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The main purpose of this paper is to seek a mechanical interpretation of electromagnetic
phenomena. We suppose that vacuum is filled with a kind of continuously distributed
material which may be called 
(1) substratum. Further, we speculate that the 
(1)
substratum might behave like a fluid with respect to translational motion of large bod-
ies through it, but would still posses elasticity to produce small transverse vibrations.
Thus, we propose a visco-elastic constitutive relation of the 
(1) substratum. Further-
more, we speculate that electric charges are emitting or absorbing the 
(1) substratum
continuously and establish a fluidic source and sink model of electric charges. Thus,
Maxwell’s equations in vacuum are derived by methods of continuum mechanics based
on this mechanical model of vacuum and the singularity model of electric charges.

1 Introduction

Maxwell’s equations in vacuum can be written as [1]

r � E =
�e
�0
; (1)

r� E = �@B
@t

; (2)

r � B = 0 ; (3)

1
�0
r� B = j + �0

@E
@t

; (4)

where E is the electric field vector, B is the magnetic induc-
tion vector, �e is the density field of electric charges,
j is the electric current density, �0 is the dielectric constant
of vacuum, �0 is magnetic permeability of vacuum, t is time,
r = i @@x + j @@y + k @

@z is the Hamilton operator.
The main purpose of this paper is to derive the aforemen-

tioned Maxwell equations in vacuum based on a continuum
mechanics model of vacuum and a singularity model of elec-
tric charges.

The motivation for this paper was looking for a mecha-
nism of electromagnetic phenomena. The reasons why new
mechanical models of electromagnetic fields are interesting
may be summarized as follows.

First, there exists various electromagnetic phenomena
which could not be interpreted by the present theories of elec-
tromagnetic fields, e.g., the spin of an electron [1, 2], the
Aharonov-Bohm effect [3, 4], etc. New theories of of elec-
tromagnetic phenomena may consider these problems from
new sides.

Second, there exists some inconsistencies and inner diffi-
culties in Classical Electrodynamics, e.g., the inadequacy of
the Liéenard-Wiechert potentials [5–7]. New theories of elec-
tromagnetic phenomena may overcome such difficulties.

Third, there exists some divergence problems in Quantum
Electrodynamics [8]. By Dirac’s words, “I must say that I
am very dissatisfied with the situation, because this so-called
good theory does involve neglecting infinities which appear in
its equations, neglecting them in an arbitrary way. This is just
not sensible mathematics”. New theories of electromagnetic
phenomena may open new ways to resolve such problems.

Fourth, since the quantum theory shows that vacuum is
not empty and produces physical effects, e.g., the Casimir ef-
fect [9–12], it is valuable to reexamine the old concept of
electromagnetic aether.

Fifth, from the viewpoint of reductionism, Maxwell’s the-
ory of electromagnetic fields can only be regarded as a phe-
nomenological theory. Although Maxwell’s theory is a field
theory, the field concept is different from that of continuum
mechenics [13–16] due to the absence of a medium. Thus,
from the viewpoint of reductionism, the mechanism of elec-
tromagnetic phenomena is still remaining an unsolved prob-
lem of physics [17].

Sixth, one of the puzzles of physics is the problem of dark
matter and dark energy (refer to, for instance, [18–26]). New
theories of electromagnetic phenomena may provide
new ideas to attack this problem.

Finally, one of the tasks of physics is the unification of the
four fundamental interactions in the Universe. New theories
of electromagnetic phenomena may shed some light on this
puzzle.

To conclude, it seems that new considerations for elec-
tromagnetic phenomena is needed. It is worthy keeping an
open mind with respect to all the theories of electromagnetic
phenomena before the above problems been solved.

Now let us briefly review the long history of the mechan-
ical interpretations of electromagnetic phenomena.

According to E. T. Whittaker [17], Descartes was the first
person who brought the concept of aether into science by sug-
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gested mechanical properties to it. Descartes believed that ev-
ery physical phenomenon could be interpreted in the frame-
work of a mechanical model of the Universe. William Wat-
son and Benjamin Franklin (independently) constructed the
one-fluid theory of electricity in 1746 [17]. H. Cavendish at-
tempted to explain some of the principal phenomena of elec-
tricity by means of an elastic fluid in 1771 [17]. Not con-
tented with the above mentioned one-fluid theory of electric-
ity, du Fay, Robert Symmer and C. A. Coulomb developed a
two-fluid theory of electricity from 1733 to 1789 [17].

Before the unification of both electromagnetic and light
phenomena by Maxwell in 1860’s, light phenomena were in-
dependent studied on the basis of Descartes’ views for the
mechanical origin of Nature. John Bernoulli introduced a flu-
idic aether theory of light in 1752 [17]. Euler believed in
an idea that all electrical phenomena are caused by the same
aether that moves light. Furthermore, Euler attempted to ex-
plain gravity in terms of his single fluidic aether [17].

In 1821, in order to explain polarisation of light,
A. J. Frensnel proposed an aether model which is able to
transmit transverse waves. After the advent of Frensnel’s
successful transverse wave theory of light, the imponderable
fluid theories were abandoned. In the 19th century, Fren-
snel’s dynamical theory of a luminiferous aether had an im-
portant influence on the mechanical theories of Nature [17].
Inspired by Frensnel’s luminiferous aether theory, numerous
dynamical theories of elastic solid aether were established by
Stokes, Cauchy, Green, MacCullagh, Boussinesq, Riemann
and William Thomson. (See, for instance, [17]).

Thomson’s analogies between electrical phenomena and
elasticity helped to James Clark Maxwell to establish a me-
chanical model of electrical phenomena [17]. Strongly im-
pressed by Faraday’s theory of lines of forces, Maxwell com-
pared the Faraday lines of forces with the lines of flow of a
fluid. In 1861, in order to obtain a mechanical interpretation
of electromagnetic phenomena, Maxwell established a me-
chanical model of a magneto-electric medium. The Maxwell
magneto-electric medium is a cellular aether, looks like a
honeycomb. Each cell of the aether consists of a molecu-
lar vortex surrounded by a layer of idle-wheel particles. In a
remarkable paper published in 1864, Maxwell established a
group of equations, which were named after his name later,
to describe the electromagnetic phenomena.

In 1878, G. F. FitzGerald compared the magnetic force
with the velocity in a quasi-elastic solid of the type first sug-
gested by MacCullagh [17]. FitzGerald’s mechanical model
of such an electromagnetic aether was studied by A. Sommer-
feld, by R. Reiff and by Sir J. Larmor later [17].

Because of some dissatisfactions with the mechanical
models of an electromagnetic aether and the success of the
theory of electromagnetic fields, the mechanical world-view
was removed with the electromagnetic world-view gradually.
Therefore, the concepts of a luminiferous aether and an elas-
tic solid aether were removed with the concepts of an electro-

magnetic aether or an electromagnetic field. This paradigm
shift in scientific research was attributed to many scientists,
including Faraday, Maxwell, Sir J. Larmor, H. A. Lorentz,
J. J. Thomson, H. R. Hertz, Ludwig Lorenz, Emil Wiechert,
Paul Drude, Wilhelm Wien, etc. (See, for instance, [17].)

In a remarkable paper published in 1905, Einstein aban-
doned the concept of aether [27]. However, Einstein’s asser-
tion did not cease the exploration of aether (refer to, for in-
stance, [17,28–37,68,69]). Einstein changed his attitude later
and introduced his new concept of aether [38, 39]. In 1979,
A. A. Golebiewska-Lasta observed the similarity between the
electromagnetic field and the linear dislocation field [28].
V. P. Dmitriyev have studied the similarity between the elec-
tromagnetism and linear elasticity since 1992 [32,35,37,40].
In 1998, H. Marmanis established a new theory of turbu-
lence based on the analogy between electromagnetism and
turbulent hydrodynamics [34]. In 1998, D. J. Larson derived
Maxwell’s equations from a simple two-component solid-
mechanical aether [33]. In 2001, D. Zareski gave an elas-
tic interpretation of electrodynamics [36]. I regret to admit
that it is impossible for me to mention all the works related to
this field of history.

A. Martin and R. Keys [41–43] proposed a fluidic cos-
monic gas model of vacuum in order to explain the physical
phenomena such as electromagnetism, gravitation, Quantum
Mechanics and the structure of elementary particles.

Inspired by the above mentioned works, we show that
Maxwell’s equations of electromagnetic field can be derived
based on a continuum mechanics model of vacuum and a sin-
gularity model of electric charges.

2 Clues obtained from dimensional analysis

According to Descartes’ scientific research program, which
is based on his views about the mechanical origin of Nature,
electromagnetic phenomena must be (and can be) interpreted
on the basis of the mechanical motions of the particles of
aether.

Therefore, all the physical quantities appearing in the the-
ory of electromagnetic field should be mechanical quantities.

Thus, in order to construct a successful mechanical model
of electromagnetic fields, we should undertake a careful di-
mensional analysis (refer to, for instance, [44]) for physical
quantities in the theory of electromagnetism (for instance,
electric field vector E, magnetic induction vector B, the den-
sity field of electric charges �e, the dielectric constant of vac-
uum �0, the magnetic permeability of vacuum �0, etc.).

It is known that Maxwell’s equations (1-4) in vacuum can
also be expressed as [1]

r2�+
@
@t

(r � A) = ��e
�0
; (5)

r2A�r(r � A)� �0�0
@
@t

�
r�� @A

@t

�
= �j ; (6)
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where � is the scalar electromagnetic potential, A is the vec-
tor electromagnetic potential, r2 = @2

@x2 + @2

@y2 + @2

@z2 is the
Laplace operator.

In 1846, W. Thomson compared electric phenomena with
elasticity. He pointed out that the elastic displacement u of
an incompressible elastic solid is a possible analogy to the
vector electromagnetic potential A [17].

Noticing the similarity between the Eq. (6) and the equa-
tion (39) of momentum conservation of elastic solids, it is
natural to judge that vacuum is filled with a kind of elastic
substratum. Further, we may say that the dimension of the
electromagnetic vector potential A of such an elastic substra-
tum is the same that of the displacement vector u of an elastic
solid. Thus, the dimension of the vector electromagnetic po-
tential A of the elastic substratum is [L0M0T 0], where L, M
and T stands for the dimensions of length, mass, and time,
respectively. Therefore, we can determine the dimensions of
the rest physical quantities of the theory of electromagnetism,
for instance, the electric field vector E, the magnetic induc-
tion vector B, the electric charge qe, the dielectric constant
of vacuum �0, the magnetic permeability of vacuum �0, etc.
For instance, the dimension of an electric charge qe should be
[L0M1T�1].

Inspired by this clue, we are going to produce, in the next
Sections, an investigation in this direction.

3 A visco-elastic continuum model of vacuum

The purpose of this Section is to establish a visco-elastic con-
tinuum mechanical model of vacuum.

In 1845–1862, Stokes suggested that aether might behave
like a glue-water jelly [45–47]. He believed that such an
aether would act like a fluid on the transit motion of large
bodies through it, but would still possessing elasticity to pro-
duce a small transverse vibration.

Following Stokes, we propose a visco-elastic continuum
model of vacuum.
Assumption 1 Suppose that vacuum is filled with a kind of
continuously distributed material.

In order to distinguish this material with other substra-
tums, we may call this material as 
(1) substratum, for con-
venience. Further, we may call the particles that constitute
the 
(1) substratum as 
(1) particles (for convenience).

In order to construct a continuum mechanical theory of
the 
(1) substratum, we should take some assumptions based
on the experimental data about the macroscopic behavior of
vacuum.
Assumption 2 We suppose that all the mechanical quantities
of the 
(1) substratum under consideration, such as the den-
sity, displacements, strains, stresses, etc., are piecewise con-
tinuous functions of space and time. Furthermore, we sup-
pose that the material points of the 
(1) substratum remain
be in one-to-one correspondence with the material points be-
fore a deformation appears.

Assumption 3 We suppose that the material of the 
(1) sub-
stratum under consideration is homogeneous, that is @�

@x =
= @�

@y = @�
@z = @�

@t = 0; where � is the density of the 
(1)
substratum.

Assumption 4 Suppose that the deformation processes of
the 
(1) substratum are isothermal. So we neglect the ther-
mal effects.

Assumption 5 Suppose that the deformation processes are
not influenced by the gradient of the stress tensor.

Assumption 6 We suppose that the material of the 
(1) sub-
stratum under consideration is isotropic.

Assumption 7 We suppose that the deformaton of the 
(1)
substratum under consideration is small.

Assumption 8 We suppose that there are no initial stress and
strain in the body under consideration.

When the 
(1) substratum is subjected to a set of external
forces, the relative positions of the 
(1) particles form the
body displacement.

In order to describe the deformation of the 
(1) substra-
tum, let us introduce a Cartesian coordinate system fo;x;y;zg
or fo; x1; x2; x3g which is static relative to the 
(1) substra-
tum. Now we may introduce a definition to the displacement
vector u of every point in the 
(1) substratum:

u = r� r0; (7)

where r0 is the position of the point before the deformation,
while r is the position after the deformation.

The displacement vector may be written as u = u1i +
+u2j +u3k or u = ui + vj +wk, where i, j, k are three unit
vectors directed along the coordinate axes.

The gradient of the displacement vector u is the relative
displacement tensor ui;j = @ui

@xj .
We decompose the tensor ui;j into two parts, the sym-

metric "ij and the skew-symmetric 
ij (refer to, for instance,
[14, 48, 49])

ui;j =
1
2

(ui;j + uj;i) +
1
2

(ui;j � uj;i) = "ij + 
ij ; (8)

2"ij =
1
2

(ui;j + uj;i) ; 
ij =
1
2

(ui;j � uj;i) : (9)

The symmetric tensor "ij manifests a pure deformation of
the body at a point, and is known the strain tensor (refer to,
for instance, [14,48,49]). The matrix form and the component
notation of the strain tensor "ij are

"ij =

0BBBB@
@u
@x

1
2

�
@u
@y + @v

@x

�
1
2

�@u
@z + @w

@x

�
1
2

�
@v
@x + @u

@y

�
@v
@y

1
2

�
@v
@z + @w

@y

�
1
2

�@w
@x + @u

@z

� 1
2

�
@w
@y + @v

@z

�
@w
@z

1CCCCA; (10)

Xiao-Song Wang. Derivation of Maxwell’s Equations Based on a Visco-Elastic Continuum Model of Vacuum 113



Volume 2 PROGRESS IN PHYSICS April, 2008

"ij =

0@ "11 "12 "13
"21 "22 "23
"31 "32 "33

1A : (11)

The strain-displacements equations come from Eq. (10)

"11 =
@u
@x

; "12 = "21 =
1
2

�
@u
@y

+
@v
@x

�
"22 =

@v
@y

; "23 = "32 =
1
2

�
@v
@z

+
@w
@y

�
"33 =

@w
@z

; "31 = "13 =
1
2

�
@w
@x

+
@u
@z

�
9>>>>>>>=>>>>>>>;
: (12)

For convenience, we introduce the definitions of the mean
strain deviator "m and the strain deviator eij as

"m =
1
3

("11 + "22 + "33) ; (13)

eij = "ij � "m =

0@ "11�"m "12 "13
"21 "22�"m "23
"31 "32 "33�"m

1A: (14)

When the 
(1) substratum deforms, the internal forces
arise due to the deformation. The component notation of the
stress tensor �ij is

�ij =

0@ �11 �12 �13
�21 �22 �23
�31 �32 �33

1A : (15)

For convenience, we introduce the definitions of mean
stress �m and stress deviator sij as

�m =
1
3

(�xx + �yy + �zz) ; (16)

sij = �ij � �m =

0@�11��m �12 �13
�21 �22��m �23
�31 �32 �33��m

1A: (17)

Now let us turn to study the constitutive relation.
An elastic Hooke solid responds instantaneously with re-

spect to an external stress. A Newtonian viscous fluid re-
sponds to a shear stress by a steady flow process.

In 19th century, people began to point out that fact that
some materials showed a time dependence in their elastic re-
sponse with respect to external stresses. When a material like
pitch, gum rubber, polymeric materials, hardened cement and
even glass, is loaded, an instantaneous elastic deformation
follows with a slow continuous flow or creep.

Now this time-dependent response is known as viscoelas-
ticity (refer to, for instance, [50–52]). Materials bearing both
instantaneous elastic elasticity and creep characteristics are
known as viscoelastic materials [51,52]. Viscoelastic materi-
als were studied long time ago by Maxwell [51–53], Kelvin,
Voigt, Boltzamann [51, 52, 54], etc.

Inspired by these contributors, we propose a visco-elastic
constitutive relation of the 
(1) substratum.

It is natural to say that the constitutive relation of the 
(1)
substratum may be a combination of the constitutive relations
of the Hooke-solid and the Newtonian-fluid.

For the Hooke-solid, we have the generalized Hooke law
as follows (refer to, for instance, [14, 48, 49, 55]),

�ij = 2G"ij + ���ij ; "ij =
�ij
2G
� 3�
Y
�m �ij ; (18)

where �ij is the Kronecker symbol, �m is the mean stress,
where Y is the Yang modulus, � is the Poisson ratio, G is the
shear modulus, � is Lamé constant, � is the volume change
coefficient. The definition of � is � = "11 + "22 + "33 =
= @u

@x + @v
@y + @w

@z .
The generalized Hooke law Eq. (18) can also be written

as [55]
sij = 2Geij ; (19)

where sij is the stress deviator, eij is the strain deviator.
For the Newtonian-fluid, we have the following constitu-

tive relation
deij
dt

=
1
2�

sij ; (20)

where sij is the stress deviator, deijdt is the strain rate deviator,
� is the dynamic viscocity.

The 
(1) substratum behaves like the Hooke-solid during
very short duration. We therefore differentiate both sides of
Eq. (19), then obtain

deij
dt

=
1

2G
dsij
dt

: (21)

A combination of Eq. (21) and Eq. (20) gives

deij
dt

=
1
2�

sij +
1

2G
dsij
dt

: (22)

We call the materials behaving like Eq. (22) “Maxwell-
liquid” since Maxwell established such a constitutive relation
in 1868 (refer to, for instance, [50–53]).

Eq. (22) is valid only in the case of infinitesimal defor-
mation because the presence of the derivative with respect to
time. Oldroyd recognized that we need a special definition
for the operation of derivation, in order to satisfy the princi-
ple of material frame indifference or objectivity [51,56]. Un-
fortunately, there is no unique definition of such a differential
operation fulfil the principle of objectivity presently [51].

As an enlightening example, let us recall the description
[50] for a simple shear experiment. We suppose

d�t
dt

=
@�t
@t

;
det
dt

=
@et
@t

; (23)

where �t is the shear stress, et is the shear strain.
Therefore, Eq. (22) becomes

@et
@t

=
1
2�

�t +
1

2G
@�t
@t

: (24)

114 Xiao-Song Wang. Derivation of Maxwell’s Equations Based on a Visco-Elastic Continuum Model of Vacuum



April, 2008 PROGRESS IN PHYSICS Volume 2

Integration of Eq. (24) gives

�t = e�G� t
�
�0 + 2G

Z t

0

det
dt

e
G
� dt
�
: (25)

If the shear deformation is kept constant, i.e. @et@t = 0, we
have

�t = �0 e�
G
� t : (26)

Eq. (26) shows that the shear stresses remain in the
Maxwell-liquid and are damped in the course of time.

We see that �
G must have the dimension of time. Now

let us introduce the following definition of Maxwellian relax-
ation time �

� =
�
G
: (27)

Therefore, using Eq. (27), Eq. (22) becomes

sij
�

+
dsij
dt

= 2G
deij
dt

: (28)

Now let us introduce the following hypothesis

Assumption 9 Suppose the constitutive relation of the 
(1)
substratum satisfies Eq. (22).

Now we can derive the the equation of momentum con-
servation based on the above hypotheses 9.

Let T be a characteristic time scale of an observer of the

(1) substratum. When the observer’s time scale T is of the
same order that the period of the wave motion of light, the
Maxwellian relaxation time � is a comparigly large number.
Thus, the first term of Eq. (28) may be neglected. Therefore,
the observer concludes that the strain and the stress of the

(1) substratum satisfy the generalized Hooke law.

The generalized Hooke law (18) can also be written
as [14, 55]

�11 = �� + 2G"11

�22 = �� + 2G"22

�33 = �� + 2G"33

�12 = �21 = 2G"12 = 2G"21

�23 = �32 = 2G"23 = 2G"32

�31 = �13 = 2G"31 = 2G"13

9>>>>>>>>>>=>>>>>>>>>>;
; (29)

where �= Y �
(1+�)(1�2�) is Lamé constant, � is the volume

change coefficient. By its definition, �= "11 + "22 + "33 =
= @u

@x + @v
@y + @w

@z .
The following relationship are useful

G =
Y

2(1 + �)
; K =

Y
3(1� 2�)

; (30)

where K is the volume modulus.

It is known that the equations of the momentum conser-
vation are (refer to, for instance, [14, 48, 49, 55, 57, 58]),

@�11

@x
+
@�12

@y
+
@�13

@z
+ fx = �

@2u
@t2

; (31)

@�21

@x
+
@�22

@y
+
@�23

@z
+ fy = �

@2v
@t2

; (32)

@�31

@x
+
@�32

@y
+
@�33

@z
+ fz = �

@2w
@t2

; (33)

where fx, fy and fz are three components of the volume force
density f exerted on the 
(1) substratum.

The tensor form of the equations (31-33) of the momen-
tum conservation can be written as

�ij;j + fi = �
@2ui
@t2

: (34)

Noticing Eq. (29), we write Eqs. (31-33) as

2G
�
@"11

@x
+
@"12

@y
+
@"13

@z

�
+ �

@�
@x

+ fx = �
@2u
@t2

; (35)

2G
�
@"21

@x
+
@"22

@y
+
@"23

@z

�
+ �

@�
@y

+ fy = �
@2v
@t2

; (36)

2G
�
@"31

@x
+
@"32

@y
+
@"33

@z

�
+ �

@�
@z

+ fz = �
@2w
@t2

: (37)

Using Eq. (12), Eqs. (35-37) can also be expressed by
means of the displacement u

Gr2u+(G+�) @
@x

�
@u
@x + @v

@y + @w
@z

�
+fx = � @

2u
@t2

Gr2v+(G+�) @
@y

�
@u
@x + @v

@y + @w
@z

�
+fy = � @

2v
@t2

Gr2w+(G+�) @
@z

�
@u
@x + @v

@y + @w
@z

�
+fz = � @

2w
@t2

9>>>>=>>>>;: (38)

The vectorial form of the aforementioned equations (38)
can be written as (refer to, for instance, [14,48,49,55,57,58]),

Gr2u + (G+ �)r(r � u) + f = �
@2u
@t2

: (39)

When no body force in the 
(1) substratum, Eqs. (39)
reduce to

Gr2u + (G+ �)r(r � u) = �
@2u
@t2

: (40)

From Long’s theorem [48, 59], there exist a scalar func-
tion  and a vector function R such that u is represented by

u = r +r� R (41)

and  and R satisfy the following wave equations

r2 � 1
cl

@2 
@t2

= 0 ; (42)

r2R� 1
ct

@2R
@t2

= 0 ; (43)
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where cl is the velocity of longitudinal waves, ct is the veloc-
ity of transverse waves. The definitions of these two elastic
wave velocities are (refer to, for instance, [48, 49, 57, 58]),

cl =

s
�+ 2G
�

; ct =

s
G
�
: (44)

 and R is usually known as the scalar displacement potential
and the vector displacement potential, respectively.

4 Definition of point source and sink

If there exists a velocity field which is continuous and finite
at all points of the space, with the exception of individual
isolated points, then, usually, these isolated points are called
velocity singularities. Point sources and sinks are examples
of such velocity singularities.

Assumption 10 Suppose there exists a singularity at a point
P0 = (x0; y0; z0) in a continuum. If the velocity field of the
singularity at a point P = (x; y; z) is

v(x; y; z; t) =
Q

4�r2 r̂; (45)

where r =
p

(x� x0)2 + (y � y0)2 + (z � z0)2, r̂ is the
unit vector directed outward along the line from the singular-
ity to this point P = (x; y; z), we call such a singularity a
point source in the case of Q > 0 or a point sink in the case
of Q < 0. Here Q is called the strength of the source or sink.

Suppose that a static point source with the strength Q lo-
cates at the origin (0; 0; 0). In order to calculate the volume
leaving the source per unit of time, we may enclose the source
with an arbitrary spherical surface S of the radius a. Calcula-
tion shows thatZZ

S
 u � n dS =

ZZ
S
 Q

4�a2 r̂ � n dS = Q ; (46)

where n is the unit vector directed outward along the line from
the origin of the coordinates to the field point
(x; y; z). Equation (46) shows that the strength Q of a source
or sink evaluates the volume of the fluid leaving or entering a
control surface per unit of time.

For the case of continuously distributed point sources or
sinks, it is useful to introduce a definition for the volume den-
sity �s of point sources or sinks. The definition is

�s = lim4V!0

4Q
4V ; (47)

where4V is a small volume,4Q is the sum of the strengthes
of all the point sources or sinks in the volume4V .

5 A point source and sink model of electric charges

The purpose of this Section is to propose a point source and
sink model of electric charges.

Let T be the characteristic time of a observer of an elec-
tric charge in the 
(1) substratum. We may suppose that the
observer’s time scale T is very large to the Maxwellian relax-
ation time � . So the Maxwellian relaxation time � is a rel-
atively small, and the stress deviator sij changes very slow.
Thus, the second term in the left side of Eq. (28) may be ne-
glected. For such an observer, the constitutive relation of the

(1) substratum may be written as

sij = 2�
deij
dt

: (48)

The observer therefore concludes that the 
(1) substra-
tum behaves like a Newtonian-fluid on his time scale.

In order to compare fluid motions with electric fields,
Maxwell introduced an analogy between sources or sinks and
electric charges [17].

Einstein, Infeld and Hoffmann introduced an idea by
which all particles may be looked as singularities in fields
[60, 61].

Recently [62], we talked that the universe may be filled
with a kind fluid which may be called “tao”. Thus, Newton’s
law of gravitation is derived by methods of hydrodynamics
based on a point sink flow model of particles.

R. L. Oldershaw talked that hadrons may be considered
as Kerr-Newman black holes if one uses appropriate scaling
of units and a revised gravitational coupling factor [63].

Inspired by the aforementioned works, we introduce the
following

Assumption 11 Suppose that all the electric charges in the
Universe are the sources or sinks in the 
(1) substratum. We
define such a source as a negative electric charge. We define
such a sink as a positive electric charge. The electric charge
quantity qe of an electric charge is defined as

qe = � kQ�Q ; (49)

where � is the density of the 
(1) substratum, Q is called the
strength of the source or sink, kQ is a positive dimensionless
constant.

A calculation shows that the mass m of an electric charge
is changing with time as

dm
dt

= � �Q =
qe
kQ

; (50)

where qe is the electric charge quantity of the electric charge.
We may introduce a hypothesis that the masses of electric

charges are changing so slowly relative to the time scaler of
human beings that they can be treaten as constants approxi-
mately.

For the case of continuously distributed electric charges,
it is useful to introduce the following definition of the volume
density �e of electric charges

�e = lim4V!0

4qe
4V ; (51)

116 Xiao-Song Wang. Derivation of Maxwell’s Equations Based on a Visco-Elastic Continuum Model of Vacuum



April, 2008 PROGRESS IN PHYSICS Volume 2

where4V is a small volume,4qe is the sum of the strengthes
of all the electric charges in the volume4V .

From Eq. (47), Eq. (49) and Eq. (51), we have

�e = � kQ��s : (52)

6 Derivation of Maxwell’s equations in vacuum

The purpose of this Section is to deduce Maxwell’s equations
based on the aforementioned visco-elastic continuum model
of vacuum and the singularity model of electric charges.

Now, let us deduce the continuity equation of the 
(1)
substratum from the mass conservation. Consider an arbitrary
volume V bounded by a closed surface S fixed in space. Sup-
pose that there are electric charges continuously distributed
in the volume V . The total mass in the volume V is

M =
ZZZ

V
� dV ; (53)

where � is the density of the 
(1) substratum.
The rate of the increase of the total mass in the vol-

ume V is @M
@t

=
@
@t

ZZZ
V
�dV : (54)

Using the Ostrogradsky–Gauss theorem (refer to, for in-
stance, [16, 64–67]), the rate of the mass outflow through the
surface S isZZ

S
 �(u � n)dS =

ZZZ
V
r � (�u)dV ; (55)

where v is the velocity field of the 
(1) substratum.
The definition of the velocity field v is

vi =
@ui
@t

; or v =
@u
@t
: (56)

Using Eq. (52), the rate of the mass created inside the
volume V is ZZZ

V
��s dV =

ZZZ
V
� �e
kQ

dV: (57)

Now according to the principle of mass conservation, and
making use of Eq. (54), Eq. (55) and Eq. (57), we have

@
@t

ZZZ
V
� dV =

ZZZ
V
� �e
kQ

dV �
ZZZ

V
r � (� v) dV: (58)

Since the volume V is arbitrary, from Eq. (58) we have

@�
@t

+r � (� v) = � �e
kQ

: (59)

According to Assumption 3, the 
(1) substratum is ho-
mogeneous, that is @�

@x = @�
@y = @�

@z = @�
@t = 0. Thus, Eq. (59)

becomes
r � v = � �e

kQ�
: (60)

According to Assumption 11 and Eq. (50), the masses
bearing positive electric charges are changing since the
strength of a sink evaluates the volume of the 
(1) substra-
tum entering the sink per unit of time. Thus, the momentum
of a volume element 4V of the 
(1) substratum containing
continuously distributed electric charges, and moving with an
average speed ve, changes. The increased momentum 4P
of the volume element 4V during a time interval 4t is the
decreased momentum of the continuously distributed electric
charges contained in the volume element 4V during a time
interval4t, that is,

4P = �(�s4V4t) ve = � �e
kQ
4V4t ve : (61)

Therefore, the equation of momentum conservation
Eq. (39) of the 
(1) substratum should be changed as

Gr2u + (G+ �)r(r � u) + f = �
@2u
@t2
� �eve

kQ
: (62)

In order to simplify the Eq. (62), we may introduce an
additional assumption as

Assumption 12 We suppose that the 
(1) substratum is al-
most incompressible, or we suppose that � is a sufficient small
quantity and varies very slow in the space so that it can be
treaten as �= 0.

From Assumption 12, we have

r � u =
@u
@x

+
@v
@y

+
@w
@z

= � = 0 : (63)

Therefore, the vectorial form of the equation of momen-
tum conservation Eq. (62) reduces to the following form

Gr2u + f = �
@2u
@t2
� �eve

kQ
: (64)

According to the Stokes-Helmholtz resolution theorem
(refer to, for instance, [48, 57]), which states that every suf-
ficiently smooth vector field may be decomposed into irrota-
tional and solenoidal parts, there exist a scalar function  and
a vector function R such that u is represented by

u = r +r� R: (65)

Now let us introduce the definitions

r� = kE
@
@t

(r ) ; A = kE r� R ; (66)

E = � kE @u
@t
; B = kE r� u ; (67)

where � is the scalar electromagnetic potential, A is the vec-
tor electromagnetic potential, E is the electric field intensity,
B is the magnetic induction, kE is a positive dimensionless
constant.

From Eq. (65), Eq. (66) and Eq. (67), we have

E = �r�� @A
@t
; B = r� A (68)
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and

r� E = �@B
@t

; (69)

r � B = 0 : (70)

Based on Eq. (66) and noticing that

r2u = r(r � u)�r� (r� u) ; (71)

r2A = r(r � A)�r� (r� A) ; (72)

and r � u = 0,r � A = 0, we have

kE r2u = r2A : (73)

Therefore, using Eq. (73), Eq. (64) becomes

G
kE
r2A + f = �

@2u
@t2
� �eve

kQ
: (74)

Using Eq. (72), Eq. (74) becomes

� G
kE
r� (r� A) + f = �

@2u
@t2
� �eve

kQ
: (75)

Now using Eq. (68), Eq. (75) becomes

� G
kE
r� B + f = � �

kE
@E
@t
� �eve

kQ
: (76)

It is natural to say that there are no other body forces or
surface forces exerted on the 
(1) substratum. Thus, we have
f = 0. Therefore, Eq. (76) becomes

kQG
kE

r� B =
kQ�
kE

@E
@t

+ �eve : (77)

Now let us introduce the following definitions

j = �eve ; �0 =
kQ�
kE

;
1
�0

=
kQG
kE

: (78)

Therefore, Eq. (77) becomes

1
�0
r� B = j + �0

@E
@t

: (79)

Noticing Eq. (67) and Eq. (78), Eq. (60) becomes

r � E =
�e
�0
: (80)

Now we see that Eq. (69), Eq. (70), Eq. (79) and Eq. (80)
coincide with Maxwell’s equations (1–4).

7 Mechanical interpretation of electromagnetic waves

It is known that, from Maxwell’s equations (1-4), we can ob-
tain the following equations (refer to, for instance, [1])

r2E� 1
�0�0

@2E
@t2

=
1
�0
r�e + �0

@j
@t
; (81)

r2H� 1
�0�0

@2H
@t2

= � 1
�0
r� j : (82)

Eq. (81) and Eq. (82) are the electromagnetic wave equa-
tions with sources in the 
(1) substratum. In the source free
region where �e = 0 and j = 0, the equations reduce to the
following equations

r2E� 1
�0�0

@2E
@t2

= 0 ; (83)

r2H� 1
�0�0

@2H
@t2

= 0 : (84)

Eq. (83) and Eq. (84) are the electromagnetic wave equations
without the sources in the 
(1) substratum.

From Eq. (83), Eq. (84) and Eq. (78), we see that the ve-
locity c0 of electromagnetic waves in vacuum is

c0 =
1p�0�0

=
r
G
� : (85)

From Eq. (44) and Eq. (85), we see that the velocity c0
of electromagnetic waves in the vacuum is the same as the
velocity ct of the transverse elastic waves in the 
(1) sub-
stratum.

Now we may regard electromagnetic waves in the vacuum
as the transverse waves in the 
(1) substratum. This idea was
first introduced by Frensnel in 1821 [17].

8 Conclusion

We suppose that vacuum is not empty and may be filled with
a kind continuously distributed material called 
(1) substra-
tum. Following Stokes, we propose a visco-elastic constitu-
tive relation of the 
(1) substratum. Following Maxwell, we
propose a fluidic source and sink model of electric charges.
Thus, Maxwell’s equations in vacuum are derived by methods
of continuum mechanics based on this continuum mechan-
ical model of vacuum and the singularity model of electric
charges.

9 Discussion

Many interesting theoretical, experimental and applied prob-
lems can be met in continuum mechanics, Classical Electro-
dynamics, Quantum Electrodynamics and also other related
fields of science involving this theory of electromagnetic phe-
nomena. It is an interesting task to generalize this theory of
electromagnetic phenomena in the static 
(1) substratum to
the case of electromagnetic phenomena of moving bodies.
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