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Yes, the Sun is located near the corotation circle
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Abstract. The total component velocity field of Cepheids was
analysed in terms of a disk galaxy model perturbed by spiral
density waves. The main result is: the Sun is situated very close
to the corotation resonance where the rotation velocities of the
disk and of the spiral pattern coincide. The displacement∆R
of the Sun from the corotation circle is:∆R ≈ 0.1 kpc.
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1. Introduction

The corotation circle is the circle in a spiral galaxy were the
rotation velocity of the galactic disc coincides with that of the
spiral pattern (Lin, Yuan & Shu, 1969, hereafter LYS). The ques-
tion where it is located is not yet solved. LYS suggest that the
corotation is situated at the very end of the Galaxy. Marochnik,
Mishurov & Suchkov (1972, hereafter MMS) proposed a model
in which it lies close to the Sun circle. Independently of MMS,
Creze & Mennessier (1973, hereafter CM) analysing the stellar
kinematics came to the same conclusion.

In the past years, numerous papers were written to solve this
problem. Some of them (Yuan, 1969; Burton, 1971; Lin et al.
1978; Comeron & Torra, 1990 etc) support the model of Lin
and his collaborators. However, other investigations (Nelson &
Matsuda, 1977; Mishurov et al. 1979, 1997; Fridman et al. 1994
etc) lead to the result of MMS and CM.

In our previous paper (Mishurov et al. 1997, hereafter Paper
1), we considered this task using the statistical method of stellar
motion analysis proposed by CM and the new line-of-sight ve-
locities of the classical Cepheids measured by Pont et al (1994)
and Gorynya et al (1992, 1996).

It is well known that it is impossible to determine the galactic
rotation velocity at the solar circle using only the line-of-sight
velocities. Therefore in order to derive the value of the corotation
radius in Paper 1, we had to adopt the value of galactic rotation
velocity to be equal to the standard one (Kerr & Lynden-Bell,
1986).

The new precise stellar proper motions in the extended solar
neighbourhood obtained from HIPPARCOS enable us to self-
consistently determine all the basic parameters required to solve

the problem under consideration and to answer the question for-
mulated in the title of Paper 1.

2. Statistical method of estimating the parameters

Taking into account the gravitational field of the spiral galac-
tic density waves (GDW) the radial (along the galactocentric
radius) and the azimuthal components of the systematic veloc-
ities of any star can be represented asṽR andΩR + ṽϑ, where
Ω is the rotation angular velocity of the disk,ṽR andṽϑ are per-
turbations under the GDW,R is the galactocentric distance of
the star. Following CM, the line-of-sight velocity of the star (vr)
relative to the Sun and the relative transversal velocity along the
galactic longitude (vl) can be written as:

vr = {[−2A + 0.5R�Ω′′
�(R − R�)](R − R�) sin(l)

+ṽϑ sin(l + ϑ) − ṽR cos(l + ϑ)
+u� cos(l) − v� sin(l)} cos(b) − w� sin(b), (1)

vl = −Ω�r cos(b) + [−2A + 0.5R�Ω′′
�(R − R�)]

×(R − R�) cos(l) + ṽϑ cos(l + ϑ) + ṽR sin(l + ϑ)
−u� sin(l) − v� cos(l), (2)

whereΩ� is the rotation velocity of the Galaxy at the Sun
distance (hereafter the subscript “�” denotes the values corre-
sponding to the solar coordinates),A = −0.5R�Ω′

� is Oort’s
A-constant (the prime denotes a derivative with respect toR),
R, ϑ, z is the cylindrical coordinate system with the origin at the
Galactic center, the z-axis being directed along the axis of the
Galactic rotation andϑ� = 0, l andb are the galactic longitude
and latitude of the star,r is the distance from the Sun,u�, v�
andw� are the components of the solar peculiar velocity.

Up to now, we did not define concretely the nature of per-
turbations and the analytical representation ofṽR andṽϑ. If one
adopts the formalism of the linear density wave theory for spi-
ral arms, the following expressions may be written according to
LYS:

ṽR = fR cos(χ) ; ṽϑ = fϑ sin(χ) , (3)

wherefR andfϑ are the amplitudes of perturbed velocities,

χ = m
[
cot(i) ln(R/R�) − ϑ

]
+ χ� (4)
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the wave phase,m the number of arms (m > 0), andi the pitch
angle (for trailing armsi < 0). χ� is the wave phase at the Sun
position (the “Sun phase”).

For tightly wound spirals (|i | � 1), fR, fϑ andi are slowly-
varying functions ofR compared toχ, and we can consider them
to be constants.

In the following, the problem breaks into two steps. In the
first step by means of statistical analysis of the observed stel-
lar velocity field, one can derive 9 parameters of the model:
Ω�, A, R�Ω′′

�, fR, fϑ, i , χ�, u� andv� (w� cannot be accu-
rately obtained over the distant stars. We adopted the standard
value 7 km s−1, CM; Pont et al. 1994). At the second step us-
ing the results of the density wave theory (LYS), we compute
the dimensionless wave frequencyν, the difference∆Ω be-
tween the angular rotation velocity of the spiral patternΩp and
Ω� (∆Ω = Ωp − Ω�) and by equatingΩ(Rc) = Ωp the dis-
placement∆R of the Sun relative to the corotation radiusRc
(∆R = R�− Rc; see details in Paper 1 and below).

To solve the statistical part of the task, the weighted least
squares method was used (Draper & Smith, 1981; Lewis, 1990).
The unknown quantities can be found by minimization of the
residualδ2, where:

δ2 =
1

Nr + Nl − p

{
Nr∑

(v̂r − v̂o
r)2 + β2

Nl∑
(v̂l − v̂o

l )2
}

.

(5)

Here v̂r,l and v̂o
r,l are weighted values of theoretical and ob-

served velocity components, the weights being adopted in-
versely proportionally to the individual errors of measured ve-
locities εvr

, εvl
, i.e. v̂r,l = vr,l /εvr,l

, v̂o
r,l = vo

r,l /εvr,l
;

β = σr /σl , σr,l are dispersions of the weighted velocity com-
ponents,Nr,l are the numbers of data on line-of-sight velocities
and proper motions,p is the number of parameters to be derived.

Becauseσr andσl are not hitherto known, the parameter
β in Eq. (5) is unknown as well. So, the procedure to search
a minimum ofδ2 is somewhat changed in comparison with
that of Paper 1. Let us consider it briefly. As one can see from
Eqs. (1–4), four parameters (fR, fϑ, i andχ�) enter nonlinearly.
However, if two of them (i andχ�) are fixed, then for givenβ
over the other 7 parametersδ2 is linear, and these 7 quantities
can be found by means of standard least squares. Hence the
strategy of search for the minimum ofδ2 is as follows. For fixed
β and any giveni andχ�, we findmin δ2 overΩ�, A, R�Ω′′

�,
fR, fϑ, u� andv�. Then for this fixed value ofβ, we construct
the surfacemin δ2 as a function of two arguments (i , χ�) and
look for ( io, χo

�) corresponding to the global minimum ofδ2.
For this minimum, we calculateσr andσl and derive the new
value forβ (see also Lewis, 1990). Further, for newβ we again
construct the surfacemin δ2 as a function ofi andχ�, look
for the global minimum and so on. The procedure is repeated
until the values ofβ converge.

The described procedure enables one to see the topogra-
phy of the surfacemin δ2, and this increases the relability of
calculations.

Fig. 1. The surface− min δ2 versus pitch anglei and Sun phaseχ�
(for data of run 3).

After the global minimum ofδ2 is localised the values of all
10 parameters are defined more exactly by an iterative procedure
(Draper & Smith, 1981).

3. Observational data

The classical Cepheids are the most convenient objects for our
aims. Because of high luminosities they, are seen at large dis-
tances from the Sun, comparable with the interarm distance, and
have the most accurate distance scale. This is why the Cepheids
attract our attention.

As observational material, we used the line-of-sight veloc-
ities from Pont et al (1994), Gorynya et al (1996), Caldwell &
Coulson (1987), the proper motions from Hipparcos catalogue
(ESA, 1997) and the distances according to Berdnikov & Efre-
mov (1985; see also Dambis et al. 1995). As in Paper 1, we also
adopt the limitations on thez-coordinate of a star|z| ≤ 0.5 kpc
(Pont et al. 1994; Lewis 1990) and period pulsationP < 9d.
The binary systems and stars with proper motions more than
200 km s−1 were excluded from our sample as well. In all sam-
ples, there are 131 values forvr and 117 forvl. Stars mainly
appear to be situated in the regionr ≤ 4 kpc (10 stars are at
distances between4 kpc and5 kpc).

R� ≈ 7.5 ± 1 kpc was used as a standard (Nikiforov &
Petrovskaya, 1994). The results change slightly with variation
of R�.
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Table 1. The parameters and their errors (the bottom lines) derived by means of statistical analysis.

No rm m number Ω� A R�Ω′′
� u� v� |i | χ� fR fϑ β min δ2

run kpc of data ( km
s kpc

) ( km
s kpc

) ( km
s kpc2

) ( km
s

) ( km
s

) (◦) (◦) ( km
s

) ( km
s

)
vr/vl

1 1. 2 126/20 27.0 21.0 15.3 −12.2 15.7 6.8 317. 5.0 −9.1 2.42 168.
±5.4 ±1.2 ±2.7 ±1.5 ±1.5 6.2 ÷ 7.6 ±8. ±1.9 ±2.0

2 1.5 2 126/38 27.0 20.2 13.4 −11.0 15.1 6.2 319. 3.6 −8.8 3.89 176.
±2.8 ±1.2 ±2.6 ±1.4 ±1.4 5.6 ÷ 6.9 ±8. ±1.8 ±1.9

3 2. 2 128/63 27.2 18.8 10.8 −7.8 13.6 6.0 322. 3.3 −7.9 6.58 227.
±1.7 ±1.3 ±2.8 ±1.3 ±1.4 5.3 ÷ 6.8 ±9. ±1.6 ±2.0

4 2.5 2 128/74 27.3 18.5 10.6 −7.8 13.3 5.8 321. 3.0 −7.7 7.04 229.
±1.5 ±1.2 ±2.7 ±1.3 ±1.3 5.2 ÷ 6.6 ±9. ±1.6 ±2.0

5 3. 2 128/85 27.7 18.3 10.6 −7.8 13.1 5.7 321. 2.8 −7.4 7.30 233.
±1.4 ±1.2 ±2.7 ±1.3 ±1.3 5.1 ÷ 6.5 ±9. ±1.6 ±1.9

6 3.5 2 128/90 27.7 18.3 10.5 −7.8 13.1 5.7 321. 2.8 −7.4 7.46 229.
±1.4 ±1.2 ±2.6 ±1.2 ±1.3 5.1 ÷ 6.4 ±9. ±1.6 ±1.9

7 2. pure 128/63 27.9 17.3 6.9 −9.0 11.6 − − − − 7.38 260.
rotation ±1.7 ±0.8 ±1.8 ±1.2 ±1.1

8 2. 4 128/63 27.3 19.0 10.5 −8.2 12.8 11.4 340. 3.5 −7.5 6.67 221.
±1.7 ±1.2 ±2.5 ±1.3 ±1.2 9.3 ÷ 14.7 ±9. ±1.7 ±1.8

Table 2.The correlation matrix

A R�Ω′′
� fR fϑ cot i χ� Ω� R�

A 1.00 .82 −.12 −.60 .67 .17 .17 .00
R�Ω′′

� .82 1.00 −.09 −.59 .66 .00 .06 .00
fR −.12 −.09 1.00 .07 .17 .17 −.16 .00
fϑ −.60 −.59 .07 1.00 −.33 −.18 .06 .00
cot i .67 .66 .17 −.33 1.00 .18 −.07 .00
χ� .17 .00 .17 −.18 .18 1.00 −.17 .00
Ω� .17 .06 −.16 .06 −.07 −.17 1.00 .00
R� .00 .00 .00 .00 .00 .00 .00 1.00

4. Results

Let us first suppose that the Galaxy has a two-armed pattern
(m = 2) and consider the statistical part of our task. Table 1
gives the results of computation of the unknown parameters for
this case1. To analyse the effects of systematic errors in proper
motions, stars were split into 6 groups. Each group includes
proper motions only for those stars whose distances from the
Sun satisfy the conditionr ≤ rm, whererm was chosen as in
Table 1 (runs No 1-6). However, we did not split the data on line-
of-sight velocities, and in all runs we used all these data. One
can see from Table 1 that results change slightly with increasing
rm. As optimal, we adopt run 3 (rm = 2 kpc). Fig 1 show the
surface of residualminδ2 as a function of two argumentsi and
χ�, computed over stellar samples of run 3. Here one can see
the clear global minimum, which enables to derive the unknown
quantities reliably.

1 Notice here that during calculations we checked the deviations of
stellar velocities from the model by means of the “3D-rule”:stars with
| v̂ − v̂o| ≥ 3 minδ were excluded from the sample.

Table 2 gives the correlation matrix of errors for the sought-
for parameters. We need this matrix in the following.

Comparing the data of Table 1 with those derived in Paper 1,
note that the Sun phaseχ� has increased about 30◦. So the Sun
happens to be closer to the potential well bottom of the spiral
galactic density wave gravitational field. Generally speaking,
this does not mean that the Sun is situated in the center of a
“visible” arm, since it is known that the tracers of the spiral
structure are displaced relative tominϕS (ϕS is the spiral grav-
itational potential, Roberts, 1969). However, such value forχ�
seems to be too large. Apparently it is biased due to closeness
of the Sun to the corotation.

In order to understand the effects of perturbation due to spi-
ral arms, we also give in Table 1 the parameters of galactic
rotation derived in approximation of pure rotation (run 7) de-
termined over the same stars as in run 3. The second derivative
(R�Ω′′

�) appreciably was changed whereas the rotation velocity
and Oort’sA-constant changed only slightly.

The perturbation from the spiral wave happens to be statis-
tically significant. Indeed, theF -statistic of the zero hypothesis
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Fig. 2. The “experimental” distribution function forN = 1500 (dotted
line – histogram) and its approximation by polgnomial (solid line) of
dimensionless frequenceν.

fR = fϑ = 0 against the hypothesis of the inclusion of motions
caused by a spiral density wave is equal toF ≈ 17.2 whereas
the critical value ofF with 1%-risk level isFcr ≈ 4.7 (Draper
& Smith, 1981). BecauseF > Fcr, the hypothesis of the pure
rotation should be rejected.

A number of authors (e.g. Georgelin & Georgelin, 1976,
Malahova & Petrovskaya, 1992, Vallee, 1995 etc) assume that
the Galaxy has a 4-arm pattern2. We tried to analyse whether we
can make a choice between the 2-arm or the 4-arm models. The
results for a 4-arm pattern derived over stars from run 3 are given
in Table 1 (run 8). One can see that the value of residual varied
insignificantly. Hence we cannot make a choce between these
two models. Other parameters varied slightly as well, excepting
for the pitch angle:|i | increased approximately twice.

This result seems to be quite clear. Indeed, from Eqs. (3, 4)
one could hope to determinem andcot i separately. But two
circumstances prevent this. First, because of the tight wind of
spirals (|cot i | � 1), the wave phase varies mainly across an
arm, i.e. approximately alongR and slowly alongϑ. Second,
stars of the sample are confined to a narrow sectorϑ : |ϑ| ≤ 26◦.
Therefore, the most sensitive changes inχ are connected with
the first term in Eq. (4). Hence, dealing with these stars, we can
hope to reliably derive only the productm cot i . So a double
increase ofm will lead to a decrease ofcot i approximatly the
same times.

The procedure of calculation∆Ω and∆R was described
in detail in Paper 1. Unlike Paper 1, we can now estimate both
Ω� and the dispersion of radial (galactocentric) velocity for this
sample of Cepheids. For this aim, we select the stars from run 3

2 It is interesting to note that Bash (1981) took into account the
perturbations from the spiral arms and for Georgelin’s data derived the
2-arm pattern.

Fig. 3. The same as Fig. 2, but for difference∆Ω = Ωp − Ω�.

Fig. 4. The same as Fig. 2, but for the displacement of the Sun from
the corotation circle∆R = R� − Rc.

which all have measured velocity components (in all 59 stars).
The dispersion happens to becR ≈ 15.4 km s−1.

The displacement of the Sun from the corotation radius
∆R depends nonlinearly on 8 parameters:Ω�, A, R�Ω′′

�, fR,
fϑ, i , R�, andcR. There is no problem to compute it for any set
of these parameters. However some problem arises when one
tries to evaluate the errors of∆R because extremely difficult
formulas. Therefore to estimateν,∆Ω,∆R and the bounds of
the above quantities variations (in other words, the errors), we
use a method of numerical experiments. Briefly the idea is as fol-
lows. By means of a random number generator, we construct a
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sample of normally-distributed 7 quantities (in all7×N, where
N is the volume of the sample for any of these 7 quantities,
N being a large number)αΩ� , αA, αR�Ω′′

� , αfR
, αfϑ

, αcot i ,
αR� with corresponding average valuesΩ�, A, R�Ω′′

�, fR,
fϑ, cot i , R� from Table 1 and the correlation matrix from
Table 2 (we assume that correlation ofR� with other quan-
tities equals to zero because as it was mentioned above the
results depend slightly onR�). Then for each realisation of
this 7-dimensional vectorα, we computeν,∆Ω and∆R and
construct the distribution functions of the above quantities. The
corresponding histograms are shown in Figs. 2–4. Approxima-
tion of these histograms allows to derive the most probable
values and errors. The most probable values are:ν ≈ 0.048;
∆Ω ≈ 0.5 km s−1kpc−1, ∆R ≈ 0.1 kpc. The bound of varia-
tions are: forν : 0.024÷0.134; for ∆Ω : 0.4÷2.2 km s−1kpc−1,
for ∆R : 0 .07 ÷ 0.4 kpc.

Hence the Sun is very close to the corotation circle.

5. Conclusions

The complete component velocity field of the Cepheids was
analysed in terms of a disk galaxy model perturbed by spiral
density waves. The kinematics of short period Cepheids
(pulsation periodP < 9d) supports the model of Marochnik et
al (1972) and Creze & Mennessier (1973) that the Sun is very
close to the corotation resonance: the displacement of the Sun
from the corotation circle∆R = R� − Rc ≈ 0.1 kpc. This is
the main result of the paper.

Acknowledgements.Authors are grateful to the Hipparcos astronomi-
cal team, who presented us the Hipparcos catalogue. Especially, we are
thankful to Dr. M.Creze for his important comments. This work was
partly supported by the Russian Federal Program “Integration”(grants
nos.352, 353).

References

Berdnikov L.N., Efremov Yu.N., 1985, Astron. Zirc.(Soviet) N1388, 1
Burton W.B., 1971, A&A 10, 76
Bash F.N., 1981, ApJ 250, 551
Comeron F., Torra J., 1990, A&A 241, 57
Caldwell J.A.R., Coulson I.M., 1987, AJ 93, 1090
Creze M., Mennessier M.O. 1973, A&A 27, 281
Dambis A.K., Mel’nik A.M., Rastorguev A.S., 1995, Astron. Letters

(Soviet) 21, 291
Draper N.R., Smith H., 1981, Applied Regression Analysis. John Wiley

and Sons. Inc., New York – Chichester – Brisbane – Toronto –
Singapore

Fridman A.M., Khoruzhii O.V., Lyakhovich V.V., Avedisova V.S. Are
There Giant Vortices in Solar Vicinity? In: van Woerden H. (ed.)
Abstracts of Poster papers for the XXII General Assembly of IAU.
Den Haag, the Netherlands, 15-27 August 1994, p. 167

ESA, 1997, The Hipparcos Catalogue. ESA, SP-1200
Georgelin Y.M., Georgelin Y.P., 1976, A&A 49, 57
Gorynya N.A., Samus N.N., Rastorguev A.S., Sachkov M.E., 1996,

Astron. Letters (Soviet) 22, 198.
Kerr F.J., Linden-Bell D., 1986, MNRAS 221, 1023
Lewis J.R., 1990, MNRAS 244, 247
Lin C.C., Yuan C., Shu F.H., 1969, ApJ 155, 721
Lin C.C., Yuan C., Roberts W.W., 1978, A&A 69, 181
Malahova Yu.N., Petrovskaya I.V., 1992, A&A Transact 1, 221
Marochnik L.S., Mishurov Yu.N., Suchkov A.A., 1972, Ap&SS 19,

285
Mishurov Yu.N., Zenina I.A., Dambis A.K., Mel’nik A.M., Rastorguev

A.S., 1997, A&A 323, 775
Mishurov Yu.N., Pavlovskaya E.D., Suchkov A.A., 1979, Astron. Zhur-

nal (Soviet) 56, 268
Nelson A.H., Matsuda T., 1977, MNRAS 179, 663
Nikiforov I.I., Petrovskaya I.V., 1994, Astron. Zhurnal (Soviet) 71, 725
Pont F., Mayor M., Burki G., 1994, A&A 285, 415
Roberts W.W., 1969, ApJ 158, 123
Vallee J.P., 1995, ApJ 454, 119
Yuan C., 1969, ApJ 158, 889


	Introduction
	Statistical method of estimating the parameters
	Observational data
	Results
	Conclusions

