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Abstract

In this study, an integrable Duhem hysteresis model is derived from the mathematical Duhem operator. This model can
represent a wide category of hysteretic systems. The stochastic averaging method of energy envelope is then adapted for
response analysis of the integrable Duhem hysteretic system subjected to non-white random excitation. Using the integrability
of the proposed model, potential energy and dissipated energy of the hysteretic system can be represented in an integration
form so that the hysteretic restoring force is separable into conservative and dissipative parts. Based on the equivalence
of dissipated energy, a non-hysteretic non-linear system is obtained to substitute the original system, and the averaged Itô
stochastic di7erential equation of total energy is derived with the drift and di7usion coe8cients being expressed as Fourier
series expansions in space averaging. The stationary probability density of total energy and response statistics are obtained by
solving the Fokker–Planck–Kolmogorov (FPK) equation associated with the Itô equation. Veri=cation is given by comparing
the computational results with Monte Carlo simulations. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Hysteresis phenomenon arises in many di7erent ar-
eas of science and engineering, such as elastoplastic-
ity, ferromagnetism, ferroelectricity, superconductiv-
ity, thermostats and shape-memory alloys. In struc-
tural dynamics =eld, the term hysteresis is used to de-
scribe a non-conservative system behaviour, in which
the restoring force depends not only on the instan-
taneous deformation but also on the past history of
deformation [1]. Structural systems under severe dy-
namic loading usually exhibit hysteretic behaviour,
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especially when the response becomes inelastic [2,3].
Meanwhile, a wide variety of hysteretic dampers
have been devised and have found wide applica-
tion in structural vibration control over the past two
decades [4,5]. Recently, semi-active damping devices
using smart materials such as shape-memory alloys,
electro-rheological and magneto-rheological Luids
have shown great promise for mitigating structural
response subjected to seismic and wind excitation
[6,7]. These smart materials also exhibit signi=cant
hysteresis behaviour.
Various analytical models have been proposed

for describing hysteretic constitutive relationship, in-
cluding bilinear and piecewise-linear models [8,9],
Ramberg–Osgood model [10], Iwan’s distributed
element model [11], Bouc–Wen model [12,13],
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Ozdemir’s model [14], Masing model [15], and so
on. However, actual hysteretic phenomena arising in
structural and mechanical systems are so complicated
that there has been no well-accepted mathematical
model which can describe all observed hysteretic
characteristics. Some speci=c hysteresis features, e.g.,
soft-hardening hysteresis [16,17], non-local memory
hysteresis [18,19], asymmetric hysteresis [20,21], are
di8cult to depict with =delity by using the existing
models.
Most dynamic loading on civil structures such as

winds, earthquakes, waves is stochastic in nature.
For strongly non-linear hysteretic systems, it is ex-
tremely di8cult to obtain an exact analytical solution
to a random response. The study of approximate so-
lution techniques for random vibration analysis of
hysteretic systems has been the focus of international
research for several decades. Numerous investigations
have been done by referring to the bilinear model,
the distributed-element model and the Bouc–Wen
model. The bilinear hysteretic systems were studied
by the equivalent linearization techniques [22,23]
and the stochastic averaging methods [1,24–26]. The
distributed-element hysteretic systems were studied
by the equivalent linearization techniques [27,28].
The Bouc–Wen hysteretic systems were studied by
the equivalent linearization techniques [2,29–33] and
the stochastic averaging methods [1,34,35]. It has
been shown that for most cases the stochastic av-
eraging methods, especially the quasi-conservative
averaging and the stochastic averaging of energy
envelope, gave more accurate results than the equiv-
alent linearization techniques for both white noise
excitation and non-stationary earthquake excitation.
Because of wide interests and obvious importance,

the hysteresis phenomenon has been studied by math-
ematicians as a new branch of mathematics research
[36]. They explored the hysteresis non-linearity in a
purely mathematical form by introducing the concept
of hysteresis operators. The hysteresis operators, e.g.,
Prandtl–Ishlinskii operator [37], Preisach operator
[38] and Duhem operator [39], provide a powerful
mathematical tool to describe and formulate generic
hysteresis properties. It is highly desirable to develop
analytical descriptions of observed hysteresis phe-
nomena from this mathematical tool. In the present
study, beginning with the mathematical Duhem oper-
ator, an integrable hysteresis model is constructed that

possesses the following attributes: (i) the proposed
model is versatile enough to cover most of the exist-
ing hysteresis models and to allow for the description
of some speci=c hysteresis features; (ii) the proposed
model is integrable so that the stochastic averaging
methods can be applied. Subsequently, the stochastic
averaging method of energy envelope is adapted for
random vibration analysis of the integrable Duhem
hysteretic systems under external and=or parametric
non-white excitation. A space-averaging procedure
instead of time averaging is formulated to evaluate
the drift and di7usion coe8cients associated with
the derived Itô equation. Numerical examples and
comparison with digital simulation results are given.

2. Integrable Duhem hysteresis model

Hysteresis is a special type of memory-based con-
stitutive relation between input x(t) and output z(t); t
being time. In the present study, x(t) denotes displace-
ment (strain) and z(t) denotes restoring force (stress).
Hysteresis appears when the output z(t) is not uniquely
determined by the input x(t) at the same instant t,
but instead z(t) depends on the evolution of x in the
interval [0; t] and possibly also on the initial value
z0, namely

z(t) = �[x(·); z0](t); (1)

where the memory-based functional �[x(·); z0](t)
is referred to as the hysteresis operator. The
Duhem hysteresis operator establishes a mapping
�:(x; z0) �→ z by postulating a Cauchy problem of the
form [39]

ż(t) = g1(x; z)ẋ+(t)− g2(x; z)ẋ−(t); (2a)

z(0) = z0; (2b)

where the over-dot denotes the time derivative; g1
and g2 are arbitrary continuous functions in the
(x; z)-plane, and

ẋ+(t) = max[0; ẋ(t)] = 1
2 [|ẋ(t)|+ ẋ(t)]; (3a)

ẋ−(t) =−min[0; ẋ(t)] = 1
2 [|ẋ(t)| − ẋ(t)]: (3b)

The integrable Duhem hysteresis model is formu-
lated by prescribing the ascending and descending
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describing functions in the forms

g1(x; z) =
dz01(x)
dx

+ hz1(z − z01)hx1(x); (4a)

g2(x; z) =
dz02(x)
dx

+ hz2(z − z02)hx2(x); (4b)

where z01(x), z02(x), hx1(x), hx2(x), hz1(z − z01) and
hz2(z− z02) are arbitrary continuous and di7erentiable
functions.
Substituting Eqs. (4a) and (4b) into Eq. (2a) and

integrating Eq. (2a) yields

Gz1(z − z01) = Gx1(x); ẋ¿ 0; (5a)

Gz2(z − z02) = Gx2(x); ẋ ¡ 0 (5b)

in which,

Gz1(z − z01) =
∫ z−z01

0

du
hz1(u)

; (6a)

Gx1(x) =
∫ x

−x0
hx1(u) du; (6b)

Gz2(z − z02) =
∫ z−z02

0

du
hz2(u)

; (6c)

Gx2(x) =
∫ x

x0
hx2(u) du; (6d)

where x0 is the residual hysteresis displacement that
satis=es z(x0) = 0 and x0¿ 0.
With Eqs. (5a) and (5b), the explicit expressions of

ascending and descending curves of hysteresis loops
can be obtained as

z(x) = z1(x) = z01(x) + G−1
z1 [Gx1(x)]; ẋ¿ 0; (7a)

z(x) = z2(x) = z02(x) + G−1
z2 [Gx2(x)]; ẋ ¡ 0: (7b)

Most hysteretic systems exhibit symmetric hystere-
sis loops about the origin under symmetric loading se-
quence. For this kind of hysteresis, there is a generic
relation g2(x; z) = g1(−x;−z) [40], and the integrable
Duhem hysteresis model is characterized only by the
functions z0(x); hx(x) and hz(z−z0). For example, for
a symmetric hysteretic system with hz(z− z0)=1 and

z0(x) = exp
[∫

f1(x; sgn(z0)) dx
]

×
{
c + (1− n)

∫
f2(x; sgn(z0)) exp

[
(n− 1)

×
∫

f1(x; sgn(z0)) dx
]
dx

}1=(1−n)

; n �=1;(8a)

z0(x) = c exp
{∫

[f1(x; sgn(z0))

+f2(x; sgn(z0))] dx
}

; n= 1 (8b)

its ascending and descending describing functions are
governed by

g1(x; z) = hx(x) + f1(x; sgn(z0))z0

+f2(x; sgn(z0))zn0 ; (9a)

g2(x; z) = g1(−x;−z) (9b)

and the expressions of hysteresis loop curves are
obtained as

z(x) = z0(x) + G−1
z1 [Gx1(x)]

= z0(x) +
∫

hx(x) dx; ẋ¿ 0; (10a)

z(x) =−z0(−x)− G−1
z1 [Gx1(−x)]

=−z0(−x) +
∫

hx(−x) dx; ẋ¡ 0: (10b)

The proposed integrable Duhem hysteresis model
is a versatile model from which a wide category of
di7erential-type hysteretic models existent in mechan-
ical, structural and ferromagnetic disciplines can be
derived. Derivation of these di7erential-type models
from the integrable Duhem hysteresis model is given
in Appendix A.

3. Random response analysis

3.1. Equivalent non-linearization

Consider an SDOF non-linear hysteretic system
subjected to external and/or parametric random load-
ing. The equation of motion of the system is of the
form
TX + 2�Ẋ + Z(X; Ẋ ) = f(X; Ẋ )�(t); (11)

where X denotes non-dimensional displacement; �
is viscous damping ratio; f represents the amplitude
of excitation which is a continuous and di7eren-
tiable function of displacement and velocity; �(t) is
wide-band stationary random excitation with zero
mean. Z is a non-linear hysteretic restoring force
governed by the integrable Duhem hysteresis model.



1410 Y.Q. Ni et al. / International Journal of Non-Linear Mechanics 37 (2002) 1407–1419

Let z1(x) and z2(x) be the ascending and descending
curves of hysteresis loops, potential energy stored in
the hysteresis component can be expressed as

U (x) =
∫ x

−x0
z1(x1) dx1; −a16 x6− x0; (12a)

U (x) =
∫ z−12 [zp1(x)]

x0
z2(x1) dx1; −x06 x6 a2; (12b)

where −a1 and a2 are the negative and positive dis-
placement amplitudes; x0 is the residual hysteresis dis-
placement; superscript p denotes the inelastic part of
hysteretic restoring force.
The total energy of the hysteretic system (11) is

given by

H = ẋ2=2 + U (x): (13)

Energy dissipated in one cycle by the hysteresis
component is equal to the area of hysteresis loop,
namely,

Ar =
∮

z(x) dx =
∫ a2

−a1
z1(x) dx

+
∫ −a1

a2
z2(x) dx: (14)

For a symmetric hysteresis system, there holds
z1(x) =−z2(−x), a1 = a2 = a. In this case, after sep-
arating the hysteretic force into elastic and inelastic
parts (z1 = ze + zp1, z2 = ze + zp2), the potential energy
and the dissipated energy can be expressed as

U (x) =
∫ x

0
ze(x1) dx1 +

∫ x

−x0
zp1(x1) dx1;

− a6 x6− x0; (15a)

U (x) =
∫ x

0
ze(x1) dx1 +

∫ (zp2)
−1[zp1(x)]

x0
zp2(x1) dx1;

− x06 x6 a; (15b)

Ar =
∮

zp(x) dx = 2
∫ a

−a
z1(x) dx; (16)

where a is determined by solving H = U (a).
It is impossible at present to obtain an exact ana-

lytical solution to a random response of system (11).
The equivalent non-linearization technique [1,24,41]
is utilized here to approximate the hysteresis damp-
ing by quasi-linear non-hysteretic damping in terms of

equivalent energy dissipation. After doing this, the in-
tegrable Duhem hysteretic system (11) can be replaced
by the following equivalent non-linear non-hysteretic
system:

TX + [2�+ 2�1(H)]Ẋ + @U (X )=@X

=f(X; Ẋ )�(t) (17)

in which the coe8cient of equivalent damping is ob-
tained as a function of total energy in the following
form:

2�1(H) =
Ar

2
∫ a2
−a1

√
2H − 2U (x) dx ; (18)

where, for a general asymmetric oscillator, a1 is deter-
mined by solving H=U (−a1) using Eq. (12a) and a2
is determined by solving H =U (a2) using Eq. (12b).

3.2. Stochastic average method

The equivalent non-linear non-hysteretic system
(17) is subjected to non-white random excitation. The
stochastic averaging method [24,34,42,43] is applied
here to obtain the FPK equation associated with the
averaged Itô stochastic di7erential equation of total
energy. Letting

sgn(X )
√

U (X ) =
√
Hcos’;

Ẋ =−
√
2H sin’ 06’¡ 2�: (19)

Eq. (17) is transformed as two =rst-order di7erential
equations of total energy and phase as follows:

Ḣ =−2H sin2 ’[2�+ 2�1(H)]
−
√
2H sin’f(H;’)�(t); (20a)

’̇=
1√
2H

[
−
√
2H sin’ cos’(2�+ 2�1(H))

+
@U (X )=@X
cos’

]
− cos’√

2H
f(H;’)�(t); (20b)

f(H;’) = f[H (X; Ẋ ); ’(X; Ẋ )]: (20c)

The total energy is approximated as a Markov dif-
fusion process under the condition that damping and
excitation are weak. Assuming that the total energy is
a slowly varying process, time averaging can be made
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to yield the following Itô equation:

dH = m(H) dt + �(H) dB(t); (21)

where B(t) is unit Wiener process; and

m(H) =
〈
−2H sin2 ’[2�+ 2�1(H)]

+
∫ 0

−∞
[(
√
2H sin’f(H;’))t+ 

× @
@H
(
√
2H sin’f(H;’))t

+
(
cos’√
2H

f(H;’)
)
t+ 

× @
@’
(
√
2H sin’f(H;’))t]R( ) d 

〉
t
;

(22a)

�2(H) =
〈∫ +∞

−∞
(
√
2H sin’f(H;’))t+ 

× (
√
2H sin’f(H;’))tR( ) d 

〉
t
; (22b)

where 〈·〉t represents time averaging, and R( ) =
E[�(t)�(t+  )] is the correlation function. For a =xed
H; X and Ẋ can be treated as periodic functions, and
consequently the following Fourier series expansions
can be obtained:

sin’f(H;’)

=
a(1)0
2
+

∞∑
i=1

(
a(1)i cos

2�it
T
+ a(2)i sin

2�it
T

)
;

(23a)

cos’f(H;’)

=
b(1)0
2
+

∞∑
i=1

(
b(1)i cos

2�it
T
+ b(2)i sin

2�it
T

)
;

(23b)

2H sin’
@f(H;’)

@H

=
c(1)0
2
+

∞∑
i=1

(
c(1)i cos

2�it
T
+ c(2)i sin

2�it
T

)
;

(23c)

sin’
@f(H;’)

@’

=
d(1)0
2
+

∞∑
i=1

(
d(1)i cos

2�it
T
+ d(2)i sin

2�it
T

)
;

(23d)

where the coe8cients a(k)i , b
(k)
i , c

(k)
i and d(k)i (k=1; 2)

are given in Appendix B.
By substituting Eq. (23) into Eq. (22), the averaged

drift and di7usion coe8cients are obtained as

m(H) =−Ar

T
− 4�

T

∫ a2

−a1

√
2H − 2U (x) dx

+
�
4
(a(1)0 a(1)0 + a(1)0 c(1)0 + b(1)0 b(1)0

+ b(1)0 d(1)0 )(1(0) +
�
2

∞∑
i=1

[(a(1)i a(1)i

+ a(2)i a(2)i + a(1)i c(1)i + a(2)i c(2)i

+ b(1)i b(1)i + b(2)i b(2)i + b(1)i d(1)i

+ b(2)i d(2)i )(1(2�i=T ) + (a
(2)
i c(1)i − a(1)i c(2)i

+ b(2)i d(1)i − b(1)i d(2)i )(2(2�i=T )] (24a)

�2(H) = �Ha(1)0 a(1)0 (1(0)

+2�H
∞∑
i=1

[(a(1)i a(1)i + a(2)i a(2)i )(1(2�i=T )];

(24b)

where

(1(!) =
1
�

∫ 0

−∞
R( ) cos! d ; (25a)

(2(!) =
1
�

∫ 0

−∞
R( ) sin! d : (25b)

The FPK equation associated with the averaged Itô
equation of total energy is

@p
@t
+

@
@H
[m(H)p]− 1

2
@2

@H 2 [�
2(H)p] = 0; (26)
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where the probability density is p = p(H; t) with
initial condition p(H0; t0) or p = p(H; t|H0; t0):
with initial condition p = +(H − H0). The sta-
tionary probability density of total energy can be
obtained from Eq. (26) by imposing @p=@t = 0 as
follows:

p(H) =
C

�2(H)
exp

{∫ H

0

2m(y)
�2(y)

dy
}

; (27)

where C is a normalizing constant. The mean square
displacement is then calculated by

E[X 2] =
∫ ∞

0

p(H)
T (H)

dH

×2
∫ a2

−a1

x2 dx√
2H − 2U (x) : (28)

4. Case study

To illustrate the proposed method, consider a
non-linear hysteretic system subjected to external and
parametric random loading. The equation of motion
is expressed as

TX + 2�Ẋ + Z(X; Ẋ ) = (e1 + e2X )�(t); (29)

where e1 and e2 are constants; �(t) is a non-white
stationary excitation with the Kanai–Tajimi spectral
density

(1(!) =
1 + 4�2g(!=!g)2

[1− (!=!g)2]2 + 4�2g(!=!g)2
S0 (30)

in which S0 represents the excitation intensity; !g and
�g are the natural frequency and damping ratio of the
excitation =lter.
In this example, the ascending and descending de-

scribing functions of the integrable Duhem hysteresis
model are taken as the form

g1(x; z) = k1 + 3k3x2 +
0
1
− 0(z − k1x − k3x3);

(31a)

g2(x; z) = g1(−x;−z); (31b)
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Fig. 1. Hardening hysteresis loops represented by integrable
Duhem model (k1 = 5:0, k3 = 0:3, 1 = 0:08, 0 = 0:5).

which correspond to

z0(x) = k1x + k3x3; (32a)

hx(x) = 1; (32b)

hz(z − z0) =
0
1
− 0(z − z0): (32c)

Figs. 1–3 show the hysteresis loops represented by
the integrable Duhem hysteresis model in terms of
Eq. (31) under di7erent parameter combinations. It is
seen that by selecting proper parameters, the integrable
Duhem hysteresis model can represent a wide variety
of hardening, softening, and soft-hardening hystere-
sis. It should be noted that the soft-hardening hystere-
sis is very di8cult to depict by means of the existing
di7erential-type models. These illustrations demon-
strate that the presented model is a universal hysteresis
model.
With the describing functions given in Eq. (31), the

hysteresis loop curves are determined as

z = z1 = k1x + k3x3

+
1
1
[1− e−0(x+x0)]; ẋ¿ 0; (33a)

z = z2 = k1x + k3x3 − 1
1
[1− e0(x−x0)]; ẋ ¡ 0

(33b)
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Fig. 2. Softening hysteresis loops represented by integrable Duhem
model (a) k1 = 5:0, k3 =−0:03, 1=−0:08, 0= 0:1; (b) k1 = 5:0,
k3 =−0:03, 1 = 0:02, 0 = 0:8.

and the potential energy and the dissipated energy in
one cycle by the hysteresis component are obtained as

U (x) =
1
2
k1x2 +

1
4
k3x4 +

1
1
(x + x0)

+
1
10
[e−0(x+x0) − 1]; −a6 x6− x0;

(34a)

U (x) =
1
2
k1x2 +

1
4
k3x4 +

1
10
[1− e−0(x+x0)]

− 1
10
ln[2− e−0(x+x0)]; −x06 x6 a;

(34b)

Ar =
4
10
(1 + a0)− 4

10
e0(a−x0); (35)
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Fig. 3. Soft-hardening hysteresis loops represented by integrable
Duhem model (a) k1 =2:0, k3 =0:3, 1=0:01, 0=3:0; (b) k1 =5:0,
k3 = 0:15, 1 = 0:05, 0 = 5:0.

where the residual hysteresis displacement x0 and the
displacement amplitude a for a given H are deter-
mined by

x0 =−a+
1
0
ln
1 + e2a0

2
; (36a)

H =
1
2
k1a2 +

1
4
k3a4 − 1

1
(a− x0)

+
1
10
[e0(a−x0) − 1]: (36b)

The averaged Itô stochastic di7erential equation is
in the form of Eq. (21), where the drift and di7usion
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coe8cients are, respectively,

m(H) =−Ar

T
− 4�

T

∫ a

−a

√
2H − 2U (x) dx

+
�
4
b(1)0 b(1)0 (1(0)

+
�
2

∞∑
i=1

[a(2)i a(2)i + b(1)i b(1)i ](1

(
2�i
T

)
;

(37a)

�2(H) = 2�H
∞∑
i=1

a(2)i a(2)i (1

(
2�i
T

)
(37b)

in which the Fourier expansion coe8cients are given
by

a(2)i =− 2
√
2

T
√
H

∫ a

−a
sin

[
2�i
T

×
∫ x

−a

dx1√
2H − 2U (x1)

]
dx; (38a)

b(1)i =
4

T
√
H

∫ a

−a

sgn(x)
√

U (x)√
2H − 2U (x)

×cos
[
2�i
T

∫ x

−a

dx1√
2H − 2U (x1)

]
dx: (38b)

With the above expressions, the stationary proba-
bility density of Eq. (27) is obtained by solving the
FPK equation associated with the averaged Itô equa-
tion, and then the mean square displacement response
is evaluated from Eq. (28).
To verify the accuracy of the proposed method, nu-

merical computational results are obtained and com-
pared with direct digital simulation. The following
parameter values are taken in the computation: � =
0:2; k1=5:0 or 2:0; k3=0:03; S0=1:0; !g=3:08; �g=
0:1. Fig. 4 illustrates the hysteresis loops produced by
taking k1=5:0; k3=0:03; 1=0:1 and 0=3:0, which are
a good representation of the experimental hysteresis
loops of a friction-type vibration isolator [40]. Figs. 5
and 6 show the corresponding Fourier expansion co-
e8cients a(2)i and b(1)i (i = 0; 1; 2; 3) of the drift and
di7usion coe8cients versus total energy H . It is found
that these coe8cients for i �=1 are much smaller than
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Fig. 4. Hysteresis loops of an isolator represented by integrable
Duhem model (k1 = 5:0; k3 = 0:03; 1 = 0:1, 0 = 3:0).
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Fig. 5. Fourier coe8cients a(2)i versus total energy H (k1 = 5:0,
k3 = 0:03, 1 = 0:1, 0 = 3:0).

those for i=1 and decrease with the increasing order
i. Only the =rst three order Fourier expansion coe8-
cients are retained in the computation.
Two excitation cases are addressed. The =rst case

corresponds to a purely external excitation with the
parameters e1 = 1:0 and e2 = 0:0. Under this external
excitation, the mean square displacements obtained
by the proposed method (solid line) and by the direct
digital simulation (dot) are obtained and shown in
Figs. 7 and 8 for di7erent excitation intensities and
di7erent excitation =lter frequencies, respectively. It
is seen that the mean square displacement response
increases with the random excitation intensity, and
there is a peak response within the frequency range of
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Fig. 6. Fourier coe8cients b(1)i versus total energy H (k1 = 5:0,
k3 = 0:03, 1 = 0:1, 0 = 3:0).
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Fig. 7. Mean square displacement response versus excitation in-
tensity (e1 = 1:0, e2 = 0:0, �=0:2, k1 = 2:0, k3 = 0:03, !g =3:08,
�g = 0:1).

the excitation =lter. A favourable agreement between
the results obtained by the proposed method and by the
direct digital simulation is observed. The second case
is the simultaneous external and parametric excitation
by taking e1 = 1:0 and e2 = 0:12 and taking e1 =
1:0 and e2 = 0:03, respectively. Fig. 9 illustrates the
mean square displacement response versus excitation
intensity under the parameters !g=3:08 and �g=0:1.
A good coincidence between the results obtained by
the two procedures is observed again. There is a slight
increase of the di7erence when the excitation intensity
increases.
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Fig. 8. Mean square displacement response versus excitation =lter
frequency (e1 =1:0, e2 =0:0, �=0:2, k1 =2:0, k3 =0:03, S0 =1:0,
�g = 0:1).
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Fig. 9. Mean square displacement response versus excitation in-
tensity (Curve 1: e1 = 1:0, e2 = 0:12, �= 0:2, k1 = 2:0, k3 = 0:03,
1 = 0:3, 0 = 2:0; Curve 2: e1 = 1:0, e2 = 0:03, � = 0:2, k1 = 5:0,
k3 = 0:03, 1 = 0:1, 0 = 3:0).

5. Conclusions

In the present study an integrable Duhem hystere-
sis model is proposed to describe general hysteretic
constitutive relationship. The proposed model covers
a wide category of existing di7erential-type hystere-
sis models. Using the integrable Duhem hysteresis
model, the conservative and dissipative parts of hys-
teretic force can be decoupled, and explicit expres-
sions of hysteresis loop curves can be formulated.
Random response analysis of the integrable Duhem
hysteretic systems under external and/or parametric
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non-white excitation is made by means of the stochas-
tic averaging method of energy envelope. The total
energy is approximated as a Markov di7usion pro-
cess under the condition of weak damping and exci-
tation. Space-averaging instead of time-averaging is
performed to reduce the dimensionality of the con-
cerned problem and to simplify the analytical solu-
tion procedure. The stationary probability density of
total energy and the response statistics are obtained
by solving the FPK equation associated with the aver-
aged Itô equation of total energy, in which the Fourier
series expansions are used to obtain explicit expres-
sions of the drift and di7usion coe8cients. A compar-
ison of the response prediction results obtained by the
proposed method and by the direct digital simulation
veri=es the accuracy of the proposed method.
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Appendix A

A lot of commonly used di7erential-type hysteretic
models can be derived from the proposed integrable
Duhem hysteresis model. For example, the Bouc–Wen
model [12,13]

z(t) = 2x(t) + r(t); (A.1a)

ṙ(x) = 3ẋ(x)− 1|ẋ(t)|r(t)|r(t)|n−1

− 0ẋ(t)|r(t)|n (A.1b)

can be obtained by taking the describing functions of
the integrable Duhem hysteresis model as

z01(x) = 2x; (A.2a)

hx1(x) = 1; (A.2b)

hz1(z − z01)

= 3− [0+ 1 sgn(z − z01)]|z − z01|n; (A.2c)

z02(x) = 2x; (A.2d)

hx2(x) = 1; (A.2e)

hz2(z − z02)

= 3− [0− 1 sgn(z − z02)]|z − z02|n: (A.2f)

For the Yar–Hammond bilinear model [8]

ż(t) = ẋ(t){3− 0 sgn(ẋ)sgn[z − 1 sgn(ẋ)]} (A.3)

which corresponds to the integrable Duhem hysteresis
model with the describing functions

z01(x) = 1; (A.4a)

hx1(x) = 1; (A.4b)

hz1(z − z01) = 3− 0 sgn(z − z01); (A.4c)

z02(x) =−1; (A.4d)

hx2(x) = 1; (A.4e)

hz2(z − z02) = 3+ 0 sgn(z − z02): (A.4f)

For the Dahl’s friction model [44]

ż(x) = �ẋ(t)
∣∣∣∣1− z

Fc
sgn(ẋ)

∣∣∣∣
i

×sgn
[
1− z

Fc
sgn(ẋ)

]
(A.5)

it has the describing functions as

z01(x) = Fc; (A.6a)

hx1(x) = 1; (A.6b)

hz1(z − z01) =−�
∣∣∣∣ z − z01

Fc

∣∣∣∣
i

sgn
[
z − z01

Fc

]
; (A.6c)

z02(x) =−Fc; (A.6d)

hx2(x) = 1; (A.6e)

hz2(z − z02) = �
∣∣∣∣ z − z02

Fc

∣∣∣∣
i

sgn
[
z − z02

Fc

]
: (A.6f)
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For the Coleman–Hodgdon ferromagnetic hystere-
sis model [45]

ż(x) = ẋ(t){3 sgn(ẋ)[f(x)− z] + g(x)} (A.7)

which corresponds to the integrable Duhem hysteresis
model with the describing functions

z01(x) = e−3x
{
c +

∫
[3f(x) + g(x)]e3x dx

}
;

(A.8a)

hx1(x)hz1(z − z01) = 0; (A.8b)

z02(x)

=− e3x{c +
∫
[− 3f(x) + g(x)]e−3x dx};

(A.8c)

hx2(x)hz2(z − z02) = 0: (A.8d)

Appendix B

The coe8cients a(k)i ; b(k)i ; c(k)i and d(k)i (k = 1; 2)
in Eq. (23) are expressed as

a(1)i =
2
T

∫ T

0
sin’f(H;’) cos

2�it
T
dt

=−
√
2

T
√
H

∫ T

0
ẋf(x; ẋ) cos

2�it
T
dt (B.1a)

a(2)i =
2
T

∫ T

0
sin’f(H;’) sin

2�it
T
dt

=−
√
2

T
√
H

∫ T

0
ẋf(x; ẋ) sin

2�it
T
dt (B.1b)

b(1)i =
2
T

∫ T

0
cos’f(H;’) cos

2�it
T
dt

=
2

T
√
H

∫ T

0
sgn(x)

√
U (x)f(x; ẋ)

×cos 2�it
T
dt (B.1c)

b(2)i =
2
T

∫ T

0
cos’f(H;’) sin

2�it
T
dt

=
2

T
√
H

∫ T

0
sgn(x)

√
U (x)f(x; ẋ)

×sin 2�it
T
dt (B.1d)

c(1)i =
2
T

∫ T

0
2H sin’

@f(H;’)
@H

cos
2�it
T
dt

=− 2
√
2

T
√
H

∫ T

0
ẋ
[
@f(x; ẋ)

@x
U (x)

@U (x)=@x

+
@f(x; ẋ)

@ẋ
ẋ2

2

]
cos

2�it
T
dt (B.1e)

c(2)i =
2
T

∫ T

0
2H sin’

@f(H;’)
@H

sin
2�it
T
dt

=− 2
√
2

T
√
H

∫ T

0
ẋ
[
@f(x; ẋ)

@x
U (x)

@U (x)=@x

+
@f(x; ẋ)

@ẋ
ẋ2

2

]
sin
2�it
T
dt (B.1f)

d(1)i =
2
T

∫ T

0
sin’

@f(H;’)
@’

cos
2�it
T
dt

=− 2

T
√
H

∫ T

0
sgn(x)ẋ

√
U (x)

×
[
@f(x; ẋ)

@x
ẋ

@U (x)=@x
− @f(x; ẋ)

@ẋ

]

×cos 2�it
T
dt (B.1g)

d(2)i =
2
T

∫ T

0
sin’

@f(H;’)
@’

sin
2�it
T
dt

=− 2

T
√
H

∫ T

0
sgn(x)ẋ

√
U (x)

×
[
@f(x; ẋ)

@x
ẋ

@U (x)=@x
− @f(x; ẋ)

@ẋ

]
sin
2�it
T
dt

i = 0; 1; 2; : : : (B.1h)
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in which,

ẋ =±
√
2H − 2U (x); (B.2a)

t =
∫ x

−a1

dx1
±√

2H − 2U (x1)
; (B.2b)

T = 2
∫ a2

−a1

dx√
2H − 2U (x) : (B.2c)
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