should be an almost periodic function in the sense of Bohr, it is necessary and sufficient that

$$
f(x) \equiv i c+g(x)
$$

where c is a real constant and $\int^{x} g(x) d x$ is bounded.
5. We can complete our result by a statement about the moduli of the a.p. functions $f(x), y(x)$. The modulus of $G(x)$ is equal to the modulus of $f(x)$, and therefore, by the second part of our lemma, the modulus of $y(x)$ is contained in any modulus containing both the number c and the modulus of $f(x)$. On the other hand, it was shown by Bohr (loc. cit.) that, for any a.p. functions $y(x), G(x)$ which are in the relation (2), the number c and the modulus of $g(x)$ are both contained in the modulus of $y(x)$. Thus we have the

Completion of the Theorem. The modulus of $y(x)$ is the smallest modulus containing the number c and the modulus of $f(x)$.

THE CONSTRUCTION OF DECIMALS NORMAL IN THE SCALE OF TEN

D. G. Champernowne*.

A decimal $\cdot S$ is said to be normal in the scale of ten if, when γ_{ρ} is an arbitrary sequence of an arbitrary number ρ of digits, and $G(x)$ denotes the number of times that γ_{ρ} occurs as ρ consecutive digits in the first x digits of S,

$$
G(x)=10^{-\rho} x+o(x)
$$

as $x \rightarrow \infty$. Rules have been given for the construction of such decimals, but these have always been somewhat involved.

Actually, a very simple construction is adequate; we shall, in fact, show in the course of this paper that the decimal $\cdot 123456789101112 \ldots$, composed of the natural sequence of numbers counting from 1 upwards, is itself normal in the scale of ten.

First, we shall prove
Theorem I. If s_{r} denotes the sequence

$$
\cdot 00 \ldots 0,00 \ldots 1,00 \ldots 2, \ldots \ldots, 99 \ldots 9,
$$

[^0]consisting of the 10^{r} possible arrangements of r digits, ranked in ascending order of magnitude (so that, for example, s_{1} denotes $0,1,2,3,4,5,6,7,8,9$, and s_{2} denotes $\left.00,01,02, \ldots, 98,99\right)$, then the decimal
$$
\cdot S=s_{1} s_{2} s_{3} \ldots s_{r} \ldots
$$
is normal in the scale of ten.
We shall then deduce

Theorem II. If s_{r} is defined as above, and if ${ }_{\mu} s_{r}$ denotes the sequence formed by repeating $s_{r} \mu$ times, μ being any fixed positive integer, then the decimal

$$
{ }_{\mu} S={ }_{\mu} s_{1} s_{2} s_{2} \ldots{ }_{\mu} s_{r} \ldots
$$

is normal in the scale of ten.
This will enable us to obtain the result quoted above, namely

Theorem III. The decimal •12345678910111213... is normal in the scale of ten.

In addition, we shall show how to prove from first principles the easier but less interesting

Theorem IV. If ${ }_{\mu} s_{r}$ is defined as above, then the decimal

$$
{ }^{\prime} S={ }_{1} s_{12} s_{2} \ldots r_{r} \ldots
$$

is normal in the scale of ten.
Finally, we shall enunciate certain further theorems of this type, but since they represent somewhat trivial deductions from Theorem III, and need for their establishment tedious lemmas and an involved notation, no attempt at a proof will be advanced.

In the course of the work we shall use the following notation:
S_{r} and S will denote respectively the sequences $s_{1} s_{2} \ldots s_{r}$ and $s_{1} s_{2} \ldots s_{r} s_{r+1} \ldots$;
x_{r} and X_{r} will denote the number of digits in s_{r} and S_{r};
g_{r} and G_{r} will denote the number of times that γ_{p} occurs in s_{r} and S_{r} respectively;
$g_{r}(x)$ and $G(x)$ will denote the number of times that γ_{ρ} occurs in the first x digits of s_{r} and of S respectively.

We shall prove Therrem I in the following manner.
(i) We shall estimate g_{r} and G_{r} and obtain

$$
\left.g_{r}=10^{-\rho} x_{r}+o\left(x_{r}\right), \quad G_{r}=10^{-\rho} X_{r}+o\left(X_{r}\right) \quad \text { (as } r \rightarrow \infty\right)
$$

(ii) We shall estimate $g_{r}(x)$ and obtain

$$
g_{r}(x)=10^{-\rho} x+o\left(x_{r}\right)
$$

as $r \rightarrow \infty$ and x varies in any manner consistent with the existence of $g_{r}(x)$.
(iii) We shall deduce an estimate for $G(x)$ to show that the decimal $\cdot S$ is normal in the scale of ten.

We have defined s_{r} to consist of 10^{r} consecutive members of r digits each; it will be convenient to place commas between consecutive members of S. Thus

$$
s_{1}=0,1,2,3,4,5,6,7,8,9 ; \quad \cdot S=\cdot 0,1, \ldots, 9,00,01, \ldots
$$

so that $\cdot S$ contains an endless succession of commas.
Consider an individual occurrence of γ_{ρ} in the sequence. If γ_{ρ} occurs with a comma between two of its digits, we shall say that γ_{ρ} occurs divided; if it occurs with no comma between any two of its digits, we shall say that γ_{p} occurs undivided. Thus 37 occurs in δ_{2}, undivided at $\ldots, 36,37,38, \ldots$ and divided at $. ., 72,73,74, \ldots$.

Now (A) if $r<\rho, \gamma_{\rho}$ cannot occur undivided in s_{r}; but, if $r \geqslant \rho, \gamma_{\rho}$ occurs undivided in s_{r} exactly $(r-\rho+1) 10^{r-\rho}$ times.

The assertion for $r<\rho$ is obvious. If $r \geqslant \rho$, there are $r-\rho+1$ positions which γ_{ρ} may occupy undivided within a member of s_{r}, since the first digit of γ_{ρ} may occur as any of the first $r-\rho+1$ digits of the member of s_{r} (thus 37.. .37. .. 37). Having determined the position, we may choose the remaining $r-\rho$ digits of the member in $10^{r-\rho}$ different ways. Thus γ_{ρ} will occur in a given position in $10^{r-\rho}$ distinct members of s_{r}. Hence γ_{ρ} will occur undivided in s_{r} exactly $(r-\rho+1) 10^{r-\rho}$ times.

A further numerical example may make this clearer: 37 occurs undivided in s_{3} twenty times, viz. ten times in the first position $\ldots, 370,371, \ldots, 378,379, \ldots$ and ten times in the second position

$$
\ldots, 037, \ldots, 137, \ldots \ldots ., 837, \ldots, 937, \ldots .
$$

Further, s_{r} does not contain more than 10^{r} commas and γ_{ρ} cannot occur divided by any one given comma as many as ρ times. Hence (B) γ_{ρ} cannot occur divided in s_{r} more than pl0 0^{r} times.

By (A) and (B),

$$
g_{r}=(r-\rho+1) 10^{r-\rho}+O\left(10^{r}\right) \quad(\text { as } r \rightarrow \infty)
$$

But $x_{r}=r 10^{r}$; hence

$$
\begin{equation*}
g_{r}=10^{-\rho} x_{r}+o\left(x_{r}\right) \tag{i}
\end{equation*}
$$

Now
so that

$$
G_{r}=\sum_{s=1}^{r} g_{s}+O(r), \quad X_{r}=\sum_{s=1}^{r} x_{s}
$$

$$
\begin{equation*}
G_{r}=10^{-P} X_{r}+o\left(X_{r}\right) . \tag{i}
\end{equation*}
$$

In order to estimate $g_{r}(x)$ we consider how often in each position γ_{p} may occur undivided in the first x digits of s_{r}.

We may suppose that the x-th digit of s_{r} occurs within the member $p_{r-1} p_{r-2} \ldots p_{1} p_{0}$ of s_{r}, so that we have

$$
\begin{equation*}
x=r \sum_{t=0}^{r-1} p_{t} 10^{t}+\theta r \quad(0<\theta \leqslant 1) \tag{C}
\end{equation*}
$$

Now let $g_{r k}(x)$ denote the number of times that γ_{ρ} occurs undivided in the first x digits of s_{r}, with the first digit of γ_{ρ} as the k-th digit of a member of s_{r}. Then, if $k>r-\rho+1$,

$$
\begin{equation*}
g_{r k}(x)=0 \tag{D}
\end{equation*}
$$

and, if $k \leqslant r-\rho+1$,

$$
\begin{equation*}
g_{r k}(x)=10^{r-\rho-k+1}\left\{\sum_{t=r-k+1}^{r-1} p_{t} 10^{\prime+k-r-1}+\theta^{\prime}\right\} \quad\left(0 \leqslant \theta^{\prime} \leqslant 1\right) . \tag{D}
\end{equation*}
$$

For, with γ_{ρ} fixed in position in the member, we may choose the last $r-\rho-k+1$ digits of the member in $10^{r-\rho-k+1}$ ways. Having chosen these, in order to ensure that the member lies as required in the sequence $00 \ldots 0,00 \ldots 1, \ldots, p_{r-1} \ldots p_{\lambda}$ consisting of the first x digits of s_{r}, we shall be able to choose the first $k-1$ digits of the member, either in
ways, or in

$$
\begin{aligned}
& \sum_{t=r-k+1}^{r-1} p_{t} 10^{t+k-r-1} \\
& \sum_{t=r-k+1}^{r-1} p_{t} 10^{l+k-r-1}+1
\end{aligned}
$$

ways, so that the total number of times that γ_{p} may occur in the k-th position undivided, in the first x digits of s_{r}, is correctly estimated by the formulae (D).

A numerical example may be welcome: 37 will occur in the second position ($k=2$) in the first 7987 digits of s_{4} (i.e. in $0000,0001, \ldots, 1995,199$.) exactly twenty times ($=10[1+1]$ times), for, when we have chosen the last digit (8 say), we are left with two choices 1 or 0 for the first digit; but, if we were considering the first 5000 digits only of s_{4} (i.e. $0000, \ldots$, 1249.), we could no longer choose 1 as our first digit, and 37 would occur only
ten times in the second position (viz. 0370, 0371, ..., 0379) in the first 5000 digits of s_{4}.

Referring to the formulae (D) we have
so that

$$
\left.g_{r k}(x)=10^{-\rho}!\sum_{t=r-k+1}^{r-1} p_{t} 10^{t}+\theta^{\prime} 10^{r-k+1}\right\}
$$

$$
\begin{align*}
\sum_{k=1}^{r-\rho+1} g_{r k}(x) & \left.=10^{-\rho}:_{\sum_{k=1}^{r-\rho+1}}^{\sum_{t=r-k+1}^{r-1}} p_{l} 10^{t}\right\}+O\left(10^{r}\right) \\
& =10^{-\rho} \sum_{t=\rho}^{r-1}\left\{(t+1-\rho) p_{l} 10^{\prime}\right\}+O\left(10^{r}\right) \tag{E}
\end{align*}
$$

Now γ_{ρ} cannot occur divided in s_{r} more than $\rho 10^{r}$ times; hence, by (C) and (E),

$$
\begin{equation*}
g_{r}(x)=10^{-\rho} x+O\left(10^{r}\right)=10^{-\rho} x+o\left(x_{r}\right) \tag{ii}
\end{equation*}
$$

as $r \rightarrow \infty$ and x varies in any manner consistent with the existence of $g_{r}(x)$.
To obtain $G(x)$ from the results (i), (ii), we suppose the x-th digit of S to occur as the y-th digit of s_{r}. Then

$$
\left.x=X_{r-1}+y ; \quad G(x)=G_{r-1}+g_{r}(y)+O(1) \quad \text { (as } x \rightarrow \infty\right) .
$$

Hence, by (i) and (ii),

$$
G(x)=10^{-\rho} X_{r-1}+10^{-\rho} y+O\left(10^{r}\right)
$$

so that

$$
\begin{equation*}
G(x)=10^{-\rho} x+o(x) \tag{iii}
\end{equation*}
$$

and $\cdot S$ is normal in the scale of ten. This proves Theorem I.
In order to prove Theorem II we extend our notation.
${ }_{\mu} s_{r}$ will denote the sequence s_{τ} repeated μ times;
${ }_{\mu} S_{r}$ will denote the sequence ${ }_{\mu} s_{1 \mu} s_{2} s_{3} \ldots{ }_{\mu} s_{r}$;
${ }_{\mu} S$ will denote the sequence ${ }_{\mu} s_{1 \mu} s_{2 \mu} s_{3} \ldots{ }_{\mu} s_{r \mu} s_{r+1} \ldots$;
${ }_{\mu} x_{r}$ and ${ }_{\mu} X_{r}$ will denote the number of digits in ${ }_{\mu}{ }^{9}$ and ${ }_{\mu} S_{r}$;
${ }_{\mu} g_{r}$ and ${ }_{\mu} G_{r}$ will denote the number of occurrencos of γ_{ρ} in the sequences ${ }_{\mu} s_{r}$ and ${ }_{\mu} S_{r}$ respectively;
${ }_{\mu} g_{r}(x)$ and ${ }_{\mu} G(x)$ will denote the number of occurrences of γ_{ρ} in the first x digits of ${ }_{\mu} s_{r}$ and ${ }_{\mu} S$ respectively.

Then to estimate ${ }_{\mu} G(x)$ we suppose, on the same lines as in the proof of Theorem I, that the x-th digit of ${ }_{\mu} S$ ocsurs as the y-th digit of ${ }_{\mu} s_{r}$; we

[^1]further suppose that the y-th digit of ${ }_{\mu} s_{r}$ occurs as the z-th digit of some s_{r} of ${ }_{\mu} \delta_{r}$, so that
\[

$$
\begin{equation*}
x={ }_{\mu} X_{r-1}+y={ }_{\mu} X_{r-1}+q x_{r}+z \quad\left(0 \leqslant q<\mu, 0<z \leqslant x_{r}\right) . \tag{F}
\end{equation*}
$$

\]

Also, as $x \rightarrow \infty$,

$$
\begin{equation*}
{ }_{\mu} G(x)={ }_{\mu} G_{r-1}+q g_{r}+g_{r}(z)+O(r) . \tag{G}
\end{equation*}
$$

Hence, in virtue of the relations (i) and (ii),

$$
{ }_{\mu} G(x)=10^{-\rho}\left({ }_{\mu} X_{r-1}+q x_{r}+z\right)+o(x) ;
$$

whence, by (F),

$$
\begin{equation*}
{ }_{\mu} G(x)=10^{-\rho} x+o(x) . \tag{iv}
\end{equation*}
$$

This proves Theorem II, that the decimal ${ }_{\mu} S$ is normal in the scale of ten.
To prove Theorem III, we use the particular case of Theorem II, that the decimal ${ }_{9} S$ is normal in the scale of ten.

We show that, if we insert one extra digit after each comma in ${ }_{9} S$; the new decimal ' ${ }_{9} S^{\prime}$ so obtained will also be normal in the scale of ten. Thus, let r denote the number of digits in the member of $g_{9} S$ in which the x-th digit of ${ }_{9} S$ occurs and let $C(x)$ denote the number of commas among the first x digits of ${ }_{9} S$. Then, since $r 10^{r}=O(x)$ as $x \rightarrow \infty$,

$$
\begin{equation*}
C(x)=O\left(10^{r}\right)=o(x) \tag{H}
\end{equation*}
$$

Let the x-th digit of ${ }_{9} S$ become the x^{\prime}-th digit of ${ }_{9} S^{\prime}$. Then x is defined as a function of the positive integer x^{\prime} except in the cases where the x^{\prime}-th digit of ${ }_{9} S^{\prime}$ is one of the new digits. In this case, we define the corresponding value of x to be the same as that corresponding to $x^{\prime}-1$. Then

$$
\begin{equation*}
x^{\prime}=x+C(x)+O(1)=x+o(x) . \tag{I}
\end{equation*}
$$

Again, the insertion of one new digit in ${ }_{9} S$ cannot alter ${ }_{9} G(x)$ by more than ρ. Hence, if ${ }_{9} G^{\prime}\left(x^{\prime}\right)$ denotes the number of occurrences of γ_{ρ} in the first x^{\prime} digits of ${ }_{9} S^{\prime}$,

$$
\begin{equation*}
{ }_{9} G^{\prime}\left(x^{\prime}\right)={ }_{9} G(x)+O\{C(x)\}=10^{-\rho} x+o(x)=10^{-\rho} x^{\prime}+o\left(x^{\prime}\right), \tag{v}
\end{equation*}
$$

and ${ }_{9} S^{\prime}$ is normal in the scale of ten.
Now by suitable choice of the new digits we can arrange that ${ }_{9} S^{\prime}$ is the decimal

$$
\cdot 10,11, \ldots, 19,20,21, \ldots, 29,30, \ldots . ., 99,100,101, \ldots . . ., 999,1000, \ldots .
$$

Hence this decimal is normal in the scale of ten, and Theorem III, that the decimal

$$
\cdot 1234567891011121314 \ldots .
$$

is normal in the scale of ten, follows directly.

Theorem IV can be proved by means of the equations (i), without appeal to the equation (ii). For let
${ }_{r} s_{r}$ denote the sequence. s_{r} repeated r times;
${ }_{r} S_{r}$ and ${ }_{r} S$ denote the sequence ${ }_{1} s_{1} s_{2} \ldots r_{r}$ and ${ }_{1} s_{1} s_{2} \cdots r_{r} \ldots$;
${ }_{r} x_{r}$ and ${ }_{r} X_{r}$ denote the number of digits in S_{r} and ${ }_{r} S_{r}$ respectively;
${ }_{r} g_{r}$ and ${ }_{r} G_{r}$ denote the number of occurrences of γ_{ρ} in $r_{r} s_{r}$ and ${ }_{r} S_{r}$;
${ }_{r} g_{r}(x)$ and ${ }_{r} G(x)$ denote the number of occurrences of γ_{ρ} in the first x digits of ${ }_{r} s_{r}$ and of ${ }_{r} S$ respectively.
Then we can express any positive integer x in the form

$$
\begin{equation*}
x={ }_{r-1} X_{r-1}+q x_{r}+y=(r-1) X_{r-1}+q x_{r}+y \tag{J}
\end{equation*}
$$

where $0 \leqslant q<r, 0<y \leqslant x_{r}=o(x)$ as $x \rightarrow \infty$. Also

$$
\begin{equation*}
{ }_{r} G(x)={ }_{r-1} G_{r-1}+q g_{r}+Y^{\prime}=(r-1) G_{r-1}+q g_{r}+Y \tag{K}
\end{equation*}
$$

where $Y=O\left(x_{r}\right)=o(x)$ as $x \rightarrow \infty$. Hence, by equations (i),

$$
{ }_{r} G(x)=10^{-\rho}\left\{(r-1) X_{r-1}+q x_{r}\right\}+o(x),
$$

so that, by (J),

$$
\begin{equation*}
{ }_{r} G(x)=10^{-\rho} x+o(x) \tag{vi}
\end{equation*}
$$

and the decimal ${ }_{r} S$ is normal in the scale of ten. This proves Theorem IV.
By an extension of similar methods it is possible to prove that various other types of decimal are normal in the scale of ten. Thus it is possible to prove

Theorem V. The decimal 46891012141516182021... formed of the sequence of composite numbers is normal in the scale of ten*.

Theorem VI. If a is any positive number and a_{r} denotes the integral part of ar, then the decimal $a_{1} a_{2} \ldots a_{r} \ldots$ is normal in the scale of ten.

Theorem VII. If L_{r} denotes the integral part of $r \log r$, then the decimal $\cdot L_{1} L_{2} \ldots L_{r} \ldots$ is normal in the scale of ten.

It would be reasonable to suppose that the decimal formed by the sequence of prime numbers is also normal in the scale of ten, but of this I have no proof.

[^2]
[^0]: * Received 19 April, 1933 ; read 27 April, 1933.

[^1]: * The formulae (i) can easily be deduced from the result (ii), but an independent proof of the simpler formulae is given since they are used again in the proof of Theorem IV, in which no appeai to the result (ii) is necessary.

[^2]: * In order to prove Theorem V , we use the theorem that $\pi(x)=o(x)$ as $x \rightarrow \infty$, where $\pi(x)$ denotes the number of primes in the first x integers.

