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should be an almost -periodic function in the sense of Bohr, it is necessary
and sufficient that

f(x)=ic+g{x),

where c is a real constant and \ q(x) dx is bounded.
(V
1 g(x)dxi&

5. We can complete our result by a statement about the moduli of the
a.p. functions f(x), y{x). The modulus of G(x) is equal to the modulus
of f(x), and therefore, by the second part of our lemma, the modulus of
y(x) is contained in any modulus containing both the number c and
the modulus of f(x). On the other hand, it was shown by Bohr (loc. cit.)
that, for any a.p. functions y(x), G(x) which are in the relation (2), the
number c and the modulus of g(x) are both contained in the modulus of
y(x). Thus we have the

COMPLETION OF THE THEOREM. The modulus of y(x) is the smallest
modulus containing the number c and the modulus of f(x).

THE CONSTRUCTION OF DECIMALS NORMAL IN THE SCALE
OF TEN

D. G. CHAMPERNOWNE*.

A decimal -S is said to be normal in the scale of ten if, when yp is an
arbitrary sequence of an arbitrary number p of digits, and G(x) denotes
the number of times that yp occurs as p consecutive digits in the first
x digits of S,

G(x) = lO

as #->-oo. Rules have been given for the construction of such decimals,
but these have always been somewhat involved.

Actually, a very simple construction is adequate; we shall, in fact,
show in the course of this paper that the decimal •123456789101112...,
composed of the natural sequence of numbers counting from 1 upwards,
is itself normal in the scale often.

First, we shall prove

THEOREM I. If sr denotes the sequence

•00.. 0,00.. 1,00.. 2, ,99..9,

* Received 19 April, 1933 ; read 27 April, 1933.
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consisting of the 10r possible arrangements of r digits, ranked in ascending
order of magnitude (so that, for example, sx denotes 0,1,2,3,4,5,6,7,8,9,
and s2 denotes 00,01,02,...,98,99), then the decimal

•S='81S283...Sr...

is normal in the scale of ten.

We shall then deduce

THEOREM II . / / sr is defined as above, and if M«P denotes the sequence
formed by repeating sr fi times, \i being any fixed positive integer, then the
decimal

\& = V51 ^52 • • • nSr • • •

is normal in the scale of ten.

This will enable us to obtain the result quoted above, namely

THEOREM III. The decimal -12345678910111213... is normal in the
scale of ten.

In addition, we shall show how to prove from first principles the easier
but less interesting

THEOREM IV. If Msr is defined as above, then the decimal

'rS = 'iS12s2... r s r . . .

is normal in the scale of ten.

Finally, we shall enunciate certain further theorems of this type, but
since they represent somewhat trivial deductions from Theorem III,
and need for their establishment tedious lemmas and an involved notation,
no attempt at a proof will be advanced.

In the course of the work we shall use the following notation:

Sr and S will denote respectively the sequences 5152...5r and
s1s2...srsr+1...;

xr and Xr will denote the number of digits in sr and Sr;

gr and Or will denote the number of times that yp occurs in sr and Sr

respectively;

gr(x) and O(x) will denote the number of times that yp occurs in the
first x digits of sr and of S respectively.
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We shall prove Theorem I in the following manner,

(i) We shall estimate gr and Or and obtain

gr=l0-<>xr+o(xr), Gr=10-<>Xr+o(Xr) (as r-> oo).

(ii) We shall estimate gr(x) and obtain

gr(x) = lO-'z+ofo)

as r-^oo and x varies in any manner consistent with the existence of gr(x).

(iii) We shall deduce an estimate for G(x) to show that the decimal '8
is normal in the scale of ten.

We have defined sr to consist of 10r consecutive members of r digits
each; it will be convenient to place commas between consecutive
members of '8. Thus

s1 = 0,1,2,3,4,5,6,7,8,9; -£=-0,1, ...,9,00,01, ...,

so that 'S contains an endless succession of commas.
Consider an individual occurrence of yp in the sequence. If yp occurs

with a comma between two of its digits, we shall say that yp occurs
divided; if it occurs with no comma between any two of its digits, we
shall say that yp occurs undivided. Thus 37 occurs in «2, undivided at
...,36,37,38, ... and divided at ...,72,73,74, ....

Now (A) if r <p, yp cannot occur undivided in sr; but, if r^p, yp

occurs undivided in sr exactly (r—p-\-l) 10r~p times.
The assertion for r<p is obvious. If r^p, there are r—p-f-1

positions which yp may occupy undivided within a member of sr, since the
first digit of yp may occur as any of the first r—p-\-\ digits of the member
of 8r (thus 37.. .37. ..37). Having determined the position, we may
choose the remaining r—p digits of the member in 10r~p different ways.
Thus yp will occur in a given position in 10r~p distinct members of 8r.
Hence yp will occur undivided in sr exactly (r—p-\-1) 10r~'> times.

A further numerical example may make this clearer: 37 occurs
undivided in sz twenty times, viz. ten times in the first position
...,370,371, ...,378,379, ... and ten times in the second position

...,037, ...,137, ,837, ...,937, ....

Further, sr does not contain more than 10r commas and yp cannot occur
divided by any one given comma as many as p times. Hence (B) yp

cannot occur divided in sr more than pl0r times. .
By (A) and (B),

(asr->oo).
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But xr = rlOr; hence
gr= 10-* zr+o(zr). (i)

Now Gr= £ g,+O(r), X r = £ xti
«-i «-i

so that Gr=l0-pXr+o(Xr). (i)

In order to estimate gr(x) we consider how often in each position yp

may occur undivided in the first x digits of »r.
We may suppose that the ic-th digit of sr occurs within the member

Pr-iPr-z "-PiPooi ar, so that we have

x = r*S pi 10l+6r (O<0<1) . (C)
t-o

Now let grk{x) denote the number of times that yp occurs undivided in the
first x digits of sr, with the first digit of yp as the k-th. digit of a member
6f8r. . Then, i

and, if k ^ r—p-{-1,

grk(x) = Kr-p-k+i { 's1 ptltf+
k^~1+e'\ (O^d'^l). (D)

(fr-k+1 J

For, with yp fixed in position in the member, we may choose the last
r—p—k-\-\ digits of the member in \{y-p-k+\ w ays . Having chosen
these, in order to ensure that the member lies as required in the sequence
00... 0, 00... 1, ..., pr_1 ...p\ consisting of the first x digits of 8r, we shall
be able to choose.the first k— 1 digits of the member, either in

' s 1 pt lo'+fc-'-1

«-r-Jt+l

r-1

ways, or in S ptW+k~r-1 + 1
Ways, so that the total number of times that yp may occur in the A;-th
position undivided, in the first x digits of 8r, is correctly estimated by the
formulae (D).

A numerical example may be welcome: 37 will occur in the second
position {k = 2) in the first 7987 digits of s4 (i.e. in 0000,0001,..., 1995,199.)
exactly twenty times (= 10[1+1] times), for, when we have chosen the last
digit (8 say), we are left with two choices 1 or 0 for the first digit; but,
if we were considering the first 5000 digits only of s4 (i.e. 0000, ..., 1249.),
we could no longer choose 1 as our first digit, and 37 would occur only

JOUK.82; S
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ten times in the second position (viz. 0370, 0371, ..., 0379) in the first
5000 digits of $4.

Referring to the formulae (D) we have

(7rJfc(z) = 1 0 - ' | S

so that
f-p+l I r-p+l r-1 s

2 grk(x)=10-"] S S pt 10' +0(100

= 10-pfS {(«+l-/>)#lO'}-f0(lOr). (E)
<=p

Now yp cannot occur divided in sr more than />10r times; hence, by (C)
and (E),

gr(x) = 10-i>x+O(10r) = I0-»x+o(xr) (ii)*

as r->oo and x varies in any manner consistent with the existence of gr(x).
To obtain G(x) from the results (i), (ii), we suppose the z-th digit of 8

to occur as the y-th. digit of sr. Then

a; = Zr_1+2/; G(x) = Gr-i+0M+O(l) (asa;->oo).

Hence, by (i) and (ii),

O(x) = ^ - ^ ^ ^ ^ - ^ ^ ^ ( l O O ,

so that G(x) = 10-"x+o{x), <iii)

and '8 is normal in the scale of ten. This provea Theorem I.

In order to prove Theorem II we extend our notation.

M5r will denote the sequence sT repeated fi times;

M#r will denote the sequence ^«I^2M53 ••• /A-5

^S will denote the sequence ^lM32M53...^5r)Ul5r+1...;

Mzr and MXr will denote the number of digits in M?r and W/Sr;

Mgrr and 6̂?,. will denote the number of occurrences of yp in the sequences
M5r and M/Sr respectively;

fflrix) and ̂ ^(a;) will denote the number of occurrences of yp in the first
x digits of Msr and ̂ S respectively.

Then to estimate ^O(x) we suppose, on the same lines as in the proof of
Theorem I, that the x-th digit of ^8 occurs as the y-th digit of Msr; we

* The formulae (i) cau easily be deduced from the result (ii), but an independent proof of
the simpler formulae is given since they are used again in the proof of Theorem IV, in which no
appeal to the result (ii) is necessary.
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further suppose that the y-th digit of M«r occurs as the 2-th digit of some
sr of Msr, so that

z (0 < ? </x, 0 <z <*r) . (F)

Also, as #-»oo,
fi fi^rM (G)

Hence, in virtue of the relations (i) and (ii),

whence, by (F), »&(%)= lQr*x+o(x). (iv)

This proves Theorem II, that the decimal \S is normal in the scale of ten.

To prove Theorem III, we use the particular case of Theorem II, that
the decimal '9S is normal in the scale of ten.

We show that, if we insert one extra digit after each comma in '98,
the new decimal '98' so obtained will also be normal in the scale of ten.
Thus, let r denote the number of digits in the member of 98 in which the
#-th digit of 98 occurs and let C(x) denote the number of commas among
the first x digits of d8. Then, since rlOr = O(x) as

Let the #-th digit of 98 become the re'-th digit of 98'. Then x is defined as a
function of the positive integer x' except in the cases where the cc'-th digit
of 9S' is one of the new digits. In this case, we define the corresponding
value of x to be the same as that corresponding to #' — 1. Then

. (I)

Again, the insertion of one new digit in 98 cannot alter 9G(x) by more than p.
Hence, if 9G'(x') denotes the number of occurrences of yp in the first x'
digits of 98',

9G'(x') = 9G{x)+O{C{x)}=10-<>x+o(x)=10-<>x'-\-o(x'), (v)

and '9S' is normal in the scale of ten.
Now by suitable choice of the new digits we can arrange that '98' is

the decimal

•10,11, ...,19,20,21, ..., 29,30, ,99,100,101, ,999,1000, ....

Hence this decimal is normal in the scale of ten, and Theorem III, that the
decimal

1234567891011121314....

is normal in the scale of ten, follows directly.
s2
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Theorem IV can be proved by means of the equations (i), without appeal
to the equation (ii). For let

fSf denote the sequence. sr repeated r times;

rSr and rS denote the sequence ^ ^ z . . . 1 8 r and 1a1 $2... rsr...;

jcr and rXr denote the number of digits in ^ and r8r respectively;

Tgr and rGr denote the number of occurrences of yp in ^r and rSr;

rgr(x) and rG(x) denote the number of occurrences of yp in the first
x digits of ^ and of r8 respectively.

Then we can express any positive integer x in the form

x = r-iXr-i+qxr+y=(r-1)xr-i+qxr+y> (J)

where 0 ̂ q<r, 0<y ^.xr = o(x) as #->oo. Also

rG(x) = ^.1Gr_1+qgr+ 7' = (r-1) G'r_1+Wr+ 7. (K)

where Y = O(xr) = o(x) as a:-»oo. Hence, by equations (i),

rG(z)=10-'{(r-l)Xr_l+&r}+o(z)t

so that, by (J),
rG{x) = 10-*z+o(z), (vi)

and the decimal \S is normal in the scale of ten. This proves Theorem IV.

By an extension of similar methods it is possible to prove that various
other types of decimal are normal in the scale of ten. Thus it is possible
to prove

THEOREM V. The decimal -4689-1012141516182021... farmed of the
sequence of composite numbers is normal in the scale of ten*.

THEOREM VI. If a is any positive number and ar denotes the integral
part of ar, then the decimal 'a1a2...Q>r... is normal in the scale of ten.

THEOREM VII. / / Lr denotes the integral part of r log r, then the\
decimal %LxLz...Lr...is normal in the scale of ten.

It would be reasonable to suppose that the deoimal formed by the
sequence of prime numbers is also normal in the scale of ten, but of this
I have no proof.

* In order to prove Theorem V, we use the theorem that T(X) = o(x) as x->oo , where »(x)
denotes the number of primes in the fi,rst x integers.


