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The Expanding Universe

by the Abbé Georges Lemaitre
INTRODUCTION AND SUMMARY

In this paper we do not intend to discuss the hypotheses on which the
theory of the expansion of the Universe is based, or the value of the as-
tronomical evidence which supports it. Such a discussion seems to us at
present premature and it certainly could not arrive at definitive conclusions
in the present state of the theory and the observations.

The theory can be developed in two ways: by the study of exact
solutions of the gravitational equations, providing simplified models, or
by approximate expansion of the solution of more complex problems. It
seems to us useful not to mix these two methods, and in this paper we will
be concerned only with mathematically exact solutions. When we want to
apply these to real problems, we will have to appeal to physical intuition
in order to reduce an overcomplicated problem to a simplified model for
which we have a solution. Many of our results seem to be able to serve
as starting points for the methods of expansion in series which we hope to
treat in a later paper.

In the first two sections, we give in detail the tensor calculations which
we shall need, and which we summarize in Section 3, in the course of
introducing the notation which makes manifest the analogy between the
relativistic results and the classical formulae.

We then introduce the concept of a quasi-static field which immedi-
ately allows us to generalize the known static solutions by allowing adia-

i Original title: “L’Univers en expansion”, Annales de la Societe Scientifique de Brux-
elles A53, 51 (1933); printed with the kind permission of the Sociéte Scientifique
de Bruxelles. Translated by M. A. H. MacCallum, School of Mathematical Sciences,
Queen Mary and Westfield College, Mile End Road, London E1 4NS, U.K.
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642 Lem aitre

batic variations in them. We give a solution, probably new, for the case of
a sphere with constant radial pressure, and we use it to highlight Schwarz-
schild’s paradox and to prove that the very severe limitation on the radius
of a given mass which is introduced by the solution of the interior problem
vanishes when one does not impose on the matter the condition of being in
the fluid state.! We describe putting stress into the Einstein universe, as-
sumed to be fluid, so that the rest mass® of the universe decreases without
changing the volume or disturbing the equilibrium.

In Section 6, we summarize and complete the results obtained in our
doctoral thesis (unpublished), presented in 1927 at the Massachusetts In-
stitute of Technology, which concern a modification of the Schwarzschild
interior problem proposed by Edddington.?

Section 7 concerns the influence of the formation of local condensa-
tions on the breakdown of the equilibrium of an Einstein universe: we
recover our result (Monthly Notices 91, 490 (1931)) that the pressure at
the neutral zone is the determining factor in the breakdown, while elimi-
nating the technical complications which cluttered up our original proof.

In Section 8 we study the evolution of spherical condensations in an
expanding universe under the hypothesis that pressure is negligible, and
rediscover as a particular case the Friedmann universe.

We then integrate the Friedmann equation by Weierstrass’s elliptic
functions in Section 9 and put the equations in a form adapted to numerical
calculations.

In Section 10, we introduce the hypothesis that clusters of galaxies
are in equilibrium. This hypothesis can be checked by observation, and
the result is favourable. One obtains 7 x 10% solar masses as the average
mass of the nebulae and 13 as the expansion coefficient of the universe.*

We indicate how this new hypothesis can give cosmological significance
to the relative frequency of clusters and isolated galaxies, and so remove the

In this paper Lemaitre uses the term ‘fluid’ to mean a fluid with isotropic stresses,
i.e. a perfect fluid — Transl

In the original, ‘masse propre’.

This thesis was: Lemaitre, Georges (1927). “The Gravitational Field in a Fluid
Sphere of Uniform Invariant Density, according to the Theory of Relativity.” Ph. D.
T hesis, Massachusetts Institute of Technology — Transl.

By this, Lemaitre means the ratio of the current length scale to the length scale
of an Einstein universe with the same mass. He refers to the latter universe as in
‘equilibrium’, and its length scale as the ‘radius of equilibrium’. He appears to have
in mind throughout the paper the models of the universe which start or end in the
Einstein static universe, or the cases, now known as Lemaitre models, in which there
is a ‘coasting’ phase close to this model, and he seems always to take the cosmological
constant to be positive — Tran sl
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uncertainty which remains in the expansion law. We then calculate, under
various hypotheses, the expansion time and the radius of the universe.

The hypothesis of equilibrium of the nebulae seems to exclude the
critical case for which the equilibrium radius would greatly exceed a billion
light-years. We establish the result that in the critical case the distance
at the moment of equilibrium of the most widely separated points which
can exchange light during expansion is still several billion light-years.

In Section 11, we remove an apparent contradiction between Fried-
mann’s theory and the solution of Schwarzschild’s exterior problem. In the
latter, a mass such as that of the universe cannot have a radius less than
a billion light years. We show that the singularity of the Schwarzschild
exterior is an apparent singularity due to the fact that one has imposed a
static solution and that it can be eliminated by a change of coordinates.’

In Section 12, we discuss the possibility of the universe reaching the
theoretical zero of radius.

With the help of an anisotropic model of the universe suggested to
us by Einstein, we show that anisotropy only precipitates contraction.
Analysing the various forces which could stop contraction of a universe
whose radius is decreasing to zero, we arrive at the conclusion that only
the non-Maxwellian forces which prevent the interpenetration of the fun-
damental particles of matter seem to be capable of putting an end to the
contraction, when the radius of the universe is reduced to the size of the
solar system.

We thus conclude that the origin of the earth is later than such an
event and this forces us to discard the solutions where the radius of the
universe is much smaller than the equilibrium radius and in particular
discard the quasi-periodic solutions.

1. CALCULATION OF THE RIEMANN TENSOR

We take as our starting point the study of the gravitational equations
in the very general case of a quadratic form

ds* = a% dx% + a% dx% + a% dx% + ai dxi = ai dxi, (L.D)

where a1, a2, az, and as4 are functions of four coordinates, and we aim to
write explicitly the gravitational equations

kT + g = -R, + TR, (1.2)

> Here Lemaitre is referring to the apparent singularity at r = 2m in the usual coordi-
nates — Transl.
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where
ore ors
Ruo = GioRC = ——La v e orerh o rhre,. (13
X Oxyp

The calculations simplify considerably if one notices that the a,, which
are not tensors under a general coordinate transformation, are nevertheless
covariants of the first order for the special transformations of the form

’
X, = CuXy,

where c1, ¢2, ¢3, and c4 are constants.
For these special transformations, the expressions

1  Oa;
o = —— (1.4)
aidg axk
and
1 0%a;

aiaxay OXkOXy

Qiks = (1.5)
are invariants. We must thus expect that the derivatives only enter the
expression for R} (without summation) through the aix and aux, since R!
is invariant under the special transformations.

In what follows, we suspend the usual summation convention for in-
dices denoted by Latin letters.

The Christoffel symbols which are not identically zero are (i # k)

r 1 Oai
"a; Oxi
2
k_ 4 Oai _  4j
rii= -7, = -7 Qik (1.6)
ap Oxk ak
k _ l% —
rik - = ai0ki -
A 6x,-

We calculate first of all the contracted Riemann tensor R;;, 4 = v = i.
In the summations, we make explicit the summation index values equal to
i, and those k, Zdifferent from i and from one another, and replace the
Christoffel symbols by their values (1.6).
We thus obtain
P Li{ﬂ%} , Lo Pa_/}
! a% OX ai OX a% Ox; Lar Ox;
- i Oii — i Oki t Ok Qik + Ok Ok + QlisOkys

+ aiitii — 20k Qik t Oki Clici -
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Carrying out the differentiations and substituting from (1.4) and (1.5)
gives
R = oikk + Okii — QUi Oki — Qik Qk + QisQs (1.7)
an expression taken to be summed over k and Zdifferent from i/ and each
other.
This expression can be written

Ri= Bu (1.8)
k

where the Bix are taken to be zero for i = k and for which the expressions
for i # k can, from (1.4) and (1.5), be written

B = L {a <L%)+i<L%>+ a_a_/} (1.9)

aiai LOxk \ax Oxi Oxi \a; Ox; ~ Oxys Oxys

the sum over Zbeing taken over values different from i and k.
The completely contracted scalar R is obtained by making the further
sum over i. It contains each B;x twice and we can write

TR=2, B - (1.10)

The gravitational equations (1.1) are thus written, for u = v =i,

KT+ 0= D B (1.11)

where the summation is taken without repetition (k < 4 and for values k
and /Zdifferent from i, i.e. explicitly,
KT} + L= B3 + Poa + Baa
kT5 + A= B3+ Pia + Paa
kT + A= B2 + Pia + Pos
KTy + L= Bia+ Pis+ Bos.

(1.12)

It remains for us to calculate the components R;; for i # k. Using
the same method, we obtain

R _ _1 { i(iaaz) 2 <L6_/>
aiax  a;a Oxi \a; Oxx Oxr \ar OX;
0 <1 60[) 0 <1 6a/c> 0 <1 60/)}
+— - ]+ ——— ]+ — | ——=
Oxk \a; Oxi Oxk \ar Oxi Oxk \ays Oxi
— CikOii — OikOki — Qik O
— OOk — Oci Oik — Oci Ok

+ ik + ik ki T 20k o + 0L Ok
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that is, on carrying out the differentiations and substituting from (1.4)
and (1.5),

= Ok — O Qik — Ok Otki

or by (1.1)

2 )
_KTikzzi{ﬁw 1 Qas dai 1 dar Qax (113)

P OxiOxx  a; Ox; Oxk  ak OXk OXi

the sum over Zbeing taken for values different from 7/ and k.
2. SPHERICAL SYMMETRY

By spherical symmetry, we mean the case where two of the coordinates
x2 and x3 appear in the ds? only through the expression

dx3 + sin® x, dx3 (2.1)

or an equivalent expression.

The ds? is thus invariant under the transformations of x, and x; which
leave this expression invariant and which form the group of rotations of a
unit sphere about its centre.

In this case a1, a2, and a4 are functions of x; and x4 only, and

a3z = dajp sin X2 . (2.2)

All the derivatives with respect to x3 are thus zero, as are the deriva-
tives with respect to x;, except for the first derivatives

Oas

— — B ; 2.3
s az cos x2 (2.3)
For the second derivatives one has in particular
1 1 1
_L<_ a_) - L @.4)
azas Ox; \daz Oxa a;

The equations (1.9) thus become
\
_ L @) 1 <@”
Pos = a% {_ o <6v1 aﬁ 0x4
1 1 602) 1 QOai Oaz }
= _— | + - — =
Pro = Prs ayaz {&m <a1 Ox1 aj Ox4 Ox4

fas = s = L{L(l 502>+L%%}

azas 1 Ox4 \as Ox4 ai 0x1 0xi

1 {6 <1 604) 0 <1 601)}
P4 = -~ \—= |+ \—
aias LOx1 \a; Oxi Ox4 \da4 Ox4 J

(2.5
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while (1.13) gives

2 62a2 1 aaz 6a1 1 6a2 604
KTy == [ cd _ ch Ol 2.6
ST @2 [oxioxs T an Oxi Oxa as Bxa Oxi (2.6)

Tio=Ts=Ts3=T4=T4=0.

The coordinates x; and x4 are so far chosen arbitrarily.

When the matter tensor is non-zero, there is a natural split into space
and time imposed by the matter; one can in fact determine the worldlines
such that if one chooses x; constant along those lines one has 714 = 0. The
curves of constant x4 are then the orthogonal trajectories of the curves of
constant xi.

In what follows, we will stick to the study of the field when the coor-
dinates have been thus chosen.

It is important to note that this way of working does not reduce the
generality of the results obtained at all.

In certain cases, the choice of coordinates may be more or less inde-
terminate. It can also happen that the introduction of these coordinates
produces analytical singularities which demand special study.

For the coordinates such that 7i4 = 0 it is convenient to make use of
the conservation theorem

which gives the two relations

|
6_T]_+ 2 Oax <T1 —T2> 1 Oas <T1 —T4>

=0 2.7
ox1 ay O0xi as Ox| 2.7)
4
@.._,_l@(Tf_Tzz)_'_ 1 Oay <T4 —T1>:0, (2.8)
Ox4  ar Oxa ay Oxa

expressing the theorem of energy conservation and the balance equation
(zero momentum).

Eliminating 75 between these two equations and grouping the terms
in 7} and Ty gives

Oay OTL | 2 Day Day <L@%+L6ﬂ%> |

Ox4 Ox1  az Ox1 Oxa as Oxs4 Ox1 a1 Ox1 Ox4
_ 0ay 0T | 2 Qay Bay 14, <L@%+ L@@%
Ox1 Ox4  az Ox1 Oxa as Ox4 Ox1 a1 Oxi Oxa/)
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and using (2.6) with Ti4 = 0 and multiplying by a3,

0 1 2@} _ i{ 4 2@}
|:T = ax4 T4aza . (2.9)

142
0x1 Ox4 X1

This leads us to consider whether there exists an expression @ in the
a and their derivatives such that

1 20a2 _ 0D

Tl da) ax4 = ax4 (2.10)
4 2042 _ 0D

T4azax1 = ax1 . (2.11)

Because of the symmetry between the indices 1 and 4 which remains
in our formulae, it is sufficient to prove this for one of the two cases, for
example for (2.11).

We have, by (1.12) and (2.5),

(T3 + 0322 = (s + 2pim)al 22
0x1 ox1
_ dw L(ﬁ_) . 2_6_i<L6_>
Ox1  aj \ox ay Ox1 Ox1 \ai 0Oxi
L(ﬁ_)ﬁ_ . 2w Da da Qu
aj \Oxs/ ox ajaj 0x1 O0xs Oxs4

Taking into account (2.6) (714 = 0), the last term can be written

2a5 { oar _L@%} dax
2 1Ox10xs  as Oxs Ox1 ) Oxa

ag
_ 2 dar 0 {La_} _ 0 {L(ﬁ_”
as Ox4 Ox1 Las Ox4 2ox1 L3 \oxa/ |°
So this gives
T+ a2 - L{a {_H L<@>2+ L(ﬁ_” }
e 2oxi oxi |77 ai \oxi a; \Oxs

which justifies the relation (2.11) with

2 2 2
R O R

K at \ Oxi ai \ Oxa
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3. SUMMARY OF RESULTS FOR SPHERICAL SYMMETRY

Before discussing the equations we have just obtained and showing
their significance and the analogies they provide with the formulae of clas-
sical mechanics, we must go back through them using notation better
adapted to applications.

Let us consider a ds” of the form

ds® = —a*dy® — r}(de® + sin® 0d¢?) + Fdi’. (3.1)

—a*, —r?, and —¢? are the functions of x; = y and x4 = ¢ previously

denoted by a?, a3, and a3. We also write

4 1 2 3
5 = p Ty = -p =1y = -1 (3.2)
Einstein’s constant is
8K
K =
<

where K is the gravitational constant and co the speed of light. In place
of ® we introduce a function m = —-4rid.
The equations (2.10) and (2.11) are written in this manner

477:pr22_; = g—'z (3.3)
d d
477:pr26_}; - —a—":. (3.4)

The first of these is the classical equation between distance, density
and mass.
The equation (2.12) can be written

2 2 2 2
@ @) _ _2{ _L(ﬁrﬂ 2Km A
¢? <6t “|! a’ \ oy ’ r ’ 3 (3-5)

It is analogous to the classical equation for energy under the action
of various forces, among which one recognizes the Newtonian gravitational
force.

The equation (2.6) (T4 = 0) can be written

o (1 or 1 Or Oc
L(-& )2 £ 3.6
ot <a 6)() ac Ot Oy (3.6)
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Differentiating (3.5) and taking into account (3.4) and (3.6) one ob-
tains, after removing a factor 20r/0t,

co O {co 6r> < or dc Km e
DLL(2T) . WL E kg -+ . 3.7
c 6[(6 ot ca’> 0y Oy Sl r? 3 " S

This equation is particularly useful when Or/0t vanishes, in which
case the equation (3.4) becomes empty. It is easy to show directly that
(3.7) still applies in this case.

Finally, the conservation theorems (2.7), (2.8) are written

o 20r, 1o _
PRI U Rl GO R (3.8)
op, 20r 1éoa _
6t+r6t(p+r)+a61(p+p)_0' (3-9)

In this form, the equations become remarkably intuitive. The coor-
dinate y is attached to the matter and plays the role of initial values of
coordinates in classical hydrodynamics. r is analogous to the distance
variable from the origin; in fact, r is the distance that can be evaluated
starting from the normal measures of a radius vector. Equations (3.5) and
(3.7) are therefore the equations of motion of the matter, m corresponding
to the mass within a moving material sphere of radius y.

The equation (3.8) is analogous to the balance equation, (1/¢)(8¢/0y)
playing the role of the gravitational force remaining after the removal of
the effect of the moving frame.®

4. QUASI-STATIC FIELDS

Let us consider the case where

ar

=0,
ot

where the matter therefore is in equilibrium. We then have, by (3.6),

da

0,
ot

% The French ‘réaction d’entrainement’ refers to the ‘fictitious forces’ in a non-inertial
frame — Transl
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and, by (3.4),
om
— =0,
ot
and thus by (3.3) or (3.9)
op
=0
ot

However ¢ is not necessarily time-independent. It is for this reason
that we give this case the name quasi-static, in contrast to the static fields
where ¢ is time-independent or can be made independent of time by a
change of variables.

One has, by (3.5),

dPdy? = dr? (4.1)
1 - (2Km/ckr) — (A/3)r?’ ’

with, by (3.3),

4 2 - y 4.
Tpr y (4.2)
Equation (3.7) becomes

47K Km &_<1 2Km &2>L@
30\ 3 ’

+ _ 4.3
c P cor’ cor cr Or (4.3)
while (3.8) is written as
2 1
L2, et L =0, (4.4)
or r ¢ Or

Naturally these equations concern only the mechanical part of the
problem which can only be determined when we have some information
on the nature of the matter with which we are dealing. We have available
4 equations between 6 variables a, p, p, T, m and ¢ ; we require two
supplementary conditions. For example we could consider a fluid

p=7

with a given distribution of matter p as a function of r.
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5. UNIFORM ENERGY DENSITY

Let us consider in particular the case where p is independent not only
of ¢ but also of y. One can then, by a change of variable, make « constant,
and choose the value of that constant. We take

8K A

1
- + = 5.1
a’ 3c3 PT 3 SR

and obtain, by (4.1) and (3.3),

r=asiny (5.2)
and (4.3) becomes
4zK 1 A coty Oc
+ > -7 = —_—. 5.3
@ PT e T2 a’c Oy (5.3)
For a fluid, (4.4) becomes
1
QE+_@@+/J)=0, (5.4)
Ox ¢ Ox
whence, since p is constant,
4rK f1(1)
B (p+p) = h -
& ca

Substituting into (5.3), taking into account (5.1), and integrating,
gives

c= f1(#) = f2(2) cos x. (5.5)
We thus obtain
ds? = —az[al;(2 + sin’ ;((0102 + sin’ 0d¢2)] + [f1(2) — f2(¢) cos J(]20[[2 (5.6)
with

_ 3xpfa()ycos y — (kp = 2M)f1(1)
f1(t) = f2(t)cos x

The pressure can be zero at

3kp (5.7)

_ kp=20)f1(1)
cosy1 = e pfa (1) (5.8)
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and infinite at

cos yo = 10 (5.9)

fau(0)”
When the functions f1(¢) and f2(¢), or at least their ratio, are reduced
to a constant, one recovers Schwarzschild’s known results.
For f>(t1) = 0 and xp = 2A, we obtain the Einstein universe. If
we make f2(¢) vary, we obtain a progressive loading of the universe, the
pressure varying according to the law

_ pf2(¢) cos x
S1(1) = f2(1)cos x

(5.10)

One can imagine this pressure to be exerted at the origin y = 0, and
distributing itself throughout the incompressible fluid while maintaining
the equilibrium. The pressure decreases outwards from the centre, and
vanishes at the polar plane of the centre, y = /2.

Things happen differently for an Einstein universe of the simple elliptic
form or for a universe with distinct antipodal points. In the latter case, y
varies from 0 to = and the pressure is different in the two parts separated
by the plane y = =/2; it is negative in the other half of the space, and
different in absolute value at corresponding points.

These results are naturally without direct interest in the study of the
real universe, which can never be compared with an incompressible fluid.
They have however the interest of showing how the universe could stay in
equilibrium even though its rest mass varies.

This itself is easily calculated; one has

X
M(y) = / dza’ (p - 3p)sin’ y dy,
0

where p is given by (5.10).

Setting
N #10)
By
one finds
{ < 3 ) 3siny
M(y) = 4ra’ P —sin2y — —
sin ﬁ sin 8
6—EC,OS2 arc tg { Z‘ < E)} }
sin” 3 2 4 2
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and for the rest mass of the universe with distinct antipodal points
M(n) = 2n2a3p<1 -3tg’ g)

For f1 = 0 and p = 0 we obtain the de Sitter universe.

A consequence of the Schwarzschild interior solution is that it appears
to impose, for the minimum radius of a sphere of given mass, a more severe
limit than that imposed by the exterior solution.

This limit is obtained for

J1(8) = f2(2),

in which case the pressure is infinite at the centre.
One has then (for A = 0) by (5.8)

cos y1 = ‘];

whence, for the corresponding radius,
r=asiny; = avy/9,

while the exterior problem allows a radius of whatever multiple of ¢ one
likes.

This limitation holds only because one has supposed the matter to be
a fluid.

Let us consider, in fact, matter maintaining itself like an arch under
the action of transversal forces. The radial pressure p can be zero or more
generally constant.

In this case, the equation (5.8) can still be integrated and gives

2 2
c= f3(H)[cos x] (1/2)(1- ra”+xpa )’

while the balance equation (3.8) gives

that is R
tg X
r-p= (e —ad” + kpa’).



The Expanding Universe 655

In particular for p = 0 and A = 0, one has

dr*

ds® = —a*[dy” + sin® y(d0* + sin® 0d¢>) ]+ 3 (1) (5.11)
Cos y
with 3
c=21i?y and «p= . (5.12)
4 a

One can thus construct a sphere supporting itself by transversal ten-
sions and filling space as completely as one wishes.

The lower limit of radius for a given mass is thus determined by the
exterior field and not by the solution of the interior problem, if one does
not impose the condition that the matter is fluid. The two solutions can
be combined. One can imagine a liquid, water for example, part of which
is frozen and forms concentric spheres of ice which are self-supporting,
independently of one another, by normal tensions. These spheres are then
adiabatically melted starting from the centre, giving the Schwarzschild
fluid. The Schwarzschild solution can at each instant be related to the
solution p = 0 by choosing suitably the values of the functions f(?),
f2(1), f3(t). One can thus progressively increase the radius of the melted
region until the central pressure becomes infinite and the Schwarzschild
problem has no solution. This shows clearly the really paradoxical nature
of Schwarzschild’s result.

6. EDDINGTON’S PROBLEM

Eddington has suggested that one could more naturally consider for
the problem of the homogeneous fluid sphere the case where the density
of rest mass

8=T=T/ +3T = p-3p, (6.1)

and not p, is considered constant.

The equations of the problem are, eliminating ¢ between (4.3) and
(4.4),

47K Km ) 2Km A 1 0
K, K n (jiBm 2yl gy
c cor 3 cr 3 S+ 4p ror

d
Ar(8+ 3p)rt = T
dr

where the two unknown functions are p and m.
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It is convenient to use, in place of m, the average pressure ¢ defined

by
3 r
q= 7/ pridr.
r=Jo

One then has

4 3
m = =2 (3 + 39).
3
If we put
- A - A S+ 4\
Kp _ kg _K _ % (6.3)
X y 12 r
the equations become
d_x+(x+y+4)(x+3): (6.4)
du 1 -(y+ du
dy 30 -x) _
=0. 6.5
du 2u (6.5
The solutions x = y = -2, and x = y = -3 correspond respectively

to the Einstein and de Sitter universes.

It is equally easy to study the behaviour of x and y for large values
of these variables. One can then neglect the numerical terms added to x
or y.

Setting
X Y
x=—, y== (6.6)
u u
one can eliminate u# and find
dY 3 -Y 1-Y
— = . (6.7)

dXx l1-X -2Y 2X

The solution of this equation corresponding to finite initial values of
x and y is the particular solution passing through the origin. It is easy
to discuss the behaviour of this solution and show that, starting from the
origin at an angle of 45°, it winds round in an anticlockwise’ spiral and
tends asymptotically to the point

T
x=1

~
I
<

7 In the original, ‘sens direct’.
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From this it follows that X passes successively through a maximum
X1, a minimum X, etc., and that the curves of x are successively tangent
to hyperbolae

When one varies the initial values, the points of contact are displaced
and the hyperbolae form so many envelopes of the curves of x.

One may expect that these general characteristics survive in the form
of the solutions even when x and y are no longer small.

In fact, it follows from the numerical calculations which were the
subject of an unpublished thesis, presented in 1927 to the Massachusetts
Institute of Technology, that the first envelope can be represented up to
values of x close to —2 by the formula

_0.220
u

X - 2.65

while the asymptotic limit can be expanded in a series

—2.8571 + 0.168u + 0.22u> + ...

1
x=_"
Tu

From this it follows that when one increases the central pressure, the
radius (p = 0) at first increases, passes through a maximum on the first
envelope, then decreases to the second envelope, then increases again and
tends in an oscillatory manner to a limit point on the limit of the envelopes.

For A = 0, the first maximum takes place at

u = 0.083

and the limiting point is at
u=0.05.

One can easily enough give an account of the mechanism of this ap-
parently paradoxical result.

When the central pressure increases, one naturally tends to increase
the radius, but at the same time one increases the energy content of the
matter

p=0+3p.

The gravitational effect of this energy eventually compensates the effect of
the pressure and the two influences take turns to prevail.

In other words, under Eddington’s hypothesis there is no longer any
question of adiabatic variations; one cannot increase the pressure without
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adding energy to the exterior and the gravitational effect of this additional
energy eventually dominates.

For certain radii, there exist several equilibrium configurations; it is
not clear whether these configurations are unstable, except for that of
minimum energy.

7. INSTABILITY OF THE EINSTEIN UNIVERSE

Having studied the quasi-static spherical fields, we intend to examine
how the breakdown of equilibrium of a quasi-static field can be produced
and in particular the breakdown of the equilibrium of the Einstein universe.

We imagine that by a process which we try to keep as general as
possible one modifies either the equation of state of the matter or its dis-
tribution. We suppose that at the moment of the breakdown of equilibrium
one has still

or _
o 0 (7.1)
and consequently
Oa _ Om _ Op _
or ot ot (7.2)

as for the quasi-static fields; but these relations are no longer maintained
as identities. We go back to (3.7) for the acceleration, and, taking account
of the relations (7.1) and (7.2), we see that the breakdown of equilibrium
can only come about through a modification of p or dc¢/0y.

We have seen above examples of such modifications, but then these
modifications were adjusted so as not to upset the equilibrium.

It is clear that if p and Oc/0y do not change, it is impossible to break
equilibrium, and that is true even if p and dc/0y change at points other
than the one under consideration. If one sets the interior region in motion,
for example, taking care to preserve the spherical symmetry, that will have
no effect on the exterior region, since the pressure and the force of gravity
Oc/0x would not be modified there.

The condition

Oc
ox

can still be considered as the condition that the worldlines with constant
x defined by the matter are geodesics.

To study the breakdown of the equilibrium of the Einstein universe
due to the effect of the formation of local condensations distributed uni-
formly in space, we imagine a large number of centres of condensation

=0



The Expanding Universe 659

distributed more or less uniformly. There is no way to suppose them dis-
tributed in a perfectly homogeneous manner for, in an elliptic space, there
is no equivalent of the cubic lattices or the space-filling spheres® of Eu-
clidean space. But statistically the distribution can be assumed uniform.

The condensation process is supposed to develop in a similar manner
around each centre of condensation, and there naturally exists a network
of surfaces, forming cells around the centres of condensation, which are
the loci of points which are no more under the influence of one of the two
condensations which they separate than the other. These cells form the
neutral zone between the gravitational fields of the condensations.

By virtue of the global homogeneity which we have assumed, it is
clear that all the cells behave in the same way; they are all in equilibrium,
or they dilate or contract together. It thus suffices to consider just one of
them in order to work out the equilibrium or motion of the whole universe.

Fixing our attention on one cell, the neutral zone of a particular con-
densation, we suppose that that condensation enjoys spherical symmetry,
and that we can take account of the influence of neighbouring conden-
sations by replacing them with a spherically symmetric distribution of
matter. The neutral zone is then a sphere.

The points of this sphere enjoy the property that their worldlines are
geodesics, or that the force of gravity still vanishes there, since neither the
internal condensation nor the neighbouring condensations have a prepon-
derant influence there. One must thus have at the neutral zone

O¢ =0,

ox
and consequently the equilibrium can only be broken if the modifications
introduced into the state of the matter have made p, the radial pressure
at the neutral zone, vary.

Thus if we want to compare a universe which is globally homogeneous
but contains a large number of uniformly distributed condensations with
the perfectly homogeneous Einstein universe, we have to consider the net-
work of cells formed by the neutral zones separating the condensations.
The homogeneous universe must, so to say, be tangent at those points to
the universe presenting the condensations, and the pressure normal to the
neutral zones must be the pressure adopted for the homogeneous universe.
Then the equilibrium, or the expansion, of the homogeneous universe gives
us the equilibrium or expansion of the network of neutral zones.

8 In the original, ‘piles de boulets’
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The two universes can have different masses or different volumes. One
can conclude nothing from that, the determining factor being the pressure
at the neutral zone.

The interest of this result is that it is completely independent of the
particular process which the development of the condensations follows
from. It provides the means, for any particular process, to foresee the
effect of that process on the equilibrium of the universe.

In particular if the pressure is zero and remains zero in the neutral
zones, the condensations do not affect the equilibrium. The radial pres-
sure at the neutral zone is the energy density crossing that zone, and thus
measures the intensity of the exchanges between condensations. We have
called a reduction of such exchanges of energy a ‘stagnation of the uni-
verse’. Only this process of stagnation can determine the breakdown of
the equilibrium in the sense of expansion.

8. CONDENSATIONS IN THE EXPANDING UNIVERSE

In applications to the real universe the pressure is generally negligible
compared with the density. In the case of equilibrium we have had to
take it into account, because the study of a breakdown of equilibrium
naturally depends on minimal forces, but for the study of the expansion
of the universe and the development of condensations in the course of the
expansion, we can neglect it.

In this case, the equation (3.4) tells us that m is a function only of y,
and equation (3.8), for p = t = 0, that ¢ is a function of ¢ alone.

By means of a change of variable, we can thus assume ¢ constant and
put

c=c¢o.
We then have, by (3.6)
tor
PP S0,
and (3.1) becomes
or 2 dy?
7= - <_> + —r*(do* + sin® 0d¢?) + Fdr’ (8.1)
ox/ f<(x)

where r is a function of y and of ¢ satisfying (3.5).

2 2
(%) S L O R (8.2)
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where by (3.3)
or dm
dnpriT— = —— . 8.3
o T dy (8.3)

Finally, equation (3.7) becomes

o Km A\
or T T2 T3 &4

The element of length at an instant ¢ is, from (8.1),

+ r2(do* + sin® 0d¢?).

When f(x) = 1, the geometry is thus Euclidean. The equations then
differ from the equations of classical mechanics only by the introduction of
a cosmic repulsion and, in addition, by the fact that the constant energy in
(8.2), which, from the classical point of view, can have an arbitrary value,
is now zero.

In the general case, one still can consider r as the distance from the
origin, and the energy constant at each material point, that is to say, at
each value of y, can be chosen arbitrarily. But the geometry is then not
Euclidean. One can make a map of it in a Euclidean space where the
lengths normal to the radius vector are represented at their real size. The
lengths along the radial vector are then represented at a scale

dr
dc—f(x)-

The radial length scale depends only on y, that is to say it stays the
same for each material point throughout its motion, and it is linked to
the energy constant in the equation of motion of that point from equation
(8.2).

The coordinate y can naturally be chosen arbitrarily. When f'(x) is
less than or equal to one, one could choose the coordinate y in such a way
that

S(x) = cosy.

Then (8.2) is written more simply,

2 2

2Km A

<%) = _Psin g+ T4 —36 r2. (8.21)
r
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This coordinate choice is convenient when the space is closed. For
a space of the simple elliptic type, the whole space is described when y
varies from 0 to =/2.

It is important to note that m is not the real mass within a sphere y,
but rather the mass calculated starting from the density without taking
the curvature of the space into account. The real mass is

4
M(y) = /0 - (8.5)

cos x

and, just like m, it is independent of time.
In the particular case where m is proportional to sin’ %, we have

4
m=— Msin’ (8.6)
3n

where M = M(n/2) is the total mass of the (simply elliptic) universe.
In this case, one can write

r = R(t)siny (8.7)
and one obtains the Friedmann universe
ds* = —R*[dy* + sin® x(do* + sin® 0d¢*)] + Fdr’, (8.8)

with

2 2
<d_R> - _ 24 3KM A P2 (8.9)
dt 3zR 3

Using the same method as in Section 7, we can study the development
of a condensation in the expanding universe. We assume this condensation
is spherically symmetric, and we replace the exterior condensations by an
averaged density. This comes back to assuming that m is proportional to
sin’ x outside the condensation, but it follows another law in the central
region.

For the universe in the large, the trajectories of concentric material
shells are homothetic (8.7). In the central region on the other hand, they
could equally well approach or move away from each other, so marking the
progress or attenuation of the condensation.

It may also happen that the trajectories corresponding to different
values of y come to cut one another. In this case our solution becomes
inadmissible, for y is a coordinate and thus cannot have two values at
the same point. Physically this means that the hypothesis that we have
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introduced that the pressure is zero becomes inadmissible from a certain
value of y.

In particular, if the trajectories fall back to the centre, it will not be
permissible to treat the problem without introducing pressure. Our aim is
simply to study the tendency of condensations to develop, rather than to
follow their final arrangement for which we can obviously no longer suppose
¢ (the remaining gravitational potential) to be constant, nor neglect the
rotational effects excluded by our hypothesis of spherical symmetry.

It is well known that Friedmann’s equations admit the following types
of solutions:
1. unlimited expansion from 0 to 00, when the roots of the right hand side
of (8.21) are imaginary:
2. the bounded case with coincident positive roots, r varying from zero to
the equilibrium radius, or from that equilibrium distance to infinity;
3. the case of real roots:
(a) a branch bouncing from a minimum to infinity, with as a limiting case
the de Sitter solution;
(b) a quasi-periodic branch from zero to a maximum.

These different eventualities arise according to whether

3Kma A
2 sin’'y
is greater than, equal to, or less than one.

If, for example, m is proportional to sin* %, the central region will be
of the quasi-periodic type finally falling back into the centre, while the
exterior region will be of the unlimited expansion type. Such a model thus
allows us, subject to the remarks made above, to study the formation of
condensations in a universe of the unlimited expansion type.

It is tempting to apply this model to the formation of the nebulae.
It seems however preferable to await a further development of the the-
ory which will free us from the hypothesis of spherical symmetry which
is manifestly not realised by the spiral nebulae. This development goes
outside the scope of this article which considers only exact solutions of the
gravitational equations.

In the following section, we expand the Friedmann solution in terms of
the Weierstrass elliptic functions. The problem is the same for the universe
with condensations and for the homogeneous universe. We consider the
first case, and the passage to the homogeneous universe is made by the
equations (8.6) and (8.7), or more simply by putting y = n/2, r = R,
m = (4M/37).
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In the case of the homogeneous universe, there is a quantity

cdt

" (8.10)

which has particular importance: it is the angular distance travelled by
light. It can serve as a measure of time. Its meaning is not so immediate
for the universe with condensations.

9. INTEGRATION OF THE FRIEDMANN EQUATION BY THE
WEIERSTRASS ELLIPTIC FUNCTIONS

Equation (8.21) can be written, when we consider only variation with

2 2
<Z_r> — A_(r + 2ro)[r —ro(l =) 1[r —ro(1+ n)] 9.1)
t r

where
rc?
3

A3+ ) = Asin’ y (9.2)

A% =

A2r3(1 - 712) =Km.
Introducing a Weierstrass function ¢pu) having roots
e1 =621, er= =3+ 6n+ 1, es= -3 —6n+1, (9.3)

and putting

gou) = 3+ 7' = 6(1 - )"F, (9.4)
eq. (9.1) becomes
du :
432(1 - W(;) = —A’[gou) -3 - 7). (9.5)

Consider a value v such that

§ov) =3+ 1, (9.6)

whence
(@] = -432(1 - 7)°. (9.7)
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This gives
A @v)
A= o) — o) 20(v) = C(ut v)+ Qu —v), (9.8)
whence, on integrating,
FAr= C+2ug(v) + log E” " V; (9.9)

Equations (9.4) and (9.9) provide a parametric representation of the
motion.

The variable u is proportional to the quantity U introduced at the
end of the preceding section; one has in fact

U* = —12(3 + nH)u’. (9.9

The period w corresponding to e; is calculated from the following
formulae:

»i/el — €3 - »i/el — €

T+ e
_Va+pB-p -l -nG+n

. (9.10)
YA+ G-+ Y0 -G+
When n is imaginary = i7, one puts
_ 20
tgy = 3+ (9.11)
and obtains
/=it (9.12)
Subsequently one has
Ca(5) s(8)
=—-+2l-) +15({- ) +... 9.13
7= ) ) (9.13)
o _ 1+ 2¢"+ 24"+ ... 1+ 24 + 24" + ...

2 Vel -63+Ve1 —e \[ Ya+np@B-n+ Y1 -nG+n

_1+2q +... .,/ cosy
~ 2cos(y/4) 33+ )

(9.14)
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For practical calculations, we must replace ¢oand o by their expres-
sions in terms of the 6 functions.

Putting
=2 p=Z_g4 (9.15)
T 2
we have
2
fou) = er + \/(61 —ex)(er —e3) {%}
2
= e1 + V(e - e2)(e1 — e3) {%(%} (9.16)
and , R
o(u) = Const.e'™ /21 g, (o).
One has
(e1 —ex)(er —e3) =99 - ') (1 = 1)
and

§ov) —er = =3(1 — ).
Thus from (9.4) and (9.6) comes

2ro _ gbv) — ghu) _ u{m}
ro 3= V1-7 la(w
TN Ak z{el(é)r

Sl )

Denoting the values of o and 8 corresponding tou = v by ao and o,
gives, for ¢,

o01(a+ ao) _ 6 '(ao)
61(a — o) 61 (o)
6 (a = Po) 0 '(Bo)
g + 2
02 (a+ o) 62(Bo)
O (B+ o) 0 '(Bo) (9.18)

0 (B- B P onp

+At= Ci + log

:C2+

= C3 + log
One has

1 . . .
611791(06) = sina - ¢’ sin3a+ ¢®sinsa...,
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1
611792(06) = cosa+ ¢° cos3a+ ¢ cossa... .

Of course o and [ are imaginary.

In the case of real roots one easily sees that for a pure imaginary «,
r is real and positive and starts from zero at o = 0. That corresponds to
the quasi-periodic universe. For pure imaginary S, r is infinite for S = [o
and decreases when f3 increases its absolute value.

It remains for us to transform the imaginary trigonometric curves.

Towards this end, we put

x= ! y =P, (9.19)
We obtain for the quasi-periodic universe

2ro
r

_ 9- P [x+x '+ P+ H+ PP H L)
= -1+ .2 -l 2003 -3 6(v5 _ -5 (9.20)
l-nLlx -x g (X’ =x )+ ¢ (x> =x" )+ ...

and for the bouncing universe

2ro

r
a B B} 2
PN LR {y e e A el 5)+...} ©21)
L= Ly+y @O+ y D+ 07+ )+ '
which, for » = 00, gives the value yo corresponding to fo.
We thence have for the quasi-periodic branch the equation

T+ At - C;

it e+ PPy P D+ P X T+ L
- -1 - -3 - -5

xyo+ x Ty L @3+ X )+ gty xSy )+ L

-1 -3 -5
Yo = Yo +3805 = ye ) +5¢° (v =y ) + .

= Log

+2 T 3 —s ~“Logx  (9.22)
o+ yo @ty )+ oty )L
for ¢, and for the bouncing branch
+ A1t - C;
- -1 - -3 - -5
- Log =2 Vo =P =y i )+ P -y i )

1 - -3 - -5 -
o =y ' = @0y =y )+ Ty )+
-1 -3 -5
Yo —vo *+3705 —ye )+ 5¢° (g —ye )+ ...
1 3 3 6 s N Logy. (9.23)
yot+yo tqptye )t (oty)t ...

-2
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These formulae apply equally well to the case where the roots are
imaginary. Then ¢ is pure imaginary, but since it appears only squared,
this results in a simple change of sign.

Besides, one can identify the two expressions by putting

i
y=". (9.24)
qx
The sign choices correspond and
-1 -3
Yo=Y +3PWE -y )+ ..
yorye @Oy

Cs —Cy = —4Logyo + 2 Log~. (9.25)
q

It is advantageous to use the first formulae for x between 1 and
1/4|-qi, and the second for larger values of x.

For real ¢, the maximum or minimum of r occurs for x or y equal to
/.l

When one is given r, the calculation of x or y can be carried out
through the formulae (/= A1)

Vit 2ro/r+ VO - )/ - P) _ tg2e _ sin20 ©9.26)
V1+ 2r0/r = /9 = 2)/(1 = ) A a ’

where one of the angles ¢ and 6 is real. One then has (¢ = ¢1i)

0
2:t_g_<p<1+4qi;ggﬂ+_“>:L&(l_4q4ﬂgl+___) (9.27)

* q sin 2¢ q sin 26
t tg2 tgo tg26

S c_w<1 el ) _ _C_L<1 b ggtele20 ___)_(9_28)
q sin 2¢ q sin 20

For real ¢, the quasi-periodic branch corresponds to values of 0 be-
tween zero and 45°, and the bouncing branch to values between 135 and 90
degrees. For imaginary ¢, the angle ¢ ranges between zero and 90 degrees.

10. THE CLUSTERS OF NEBULAE

One of the characteristics of the universe which is revealed to us by
astronomical observations is that, while there exist isolated nebulae, there
also are agglomerations of nebulae, the population of which varies from
some tens up to hundreds of nebulae.

We intend to discuss the hypothesis under which the clusters of neb-
ulae would be essentially in equilibrium and have the form of a part of the
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Einstein universe. We prove in the sequel that some information about
the expansion of the universe can be deduced from this hypothesis.

If the clusters are in equilibrium, the current radius of the universe is
clearly greater than the equilibrium radius, in such a way that the Hubble
ratio .

o= 18x 10° years (10.1)

between the distance of the nebulae and their spectroscopic velocity of
recession is a measure of the cosmological constant. Adopting

L= 104,

we can calculate from the formula (8.4) at what distance r, the cosmic re-
pulsion and the force of gravitation due to a mass m come into equilibrium;

one has
3 _ 3Km

r —_
¢ A2

re = 80%, (10.3)

the distances being measured in light-years and the Sun’s mass having
been taken as the unit.

If the clusters of nebulae are in equilibrium, r. must be the radius
of the neutral zone corresponding to each nebula. The mean distance
between nebulae must thus be 2r,.

If there are N nebulae distributed in a more or less spherical fashion,
the volume of the cluster must be

(10.2)

or

47T 3
— Nr,
3

2re{]§: 160 A[Nm .

We can estimate the distance D and the angular diameter d of the
cluster; we must then have as the condition of equilibrium

and its diameter

Dd = 160+|Nm . (10.4)

If d is expressed in degress and D in megaparsecs, the diameter in
light years is
Dd

—————x 10° = 160+ /Nm .
031x 57.3
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whence
Nm10 ° = 0.043D° 4. (10.5)

Hubble’s estimates (Mount Wilson Contr. no. 427) allow us to calcu-
late the mean mass of a galaxy under the hypothesis of equilibrium. For
certain clusters, the data of table IX do not agree with the information in
the text; we have then made the calculation for both values.

Cluster N [ D d m 10" °
Virgo (500) 1.8 |12° 11° [0.9 0.7
Pegasus 100 7.3 |1 0.2
Pisces 20 7 105 1 0.1 0.7
Cancer 150 9 |1.5 1 0.7 0.2
Perseus 500 11 2.0 0.9
Coma 800 | 14 | 1.7 0.7
Ursa Major 300 | 22 [0.7 0.5
Leo 400 | 32 (0.6 0.8

These data are clearly of very unequal value. In particular, Shapley
finds a very much larger distance and a smaller number of nebulae for the
Virgo cluster. However, for the Virgo clusters A, B, C and D, Shapley
finds diameters and numbers of nebulae of the same order of magnitude.

If one takes into account the uncertainty in the data on which we
are basing the calculations, and in particular the irregular form of most
clusters, one can consider the result as favourable to the hypothesis of the
equilibrium of the clusters of nebulae.

The numerical value of the mass found for the nebulae is of the order
of magnitude indicated by Hubble’s research.

The data concerning the Coma cluster seem to be the most secure,
all the more so as this cluster appears to have quite a globular form. We
thus adopt as our estimate of the mean mass of nebulae

0.7 10° ®,
and thus, as the mean distance between the nebulae,
140 000 light-years.

Comparing this value with the mean distance of the isolated nebulae,
estimated by Hubble as

1, 800, 000 light-years,
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we have, as the coefficient of expansion of the universe

R
— = 13, 10.6
R (10.6)

The hypothesis of cluster equilibrium thus seems to provide the means
of making precise, and confirming, Hubble’s estimates.

It has also the interest of providing a cosmological significance to the
relative frequency of clusters and isolated nebulae.

Without us having so far developed a truly precise theory, it is clear
that if the expansion is not much slowed down in the neighbourhood of
the equilibrium position, it is almost impossible that the parts of the uni-
verse could have deviated in great numbers from the average motion at
the moment when they were in equilibrium, and perhaps one could prove
that if the expansion is too much slowed down in the neighbourhood of the
equilibrium, the clusters would have to be more numerous and more im-
portant than they really are. Thus there is here a new line of attack which
allows us to find the value of n°, or at least exclude the neighbourhood of
the two critical values n* = -3 and > = 0.

This suffices to determine the order of magnitude of the radius of the
universe and the expansion time.

We have in fact, by (9.2) and (10.2)

Ri(1 - ') = R} (10.7)
A*R;(3+ 7)) = ¢ (10.8)
so that
1037 1
Ro = \/C == cm_ 10° light -years (10.9)
avitr  Jietp  Jie iy
whence

A /1 _ a2
R = 13R, = 13~=—1= light-years.
e
If 7% is not around -3, the order of magnitude of the radius of the
universe is thus known.
It is the same for the expansion time.
The limiting case 7 = —3 gives the exact solution

3At 3
R = 2Ry sh?/> = TR ‘\Pe/“ (10.10)
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with
= 3\/ZRO,
whence
24t = 2x 2.303 10g13i]§= 5.6. (10.11)
As 24 = 10" ° years, the expansion time is 5.6 x 10° years.
For n* = —0.1 one finds by the formulae of the preceding section
24t = 8.437. (10.12)

When 77 tends to zero, one can easily find the asymptotic value of
the expansion time from R = 0 up to a value greater than Ro. Putting

2 R
R+ 2Ry

At Log 1 —x \]5 Log ?\V]VB
\/5 Log ~ 2 Log(2 + \[) (10.14)

This equation shows how the solution tends to the limiting solution
(Ro, 00) when ¢ tends to zero.

(10.13)

one obtains

One has 5
2= Ly 10.15
q1 144 (10.15)
and
M 3
ﬁ&'c ==+ ... =1+u (10.16)
2w 2

where p represents the accuracy with which the mass is adjusted to the
cosmological constant in order to realise the position of equilibrium.
For the expansion coefficient = 13, one finds

1
24t = 593+ 2.66log;, — . (10.17)
o
For the bouncing universe one similarly has

1+ X 1 X 3-1
At = Log + — Log
1-X \/5 X\B+

1 1
+ $ Log = — Log(2 + 4/3). (10.18)
q
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the time being measured from the minimum radius, that is

-1
24t = 546+ 1331log;, — . (10.19)
u

When 7 tends to —3, the radius tends to infinity but U, the angular
distance which light is capable of crossing during the expansion, tends to
Zero.

It is interesting to calculate R, U, the distance at the moment of equi-
librium of the most distant points which can transmit light to each other.
One has, by (9.91), (10.7) and (10.8)

ReUzz\[ﬂ,‘ 1< (10.20)
i A
and " o
- =~ log X%,
i T
One finds for > = -3,
R, U= 4.46i = 4.46 x 10° light-years. (10.21)

11. SCHWARZSCHILD’S EXTERIOR FIELD

The equations of the Friedmann universe admit solutions where the
radius of the universe tends to zero for a non-zero mass. This contradicts
the generally accepted result that a given mass cannot have a radius smaller

than
2K m

c?

or 2m in natural units (K = ¢ = 1).
This result follows from the solution of Schwarzschild’s exterior prob-
lem,

dr?
2 _ 2 2 -2 2
ds” = -1 ~ m/r) — (3 —r°(do” + sin” 0d¢”7)
P R PR (11.1)
r 3

We intend to prove that the singularity of the field is not real and
arises simply because one wanted to use coordinates for which the field is
static.
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In vacuum, m is a constant. Let us consider the Euclidean case f'(y) =
1 and put

7\‘2
P 2 AZ:TC. (11.2)

Equation (8.2) becomes

or :
r<5> = A*(r* + 8r)) (11.3)
whence
34
= 2rOSh2/37(t—x). (11.4)

We may write F(y) in place of y, but this does not introduce any
more generality.

Since
o _ or
Ox ot
we then have
dr’
ds® = —A*(r* + 8r} — r*(do* + sin” 0d¢*) + Fdr (11.5)
r

which is a solution for a vacuum field.

At each instant, space is Euclidean, and there is no singularity except
for r = 0.

If we take r as a coordinate, there must be a means to define a coor-
dinate 7 in such a way as to put the field into Schwarzschild’s form.

So one has

2 A2 3 3 2
dr® = T(V + 8rg) (dt — dy)
whence
A2 A°
=+ 8r)dy’ = dr® = = (7 + 8r() (di = 2dy di)
r r
and
2

A
ds® = —dr’ — r?(do* + sin® 0d¢*) + | + — (r* + 8r)) |dr’
r

24° 3
- (r” + 8ry)dy dt
r
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and, eliminating y,

A2
ds* = —dr* — r*(do* + sin® 0d¢?) + {cz - =7+ 8r3)}d12
r

3 + 8 3
+ 24\ /L dr ar.
r

Setting
A /;’3+Srﬂ3
de = di+ —— FEvE— (11.6)
gives
d 2
s’ = - 8A22 57 - r(de + sin” 0dg?)
I r
| - =
CZV Cz
8A2 3 A2 2
+c2<1 —T:l—c—; de?, (11.7)

which is Schwarzschild’s form (11.1) for the field of a point mass.

The singularity is introduced because the expression which appears in
the denominator of dr (11.6) vanishes for sufficiently small values of r.

7 depends on an elliptic integral. In the particular case where A tends
to zero, the integration can be carried out. To simplify matters, let us take
coordinates for which K and c¢ are equal to one.

One has, at the limit where 4 tends to zero,

84%ry = 2m (11.8)
whence
\/Z
dr = dt + 1_;adr, (11.9)

and, on integrating,

T=1+2 mr+2mLogM, (11.10)
NRRE
a transformation which is inadmissible for values of r less than 2m. The
equation (11.4) similarly becomes

\]27 (11.11)
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and the new form of the field is written without singularity

2

d
ds? = —2m<& _ 12(d6* + sin® 0d¢*) + di’, (11.12)
r

r=[3aPm (- 07 (11.13)

The singularity of the Schwarzschild field is thus a fictitious singular-
ity, analogous to that which appears at the horizon of the centre in the
original form of the de Sitter universe.

where

12. THE VANISHING OF SPACE

The radius of space may pass through zero. We intend to discuss this
passage, and to examine in particular if there is a way of interpreting this
zero value of the radius physically as simply representing a small quantity
and, in this case, of fixing its order of magnitude.

For the study of the zero point, we may neglect the cosmological

constant; setting
Km

c?

2
1 {dR 2a
-l = -1+ —. 12.2
cz<dl) R ( )

= a, (12.1)

we then have

Introducing the angular distance U crossed by light during the time

dt
du =, (12.3)
R

we easily find Einstein’s cycloidal universe

R = a(l - cos U),
. (12.4)
ct = a(U - sin U).
When U varies from 0 to =, R returns to its initial zero value, and
light just has time to go round the simply elliptic space.
The question is to know if there is a way to smooth out the cusp of
the cycloid.
One can ask first of all, if one would not obtain this result if one
took into account the effect of the pressure which need not necessarily be
negligible. It is easy to see, going back to the equation (3.7), that the
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pressure only reinforces the gravitational action. Besides, the question has
been treated in detail by Tolman.’

It is more important to examine the effect of a lack of isotropy in the
distribution of tensions.

We intend to examine, following an idea which Einstein communicated
to us, a universe defined by

ds® = b dx? — brdx? — Brdx> + dx? (12.5)

where b1, b» and b3 are functions of x4 = r.

Such a universe is naturally inadmissible from many points of view,
but it has the interest of introducing a marked and largely arbitrary
anisot ropy.

We can easily calculate the matter tensor by the formulae of Section 1.

We have, for k and i different from 4, by (1.9),

ryr

b;b
Zi%ke
= 12.6

bib/c ( )

ik

the primes denoting derivatives with respect to ¢, and

b
4 = Z— ) (12.7)

The components 7,, (u # v) vanish.

J-g= bbby = R (12.8)

measures the volume occupied by a specified part of the matter. Here R
is no longer the radius of the universe, since the space is Euclidean, but
the volume of space tends to zero if R tends to zero.

We have , , , ,
R B b B
R b1 b b3
and
J(RED) BB K B8 K
R R? by by by b B B

® This reference is: Tolman, Richard C., and Ward, M. (1932). “On the Behavior
of Non-Static Models of the Universe when the Cosmological Constant is Omitted.”
Physical Review 39, 835-843 — Transl.
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Setting
br br 2 br br 2 b’ b’ 2
12:<_L__2_) +<_z__l> +<_1_—L> (12.9)
b b b b3 b3 b
we obtain " ' ' "
3R— = QL + él + él - _12
R b1 b b3
or, by (1.12),
RH K 1
3L M A BT T - (2.10)

In all reasonable applications, T}, 77 and 75 will be negative, and in
all cases less than 7; = p in absolute value. R" will thus be essentially
negative. If therefore at a certain instant R’ is negative, R must attain
the value zero and thus the volume vanishes.

One sees that anisotropy can no more prevent the vanishing of space
than pressure can.

The above argument is not a formal proof of the impossibility of avoid-
ing zero volume by anisotropy, since (12.5) is not the most general conceiv-
able form, but it indicates all the same that in an already rather general
case anisotropy acts in the opposite sense.

The matter has to find, though, a way of avoiding the vanishing of its
volume.

As long as the matter is made up of stars, this is manifestly impossible.

When it is condensed into a single mass, it is clear that it must have
acquired a high temperature much greater than the critical temperature
of liquids and that nothing prevents it attaining a degree of concentration
comparable to the interior of the companion of Sirius.

Even for a degenerate gas it seems that nothing could oppose the
concentration, since the available energy M/ R is unbounded.

When the distances between the atomic nuclei and the electrons be-
come of the order of 10" !> cm, the non-Maxwellian forces which prevent
the mutual interpenetration of elementary particles must become predom-
inant and are without doubt capable of stopping the contraction. The
universe would then be comparable to a colossal atomic nucleus. If the
contraction is stopped, the process should continue in the opposite direc-
tion.

Adopting, following Eddington, 107® as the number of protons in ex-
istence, we have, as the order of magnitude of the radius of the universe
when reduced to its atomic state

10(78/3)— 12 _ 1014 cm |
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which is about ten times the distance to the Sun.

We thus conclude that only the subatomic nuclear forces seem capable
of stopping the contraction of the universe, when the radius of the universe
is reduced to the dimensions of the solar system.

For the cosmological point of view, the zero of space must thus be
treated as a beginning, in the sense that every astronomical structure
with an earlier existence would have been completely destroyed there.

The epoch of this beginning, or, if one likes, of this recommencement,
certainly dates from before the formation of the Earth’s crust and the
organization of the solar system, that is as a strict minimum from the
study of radioactive rocks

1.6x 10° years.

Comparing this value with Hubble’s ratio
r 9
— = 1.8%x 107 years,
v

we conclude that all solutions in which the expansion speed has always
been faster than it is now are excluded.

In particular, for Einstein’s cycloidal universe (12.4) or the solution
(10.10) for small R/ Ry, one has

2
t= £Lo 1.2x 10° years.
3y

We must thus exclude the solutions where the radius is less than the
equilibrium radius and in particular the quasi-periodic solutions.

For a purely aesthetic point of view, one may perhaps regret this.
Those solutions where the universe expands and contracts successively
while periodically reducing itself to an atomic mass of the dimensions of
the solar system, have an indisputable poetic charm and make one think
of the phoenix of legend.

Translator’s note.

French and English are comparatively closely related, and scientific papers
use only very restricted forms of expression and vocabulary, so that in
much of this paper I have been able to give a more or less direct literal
translation, only recasting sentences where I felt it was really necessitated
by differences of grammar or idiom between the languages. Where usage in
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scientific writing has changed, I have sometimes rendered words or phrases
as their modern equivalents in order to turn Georges Lemaitre’s original
French into the usual style of modern scientific papers in English (to take
the first such case, ‘paragraphe’ became ‘section’), but have on the whole
tried to avoid anachronism. Similarly, the notation has not been changed,
except for correction of a few obvious misprints. I have left historical
or explanatory commentary to the editor, except where I felt Lemaitre’s
meaning might otherwise be misunderstood by a modern reader. In a few
cases, Lemaitre’s precise meaning was unclear not only to me but also to
a native French speaker. I am grateful to Dr. Caroline Terquem for advice
at those points, and have indicated them by giving the original phrase in
a footnote. I am also grateful to Dr. Jean Eisenstaedt for drawing my
attention to two typographical errors in the original, before (11.2) and
in (11.11), and for the details of the references to Tolman’s work and to
Lemaitre’s thesis.



