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Inflationary Spacetimes Are Incomplete in Past Directions
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Many inflating spacetimes are likely to violate the weak energy condition, a key assumption of
singularity theorems. Here we offer a simple kinematical argument, requiring no energy condition, that
a cosmological model which is inflating— or just expanding sufficiently fast —must be incomplete in
null and timelike past directions. Specifically, we obtain a bound on the integral of the Hubble
parameter over a past-directed timelike or null geodesic. Thus inflationary models require physics
other than inflation to describe the past boundary of the inflating region of spacetime.
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we show that the general situation is very similar to that
in de Sitter space.

serve as the starting point for the standard analysis of
stochastic evolution [11]. A simple pattern of expansion is
I. Introduction.—Inflationary cosmological models
[1–3] are generically eternal to the future [4,5]. In these
models, the Universe consists of postinflationary, ther-
malized regions coexisting with still-inflating ones. In
comoving coordinates the thermalized regions grow in
time and are joined by new thermalized regions, so
the comoving volume of the inflating regions vanishes
as t! 1. Nonetheless, the inflating regions expand so
fast that their physical volume grows exponentially with
time. As a result, there is never a time when the Universe
is completely thermalized. In such spacetimes, it is natu-
ral to ask if the Universe could also be past-eternal. If it
could, eternal inflation would provide a viable model of
the Universe with no initial singularity. The Universe
would never come into existence. It would simply exist.

This possibility was discussed in the early days of
inflation, but it was soon realized [6,7] that the idea could
not be implemented in the simplest model in which the
inflating Universe is described by an exact de Sitter space.
More general theorems showing that inflationary space-
times are geodesically incomplete to the past were then
proved [8]. One of the key assumptions made in these
theorems is that the energy-momentum tensor obeys the
weak energy condition. Although this condition is satis-
fied by all known forms of classical matter, subsequent
work has shown that it is likely to be violated by quantum
effects in inflationary models [9,10]. Such violations must
occur whenever quantum fluctuations result in an increase
of the Hubble parameter H—i.e., when dH=dt > 0—
provided that the spacetime and the fluctuation can be
approximated as locally flat. Such upward fluctuations in
H are essential for the future-eternal nature of chaotic
inflation. Thus, the weak energy condition is generally
violated in an eternally inflating universe. These viola-
tions appear to open the door again to the possibility that
inflation, by itself, can eliminate the need for an initial
singularity. Here we argue that this is not the case. In fact,
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The intuitive reason why de Sitter inflation cannot be
past-eternal is that, in the full de Sitter space, exponential
expansion is preceded by exponential contraction. Such a
contracting phase is not part of standard inflationary
models and does not appear to be consistent with the
physics of inflation. If thermalized regions were able to
form all the way to past infinity in the contracting space-
time, the whole Universe would have been thermalized
before inflationary expansion could begin. In our analysis
we exclude the possibility of such a contracting phase by
considering spacetimes for which the past region obeys an
averaged expansion condition, by which we mean that the
average expansion rate in the past is greater than zero:

Hav > 0: (1)

With a suitable definition of H and the region over which
the average is to be taken, we show that the averaged
expansion condition implies past-incompleteness.

It is important to realize that the terms expansion and
contraction refer to the behavior of congruences of time-
like geodesics (the potential trajectories of test particles).
It is meaningless to say that a spacetime is expanding at a
single point, since in the vicinity of any point one can
always construct congruences that expand or contract at
any desired rate. We will see, however, that nontrivial
consequences can result if we assume the existence of a
single congruence with a positive average expansion rate
throughout some specified region.

While the past of an inflationary model is a matter of
speculation, the attractor nature of the inflationary equa-
tions implies that many properties of the future can be
deduced unambiguously. According to the standard pic-
ture of inflation, all physical quantities are slowly varying
on the scale of H�1. In the vicinity of any point P in the
inflating region, we can choose an approximately homo-
geneous, isotropic, and flat spacelike surface which can
2003 The American Physical Society 151301-1
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established, in which the comoving geodesics x � const
in the synchronous gauge form a congruence with H *������������������������
�8�=3�G
0

p
, where 
0 is the minimum energy density of

the inflationary part of the potential energy function. This
congruence covers the future light cone of P. While large
fluctuations can drive H to negative values, such fluctua-
tions are extremely rare. Once inflation ends in any given
region, however, many of the geodesics are likely to
develop caustics as the matter clumps to form galaxies
and black holes. If we try to describe inflation that is
eternal into the past, it would seem reasonable to assume
that the past of P is like the inflating region to the future,
which would mean that a congruence that is expanding
everywhere, except for rare fluctuations, can be defined
throughout that past.

For the proof of our theorem, however, we find that it
is sufficient to adopt a much weaker assumption, requir-
ing only that a congruence with Hav > 0 can be contin-
uously defined along some past-directed timelike or null
geodesic.

In Sec. II, we illustrate our result by showing how it
arises in the case of a homogeneous, isotropic, and spa-
tially flat universe. In the course of the argument we
shed some light on the meaning of an incomplete null
geodesic by relating the affine parametrization to the
cosmological redshift. In Sec. III we present our main,
model-independent argument. In Sec. IV we offer some
remarks on the interpretation and possible extensions of
our result.

II. A simple model.—Consider a model in which the
metric takes the form

ds2 � dt2 � a2�t�d~xx2: (2)

We first examine the behavior of null geodesics and then
timelike ones.

From the geodesic equation one finds that a null geo-
desic in the metric (2), with affine parameter �, obeys the
relation

d� / a�t� dt: (3)

Alternatively, we can understand this equation by consid-
ering a physical wave propagating along the null geodesic.
In the short wavelength limit the wave vector k� is
tangential to the geodesic and is related to the affine
parametrization of the geodesic by k� / dx�=d�. This
allows us to write d� / dt=!, where ! � k0 is the physi-
cal frequency as measured by a comoving observer. In an
expanding model the frequency is redshifted as ! /
1=a�t�, so we recover the result of Eq. (3).

From Eq. (3), one sees that if a�t� decreases sufficiently
quickly in the past direction, then

R
a�t�dt can be

bounded and the maximum affine length must be finite.
To relate this possibility to the behavior of the Hubble
parameter H, we first normalize the affine parameter by
choosing d� � 	a�t�=a�tf�
dt, so d�=dt � 1 when t � tf,
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where tf is some chosen reference time. Using H � _aa=a,
where a dot denotes a derivative with respect to t, we can
multiply Eq. (3) by H��� and then integrate from some
initial time ti to the reference time tf:

Z ��tf�

��ti�
H���d� �

Z a�tf�

a�ti�

da
a�tf�

� 1; (4)

where equality holds if a�ti� � 0. Defining Hav to be an
average over the affine parameter,

Hav �
1

��tf� � ��ti�

Z tf

ti

H���d� �
1

��tf� � ��ti�
; (5)

we see that any backward-going null geodesic with
Hav > 0 must have a finite affine length, i.e., is
past-incomplete.

A similar argument can be made for timelike geo-
desics, parametrized by the proper time �. For a particle
of mass m, the four-momentum P� � mdx�=d�, so we
can write d� � �m=E�dt, where E � P0 is the energy of
the particle as measured by a comoving observer. If we
define the magnitude of the three-momentum p by p2 �
�gijPiPj, where i and j are summed 1 to 3, then E �������������������
p2 �m2

p
. For a comoving trajectory we have Pi � 0,

and therefore d� � dt. For all others, p / 1=a�t� [12], so
we can write p�t� � 	a�tf�=a�t�
pf, where pf denotes the
value of the three-momentum p at the reference time tf.
Combining all this, we find

Z tf

ti

H���d� �
Z a�tf�

a�ti�

mda�����������������������������������
m2a2 � p2

fa
2�tf�

q

� ln

�
Ef �m

pf

�
�

1

2
ln

�
�� 1

�� 1

�
; (6)

where the inequality becomes an equality when a�ti� � 0.

Here Ef �
������������������
p2
f �m2

q
and � � 1=

����������������
1� v2

rel

q
, where vrel �

pf=Ef is the speed of the geodesic relative to the comov-
ing observers at time tf. Since the integral is bounded, the
argument used for null geodesics can be repeated, with
the average taken over proper time.

III. The main argument.—In this section we show that
the inequalities of Eqs. (4) and (6) can be established in
arbitrary cosmological models, making no assumptions
about homogeneity, isotropy, or energy conditions. To
achieve this generality, we need a definition of the
Hubble parameter H that applies to arbitrary models
and which reduces to the standard one (H � _aa=a) in
simple models.

Consider a timelike or null geodesic O (‘‘the ob-
server’’). We assume that a congruence of timelike geo-
desics (‘‘comoving test particles’’) has been defined along
O [13], and we will construct a definition for H that
depends only on the relative motion of the observer and
test particles.
151301-2



P H Y S I C A L R E V I E W L E T T E R S week ending
18 APRIL 2003VOLUME 90, NUMBER 15
In order to motivate what we do, we first consider the
case of nonrelativistic velocities in Minkowski space.
Suppose that the observer measures the velocities of the
test particles as a function of the time � on his own clock.
At time �1 particle 1 passes with velocity ~uu��1�, and at
time �2 � �1 ��� particle 2 passes with velocity ~uu��2�.
What expansion rate could he infer from these measure-
ments? The separation vector between the positions ~rr1
and ~rr2 of the two particles at �2 is �~rr � ~rr1 � ~rr2 � ~uu��,
and its magnitude is �r � j�~rrj. Their relative velocity is
� ~uu � ~uu1 � ~uu2 � ��d ~uu=d����. The Hubble expansion
rate is defined in terms of the rate of separation of these
particles, which in turn depends on the radial component
of their relative velocity, �ur � � ~uu � �~rr=�r. The in-
ferred Hubble parameter H is then

H �
�ur
�r

�
� ~uu � �~rr

j�~rrj2
� �

~uu � �d ~uu=d��

j ~uuj2
; (7)

which will equal the standardly defined Hubble parame-
ter for the case of a homogeneous, isotropic universe. The
expression for H may be simplified to H � �d lnvrel=d�,
where vrel � j ~uuj. The fact thatH is the total derivative of a
function of vrel implies that the variation of vrel is deter-
mined completely by the local value of H, even if the
Universe is inhomogeneous and anisotropic.

We can now generalize this idea to the case of arbitrary
velocities in curved spacetime. Let v� � dx�=d� be the
four velocity of the geodesic O, where we take � to be the
proper time in the case of a timelike observer, or an affine
parameter in the case of a null observer. Let u���� denote
the four velocity of the comoving test particle that passes
the observer at time �. We define � � u v

 , so in the
timelike case � may be viewed as the relative Lorentz

factor (1=
����������������
1� v2

rel

q
) between u� and v�. In the null case,

� � dt=d�, where t is the time as measured by comoving
observers, and � is the affine parameter of O.

Consider observations made by O at times �1 and �2 �
�1 ���, as shown in Fig. 1, where �� is infinitesimal.
Let �r� be a vector that joins the world lines of the two
FIG. 1. The observer’s world line O and two test particles.
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test particles at equal times in their own rest frame. Such
a vector is perpendicular to the world lines and can be
constructed by projecting the vector �v��� to be per-
pendicular to u�: �r� � �v���� �u���. In the rest
frame of the observer this answer reduces for small
velocities to its nonrelativistic counterpart, �r� �
�0; ui���. This is a spacelike vector of length �r �
j�r�j �

���������������
�2 � !

p
��, where ! � v�v� is equal to 1 for

the timelike case and 0 for the null case. The separation
velocity will be �u� � ��Du�=d����, where D=d� is
the covariant derivative along O. The covariant deriva-
tive allows us to compare via parallel transport vectors
defined at two different points along O and can be justi-
fied by considering the problem in the free-falling frame,
for which the affine connection vanishes on O at � � �1.
The radial component of this velocity will be �ur �
���u��r��=�r, where the sign arises from the Lorentz
metric. We define the Hubble parameter as [14]

H �
�ur
�r

�
�v��Du�=d��

�2 � !
: (8)

Since O is a geodesic, we have �Dv�=d�� � 0, and
therefore

H �
�d�=d�

�2 � !
�
d�
d�

F������; (9)

where

F��� �
�
��1 null observer �! � 0�;
1
2 ln

��1
��1 timelike observer �! � 1�: (10)

As in Sec. II, we now integrate H along O from some
initial �i to some chosen �f:Z �f

�i

Hd� � F��f� � F��i� � F��f�: (11)

In the null case F��f� � ��1
f , which is equal to the value

of d�=dt at tf, normalized in Sec. II to unity.
Equation (11) therefore reproduces exactly the results of

Eqs. (4) and (6), but in a much more general context.
Again we see that ifHav > 0 along any null or noncomov-
ing timelike geodesic, then the geodesic is necessarily
past-incomplete.

IV. Discussion.—Our argument shows that null and
timelike geodesics are, in general, past-incomplete in
inflationary models, whether or not energy conditions
hold, provided only that the averaged expansion condition
Hav > 0 holds along these past-directed geodesics. This is
a stronger conclusion than the one arrived at in previous
work [8] in that we have shown under reasonable assump-
tions that almost all causal geodesics, when extended to
the past of an arbitrary point, reach the boundary of the
inflating region of spacetime in a finite proper time (finite
affine length, in the null case).

What can lie beyond this boundary? Several possibil-
ities have been discussed, one being that the boundary of
151301-3
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the inflating region corresponds to the beginning of the
Universe in a quantum nucleation event [15]. The bound-
ary is then a closed spacelike hypersurface which can be
determined from the appropriate instanton.

Whatever the possibilities for the boundary, it is clear
that unless the averaged expansion condition can some-
how be avoided for all past-directed geodesics, inflation
alone is not sufficient to provide a complete description of
the Universe, and some new physics is necessary in order
to determine the correct conditions at the boundary [16].
This is the chief result of our Letter. The result depends on
just one assumption: the Hubble parameter H has a posi-
tive value when averaged over the affine parameter of a
past-directed null or noncomoving timelike geodesic.

The class of cosmologies satisfying this assumption is
not limited to inflating universes. Of particular interest is
the recycling scenario [18], in which each comoving
region goes through a succession of inflationary and
thermalized epochs. Since this scenario requires a posi-
tive true vacuum energy 
v, the expansion rate will be
bounded by Hmin �

���������������������
8�G
v=3

p
for locally flat or open

equal-time slicings, and the conditions of our theorem
may be satisfied. One must look carefully, however, at the
possibility of discontinuities where the inflationary and
thermalized regions meet. This issue requires further
analysis.

Our argument can be straightforwardly extended to
cosmology in higher dimensions. For example, in the
model of Ref. [19] brane worlds are created in collisions
of bubbles nucleating in an inflating higher-dimensional
bulk spacetime. Our analysis implies that the inflating
bulk cannot be past-complete.

We finally comment on the cyclic Universe model [20]
in which a bulk of four spatial dimensions is sandwiched
between two three-dimensional branes. The effective
�3� 1�-dimensional geometry describes a periodically
expanding and recollapsing universe, with curvature sin-
gularities separating each cycle. The internal brane space-
times, however, are nonsingular, and this is the basis for
the claim [20] that the cyclic scenario does not require
any initial conditions. We disagree with this claim.

In some versions of the cyclic model the brane space-
times are everywhere expanding, so our theorem imme-
diately implies the existence of a past boundary at which
boundary conditions must be imposed. In other versions,
there are brief periods of contraction, but the net result of
each cycle is an expansion. For null geodesics each cycle
is identical to the others, except for the overall normal-
ization of the affine parameter. Thus, as long as Hav > 0
for a null geodesic when averaged over one cycle, then
Hav > 0 for any number of cycles, and our theorem would
imply that the geodesic is incomplete.
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