, the Einstein-Hilbert action can also be modified by

adding the Gauss-Bonnet term GB since it does not enter the field equa-

tions only in four dimensions. The D-dimensional Einstein-Hilbert action

can then be modified to include a term of the form αGB. In particular,

it is the case in the low-energy limit of heterotic string theory (Gross and

Sloan, 1987). In various configurations, in particular with branes, it has

been argued that the Gauss-Bonnet invariant can also couple to a scalar

field (Amendola et al. , 2006), i.e. α(ϕ)GB. As long as the modification is

linear in GB, it is ghost-free.
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In the context of braneworld, it was shown that some models with infi-

nite volume extra-dimension can produce a modification of general relativ-

ity leading to an acceleration of the expansion. In the DGP model (Dvali

et al. , 2000), one considers beside the 5-dimensional Einstein-Hilbert a 4-

dimensional term induced on the brane

S =
M2

5

2

∫

R̄5

√

|ḡ5|d5x+
M2

4

2

∫

R4

√

|g4| d4x. (1.25)

There is a competition between these two terms and the five-dimensional

term dominates on scales larger than rc = M2
4 /2M

3
5 . The existence or

absence of ghost in this class of models is still under debate. Some of these

models (Deffayet, 2005) have also been claimed to describe massive gravitons

without being plagued by the van Dam-Veltman-Zakharov discontinuity (see

§ 1.2.1.2).

As a conclusion, higher-dimensional models offer a rich variety of possi-

bilities among which some may be relevant to describe a modification of

general relativity on large scales.

1.2.3 Example: scalar-tensor theories

As discussed in § 1.2.2.4, the case in which only a scalar partner to the

graviton is introduced leads to consistent field theories and is the safest way

to modify the matter coupling.

1.2.3.1 Formulation

In scalar-tensor theories, gravity is mediated not only by a massless spin-2

graviton but also by a spin-0 scalar field that couples universally to matter

fields (this ensures the universality of free fall). In the Jordan frame, the

action of the theory takes the form

S =

∫

d4x

16πG∗

√−g [F (ϕ)R − gµνZ(ϕ)ϕ,µϕ,ν − 2U(ϕ)]

+Smatter[ψ; gµν ] (1.26)

where G∗ is the bare gravitational constant. This action involves three

arbitrary functions (F , Z and U) but only two are physical since there is

still the possibility to redefine the scalar field. F needs to be positive to

ensure that the graviton carries positive energy. Smatter is the action of the

matter fields that are coupled minimally to the metric gµν . In the Jordan

frame, the matter is universally coupled to the metric so that the length and

time as measured by laboratory apparatus are defined in this frame.
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It is useful to define an Einstein frame action through a conformal trans-

formation of the metric

g∗µν = F (ϕ)gµν . (1.27)

In the following all quantities labelled by a star (*) will refer to Einstein

frame. Defining the field ϕ∗ and the two functions A(ϕ∗) and V (ϕ∗) (see

e.g. Esposito-Farèse and Polarski, 2001) by

(

dϕ∗

dϕ

)2

=
3

4

(

d lnF (ϕ)

dϕ

)2

+
1

2F (ϕ)
(1.28)

A(ϕ∗) = F−1/2(ϕ) (1.29)

2V (ϕ∗) = U(ϕ)F−2(ϕ), (1.30)

the action (1.26) reads as

S =
1

16πG∗

∫

d4x
√−g∗ [R∗ − 2gµν

∗ ∂µϕ∗∂νϕ∗ − 4V (ϕ∗)]

+Smatter[A
2(ϕ∗)g

∗
µν ;ψ]. (1.31)

The kinetic terms have been diagonalised so that the spin-2 and spin-0

degrees of freedom of the theory are perturbations of g∗µν and ϕ∗ respectively.

In this frame, the field equations take the form

G∗
µν = 8πG∗T

∗
µν

+ 2∂µϕ∗∂νϕ∗ − g∗µν (∂αϕ∗)
2 − 2g∗µνV (1.32)

(∇µ∇µ)∗ϕ∗ = V,ϕ∗ − 4πG∗α(ϕ∗)T
∗
µνg

µν
∗ (1.33)

∇µT
µν
∗ = α(ϕ∗)T

∗
σρg

σρ
∗ ∂νϕ∗ (1.34)

where we have defined the Einstein frame stress-energy tensor

T µν
∗ ≡ 2√−g∗

δSmatter

δg∗µν

,

related to the Jordan frame stress-energy tensor by T ∗
µν = A2Tµν . The

function

α(ϕ∗) ≡
d lnA

dϕ∗
. (1.35)

characterizes the coupling of the scalar field to matter (we recover general

relativity with a minimally coupled scalar field when it vanishes). For com-

pleteness, we also introduce

β(ϕ∗) ≡
dα

dϕ∗
. (1.36)
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Fig. 1.2. Left: Evolution of the dilaton as a function of redshift. In the radiation
era the dilaton freezes to a constant value and is then driven toward the minimum
of the coupling function during the matter era. Right: constraints on scalar-tensor
theories of gravity with a massless dilaton with quadratic coupling in the (α0, β)
plane. At large β the primordial nucleosynthesis sets more stringent constraints
than the Solar system. From Coc et al. (2006).

Note that in Einstein frame the Einstein equations (1.32) are the same as

those obtained in general relativity with a minimally coupled scalar field.

The action (1.26) defines an effective gravitational constant Geff = G∗/F =

G∗A
2. This constant does not correspond to the gravitational constant effec-

tively measured in a Cavendish experiment. The Newton constant measured

in this experiment is

Gcav = G∗A
2
0(1 + α2

0) (1.37)

where the first term, G∗A
2
0 corresponds to the exchange of a graviton while

the second term G∗A
2
0α

2
0 is related to the long range scalar force.

1.2.3.2 Cosmological signatures

The post-Newtonian parameters can be expressed in terms of the values of

α and β today as

γPPN − 1 = − 2α2
0

1 + α2
0

, βPPN − 1 =
1

2

β0α
2
0

(1 + α2
0)

2
. (1.38)

The Solar system constraints discussed in § 1.2.1.2 imply α0 to be very

small, typically α2
0 < 10−5 while β0 can still be large. Binary pulsar obser-

vations (Esposito-Farèse, 2005) impose that β0 > −4.5.

The previous constraints can be satisfied even if the scalar-tensor theory

was far from general relativity in the past. The reason is that these theories

can be attracted toward general relativity (Damour and Nordtvedt, 1993) if
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their coupling function or potential has a minimum. This can be illustrated

in the case of a massless (V = 0) dilaton with quadratic coupling (a ≡
lnA = 1

2βϕ
2
∗). The Klein-Gordon equation (1.33) can be rewritten in terms

of the number of e-folds in Einstein frame as

2

3 − ϕ′2
∗
ϕ′′
∗ + (1 − w)ϕ′

∗ = −α(ϕ∗)(1 − 3w). (1.39)

As emphasized by Damour and Nordtvedt (1993), this is the equation of

motion of a point particle with a velocity dependent inertial mass, m(ϕ∗) =

2/(3−ϕ
′2
∗ ) evolving in a potential α(ϕ∗)(1− 3w) and subject to a damping

force, −(1 − w)ϕ′
∗. During the cosmological evolution the field is driven

toward the minimum of the coupling function. If β > 0, it drives ϕ∗ toward

0, that is α→ 0, so that the scalar-tensor theory becomes closer and closer

to general relativity. When β < 0, the theory is driven away from general

relativity and is likely to be incompatible with local tests unless ϕ∗ was

initially arbitrarily close to 0.

During the radiation era, w = 1
3 and the coupling is not efficient so that

ϕ∗ freezes to a constant value. Then, during the matter era, the coupling

acts as a potential with a minimum in zero, hence driving ϕ∗ towards zero

and the theory towards general relativity (see Fig. 1.2).

This offers a rich phenomenology for cosmology and in particular for

the dark energy question. It was shown that quintessence models can

be extended to scalar-tensor theory of gravity (Uzan, 1999; Bartolo and

Pietroni, 2000) and that it offers the possibility to have an equation of state

smaller than −1 with a well-defined theory (Martin et al. , 2006). The con-

straints on the deviations from general relativity can also be sharpened by

the use of cosmological observations such as cosmic microwave background

anisotropies (Riazuelo and Uzan, 2002), weak gravitational lensing (Schimd

et al. , 2005) and big-bang nucleosynthesis (Coc et al. , 2006). Fig. 1.2 sum-

marizes the constraints that can be obtained from primordial nucleosynthe-

sis.

1.2.3.3 Note on f(R) models

As discussed in § 1.2.2.3, the only higher order modifications of the Einstein-

Hilbert leading to a well-defined theory are

S =
1

16πG∗

∫

f(R)
√−gd4x+ Smatter[gµν ;matter]. (1.40)

Such a theory leads to the field equations

f ′(R)Rµν −
1

2
f(R)gµν −∇µ∂νf

′(R)+ gµν(∇µ∇µ)f ′(R) = 8πG∗Tµν , (1.41)
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where a prime indicates a derivative of the function with respect to its

argument, i.e. f ′(R) ≡ df/dR.

Interestingly, one can show that these theories reduce to a scalar-tensor

theory (Gottlöber et al. , 1990; Teyssandier and Tourrenc, 1993; Mangano

and Sokolowski, 1994; Wands, 1994). To show this, let us introduce an

auxiliary field ϕ and consider the action

S =
1

16πG∗

∫

[

f ′(ϕ)R + f(ϕ) − ϕf ′(ϕ)
]√−gd4x

+Smatter[gµν ;matter]. (1.42)

The variation of this action with respect to the scalar field indeed implies,

if f ′′(ϕ) 6= 0 (The case f ′′ = 0 is equivalent to general relativity with a

cosmological constant), that

R− ϕ = 0. (1.43)

This constraint permits to rewrite Eq. (1.41) in the form

f ′(ϕ)Gµν −∇µ∂νf
′(ϕ)+gµν (∇µ∇µ)f ′(ϕ)+

1

2
[ϕf ′(ϕ)−f(ϕ)]gµν = 8πG∗Tµν ,

(1.44)

which then reduces to Eq. (1.32) after the field redeifinitions necessary to

shift to the Jordan frame. Note that, even if the action (1.42) does not

possess a kinetic term for the scalar field, the theory is well defined since

the true spin-0 degree of freedom clearly appears in the Einstein frame, and

with a positive energy.

The change of variable (1.28) implies that we can choose ϕ∗ =
√

3
2 ln f ′(ϕ)

so that the theory in the Einstein frame is defined by

A2 ∝ e
− 4ϕ∗√

3 , V =
1

4

{

ϕ(ϕ∗)e
2ϕ∗√

3 − f [ϕ(ϕ∗)]

}

e
− 4ϕ∗√

3 . (1.45)

Note that α0 cannot be made arbitrarily small since the form of the cou-

pling function A arises from the function f . In order to make these models

compatible with Solar system constraints, the potential should be such that

the scalar field is massive enough, while still being bounded from below.

This example highlights the importance of looking for the true degrees of

freedom of the theory. A field redefinition can be a useful tool to show that

two theories are actually equivalent. This result was generalized (Wands,

1994) to theories involving f [R, (∇µ∇µ)R, . . . , (∇µ∇µ)nR] which were shown

to be equivalent to (n+ 1) scalar-tensor theories.

This equivalence between f(R) and scalar-tensor theories assumes that

the Ricci scalar is a function of the metric and its first derivatives. There
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is a difference when one considers f(R) theories in the Palatini formal-

ism (Flanagan, 2004), in which the metric and the connections are assumed

to be independent fields, since while still being equivalent to scalar-tensor

theories, the scalar field does not propagate because it has no kinetic term

in the Einstein frame. It thus reduces to a Lagrange parameter whose field

equation sets a constraint.

1.2.3.4 Extensions

The previous set-up can easily be extended to include n scalar fields (Damour

and Esposito-Farèse, 1992) in which case the kinetic term will contain a n×n
symmetric matrix, gµν

∗ γab(ϕc)∂µϕ
a∂νϕ

b.

Another class of models arises when one considers more general kinetic

terms of the form f(s, ϕ) where s = gµν
∗ ∂µϕ∂νϕ. When the coupling function

reduces to A = 1, these models are known as K-essence (Armendariz-Picon

et al. , 2000; Chiba et al. , 2000). We refer to Esposito-Farèse and Bruneton

(2007) and Bruneton (2006) for a discussion of the conditions to be imposed

on f in order for such a theory to be well-defined.

1.2.3.5 Reconstructing theories

This section has illustrated the difficulty of modifying consistently general

relativity. Let us emphasize that most of the models we discussed contain

several free functions and general relativity in some continuous limit. It is

clear that most of them cannot be excluded observationally.

It is important to remember that we hope these theories to go beyond a

pure description of the data. In particular, it is obvious that the function

E(z) defined in Eq. (1.6) for a ΛCDM model can be reproduced by many

different models. In particular, one can always design a scalar field model in-

ducing an energy density ρde(z), obtained from the observed function H2(z)

by subtracting the contributions of the matter we know (i.e. pressureless

matter and radiation). Its potential is given by (Uzan, 2007)

V (a) =
H(1 −X)

16πG

(

6H + 2aH ′ − aHX ′

1 −X

)

,

Q(a) =

∫

d ln a√
8πG

[

aX ′ − 2(1 −X)a
H ′

H

]

, (1.46)

with X(a) ≡ 8πGρde(a)/3H
2(a) in order to reproduce{H(a), ρde(a)}.

The background dynamics provides only one observable function, namely

H(z), so that it can be reproduced by many theories having at least one

free function. To go further, we must add independent information, which

can be provided e.g. by the growth rate of the large scale structure. An
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illustrative game was presented in Uzan (2007) in which it was shown that

while the background dynamics of the DGP model (Dvali et al. , 2000) can

be reproduced by a quintessence model, both models did not share the same

growth rate and can be distinguished, in principle, at this level. However,

both the background and sub-Hubble perturbation dynamics of the DGP

model can be reproduced by a well-defined scalar-tensor theory, which has

two arbitrary functions. The only way to distinguish the two models is then

to add local information since the scalar-tensor theory that reproduces the

cosmological dynamics of the DGP model would induce a time variation of

the gravitational constant above acceptable experimental limits.

This shows the limit of the model-dependent approach in which a recon-

structed theory could simply be seen as a description of a set of data if its

number of free functions is larger than the observable relations provided by

the data. The reconstruction method can however lead to interesting con-

clusions and to the construction of counter-examples. For instance, it was

shown (Esposito-Farèse and Polarski, 2001) that a scalar-tensor theory with

V = 0 cannot reproduce the background dynamics of the ΛCDM.

This should encourage us to consider the simplest possible extension,

namely with the minimum number of new degrees of freedom and arbi-

trary functions. In that sense the ΛCDM model is very economical since it

reproduces all observations at the expense of a single new constant.

1.2.4 Beyond the Copernican principle

As explained above, the conclusion that the cosmic expansion is accelerated

is deeply related to the Copernican principle. Without such a uniformity

principle, the reconstruction of the geometry of our spacetime becomes much

more involved.

Indeed, most low redshift observations provide the measurements of some

physical quantities (luminosity, size, shape. . . ) as a function of the position

on the celestial sphere and the redshift. In any spacetime, the redshift is

defined as

1 + z =
(uµkµ)emission

(uµkµ)observation

, (1.47)

where uµ is the 4-velocity of the cosmic fluid and kµ the tangent vector to

the null geodesic relating the emission and the observation (see Fig. 1.3).

The redshift depends on the structure of the past light-cone and thus on the

symmetries of the spacetime. It reduces to the simple expression (1.2) only

for a Roberston-Walker spacetime. Indeed, it is almost impossible to prove
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Fig. 1.3. Left: Most low-redshift data are localized on our past light-cone. In a
non-homogeneous spacetime there is no direct relation between the redshift that is
observed and the cosmic time, needed to reconstruct the expansion history. Right:
The time drift of the redshift allows to extract information about two infinitely
close past light-cones. δz depends on the proper motions of the observer and the
sources as well as the spacetime geometry.

that a given observational relation, such as the magnitude-redshift relation,

is not compatible with an other spacetime geometry.

While isotropy around us seems well established observationally (see e.g.

Ruiz-Lapuente, 2007), homogeneity is more difficult to test. The possibility,

that we may be living close to the center of a large under-dense region has

sparked considerable interest, because such models can successfully match

the magnitude-redshift relation of type Ia supernovae without the need to

modify general relativity or add dark energy.

In particular, the low redshift (background) observations such as the

magnitude-redshift relation can be matched (Célérier, 2000; Tomita, 2001;

Iguchi et al. , 2002; Ellis, 2008) by a non-homogeneous spacetime of the

Lemâıtre-Tolman-Bondi (LTB) family, i.e. a spherically symmetric solution

of Einstein equations sourced by pressureless matter and no cosmological

constant.

The geometry of a LTB spacetime (Lemâıtre, 1933; Tolman, 1934; Bondi,

1947) is described by the metric

ds2 = −dt2 + S2(r, t)dr2 +R2(r, t)dΩ2

where S(r, t) = R′/
√

1 + 2E(r) and Ṙ2 = 2M(r)/R(r, t) + 2E(r), using a

dot and prime to refer to derivatives with respect to t and r respectively.
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The Einstein equations can be solved parametrically as

{R(r, η), t(r, η)} =

{

M(r)

E(r)
Φ′(η), T0(r) +

M(r)

[E(r)]3/2
Φ(η)

}

(1.48)

where Φ is defined by Φ(η) =
(

sinh η − η, η3/6, η − sin η
)

, and E(r) = (2E,

2,−2E) according to whether E is positive, null or negative.

This solution depends on 3 arbitrary functions of r only, E(r), M(r)

and T0(r). Their choice determines the model completely. For instance

(E,M,T0) = (−K0r
2,M0r

3, 0) corresponds to a Robertson-Walker space-

time. One can further use the freedom in the choice of the radial coordinate

to fix one of the three functions at will so that one effectively has only 2

arbitrary independent functions.

Let us sketch the reconstruction and use r as the integration coordi-

nate, instead of z. Our past light-cone is defined as t = t̂(r) and we set

R(r) ≡ R[t̂(r), r]. The time derivative of R is given by Ṙ[t̂(r), r] ≡ R1 =
√

2M0r3/R(r) + 2E(r). Then we get R′[t̂(r), r] ≡ R2(r) = −[R(r)−3(t̂(r)−
T0(r))R1(r)/2]E

′/E −R1(r)T
′
0(r) + R(r)/r. Finally, more algebra leads to

Ṙ′[t̂(r), r] ≡ R3(r) = [R1(r) − 3M0r
3(t̂(r) − T0(r))/R2(r)]E′(r)/2E(r) +

M0r
3T ′

0(r)/R2 + R1(r)/r. Thus, Ṙ, R′ and Ṙ′ evaluated on the light cone

are just functions of R(r), E(r), T0(r) and their first derivatives. Now, the

null geodesic equation gives that

dt̂

dr
= − R2(r)

√

1 + 2E(r)
,

dz

dr
=

1 + z
√

1 + 2E(r)
R3(r),

and

dR
dr

=

[

1 − R1(r)
√

1 + 2E(r)

]

R2(r).

These are 3 first order differential equations relating 5 functions R(r), t̂(r),

z(r) E(r) and T0(r). To reconstruct the free functions we thus need 2 ob-

servational relations. The reconstruction from background data alone is

under-determined and one must fix one function by hand. The angular

distance-redshift relation, R(z) = DA(z), is the obvious choice. This ex-

plains why the magnitude-redshift relation can be matched (Célérier, 2000;

Tomita, 2001; Iguchi et al. , 2002) by a LTB geometry? Indeed the geometry

is not fully reconstructed.

It follows that many issues are left open. First, can we use more obser-

vational data to close the reconstruction of the LTB geometry. Indeed the

knowledge of the growth rate of the large scale structure could be used, as for

the reconstruction of the two arbitrary functions of a scalar-tensor theory
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but no full investigation of the perturbation theory around a LTB space-

time has been performed (Zibin, 2008; Dunsby and Uzan, 2009). Second,

can we construct the model-independent test of the Copernican principle

avoiding the necessity to restrict to a given geometry since we may have to

consider more complex spacetimes that the LTB one. Third, we would have

to understand how these models reproduce the predictions of the standard

cosmological model on large scales and at early times, e.g. how are the cos-

mic microwave background anisotropies and the big-bang nucleosynthesis

dependent on these spacetime structures.

1.2.5 Conclusions

This section has investigated two different ways to modify our reference

cosmological model by either extending the description of the laws of nature

or by extending the complexity of the geometry of our spacetime by relaxing

the Copernican principle.

Whatever the choice, we see that many possibilities are left open. All of

them introduce new degrees of freedom, either as physical fields or new geo-

metrical freedom, and free functions. They also contain the standard ΛCDM

as a continuous limit (e.g. the potential can become flat, the arbitrary func-

tions of a LTB can reduce to their FLRW form etc.) These extensions are

thus almost non-excludable by cosmological observations alone and as we

have seen, they can reduce to pure descriptions of the data. Again, we must

be guided by some principles.

The advantages of the model-dependent approaches is that we know whe-

ther we are dealing with well-defined theories or spacetime structures. All

cosmological observables can be consistently computed so that these models

can be safely compared to observations to quantify how close from a pure

ΛCDM the model of our Universe should be. They can also forecast the

ability of coming surveys to constrain them.

The drawback is that we cannot test all the possibilities which are too

numerous. An alternative is to design parameterizations which have the

advantage, we hope, to encompass many models. The problem is then the

physical interpretation of the new parameters that are measured from the

observations.

Another route, that we shall now investigate, is to design null tests of the

ΛCDM model in order to indicate what kind of modifications, if any, are

required by the observations.
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1.3 Testing the underlying hypotheses

Let us first clarify what we mean by a null test. Once the physical theory

and the properties of its cosmological solution have been fixed, there exist

rigidities between different observable quantities. They reflect the set of

assumptions of our reference cosmological models. By testing these rigidities

we can strengthen our confidence in the principles on which our model lies.

In case we can prove that some of them are violated, it will just give us a

hint in the way to extend our cosmological model and on which principle

has to be questioned.

Let us take a few examples that will be developed below.

• The equation of state of the dark energy must be wde = −1 and constant

in time.

• The luminosity and angular distances must be related by the distance

duality relation stating that DL(z) = (1 + z)2DA(z).

• On sub-Hubble scales, the gravitational potential and the perturbation

of the matter energy density must be related by the Poisson equation,

∆Φ = 4πGρma
2δm, which derives from the Einstein equation in the weak

field limit.

• On sub-Hubble scales, the background dynamics and the growth of struc-

ture are not independent.

• The constants of nature must be strictly constant.

These rigidities are related to different hypotheses, such as the validity of

general relativity or Maxwell theory. We shall now describe them and see

how they can be implemented with cosmological data.

1.3.1 Testing the Copernican principle

The main difficulty in testing the Copernican principle, as discussed in

§ 1.2.4, lies in the fact that all observations are located on our past light-

cone and that many four-dimensional spacetimes may be compatible with

the same three-dimensional light-like slice (Ellis, 1975).

Recently, it was realized that cosmological observations may however pro-

vide a test of the Copernican principle (Uzan et al. , 2008b). This test ex-

ploits the time drift of the redshift that occurs in any expanding spacetime,

as first pointed out in the particular case of Robertson-Walker spacetimes

for which it takes the form (Sandage, 1962; McVittie, 1962)

ż = (1 + z)H0 −H(z) . (1.49)

Such an observation gives informations on the dynamics outside the past
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light-cone since it compares the redshift of a given source at two times and

thus on two infinitely close past light-cones (see Fig. 1.3-right). It follows

that it contains an information about the spacetime structure along the

worldlines of the observed sources that must be compatible with the one

derived from the data along the past light-cone.

For instance, in a spherically symmetric spacetime, the expression (1.49)

depends on the shear, σ(z), of the congruence of the wordlines of the co-

moving observers evaluated along our past light-cone,

ż = (1 + z)H0 −H(z) − 1√
3
σ(z) .

It follows that, when combined with other distance data, it allows to de-

termine the shear on our past light-cone and we can check whether it is

compatible with zero, as expected for any Robertson-Walker spacetime.

In a RW universe, we can go further and determine a consistency rela-

tion between several observables. From the metric (1.1), one deduces that

H−1(z) = D′(z)
[

1 + ΩK0H
2
0D

2(z)
]−1/2

, where a prime stands for ∂z and

D(z) = DL(z)/(1 + z); this relation being independent of the Friedmann

equations. It follows that in any Robertson-Walker spacetime the consis-

tency relation,

1 + ΩK0H
2
0

(

DL(z)

1 + z

)2

− [H0(1 + z) − ż(z)]2
[

d

dz

(

DL(z)

1 + z

)]2

= 0,

between observables must hold whatever the matter content and the field

equations, since it derives from pure kinematical relations that do not rely on

the dynamics (a similar analysis is provided in Clarkson et al. , 2008). The

measurement of ż(z) will also allow (Uzan et al. , 2008b) to close the recon-

struction of the local geometry of such an under-dense region (as discussed

in § 1.2.4).

ż(z) has a typical amplitude of order δz ∼ −5 × 10−10 on a time scale of

δt = 10 yr, for a source at redshift z = 4. This measurement is challenging,

and impossible with present-day facilities. However, it was recently revisited

in the context of Extremely Large Telescopes (ELT), arguing they could

measure velocity shifts of order δv ∼ 1 − 10 cm/s over a 10 years period

from the observation of the Lyman-α forest. It is one of the science drivers

in design of the CODEX spectrograph (Pasquini et al. , 2005) for the future

European ELT. Indeed, many effects, such as proper motion of the sources,

local gravitational potential, or acceleration of the Sun may contribute to

the time drift of the redshift. It was shown (Liske et al. , 2008; Uzan et al. ,
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Fig. 1.4. Constraints on the time variation of the fine structure constant α from
the observations of quasar absorption spectra.

2008), however, that these contributions can be brought to a 0.1% level so

that the cosmological redshift is actually measured.

Let us also stress that another idea was also recently proposed (Goodman,

1995; Caldwell and Stebbins, 2008). It is based on the distortion of the

Planck spectrum of the cosmic microwave background.

1.3.2 Testing General relativity on astrophysical scales

1.3.2.1 Test of local position invariance

The local position invariance is one aspect of the Einstein equivalence prin-

ciple which is at the basis of the hypothesis of metric coupling. It implies

that all constants of nature must be strictly constant. The indication that

the numerical value of any constant has drifted during the cosmological evo-

lution would be a sign in favor of models of the classes C and D.

The test of the constancy of the fundamental constants has seen a very

intense activity in the past decade. In particular the observations from

quasar absorption spectra have relaunched a debate on the possible variation

of the fine structure constant. Recently it was also argued (Coc et al. , 2007)

that a time variation of the Yukawa couplings may allow to solve the lithium-

7 problem that, at the moment, has no other physical explanation.
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Constraints can be obtained from many physical systems such as atomic

clocks (z = 0), the Oklo phenomenon (z ∼ 0.14), the lifetime of unstable

nuclei and meteorite data (z ∼ 0.2), quasar absorption spectra (z = 0.2−3),

cosmic microwave background (z ∼ 103) and primordial nucleosynthesis

(z ∼ 108). The time variation of fundamental constants is also deeply related

to the universality of free fall. We refer to Uzan (2003) and (2004) for

extensive reviews on the methods and the constraints, which are summarized

on Figure 1.4.

In conclusion, we have no compelling evidence for any time variation of a

constant, which sets strong constraints on the couplings between the dark

energy degrees of freedom and ordinary matter. We can conclude the local

position invariance holds in our observable universe and that metric cou-

plings are favored.

1.3.2.2 Test of the Poisson equation

Extracting constraints on deviations from GR is difficult because large scale

structures entangle the properties of matter and gravity. On sub-Hubble

scales, one can, however, construct tests reproducing those in the Solar

system. For instance, light deflection is a test of GR because we can measure

independently the deflection angle and the mass of the Sun.

On sub-Hubble scales, relevant for the study of the large-scale structure,

the Einstein equations reduce to the Poisson equation

∆Ψ = 4πGρma
2δm =

3

2
ΩmH

2a2δm, (1.50)

relating the gravitational potential and the matter density contrast.

As first pointed out by Uzan and Bernardeau (2001), this relation can

be tested on astrophysical scales, since the gravitational potential and the

matter density perturbation can be measured independently from the use of

cosmic shear measurements and galaxy catalogs. The test was recently im-

plemented with the CFHTLS-weak lensing data and the SDSS data to con-

clude that the Poisson equation holds observationally to about 10 Mpc (Doré

et al. , 2007).

As an example, Fig. 1.5 depicts the expected modifications of the matter

power spectrum and of the gravitational potential power spectrum in the

case of a theory in which gravity switches from a standard four-dimensional

gravity to a DGP-like five-dimensional gravity above a crossover scale of

rs = 50h−1 Mpc. Since gravity becomes weaker on large scales, density

fluctuations stop growing, exactly as when the cosmological constant starts

dominating. It implies that the density contrast power spectrum differs
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Fig. 1.5. In a theory in which gravity switches from a standard four-dimensional
gravity to a DGP-like five-dimensional gravity above a crossover scale of rs =
50h−1 Mpc, there are different cosmological implications concerning the growth of
cosmological perturbations. Since gravity becomes weaker on large scales, fluctua-
tions stop growing. It implies that the density contrast power spectrum (thick line)
differs from the standard one (thin line) but, more important, from the gravitational
potential power spectrum (dash line). From Uzan and Bernardeau (2001).

from the standard one but, more important, from the gravitational potential

power spectrum.

Let us emphasize that, the deviation from the standard behavior of the

matter power spectrum is model dependent (it depends in particular on the

cosmological parameters), but that the discrepancy between the matter and

gravitational potential Laplacian power spectra is a direct signature of a

modification of general relativity.

The main limitation in the applicability of this test is due to the biasing

mechanisms (i.e. the fact that galaxies do not necessarily trace faithfully

the matter field) even if it is thought to have no significant scale dependence

at such scales.

1.3.2.3 Toward a post-ΛCDM formalism

The former test of the Poisson equation exploits one rigidity of the field

equations on sub-Hubble scales. It can be improved by considering the full

set of equations.

Assuming that the metric of spacetime takes the form

ds2 = −(1 + 2Φ)dt2 + (1 − 2Ψ)a2γijdx
idxj (1.51)

on sub-Hubble scales, the equation of evolution reduces to the continuity
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equation

δ′m + θm = 0, (1.52)

where θ is the divergence of the velocity perturbation and a prime denotes

a derivative with respect to the conformal time, the Euler equation

θ′m + Hθm = −∆Φ, (1.53)

where H is the comoving Hubble parameter,the Poisson equation (1.50) and

Φ = Ψ. (1.54)

These equations imply many relation between the cosmological observ-

ables. For instance, decomposing δm as D(t)ǫ(x) where ǫ encodes the initial

conditions, the growth rate D(t) evolves as

D̈ + 2HḊ − 4πGρmD = 0.

This equation can be rewritten in terms of p = lna as time variable (Peter

and Uzan, 2005) and considered not as a second order equation for D(t) but

as a first order equation for H2(a)

(H2)′ + 2

(

3

a
+
D′′

D′

)

H2 = 3
Ωm0H

2
0D

a2D′

where a prime denotes a derivative with respect to p. It can be integrated

as (Chiba and Nakamura, 2007)

H2(z)

H2
0

= 3Ωm0

(

1 + z

D′(z)

)2 ∫ D

1 + z
(−D′)dz. (1.55)

This exhibits a rigidity between the growth function and the Hubble param-

eter. In particular the Hubble parameter determined from background data

and from perturbation data using Eq. (1.55) must agree. This was used in

the analysis of Wang et al. (2007).

Another relation exist between θm and δm. The Euler equation implies

that

θm = −β(Ωm0,ΩΛ0)δm, (1.56)

with

β(Ωm0,ΩΛ0) ≡
d lnD(a)

d ln a
. (1.57)

We conclude that the perturbation variables are not independent and the
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relation between them are inherited from some assumptions on the dark

energy. Phenomenologically, we can generalize Eqs. (1.52-1.54) to

δ′m + θm = 0, (1.58)

θ′m + Hθm = −∆Φ + Sde, (1.59)

−k2Φ = 4πGF (k,H)δm + ∆de, (1.60)

∆(Φ − Ψ) = πde. (1.61)

We assume that there is no production of baryonic matter so that the con-

tinuity equation is left unchanged. Sde describes the interaction between

dark energy and standard matter. ∆de characterizes the clustering of dark

energy, F accounts for a scale dependence of the gravitational interaction

and πde is an effective anisotropic stress. It is clear that the ΛCDM corre-

sponds to (F, πde,∆de, Sde) = (1, 0, 0, 0). The expression of (F, πde,∆de, Sde)

for quintessence, scalar-tensor, f(R) and DGP models and more generally

for models of the classes A-D can be found in Uzan (2007).

From an observational point of view, weak lensing survey gives access to

Φ+Ψ, galaxy maps allow to reconstruct δg = bδm where b is the bias, velocity

fields give access to θ. In a ΛCDM, the correlations between these observable

are not independent since, for instance 〈δgδg〉 = b2〈δ2m〉, 〈δgθm〉 = −bβ〈δ2m〉
and 〈δgκ〉 = 8πGρma

2b〈δ2m〉.
Various ways of combining these observables have been proposed, con-

struction of efficient estimators and forecast for possible future space mission

designed to make these tests as well as the possible limitations (arising e.g.

from non-linear bias, the effect of massive neutrinos or the dependence on

the initial conditions) are now being extensively studied (Zhang et al. , 2007;

Jain and Zhang, 2007; Amendola et al. , 2008; Song and Koyama, 2008).

To finish let us also mention that the analysis of the weakly non-linear dy-

namics allows to develop complementary tests of the Poisson equation (Ber-

nardeau, 2004) but no full investigation in the framework presented here has

been performed yet.

1.3.3 Other possible tests

1.3.3.1 Distance duality

As long as photons travel along null geodesics and the geodesic deviation

equation holds, the source angular distance, rs, and the observer area dis-

tance, ro, must be related by the reciprocity relation (Ellis, 1971), r2s =

r2o(1 + z)2 regardless of the metric and matter content of the spacetime.

Indeed, the solid angle from the source cannot be measured so that rs
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is not an observable quantity. But, it can be shown that, if the number of

photons is conserved, the source angular distance is related to the luminosity

distance, DL, by the relation DL = rs(1 + z). It follows that there exist a

distance duality relation between the luminosity and angular distances,

DL = DA(1 + z)2. (1.62)

This distance duality relation must hold if the reciprocity relation is valid

and if the number of photons is conserved. In fact, one can show that in

a metric theory of gravitation, if Maxwell equations are valid, then both

the reciprocity relation and the area law are satisfied and so is the distance

duality relation.

There are many possibilities for one of these conditions to be violated.

For instance the non-conservation of the number of photons can arise from

absorption by dust, but more exotic models involving photon-axion oscilla-

tion in an external magnetic field (Csaki et al. , 2002; Deffayet et al. , 2002)

(class B) can also be a source of violation. More drastic violations would

arise from theories in which gravity is not described by a metric theory and

in which photons do not follow null geodesic.

A test of this distance duality relies on the X-ray observations and Sunyaev-

Zel’dovich (SZ) effect of galaxy clusters (Uzan et al. , 2004).

Galaxy clusters are known as the largest gravitationally bound systems in

the universe. They contain large quantities of hot and ionized gas which tem-

peratures are typically 107−8 K. The spectral properties of intra-cluster gas

show that it radiates through bremsstrahlung in the X-ray domain. There-

fore, this gas can modify the cosmic microwave background spectral energy

distribution through inverse Compton interaction of photons with free elec-

trons. This is the so-called SZ effect. It induces a decrement in the cosmic

microwave background brightness at low frequencies and an increment at

high frequencies.

In brief, the method is based on the fact that the cosmic microwave back-

ground temperature (i.e. brightness) decrement due to the SZ effect is given

by ∆TSZ ∼ LneTe where the bar refers to an average over the line of sight

and L is the typical size of the line of sight in the cluster. Te is the electron

temperature and ne the electron density. Besides, the total X-ray surface

brightness is given by SX ∼ V
4πD2

L

nenpT
1/2
e where the volume V of the clus-

ter is given in terms of its angular diameter by V = D2
Aθ

2L. It follows

that

SX ∼ θ2

4π

D2
A

D2
L

LnenpT
1/2
e . (1.63)
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Fig. 1.6. Test of distance duality. The constraint of η defined in Eq. (1.64) at
different redshift are obtained by combining SZ and X-ray measurements from 18
clusters. No sign of violation of the distance duality relation is seen. From Uzan et
al. (2004).

The usual approach is to assume the distance duality relation so that forming

the ratio ∆T 2
SZ/SX eliminates ne.

We can however use these observation to measure

η(z) =
DL(z)

(1 + z)2DA(z)
(1.64)

and thus test whether η = 1. Fig. 1.6 summarizes the constraints that have

been obtained from the analysis of 18 clusters. No sign of violation of the

distance duality relation is seen, contrary to an early claim by Bassett and

Kunz (2004).

1.3.3.2 Gravity waves

In models involving two metrics, gravitons and standard matter are coupled

to different metrics. It follows that the propagation of gravity waves and

light may be different. As a consequence the arrival times of gravity wave

and light should not be equal.

An estimation (Kahya and Woodard, 2007) in the case of the TeVeS theory

for the supernovae 1987A indicates that light shall arrive days before the

gravity waves, which should be easily detectable.

We also emphasize that models in which gravity waves propagate slower

than electromagnetic waves are also very constrained by the observations of

cosmic rays (Moore and Nelson, 2001) because particles propagating faster

than the gravity waves emit gravi-Cerenkov radiation.
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These two examples highlight that the cosmological tests of general rela-

tivity do not reduce to the study of the large scale structures.

1.3.3.3 A word on topology

The debate concerning the topology of our Universe is the continuation of

the historically long discussed question on whether our Universe is finite or

infinite.

The hypothesis on the global topology does no influence local physics and

let most of the theoretical and observational conclusions unchanged. Local

geometry has however a deep impact since it sets the topologies that are ac-

ceptable. In our cosmological model, the Copernican principle implies that

we are dealing with 3-dimensional spaces of constant curvature. Besides, al-

most spatial flatness limits those topologies that would be detectable (Weeks

et al. , 2003).

A non-trivial topology would violate global isotropy and let signatures

mainly on the statistical isotropy of the cosmic microwave background ani-

sotropies (Gaussman et al. , 2001; Luminet et al. , 2003, Riazuelo et al. ,

2004; Riazuelo et al. , 2004b; Uzan et al. , 2004). The current constraints

imply (Shapiro et al. , 2007) that the size of the Universe has to be larger

than 0.91 times the diameter of the last scattering surface, that is 24 Gpc.

Even though the cosmological constant can be related to a characteristic

size of the order of Λ−1/2 ∼ H−1
0 , no mechanism relating the size of the

Universe and the cosmological constant has been constructed (Calder and

Lahav (2008) however suggests a possible relation to the Mach principle).

1.4 Conclusion

The acceleration of the cosmic expansion and the understanding of its origin

drives us to reconsider the construction of our reference cosmological models.

Three possibilities seem open to us.

• Stick to the ΛCDM. The model is well-defined, does not require to ex-

tend the low-energy version of the law of nature, and is compatible with

all existing data. However, in order to make sense of the cosmological

constant and avoid the cosmological constant problem one needs to in-

voke a very large structure (Weinberg, 1989; Garriga and Vilenkin, 2004;

Carr and Ellis, 2008), the multiverse, a collection of universes in which

the value of the cosmological constant, as well as those of other physical

constants, are randomized in different regions. Such a structure, while ad-

vocated on the basis of the string landscape (Suskind, 2006), has no clear



1.4 Conclusion 41

mathematical definition (Ellis et al. , 2004) but it aims at suppressing the

contingence of our physical models (such as their symmetry groups, value

of constants,. . . that, by construction, cannot be explained by these mod-

els) at the price of an anthropic approach which may appear as half-way

between pure anthropocentrism, fixing us at the center of the universe,

and the cosmological principle, stating that no place can be favored in

any way.

In such a situation, it is clear that the Copernican principle holds on the

size of the observable universe and even much beyond. However on the

scales of the multiverse, it has to be abandoned since, according to this

view, we can only live in regions of the multiverse where the value of the

cosmological constant is small enough for observers to exist (see Fig. 1.7).

The alternative would be to better understand the computation of the

energy density of the vacuum.

• Assume Λ = 0 and then

– Assume no new physics. In such a case, we must abandon the Coper-

nican principle on the size of the observable universe. This leads us

to consider more involved solutions of known and established physical

theories. Indeed, the main objection would be to understand why we

shall live in such a particular place.

Note however that the Copernican principle can be restored on much

larger scales (i.e. super-Hubble but without the need to invoke a struc-

ture like the multiverse). On these scales, one can argue that there

shall exist a distribution of over- and under-dense regions of all sizes

and density profiles. In this sense, we are just living in one of them, in

the same sense that stars are more likely to be in galaxies (see Fig. 1.7)

and the Copernican principle seems to be violated on Hubble scales,

just because we live in such a structure which happens to have a size

comparable to the one of the observable universe.

– Invoke new physics. This an be achieved in numerous ways. The main

constraint is to construct a well-defined theory. In such a case the

Copernican principle can hold both on the size of the observable uni-

verse but also on much larger scales.

At the moment, none of these three possibilities is satisfactory, mainly be-

cause it forces us to speculate on scales much beyond those of the observable

universe. A last possibility, that was alluded to in § 1.2.2.1, is the possibil-

ity that the acceleration is induced by the backreaction of the large scale

structures but this still needs in depth investigation. We have argued that

future cosmological observations can shed some light on the way to modify
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our reference cosmological model and extend the tests of the fundamental

laws of physics, such as general relativity, as well as some extra-hypotheses

such as the Copernican principle and the topology of space. In this sense, we

follow the most standard physical approach in which any null test that can

be done must be done in order to extend our understanding of the domain

of validity of the description of the physical laws we are using.

From an observational point of view, demonstrating a violation of the

Copernican principle on the size of the observable universe will indicate

that the second solution is the most likely, but nothing forces us to accept

the associated larger spacetime described in Fig. 1.7. If any of the tests

presented here, or other to be designed, is positive then we will have an

indication that the dark energy is not the cosmological constant and on the

kind of extension required. The question of why the cosmological constant

strictly vanishes will still have to be understood, either from physical ground

or by invoking a multiverse-like structure. If all the tests are negative,

whatever the precision of the observation, then the ΛCDM will remain a

cosmological model on which we will have no handle.

Constructing a cosmological model which will make sense both from phy-

sics and the observations still require a lot of work. Many models can save

the phenomena but none are based on firm physical grounds. The fact that

we have to invoke structures on scales much larger than those than can

be probed to make sense of the acceleration of the cosmic expansion may

indicate that we may be reaching a limit of what physical cosmology can

explain.
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Fig. 1.7. On the scales of the observable universe (circle), the acceleration of the
universe can be explained by a cosmological constant (or more generally a dark
energy component) in which case the construction of the cosmological model relies
on the Copernican principle (upper-left). To make sense of a cosmological constant,
one introduces a large structure known as the multiverse (upper-right) which can
be seen as a collection of universes of all sizes and in which the values of the
cosmological constant, as well as other constants, are randomized. The anthropic
principle then states that we observe only those universes where the value of these
constants are such that observers can exist. In this sense we have to abandon the
Copernican principle on the scales of the multiverse. An alternative is to assume
that there is no need for a cosmological constant or new physics, in which case we
have to abandon the Copernican principle and assume e.g. that we are living in an
under-dense region (lower-left). However, we may recover the Copernican principle
on larger scales if there exist a distribution of over- and under-dense regions of all
sizes and densities on super-Hubble scales, without the need for a multiverse. In
such a view, the Copernican principle will be violated on Hubble scale, just because
we live in such a structure which happens to have a size comparable to the one of
the observable universe.
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de Platon à Galilée (Vrin, Paris); translated as Sozein ta phainomena: an
essay on the idea of physical theory from Plato ti Galileo (Univ. of Chicago
Press).

Duhem, P. (1913-1917). Le Système du Monde - Histoire des doctrines cos-
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