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The Mathematical Power of 
Epicyclical Astronomy 

By Norwood Russell Hanson* 

T HIS PAPER has two objectives. The first is to describe more graphically 
than has yet been done the elegance of the ancient technique of epicycle- 

on-deferent. The second is to expose as erroneous an implicit contention of 
several historians - namely, that the inadequacy of Ptolemaic astronomy is 
somehow connected with its formally weak computational equipment.' When 
compared with the powerful calculational devices of our twentieth century, 
epicycle-on-deferent astronomy apparently comes out as a laughably primitive 
attempt to predict planetary perturbations. But to reason thus is fallacious. 

Actually, these objectives will be achieved simultaneously - if they are 
achieved at all. To see the comprehensive theoretical power of this ancient 
geometrical device just is to see its elegance. 

1 

First then, a graphic account of the flexible beauty of epicycle-on-deferent. 
Let Ptolemy himself introduce the subject: 

... the epicycle is made to move in longitude in the order of the signs in a 
circle concentric with the Zodiac [i.e., from west to east], while the planet 
moves on the epicycle at a velocity which is the same as that of the anomaly; 
on that part of the epicycle farthest from the earth the motion is direct.2 

Ptolemy here describes that example of epicyclical motion which is now the 
staple illustration in history of science textbooks (Figure 1). 

It is said of Herakleides that he envisaged such a motion for Mercury and 
Venus. Thus, Chalcidius: 

* Indiana University. I am indebted to Dr. 
F. Smithies, of St. John's College, Cambridge 
University, for help with the formal parts of 
this paper. 

1 So prevalent is this view that as late as 
1880 De Morgan had to write: "On this 
theory of epicycles . . . the common notion is 
that it was a cumbrous and useless apparatus, 
thrown away by the moderns" (Dictionary of 
Greek and Roman Biography, compiled by Sir 
William Smith [London, 1880], s.v. Claudius 
Ptolemaeus, p. 576). Dampier does not help 
to correct "the common notion" forcibly or 
clearly enough. He writes: "Its [the theory 
of Hipparchus and Ptolemy] one fault from 

the geometric point of view was the complica- 
tions of cycles and epicycles it involved" (A 
History of Science, 4th ed. [Cambridge], p. 
109, my italics). Even an authority like Abetti 
is misleading in this connection: "It [the 
Copernican system] has the weakness of the 
epicycles, which could not explain the variable 
direction of the planet, due to its elliptic mo- 
tion around the sun . . ." (The History of 
Astronomy [New York, 1952], p. 80). The 
present paper purports to demonstrate the un- 
tenability of this position. 

2 Claudius Ptolemy, Syntaxis mathematica, 
ed. Heiberg (Leipzig, 1898-1903), III, 3. 
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Herakleides of Pontus, in describing the path of Venus and the sun, and 
assigning one midpoint for both, showed how Venus is sometimes above and 
sometimes below the sun.3 

Vitruvius amplifies this: 

Mercury and Venus make their retrogradations and retardations around the 
rays of the sun, making a crown, as it were, by their courses about the sun as 
center.4 

Martianus Capella is even more explicit: 

Venus and Mercury ... place the center of their orbits in the sun; so tllat they 
sometimes move above it and sometimes below it, i.e., nearer the earth ... the 
circles of this star [Mercury] and Venus are epicycles. That is to say, they 
do not include the round earth within their own orbit, but are carrie(d around 
it latterly, as it were.5 

FIGURE 1 FIGURE 2 

As textbooks readily show, by reversing the direction in which the planet 
turns on the epicycle, an elliptical orbit results, an effect of which Copernicus 
was well aware (Figure 2). 

It is demonstrable, of course, that this same effect could have been obtained 
without the epicycle - simply by letting the deferential circle's center itself 
move in a circle just the size of the epicycle above (Figure 3). 

As Ptolemy puts it: 

the center of the excentric revolves . . . whilst the planet moves on the 
excentric in the opposite direction . . .6 

Indeed, Ptolemy actually superimposes both demonstrations to reveal their 
perfect equivalence: 

3 Commentary on Plato's Timaeus, 109. 
4 On Architecture, IX, 1.6. 

6 On the Marriage of Philology and Mer- 
cury, VIII, 859, 879. 

6 Syntaxis mathematica, III, 3. 
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... according to either hypothesis it will appear possible for the planets seem- 
ingly to pass, in equal periods of time, through unequal arcs of the ecliptic 
circle which is concentric with the cosmos. . . . It must be understood that all 
the appearances can be cared for interchangeably according to either hypothe- 
sis, when the same ratios are involved in each. In short, the hypotheses are 
interchangeable.7 

Textbook expositions usually reach their zenith with Figure 4. 

16 

KEY ~~~~~~~0 

FIGURE 3 FIGURE 4 

With only this much of the story of epicycle-on-deferent told, it would 
indeed appear that the ancient's astronomical tasks were Sisyphean. The 
complex trajectories of comets, and the erratic wobblings of double stars, not 
to mention the retrogradations-in-latitude of Mars and Venus, all seem to be 
motions which would in principle elude such a primitive technique. But this 
is wrong. And it is wrong ever to let it even sound as if there were dynamically 
significant motions which could not be captured by Ptolemy's methods. 

For example, merely by letting the length of the epicycle's radius approxi- 
mate to that of the deferent one can attain perfect rectilinear motion along a 
diameter of the deferent8 (Figure 5). 

Historically, this motion is significant. Kepler, in De motibus stellae Martis 
makes Mars librate rectilinearly across its epicycle.9 Incidentally, it was at 
this point in his deliberations that Kepler realized that such a librational 

7Ibid., and compare book IX. 
8 Compare Copernicus, De revolutionibus 

orbium coelestium (Thoruni, 1873), III, 4: 
"someone will ask how the regularity of these 
librations is to be understood, since it was said 
in the beginning that the celestial movement 
was regular, or composed of regular and cir- 
cular movements . . ."; "movement along a 
straight line is compounded of two circular 

movements which compete with one another 
... a reciprocal and irregular movement is 
composed of regular movements . . ." (pp. 165- 
166). Cf. also, C. B. Boyer, "Note on Epi- 
cycles and the Ellipse from Copernicus to 
Lahire," Isis, 1947, 38: 54-56. 

) Cf. De Motibus Stellae Martis, IV, ch. 58, 
in Gesamnelte Werke (Miinchen, 1937). 
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hypothesis could be made equivalent to the elliptical orbit hypothesis, inde- 
pendently discovered useful for calculating Mars' longitudes."0 

By altering the speed of the planet's east-to-west motion on an epicycle 
travelling west-to-east, one can approximate to a triangular figure (Figure 6). 

FIGURE 5 FIGURE 6 

FIGURE 7 FIGURE 8 

Indeed, one can take this to its rectilinear limit (Figure 7). 
When confronted with this triangular "orbit," and the square one which 

follows (Figure 8), several historians and philosophers of my acquaintance 

10 Ibid., ch. 59. Kepler does not actually 
undertake the detailed construction we have 
just set out above; but inasmuch as the libra- 
tions in question are always "librati in dia- 

metro epicycli," it is clear that Kepler's 
"justification" of this rectilinear Martian mo- 
tion would have to be precisely what has been 
drawn above. 
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have registered startled, incredulous reactions. Before having seen these 
figures, they were inclined to regard such resultant "orbits" as non-con- 
structible by the use of epicycle and deferent alone. Observers had to be 
assured that no trick, or juggling of the epicycle speeds has been responsible 
for these sharp-cornered figures. 

It will be noted, however, that both "orbits" immediately above are de- 
scribed with a rather broad line. This is theoretically significant. But since 
the second objective of this paper is embodied in the explanation of why this 
line is broadened, let us return later to a detailed account of the matter. 

Consider, first, a few more orbital possibilities contained within the ancient 
technique. By letting a second epicycle ride along on the first, a complex variety 
of ellipses are constructible (Figure 9). 

FIGURE 9 FIGURE 10 

Indeed, by varying the revolutional speeds of the secondary epicycles, a vir- 
tual infinitude of bilaterally-symmetrical curves can be produced (Figure 10). 
Even Kepler's intractable oviform curve, to determine the equations of which 
he implored the help of the world's geometers,1' can be approximated quite 
closely with a third epicycle (Figure 11). 

Some extraordinarily complex, periodically-repetitive configurations are 
also constructible (Figure 12). 

In fact, as will be proved presently, an infinitude of non-periodic "orbits" 
can also be generated. Simply increase the size of the bundle of epicycles 
riding on a given deferent, and vary at will the speeds and directions of revo- 
lution of the component epicycles. Clearly, the range of complexity for the 
orbits resulting from the epicycle device is unlimited. There is no bilaterally- 
symmetrical, nor excentrically-periodic curve used in any branch of astro- 

11 Cf. De motibus stellae Martis, IV, ch. 47, 
p. 297 (ed. cit.): ". . . appello Geometras 

eorumque opem imploro." 
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physics or observational astronomy today which could not be smootkly plotted 
as the resultant motion of a point turning within a constellation of epicycles, 
finite in number, revolving upon a fixed deferent. 

FIGURE 11 FIGURE 12 

2 

Bilaterally-symmetrical, and excentrically periodic orbits that are curvilinear 
these are one thing, but rectilinear polygons are quite another. 

Let us return now to the square and the triangular "orbits" depicted above. 
No one will doubt the formal power of an astronomical-geometrical technique 
which could even permit a planet to move in a square if need be. We have 
never put so heavy a demand on our own contemporary techniques - though 
we could do so if the heavens required it. The point is that Apollonius, Hip- 
parchus, and Ptolemy could, in principle, have done the same thing as our- 
selves, had the heavens required it of them. 

The algebraic demonstration to follow will show that, for all practical astro- 
nomical purposes (in the twentieth century as well as in the second), one 
could, with a finite number of epicycles, generate a square orbit. 

More precisely, if the square in question is a visible square -i.e., if the 
lines of which it is constructed have some detectable breadth as well as length 

then that square is the possible resultant orbit of some finite combination 
of epicycles. Choose some arbitrarily small number c, as small as you please 
but greater than zero; it is possible to get the sinusoidal "wiggle" (typical of 
epicyclical constructions) along the lines constituting the square so small that 
the amplitude of the wiggle, i.e., the distance between its crests and troughs, 
will be smaller than e. And all this with a finite number of epicycles. Theoreti- 
cally, of course, there must always be some slight cusp at the vertices of the 
square so long as the epicycles remain finite in number. The cusps will dis- 
appear, theoretically, only when the number of constituent epicycles has gone 
to infinity. But in this case the number e will have gone to the limit zero; the 
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square in question would then be composed of Euclidean straight lines (i.e., 
one-dimensional curves), in which case the square would no longer be visible 
anyhow. Thus, no matter how finely the square is drawn, if it can be seen, 
there is some finite number of epicycles of whose resultant motion the square 
is the construct. The formal proof of this is as follows. 

The Representation of an Arbitrary Periodic Motion in the 
Plane Considered as a Superposition of Circular Motions 

A. Let us represent points in the plane by complex numbers z = x + iy = re; 
the corresponding Cartesian coordinates will be (x,y), and the corresponding polar 
coordinates will be (r,O). 

Remember that the addition of two complex numbers 

(Z,Z') -+ z + z' 

corresponds to vector addition of the position vectors of the corresponding points 
(Figure 13). 

o~~~~z z v 

0 

FIGURE 13 

B. A uniform circular motion with center c, radius p, and period T, may be 
represented by: 

z = c + pe (2-iIT) + 

where t denotes time, and a represents the initial phase of the point. 

C. Suppose now that a point A is moving in the way described by the equation: 
z = f(t) 

Suppose also that B is moving relative to A in a circle of radius p, with period T 
and initial phase c; then the motion of B is given by the equation: 

z = f(t) + pe 2(f'i9) + ia 

We can then think of B as moving on an epicycle carried by A. 

D. We see immediately that the superposition of a new epicycle (one now carried 
by B) is equivalent to the addition of a new term: 

pe(2tiT) + ia 

This is added to the expression for z. This term can also be written: 
peiae2ss/lT 

or, more briefly, 
aeikl 

where a is a non-zero complex number, and k is real. 
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E. Note that any form of retrograde motion corresponds simply to taking T 
(or k) negative. 

F. A motion given by the superposition of n epicycles would be given by an 
equation of this form: 

z = aie'k1t + a2eG' + - + anek 
G. Now suppose that we are just given a periodic motion in the plane by the 

equation: 
z = f(t) 

We may assume now that the period of motion is 2wr (even if it becomes necessary 
to change the time scale somewhat). 

Suppose that f(t) is a sufficiently well-behaved function [it will be enough that 
f(t) is continuous and of bounded variation-this is a natural enough condition 
to impose; that f(t) is taken as continuous and of bounded variation means only 
that the resultant orbit is a continuous curve of finite length.] Then it is well known 
that we can write: 

f(t)-= co + (ciel + c_.e ) + (c2e' + ce2e') = cin 

this series being uniformly convergent. 

Let us now write 
N 

SN(t) = cn 
n--N 

Choose now some small number e > 0. Since the series is uniformly convergent, 
we can now find No such that 

If(t)SX01) < 

for all N ; N. and all t. In other words, if we consider the two orbits: 
z = f(t), z = SN(t), 

the distance between corresponding points of these two orbits remains less than e 
for all time. 

Thus the original orbit, z = f(t), can be replaced, with as small a loss in accuracy 
as we please, by an orbit z = SN(t); that is, some finite superposition of epicycles. 

H. The function defining a square or a triangular "orbit" satisfies these conditions 
completely; the above considerations therefore apply without qualification to these 
special cases illustrated earlier in this paper. 

I. The superpositions we have used so far are special ones; for the periods of the 
epicycles are: 

?2,w, ?tr, ?2/3r, ? l/2w, ?2/9?5,... 

In particular, they are commensurable with one another. 

J. However, it must be stressed here that even non-periodic orbits can be repre- 
sented by such a superposition of epicycles, provided only that we allow incom- 
mensurable periods. The basic theorem would be: 

Let z = f(t) be a complex-valued function of the real variable t, and suppose 
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that f(t) is a uniformly almost-periodic function of t (see H. Bohr, Fastperiodische 
Funktionen (1932) for all the necessary definitions); then we can approximate to 
this motion as closely as we please for all time by an expression of the form: 

z = ales + a2e2t + + anes , 

i.e., a superposition of epicycles of radii lail, ..., Ian1, and periods | xi.'|n. 

To conclude this examination of the elegance, flexibility and power of epi- 
cycle-on-deferent astronomy, three further observations are in order. 

1. All of our diagrams have been presented in the plane. But this is only a 
technical limitation, and should not obscure the fact that geocentric astronomy 
was designed as much to cope with a planet's aberrations in latitude as with 
those in longitude. Merely by inclining the epicycle's axis of rotation, further 
variations normal to the plane are easily achieved. By a simple extension of 
the proofs set out above, it would be possible to move a point (within a finite 
framework of epicycles) over the surface of a cube, a pyramid, an ovoid-or 
indeed, over any solid figure of which the foregoing diagrams may be construed 
as sections. This possibility is built into the ancient technique. 

2. Formally speaking, epicycle theory is far from being "a closed book." 
The famous "brachistochrone" problem introduced by Johann Bernoulli (Acta 
eruditorum, 1696) has affinities with epicyclical motion considered as under 
the influence of gravity alone. This problem, along with the so-called "isoperi- 
metric" problem, led historically to the development of the calculus of varia- 
tions by Euler and Lagrange, and ultimately (through Maupertuis, Fermat 
and Hamilton) into the general theory of variational principles which has 
become such a powerful formal tool in mechanics, optics, electrodynamics, 
and in relativity and quantum theory. In more than one place the modern 
physicist must face dynamical problems which are closely analogous to the 
very difficulties which the intrepid Ptolemy faced. Indeed, some of his problems 
require, even today, the most careful analysis for their full solution. 

3. It is hardly necessary to point out that our own lunar motions, as well as 
those of the satellites of Mars, Jupiter and the other planets, are almost purely 
epicyclical. Our moon faithfully describes what is basically an epicycle moving 
on a deferent (the earth's orbit) excentric to the sun. Moreover, subtle varia- 
tions in the ellipsoidal character of the earth's orbit, as well as in the moon's 
own librations and perturbations, stretch epicycle theory to its utmost as a 
descriptive astronomical tool. Had he possessed all the data we have, Ptolemy 
would have been quite at home with our problems of lunar dynamics. 

These points are mentioned only to stress further what is behind this article, 
viz., that Ptolemy's mathematics was, in principle, as powerful, at least for the 
special problems before him then, as is our own in dealing with these same prob- 
lems. The ancient technique of epicycle-on-deferent, far from being but a relic 
of the past, is not dispensable even today. 
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