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The Expanding Universe ²

by the Abb Âe Georges LemaÃõ tre

INTRODUCTION AND SUMMARY

In this paper we do not intend to discuss the hypotheses on which the

theory of the expansion of the Universe is based, or the value of the as-

tronomical evidence which support s it. Such a discussion seems to us at

present premature and it certainly could not arrive at de® nit ive conclusions

in the present state of the theory and the observat ions.

The theory can be developed in two ways: by the study of exact

solut ions of the gravitat ional equat ions, providing simpli® ed models, or

by approxim ate expansion of the solut ion of more complex problems. It

seems to us useful not to mix these two methods, and in this paper we will

be concerned only with mathematically exact solut ions. When we want to

apply these to real problems, we will have to appeal to physical intuit ion

in order to reduce an overcomplicat ed problem to a simpli® ed model for

which we have a solut ion. Many of our results seem to be able to serve

as starting points for the methods of expansion in series which we hope to

treat in a later paper.

In the ® rst two sections, we give in detail the tensor calculat ions which

we shall need, and which we summarize in Section 3, in the course of

int roducing the notation which makes manifest the analogy between the

relat ivist ic results and the classical formulae.

We then introduce the concept of a quasi-st atic ® eld which immedi-

ately allows us to generalize the known static solut ions by allowing adia-
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batic variat ions in them. We give a solut ion, probably new, for the case of

a sphere with constant radial pressure, and we use it to highlight Schwarz-

schild’ s paradox and to prove that the very severe limitation on the radius

of a given mass which is introduced by the solut ion of the interior problem

vanishes when one does not impose on the matter the condit ion of being in

the ¯ uid state.1 We describe putting stress into the Einstein universe, as-

sumed to be ¯ uid, so that the rest mass2 of the universe decreases without

changing the volume or disturbing the equilibrium.

In Section 6, we summarize and complete the results obtained in our

doctoral thesis (unpublished ), presented in 1927 at the Massachuset ts In-

st itute of Technology, which concern a modi® cation of the Schwarzschild

int erior problem proposed by Edddingt on.3

Section 7 concerns the in¯ uence of the formation of local condensa-

tions on the breakdown of the equilibrium of an Einstein universe: we

recover our result (Monthly Notices 91, 490 (1931) ) that the pressure at

the neutral zone is the determining factor in the breakdown, while elimi-

nat ing the technical complicat ions which clut tered up our original proof.

In Section 8 we study the evolut ion of spherical condensat ions in an

expanding universe under the hypothesis that pressure is negligible, and

rediscover as a part icular case the Friedmann universe.

We then integrate the Friedmann equat ion by Weierst rass’ s ellipt ic

funct ions in Section 9 and put the equat ions in a form adapted to numerical

calculat ions.

In Section 10, we int roduce the hypothesis that clusters of galaxies

are in equilibrium . This hypothesis can be checked by observat ion, and

the result is favourable. One obtains 7 £ 108 solar masses as the average

mass of the nebulae and 13 as the expansion coe� cient of the universe.4

We indicat e how this new hypothesis can give cosmological signi® cance

to the relat ive frequency of clusters and isolat ed galaxies, and so remove the

1 In this paper Lem aÃõ t re uses the term `¯ uid’ to m ean a ¯ uid with isotropic st resses ,

i.e. a perfect ¯ uid Ð Tran sl.
2 In the original, `masse propre’ .
3 T his thesis was: Lema Ãõ tre, Georges (1927) . ª The Grav itat ional Field in a Fluid

Sphere of Uniform Invariant Density, accord ing to the Theory of Relat ivity.º P h. D.

T hesis, Massachuset t s Inst itute of Technology Ð Tran sl.
4 By this, Lema Ãõ tre means the rat io of the current length scale to the length scale

of an Einstein universe with the sam e mass. He refers to the lat ter universe as in

`equilibrium’ , and its length scale as the `radius of equilibrium ’ . He appears to have

in mind throughout the paper the m odels of the universe which start or end in the

Einstein stat ic universe, or the cases, now known as Lema Ãõ t re models, in which there

is a `coast ing’ phase close to this model, and he seem s always to take the cosmological

constant to be positive Ð Tran sl.
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uncertainty which remains in the expansion law. We then calculat e, under

various hypotheses, the expansion time and the radius of the universe.

The hypothesis of equilibrium of the nebulae seems to exclude the

critical case for which the equilibrium radius would great ly exceed a billion

light -years. We establish the result that in the critical case the distance

at the moment of equilibrium of the most widely separat ed points which

can exchange light during expansion is still several billion light -years.

In Section 11, we remove an apparent contradict ion between Fried-

mann’ s theory and the solut ion of Schwarzschild ’ s exterior problem. In the

latter, a mass such as that of the universe cannot have a radius less than

a billion light years. We show that the singularity of the Schwarzschild

exterior is an apparent singularity due to the fact that one has imposed a

static solut ion and that it can be eliminat ed by a change of coordinat es.5

In Section 12, we discuss the possibility of the universe reaching the

theoretical zero of radius.

With the help of an anisot ropic model of the universe suggested to

us by Einstein, we show that anisot ropy only precipitates contraction.

Analysing the various forces which could stop contraction of a universe

whose radius is decreasing to zero, we arrive at the conclusion that only

the non-Maxwellian forces which prevent the interpenetration of the fun-

damental part icles of matter seem to be capable of putting an end to the

contraction, when the radius of the universe is reduced to the size of the

solar system.

We thus conclude that the origin of the earth is later than such an

event and this forces us to discard the solut ions where the radius of the

universe is much smaller than the equilibrium radius and in part icular

discard the quasi-p eriodic solut ions.

1. CALCULATION OF THE RIEMANN TENSOR

We take as our starting point the study of the gravitational equat ions

in the very general case of a quadrat ic form

ds
2

= a
2
1 dx

2
1 + a

2
2 dx

2
2 + a

2
3 dx

2
3 + a

2
4 dx

2
4 = a

2
m dx

2
m , (1.1)

where a1 , a2 , a3 , and a4 are funct ions of four coordinat es, and we aim to

write explicit ly the gravitational equat ions

kT
u
m + lgu

m = ± R
u
m + 1

2 gu
m R, (1.2)

5 Here Lema Ãõ t re is referring to the apparent singularity at r = 2m in the usual coordi-

nat es Ð Tran sl.
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where

Rmu = gms R
s
u = ±

¶ Ca
mu

¶ xa
+

¶ Ca
ma

¶ xu
± Ca

mu C
b
ab + Cb

ma Ca
ub . (1.3)

The calculat ions simplify considerably if one notices that the am , which

are not tensors under a general coordinat e transformat ion, are nevertheless

covariant s of the ® rst order for the special transformat ions of the form

x 9
m = cm xm ,

where c1 , c2 , c3 , and c4 are constants.

For these special transformations, the expressions

ai k =
1

a i ak

¶ a i

¶ xk
(1.4)

and

ai k F =
1

a i ak a F

¶ 2a i

¶ xk ¶ x F
(1.5)

are invariant s. We must thus expect that the derivat ives only enter the

expression for R i
i (without summation) through the ai k and ai k F , since R i

i

is invariant under the special transformat ions.

In what follows, we suspend the usual summation convent ion for in-

dices denoted by Latin let ters.

The ChristoŒel symbols which are not ident ically zero are (i /= k)

C
i
i i =

1

a i

¶ a i

¶ xi

= a i ai i

C
k
i i = ±

a i

a2
k

¶ a i

¶ xk

= ±
a2

i

ak
ai k

C
k
i k =

1

ak

¶ ak

¶ x i

= a i ak i .

(1.6)

We calculat e ® rst of all the contracted Riemann tensor R i i , m = u = i .

In the summations, we make explicit the summation index values equal to

i , and those k, F diŒerent from i and from one another, and replace the

ChristoŒel symbols by their values (1.6) .

We thus obtain

R
i
i =

1

a2
i

¶
¶ xk

a i

a2
k

¶ a i

¶ xk

+
1

a2
i

¶
¶ xi

1

ak

¶ ak

¶ x i

± ai i ai i ± ai i ak i + ai k ai k + ai k akk + ai F ak F

+ ai i ai i ± 2ai k ai k + ak i ak i .
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Carrying out the diŒerentiat ions and subst ituting from (1.4) and (1.5)

gives

R
i
i = ai kk + ak i i ± ai i ak i ± ai k ak k + ai F ak F (1.7)

an expression taken to be summed over k and F diŒerent from i and each

other.

This expression can be written

R
i
i =

k

bi k (1.8)

where the bi k are taken to be zero for i = k and for which the expressions

for i /= k can, from (1.4) and (1.5) , be written

bi k =
1

a i ak

¶
¶ xk

1

ak

¶ a i

¶ xk

+
¶

¶ x i

1

a i

¶ ak

¶ xi

+

F

¶ a i

¶ x F

¶ ak

¶ x F
(1.9)

the sum over F being taken over values diŒerent from i and k.

The complet ely contracted scalar R is obtained by making the further

sum over i . It contains each bi k twice and we can write

1
2 R = i< k bi k . (1.10)

The gravitational equat ions (1.1) are thus written, for m = u = i ,

kT
i
i + l = bk l (1.11)

where the summation is taken without repetition (k < F ) and for values k

and F diŒerent from i , i.e. explicit ly,

kT
1
1 + l = b23 + b24 + b34

kT
2
2 + l = b13 + b14 + b34

kT
3
3 + l = b12 + b14 + b24

kT
4
4 + l = b12 + b13 + b23 .

(1.12)

It remains for us to calculat e the component s R i k for i /= k. Using

the same method, we obtain

R i k

a i ak

=
1

a i ak

±
¶

¶ x i

1

a i

¶ a i

¶ xk

±
¶

¶ xk

1

ak

¶ ak

¶ x i

+
¶

¶ xk

1

a i

¶ a i

¶ xi
+

¶
¶ xk

1

ak

¶ ak

¶ xi
+

¶
¶ xk

1

a F

¶ a F

¶ x i

± ai k ai i ± ai k ak i ± ai k aF i

± ak i akk ± ak i ai k ± ak i aF k

+ ai i ai k + akk ak i + 2ai k ak i + aF i aF k
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that is, on carrying out the diŒerentiat ions and subst ituting from (1.4)

and (1.5) ,
R i k

a i ak

= aF i k ± aF i ai k ± aF k ak i

or by (1.1)

± kTi k =

F

1

a F

¶ 2 a F

¶ x i ¶ xk

±
1

a i

¶ a F

¶ x i

¶ a i

¶ xk

±
1

ak

¶ a F

¶ xk

¶ ak

¶ x i

(1.13)

the sum over F being taken for values diŒerent from i and k.

2. SPHERICAL SYMMETRY

By spherical symmetry, we mean the case where two of the coordinat es

x2 and x3 appear in the ds 2 only through the expression

dx
2
2 + sin

2
x2 dx

2
3 (2.1)

or an equivalent expression.

The ds 2 is thus invariant under the transformations of x2 and x3 which

leave this expression invariant and which form the group of rotations of a

unit sphere about it s centre.

In this case a1 , a2 , and a4 are functions of x1 and x4 only, and

a3 = a2 sin x2 . (2.2)

All the derivat ives with respect to x3 are thus zero, as are the deriva-

tives with respect to x2 , except for the ® rst derivat ives

¶ a3

¶ x2

= a2 cos x2 . (2.3)

For the second derivat ives one has in part icular

1

a3 a2

¶
¶ x2

1

a2

¶ a3

¶ x2

= ±
1

a2
2

. (2.4)

The equat ions (1.9) thus become

b23 =
1

a2
2

± 1 +
1

a2
1

¶ a2

¶ x1

2

+
1

a2
4

¶ a2

¶ x4

2

b12 = b13 =
1

a1a2

¶
¶ x1

1

a1

¶ a2

¶ x1

+
1

a2
4

¶ a1

¶ x4

¶ a2

¶ x4

b24 = b34 =
1

a2a4

¶
¶ x4

1

a4

¶ a2

¶ x4
+

1

a2
1

¶ a4

¶ x1

¶ a2

¶ x1

b14 =
1

a1a4

¶
¶ x1

1

a1

¶ a4

¶ x1

+
¶

¶ x4

1

a4

¶ a1

¶ x4

(2.5)
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while (1.13) gives

± kT14 =
2

a2
2

¶ 2 a2

¶ x1 ¶ x4
±

1

a1

¶ a2

¶ x1

¶ a1

¶ x4
±

1

a4

¶ a2

¶ x4

¶ a4

¶ x1
(2.6)

T12 = T13 = T23 = T24 = T34 = 0 .

The coordinat es x1 and x4 are so far chosen arbit rarily.

When the matter tensor is non-zero, there is a natural split into space

and time imposed by the matter; one can in fact determine the worldlines

such that if one chooses x1 constant along those lines one has T14 = 0. The

curves of constant x4 are then the orthogonal trajectories of the curves of

constant x1 .

In what follows, we will st ick to the study of the ® eld when the coor-

dinat es have been thus chosen.

It is important to note that this way of working does not reduce the

generality of the results obtained at all.

In certain cases, the choice of coordinat es may be more or less inde-

terminate. It can also happen that the introduct ion of these coordinat es

produces analyt ical singularit ies which demand special study.

For the coordinat es such that T14 = 0 it is convenient to make use of

the conservat ion theorem

T
u
m ,u = 0

which gives the two relat ions

¶ T1
1

¶ x1

+
2

a2

¶ a2

¶ x1

T
1
1 ± T

2
2 +

1

a4

¶ a4

¶ x1

T
1
1 ± T

4
4 = 0 (2.7)

¶ T4
4

¶ x4

+
2

a2

¶ a2

¶ x4

T
4
4 ± T

2
2 +

1

a1

¶ a1

¶ x4

T
4
4 ± T

1
1 = 0, (2.8)

expressing the theorem of energy conservat ion and the balance equat ion

(zero momentum).

Eliminat ing T2
2 between these two equat ions and grouping the terms

in T1
1 and T4

4 gives

¶ a2

¶ x4

¶ T1
1

¶ x1

+
2

a2

¶ a2

¶ x1

¶ a2

¶ x4

T
1
1 +

1

a4

¶ a2

¶ x4

¶ a4

¶ x1

+
1

a1

¶ a2

¶ x1

¶ a1

¶ x4

T
1
1

=
¶ a2

¶ x1

¶ T4
4

¶ x4

+
2

a2

¶ a2

¶ x1

¶ a2

¶ x4

T
4
4 +

1

a4

¶ a2

¶ x4

¶ a4

¶ x1

+
1

a1

¶ a2

¶ x1

¶ a1

¶ x4

T
4
4



6 4 8 Le m a Ãõ t r e

and using (2.6) with T14 = 0 and multiplying by a2
2 ,

¶
¶ x1

T
1
1 a

2
2

¶ a2

¶ x4

=
¶

¶ x4

T
4
4 a

2
2

¶ a2

¶ x1
. (2.9)

This leads us to consider whether there exists an expression F in the

a and their derivat ives such that

T
1
1 a

2
2

¶ a2

¶ x4

=
¶ F
¶ x4

(2.10)

T
4
4 a

2
2

¶ a2

¶ x1

=
¶ F
¶ x1

. (2.11)

Because of the symmetry between the indices 1 and 4 which remains

in our formulae, it is su� cient to prove this for one of the two cases, for

example for (2.11) .

We have, by (1.12) and (2.5) ,

(kT
4
4 + l)a

2
2

¶ a2

¶ x1

= (b23 + 2b12 )a
2
2

¶ a2

¶ x1

= ±
¶ a2

¶ x1

+
1

a2
1

¶ a2

¶ x1

3

+
2a2

a1

¶ a2

¶ x1

¶
¶ x1

1

a1

¶ a2

¶ x1

+
1

a2
4

¶ a2

¶ x4

2 ¶ a2

¶ x1

+
2a2

a1a2
4

¶ a2

¶ x1

¶ a1

¶ x4

¶ a2

¶ x4
.

Taking into account (2.6) (T14 = 0) , the last term can be written

2a2

a2
4

¶ 2 a2

¶ x1 ¶ x4

±
1

a4

¶ a2

¶ x4

¶ a4

¶ x1

¶ a2

¶ x4

=
2a2

a4

¶ a2

¶ x4

¶
¶ x1

1

a4

¶ a2

¶ x4
= a2

¶
¶ x1

1

a2
4

¶ a2

¶ x4

2

.

So this gives

(kT
4
4 + l)a

2
2

¶ a2

¶ x1
=

¶
¶ x1

a2 ± 1 +
1

a2
1

¶ a2

¶ x1

2

+
1

a2
4

¶ a2

¶ x4

2

which just i® es the relat ion (2.11) with

F =
a2

k
± 1 +

1

a2
1

¶ a2

¶ x1

2

+
1

a2
4

¶ a2

¶ x4

2

±
la2

2

3
. (2.12)



T h e E x p a n d in g U n iv e r s e 6 4 9

3. SUMMARY OF RESULTS FOR SPHERICAL SYMMETRY

Before discussing the equat ions we have just obtained and showing

their signi® cance and the analogies they provide with the formulae of clas-

sical mechanics, we must go back through them using notation better

adapted to applicat ions.

Let us consider a ds 2 of the form

ds
2

= ± a
2
dx

2
± r

2
(dh

2
+ sin

2
h dw

2
) + c

2
dt

2 . (3.1)

± a2 , ± r 2 , and ± c2 are the functions of x1 = x and x4 = t previously

denoted by a2
1 , a2

2 , and a2
4 . We also write

T
4
4 = r, T

1
1 = ± p, T

2
2 = T

3
3 = ± t . (3.2)

Einstein’ s constant is

k =
8pK

c2
0

where K is the gravitational constant and c0 the speed of light . In place

of F we introduce a function m = ± 4p i F .

The equat ions (2.10) and (2.11) are written in this manner

4prr
2 ¶ r

¶ x
=

¶ m

¶ x
(3.3)

4ppr
2 ¶ r

¶ t
= ±

¶ m

¶ t
. (3.4)

The ® rst of these is the classical equat ion between distance, density

and mass.

The equat ion (2.12) can be written

c2
0

c2

¶ r

¶ t

2

= ± c
2
0 1 ±

1

a2

¶ r

¶ x

2

+
2K m

r
+

lc2
0

3
r

2 . (3.5)

It is analogous to the classical equat ion for energy under the action

of various forces, among which one recognizes the Newtonian gravit ational

force.

The equat ion (2.6) (T14 = 0) can be written

¶
¶ t

1

a

¶ r

¶ x
=

1

ac

¶ r

¶ t

¶ c

¶ x
. (3.6)
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DiŒerentiat ing (3.5) and taking into account (3.4) and (3.6) one ob-

tains, after removing a factor 2 ¶ r / ¶ t,

c0

c

¶
¶ t

c0

c

¶ r

¶ t
=

c2
0

ca2

¶ r

¶ x

¶ c

¶ x
± 4pK pr ±

K m

r 2
+

lc2
0

3
r. (3.7)

This equat ion is part icularly useful when ¶ r / ¶ t vanishes, in which

case the equat ion (3.4) becomes empty. It is easy to show direct ly that

(3.7) still applies in this case.

Finally, the conservat ion theorems (2.7) , (2.8) are writ ten

¶ p

¶ x
+

2

r

¶ r

¶ x
(p ± t ) +

1

c

¶ c

¶ x
(p + r) = 0, (3.8)

¶ r

¶ t
+

2

r

¶ r

¶ t
(p + t ) +

1

a

¶ a

¶ t
(p + r) = 0 . (3.9)

In this form, the equat ions become remarkably intuit ive. The coor-

dinat e x is attached to the matter and plays the role of init ial values of

coordinat es in classical hydrodynam ics. r is analogous to the distance

variable from the origin; in fact, r is the distance that can be evaluat ed

starting from the normal measures of a radius vector. Equat ions (3.5) and

(3.7) are therefore the equat ions of motion of the matter, m corresponding

to the mass within a moving material sphere of radius x .

The equat ion (3.8) is analogous to the balance equat ion, (1/ c)( ¶ c/ ¶ x )

playing the role of the gravitational force remaining after the removal of

the eŒect of the moving frame.6

4. QUASI-STATIC FIELDS

Let us consider the case where

¶ r

¶ t
º 0,

where the matter therefore is in equilibrium . We then have, by (3.6) ,

¶ a

¶ t
º 0,

6 The French `r Âeact ion d’ ent rainement ’ refers to the `® ct it ious forces’ in a non-inertial

fram e Ð Tran sl.
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and, by (3.4) ,

¶ m

¶ t
º 0,

and thus by (3.3) or (3.9)

¶ r

¶ t
º 0 .

However c is not necessarily time-independent . It is for this reason

that we give this case the name quasi-st atic, in contrast to the static ® elds

where c is time-independent or can be made independent of t ime by a

change of variables.

One has, by (3.5) ,

a
2
dx

2
=

dr 2

1 ± (2K m / c2
0 r ) ± (l/ 3)r 2

, (4.1)

with, by (3.3) ,

4prr
2

=
dm

dr
, (4.2)

Equat ion (3.7) becomes

4pK

c2
0

p +
K m

c2
0r 3

±
l

3
= 1 ±

2K m

c2
0 r

±
l

3
r

2 1

cr

¶ c

¶ r
, (4.3)

while (3.8) is written as

¶ p

¶ r
+

2

r
(p ± t ) +

1

c

¶ c

¶ r
(p + r) = 0 . (4.4)

Naturally these equat ions concern only the mechanical part of the

problem which can only be determined when we have some informat ion

on the nature of the matter with which we are dealing. We have available

4 equat ions between 6 variables a, r, p, t , m and c ; we require two

supplementary condit ions. For example we could consider a ¯ uid

p = t

with a given distribut ion of matter r as a funct ion of r .
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5. UNIFORM ENERGY DENSITY

Let us consider in part icular the case where r is independent not only

of t but also of x . One can then, by a change of variable, make a constant,

and choose the value of that constant. We take

1

a2
=

8pK

3c2
0

r +
l

3
(5.1)

and obtain, by (4.1) and (3.3) ,

r = a sin x (5.2)

and (4.3) becomes

4pK

c2
0

p +
1

2a2
±

l

2
=

cot x

a2c

¶ c

¶ x
. (5.3)

For a ¯ uid, (4.4) becomes

¶ p

¶ x
+

1

c

¶ c

¶ x
(p + r) = 0, (5.4)

whence, since r is constant,

4pK

c2
0

(p + r) =
f 1 (t)

ca2 .

Subst ituting into (5.3) , taking into account (5.1) , and integrat ing,

gives

c = f 1 (t) ± f 2 (t) cos x . (5.5)

We thus obtain

ds
2

= ± a
2
[dx

2
+ sin

2
x (dh

2
+ sin

2
h dw

2
) ] + [f 1 (t) ± f 2 (t) cos x ]

2
dt

2
(5.6)

with

3kp =
3krf 2 (t) cos x ± (kr ± 2l)f 1 (t)

f 1 (t) ± f 2 (t) cos x
. (5.7)

The pressure can be zero at

cos x 1 =
(kr ± 2l)f 1 (t)

3krf 2 ( t)
(5.8)



T h e E x p a n d in g U n iv e r s e 6 5 3

and in® nite at

cos x 0 =
f 1 (t)

f 2 (t)
. (5.9)

When the funct ions f 1 (t) and f 2 (t), or at least their ratio, are reduced

to a constant, one recovers Schwarzschild’ s known results.

For f 2 (t) = 0 and kr = 2l, we obtain the Einstein universe. If

we make f 2 (t) vary, we obtain a progressive loading of the universe, the

pressure varying according to the law

p =
rf 2 (t) cos x

f 1 (t) ± f 2 (t) cos x
. (5.10)

One can imagine this pressure to be exerted at the origin x = 0, and

distribut ing itself throughout the incompressible ¯ uid while maintaining

the equilibrium. The pressure decreases outwards from the centre, and

vanishes at the polar plane of the centre, x = p / 2.

Things happen diŒerent ly for an Einst ein universe of the simple ellipt ic

form or for a universe with dist inct antipodal points. In the latter case, x

varies from 0 to p and the pressure is diŒerent in the two parts separated

by the plane x = p / 2; it is negat ive in the other half of the space, and

diŒerent in absolut e value at corresponding point s.

These results are naturally without direct interest in the study of the

real universe, which can never be compared with an incompressible ¯ uid.

They have however the interest of showing how the universe could stay in

equilibrium even though its rest mass varies.

This itself is easily calculat ed; one has

M (x ) =

x

0

4pa
3
(r ± 3p) sin

2
x dx ,

where p is given by (5.10) .

Setting

sin b =
f 2 (t)

f 1 (t)
,

one ® nds

M (x ) = 4pa
3
r 2 ±

3

sin
2

b
x ± sin 2x ±

3 sin x

sin b

+ 6
cos b

sin
2 b

arc tg tg
x

2
tg

p

4
+

b

2
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and for the rest mass of the universe with dist inct antipodal point s

M (p) = 2p
2
a

3
r 1 ± 3 tg

2 b

2
.

For f 1 = 0 and r = 0 we obtain the de Sitter universe.

A consequence of the Schwarzschild interior solut ion is that it appears

to impose, for the minimum radius of a sphere of given mass, a more severe

limit than that imposed by the exterior solut ion.

This limit is obtained for

f 1 (t) = f 2 (t),

in which case the pressure is in® nite at the centre.

One has then (for l = 0) by (5.8)

cos x 1 =
1
3 ,

whence, for the corresponding radius,

r = a sin x 1 = a 8/ 9 ,

while the exterior problem allows a radius of whatever mult iple of a one

likes.

This limitation holds only because one has supposed the matter to be

a ¯ uid.

Let us consider, in fact, matter maint aining itself like an arch under

the action of transversal forces. The radial pressure p can be zero or more

generally constant.

In this case, the equat ion (5.8) can still be integrat ed and gives

c = f 3 (t)[cos x ]
- ( 1 / 2 ) ( 1- l a

2
+ kpa

2
)
,

while the balance equat ion (3.8) gives

t ± p =
tg x

2c
(p + r)

¶ c

¶ x
,

that is

t ± p =
tg2 x

4
(r + p)(1 ± la

2
+ kpa

2
).
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In part icular for p = 0 and l = 0, one has

ds
2

= ± a
2
[dx

2
+ sin

2
x (dh

2
+ sin

2
h dw

2
) ] + f

2
3 (t)

dt2

cos x
(5.11)

with

t =
r

4
tg

2
x and kr =

3

a2 . (5.12)

One can thus construct a sphere supporting itself by transversal ten-

sions and ® lling space as completely as one wishes.

The lower limit of radius for a given mass is thus determined by the

exterior ® eld and not by the solut ion of the interior problem, if one does

not impose the condit ion that the matter is ¯ uid. The two solut ions can

be combined. One can imagine a liquid, water for example, part of which

is frozen and forms concentric spheres of ice which are self-supporting,

independently of one another, by normal tensions. These spheres are then

adiabat ically melted starting from the centre, giving the Schwarzschild

¯ uid. The Schwarzschild solut ion can at each instant be related to the

solut ion p = 0 by choosing suitably the values of the funct ions f 1 (t),

f 2 (t), f 3 (t). One can thus progressively increase the radius of the melted

region until the central pressure becomes in® nit e and the Schwarzschild

problem has no solut ion. This shows clearly the really paradoxical nature

of Schwarzschild ’ s result .

6. EDDINGTON’S PROBLEM

Eddingt on has suggested that one could more naturally consider for

the problem of the homogeneous ¯ uid sphere the case where the density

of rest mass

d = T = T
4
4 + 3T

1
1 = r ± 3p, (6.1)

and not r, is considered constant.

The equat ions of the problem are, eliminat ing c between (4.3) and

(4.4) ,

4pK

c2
0

p +
K m

c2
0r 3

±
l

3
= ± 1 ±

2K m

c2
0 r

±
l

3
r

2 1

d + 4p

¶ p

r ¶ r
(6.2)

4p( d + 3p)r
2

=
dm

dr

where the two unknown functions are p and m .
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It is convenient to use, in place of m , the average pressure q de® ned

by

q =
3

r 3

r

0

pr
2
dr.

One then has

m =
4pr 3

3
( d + 3q).

If we put
kp ± l

x
=

kq ± l

y
=

k d + 4l

12
=

u

r 2
, (6.3)

the equat ions become

dx

du
+

(x + y + 4)(x + 3)

1 ± (y + 4)u
= 0 (6.4)

dy

du
+

3(y ± x)

2u
= 0 . (6.5)

The solut ions x = y = ± 2, and x = y = ± 3 correspond respectively

to the Einst ein and de Sitter universes.

It is equally easy to study the behaviour of x and y for large values

of these variables. One can then neglect the numerical terms added to x

or y.

Setting

x =
X

u
, y =

Y

u
(6.6)

one can eliminat e u and ® nd

dY

dX
=

3X ± Y

1 ± X ± 2Y

1 ± Y

2X
. (6.7)

The solut ion of this equat ion corresponding to ® nite init ial values of

x and y is the part icular solut ion passing through the origin. It is easy

to discuss the behaviour of this solut ion and show that, starting from the

origin at an angle of 45±, it winds round in an anticlockwise7 spiral and

tends asymptotically to the point

X = 1
7 , Y = 3

7 .

7 In the original, `sens direct ’ .
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From this it follows that X passes successively through a maximum

X 1 , a minimum X 2 , etc., and that the curves of x are successively tangent

to hyperbolae

x =
X k

u
.

When one varies the init ial values, the point s of contact are displaced

and the hyperbolae form so many envelopes of the curves of x.

One may expect that these general characteristics survive in the form

of the solut ions even when x and y are no longer small.

In fact, it follows from the numerical calculat ions which were the

sub ject of an unpublished thesis, presented in 1927 to the Massachuset ts

Inst itute of Technology, that the ® rst envelope can be represented up to

values of x close to ± 2 by the formula

x =
0.220

u
± 2.65

while the asymptot ic limit can be expanded in a series

x =
1

7u
± 2.8571 + 0.168u + 0.22u

2
+ . . .

From this it follows that when one increases the central pressure, the

radius (p = 0) at ® rst increases, passes through a maximum on the ® rst

envelope, then decreases to the second envelope, then increases again and

tends in an oscillatory manner to a limit point on the limit of the envelopes.

For l = 0, the ® rst maximum takes place at

u = 0.083

and the limit ing point is at

u = 0.05.

One can easily enough give an account of the mechanism of this ap-

parent ly paradoxical result .

When the central pressure increases, one naturally tends to increase

the radius, but at the same time one increases the energy content of the

matter

r = d + 3p.

The gravit ational eŒect of this energy eventually compensat es the eŒect of

the pressure and the two in¯ uences take turns to prevail.

In other words, under Eddington’ s hypothesis there is no longer any

quest ion of adiabat ic variat ions; one cannot increase the pressure without
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adding energy to the exterior and the gravitational eŒect of this addit ional

energy eventually dominat es.

For certain radii, there exist several equilibrium con® gurat ions; it is

not clear whether these con® gurat ions are unstable, except for that of

minimum energy.

7. INSTABILITY OF THE EINSTEIN UNIVERSE

Having studied the quasi-st atic spherical ® elds, we intend to examine

how the breakdown of equilibrium of a quasi-stat ic ® eld can be produced

and in part icular the breakdown of the equilibrium of the Einst ein universe.

We imagine that by a process which we try to keep as general as

possible one modi® es either the equat ion of state of the matter or its dis-

tribut ion. We suppose that at the moment of the breakdown of equilibrium

one has still
¶ r

¶ t
= 0 (7.1)

and consequent ly
¶ a

¶ t
=

¶ m

¶ t
=

¶ r

¶ t
= 0 (7.2)

as for the quasi-st atic ® elds; but these relat ions are no longer maintained

as ident ities. We go back to (3.7) for the accelerat ion, and, taking account

of the relat ions (7.1) and (7.2) , we see that the breakdown of equilibrium

can only come about through a modi® cation of p or ¶ c/ ¶ x .

We have seen above examples of such modi® cations, but then these

modi® cat ions were adjust ed so as not to upset the equilibrium .

It is clear that if p and ¶ c/ ¶ x do not change, it is impossible to break

equilibrium , and that is true even if p and ¶ c/ ¶ x change at point s other

than the one under considerat ion. If one sets the interior region in motion,

for example, taking care to preserve the spherical symmetry, that will have

no eŒect on the exterior region, since the pressure and the force of gravity

¶ c/ ¶ x would not be modi® ed there.

The condit ion
¶ c

¶ x
= 0

can still be considered as the condit ion that the worldlines with constant

x de® ned by the matter are geodesics.

To study the breakdown of the equilibrium of the Einstein universe

due to the eŒect of the formation of local condensat ions distributed uni-

formly in space, we imagine a large number of centres of condensat ion
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distributed more or less uniformly. There is no way to suppose them dis-

tributed in a perfectly homogeneous manner for, in an ellipt ic space, there

is no equivalent of the cubic lattices or the space-® lling spheres8 of Eu-

clidean space. But stat istically the distribut ion can be assumed uniform.

The condensat ion process is supposed to develop in a similar manner

around each centre of condensat ion, and there naturally exists a network

of surfaces, forming cells around the centres of condensat ion, which are

the loci of point s which are no more under the in¯ uence of one of the two

condensat ions which they separate than the other. These cells form the

neutral zone between the gravit at ional ® elds of the condensat ions.

By virtue of the global homogeneity which we have assumed, it is

clear that all the cells behave in the same way; they are all in equilibrium,

or they dilat e or contract together. It thus su� ces to consider just one of

them in order to work out the equilibrium or motion of the whole universe.

Fixing our attention on one cell, the neut ral zone of a part icular con-

densat ion, we suppose that that condensat ion enjoys spherical symmetry,

and that we can take account of the in¯ uence of neighbouring conden-

sations by replacing them with a spherically symmetric distribut ion of

matter. The neutral zone is then a sphere.

The points of this sphere enjoy the property that their worldlines are

geodesics, or that the force of gravity st ill vanishes there, since neither the

int ernal condensat ion nor the neighbouring condensat ions have a prepon-

derant in¯ uence there. One must thus have at the neutral zone

¶ c

¶ x
= 0,

and consequent ly the equilibrium can only be broken if the modi® cations

int roduced into the state of the matter have made p, the radial pressure

at the neutral zone, vary.

Thus if we want to compare a universe which is globally homogeneous

but contains a large number of uniformly distributed condensat ions with

the perfectly homogeneous Einstein universe, we have to consider the net-

work of cells formed by the neutral zones separat ing the condensat ions.

The homogeneous universe must, so to say, be tangent at those point s to

the universe presenting the condensat ions, and the pressure normal to the

neutral zones must be the pressure adopted for the homogeneous universe.

Then the equilibrium , or the expansion, of the homogeneous universe gives

us the equilibrium or expansion of the network of neut ral zones.

8 In the original, `piles de boulet s’
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The two universes can have diŒerent masses or diŒerent volumes. One

can conclude nothing from that, the determining factor being the pressure

at the neutral zone.

The interest of this result is that it is completely independent of the

part icular process which the development of the condensat ions follows

from. It provides the means, for any part icular process, to foresee the

eŒect of that process on the equilibrium of the universe.

In part icular if the pressure is zero and remains zero in the neutral

zones, the condensat ions do not aŒect the equilibrium. The radial pres-

sure at the neut ral zone is the energy density crossing that zone, and thus

measures the int ensity of the exchanges between condensat ions. We have

called a reduction of such exchanges of energy a `stagnat ion of the uni-

verse’ . Only this process of stagnat ion can determine the breakdown of

the equilibrium in the sense of expansion.

8. CONDENSATIONS IN THE EXPANDING UNIVERSE

In applicat ions to the real universe the pressure is generally negligible

compared with the density. In the case of equilibrium we have had to

take it into account , because the study of a breakdown of equilibrium

naturally depends on minimal forces, but for the study of the expansion

of the universe and the development of condensat ions in the course of the

expansion, we can neglect it.

In this case, the equat ion (3.4) tells us that m is a function only of x ,

and equat ion (3.8) , for p = t = 0, that c is a funct ion of t alone.

By means of a change of variable, we can thus assume c constant and

put

c = c0 .

We then have, by (3.6)

1

a

¶ r

¶ x
= f (x ),

and (3.1) becomes

ds
2

= ±
¶ r

¶ x

2
dx 2

f 2 (x )
± r

2
(dh

2
+ sin

2
h dw

2
) + c

2
dt

2
(8.1)

where r is a funct ion of x and of t satisfying (3.5) .

¶ r

¶ t

2

= ± c
2
[1 ± f

2
(x ) ] +

2K m

r
+

lc2

3
r

2
(8.2)
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where by (3.3)

4prr
2 ¶ r

¶ x
=

dm

dx
. (8.3)

Finally, equat ion (3.7) becomes

¶ 2 r

¶ t2
= ±

K m

r2
+

lc2

3
r. (8.4)

The element of length at an instant t is, from (8.1) ,

ds
2

=
dr 2

f 2 (x )
+ r

2
(dh

2
+ sin

2
h dw

2
).

When f (x ) = 1, the geometry is thus Euclidean. The equat ions then

diŒer from the equat ions of classical mechanics only by the introduct ion of

a cosmic repulsion and, in addit ion, by the fact that the constant energy in

(8.2) , which, from the classical point of view, can have an arbit rary value,

is now zero.

In the general case, one still can consider r as the distance from the

origin, and the energy constant at each material point , that is to say, at

each value of x , can be chosen arbit rarily. But the geometry is then not

Euclidean. One can make a map of it in a Euclidean space where the

lengths normal to the radius vector are represented at their real size. The

lengths along the radial vector are then represented at a scale

dr

ds
= f (x ).

The radial length scale depends only on x , that is to say it stays the

same for each material point throughout its motion, and it is linked to

the energy constant in the equat ion of motion of that point from equat ion

(8.2) .

The coordinat e x can naturally be chosen arbit rarily. When f (x ) is

less than or equal to one, one could choose the coordinat e x in such a way

that

f (x ) = cos x .

Then (8.2) is written more simply,

¶ r

¶ t

2

= ± c
2

sin
2

x +
2K m

r
+

lc2

3
r

2 . (8.21)
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This coordinat e choice is convenient when the space is closed. For

a space of the simple ellipt ic type, the whole space is described when x

varies from 0 to p / 2.

It is important to note that m is not the real mass within a sphere x ,

but rather the mass calculat ed starting from the density without taking

the curvature of the space into account . The real mass is

M (x ) =

x

0

dm

cos x
(8.5)

and, just like m , it is independent of time.

In the part icular case where m is proport ional to sin
3

x , we have

m =
4

3p
M sin

3
x (8.6)

where M = M (p / 2) is the total mass of the (simply ellipt ic) universe.

In this case, one can write

r = R (t) sin x (8.7)

and one obtains the Friedmann universe

ds
2

= ± R
2
[dx

2
+ sin

2
x (dh

2
+ sin

2
h dw

2
)] + c

2
dt

2
, (8.8)

with
dR

dt

2

= ± c
2

+
8K M

3pR
+

lc2

3
R

2 . (8.9)

Using the same method as in Section 7, we can study the development

of a condensat ion in the expanding universe. We assume this condensat ion

is spherically symmetric, and we replace the exterior condensat ions by an

averaged density. This comes back to assuming that m is proport ional to

sin
3

x outside the condensat ion, but it follows another law in the central

region.

For the universe in the large, the trajectories of concentric material

shells are homothetic (8.7) . In the central region on the other hand, they

could equally well approach or move away from each other, so marking the

progress or attenuat ion of the condensat ion.

It may also happen that the trajectories corresponding to diŒerent

values of x come to cut one another. In this case our solut ion becomes

inadmissible, for x is a coordinat e and thus cannot have two values at

the same point . Physically this means that the hypothesis that we have
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int roduced that the pressure is zero becomes inadmissible from a certain

value of x .

In part icular, if the trajectories fall back to the centre, it will not be

permissible to treat the problem without introducing pressure. Our aim is

simply to study the tendency of condensat ions to develop, rather than to

follow their ® nal arrangement for which we can obviously no longer suppose

c ( the remaining gravitational potential) to be constant, nor neglect the

rotational eŒects excluded by our hypothesis of spherical symmetry.

It is well known that Friedmann’ s equat ions admit the following types

of solut ions:

1. unlimited expansion from 0 to ¥ , when the roots of the right hand side

of (8.21) are imaginary:

2. the bounded case with coincident posit ive root s, r varying from zero to

the equilibrium radius, or from that equilibrium distance to in® nity;

3. the case of real roots:

(a) a branch bouncing from a minimum to in® nity, with as a limiting case

the de Sit ter solut ion;

(b) a quasi-period ic branch from zero to a maximum.

These diŒerent eventualit ies arise according to whether

3K m Ö l

c2 sin
3

x

is greater than, equal to, or less than one.

If, for example, m is proportional to sin
4

x , the central region will be

of the quasi-period ic type ® nally falling back into the centre, while the

exterior region will be of the unlimited expansion type. Such a model thus

allows us, subject to the remarks made above, to study the formation of

condensat ions in a universe of the unlimited expansion type.

It is tempting to apply this model to the formation of the nebulae.

It seems however preferable to await a further development of the the-

ory which will free us from the hypot hesis of spherical symmetry which

is manifest ly not realised by the spiral nebulae. This development goes

outside the scope of this article which considers only exact solut ions of the

gravitational equat ions.

In the following sect ion, we expand the Friedmann solut ion in terms of

the Weierst rass ellipt ic funct ions. The problem is the same for the universe

with condensat ions and for the homogeneous universe. We consider the

® rst case, and the passage to the homogeneous universe is made by the

equat ions (8.6) and (8.7) , or more simply by putting x = p / 2, r = R ,

m = (4M/ 3p).
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In the case of the homogeneous universe, there is a quant ity

U =
c dt

R
(8.10)

which has part icular importance: it is the angular distance travelled by

light . It can serve as a measure of time. Its meaning is not so immediate

for the universe with condensat ions.

9. INTEGRATION OF THE FRIEDMANN EQUATION BY THE

WEIERSTRASS ELLIPTIC FUNCTIONS

Equat ion (8.21) can be written, when we consider only variat ion with

t,

dr

dt

2

=
A2

r
(r + 2r0 ) [r ± r0 (1 ± g) ] [r ± r0 (1 + g) ] (9.1)

where

A
2

=
lc2

3

A
2
r

2
0 (3 + g

2
) = c

2
sin

2
x

A
2
r

3
0 (1 ± g

2
) = K m .

(9.2)

Introducing a Weierstrass funct ion Ã (u ) having roots

e1 = 6 ± 2g
2
, e2 = ± 3 + 6g + g

2
, e3 = ± 3 ± 6g + g

2
, (9.3)

and putting

Ã (u ) = 3 + g
2

± 6(1 ± g
2
)
r0

r
, (9.4)

eq. (9.1) becomes

432(1 ± g
2
)

2 du

dt

2

= ± A
2
[ Ã (u ) ± 3 ± g

2
]
2 . (9.5)

Consider a value v such that

Ã (v ) = 3 + g
2
, (9.6)

whence

[ Ã 9 (v ) ]
2

= ± 432(1 ± g
2
)

2 . (9.7)
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This gives

±A
dt

du
=

Ã 9 (v )

Ã (u ) ± Ã (v )
= 2f(v ) ± f(u + v ) + f(u ± v ), (9.8)

whence, on integrat ing,

±At = C + 2uf(v ) + log
s(u ± v )

s(u + v )
. (9.9)

Equat ions (9.4) and (9.9) provide a parametric representation of the

motion.

The variable u is proportional to the quant ity U int roduced at the

end of the preceding sect ion; one has in fact

U
2

= ± 12(3 + g
2
)u

2 . (9.91 )

The period x corresponding to e1 is calculat ed from the following

formulae:

F =
4

Ö e1 ± e3 ± 4

Ö e1 ± e2

4

Ö e1 ± e3 + 4

Ö e1 ± e2

=

4
(1 + g)(3 ± g) ±

4
(1 ± g)(3 + g)

4
(1 + g)(3 ± g) +

4
(1 ± g)(3 + g)

. (9.10)

When g is imaginary = i Åg, one puts

tg w =
2 Åg

3 + Åg2
, (9.11)

and obtains

F = i tg
w

4
. (9.12)

Subsequent ly one has

q =
F
2

+ 2
F
2

5

+ 15
F
2

9

+ . . . (9.13)

and

x

2p
=

1 + 2q4 + 2q16 + . . .
4

Ö e1 ± e3 + 4

Ö e1 ± e2

=
1

4

Ö 3

1 + 2q4 + 2q16 + . . .
4

(1 + g)(3 ± g) +
4

(1 ± g)(3 + g)

=
1 + 2q4 + . . .

2 cos( w / 4)

4 cos w

3(3 + Åg2 )
. (9.14)
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For pract ical calculat ions, we must replace Ã and s by their expres-

sions in terms of the h funct ions.

Putting

u =
2 x

p
a, b =

p

2
± a (9.15)

we have

Ã (u ) = e1 + (e1 ± e2 )(e1 ± e3 )
h2 (a)

h1 (a)

2

= e1 + (e1 ± e2 )(e1 ± e3 )
h1 (b)

h2 (b)

2

(9.16)

and

s(u ) = Const . e
( p

2 / 2g x ) a
2

h1 (a) .

One has

(e1 ± e2 ) (e1 ± e3 ) = 9(9 ± g
2
) (1 ± g

2
)

and

Ã (v ) ± e1 = ± 3(1 ± g
2
) .

Thus from (9.4) and (9.6) comes

2r0

r
=

Ã (v ) ± Ã (u )

3(1 ± g2 )
= ± 1 ±

9 ± g2

1 ± g2

h2 (a)

h1 (a)

2

= ± 1 ±
9 ± g2

1 ± g2

h1 (b)

h2 (b)

2

. (9.17)

Denoting the values of a and b corresponding to u = v by a0 and b0 ,

gives, for t,

±At = C1 + log
h1 (a + a0 )

h1 (a ± a0 )
± 2a

h1 9 (a0 )

h1 (a0 )

= C2 + log
h2 (a ± b0 )

h2 (a + b0 )
+ 2a

h2 9 (b0 )

h2 (b0 )

= C3 + log
h1 (b + b0 )

h1 (b ± b0 )
± 2b

h2 9 (b0 )

h2 (b0 )
. (9.18)

One has

1

q1 / 4
h1 (a) = sin a ± q

2
sin 3a + q

6
sin 5a . . . ,
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1

q1 / 4
h2 (a) = cos a + q

2
cos 3a + q

6
cos 5a . . . .

Of course a and b are imaginary.

In the case of real roots one easily sees that for a pure imaginary a,

r is real and posit ive and starts from zero at a = 0. That corresponds to

the quasi-periodi c universe. For pure imaginary b, r is in® nit e for b = b0

and decreases when b increases its absolut e value.

It remains for us to transform the imaginary trigonomet ric curves.

Towards this end, we put

x = ea / i
y = eb / i . (9.19)

We obtain for the quasi-period ic universe

2r0

r

= ± 1 +
9 ± g2

1 ± g2

x + x- 1 + q2 (x3 + x- 3 ) + q6 (x5 + x- 5 ) + . . .
x ± x- 1 ± q2 (x3 ± x- 3 ) + q6 (x5 ± x- 5 ) + . . .

2

(9.20)

and for the bouncing universe

2r0

r

= ± 1 +
9 ± g2

1 ± g2

y ± y- 1 ± q2 (y3 ± y- 3 ) + q6 (y5 ± y- 5 ) + . . .
y + y- 1 + q2 (y3 + y- 3 ) + q6 (y5 + y- 5 ) + . . .

2

(9.21)

which, for r = ¥ , gives the value y0 corresponding to b0 .

We thence have for the quasi-period ic branch the equat ion

± At ± C2

= Log
xy

- 1
0 + x- 1 y0 + q2 (x3 y

- 3
0 + x- 3y3

0 ) + q6 (x5 y
- 5
0 + x- 5y5

0 ) + . . .
xy0 + x- 1 y

- 1
0 + q2 (x3 y3

0 + x- 3y
- 3
0 ) + q6 (x5 y5

0 + x- 5y
- 5
0 ) + . . .

+ 2
y0 ± y

- 1
0 + 3q2 (y3

0 ± y
- 3
0 ) + 5q6 (y5

0 ± y
- 5
0 ) + . . .

y0 + y
- 1
0 + q2 (y3

0 + y
- 3
0 ) + q6 (y5

0 + y
- 5
0 ) + . . .

Log x (9.22)

for t, and for the bouncing branch

± At ± C3

= Log
yy0 ± y- 1y

- 1
0 ± q2 (y3 y3

0 ± y- 3y
- 3
0 ) + q6 (y5 y5

0 ± y- 5 y
- 5
0 ) + . . .

yy
- 1
0 ± y- 1 y0 ± q2 (y3 y

- 3
0 ± y- 3y3

0 ) + q6 (y5 y
- 5
0 + y- 5 y5

0 ) + . . .

± 2
y0 ± y

- 1
0 + 3q2 (y3

0 ± y
- 3
0 ) + 5q6 (y5

0 ± y
- 5
0 ) + . . .

y0 + y
- 1
0 + q2 (y3

0 + y
- 3
0 ) + q6 (y5

0 + y
- 5
0 ) + . . .

Log y. (9.23)
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These formulae apply equally well to the case where the roots are

imaginary. Then q is pure imaginary, but since it appears only squared,

this results in a simple change of sign.

Besides, one can ident ify the two expressions by putting

y =
i

qx
. (9.24)

The sign choices correspond and

C3 ± C2 = ± 4 Log y0 + 2
y0 ± y

- 1
0 + 3q2 (y3

0 ± y
- 3
0 ) + . . .

y0 + y
- 1
0 + q2 (y3

0 + y
- 3
0 ) + . . .

Log
i

q
. (9.25)

It is advant ageous to use the ® rst formulae for x between 1 and

1/ Ö ± qi , and the second for larger values of x.

For real q, the maximum or minimum of r occurs for x or y equal to

1/ Ö q.

When one is given r , the calculat ion of x or y can be carried out

through the formulae ( F = F 1 i)

1 + 2r0 / r +
4

(9 ± g2 )/ (1 ± g2 )

1 + 2r0 / r ±
4

(9 ± g2 )/ (1 ± g2 )
=

tg 2 u

F 1

=
sin 2h

F
, (9.26)

where one of the angles u and h is real. One then has (q = q1 i )

x
2

=
tg u

q1

1 + 4q
4
1

ctg 2 u

sin 2 u
+ . . . =

tg u

q
1 ± 4q

4 ctg 2h

sin 2h
+ . . . (9.27)

y
2

=
ctg u

q1

1 ± 4q
4
1

ctg 2 u

sin 2 u
+ . . . = ±

ctg h

q
1 + 4q

4 ctg 2h

sin 2h
+ . . . . (9.28)

For real q, the quasi-period ic branch corresponds to values of h be-

tween zero and 45o , and the bouncing branch to values between 135 and 90

degrees. For imaginary q, the angle u ranges between zero and 90 degrees.

10. THE CLUSTERS OF NEBULAE

One of the characteristics of the universe which is revealed to us by

astronomical observat ions is that , while there exist isolat ed nebulae, there

also are agglomerat ions of nebulae, the populat ion of which varies from

some tens up to hundreds of nebulae.

We intend to discuss the hypothesis under which the clust ers of neb-

ulae would be essentially in equilibrium and have the form of a part of the
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Einstein universe. We prove in the sequel that some information about

the expansion of the universe can be deduced from this hypothesis.

If the clusters are in equilibrium , the current radius of the universe is

clearly greater than the equilibrium radius, in such a way that the Hubble

ratio
r

v
= 1.8 £ 10

9
years (10.1)

between the distance of the nebulae and their spectroscopic velocity of

recession is a measure of the cosmological constant. Adopt ing

l = 10
- 54

,

we can calculat e from the formula (8.4) at what distance r e the cosmic re-

pulsion and the force of gravitation due to a mass m come into equilibrium;

one has

r
3
e =

3K m

lc2
(10.2)

or

re = 80
3

Ö m , (10.3)

the distances being measured in light -years and the Sun’ s mass having

been taken as the unit .

If the clusters of nebulae are in equilibrium , r e must be the radius

of the neutral zone corresponding to each nebula. The mean distance

between nebulae must thus be 2r e .

If there are N nebulae distributed in a more or less spherical fashion,

the volume of the cluster must be

4p

3
N r

3
e

and its diameter

2r e
3

Ö N = 160
3

Ö N m .

We can estimate the distance D and the angular diameter d of the

clust er; we must then have as the condit ion of equilibrium

Dd = 160
3

Ö N m . (10.4)

If d is expressed in degress and D in megaparsecs, the diameter in

light years is
Dd

0.31 £ 57.3
£ 10

6
= 160

3

Ö N m .
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whence

N m 10
- 9

= 0.043D
3
d

3 . (10.5)

Hubble’ s est imates (Mount Wilson Contr. no. 427) allow us to calcu-

late the mean mass of a galaxy under the hypothesis of equilibrium. For

certain clusters, the data of table IX do not agree with the informat ion in

the text; we have then made the calculat ion for both values.

Cluster N D d m 10- 9

Virgo (500) 1.8 12± 11± 0.9 0.7

Pegasus 100 7.3 1 0.2

Pisces 20 7 0.5 1 0.1 0.7

Cancer 150 9 1.5 1 0.7 0.2

Perseus 500 11 2.0 0.9

Coma 800 14 1.7 0.7

Ursa Major 300 22 0.7 0.5

Leo 400 32 0.6 0.8

These data are clearly of very unequal value. In part icular, Shapley

® nds a very much larger distance and a smaller number of nebulae for the

Virgo cluster. However, for the Virgo clusters A, B, C and D, Shapley

® nds diameters and numbers of nebulae of the same order of magnitude.

If one takes into account the uncertainty in the data on which we

are basing the calculat ions, and in part icular the irregular form of most

clust ers, one can consider the result as favourable to the hypothesis of the

equilibrium of the clusters of nebulae.

The numerical value of the mass found for the nebulae is of the order

of magnitude indicat ed by Hubble’ s research.

The data concerning the Coma cluster seem to be the most secure,

all the more so as this cluster appears to have quite a globular form. We

thus adopt as our estimate of the mean mass of nebulae

0.7 10
9 K ,

and thus, as the mean distance between the nebulae,

140 000 light -years.

Comparing this value with the mean distance of the isolat ed nebulae,

estimated by Hubble as

1, 800, 000 light -years,
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we have, as the coe� cient of expansion of the universe

R

R e
= 13. (10.6)

The hypothesis of cluster equilibrium thus seems to provide the means

of making precise, and con® rming, Hubble’ s estimates.

It has also the interest of providing a cosmological signi® cance to the

relat ive frequency of clust ers and isolat ed nebulae.

Without us having so far developed a truly precise theory, it is clear

that if the expansion is not much slowed down in the neighbourhood of

the equilibrium posit ion, it is almost impossible that the parts of the uni-

verse could have deviat ed in great numbers from the average motion at

the moment when they were in equilibrium , and perhaps one could prove

that if the expansion is too much slowed down in the neighbourhood of the

equilibrium , the clusters would have to be more numerous and more im-

portant than they really are. Thus there is here a new line of attack which

allows us to ® nd the value of g2 , or at least exclude the neighbourhood of

the two critical values g2 = ± 3 and g2 = 0.

This su� ces to determine the order of magnitude of the radius of the

universe and the expansion time.

We have in fact, by (9.2) and (10.2)

R
3
0 (1 ± g

2
) = R

3
e (10.7)

A
2
R

2
0 (3 + g

2
) = c

2
(10.8)

so that

R0 =
c

A 3 + g2
=

1037 cm

1 +
1
3 g2

=
1

1 +
1
3 g2

10
9

light -years (10.9)

whence

R = 13Re = 13
1 ± g2

Ö 1 + 1
3 g2

light -years.

If g2 is not around ± 3, the order of magnit ude of the radius of the

universe is thus known.

It is the same for the expansion time.

The limiting case g2 = ± 3 gives the exact solut ion

R = 2R0 sh
2 / 3 3At

2
~= R0

3

Ö 2 e
A t

(10.10)
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with

R e =
3

Ö 4 R0 ,

whence

2At = 2 £ 2.303 log 13
3

Ö 2 = 5.6. (10.11)

As 2A ~= 10- 9 years, the expansion time is 5.6 £ 109 years.

For g2 = ± 0.1 one ® nds by the formulae of the preceding section

2At = 8.437. (10.12)

When g2 tends to zero, one can easily ® nd the asymptot ic value of

the expansion time from R = 0 up to a value great er than R0 . Put ting

X
2

=
R

R + 2R0

(10.13)

one obtains

At = Log
1 + X

1 ± X
+

1

Ö 3
Log

X Ö 3 ± 1

X Ö 3 + 1

+
1

Ö 3
Log

1

q2
1

± 2 Log(2 + Ö 3) . (10.14)

This equat ion shows how the solut ion tends to the limit ing solut ion

(R0 , ¥ ) when q tends to zero.

One has

q
2
1 = ±

g2

144
+ . . . (10.15)

and
kM Ö l

2p2
= 1 ±

3

2
g

2
+ . . . = 1 + m (10.16)

where m represents the accuracy with which the mass is adjust ed to the

cosmological constant in order to realise the posit ion of equilibrium .

For the expansion coe� cient = 13, one ® nds

2At = 5.93 + 2.66 log10

1

m
. (10.17)

For the bouncing universe one similarly has

At = Log
1 + X

1 ± X
+

1

Ö 3
Log

X Ö 3 ± 1

X Ö 3 + 1

+
1

Ö 3
Log

1

q
± Log(2 + Ö 3) . (10.18)
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the t ime being measured from the minimum radius, that is

2At = 5.46 + 1.33 log10

± 1

m
. (10.19)

When g2 tends to ± 3, the radius tends to in® nity but U, the angular

distance which light is capable of crossing during the expansion, tends to

zero.

It is interesting to calculat e R e U, the distance at the moment of equi-

librium of the most distant points which can transmit light to each other.

One has, by (9.91 ), (10.7) and (10.8)

R e U = 2 Ö 3
u

i

3
1 ± g2

c

A
(10.20)

and
u

i
=

x

p
log x

2 .

One ® nds for g2 = ± 3,

Re U = 4.46
c

2A
= 4.46 £ 10

9
light -years. (10.21)

11. SCHWARZSCHILD’S EXTERIOR FIELD

The equat ions of the Friedmann universe admit solut ions where the

radius of the universe tends to zero for a non-zero mass. This contradict s

the generally accepted result that a given mass cannot have a radius smaller

than
2K m

c2

or 2m in natural unit s (K = c = 1).

This result follows from the solut ion of Schwarzschild ’ s exterior prob-

lem,

ds
2

= ±
dr 2

1 ± (2m / r ) ± (l/ 3)r 2
± r

2
(dh

2
+ sin

2
h dw

2
)

+ 1 ±
2m

r
±

l

3
r

2
dt

2 . (11.1)

We intend to prove that the singularity of the ® eld is not real and

arises simply because one wanted to use coordinat es for which the ® eld is

static.
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In vacuum, m is a constant. Let us consider the Euclidean case f (x ) =

1 and put

r
3
0 =

K m

4A2
, A

2
=

lc2

3
. (11.2)

Equat ion (8.2) becomes

r
¶ r

¶ t

2

= A
2
(r

3
+ 8r

3
0 ) (11.3)

whence

r = 2r0 Sh
2 / 3 3A

2
(t ± x ). (11.4)

We may write F (x ) in place of x , but this does not introduce any

more generality.

Since
¶ r

¶ x
= ±

¶ r

¶ t

we then have

ds
2

= ± A
2
(r

3
+ 8r

3
0 )

dx 2

r
± r

2
(dh

2
+ sin

2
h dw

2
) + c

2
dt

2
(11.5)

which is a solut ion for a vacuum ® eld.

At each instant, space is Euclidean, and there is no singularity except

for r = 0.

If we take r as a coordinat e, there must be a means to de® ne a coor-

dinat e t in such a way as to put the ® eld into Schwarzschild’ s form.

So one has

dr
2

=
A2

r
(r

3
+ 8r

3
0 ) (dt ± dx )

2

whence

A2

r
(r

3
+ 8r

3
0 )dx

2
= dr

2
±

A2

r
(r

3
+ 8r

3
0 ) (dt

2
± 2dx dt)

and

ds
2

= ± dr
2

± r
2
(dh

2
+ sin

2
h dw

2
) + c

2
+

A2

r
(r

3
+ 8r

3
0 ) dt

2

±
2A2

r
(r

3
+ 8r

3
0 )dx dt
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and, eliminat ing x ,

ds
2

= ± dr
2

± r
2
(dh

2
+ sin

2
h dw

2
) + c

2
±

A2

r
(r

3
+ 8r

3
0 ) dt

2

+ 2A
r 3 + 8r 3

0

r
dr dt.

Setting

dt = dt +
A

r 3 + 8r 3
0

r

c2 ±
A 2

r (r 3 + 8r 3
0 )

dr, (11.6)

gives

ds
2

= ±
dr 2

1 ±
8A2r 3

0

c2 r
±

A2r 2

c2

± r
2
(dh

2
+ sin

2
h dw

2
)

+ c
2

1 ±
8A2 r 3

0

c2r
±

A2 r 2

c2
dt

2
, (11.7)

which is Schwarzschild’ s form (11.1) for the ® eld of a point mass.

The singularity is introduced because the expression which appears in

the denominat or of dt (11.6) vanishes for su� ciently small values of r .

t depends on an ellipt ic integral. In the part icular case where l tends

to zero, the integrat ion can be carried out. To simplify matters, let us take

coordinat es for which K and c are equal to one.

One has, at the limit where A tends to zero,

8A
2
r

3
0 = 2m (11.8)

whence

dt = dt +

2m
r

1 ±
2m
r

dr, (11.9)

and, on integrat ing,

t = t + 2 Ö 2m r + 2m Log Ö r ± Ö 2m

Ö r + Ö 2m
, (11.10)

a transformation which is inadmissible for values of r less than 2m . The

equat ion (11.4) similarly becomes

x = t ±
2

3

r 2 / 3

Ö 2m
(11.11)
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and the new form of the ® eld is written without singularity

ds
2

= ± 2m
dx 2

r
± r

2
(dh

2
+ sin

2
h dw

2
) + dt

2
, (11.12)

where

r = [ 3
2 Ö 2m (t ± x ) ]2 / 3 . (11.13)

The singularity of the Schwarzschild ® eld is thus a ® ctit ious singular-

ity, analogous to that which appears at the horizon of the centre in the

original form of the de Sitter universe.

12. THE VANISHING OF SPACE

The radius of space may pass through zero. We intend to discuss this

passage, and to examine in part icular if there is a way of interpreting this

zero value of the radius physically as simply representing a small quant ity

and, in this case, of ® xing its order of magnitude.

For the study of the zero point , we may neglect the cosmological

constant ; setting
K m

c2
= a, (12.1)

we then have
1

c2

dR

dt

2

= ± 1 +
2a

R
. (12.2)

Introducing the angular distance U crossed by light during the time

t,

dU =
cdt

R
, (12.3)

we easily ® nd Einstein’ s cycloidal universe

R = a(1 ± cos U),

ct = a(U ± sin U).
(12.4)

When U varies from 0 to p , R returns to its init ial zero value, and

light just has time to go round the simply ellipt ic space.

The quest ion is to know if there is a way to smooth out the cusp of

the cycloid.

One can ask ® rst of all, if one would not obtain this result if one

took into account the eŒect of the pressure which need not necessarily be

negligible. It is easy to see, going back to the equat ion (3.7) , that the



T h e E x p a n d in g U n iv e r s e 6 7 7

pressure only reinforces the gravit ational action. Besides, the quest ion has

been treated in detail by Tolman.9

It is more important to examine the eŒect of a lack of isotropy in the

distribut ion of tensions.

We intend to examine, following an idea which Einstein communicated

to us, a universe de® ned by

ds
2

= ± b
2
1 dx

2
1 ± b

2
2 dx

2
2 ± b

2
3 dx

2
3 + dx

2
4 (12.5)

where b1 , b2 and b3 are funct ions of x4 = t.

Such a universe is naturally inadmissib le from many point s of view,

but it has the interest of int roducing a marked and largely arbit rary

anisot ropy.

We can easily calculat e the matter tensor by the formulae of Sect ion 1.

We have, for k and i diŒerent from 4, by (1.9) ,

bi k =
b9i b9k
bi bk

(12.6)

the primes denot ing derivat ives with respect to t, and

bi 4 =
b9 9i
bi

. (12.7)

The component s Tmu (m /= u) vanish.

Ö ± g = b1 b2b3 = R
3

(12.8)

measures the volume occupied by a speci® ed part of the matter. Here R

is no longer the radius of the universe, since the space is Euclidean, but

the volume of space tends to zero if R tends to zero.

We have
3R 9

R
=

b91
b1

+
b92
b2

+
b93
b3

and

3
R 9 9

R
±

R 9 2

R2
=

b9 91
b1

+
b9 92
b2

+
b9 93
b3

±
b9 21
b2

1

±
b9 22
b2

2

±
b9 23
b2

3

.

9 T his reference is: Tolman, Richard C., and Ward, M. (1932) . ª On the Behavior

of Non-Stat ic Models of the Universe when the Cosmological Constant is Om itted.º

P hysical Review 3 9 , 835-843 Ð Tran sl.
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Setting

I
2

=
b91
b1

±
b92
b2

2

+
b92
b2

±
b93
b3

2

+
b93
b3

±
b91
b1

2

(12.9)

we obtain

3
R 9 9

R
=

b9 91
b1

+
b9 92
b2

+
b9 93
b3

±
1

3
I

2

or, by (1.12) ,

3
R 9 9

R
=

k

2
(T

1
1 + T

2
2 + T

3
3 ± T

4
4 ) ±

1

3
I

2 . (2.10)

In all reasonable applicat ions, T1
1 , T2

2 and T3
3 will be negat ive, and in

all cases less than T4
4 = r in absolut e value. R 9 9 will thus be essentially

negat ive. If therefore at a certain instant R 9 is negat ive, R must attain

the value zero and thus the volume vanishes.

One sees that anisot ropy can no more prevent the vanishing of space

than pressure can.

The above argument is not a formal proof of the impossibility of avoid-

ing zero volume by anisot ropy, since (12.5) is not the most general conceiv-

able form, but it indicat es all the same that in an already rather general

case anisot ropy acts in the opposite sense.

The matter has to ® nd, though, a way of avoiding the vanishing of its

volume.

As long as the matter is made up of stars, this is manifest ly impossible.

When it is condensed into a single mass, it is clear that it must have

acquired a high temperature much greater than the critical temperature

of liquids and that nothing prevents it at taining a degree of concentration

comparable to the interior of the companion of Sirius.

Even for a degenerat e gas it seems that nothing could oppose the

concentration, since the available energy M/ R is unbounded.

When the distances between the atomic nuclei and the electrons be-

come of the order of 10- 12 cm, the non-Maxwellian forces which prevent

the mutual int erpenetration of elementary part icles must become predom-

inant and are without doubt capable of stopping the contraction. The

universe would then be comparable to a colossal atomic nucleus. If the

contraction is stopped, the process should cont inue in the opposit e direc-

tion.

Adopt ing, following Eddingt on, 1078 as the number of protons in ex-

istence, we have, as the order of magnitude of the radius of the universe

when reduced to its atomic state

10
( 78 / 3 ) - 12

= 10
14

cm ,
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which is about ten times the distance to the Sun.

We thus conclude that only the subatomic nuclear forces seem capable

of stopping the contraction of the universe, when the radius of the universe

is reduced to the dimensions of the solar system.

For the cosmological point of view, the zero of space must thus be

treated as a beginning, in the sense that every astronomical structure

with an earlier existence would have been completely destroyed there.

The epoch of this beginning, or, if one likes, of this recommencement,

certainly dat es from before the formation of the Earth’ s crust and the

organizat ion of the solar system, that is as a strict minimum from the

study of radioact ive rocks

1.6 £ 10
9

years.

Comparing this value with Hubble’ s ratio

r

v
= 1.8 £ 10

9
years,

we conclude that all solut ions in which the expansion speed has always

been faster than it is now are excluded.

In part icular, for Einstein’ s cycloidal universe (12.4) or the solut ion

(10.10) for small R / R0 , one has

t =
2

3

r

v
= 1.2 £ 10

9
years.

We must thus exclude the solut ions where the radius is less than the

equilibrium radius and in part icular the quasi-periodi c solut ions.

For a purely aesthetic point of view, one may perhaps regret this.

Those solut ions where the universe expands and contracts successively

while periodically reducing itself to an atomic mass of the dimensions of

the solar system, have an indisput able poetic charm and make one think

of the phoenix of legend.

Tran slator ’ s n ot e .

French and English are comparat ively closely related, and scienti® c papers

use only very restricted forms of expression and vocabulary, so that in

much of this paper I have been able to give a more or less direct literal

translat ion, only recasting sentences where I felt it was really necessitated

by diŒerences of grammar or idiom between the languages. Where usage in
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scienti® c writing has changed, I have sometimes rendered words or phrases

as their modern equivalent s in order to turn Georges LemaÃõ tre’ s original

French into the usual style of modern scienti® c papers in English (to take

the ® rst such case, `paragraphe’ became `section’ ), but have on the whole

tried to avoid anachronism. Similarly, the notation has not been changed,

except for correction of a few obvious misprint s. I have left historical

or explanat ory commentary to the editor, except where I felt LemaÃõ tre’ s

meaning might otherwise be misunderstood by a modern reader. In a few

cases, LemaÃõ tre’ s precise meaning was unclear not only to me but also to

a native French speaker. I am grat eful to Dr. Caroline Terquem for advice

at those point s, and have indicat ed them by giving the original phrase in

a footnote. I am also grateful to Dr. Jean Eisenstaedt for drawing my

attent ion to two typographical errors in the original, before (11.2) and

in (11.11) , and for the details of the references to Tolman’ s work and to

LemaÃõ tre’ s thesis.


