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The main purpose of this paper is to seek a mechanical interpretation of gravitational
phenomena. We suppose that the universe may be filled with a kind of fluid which may
be called the 
(0) substratum. Thus, the inverse-square law of gravitation is derived by
methods of hydrodynamics based on a sink flow model of particles. The first feature of
this theory of gravitation is that the gravitational interactions are transmitted by a kind
of fluidic medium. The second feature is the time dependence of gravitational constant
G and gravitational mass. The Newton’s law of gravitation is arrived if we introduce an
assumption that G and the masses of particles are changing so slowly that they can be
treated as constants.

1 Introduction

The Newton’s law of gravitation can be written as

F21 = �G m1m2

r2 r̂21 ; (1)

where m1 and m2 are the masses of two particles, r is the
distance between the two particles,G is the gravitational con-
stant, F12 is the force exerted on the particle with mass m2
by the particle with mass m1, r̂21 denotes the unit vector di-
rected outward along the line from the particle with mass m1
to the particle with mass m2.

The main purpose of this paper is to derive the Newton’s
law of gravitation by means of fluid mechanics based on sink
flow model of particles.

The motive of this paper is to seek a mechanism of gravi-
tational phenomena. The reasons why new models of gravity
are interesting may be summarized as follows.

Firstly, there exists some astronomical phenomena that
could not be interpreted by the present theories of gravita-
tion, for instance, the Titius-Bode law [1]. New theories of
gravity may view these problems from new angles.

Secondly, whether the gravitational constant G depends
on time and space is still unknown [2–8]. It is known that the
gravitational constant G is a constant in the Newton’s theory
of gravitation and in theory of general relativity.

Thirdly, the mechanism of the action-at-a-distance gravi-
tation remains an unsolved problem in physics for more than
300 years [9–11]. Although theory of general relativity is
a field theory of gravity [12], the concept of field is differ-
ent from that of continuum mechanics [13–16] because of the
absence of a continuum in theory of general relativity. Thus,
theory of general relativity can only be regarded as a phe-
nomenological theory of gravity.

Fourthly, we do not have a satisfactory quantum theory of
gravity presently [17–21]. One of the challenges in theoretic-

all physics is to reconcile quantum theory and theory of gen-
eral relativity [17,22]. New theories of gravity may open new
ways to solve this problem.

Fifthly, one of the puzzles in physics is the problem of
dark matter and dark energy [23–31]. New theories of gravity
may provide new methods to attack this problem [24, 25].

Finally, we do not have a successful unified field theory
presently. Great progress has been made towards an unifica-
tion of the four fundamental interactions in the universe in
the 20th century. However, gravitation is still not unified suc-
cessfully. New theories of gravity may shed some light on
this puzzle.

To conclude, it seems that new considerations on gravita-
tion is needed. It is worthy keeping an open mind with respect
to all the theories of gravity before the above problems been
solved.

Now let us briefly review the long history of mechanical
interpretations of gravitational phenomena. Many philoso-
phers and scientists, such as Laozi [32], Thales, Anaximenes,
believed that everything in the universe is made of a kind of
fundamental substance [9]. Descartes was the first to bring
the concept of aether into science by suggesting that it has
mechanical properties [9]. Since the Newton’s law of grav-
itation was published in 1687 [33], this action-at-a-distance
theory was criticized by the French Cartesian [9]. Newton
admitted that his law did not touch on the mechanism of grav-
itation [34]. He tried to obtain a derivation of his law based on
Descartes’ scientific research program [33]. Newton himself
even suggested an explanation of gravity based on the action
of an aetherial medium pervading the space [34, 35]. Euler
attempted to explain gravity based on some hypotheses of a
fluidic aether [9].

In a remarkable paper published in 1905, Einstein aban-
doned the concept of aether [36]. However, Einstein’s as-
sertion did not cease the explorations of aether [9, 37–46].
Einstein changed his view later and introduced his new con-
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cept of ether [47, 48]. I regret to admit that it is impossible
for me to mention all the works related to this field in his-
tory. Adolphe Martin and Roy Keys [49–51] proposed a flu-
idic cosmonic gas model of vacuum to explain the physical
phenomena such as electromagnetism, gravitation, quantum
mechanics and the structure of elementary particles.

Inspired by the aforementioned thoughts and others [52–
56], we show that the Newton’s law of gravitation is derived
based on the assumption that all the particles are made of sin-
gularities of a kind of ideal fluid.

During the preparation of the manuscript, I noticed that
John C. Taylor had proposed an idea that the inverse-square
law of gravitation may be explained based on the concept of
source or sink [65].

2 Forces acting on sources and sinks in ideal fluids

The purpose of this section is to calculate the forces between
sources and sinks in inviscid incompressible fluids which is
called ideal fluids usually.

Suppose the velocity field u of an ideal fluid is irrota-
tional, then we have [16, 54–59],

u = r� ; (2)

where � is the velocity potential,r = i @@x + j @@y + k @
@z is the

Hamilton operator.
It is known that the equation of mass conservation of an

ideal fluid becomes Laplace’s equation [54–59],

r2� = 0 ; (3)

where � is velocity potential, r2 = @2

@x2 + @2

@y2 + @2

@z2 is the
Laplace operator.

Using spherical coordinates(r; �; '), a general form of so-
lution of Laplace’s equation (3) can be obtained by separation
of variables as [56]

�(r; �) =
1X
l=0

�
Alrl +

Bl
rl+1

�
Pl(cos �) ; (4)

whereAl andBl are arbitrary constants, Pl(x) are Legendre’s
function of the first kind which is defined as

Pl(x) =
1

2ll!
dl

dxl
(x2 � 1)l: (5)

If there exists a velocity field which is continuous and fi-
nite at all points of the space, with the exception of individual
isolated points, then these isolated points are called singular-
ities usually.

Definition 1 Suppose there exists a singularity at point P0 =
(x0; y0; z0). If the velocity field of the singularity at point
P = (x; y; z) is

u(x; y; z; t) =
Q

4�r2 r̂ ; (6)

where r =
p

(x� x0)2 + (y � y0)2 + (z � z0)2, r̂ denotes
the unit vector directed outward along the line from the singu-
larity to the point P = (x; y; z), then we call this singularity
a source if Q > 0 or a sink if Q < 0. Q is called the strength
of the source or sink.

Suppose a static point source with strength Q locates at
the origin (0; 0; 0). In order to calculate the volume leav-
ing the source per unit time, we may enclose the source with
an arbitrary spherical surface S with radius a. A calculation
shows thatZZ

S
 u � ndS =

ZZ
S
 Q

4�a2 r̂ � ndS = Q ; (7)

where n denotes the unit vector directed outward along the
line from the origin of the coordinates to the field point
(x; y; z). Equation (7) shows that the strength Q of a source
or sink evaluates the volume of the fluid leaving or entering a
control surface per unit time.

From (4), we see that the velocity potential �(r; �) of a
source or sink is a solution of Laplace’s equation r2� = 0.

Theorem 2 Suppose (1) there exists an ideal fluid (2) the
ideal fluid is irrotational and barotropic, (3) the density � is
homogeneous, that is @�=@x=@�=@y=@�=@z=@�=@t= 0 ;
(4) there are no external body forces exerted on the fluid,
(5)the fluid is unbounded and the velocity of the fluid at the
infinity is approaching to zero. Suppose a source or sink is
stationary and is immersed in the ideal fluid. Then, there is a
force

FQ = � �Qu0 (8)

exerted on the source by the fluid, where � is the density of
the fluid, Q is the strength of the source or the sink, u0 is the
velocity of the fluid at the location of the source induced by
all means other than the source itself.

Proof Only the proof of the case of a source is needed. Let
us select the coordinates that is attached to the static fluid at
the infinity.

We set the origin of the coordinates at the location of the
source. We surround the source by an arbitrary small spheri-
cal surface S. The surface S is centerred at the origin of the
coordinates with radius r. The outward unit normal to the
surface S is denoted by n. Let � (t) denotes the mass system
of fluid enclosed in the volume between the surface S and the
source at time t. Let FQ denotes the hydrodynamic force ex-
erted on the source by the mass system � , then a reaction of
this force must act on the the fluid enclosed in the mass sys-
tem � . Let FS denotes the hydrodynamic force exerted on the
mass system � due to the pressure distribution on the surface
S, K denotes momentum of the mass system � .

As an application of the Newton’s second law of motion
to the mass system � ,we have

DK
Dt

= �FQ + FS ; (9)
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where D=Dt represents the material derivative in the lagrang-
ian system [16,54–59]. The expressions of the momentum K
and the force FS are

K =
ZZZ

�
� udV ; FS =

ZZ
S
 (�p)ndS ; (10)

where the first integral is volume integral, the second integral
is surface integral, n denotes the unit vector directed outward
along the line from the origin of the coordinates to the field
point(x; y; z).

Since the velocity field is irrotational, we have the follow-
ing relation

u = r� ; (11)

where � is the velocity potential.
According to Ostrogradsky–Gauss theorem (see, for in-

stance, [54–56, 58, 59]), we haveZZZ
�
�udV =

ZZZ
�
�r�dV =

ZZ
S
 ��ndS : (12)

Note that the mass system � does not include the singu-
larity at the origin. According to Reynolds’ transport theo-
rem [54–56, 58, 59], we have

D
Dt

ZZZ
�
�udV =

@
@t

ZZZ
V
�udV +

ZZ
S
 �u(u �n)dS ; (13)

where V is the volume fixed in space which coincide with the
mass system � (t) at time t, that is V = � (t).

Then, using (13) , (10) and (12), we have

DK
Dt

=
ZZ
S
 �

@�
@t

ndS +
ZZ
S
 �u(u � n)dS : (14)

According to Lagrange–Cauchy integral [54–56, 58, 59],
we have

@�
@t

+
(r�)2

2
+
p
�

= f(t) ; (15)

where f(t) is an arbitrary function of time t. Since the ve-
locity u of the fluid at the infinity is approaching to zero, and
noticing (4), �(t) must be of the following form

�(r; �; t) =
1X
l=0

Bl(t)
rl+1 Pl (cos �) ; (16)

where Bl(t); l > 0 are functions of time t. Thus, we have the
following estimations at the infinity of the velocity field

� = O
�

1
r

�
;

@�
@t

= O
�

1
r

�
; r !1 ; (17)

where '(x) = O( (x)); x ! a stands for limx!a j'(x)j =
 (x) = k; (0 6 k < +1):

Applying (15) at the infinity and using (17), we have
juj! 0, @�=@t! 0 and p= p1, where p1 is a constant.
Thus, f(t) = p1=�. Therefore, according to (15), we have

p = p1 � � @�@t �
�(u � u)

2
: (18)

Using (10) and (18), we have

FS =
ZZ
S
 �

@�
@t

ndS +
ZZ
S
 �(u � u) n

2
dS : (19)

Using (9), (14), (19), we have

FQ =
ZZ
S


�
1
2
�(u � u)n� �u(u � n)

�
dS : (20)

Now let us calculate this velocity u in order to obtain FQ.
Since the velocity field induced by the source Q is (6), then
according to the superposition principle of velocity field of
ideal fluids, the velocity on the surface S is

u =
Q

4�r2 n + u0; (21)

where n denotes the unit vector directed outward along the
line from the origin of the coordinates to the field point
(x; y; z). Using (20) and (21), we have

FQ = �
ZZ
S

�
� Q2

32�2r4 n +
1
2

(u0 � u0) n�

� Q
4�r2 u0 � (u0 � n) u0

�
dS : (22)

Since the radius r can be arbitrarily small, the velocity u0
can be treated as a constant in the integral of (22). Thus, (22)
turns out to be

FQ = ��
ZZ
S
 Q

4�r2 u0 dS : (23)

Since again u0 can be treated as a constant, (23) turns out
to be (8). This completes the proof. �

Remark Lagally [52], Landweber and Yih [53, 54], Faber
[55] and Currie [56] obtained the same result of Theorem 2
for the special case where the velocity field is steady.

Theorem 2 only considers the situation that the sources or
sinks are at rest. Now let us consider the case that the sources
or sinks are moving in the fluid.

Theorem 3 Suppose the presuppositions (1), (2), (3), (4)
and (5) in Theorem 2 are valid and a source or a sink is mov-
ing in the fluid with a velocity vs, then there is a force

FQ = ��Q (uf � vs) (24)

is exerted on the source by the fluid, where � is the density of
the fluid, Q is the strength of the source or the sink, uf is the
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velocity of the fluid at the location of the source induced by
all means other than the source itself.

Proof The velocity of the fluid relative to the source at the
location of the source is uf �vs. Let us select the coordinates
that is attached to the source and set the origin of the coordi-
nates at the location of the source. Then (24) can be arrived
following the same procedures in the proof of Theorem 2. �

Applying Theorem 3 to the situation that a source or sink
is exposed to the velocity field of another source or sink,
we have:

Corollary 4 Suppose the presuppositions (1), (2), (3), (4)
and (5) in Theorem 2 are valid and a source or a sink with
strength Q2 is exposed to the velocity field of another source
or sink with strength Q1, then the force F21 exerted on the
singularity with strength Q2 by the velocity field of the sin-
gularity with strength Q1 is

F21 = ��Q2
Q1

4�r2 r̂21 + �Q2v2 ; (25)

where r̂21 denotes the unit vector directed outward along the
line from the singularity with strength Q1 to the singularity
with strength Q2, r is the distance between the two singular-
ities, v2 is the velocity of the source with strength Q2.

3 Derivation of inverse-square-law of gravitation

Since quantum theory shows that vacuum is not empty and
has physical effects, e.g., the Casimir effect [45, 60–62], it is
valuable to probe vacuum by introducing the following hy-
potheses:

Assumption 5 Suppose the universe is filled by an ideal
fluid named 
(0) substratum; the ideal fluid fulfil the con-
ditions (2), (3), (4), (5) in Theorem 2.

This fluid may be named 
(0) substratum in order to dis-
tinguish with Cartesian aether. Following Einstein, Infeld
and Hoffmann, who introduced the idea that particles may
be looked as singularities in fields [63,64], and noticing (25),
it is nature to introduce the following:

Assumption 6 All the microscopic particles were made up
of a kind of elementary sinks of 
(0) substratum. These ele-
mentary sinks were created simultaneously.The initial masses
and the strengths of the elementary sinks are the same.

We may call these elementary sinks as monads.
Suppose a particle with mass m is composed of N mon-

ads. Then, according to Assumption 6, we have:

m0(t) = m0(0) + �q0 t ; (26)

Q = �Nq0 ; m(t) = Nm0(t) = � Q
q0
m0(t) ; (27)

dm0

dt
= �q0 ;

dm
dt

= ��Q ; (28)

where m0(t) is the mass of monad at time t, �q0(q0 > 0) is
the strength of a monad, m(t) is the mass of a particle at time

t, Q is the strength of the particle, N is the number of mon-
ads that make up the particle, � is the density of the 
(0)
substratum, t > 0.

From (28), we see that the massm0 of a monad is increas-
ing since q0 evaluates the volume of the 
(0) substratum fluid
entering the monad per unit time. From (28), we also see that
the mass of a monad or a particle is increasing linearly.

Based on Assumption 5 and Assumption 6, the motion of
a particle is determined by:

Theorem 7 The equation of motion of a particle is

m(t)
dv
dt

=
�q0
m0(t)

m(t)u� �q0
m0(t)

m(t)v + F ; (29)

where m0(t) is the mass of monad at time t, �q0 is the
strength of a monad, m(t) is the mass of a particle at time
t, v is the velocity of the particle, u is the velocity of the 
(0)
substratum at the location of the particle induced by all means
other than the particle itself, F denotes other forces.

Proof Applying the Newton’s second law and Theorem 3 to
this particle, we have mdv=dt = ��Q(u�v) + F. Noticing
(27), we get (29). �

Formula (29) shows that there exists a universal damping
force

Fd = ��q0
m0

mv (30)

exerted on each particle.
Now let us consider a system consists of two particles.

Based on Assumption 6, applying Theorem 7 to this system,
we have:

Corollary 8 Suppose there is a system consists of two par-
ticles and there are no other forces exerted on the particles,
then the equations of motion of this system are

m1
dv1

dt
= ��q0

m0
m1v1 � �q2

0

4�m2
0

m1m2

r2 r̂12 (31)

m2
dv2

dt
= ��q0

m0
m2 v2 � �q2

0

4�m2
0

m1m2

r2 r̂21 ; (32)

where mi=1;2 is the mass of the particles, vi=1;2 is the ve-
locity of the particles, m0 is the mass of a monad, �q0 is the
strength of a monad, � is the density of the 
(0) substratum,
r̂12 denotes the unit vector directed outward along the line
from the particle with mass m2(t) to the particle with mass
m1(t), r̂21 denotes the unit vector directed outward along the
line from the particle with mass m1(t) to the particle with
mass m2(t).

Ignoring the damping forces in (32), we have:

Corollary 9 Suppose (1) vi=1;2 � ui=1;2, where vi is the
velocity of the particle with mass mi, ui is the velocity of
the 
(0) substratum at the location of the particle with mass
mi induced by the other particle, (2) there are no other forces
exerted on the particles, then the force F21(t) exerted on the
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particle with mass m2(t) by the velocity field of 
(0) sub-
stratum induced by the particle with mass m1(t) is

F21(t) = �G(t)
m1(t)m2(t)

r2 r̂21 ; (33)

where G = �q2
0=(4�m2

0(t)), r̂21 denotes the unit vector di-
rected outward along the line from the particle with mass
m1(t) to the particle with mass m2(t), r is the distance be-
tween the two particles.

Corollary 9 is coincide with the Newton’s inverse-square-
law of gravitation (1) except for two differences. The first
difference is that mi=1;2 are constants in the Newton’s law
(1) while in (1) while in Corollary are functions of time t.
The second difference is that G is a t. The second difference
is that G is a constant in the Newton’s

Let us now introduce an assumption thatG and the masses
of particles are changing so slowly relative to the time scale
of human beings that they can be treated as constants approx-
imately. Thus, the Newton’s law (1) of gravitation may be
considered as a result of Corollary 9 based on this assump-
tion.

4 Superposition principle of gravitational field

The definition of gravitational field g of a particle with mass
m is g = F=mtest, where mtest is the mass of a test point
mass, F is the gravitational force exerted on the test point
mass by the gravitational field of the particle with mass m.
Based on Theorem 7 and Corollary 9, we have

g =
�q0
m0

u ; (34)

where � is the density of the 
(0) substratum, m0 is the mass
of a monad, q0 is the strength of a monad, u is the velocity
of the 
(0) substratum at the location of the test point mass
induced by the particle mass m. From (34), we see that the
superposition principle of gravitational field is deduced from
the superposition theorem of the velocity field of ideal fluids.

5 Time dependence of gravitational constant G and
mass

According to Assumption 6 and Corollary 9, we have we have

G =
�q2

0

4�m2
0(t)

; (35)

where m0(t) is the mass of monad at time t, �q0 is the
strength of a monad, � is the density of the 
(0) substratum.
The time dependence of gravitational mass can be seen from
(35) and (28).

6 Conclusion

We suppose that the universe may be filled with a kind of fluid
which may be called the 
(0) substratum. Thus, the inverse-

square law of gravitation is derived by methods of hydrody-
namics based on a sink flow model of particles. There are
two features of this theory of gravitation. The first feature is
that the gravitational interactions are transmitted by a kind of
fluidic medium. The second feature is the time dependence of
gravitational constant and gravitational mass. The Newton’s
law of gravitation is arrived if we introduce an assumption
thatG and the masses of particles are changing so slowly that
they can be treated as constants. As a byproduct, it is shown
that there exists a universal damping force exerted on each
particle.
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