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Duhem's Problem, the Bayesian Way, 
and Error Statistics, or 

"What's Belief Got to Do with It?`* 

Deborah G. Mayott 
Department of Philosophy, Virginia Polytechnic Institute and State University 

I argue that the Bayesian Way of reconstructing Duhem's problem fails to advance a 
solution to the problem of which of a group of hypotheses ought to be rejected or 
"blamed" when experiment disagrees with prediction. But scientists do regularly tackle 
and often enough solve Duhemian problems. When they do, they employ a logic and 
methodology which may be called error statistics. I discuss the key properties of this 
approach which enable it to split off the task of testing auxiliary hypotheses from that 
of appraising a primary hypothesis. By discriminating patterns of error, this approach 
can at least block, if not also severely test, attempted explanations of an anomaly. I 
illustrate how this approach directs progress with Duhemian problems and explains 
how scientists actually grapple with them. 

1. Introduction. Pierre Duhem states his problem as follows: 

The physicist can never submit an isolated hypothesis to the con- 
trol of experiment, but only a whole group of hypotheses. When 
experiment is in disagreement with his predictions, it teaches him 
that one at least of the hypotheses that constitute this group is 
wrong and must be modified. But experiment does not show him 
the one that must be changed. (Duhem 1954, 185) 
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This raises a well-known problem for a simple Hypothetico-deductive 
model of hypothesis testing. On this simple HD model if an experi- 
mental result disagrees with the expected consequence of a hypothesis 
H, then H is disconfirmed. However, Duhem points out, the deduction 
of the expected consequence from hypothesis H generally requires aux- 
iliary assumptions and background conditions and these may them- 
selves be open to question. The simple HD method, in and of itself, 
does not tell us whether to allocate the blame to H or to part of the 
auxiliary assumptions. 

The task that Duhem's problem poses for philosophers of science is 
to provide a way to determine which of the hypotheses used to derive 
a predicted consequence should be rejected or disconfirmed when ex- 
periment disagrees with that prediction. If the simple HD method will 
not succeed, as clearly it will not, the question arises as to whether 
other models of testing or confirmation will. In actual scientific epi- 
sodes sometimes H is taken to blame and other times H is retained 
while auxiliary assumptions are said to be responsible for the anoma- 
lous result. And an adequate model of testing should account for this. 
Several defenders of the subjective Bayesian model of confirmation 
have argued that even if scientists are not conscious or unconscious 
Bayesians, reconstructing scientific inference in Bayesian terms is of 
value in solving key problems in philosophy of science. The problem 
for which the Bayesian Way is most often touted as scoring an im- 
pressive success is the Duhem problem. 

The Bayesian strategy subjective Bayesians appeal to in their solu- 
tion to Duhem is that of Jon Dorling (1979), and since Dorling's work 
is credited as the exemplar for the Bayesian solution to Duhem, I will 
take it as my example too. Dorling's aim, as he puts it, 

is to point out that the Bayesian personalist approach to scientific 
inference provides a ... solution to this [Duhem] puzzle by telling 
us exactly when [disregarding unsuccessful predictions] can be re- 
constructed as rational and when it has to be deemed irrational. 
Rationality here, for the Bayesian, simply means conformity with 
[Bayes'] theorem. (Dorling 1979, 177) 

Several Bayesians feel he has largely succeeded. Michael Redhead 
(1980) endorses and elaborates on Dorling's analysis. Colin Howson 
and Peter Urbach, currently among the strongest defenders of the sub- 
jective Bayesian Way, believe that Dorling's examples show, not only 
how Bayes' theorem solves the Duhem problem, but also "that the 
Bayesian model is essentially correct." They declare, further, that no 
non-Bayesian methods have the resources to even begin to solve Du- 
hem's problem (p. 101). John Earman, that most refreshingly critical 
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of Bayesians, calls Dorling's proposed Bayesian solution a "highly 
qualified success for Bayesianism," but even with this hedge he allows 
that "the apparatus provides for an illuminating representation of the 
Quine and Duhem problem" (Earman 1992, 85). 

In this paper I shall be arguing that the Bayesian Way out of Du- 
hem's problem is really no way out at all, nor do I think it offers a 
more illuminating statement of the problem than that of Duhem him- 
self. It fails to solve the problem because a Bayesian reconstruction 
does not show which hypothesis it is warranted to credit or blame. It 
does not illuminate the problem because it does not accord with how 
Duhem's problem is or should be grappled with in science. But my aim 
is not primarily negative. Scientists do regularly tackle and often 
enough solve Duhemian problems, and my real aim is to set the stage 
for the kinds of methods and reasoning they use to adjudicate disagree- 
ments about what is at fault. 

2. The Subjective Bayesian Model. In a nutshell, the subjective Bayesian 
model of confirmation says that evidence e confirms hypothesis H to 
the extent that an agent's degree of belief in H is higher given evidence 
e than what it was or would be without evidence e. Probability mea- 
sures subjective degree of belief. The agent's degree of belief in H after 
evidence e is called the posterior probability assignment. The degrees 
of belief an agent has in a hypothesis H and its alternatives without 
evidence e are the prior degree of belief assignments. Inductive infer- 
ence from evidence is a matter of updating one's degree of belief to 
yield a posterior degree of belief so as to cohere with Bayes' theorem. 
The simplest statement of Bayes' theorem is this: 

P(H I e) = P(e I H) P(H) 
P(e I H) P(H) + P(e I not-H) P(not-H) 

The key quantities are the prior probabilities in H and in not-H, the 
likelihood, P(e I H) and the Bayesian "catchall factor," P(e I not-H). If 
you have these then you can compute Bayes' theorem to get the pos- 
terior probability of H. 

Bayes' theorem just follows from the probability calculus and is un- 
questioned by critics. What is questioned by critics is the relevance of 
a certain use of this theorem; namely for scientific inference. Their ques- 
tion for the subjective Bayesian is whether scientists have prior degrees 
of belief in the hypotheses they investigate and whether, even if they 
did, it is desirable to have them figure centrally in learning from data 
in science. Would not such personal opinions be highly unstable, vary- 
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ing not just from person to person, but from moment to moment? That 
they would is expected and accepted by subjectivists. 

Another serious problem is the Bayesian catchall factor P(e I not-H). 
Not-H, the catchall hypothesis, refers to a disjunction of hypotheses 
other than H, including those not yet thought of. The smaller the as- 
signment to the Bayesian catchall factor, the higher the confirmation 
to H. For very small assignments to the Bayesian catchall factor the 
denominator may hardly be greater than the numerator. 

3. Dorling's Homework Problem. When Bayesians say they can solve 
Duhem's problem, what they mean is this: Give me a case in which an 
anomaly is taken to disconfirm a hypothesis H out of a group of hy- 
potheses used to derive the prediction, and I will show you how certain 
subjective probability assignments can justify doing so. The "justifi- 
cation" is that H gets a low (or lower) posteriori probability than the 
other hypotheses. Solving Duhem comes down to a homework assign- 
ment-not to say a necessarily easy one-of determining how various 
assumptions and priors allow the scientific inference reached to be in 
accord with that reached via Bayes' theorem. Let us look at Dorling's 
homework problem informally. 

Dorling considers a situation where despite the fact that an anom- 
alous result e' occurs, the blame is placed on an auxiliary hypothesis 
A while the credibility placed on hypothesis H is barely diminished. In 
Dorling's simplified problem, only one auxiliary hypothesis A is con- 
sidered. The hypothesis H he considers is "the relevant part of solidly 
established Newtonian theory which Adams and Laplace used" (Dor- 
ling 1979, 178) to compute e, the predicted secular acceleration of the 
moon, which conflicted with the observed result e'. The auxiliary hy- 
pothesis, A, is the following: 

A: the effects of tidal friction are not of a sufficient order of mag- 
nitude to affect appreciably the lunar acceleration. 

Dorling's homework problem is to provide probability assignments so 
that, in accordance with the episode, an agent's credibility in hypothesis 
H is little diminished by the anomaly e', while the credibility in auxil- 
iary A is greatly diminished. Although the asymmetric effect of the 
evidence may seem surprising, a closer look at the Bayesian assign- 
ments shows it not to be surprising at all. 

We can sidestep the numerical gymnastics to get a feel for one type 
of context where the agent faults auxiliary A. (The Appendix contains 
the corresponding numerical assignments.) 

Hypothesis H and auxiliary A entail e, but e' is observed. When 
might e' justifiably be taken to blame A far more than H? Here's one 
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scenario which I will sketch in terms that I intend to be neutral between 
accounts of inference. Suppose the following 3 conditions obtain: 

(1) there is a great deal of evidence in favor of a theory or hy- 
pothesis H, whereas 

(2) there is little evidence for the truth of auxiliary A, say hardly 
more evidence for its truth than for its falsity, and 

(3) unless A is false, there is no other plausible way to explain e'. 

This would seem to describe, in neutral terms, a situation where e' 
indicates (or is best explained by) A being in error. 

A Bayesian rendering may be effected by inserting "agent x believes 
that" prior to assertions (1), (2), and (3). We then have a description 
of a circumstance where the agent believes or decides that A is dis- 
credited by e'. Nothing is said about whether the assignments are war- 
ranted, or, more importantly, how a scientist should go about deter- 
mining where the error really lies. 

Consider the numbers corresponding to Dorling's Bayesian recon- 
struction. To begin with, the scientist's degree of belief is such that a 
high degree of belief is accorded to H initially (e.g., P(H) = 0.9), in 
any case, H is substantially more probable than A, which is considered 
only slightly more probable than not (e.g., P(A) = 0.6). That is, the 
assumed prior probabilities are: 

(i) P(H) = 0.9 P(A) = 0.6. 

To get the other key assignments, imagine our agent contemplating 
two different possibilities. First, the agent contemplates the possibility 
that auxiliary hypothesis A is true. 

3.1. The agent contemplates auxiliary A being true. Clearly, H could 
not also be true (since together they counterpredict e'). But might not 
some rival to H explain e'? Here is where the key assumption enters. 
It corresponds to assigning a low value to the Bayesian catchall factor. 
The agent believes there to be no plausible rival that predicts e'. That 
is to say, the agent sees no rival which, in his or her opinion, has any 
plausibility, that would make anomaly e' expected. In subjective prob- 
ability terms, this becomes: 

(ii) The probability of e', given A and not-H, is very small. Let 
this very small value be s. 

Since the anomaly e' has been observed, it might seem that the agent 
would assign it a subjective probability of 1. Doing so would have 
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serious ramifications (i.e., this is the "old-evidence problem"1). To 
avoid assigning degree of belief 1 to e' Bayesian agents need to imagine 
how strongly they would have believed in the occurrence of anomaly e' 
before it was observed-no mean feat. We are to imagine that the sci- 
entist considers how strongly he or she would expect e' before knowing 
of e"s occurrence. Putting aside for now the difficulties in assigning 
such probabilities, the Bayesian assumes the agent can and does make 
the key assumption that, on his or her view, the observed anomaly e' 
is extremely improbable were auxiliary hypothesis A true. It is as- 
sumed, that is, that the agent gives a very low assignment to the Bayes- 
ian catchall factor. 

Now consider the agent's beliefs assuming auxiliary A is false. 

3.2. The agent contemplates auxiliary A being false. In contrast, were 
auxiliary A to be false, the agent finds e' to be much more likely than 
if A were true. In fact, Dorling imagines that scientists assign a prob- 
ability to e', given not-A, that is 50 times as high as that in (ii), whether 
or not H is true. That is, P(e'l not-A) = 50g. We have, 

(iii) (a) The probability of e', given H and not-A, is 50?. 
(b) The probability of e', given not-H and not-A, is 50c. 

Of course, (a) and (b) need not be exactly equal, but what they must 
together yield is a probability of e' given not-A many times the prob- 
ability assignment to e' given A. 

A further assumption, it should be noted, is that H and A are prob- 
abilistically independent. 

Together, (i)-(iii) describe a situation where the outcome e' is be- 
lieved to be far more likely if A does not hold than if it does. Indeed, 
the posterior of A becomes very low, dropping from 0.6 to 0.003- 
now that the anomaly is known. The degree of belief in not-A becomes 
practically 1! In contrast, the posterior probability of H remains rather 
high, slipping a little from 0.9 to 0.897. 

This gives one algorithm-Dorling's-for how evidence can yield a 
Bayesian disconfirmation of auxiliary A, even though A was deemed 
more plausible than not at the start. Non-quantitatively put, the al- 
gorithm for solving the homework problem is this: Start with a suitably 
high degree of belief in H as compared with A, believe no plausible 
rival to H exists that would make the anomalous result expected, and 
hold that the falsity of A renders e' many times more probable than 
does any plausible rival to H. 

In addition to accounting for specific episodes, the Bayesian Way can 

1. See, for example, Glymour 1980. 
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be used to derive a set of general statements of the probabilistic rela- 
tionships that would have to hold for one or another parceling out of 
the blame. These equations are neat, and the algorithms they offer for 
solving such homework problems are interesting. What they do not pro- 
vide, however, is a solution to Duhem's problem. Duhem's problem, as 
Howson and Urbach themselves say, is to determine "which of the sev- 
eral distinct theories involved in deriving a false prediction should be 
regarded as the false element" (1989, 94). The possibility of a degree of 
belief reconstruction does not help to pinpoint which element ought to 
be regarded as the false one. After all, Dorling's homework problem can 
be done in reverse. Scientists who assign the above degrees of belief, but 
with A substituted for H, reach the opposite conclusion about H and A. 
In the reverse case one blames H rather than A.2 

Bayesians may retort that the probabilities stipulated in their recon- 
struction are plausible descriptions of the beliefs actually held at the 
time; and others are not. That may well be. For my own part, I have 
no idea as to how to assign the odds Dorling asks us to: namely the 
odds that a typical scientist "would have been willing to place [on] a 
bet on the correct quantitative value of the effect [e'], in advance even 
of its qualitative discovery" assuming Newton's theory is false. (Dor- 
ling 1979, 182). (Something like this, recall, is the contortion required 
to get around assigning e' a probability of 1 once it is known.) 

Even if one can imagine what its value would be, the question remains, 
Why is it relevant to the scientist's reasoning once the effect e' is known? 
And isn't that where the scientist is in grappling with Duhem? 

Nor is it easy to justify the prior probability assignments needed to 
solve the homework problem, in particular, that hypothesis H is given 
a prior probability of 0.9. The "tempered personalism" of Abner Shi- 
mony (e.g., 1970) advises that fairly low prior probabilities be assigned 
to hypotheses being considered, so as to leave a fairly high probability 
for their denial-for the "catchall" of other hypotheses not yet consid- 
ered. The Dorling assignment leaves only 0.1 for the catchall hypothesis. 

I do not see how the Bayesian reconstruction illuminates (more than 
it distorts) the problem for the simple reason that scientists do not 
succeed in justifying a claim that an anomaly is due not to H but to 
an auxiliary hypothesis by describing the degrees of belief that would 
allow them to do this. On the contrary, scientists are one in blocking 
an attempted explanation of an anomaly until and unless it is provided 
with positive evidence in its own right. Scientists, in short, are required 
to go out and muster evidence for their belief that auxiliaries are re- 
sponsible. And what they would need to show is that this evidence 

2. Similar criticisms of the Bayesian solution to Duhem occur in Worrall 1993. 
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succeeds in circumventing the many ways of erroneously attributing 
blame. Both in arriving at this evidence and in scrutinizing these errors 
it is to non-Bayesian methods and reasoning that they turn. 

They employ a logic and a methodology that is of a sort that I call 
error statistics. The error statistics approach is based on the non- 
Bayesian statistical methods used on a daily basis by scientists who 
employ statistics in their work. In the error statistics approach, the role 
of probability is not to assign degrees of belief or confirmation to hy- 
potheses but to characterize the reliability or severity of experimental 
test procedures. Whereas the Bayesian confirmation for A' rested on 
the comparatively higher prior probability assignment to hypothesis 
H, determining if A' passes a severe test need have nothing to do with 
an appraisal of H. In the logic of error statistical testing, the task of 
finding out whether auxiliary hypotheses are satisfied is split off from 
that of appraising the primary hypothesis H. A scientist may believe 
that some auxiliary hypothesis, rather than H, is to be blamed for an 
anomalous result, but to warrant that claim requires it to have passed 
a reliable test. High prior degrees of belief in H have nothing to do 
with it. 

4. The Error-Statistical Approach to Duhem's Problem. In referring to 
error statistics I am including the familiar techniques of statistical anal- 
ysis we read about every day in polls and studies (statistical significance 
tests and confidence interval estimates). These familiar techniques come 
from the methodologies of Neyman-Pearson as well as Fisherian sta- 
tistics, although I adapt them in ways that go beyond what is strictly 
found in statistics texts. In particular, a statistics text will not say how 
to use these methods for solving Duhem, but that is the story that I 
am supplying. Nevertheless, my use of these methods is not really new; 
it reflects their actual uses in science. But to free them up from the 
confines of the particular philosophies of statistics often associated with 
them, and to allow them to be used in more flexible ways, I give them 
this new name of (standard) error statistics.3 It seems an appropriate 
name since what is central to this approach is the reliance upon error 
probabilities of procedures. 

I cannot hope to fully lay out the error statistical way of handling 
Duhem's problem here, but will limit myself to identifying its key dif- 
ferences from the Bayesian approach exemplified in Dorling's treat- 
ment, and to why I think the account enjoys the right kinds of prin- 

3. For a discussion of how this approach contrasts with the behavioristic philosophy 
most often associated with these methods, see Mayo 1985 and 1996. 
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ciples and methods to justify the distinctions we would like to make 
between plausible and implausible assignments of blame. 

There are two key features of the error statistical approach that are 
of central relevance to grappling with Duhem's problem: First that it 
is designed to split off the task of testing auxiliaries from that of testing 
a primary hypothesis, and second that it is designed to distinguish be- 
tween hypotheses that equally well fit the evidence by considering the 
error probabilities of their respective tests. I will sketch the relevance 
of these features for our problem. 

4.1. A Piecemeal Approach. The first feature we can identify by say- 
ing that it is a piecemeal approach. It corresponds to a view of hy- 
pothesis testing that sees data and hypotheses as related, not directly, 
but by a series of linkages-from the experimental design to the data 
analysis and only then to some primary hypothesis or question. Dif- 
ferent tasks relate to the different models in a given inquiry: the primary 
scientific model, experimental testing models, and data models. Each is 
split off and addressed piecemeal. Two main tasks are explicitly di- 
rected to the two key parts of Duhemian worries: the first task is to 
determine if the data itself are reliable, to determine if there is a real 
effect (a real anomaly) that needs explaining; the second is to determine 
if the assumptions of an experiment are met sufficiently, that is, to the 
problem of checking if alternative auxiliary factors are intervening or 
if the experiment is adequately controlled.4 

Duhem is fond of analogizing the physicist and the doctor, in con- 
trast to the watchmaker: 

Physics is not a machine that lets itself be taken apart. We cannot 
test each piece in isolation .... Presented with a watch that does 
not work, the watchmaker takes apart all the little wheels and ex- 
amines them one by one until the one that is bent or broken is 
found. Presented with a sick person, the doctor cannot perform a 
dissection to establish a diagnosis. The doctor must decide the seat 
of the illness only by inspecting the effects produced on the whole 
body. The physicist charged with reforming a defective theory re- 
sembles the doctor, not the watchmaker. (Duhem 1996, 85) 

We can accept the analogy between the physicist and the doctor but 
reach a different conclusion from Duhem. True, doctors cannot (gen- 
erally) perform dissections to establish a diagnosis but, fortunately, 
they do not have to. Although a great many illnesses could explain a 

4. A full discussion of the error statistical framework, the series of models, and so on, 
occurs in Mayo 1996. 
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given set of symptoms, this does not prevent the doctor from running 
a given test (e.g., an MRI scan, a strep test) to determine the presence 
or absence of a specific condition (e.g., a brain tumor, strep throat)- 
and without having to list, much less assess the probability of, all of 
the other possible explanations. 

The series of models piecemeal framework is an ideal one for grap- 
pling with Duhem's problem. In fact, the central reason for separating 
out the models relating data and hypotheses is to achieve the aim of 
correctly apportioning blame (as well as praise). Before experimental 
results can speak for or against a hypothesis under test, it is necessary 
to check and estimate the extent of any errors along the way-regard- 
ing the data and the auxiliaries. This calls for methods to discern if the 
experiment was well run, to distinguish real effects from artifacts, es- 
timate backgrounds, and "subtract out" influences of factors other 
than some intended one. More than striving to check if auxiliaries and 
assumptions hold, it gives us tools to distinguish the effects of given 
factors. The methods and models from standard error statistics, as well 
as the logic associated with error statistics, are regularly used to carry 
out and give structure to these tasks. 

Two contrasts with the Bayesian Way may be noted: 

(i) Getting beyond a single probability pie: If inference is by way of 
Bayes' theorem, then pinpointing one hypothesis to blame does 
depend (by the mathematics of the theorem) on the probabilistic 
assignment given to the alternative hypotheses. One has one prob- 
ability pie, as it were, and the size of the piece an auxiliary hy- 
pothesis A gets depends upon how much the alternatives get. In 
contrast, a hypothesis about an auxiliary factor, much like the 
doctor's hypothesis about a given disease, may pass a highly severe 
test quite apart from an assessment of the primary hypothesis H. 

(ii) Getting beyond a white-glove analysis: The Bayesian analysis be- 
gins with given data or a given anomaly e': 

The Bayesian theory of support is a theory of how the acceptance 
as true of some evidential statement affects your belief in some 
hypothesis. How you came to accept the truth of the evidence, and 
whether you are correct . . ., are matters which, from the point of 
view of the theory, are simply irrelevant. (Howson and Urbach 
1989, 272) 

If anomalies are approached by way of such a "white glove" logical 
analysis, it is little wonder that they tell us only that there is an error 
somewhere and that they are silent about its source. By recognizing 
that the anomaly itself is a highly modelled entity levels away from the 
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raw experimental data, the error statistician can exploit the nitty gritty 
details of an experimental context to test different auxiliaries. By be- 
coming shrewd inquisitors of errors, anomalies may be made to speak 
volumes. This leads to the second key feature of the error statistics 
approach to Duhem's problem. 

4.2. The Fundamental Use of Error Probabilities of Tests. Error prob- 
abilities are not assignments of probabilities to hypotheses. No such 
probabilities are desired or needed in this approach.5 Probability enters 
instead as a way of characterizing the experimental or testing process 
itself, to express how reliably it discriminates between alternative hy- 
potheses and how well it facilitates the detection of errors. Examples 
of error probabilities are significance levels or p-values, confidence lev- 
els, and standard errors of estimates. Distinguishing tests by their as- 
sociated error properties offers a basis for the discrimination we are 
after: between warranted and unwarranted assignments of blame. 

4.2.1. Error Statistics and Severe Tests. Rather than assign degrees 
of probability or support to hypotheses, the error statistical approach 
stipulates when an accordance between evidence and a hypothesis H 
counts as a good test of or good evidence for hypothesis H. It counts 
as good evidence for H just to the extent that H passes a severe test. 
Probability enters as a way to assess the severity of the test. I begin 
with a sketch of the basic logic of error statistical testing. 

Minimally, for H to pass a test with evidence e, e should agree with 
orfit what is expected or predicted according to H. Some require that 
H entails e, yielding P(e [ H) = 1. A more useful notion of "fit" would 
require that e be within some specified distance from H. Something 
more, however, is required for the test to be severe. Suppose evidence 
e is found to fit hypothesis H adequately so that H passes a test T. 
Then H has passed a severe test only if, in addition, there is a very high 
probability that test procedure T would not yield such a passing result, 
if hypothesis H is false. That is, 

H's passing test T (with result e) is a severe test of H just to the 
extent that there is a very low probability that test procedure T 
would yield such a passing result, if hypothesis H is false. 

5. Exceptions would be those cases where the truth of a hypothesis can be regarded as 
the outcome of a random experiment. Except for such cases, the only probabilities that 
could be assigned to hypotheses are the trivial ones 0 and 1, according to whether it is 
true 0% of the time or 100% of the time. 
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If hypothesis H is false, then, with high probability, the experimental 
result would have been more discordant from H than e is. 

Arguing from passing a severe test corresponds to an informal pat- 
tern of argument that might be called an argument from error or learn- 
ing from error. The overarching structure of the argument is guided by 
the following thesis: 

It is learned that an error is absent when (and only to the extent 
that) a procedure of inquiry (which may include several tests taken 
together) that has a very high probability of detecting an error if 
(and only if) it existed, nevertheless detects no error. 

Its failing to detect the error means it produces a result (or set of results) 
that is in accordance with the absence of the error. Let hypothesis H 
be an assertion as to the absence of the error in question. That H passes 
a severe test corresponds to affirming that the error in question fails to 
be detected by a highly reliable error probe. Such a procedure of in- 
quiry may be called a reliable or highly severe error probe. It is this 
informal argument from error that must take the lead in applying the 
more formal notion of severity. 

Let us see how this logic is exemplified in a standard error statistical 
tool. 

4.2.2. The Statistical Significance Test. To use a familiar type of 
example, in comparing two groups, say a "treated" and a "control" 
group, a statistically significant excess in the rate of lung cancer may 
be observed-perhaps the significance level (or p-value) is .01. This 
report might be taken to reject the null-hypothesis H0 that there is no 
increased risk, and infer that there is a genuine increased lung-cancer 
risk in a given population. Notice that null hypothesis Ho asserts: any 
observed excess in risk is not due to a real underlying increase in risk- 
equivalently, it is an error to suppose a real risk is responsible. Thus in 
rejecting H0 we are rejecting or denying the error asserted in H0. But 
the significance level of .01, with which we reject this error, is not an 
assignment of probability to the null hypothesis that there's no in- 
creased risk in the population. Rather, .01 is the probability that such 
a test procedure would reject the null hypothesis erroneously-thus the 
term error probability. It asserts, in particular, that the probability of 
observing such a statistically significant excess in risk, if in fact the null 
hypothesis Ho is true, is only .01. Were we observing a case where Ho is 
true, so large an observed excess in risk would occur only 1% of the time. 

Hence, the large observed excess in risk is taken to fail the no-risk 
hypothesis and pass the hypothesis, call it H, that some increased lung 
cancer risk exists. Hypothesis H passes a severe test because were H 
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false and the no-risk (null) hypothesis H0 true, we would very probably 
(.99) have obtained a result that accords less well with H than the one 
we got. Equivalently, we infer the error asserted in Ho is absent because, 
were it present, we would very probably have gotten a less statistically 
significant result. 

Now let us consider a situation where a different result occurs. Sup- 
pose instead of observing an excess in lung cancer rates that the lung 
cancer rates are observed to be the same. This "no-difference" result 
accords with the no-risk (null) hypothesis H0 and is anomalous for a 
hypothesis H that there is an increased risk of lung cancer (in the given 
populations). Were we nevertheless to take this result as support for 
H, or as passing H, that a risk exists, we would be running a test with 
a high probability of finding support for H erroneously. This high error 
probability corresponds to saying that H has passed a test with very 
low severity. This would signal the inference to H was unwarranted by 
this evidence. 

But-and this is what I really want to emphasize--a test's high error 
probabilities, its low severity, alerts us to poor tests even in cases where 
the hypothesis accords well with the evidence. For example, confronted 
with the observation of no excess in cancer risk, a researcher might 
nevertheless hold on to hypothesis H that the treatment in question 
poses an increased lung cancer risk. The researcher might, for example, 
search the data for some other factor to explain why the difference did 
not show up. Perhaps the exposed group had consumed more vitamins 
and this compensated for the additional risk posed by the exposure to 
the substance in question. His favored hypothesis H together with this 
"compensation hypothesis" is made to accord with the (initially anom- 
alous) evidence. Alternatively, he might search the evidence for an ex- 
cess in a different health risk-one that does fit the data. For example, 
he may find a large enough excess in rates of high cholesterol. That is, 
had the initial null hypothesis been no increase in cholesterol risk 
(rather than lung cancer risk), the observed result would have rejected 
it at a low significance level. In this second strategy there has been a 
change in the particular health risk being looked for in order to show 
that the exposure in question produces a health risk. 

The main thing to see is that in both of these cases, the hypothesis 
erected to accord with the evidence fails to pass a severe test. This 
shows up in the formal error probabilities associated with the test pro- 
cedures. The probability of erroneously finding some alleged compen- 
sating factor or other, as in the first case, and the probability of erro- 
neously finding an excess in some risk or other, as in the second case, 
is no longer the low .01 level as at the start, but is instead higher. 
Accordingly the hypothesis affirmed has no longer passed a severe test. 
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Let me be clear that I am not just stating this is so, these gambits 
for fitting the data are specifically in violation of the logic of the sta- 
tistical significance test, and this shows up in the fact that the initial 
low error probability no longer holds.6 

4.3. Upshot. I propose that Duhemian problems plague accounts of 
inference where the two features identified in 4.1 and 4.2 are absent: 
that is, accounts that seek a global measure of evidential support be- 
tween any data and hypotheses, and accounts that are unable to dis- 
criminate hypotheses that "fit" the evidence equally well by appealing 
to the error probabilities of the overall testing process. 

Error probability considerations provide the basis for distinguishing 
the well-testedness of two hypotheses-despite their both fitting the 
data equally well. The data may be a better, more severe, test of one 
than of the other. The reason is that the procedure from which the data 
arose may have had a good chance of detecting one type of error, but 
not of a different type of error. What is ostensibly the same piece of 
evidence is really not the same at all, at least not to the error theorist. 

In contrast, any assessment where the import of the evidence on 
hypotheses reflects only some measure of the fit between them, without 
consideration of the reliability of the overall test, has no "slot" as it 
were within which to pick up on the difference we need when hypoth- 
eses fit equally well. Bayesians must find the difference in prior prob- 
abilities, but the distinction we want needs to be reflected in the reli- 
ability of the test itself. 

In order to use the error-probability discernments, it is not necessary 
to compute a precise value of the probability, nor need one identify a 
specific statistical model that applies. As I see it, the distinctions afforded 
by error probabilistic criteria provide formal analogues to the kinds of 
discernments that we need in distinguishing warranted from unwar- 
ranted assignments of blame in more informal situations. They may be 
said to provide standard (or "canonical") models of classic ways of being 
led to assigning blame unreliably-so much the better to block them. 
This should become clearer in the examples of Section 6. 

5. Some Strategies in the Error Statistical Approach to Duhem's Problem. 
It is important to see that there are two distinct types of strategies by 
which the error statistician grapples with Duhemian problems: (1) The 
first may be called "blocker" strategies, strategies to block or criticize 
attempts to explain away anomalies. We criticize attempts to explain 

6. This may be described as the distinction between the observed (or computed) signif- 
icance level and the actual significance level. See, for example, Mayo 1996, Ch. 9. 
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away anomalies (e.g., as due to H-saving factors) on the grounds that 
(a) they fail to pass severe tests, or, when possible, even more strongly, 
on grounds that (b) their denials pass severe tests. (2) The second is to 
show that an anomaly may be legitimately blamed on an auxiliary 
hypothesis A by showing that the denial of A, A', passes a severe test. 
Clearly, we do not always have a warranted way to attribute blame, 
nor need we always have enough information to scrutinize attempts 
properly. But even then, these strategies direct progress with Duhemian 
problems and explain how scientists actually grapple with them. 

Let us consider how these ideas apply to Duhemian problems, keep- 
ing to the kind of case in Dorling's illustration. In Dorling's illustra- 
tion, a result e' that is anomalous for H is taken to hardly discredit H 
at all, but is taken as greatly discrediting the auxiliary hypothesis A 
needed to derive prediction e. In that reconstruction, anomaly e' is 
taken to provide positive grounds for discrediting A and confirming its 
denial A'. The degree of belief in A' went from 0.4 to 0.99, by dint of 
anomaly e'. Hypothesis A' clearly passes the Bayesian test, understood 
now as assigning high Bayesian support to A'. But the error statistician 
wants to know if the test is severe.7 To show that A' has passed a severe 
test would require positive evidence showing that the alleged extrane- 
ous factor is responsible for the anomaly. Strong belief in H together 
with low enough degree of belief in the Bayesian catchall factor, while 
sufficing for the high posterior belief in A', do not suffice for showing 
A' has passed a severe test. Indeed, it may be shown that the procedure 
Dorling endorses-going from satisfying the Bayesian conditions to 
declaring strong evidence for A'-is a very unreliable one. It makes it 
too easy to blame auxiliary hypothesis A even if A is true. Such an 
appeal to A' would thereby be blocked by an error statistician. 

Let me say a bit more about "blocking strategies," particularly of 
the stronger type (1)(a), that are available to the error statistician. In 
the typical presentation of Duhem's problem it is imagined that there 
are always a number of different factors to which the anomalous result 
can be ascribed. It seems to be assumed that so long as one puts for- 
ward a hypothesis A' of form: 

A': factor F is responsible for anomaly e' 

7. By making distinctions based on error probability considerations, the error statisti- 
cian can be shown to be incoherent by Bayesian principles. The conflict between error 
statistical principles and Bayesian ones (i.e., the latter's adherence to the Likelihood 
Principle) is discussed at length in Mayo 1996. True, there is a relatively new school of 
Bayesians who attempt to import error probability assessments to Bayesian proce- 
dures-so-called "robust Bayesians"-but this error probabilistic brand of Bayesianism 
is not the Bayesian approach appealed to in solving Duhem. 
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then A' entails or otherwise "fits" e' (i.e., that e' is probable given A'). 
Thus, any such A' is (erroneously) thought to have a high likelihood 
on evidence e'. In fact, a good part of the scientific work is to ascertain 
whether a hypothesized factor F, even if it were operative in the ex- 
periment, can actually account for the experimental results e'. 

Again, the scientist proceeds like the doctor. The patient's headache 
may in principle be explained by any number of systems going wrong 
in the body but, in fact, a closer analysis of the body (blood counts, 
brain waves, CAT scans) may show that many of the possible factors 
could not actually account for this patient's headache (because of con- 
flicts with the results of such an analysis). And notice, we may thereby 
rule out a purported explanation, not because it is less plausible or less 
frequent than others-it may be a common occurrence. It may be ruled 
out because it simply could not produce either the particular extent or 
the particular pattern of results discerned in these analyses. 

A typical strategy is to create or simulate a situation in which the 
hypothesized factor F is given a very good chance to show that it is 
capable of bringing about e'-the effect which is anomalous for a hy- 
pothesis H. Then, if the effect does not show up, we can argue from 
error that F was not responsible. An attempt to save H by blaming F 
is blocked. 

It may be objected that this ruling can always be gotten around by 
inventing an explanation for this "no-show," but this new attempt to 
save H cannot diminish the force of the blocking strategy just de- 
scribed. We bar a procedure for saving a hypothesis (by blaming an 
auxiliary factor) unless and until the procedure can be shown to be 
reliable. The onus is on the proponent of the hypothesized "save" to 
demonstrate that this is the case. 

6. Some Duhemian Problems in the 1919 Eclipse Tests. It would be good 
to flesh out the main points with an example. Moving up 70 years or 
so from Dorling's example, pro-Newtonians are faced with another 
anomaly and the Duhemian question of where to lay the blame was 
addressed in great detail.8 The anomaly concerned the deflection of 
light passing near the sun as was discerned during the 1919 eclipse 
expeditions undertaken by Eddington and others. The deflection effect, 
while predicted by Einstein's law of gravitation, was an anomaly for 
Newton's law of gravitation. If Newton's gravitational law was correct, 
and assuming light has mass, then the expected deflection effect would 
be only half what Einstein's law predicted. 

The analysis of the results of the 1919 eclipse experiment was split 

8. This episode is discussed in more detail in Mayo 1991 and 1996. 
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into two chief parts. The first part was to assess, using the eclipse re- 
sults, the extent of the observed deflection effect (on light passing near 
the sun). This involved showing that the effect was real and not an 
artifact, as well as estimating the deflection effect using a standard 
statistical procedure (least squares). The second part was to ascertain 
whether the effect was attributable to the sun's gravitational field or 
whether some other factor consistent with a Newtonian account could 
explain the observed deflection. 

Before too long, even staunch defenders of Newton felt compelled 
to accept the first part of the analysis-that the eclipse evidence showed 
the anomalous deflection effect was real. But they did not blithely reject 
Newton or think a modification was called for. Shortly after the de- 
flection effect was affirmed, a joint meeting was held with the key play- 
ers in this debate. One scientist, Ludwick Silberstein, expressed the 
views of many who attended. He suggested that the eclipse test result 
was an "isolated fact"' which need not require a new gravitation law. 
Pointing to a portrait of Newton, Silberstein declared "We owe it to 
that great man to proceed very carefully in modifying or retouching 
his law of gravitation" (Silberstein 1919, 389-398). 

6.1. Some Blocker Strategies. Alternative N-factors to Accommodate 
the Deflection Effect. A number of skeptical challenges revolved around 
the possibility of a mistake about the cause of the observed eclipse 
deflection. The question, in particular, was whether the test discrimi- 
nated adequately the effect due to the sun's gravitational field from 
others that might explain the eclipse effect. A "yes" answer boiled 
down to accepting the following hypothesis: 

A: The observed deflection is due to gravitational effects (as given 
in Einstein's law), not to some other factor N. 

A number of specific alternative factors were proposed by which to 
account for the anomalous deflection effect, without refuting Newton: 
Ross' lens effect, Newall's corona effect, Anderson's shadow effect, 
Lodge's ether effect, and several others besides. 

If one attempted to express, in terms of degrees of belief, the atti- 
tudes of some of the Newtonians at this stage of the debate, one may 
well attribute to them just the kind of subjective beliefs that suffices for 
the Bayesian Way to show that 'the refutation' e' should have only a 
negligible effect on the scientist's degree of belief in [hypothesis H]" 
(Howson and Urbach 1989, 183)-Newton's gravitation law. Take the 
famous Newtonian, Sir Oliver Lodge. Lodge, a devout spiritualist 
made no bones about his passionate commitment to a Newtonian 
ether. He believed that it was through the ether that one could com- 
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municate with the souls of the departed. Absent a Newtonian ether, 
Lodge believed he would not be able to communicate with his dead 
son Raymond. 

Lodge could well be seen as satisfying the subjective probability as- 
signments that would have warranted taking the anomaly as only very 
slightly decreasing belief in Newton and greatly decreasing belief in 
auxiliary A that no factor other than gravity was operating. According 
to the Bayesian Way, Lodge is warranted in being practically certain 
that A is false and its denial true. In actuality, however, the depth of 
Lodge's belief did not strengthen, and in fact was no part of assessing, 
the evidence for the alternative factors that Lodge proposed. The ques- 
tion of alternative factors that could be responsible for the eclipse 
anomaly was a real and serious one, and it was split off from scientists' 
attitudes toward either Newton's or Einstein's account. They had, in- 
stead, to turn their attention to methods and arguments to test whether 
proposed alternative factors could be responsible for the observed de- 
flection. 

The challenges were conjectures that the effect was due to some 
factor other than the Einstein one (gravity in the sun's field). They were 
hypotheses of the following form: 

A': The observed deflection is due to factor N, other than gravi- 
tational effects of the sun 

where N is a factor that at the same time saved the Newtonian law 
from refutation. 

No one, not even staunch Newtonian defenders, thought the anom- 
alous deflection effect itself was strong evidence for A', that these other 
factors were operating. If they had, they would not have gone to the 
lengths that they did in order to try and provide positive grounds for 
particular proposed alternative factors. Proposed factors by which to 
save Newton were evaluated according to whether they stood up to 
severe scrutiny; when they did not, they were shot down. The concern 
was that the resulting accommodation of the results failed to constitute 
a reliable test in favor of the hypothesized auxiliary factor or N-factor. 

The debates over conjectured N-factors went on for about 3 years 
(scattered through the relevant journals from 1919 to around 1921). 
What made the debate possible, and finally resolvable, was that all who 
would enter the debate were held to shared standards for what could 
count as evidence against auxiliary hypothesis A. 

Each such hypothesis was criticized by means of a two-pronged at- 
tack: (i) the effect of the conjectured N-factor is too small to account 
for the eclipse effect; and (ii) if the N-factor were large enough to ac- 
count for the eclipse effect, it would have other false or contradictory 
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implications. Each prong was justified by an argument based on se- 
verity, and the arguments bolstered one another. 

Anderson's shadow effect, for example, proposed that the cooling 
from the moon's shadow would act as a lens deflecting light rays pass- 
ing through the shadow. Its critique was typical: It was shown that 
under the actual conditions of the eclipse test, the shadow lens expla- 
nation would require a serious drop of temperature that was not ob- 
served. Moreover, even under differences in the assumed conditions, 
the shadow lens effect was negligibly small compared to the observed 
effects. (See Moyer 1979, 84.) The reasoning goes like this: If one grants 
the story that the defender of A' invokes about the phenomenon in 
question, e.g., if we accept that the moon's shadow functions in the 
way described in Anderson's shadow effect hypothesis, then A' cannot 
account for the results in the actual experiment conducted. 

In other words, A' asserts two things: factor N, operating in such 
and such ways, causes the deflection effect e'. The key question is 
whether, in the actual circumstances of the experiment, the factor (e.g., 
shadow effect) hypothesized in A' could account for the effects ob- 
served. Although hypothesis A' asserts that alternative factor F is the 
reason for the observed anomaly e'-it is a mistake to suppose that A' 
can thereby account for e'. A severe test of A' requires ruling out the 
ways A' might erroneously be thought to explain e'. Looking at the 
specific data points, and other features of the experimental context 
(e.g., temperature differences) it may be discerned that A' really does 
not account for observed effects.9 

To nevertheless uphold A' as the way to accommodate the anomaly, 
it was shown, was to commit a classic case of what is disallowed in 
saving a threatened theory. It would make it easy for a hypothesis of 
form A' to pass, even if it is false and auxiliary hypothesis A is true 
(i.e., high error probabilities). The test it passes fails to be severe. 

6.2. An Example of Discounting an Alleged Anomaly. The eclipse 
episode also includes a much-discussed10 instance where an apparent 
anomaly was explained away successfully by invoking an alternative 
hypothesis A'. I am thinking of how Eddington was able to explain 
away an apparent anomaly-this time for the Einstein hypothesis. The 

9. For a crude analogy, a hypothesis about a given type of bomb in the cargo hold 
might be said to give an account for the "anomaly"-an explosion of a jet-but par- 
ticular features of the plane, residues, damage "signatures," etc. may show that the 
cargo bomb explanation is in error. 
10. See, for example, Glymour and Earman 1980 and Mayo 1991. 
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apparent anomaly stemmed from one of the sets of eclipse results (from 
Sobral) which pointed, not to Einstein's prediction, but, as Eddington 
declares, "with all too good agreement to the 'half-deflection', that is 
to say, the Newtonian value . . ." (1920, 117). The debate over where 
to lay the blame was engaged in by scientists with very different opin- 
ions about Einstein's theory. Such attitudes were no part of the argu- 
ments deemed relevant for the question at hand. The relevant argu- 
ment, put forth by Eddington (and others), turned on a rather esoteric 
piece of data analysis showing (holdouts notwithstanding) that the al- 
leged anomaly was not a genuine one, but was caused by a distortion 
of a mirror in recording the star positions. It was based on analyzing 
the patterns of errors on the two different days during which star pho- 
tos were taken. Consider the actual notes penned by Sobral researchers: 

May 30, 3 a.m., four of the astrographic plates were developed. 
... It was found that there had been a serious change of focus ... 
This change of focus can only be attributed to the unequal expan- 
sion of the mirror through the sun's heat. (Dyson, et al. 1923, 309) 

Being affirmed, in short, was the following: 

A': The results of these (Sobral) plates are due to a systematic 
distortion (of the mirror) by the sun, and not to the deflection of 
light. 

As the journals of the period make plain, the numerous staunch 
Newtonian defenders would hardly have overlooked the discounting 
of an apparently pro-Newtonian result, if they could have mustered 
any grounds for deeming it biased. The reason they could not fault the 
explanation in A' is that it involved well understood principles for using 
this type of data to test and, in this case, reject, a key assumption of 
the experiment. Results were deemed usable for estimating the deflec- 
tion effect only if a common error-statistical method (i.e., least squares 
regression) was applicable. This demanded sufficiently precise knowl- 
edge of the change of focus (scale effect) between the eclipse and night 
plates (within 0.03 mm)-precisely what was absent from the suspect 
Sobral results.11 

These examples from the eclipse tests instantiate the two distinct 
strategies by which the present approach grapples with Duhemian 
problems. The first is to criticize and bar attempts to explain away 
anomalies (e.g., as due to the Newton-saving factors) on the grounds 

11. Even small systematic errors of focus are of crucial importance because the "scale 
effect" that results from this alteration of focus quickly becomes as large as the Ein- 
steinian predicted deflection effect of interest. See von Kluiiber 1960, 50. 
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that they fail to pass severe tests (or, even more strongly, that their 
denials pass severe tests). The second is to show that an anomaly may 
be legitimately blamed on an auxiliary factor F (e.g., a mirror distor- 
tion) by showing that "F is responsible" passes a severe test. Clearly, 
we do not always have a warranted way to attribute blame; we can not 
always satisfy the requirement of the second strategy. But this require- 
ment directs progress with Duhemian problems, and it explains the 
lengths to which scientists work to test auxiliaries. 

I do not claim that there is not much more to be said to develop a 
full-blown error statistical solution to Duhem's problem. What I do 
claim is that it provides the right kind of methods and principles for 
tackling this and other problems about evidence-the very principles 
which stand in marked contrast to the Bayesian approach. A major 
virtue of the error statistics approach is that the issue of whether a 
primary hypothesis or an auxiliary is discredited is not based on the 
relative credence accorded to each. The experiment is supposed to find 
out about these hypotheses, it would only bias things to make inter- 
preting the evidence depend on antecedent opinions. After all, in Dor- 
ling's example, and I agree the assumption is plausible, hypothesis H 
is said to be independent of auxiliary A. There is no reason to suppose 
that assessing auxiliary A should depend at all on one's opinion about 
H. What are called for are separate tools to detect whether specific 
auxiliaries are responsible for observed anomalies, tools for discrimi- 
nating signals from noise, ruling out artifacts, distinguishing back- 
grounds, and so on. And these tools should be applicable with the kind 
of information scientists actually tend to have or can obtain. The con- 
glomeration of methods and models from standard (non-Bayesian) er- 
ror statistics provides such tools. Scientists are free to hypothesize that 
an extraneous factor, and not H, is to be blamed for an anomalous 
result, no matter how personal or passionate their reasons for doing 
so. But to warrant that hypothesis requires it to have passed a severe 
test. Degrees of belief have nothing to do with it. 

APPENDIX 
Calculations for the Homework Problem 

It is given that A and H entail e, but e' is observed: P(e'IA and H) = 0 

The assumed prior probabilities. 
P(H) = .9, P(A) = .6, 

(i) Hypotheses A and H are statistically independent 
The assumed likelihoods. 

(ii) P(e'IA and -H) = E (very small number, e.g., 0.001) 
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(iii) (a) P(e' -A and -H) = 50g 
(b) P(e' | -A and H) = 50e 

Bayes's theorem: P(HIe') = P(e'IH) P(H) 
P(e') 

From the above we get the following: 
P(e') = P(e'IH)P(H) + P(e'I-H)P(-H). 

P(e' I H) = P(e' I A and H) P(A) + P(e' I -A and H)P(-A) 
= 0 + 504(.4) 
= 20g. 

P(e' I -H) = P(e' I A and -H)P(A) + P(e' I -A and -H)P(-A) 
= g (.6) + 50?(.4) 
= 20.6 g. 

So, P(e') = 20?(.9) + 2.06? = 20.06?. 
The posterior of H can now be calculated: 

P(H I e') = 20.06 = .897 

To calculate the posterior probability P(Ale') =P(e'A)P(A) 
P(e') 

P(e' I A) = P(e'IA and H)P(H) + P(e' I A and -H)P(-H) 
= 0 + 8(.1) = .lg 

So, 
.06g 

P(Ae') = 2006 = 003 
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