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It is pointed out that the usual derivation of the well-known Maxwell electromagnetic
equations holds only for a medium at rest. A way in which the equations may be
modified for the case when the mean flow of the medium is steady and uniform is
proposed. The implication of this for the problem of the origin of planetary magnetic
fields is discussed.

1 Introduction

Maxwell’s electromagnetic equations are surely among the
best known and most widely used sets of equations in phys-
ics. However, possibly because of this and since they have
been used so successfully in so many areas for so many
years, they are, to some extent, taken for granted and used
with little or no critical examination of their range of validity.
This is particularly true of the two equations

∇×E= −
1

c

∂B

∂t

and

∇×H=4πj+
1

c

∂D

∂t
.

Both these equations are used widely but, although the
point is made quite clearly in most elementary, as well as
more advanced, textbooks, it is often forgotten that these
equations apply only when the medium involved is assumed
to be at rest. This assumption is actually crucial in the
derivation of these equations since it is because of it that
it is allowable to take the operator d/dt inside the integral
sign as a partial derivative and so finally derive each of
the above equations. This leaves open the question of what
happens if the medium is not at rest?

As is well known, for a non-conducting medium at rest,
Maxwell’s electromagnetic equations, when no charge is
present, reduce to

∇ ∙E=0 , ∇×E= −
μ

c

∂H

∂t
,

∇ ∙H=0 , ∇×H= −
ε

c

∂E

∂t
,

where D= εE,B=μH and μ, ε are assumed constant in
time.

The first two equations are easily seen to lead to

∇2E=
εμ

c2
∂2E

∂t2
,

and the latter two to

∇2H=
εμ

c2
∂2H

∂t2
.

Therefore, in this special case, provided the medium is
at rest, both E andH satisfy the well-known wave equation.
However, it has been shown [1] that, if the mean flow is stea-
dy and uniform, and, therefore, both homentropic and irro-
tational, the system of equations governing small-amplitude
homentropic irrotational wave motion in such a flow reduces
to the equation

∇2ϕ=
1

c2
D2ϕ

Dt2
.

which is sometimes referred to as the convected, or progress-
ive, wave equation. The question which remains is, for the
case of a medium not at rest, should Maxwell’s electromag-
netic equations be modified so as to reduce to this progressive
wave equation in the case of a non-conducting medium with
no charge present?

2 Generalisation of Maxwell’s equations

In the derivation of

∇×E= −
μ

c

∂H

∂t

it proves necessary to consider the integral

−
μ

c

d

dt

∫
B ∙ dS

and interchange the derivative and the integral. This operat-
ion may be carried out only for a medium at rest. However,
if the medium is moving, then the surface S in the integral
will be moving also, and the mere change of S in the field
B will cause changes in the flux. Hence, following Abraham
and Becker [2], a new kind of differentiation with respect to
time is defined by the symbol Ḃ as follows:

d

dt

∫
B ∙ dS=

∫
Ḃ ∙ dS . (a)
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Here, Ḃ is a vector, the flux of which across the moving
surface equals the rate of increase with time of the flux of
B across the same surface. In order to find Ḃ, the exact
details of the motion of the surface concerned must be
known. Suppose this motion described by a vector u, which
is assumed given for each element dS of the surface and is
the velocity of the element.

Let S1 be the position of the surface S at time (t − dt)
and S2 the position at some later time t. S2 may be obtained
from S1 by giving each element of S1 a displacement udt
. The surfaces S1 and S2, together with the strip produced
during the motion, bound a volume dt

∫
u ∙ dS.

The rate of change with time of the flux of B across S
may be found from the difference between the flux across S2
at time t and that across S1 at time (t− dt); that is

d

dt

∫
B ∙ dS=

∫
Bt ∙ dS2 −

∫
Bt−dt ∙ dS1

dt
,

where the subscript indicates the time at which the flux is
measured.

The divergence theorem may be applied at time t to the
volume bounded by S1, S2 and the strip connecting them.
Here the required normal to S2 will be the outward pointing
normal and that to S1 the inward pointing normal. Also, a
surface element of the side face will be given by ds×udt.
Then, the divergence theorem gives
∫

S2

Bt∙dS2+dt
∮
B∙ds×u−

∫

S1

Bt∙dS1=dt
∫
(∇∙B)u∙dS.

Also
∫
Bt−dt ∙ dS1=

∫
Bt ∙ dS1 −

∫
∂B

∂t
dS1dt .

Hence,
∫
Bt ∙ dS2 −

∫
Bt−dt ∙ dS1= dt

{∫
Ḃ ∙ dS1+

+

∫
(∇ ∙B)u ∙ dS1 −

∮
B ∙ ds× u

}

.

Using Stokes’ theorem, the final term on the right-hand
side of this equation may be written
∮
B ∙ ds× u=

∮
u×B ∙ ds=

∫ {
∇× (u×B)

}
∙ dS ,

and so finally

d

dt

∫
B ∙ dS=

∫ {
∂B

∂t
+u (∇ ∙B)−∇× (u×B)

}

∙ dS .

Therefore, the Ḃ, introduced in (a) above, is given by

Ḃ=
∂B

∂t
+ u (∇ ∙B)−∇× (u×B)

or, noting that

∇× (u×B) =u (∇ ∙B)−B (∇ ∙ u) + (B ∙ ∇)u− (u ∙ ∇)B ,

Ḃ=
∂B

∂t
+ (u ∙ ∇)B+B (∇ ∙ u)− (B ∙ ∇)u .

However, if the mean flow is steady and uniform and, the-
refore, both homentropic and irrotational, the fluid velocity,
u, will be constant and this latter equation will reduce to

Ḃ=
∂B

∂t
+ (u ∙ ∇)B=

DB

Dt
,

that is, for such flow, Ḃ becomes the well-known Euler
derivative. It might be noted, though, that, for more general
flows, the expression for Ḃ is somewhat more complicated.

It follows that, if the mean flow is steady and uniform,
the Maxwell equation, mentioned above, becomes

∇×E= −
μ

c

DH

Dt
= −

μ

c

[
∂H

∂t
+ (u ∙ ∇)H

]

.

Also, in this particular case, the remaining three Maxwell
equations will be

∇ ∙E=0 , ∇ ∙H=0 ,

∇×H=
ε

c

DE

Dt
=
ε

c

[
∂E

∂t
+ (u ∙ ∇)E

]

,

with this form for the final equation following in a manner
similar to that adopted above when noting that, for a steady,
uniform mean flow, ∂/∂t is replaced byD/Dt in the equation
for ∇×E.

These four modified Maxwell equations lead to both E
and H satisfying the above mentioned progressive wave
equation, as they surely must.

3 The origin of planetary magnetic fields

It is conceivable that use of these modified Maxwell electro-
magnetic equations could provide new insight into the prob-
lem of the origin of planetary magnetic fields. This is a
problem which has existed, without a really satisfactory
explanation, for many years. It would seem reasonable to
expect all such fields to arise from the same physical mechan-
ism, although the minute detail might vary from case to case.
The mechanism generally favoured as providing the best
explanation for the origin of these fields was the dynamo
mechanism, although the main reason for its adoption was the
failure of the alternatives to provide a consistent explanation.
However, Cowling [3] showed that there is a limit to the de-
gree of symmetry encountered in a steady dynamo mechan-
ism; this result, based on the traditional electromagnetic
equations of Maxwell, shows that the steady maintenance
of a poloidal field is simply not possible — the result is in
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reality an anti-dynamo theorem which raises difficulties in
understanding the observed symmetry of the dipole field.

Following Alfvén [4], it might be noted that, in a stat-
ionary state, there is no electromagnetic field along a neutral
line because that would imply a non-vanishing ∇×E, and so
a time varying B. The induced electric field v×B vanishes
on the neutral line since B does. Thus, there can be no
electromotive force along the neutral line, and therefore the
current density in the stationary state vanishes, the conduct-
ivity being infinite. On the other hand,∇×B does not vanish
on the neutral line. By Maxwell’s usual equations, the non-
vanishing ∇×B and the vanishing current density are in
contradiction and so the existence of a rotationally symmetric
steady-state dynamo is disproved. However, this conclusion
may not be drawn if the modified Maxwell equations, alluded
to earlier, are used, since, even in the steady state where the
partial derivatives with respect to time will all be zero, the
equation for ∇×B will reduce to

∇×B=
1

μ

[

j+ ε
∂E

∂t
+ εv ∙ ∇E

]

→
ε

μ
v ∙ ∇E

and there is no reason why this extra term on the right-
hand side should be identically equal to zero. Also, the non-
vanishing of ∇× E will not imply a time varying B since,
once again, there is an extra term −v ∙∇B remaining to
equate with the∇×E. It follows that an electromagnetic field
may exist along the neutral line under these circumstances.
Hence, no contradiction occurs; instead, a consistent system
of differential equations remains to be solved.
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