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1 INTRODUCTION TO THE NOTION OF QUANTIZED FIELDS

Quantum Field Theory is one of those cherished scientific achievements that have
become considerably more successful than they should have, if one takes into
consideration the apparently shaky logic on which it is based. With awesome
accuracy, all known subatomic particles appear to obey the rules of one example
of a quantum field theory that goes under the uninspiring name of “The Standard
Model”. The creators of this model had hardly anticipated such a success, and
one can rightfully ask to what it can be attributed.

We have long been aware of the fact that, in spite of its successes, the Standard
Model cannot be exactly right. Most quantum field theories are not asymptoti-
cally free, which means that they cannot be extended to arbitrarily small distance
scales. We could try to cure the Standard Model, but this would not improve our
understanding at all, because we know that, at those extremely tiny distance scales
where the problems would become relevant, a force appears that we cannot yet
describe unambiguously: the gravitational force. It would have to be understood
first.

Perhaps this is the real strength of Quantum Field Theory: we know where its
limits are, and these limits are far away. The gravitational force acting between
two subatomic particles is tremendously weak. As long as we disregard that, the
theory is perfect. And, as I will explain, its internal logic is not shaky at all.

Subatomic particles all live in the domain of physics where spins and actions are
comparable to Planck’s constant � . One obviously needs Quantum Mechanics to
describe them. Since the energies available in sub-atomic interactions are compa-
rable to, and often larger than, the rest mass energy mc2 of these particles, they
often travel with velocities close to that of light, c , and so relativistic effects will
also be important. Thus, in the first half of the twentieth century, the question
was asked:

“How should one reconcile Quantum Mechanics with Einstein’s theory of Special
Relativity?”

As we shall explain, Quantum Field Theory is the answer to this question.
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Our first intuitions would be, and indeed were, quite different [Pais, 1986;
Crease and Mann, 1986]. One would set up abstract Hilbert spaces of states,
each containing fixed or variable numbers of particles. Subsequently, one would
postulate a consistent scheme of interactions. What would ‘consistent’ mean? In
Quantum Mechanics, we have learned how to describe a process where we start
with a certain number of particles that are all far apart but moving towards one
another. This is the ‘in’ state |ψ〉in . After the interaction has taken place, we
end up with particles all moving away from one another, a state |ψ′〉out . The
probability that a certain in-state evolves into a given out-state is described by a
quantum mechanical transition amplitude, out〈ψ′|ψ〉in . The set of all such ampli-
tudes in the vector spaces formed by all in- and out-states is called the scattering
matrix. One can ask how to construct the scattering matrix in such a way that
(i) it is invariant under Lorentz transformations, and (ii) obeys the strict laws of
quantum causality. By ‘quantum causality’ we mean that under no circumstance
a measurable effect may proceed with a velocity faster than that of light. In prac-
tice, this means that one must demand that any set of local operators Oi(x, t)
obeys commutation rules such that the commutators [Oi(x, t), Oj(x′, t′)] vanish
as soon as the vector (x− x′, t− t′) is space-like. One can show that this implies
that the scattering matrix must obey dispersion relations.

This is indeed how physicists started to think about their problem. But how
should one construct such a scattering matrix? Does any systematic procedure
exist?

A quantized field may seem to be something altogether different, yet it does
appear to allow for the construction of an interacting medium that does obey the
laws of Lorentz invariance and causality. The local operators can be constructed
from the fields. All we then have to do is to set up schemes of relativistically covari-
ant field equations, such as Maxwell’s laws. Even the introduction of non-linear
terms in these equations appears to be straightforward, and if we were to subject
such systems to a mathematically well-defined procedure called “quantization”,
we would have candidates for a solution to the aforementioned problem.

Realizing that the energy in a quantized field comes in quantized energy pack-
ages, which in all respects behave like elementary particles, and, conversely, re-
alizing that operators in the form of fields could be defined also when one starts
up with Hilbert spaces consisting of elementary particles, it was discovered that
quantized fields do indeed describe subatomic particles. Subsequently, it was dis-
covered that, in a quantized field, the number of ways in which interactions can be
introduced (basically by adding non-linear terms in the field equations), is quite
limited. Quantization requires that all interactions can be given in the form of
a Lagrange function L ; relativity requires this L to be Lorentz-invariant, and,
most strikingly, self-consistency of Quantum Field Theory then provides further
restrictions, which leads to the possibility of writing down a complete list of all
possible interactions. The Standard Model is just one element of this list.
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The scope of this concise treatise on Quantum Field Theory is too limited to
admit detailed descriptions of all technical details. Instead, special emphasis is put
on the conceptual issues that arise when addressing the numerous questions and
problems associated with this doctrine. One could use this text to learn Quantum
Field Theory, but for many technical details, more literature must be consulted
[de Wit and Smith, 1986; Aitchison and Hey, 1989; Ryder, 1985; Itzykson and
Zuber, 1980; Cheng and Li, 1984] We also limited ourselves to applications of
Quantum Field Theory in elementary particle physics. There are many examples
in low-temperature physics where these and similar techniques are useful, but they
will not be addressed here.

2 SCALAR FIELDS

2.1 Classical Theory: Feynman rules

A field is here taken to mean a physical variable that is a function of space-time
coordinates x = (x, t). In order for our theories to be in accordance with special
relativity, we will have to specify how a field transforms under a homogeneous
Lorentz transformation,

x′ = Lx .(1)

If a field φ transforms as

φ′(x) = φ(x′) ,(2)

then φ is called a scalar field. The improper Lorentz transformations, such as
parity reflection P and time reversal T , are of lesser importance since we know
that Nature is not exactly invariant under those.

Let us first restrict ourselves to real scalar fields; generalization to the case where
fields are denoted by complex numbers will be straightforward. Upon quantization,
scalar fields will come in energy packets that behave as spinless Bose-Einstein
particles, such as π0, π± and η0 . Conceptually, the scalar field is the easiest to
work with, but in section 9 we shall find reasons why other kinds of fields can
actually improve the internal consistency of our theories.

Lorentz-invariant field equations typically take the form1

(∂2
μ −m2

(i))φi = Fi(φ) ; ∂2
μ ≡ �∂ 2

x − ∂2
t .(3)

1We use summation convention: repeated indices that are not put between brackets are
automatically summed over. Greek indices μ are Lorentz indices taking 4 values, Latin indices
i, j, · · · run from 1 to 3. Our metric convention is gμν =diag(−1, 1, 1, 1) .
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Here, the index i labels different possible species of scalar fields, and Fi(φ) could
be any function of the field(s) φj(x). Usually, however, we assume that there
is a potential function V int(φ), such that Fi(φ) is the gradient of V int , and
furthermore we assume that V int is a polynomial whose degree is at most four:

V int(φ) = 1
6gijkφiφjφk + 1

24λijk� φiφjφkφ� ;

Fi(φ) =
∂V int(φ)

∂φi
= 1

2gijkφjφk + 1
6λijk� φjφkφ� ,(4)

where g and λ must be totally symmetric under all permutations of their indices.1

This is actually a limitation on the forms that Fi(φ) can take. Without this
limitation, we would not have a conserved energy, and quantization of the theory
would not be possible. Later, we will see why higher terms in the polynomial are
not permitted (section 7).

In order to understand the general structure of the classical solutions to this set
of equations, we temporarily add a function −Ji(x) to Fi(φ) in Eq. (3). Subse-
quently, we expand the solution in powers of Ji(x):

(m2
(i) − ∂2

μ)φi(x) = Ji(x)− ∂

∂φi
V int(φ(x));

φi(x) = φ
(1)
i (x) + φ

(2)
i (x) + ψ

(3)
i (x) + · · ·

=
∫

d4y Gij(x− y)
(

Jj(y)− Fj

(
φ(1)(y) + φ(2)(y) + φ(3)(y) + · · ·

))
. (5)

The function Gij(x− y) is a solution to the equation

(m2
i − ∂2

μ)Gij(x− y) = δijδ(x− y) ,(6)

while φ
(2)
i (x) is quadratic in Jj(y) and φ(3)(x) is cubic, and so on. Assembling

terms of equal order in Jj(y) we find a recursive procedure to solve the field
equations (2.1). At the end of our calculation, we might set Ji(x) equal to zero,
or better, have J non-vanishing only in the far-away region where the particles
originated, so that the J interaction is a simplified model for the machine that
produced the particles in the far past. Indeed, in the quantum theory it will also
turn out to be convenient to use J as a model for the particle detector at the end
of the experiment.

We see that the solution to Eq. (2.1) can be written as the sum of a large number
of terms. Each of these terms can be written in the form of a diagram, called a
Feynman diagram. In these diagrams, we represent a space-time point as a dot,
and the function Gij(x− y) as a line connecting x with y . The index i may be
indicated at each line. A dot may either be associated with a term Ji(y), or it is a
three-point vertex associated with a coefficient gijk or a four-point vertex, going
with a coefficient λijk� . A typical Feynman diagram is sketched in Fig. 1.
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φ1(x) g123

λ2456

x′

J4(x′′)

J5(x′′′)

J6(x′ν)
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G33(x′−xν)
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Figure 1. Example of a Feynman diagram for classical scalar fields

Observe the general structure of these diagrams. There are factors 1
2 , 1

6 , etc.,
which can easily be read off from the symmetries of the diagram. By construction,
there are no closed loops: the diagram is simply connected. This will be different
in the quantized theory.

One important issue is to be addressed: the Green function, Gij(x− y) is not
completely determined by the equation (6): one may add arbitrary combinations
of the solutions of the homogeneous equation

(m2
i − ∂2

μ)Gij(x− y) = 0 .(7)

In Fourier space, this ambiguity is reflected in the fact that one has some freedom
in choosing the integration curve C in the solution2

Gij(x− y) = (2π)−4

∫
C

d4k eik·(x−y)
δij

k2 + m2
i

.(8)

Our choice can be indicated by shifting the pole by an infinitesimal imaginary
number, after which we choose the contour C to be along the real axis of all
integrands. A reasonable choice is

G+
ij(x− y) = (2π)−4

∫
d4k eik·(x−y)

δij
k2 − (k0 + iε)2 + m2

(i)

,(9)

where ε is an infinitesimal, positive number. With this choice, the integration
contour in the complex k0 plane can be shifted such that the imaginary part of
k0 can be given an arbitrarily large positive value, and from this one deduces that

2An inner product k · x stands for �k · �x− k0x0 .
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the Green function will vanish as soon as the time difference, x0− y0 , is negative.
This Green function, called the forward Green function, gives our expressions
the desired causality structure: There are obviously no effects that propagate
backwards in time, or indeed faster than light.

The converse choice, G−(x−y), gives us the backward solution. However, in the
quantized theory, we will often be interested in yet another choice, the Feynman
propagator, defined as

GF
ij(x− y) = (2π)−4

∫
d4k eik·(x−y)

δij

k2 − k02 + m2
i − iε

,(10)

where, again, the infinitesimal number ε > 0.

The rules to obtain the complete expansion of the solution can now be summa-
rized as follows:

1) Each term can be depicted as a diagram consisting of points (vertices) con-
nected by lines (called propagators). One end-point, , corresponds
to a point x where we want to know the field φ ; the other end points,

, refer to factors J(y(i)) for the corresponding points y(i) , see Fig. 1.

2) There are no “closed loops”. i.e. the diagrams must be simply connected
(this will be different in the quantum theory).

3) There are vertices with three prongs (3-vertices),
k

ji , each being asso-

ciated with a factor gijk , and vertices with four prongs (4-vertices), k
l

j
i ,

each giving a factor λijk� .

4) Each line connecting two points x(1) and x(2) , x(1) x(2)
k ji

, is asso-
ciated with a factor Gij(x(1) − x(2)) when we work in ordinary space-time
(configuration space), or a factor

δij
k2 + m2

i − iε
,(11)

in momentum space (the reason for this iε choice will only become apparent
in the quantized theory).

5) If we work in configuration space, we must integrate over all x values at each
vertex except the one where φ was defined; if we work in momentum space,
we must integrate over the k values, subject to the restriction of momentum
conservation at each vertex: kout =

∑
in kin .

6) A ‘combinatorial factor’. For the classical theories it is 1/N , where N is
the number of permutations of the source vertices that leave the diagram
unaltered.
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It is not difficult to generalize the rules for the case of higher polynomials in the
interactions, but this will not be needed for the time being.

2.2 Spontaneous symmetry breaking: Goldstone modes

In the classical theory, the Hamilton density is

H(x, t) = 1
2 φ̇2

i + 1
2 (�∂φi)2 + V (φ) ; V (φ) = 1

2m2
iφ

2
i + V int(φ) .(12)

The theory is invariant under the group of transformations

φ′
i(x) = Aijφj(x) ,(13)

if A is orthogonal and the potential function V (φ) is invariant under that group.
The simplest example is the transformation φ↔ −φ :

A = ±1 ; V = V (φ2) = 1
2aφ2 +

λ

24
φ4 .(14)

There are two cases to consider:

i) a > 0. In this case, φ = 0 is the absolute minimum of V . We write

a = m2 ,(15)

and find that m indeed describes the mass of the particle. All Feynman
diagrams have an even number of external lines. Since, in the quantum
theory, these lines will be associated with particles, we find that states with
an odd number of particles can never evolve into states with an even number
of particles, and vice versa. If we define the quantum number PC = (−1)N ,
where N is the number of φ particles, then we find that PC is conserved
during interactions.

ii) a < 0. In this case, we see that:

— trying to identify the mass of the particle using Eq. (15) yields the
strange result that the mass would be purely imaginary. Such objects
(“tachyons”) are not known to exist and probably difficult to reconcile
with causality, and furthermore:

— the configuration φ = 0 does not correspond to the lowest energy
configuration of the system. The lowest energy is achieved when

φ = ±F ; F 2 = −6a/λ .(16)
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It is now convenient to rewrite the potential V as

V =
λ

24
(φ2 − F 2)2 − C ,(17)

where we did not bother to write down the value of the constant C , since it
does not occur in the evolution equations (2.1). There are now two equivalent
vacuum states, the minima of V . Choosing one of them, we introduce a new
field variable φ̃ to write

φ ≡ F + φ̃ ;

V =
λ

24
φ̃2(2F + φ̃)2 =

λF 2

6
φ̃2 +

λF

6
φ̃3 +

λ

24
φ̃4 ,(18)

and we see that

a) for the new field φ̃ , the mass-squared m̃2 = λF 2/3 is positive, and

b) a three-prong vertex appeared, with associated factor λF . The quan-
tum number PC is no longer apparently conserved.

This phenomenon is called ‘spontaneous symmetry breaking’, and it plays an im-
portant role in Quantum Field Theory.

Next, let us consider the case of a continuous symmetry. The prototype example
is the U(1) symmetry of a complex field. The symmetry group consists of the
transformations A(θ) , where θ is an angle:

Φ ≡ 1√
2
(φ1 + iφ2) ; Φ′ = A(θ)Φ = eiθΦ ,(19)

Again, the most general potential3 invariant under these transformations is

V (Φ,Φ∗) = aΦ∗Φ + 1
2λ(Φ∗Φ)2 − C ,(20)

In the case where the U(1) symmetry is apparent, one can rewrite the Feynman
rules to apply directly to the complex field Φ, noticing that one can write the
potential V as a real function of the two independent variables Φ and Φ∗ . With

∂2
μΦ =

∂V (Φ,Φ∗)
∂Φ∗ ,(21)

one notices that the Feynman propagators can be written with an arrow in them:
an arrow points towards a point x where the function Φ(x) is called for, and away
from a point x′ where a factor Φ∗(x′) is extracted from the potential V . At every

3Observe how we adjusted the combinatorial factors. The choices made here are the most
natural ones to keep these coefficients as predictable as possible in future calculations.
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vertex, as many arrows enter as they leave, and so, during an interaction, the
total number of lines pointing forward in time minus the number of lines pointing
backward is conserved. This is an additively conserved quantum number, to be
interpreted as a ‘charge’ Q . According to Noether’s theorem, every symmetry is
associated to such a conservation law.

However, if a < 0, this U(1) symmetry is spontaneously broken. Then we write

V = 1
2λ(Φ∗Φ− F 2)2 − C , F 2 ≡ −a/λ .(22)

This time, the stable vacuum states form a closed circle in the complex plane of
Φ values. Let us write

Φ ≡ F + Φ̃ ; Φ̃ ≡ 1√
2
(φ̃1 + iφ̃2) ;

V = 1
2λ
(
F (Φ̃ + Φ̃∗) + Φ∗Φ

)2

= λF φ̃2
1 +

λF√
2
φ̃1(φ̃2

1 + φ̃2
2) +

λ

8
(φ̃2

1 + φ̃2
2)

2 .(23)

The striking thing about this potential is that the mass term for the field φ̃2 is
missing. The mass squared for the φ̃1 field is m̃2

1 = 2λF . The fact that one of
the effective fields is massless is a fundamental consequence of the fact that we
have spontaneous breakdown of a continuous symmetry. Quite generally, there is
a theorem, called the Goldstone theorem:

If a continuous symmetry whose symmetry group has N independent genera-
tors, is broken down spontaneously into a (residual) symmetry whose group has
N1 independent generators, then N −N1 massless effective fields emerge.

The propagators for massless fields obey Eq. (6) without the m2 term, which
gives these expressions an ‘infinite range’: such a Green’s function drops off only
slowly for large spatial or timelike separations. These massless oscillating modes
are called ‘Goldstone modes’.

2.3 Quantization of a classical theory

How does one “quantize” a field theory? In the old days of Quantum Mechanics,
it was taught that “you take the Poisson brackets of the classical system, and
replace these by commutators.” Here and there, one had to readjust the order in
which classical expressions emerge, when they are replaced by operators, but the
rules appeared to leave no essential ambiguities. Indeed, if such a procedure is
possible, one may get a quantum theory which reproduces the original classical
system in the limit of vanishing � . Also, the group of symmetry transformations
under which the classical system was invariant, often re-emerges in the quantum
system.
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A field theory, however, has a strictly infinite set of physical degrees of freedom
(the field values at every point in 3-space, or, the complete set of Fourier modes).
More often than not, upon “quantization”, this leads to infinities that render the
theory ill-defined. One has to formulate the notion of “quantization” much more
carefully, going through several intermediate steps. Since, today, the answers to
our questions are so well known, it is often forgotten how these answers can be
derived rigorously and why they take the form they have. What is the strictly
logical sequence of arguments?

First of all, it is unreasonable to expect that every classical field theory should
have a quantum mechanical counterpart. What we wish to do, is construct some
quantum system, its Hilbert space and its Hamiltonian, such that in one or more
special limits, it reproduces a known classical theory. We demand certain prop-
erties of the theory, such as Lorentz invariance and causality, but most of all we
demand that it be internally logically impeccable, allowing us to calculate how
in such a system particles interact, under all imaginable circumstances. We will,
however, continue to use the phrase ‘quantization’, meaning that we attempt to
construct a quantum theory with a given classical field theory as its �→ 0 limit.

Often, authors forget to mention the first, very important, step in this logical
procedure: replace the classical field theory one wishes to quantize by a strictly
finite theory. Assuming that physical structures smaller than a certain size will not
be important for our considerations, we replace the continuum of three-dimensional
space by a discrete but dense lattice of points. In the differential equations, we
replace all derivatives ∂/∂xi by finite ratios of differences: Δ/Δxi , where Δφ

stands for φ(x + Δx)− φ(x) . In Fourier space, this means that wave numbers �k

are limited to a finite range (the Brillouin zone), so that integrations over �k can
never diverge.

If this lattice is sufficiently dense, the solutions we are interested in will hardly
depend on the details of this lattice, and so, the classical system will resume
Lorentz invariance and the speed of light will be the practical limit for the velocity
of perturbances. If necessary, we can also impose periodic boundary conditions in
3-space, and in that case our system is completely finite. Finite systems of this sort
allow for ‘quantization’ in the old-fashioned sense: replace the Poisson brackets by
commutators. Note that we did not (yet) discretize time, so the Hamiltonian of
our theory has the form

H = T + V

=
∑
xa

3∏
a=1

(Δxa)
(

1
2

∑
i

(∂φi/∂t)2 + 1
2

∑
i,a

(Δφi
Δxa

)2

+ V (φ)
)

. (24)

The canonical momenta associated to the fields φi(x) are

pi(x) = (∂φi/∂t)
3∏
a=1

(Δxa) ,(25)
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and so, we will assume these to be operators obeying:

[φi(x), φj(x′)] = 0 [pi(x), pj(x′)] = 0 ; [φi(x), pj(x′)] = iδji δx, x′ .(26)

Now, we have to wait and see what happens in the limit of an infinitely dense
space-lattice. Will, like the classical theory, our quantum concoction turn out to
be Lorentz-invariant? How do we perform Lorentz transformations on physical
states? This question turns out to be far from trivial to answer, but the answer is
known. We first need some useful technical tools.

2.4 The Feynman path integral

The Feynman path integral is often introduced as an “infinite dimensional” inte-
gral. Again, we insist on at first keeping everything finite. Label the generalized
coordinates (here the φi fields) as qi . The momenta are pi . The Hamiltonian (2.3)
is of the conventional type (the volume elements

∏ 3
a=1(Δxa) act as masses). For

future use, we need a slightly more general one, a Hamiltonian that also contains
pieces linear in the momenta pi :

H = T + V ; T =
∑
i

(
pi −Ai(q)

)2

2m(i)
; V = V (q) .(27)

In principle, we keep the number n of coordinates and momenta finite, in which
case there is no doubt that the differential equations in question have unique, finite
solutions (assuming the functions Ai and V to be sufficiently smooth; indeed we
will mostly work with polynomials). Consider the configuration states |q〉 and the
momentum states |p〉 . We have

〈q|q′〉 = δn(q− q′) , 〈p|p′〉 = δn(p− p′) ; 〈q|p〉 = (2π)−n/2eipiqi .(28)

Taking the order of the operators into account, we write for the kinetic energy

T =
∑
i

p2
i − 2Aipi + A2

i

2m(i)
+ iW (q) ;

W (q) =
∑
i

[Ai(q), pi]
2im(i)

=
∑
i

∂iAi(q)
2m(i)

.(29)

This enables us to compute swiftly the matrix elements

〈q|H|p〉 = 〈q|p〉(h(q,p) + iW (q)) ;(30)
〈p|H|q〉 = 〈p|q〉(h(q,p)− iW (q)) ,(31)
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where h(q,p) is the classical Hamiltonian as a function of the two sets of variables
q and p .

The evolution operator U(t, δt) for a short time interval δt is

U(t, δt) = e−iH(t)δt = II− iH δt +O(δt)2 .(32)

Its matrix elements between states 〈p| and |q〉 are easy to derive now:

〈p|U(t, δt)|q〉 = 〈p|q〉 − iδt〈p|H|q〉+O(δt)2

= (2π)−n/2e−ipiqi

(
1− iδt{h(q,p)− iW (q)}+O(δt)2

)
= (2π)−n/2 exp

(
− ip · q− iδt{h(q,p)− iW (q)}+O(δt)2

)
. (33)

What makes this expression very useful is the fact that it does not become singular
in the limit δt ↓ 0. The momentum-momentum and the coordinate-coordinate
matrix elements do become singular in that limit.

Next, let us consider a finite time interval T . The evolution operator over that
time interval can formally be viewed as a sequence of many evolution operators
over short time intervals δt , with T = N δt . Using closure, both in p space and
in q space, at all time intervals,

II =
∫

dnq |q〉〈q| =
∫

dnp |p〉〈p| ,(34)

we can write

|ψ(qN , T )〉 = 〈qN |U(0, T )|ψ(0)〉 =
∫

dnq0

∫
dnp0 · · ·

∫
dnqN−1

∫
dnpN−1

〈qN |pN−1〉 〈pN−1|U(tN−1, δt)|qN−1〉 〈qN−1|pN−2〉
〈pN−2|U(tN−2, δt)|qN−2〉 · · · 〈p0|U(0, δt)|q0〉 〈q0|ψ(0)〉 . (35)

Plugging in Eq. (2.4), we see that

|ψ(qN , T )〉 =
(N−1∏
τ=0

∫
dnqτ

∫
dnpτ

e−W (qτ )δt

(2π)n

)
×

exp i
N−1∑
τ=0

δt
(
pτ

qτ+1 − qτ
δt

− h(qτ ,pτ , tτ )
)
〈q0|ψ(0)〉 .(36)

Define

q̇τ ≡ qτ+1 − qτ
δt

,(37)
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and

L(p, q, q̇, t) = p · q̇− h(q, p, t) ,(38)

and the measure

N−1∏
τ=0

∫
dnqτ

∫
dnpτ

e−W (qτ )δt

(2π)n
≡
∫
DqDp ,(39)

then we obtain an expression that seems to be easy to extend to infinitely fine
grids in the time variable:

〈qN |ψ(T )〉 =
∫
DqDp

(
exp i

N−1∑
τ=0

δt L(p, q, q̇, t)
)
〈q0|ψ(0)〉 .(40)

In these expressions, we actually allowed the parameters in the Hamiltonian H
and the Lagrangian L to depend explicitly on time t , so as to expose the physical
structure of these expressions. Note that

L(p, q, q̇, t) = −
∑
i

(pi −Ai −m(i)q̇i)2

2m(i)
− V (q) +

∑
i

(Aiq̇i + 1
2m(i)q̇

2
i ) ,

(41)

and the integrals over all momentum variables are easy to perform, giving some
constant that only depends on the masses m(i) :

〈qN |ψ(T )〉 =
∫
Dq exp

(
i

M−1∑
τ=0

δt L(q, q̇, t)
)
〈q0|ψ(0)〉 ,(42)

with

L(q, q̇, t) = T − V ; T =
∑
i

( 1
2m(i)q̇

2
i + Aiq̇i) ;

Dq = e−
P

τ W (qτ ) δt
N−1∏
τ=0

(
dnqτ

∏
i

(m(i)

2π δt

) 1
2
)

.(43)

Actually, L(q, q̇, t) is obtained from L(p,q, q̇, t) by extremizing the latter with
respect to p :

∂

∂pi
L(p,q, q̇, t) = 0 ; q̇i =

∂h(q,p, t)
∂pi

.(44)
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This is exactly the standard relation between Lagrangian and Hamiltonian of the
classical theory. So, L is indeed the Lagrangian.

If the continuum limit exists, the exponent in Eq. (42) is exactly i times the
classical action,

S =
∫

dtL(q, q̇, t) .(45)

It is tempting to assume that the O(δt)2 terms in Eq. (32) disappear in the limit;
after all, they are only multiplied by factors N ≈ C/δt . In that case, the evolution
operator in Eq. (42) clearly takes the form of an integral over all paths going from
q0 to qN . This is Feynman’s path integral. In the case of a field theory, one
considers the field defined on a lattice in space, and since the path integral starts
with a lattice in the time variable, we end up dealing with a lattice in space and
time. In conclusion:

The evolution operator in a field theory is described by first rephrasing
the theory on a dense lattice in space-time. Replacing partial deriva-
tives by the corresponding finite difference ratios, one writes an expres-
sion for the action S of the theory. Normally, it can be written as an
integral over a Lagrange density, L(φ, ∂μφ). The evolution operator
of the theory is obtained by integrating eiS over all field configurations
φ(x, t) in a given space-time patch. The integration measure is defined
from Eq. (43).

The Ai terms, linear in the time derivatives, do not play a role in scalar field
theories but they do in vector theories, and the fact that they occur in the measure
(43) is usually ignored. Indeed, in most cases, W (q) vanishes, but we must be
aware that it might cause problems in some special cases. We ignore the W term
for the time being.

2.5 Feynman rules for the quantized theory

The Feynman rules for quantized field theories were first derived by careful analysis
of perturbation theory. Writing the quantum Hamiltonian H as H = H0 + H int ,
one assembles all terms bilinear in the fields and their derivatives in H0 and
performs the perturbation expansion for small values of H int . This leads to a
set of calculation rules very similar to the rules derived for a classical theory, see
subsection 2.1. Most of these rules (but not everything) can now most elegantly
be derived from the path integral.

Let us first derive these rules for computing a finite dimensional integral of the
type (42). Although often our action will not contain terms linear in the variables
qi(t), we do need such terms now, so, if necessary, we add them by hand, only to
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remove them at the end of the calculations. There is no need to indicate the time
variable t explicitly; we absorb it in the indices i . The action is then

S(q) =
∑
x,t

L(x, t)

= Jiqi − 1
2Mijqiqj − 1

6Aijkqiqjqk − 1
24Bijk�qiqjqkq� . (46)

To calculate
∫

dNq eiS(q) , we keep only the bilinear part (the term with the
coefficients Mij ) inside the exponent, and expand the exponent of all other terms:

out〈0|0〉in = C

∫
dNq

(
exp

(
− 1

2 iMijqiqj

)) ∞∑
k=0

∞∑
�=0

∞∑
m=0

1
k!�!m!

×

(iJi1qi1) · · · (iJikqik ) (− i
6Ai1j1k1

qi1qj1qk1) · · · (− i
6Ai�j�k�

qi�qj�qk�)

(− i
24Bi1j1k1�1

qi1qj1qk1q�1) · · · (− i
24Bimjmkm�m

qimqjmqkmq�m) .(47)

(C is a constant not depending on the coefficients, but only on their dimension-
ality).

We can calculate all of these integrals if we know how to do the J terms. These
however can be done to all orders since we know exactly how to do the Gaussian
integral

∫
dNq exp i(− 1

2Mijqiqj + Jiqi) =
(2π)

N
2

(det(M))
1
2

exp
(

1
2 iJiM

−1
ij Jj

)
=

C
∞∑
k=0

1
k!

(
1
2 iJi1M−1

i1j1
Jj1

)
· · ·
(

1
2 iJikM

−1
ikjk

Jjk

)
.(48)

This expression tells us how to do the integrals in Eq. (47) by collecting terms that
go with given powers of Ji . The outcome of this calculation can be summarized
in a concise way:

1) Each term can be depicted as a diagram consisting of points (vertices) con-
nected by lines (propagators). The lines may end at points i , ,
which refer to factors Ji .

2) There are vertices with three prongs (3-vertices),
k

ji , each being asso-

ciated with a factor Aijk , and vertices with four prongs (4-vertices), k
l

j
i ,

each giving a factor Bijk� .

3) Each line connecting two points i and j , is associated with a factor M−1
ij .
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4) In contrast with the classical theory, however, the diagrams may contain
disconnected pieces, or multiply connected parts: closed loops. See Fig. 2.

5) There are combinatorial factors arising from the coefficients such as k! in
Eq. (47). One can gain experience in deriving these factors; they follow
directly from the symmetry structure of a diagram. This technical detail
will not be further addressed here.

Apparently nothing changes if one re-inserts the (x, t) dependence of these
coefficients, when the variables qi are replaced by the fields φi(x, t), and the
action by that of a field theory:

S =
∫

d4xL(x, t) ;

L(x, t) = −1
2 (∂μφi)2 − 1

2m2
(i)φ

2
i − V (φ) + Ji(x)φi(x) .(49)

The rules are as in Subsection 2.1, with the only real distinction that, in the
quantum theory, diagrams with closed loops in them contribute. These diagrams
may be regarded as the “quantum corrections” to the classical field theory. The
disconnected diagrams mentioned under point (4), arise for technical reasons that
we will not further elaborate; in practical calculations they may usually be ignored.

Figure 2. Example of a Feynman diagram for quantized scalar fields

At one point, however, we made an omission: the overall constant C was not
computed. It comes from the cancellation of two coefficients (the one in the mea-
sure and the one coming from the Gaussian integrals) each of which tend to infinity
in the limit of an infinitely dense grid. In most cases, we are not interested in this
coefficient (it refers to vacuum-energy), but this does imply that more is needed
to extract relevant physical information from these Feynman diagrams. Fortu-
nately, this deficit is easy to cure. The “source insertions”, Ji(x)φi(x) can serve
as a model both for the production and for the detection of particles. Let both
|0〉in and |0〉out be the vacuum, or ground state of the theory. At early times,
the insertion −J(x, t)φ in the Hamiltonian acts on this vacuum state to excite it
into the initial state we are interested in. By differentiating with respect to J ,
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we can reach any initial state we want to consider. Similarly, at the end of the
experiment, at late times, Jφ can link the particle state that we wish to detect
to the final vacuum state. In short, differentiating with respect to J(x, t) gives us
any matrix element that we wish to study. This is easier than one might think: Ji
refers to particles of type i , and if we give it the same space-time dependence as
the wave function of the particle we want to see (put it on the ‘mass shell’ of that
particle), then we can be sure that there will be no contamination from unwanted
particle states. One only has to check the normalization, but also that is not hard:
we adjust the 1-particle to 1-particle amplitude to be one; a single particle cannot
scatter (it could be unstable, but that is another matter). The constant C always
drops out of these calculations.

An important point is the ambiguity of the inverse matrix M−1 . As in the
classical case, there are homogeneous solutions, so, if we work in momentum space,
there will be the question how to integrate around the poles of the propagator. The
iε prescription mentioned in subsection 2.1 is now imperative. This is explained as
follows. Consider the propagator in position space, and choose its poles situated
as follows:∫

d4k
eik·x−ik

0t

m2 + k2 − k02 − iε
; ε ↓ 0 .(50)

The poles are at k0 = ±(
√

m2 + k2 − iε). Now consider this propagator at time
t = −T + iβ with both T and β large. Since β is large, the choice of the contour
at negative k0 is immaterial, since the exponential there is very small. At positive
k0 , we choose the contour to go above the pole, so the imaginary part of k0 is
chosen positive. We see that then the exponential vanishes rapidly at negative
time. In short, our propagator tends to zero if the time t tends to −T + iβ when
both T and β are large and positive. The same holds for t→ +T − iβ . Indeed,
we want our evolution operator to be dominated by the empty diagram in these
two limits. Write:

〈ψ|U(0, +T − iβ)|ψ′〉 =
∑
E

〈ψ|E〉 exp(−iET − βE) 〈E|ψ′〉 ,(51)

where |E〉 are the energy eigenstates. At large β , the vacuum state should dom-
inate. Conversely, if we consider evolution backwards in time, the other iε pre-
scription is needed. One then works with the Feynman rules for the inverse, or
the complex conjugate, of the scattering matrix.

Now, we are in a position to add the prescription how to identify the external
lines (the lines sticking out of the diagram) with in- and out-going particles. For an
ingoing particle, we use a source function J(x) whose Fourier components emit a
positive amount of energy k0 . For an out-going particle the source emits a negative
k0 . According to the rules formulated above, these sources would be connected to
the rest of the diagram by propagators, in Fourier space (k2

μ + m2 − iε)−1 . Since
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the in- and out-going particles have k2
μ + m2 = 0 , we must take the residue of

the pole. In practice, this means that we have to remove the external propagators,
a procedure called ‘amputation’. One then still has to establish a normalization
factor. This factor is most easily obtained by checking unitarity of the scattering
matrix, using the optical theorem. At first sight, this seems to be just a simple
numerical coefficient, but there is a slight complication at higher orders, when self-
energy corrections affect the propagator. These corrections also remove unstable
particles from the physical scattering matrix. We return to this in Section 6. The
complete Feynman rules are listed in subsection 4.5.

3 SPINOR FIELDS

3.1 The Dirac equation

The fields introduced in the previous section can only be used to describe particles
with spin 0. In a quantum theory, particles can come in any representation of
the little group, which is the subgroup of the inhomogeneous Lorentz group that
leaves the 4-momentum of a particle unaffected. For massive particles in ordinary
space, this is the group of rotations of a three-vector, SO(3). Its representations
are labelled by either an integer ≥ 0, or an integer +1

2 , representing the total spin
of a particle. So, next in line are the particles with spin 1

2 . The wave function
for such a particle has two components, one for spin up and one for spin down.
Therefore, to describe a relativistic theory with such particles, we should use a
two-component field obeying a relativistically covariant field equation. Paul Dirac
was the first to find an appropriate relativistically covariant equation for a free
particle with spin 1

2 :

(m +
∑
μ

γμ∂μ)ψ(x) = 0 ,(52)

but the field ψ(x, t) has four complex components. Here, γμ, μ = 0, 1, 2, 3, are
four 4× 4 matrices, obeying

{γμ, γν} = γμγν + γνγμ = 2gμν ; γ†
μ = gμνγ

ν .(53)

In contrast to the scalar case, the Dirac equation is first order in the space- and
time-derivatives, and furthermore, one could impose a ‘reality condition’ (Majo-
rana condition) on the fields, of the form

ψ(x) = Cψ∗(x) , γμC = C(γμ)∗ , μ = 0, 1, 2, 3.(54)

These two features combined give the Dirac field the same multiplicity as two
scalar fields. Usually, we do not impose the Majorana condition, so that the Dirac
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field is truly complex, having a conserved U(1) charge much like two complex
scalar fields.

We briefly recapitulate the most salient features of the Dirac equation. The
4 × 4 Dirac matrices can conveniently be expressed in terms of two commuting
sets of Pauli matrices, σa and τa . Define

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,(55)

and similarly for the τ matrices, except that they act in different spaces: a Dirac
index is then viewed as a pair (iα) of indices i and α , such that the matrices σa
act on the first index i , and the matrices τA act on the indices α . We have:

σaσb = δab + iεabcσc , τAτB = δAB + iεABCτC , [σa, τB] = 0 .(56)

Define (with the convention gμν =diag(−1, 1, 1, 1))

γ1 = σ1τ1 , γ2 = σ2τ1 , γ3 = σ3τ1 , γ0 = −iτ3 .(57)

The matrix C in Eq. (54) is then:

C = γ2γ4 .(58)

In the non-relativistic limit, the Dirac equation reads

(m + iγμkμ)ψ ≈ (m− iγ0k0)ψ ≈ m(1− τ3)ψ = 0 ,(59)

so that only two of the four field components survive (those with τ3|ψ〉= |ψ〉 ).
This continues to be the case for relativistic particles, simply because of Lorentz-
invariance.

3.2 Fermi-Dirac statistics

At this point, we could now attempt to pursue our fundamental quantization pro-
gram: produce the Poisson brackets of the system, replace these by commutators,
rewrite the Hamiltonian of the system in operator form, and solve the resulting
Schrödinger equation.

Unfortunately, if one uses ordinary (commuting) numbers, this does not work.
The Lagrangian associated to the Dirac equation will read

L =
∫

d3�xL(x) ; L(x) = −ψ(x)(m +
4∑

μ=0

γμ∂μ)ψ(x) ,(60)
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and the canonical procedure would give as momentum fields:

pψ(�x) =
∂L

∂
(
∂0ψ(�x)

) = ψ(�x)γ0 , pψ̄(�x) = 0 .(61)

From this, one finds the Hamiltonian:

H =
∫

d3�xH(�x) ; H(�x) = pψ ψ̇ − L(�x) = ψ(x)(m +
3∑
i=1

γi∂i)ψ(x) .(62)

Here, the index i is a spatial one, running from 1 to 3. This, however, is not
bounded from below! Such a quantum theory would not possess a vacuum state,
and hence be unsuitable as a model for Nature.

For a better understanding of the situation, we strip the Dirac equation to
its bare bones. After diagonalizing it, we find that the Lagrangian consists of
elementary units of the form

L = ψ(i∂tψ −Mψ) ; pψ = iψ ; H = ψMψ .(63)

If we were using ordinary numbers, the only way to obtain a lower bound on
H would be by identifying ψ with ψ . Then, however, the kinetic part of the
Lagrangian would become a time-derivative:

ψ∂tψ → 1
2∂t(ψ ψ) ,(64)

so that it could not contribute to the action. One concludes that, only in the
space of anticommuting numbers, can the Lagrangian (63) make sense. Thus, one
replaces the Poisson brackets for ψ and ψ by anticommutators:

{ψ, ψ} ≡ ψ ψ + ψ ψ = 1 ; {ψ, ψ} = 0 ; {ψ, ψ} = 0 .(65)

The elementary representation of this algebra is in a ‘Hilbert space’ consisting of
just two states (the empty state and the one-particle state), in which the operators
ψ and ψ act as annihilators and creators:

ψ =
(

0 1
0 0

)
; ψ =

(
0 0
1 0

)
; H =

(
0 0
0 M

)
.(66)

Returning to the non-diagonalized case, we can keep the Lagrangian (60) and
Hamiltonian (62) when the commutation rules (65) are replaced by

{ψi(x), ψj(x′)} = δij δ(x− x′) ;

{ψi(x), ψj(x′)} = 0 ; {ψi(x), ψ
j
(x′)} = 0 .(67)
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The commutation rules (67) turn Dirac particles into fermions. It appears to be a
condition for any Lorentz-invariant quantum theory to be consistent, that integer
spin particles must be bosons and particles whose spin is an integer + 1

2 must be
fermions.

3.3 The path integral for anticommuting fields

Let us now extend the notion of path integrals to include Dirac fields. This means
we have to integrate over anticommuting numbers, to be called θi , where i is some
index (possibly including x). They are numbers, not operators, so all anticommu-
tators vanish. Consider the Taylor expansion of a function of a variable θ . Since
θ2 = 0, this expansion has only two coefficients:

f(θ) = f(0) + f ′(0)θ .(68)

So, this is the most general function of θ that one can have. It is generally agreed
that one should define integrals for anticommuting numbers θ by postulating∫

dθ 1 ≡ 0 ; dθ θ ≡ 1 .(69)

The reason for this definition is that one can manipulate these expressions in the
same way as integrals over ordinary numbers:∫

dθ f(θ + α) =
∫

dθ f(θ) ;
∫

dθ
∂f(θ)

∂θ
= 0 ,(70)

etc.

Now, consider the Hamiltonian for just one fermionic degree of freedom, (66),
which we write as

H = M b†b ; {b, b†} = 1 ; b2 = (b†)2 = 0 ,(71)

and a wave function ψ =
(

ψ0

ψ1

)
. Define the following function of θ :

ψ(θ) ≡ ψ0θ + ψ1 ,(72)

This now serves as our wave function. It is not hard to derive how the annihilation
operator b and the creation operator b† act on these wave functions:

if φ = b ψ then φ(θ) = θ ψ(θ) ,(73)
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or:

b = θ ; b† =
∂

∂θ
.(74)

We now wish to express the evolution of a fermionic wave function in terms of a
path integral, just as in subsection 2.4. Consider a short time interval δt . Then,
ignoring all terms of order (δt)2 , one derives

e−iδtHψ(θ1) = ψ0 θ1 + (1− iM δt)ψ1

=
∫

dθ0(−θ1 + θ0 − iMδtθ0)(ψ0θ0 + ψ1)

=
∫

dθ0

∫
dθ
(
1 + θ(−θ1 + θ0 − iMδtθ0)

)
ψ(θ0)

=
∫

dθ0

∫
dθ eθ(−θ1+θ0−iMδtθ0)ψ(θ0) .(75)

Repeating this procedure over many infinitesimal time intervals, with T = N δt ,
one arrives at the formal expression

ψ(θT ) =
∫

dθT−1dθT−1 · · · dθ0dθ0

exp
N−1∑
τ=0

δt
(
θτ (
−θτ+1 + θτ

δt
− iMθτ )

)
ψ(θ0) . (76)

The exponential tends to

i

∫
dt L(t) .(77)

Thus, as in the bosonic case, the evolution operator is formally the path integral
of eiS over all (anticommuting) fields ψi(x, t), where the action S is the time
integral of the Lagrangian L , and indeed the space-time integral of the Lagrange
density L(x, t).

In some applications, careful considerations of the boundary conditions for
Dirac’s equation, require an extra boundary term to be added to the action (77).
In our present treatment this is of no consequence.

3.4 The Feynman rules for Dirac fields

Let Mij be any matrix that can be diagonalized. Using Eqs. (69), we find the
integral∏

i

∫
dθi

∫
dθi e

θiMijθj = det
ij

(M) ,(78)
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which can be easily checked by diagonalizing M , and writing∫
dθ

∫
dθ eθMθ =

∫
dθ

∫
dθ (1 + θMθ) = M .(79)

Thus, a Gaussian integral over anticommuting numbers gives a result very sim-
ilar to that over commuting numbers, except that we get det(M) rather than
C/det(M). Writing

M = M0 + δM ;
det(M) = eTr(logM))

= 1 + Tr (log M) + 1
2 (Tr log M)2 + · · ·

Tr log(M) = Tr log(M0) + Tr log(1 + M−1
0 δM) ,(80)

we see that this can be obtained from det(M−1) by switching the signs of all odd
terms in this expansion. Since the N th term corresponds to a Feynman diagram
with N closed fermionic loops, one derives that the Feynman rules can be read
off from the ones for ordinary commuting fields, by switching a sign whenever a
closed fermionic loop is encountered.

We have

−Tr log M = −Tr log M0 +
∞∑
n=1

(−1)n

n
Tr (M−1

0 δM)n .(81)

Here, as in the bosonic case, −M0 is the propagator of the theory, and δM repre-
sents the contribution from any perturbation. Thus, if our Lagrangian, including
possible interaction terms, is

L = −ψi(m(i) + γμ∂μ)ψi + ψigij(φ)ψj ,(82)

then the propagator, in Fourier space, is

(m(i) + iγμkμ)−1 =
m(i) − iγμkμ

m2
(i) + k2 − iε

,(83)

while gij(φ) generates the interaction vertices of a Feynman diagram. The iε
term is chosen as in bosonic theories, for the same reason as there: the vacuum
state must be the state with lowest energy.

The poles in the propagator can be used to define in- and out-going particles,
by adding source terms to the Lagrangian:

δL = η(x)ψ + ψη(x) ,(84)
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where η(x) and η(x) are kept fixed, as anticommuting numbers. We could proceed
to derive the precise rules for in- and out-going particles with spin up or down,
but it is more convenient to postpone this until we discuss the unitarity property
of the S -matrix, where these rules are required explicitly, and where we find the
precise prescription for the normalization of these states (section 6).

Note that our Lagrangian is always kept to be bilinear in the anticommuting
fields. This is because we insist that L itself must be a commuting number and,
furthermore, terms that are quartic in the fermionic fields have too high a dimen-
sion. We will see in the following section why such terms have to be avoided.

4 GAUGE FIELDS

4.1 Renormalizability

We continue to search for elementary fields, whose Lorentz covariant field equations
can be subject to our quantization program. In principle, such fields could come
as any arbitrary representation of the Poincaré algebra, that is, we might consider
any kind of tensor field, Aμνλ···(x, t). It turns out, however, that tensors with more
than one Lorentz index cannot be used. This is because we wish the energy density
of a field to be bounded from below, and in addition, we wish the dimensionality of
the interactions to be sufficiently low, such that all coupling strengths have mass
dimension zero or positive.

A theory is called “renormalizable” if all of its interaction parameters λi (that
is, all parameters with respect to which we need to make a perturbation expansion)
have a mass-dimensionality that is positive or zero. In practice, the dimensionality
of coupling coefficients is easy to establish; this is further explained in Section 7,
Renormalization. Coupling strengths with mass dimension less than zero give rise
to unacceptably divergent expressions for the contributions of the interactions at
short scales. A prime example of a field one would like to include is the gravita-
tional field described by the metric gμν(x), but its only possible interaction is the
gravitational one, whose coupling strength, Newton’s constant GN , has the wrong
dimension. The non-renormalizable theories one then obtains are the subject of
intense investigations but fall outside the scope of this paper (see C. Rovelli’s
contribution in this book).

So, only spin-one fields Aa
μ(x) are left for consideration. Here, μ is a Lorentz

index, while the number of field types is counted by the index a = 1, · · · , NV .
These fields should describe the creation and annihilation of spin-one particles.
When at rest, such a particle will be in one of three possible spin states. Yet, to
be Lorentz-invariant, a vector field Aμ should have four components. One of these,
at least, should therefore be unphysical, although one might think of accepting an
extra, spinless particle to be associated to the vector particles. More important
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therefore is the consideration that, in the corresponding classical theory, the energy
should be bounded from below.

This then rules out the treatment of a four-vector field as if we had four scalar
fields, because the Lorentz-invariant product has an indefinite metric. Can we
construct a Lagrangian for a vector field that gives a Hamiltonian that is bounded
from below?

Let us look at the high-momentum limit for one of these vector fields. The only
two terms in a Lagrangian that can survive there are:

L = − 1
2α (∂μAν)2 + 1

2β ∂μAμ ∂νAν ,(85)

since other terms of this dimensionality can be reduced to these ones by partial
integration of the action, while mass terms (terms without partial derivatives)
become insignificant. We have for the canonical momentum fields

Ei =
∂L

∂∂0Ai
= α ∂0Ai (i = 1, 2, 3);

E0 =
∂L

∂∂0A0
= (β − α) ∂0A0 − β ∂iAi .(86)

Now, consider the Hamiltonian density H = Eμ ∂0Aμ − L . It must be bounded
from below for all field configurations Aμ(x, t). Let us first consider the case
when the spacelike components Ai and all spacelike derivatives ∂i are negligible
compared to ∂0A0 :

H → 1
2 (β − α)(∂0A0)2 ,(87)

then, when A0 and all time-derivatives are negligible:

H → 1
2α(∂iAj)2 − 1

2β(∂iAi)2 .(88)

These must all be bounded from below. Eq. (87) dictates that β ≥ α , while
Eq. (88) dictates that α ≥ β . We conclude that α = β , which we can both
normalize to one. Since total derivatives in the Lagrangian do not count, we can
then rewrite the original Lagrangian (85) as

L → − 1
4F a

μνF
a
μν , F a

μν = ∂μA
a
ν − ∂νA

a
μ .(89)

Realizing that this is the Lagrangian for ordinary QED, we know that its energy-
density is properly bounded from below. We conclude that every vector field
theory must have a Lagrangian that approaches Eq. (89) at high energies and
momenta.

We do note, that with the choice α = β , both (87) and (88) tend to zero. Indeed,
any field Aa

μ that can be written as a space-time gradient, Aa
μ = ∂μΛa(x, t), has
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F a
μν = 0, and hence contributes neither to the Lagrangian nor to the Hamiltonian.

Such fields could be arbitrarily strong, yet carry zero energy. They would represent
particles and forces without energy. This is unacceptable in a decent Quantum
Field Theory. How do we protect our theory against such features?

There is exactly one way to do this. We must make sure that field replacements
of the type

Aa
μ → Aa

μ + ∂μΛa(x) + · · · ,(90)

do not affect at all the physical state that we are describing. This is what we call
a local gauge transformation. We must insist that our theory is invariant under
local gauge transformations. The ellipses in Eq. (90) indicate that we allow extra
terms that do not contribute to the bilinear part of the Lagrangian (89). Thus,
we arrive at Yang-Mills field theory.

4.2 The Yang-Mills equations

Our conclusion from the above is that every vector field is associated to a local
gauge symmetry. The dimensionality of the local gauge group must be equal
to NV , the number of vector fields present. Besides the vector fields, the local
symmetry transformations may also affect the scalar and spinor fields. In short,
the vector fields must be Yang-Mills fields. We here give a brief summary of
Yang-Mills theory [Yang and Mills, 1954].

We have a local Lie group with elements Ω(x) at the point x . Let the matrices
T a, a = 1, · · · , NV be its infinitesimal generators:

Ω(x) = II + i
∑
a

Λa(x)T a ; T a = (T a)† .(91)

Characteristic for the group are its structure constants fabc :

[T a, T b] = ifabcT
c .(92)

As is well-known in group theory, one can choose the normalization of T a in such
a way that the fabc are totally antisymmetric:

fabc = −fbac = fbca .(93)

Usually, the spinor fields ψ(x) and scalar fields φ(x) are introduced in such a way
that they transform as (sets of irreducible) representations of the gauge group. A
local gauge transformation is then:

ψ′(x) = Ω(x)ψ(x) ; φ′(x) = Ω(x)φ(x) ,(94)
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and in infinitesimal form:

ψ′(x) = ψ(x) + iΛa(x)T aψ(x) +O(Λ)2 ,(95)

and similarly for φ(x). The dimension of the irreducible representation can be
different for different field types. So, scalar and spinor fields usually form gauge-
vectors of various dimensionalities. In these, and in the subsequent expressions,
the indices labelling the various components of the fields ψ , Ω and T a have been
suppressed.

Our vector fields Aa
μ(x) are most conveniently introduced by demanding the

possibility of constructing gauge-covariant gradients of these fields:

Dμψ(x) ≡ (∂μ + igAa
μ(x)T a)ψ(x) ,(96)

where g is a freely adjustable coupling parameter. The repeated indices a , denot-
ing the different species of vector fields, are to be summed over. By demanding
the transformation rule

(Dμψ(x))′ = Ω(x)Dμψ(x) = Dμψ(x) + iΛa(x)T aDμψ(x) +O(Λ)2 ,(97)

one easily derives the transformation rule for the vector fields Aa
μ(x):

igAa
μ
′(x)T a = Ω(x)

(
∂μ + igAa

μ(x)T a
)
Ω−1(x)

= igAa
μ(x)T a − i∂μΛa(x)T a + g[T a, T b]Λa(x)Ab

μ(x) (98)

(omitting the O(Λ)2 terms). With Eq. (92), this becomes

Aa
μ
′(x) = Aa

μ(x)− 1
g∂μΛ

a(x) + fabcΛb(x)Ac
μ(x) .(99)

If we ensure that all gradients used are covariant gradients, we can directly
construct the general expressions for Lagrangians for scalar and spinor fields that
are locally gauge-invariant:

Linv
scalar(x) = − 1

2 (Dμφ)2 − V (φ2) ;(100)

Linv
Dirac(x) = −ψ(γμDμ + m)ψ ,(101)

and in addition other possible invariant local interaction terms without derivatives.

The commutator of two covariant derivatives is

[Dμ, Dν ]ψ(x) = igF a
μν(x)T aψ(x) ;

F a
μν(x) = ∂μA

a
ν − ∂νA

a
μ + gfabcA

b
μA

c
ν .(102)
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Unlike Aa
μ(x) or the direct gradients of Aa

μ(x), this Yang-Mills field F a
μν trans-

forms as a true adjoint representation of the local gauge group:

F a
μν

′(x) = F a
μν(x) + fabcΛb(x)F c

μν(x) .(103)

This allows us to construct a locally gauge invariant Lagrangian for the vector
field:

Linv
YM(x) = −1

4F a
μν(x)F a

μν(x) .(104)

The structure constants fabc in the definition 102 of the field Fμν implies the
presence of interaction terms in the Yang-Mills Lagrangian 104. If fabc is non-
vanishing, we talk of a non-Abelian gauge theory.

There is one important complication in the case of fermions: the Dirac matrix
γ5 ≡ γ1γ2γ3γ4 can be used to project out the chiral sectors:

ψ ≡ ψL + ψR ; ψL = 1
2 (1 + γ5)ψ ; ψR = 1

2 (1− γ5)ψ .(105)

Since the kinetic part of a Dirac Lagrangian can be split according to

LDirac = −ψL(γD)ψL − ψR(γD)ψR ,(106)

we may choose the left-handed fields ψL to be in representations different from
the right-handed ones, ψR . However, since a mass term joins left to right:

−mψ ψ = −mψLψR −mψRψL ,(107)

such terms would then be forbidden, hence such chiral fields must be massless. Sec-
ondly, not all combinations of chiral fermions are allowed. An important restriction
is discussed in section 8. The fields ψL turn out to describe spin- 1

2 massless parti-
cles with only the left-rotating helicity, while their antiparticles, described by ψL ,
have only the right-rotating helicity.

4.3 The need for local gauge-invariance

In the early days of Gauge Theory, it was thought that local gauge-invariance could
be an ‘approximate’ symmetry. Perhaps one could add mass terms for the vector
field that violate local symmetry, but make the model look more like the observed
situation in particle physics. We now know, however, that such models suffer from
a serious defect: they are non-renormalizable. The reason is that renormalizability
requires our theory to be consistent up to the very tiniest distance scales. A mass
term would, at least in principle, turn the field configurations described by the
Λ(x) contributions in Eq. (99) into physically observable fields (the Lagrangian
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now does depend on Λ(x)). But, since the kinetic term for Λ(x) is lacking,
violently oscillating Λ fields carry no sizeable amount of energy, so they would
not be properly suppressed by energy conservation. Uncontrolled short distance
oscillations are the real, physical cause for a theory being non-renormalizable.

It is similar uncontrolled short-distance fluctuations of the space-time metric
that cause the quantized version of General Relativity (“Quantum Gravity”) to
be non-renormalizable. Drastic measures (String Theory?) are needed to repair
such a theory.

Since renormalizability provides the required coherence of our theories, local
gauge symmetry, described by Eqs. (94) and (99), must be an exact, not an ap-
proximate symmetry of any Quantum Field Theory.4 Obviously, the fact that
most vector particles in the sub-atomic world do carry mass must be explained in
some other way. It is here that the Brout-Englert-Higgs mechanism comes to the
rescue, see Section 5.

4.4 Gauge fixing

The longitudinal parts of the vector fields do not occur directly in the Yang-Mills
Lagrangian (104), exactly because of its invariance under transformations of the
form (99). Yet if we wish to describe solutions, we need to choose a longitudinal
component. This is why we wish to impose some additional constraint, the so-
called gauge condition, on our description of the solutions, both in the classical
and in the quantized theory. In electrodynamics, we usually impose a constraint
such as ∂μAμ(x) = 0 or A0 = 0. In a Yang-Mills theory, such a constraint is
needed for each value of the index a . A gauge fixing term is indicated by a field
Ca(x) which is put equal to zero:

Ca(x) = 0 ; a = 1, · · · , NV ; where(108)
either Ca(x) = ∂μA

a
μ(x) (Feynman gauge),(109)

or Ca(x) = Aa
0(x) (timelike gauge),(110)

or other possible gauge choices. It is always possible to find a Λa(x) that obeys
one of such conditions. For instance, to obtain the Feynman gauge (109), all one
has to do is extremize an integral under variations of the gauge group:

δ

∫
d4x

(
Aa
μ(x)

)2

= 0 → ∂μA
a
μ(x) = 0 .(111)

For the classical theory, the most elegant way to impose such a gauge condition
4One apparent exception could be the case where the longitudinal component decouples com-

pletely, which happens in massive QED. But even in that case, it is better to view the longitudinal
photon as a Higgs field, see section 5.
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is by adding a Lagrange multiplier term to the Lagrangian:

L(x) = Linv(x) + λa(x)Ca(x) ,(112)

where Ca(x) is any of the possible gauge fixing terms and λa(x) a free kinematical
variable. Here, Linv stands for the collection of all gauge-invariant terms in the
Lagrangian. The Euler-Lagrange equations of the theory then automatically yield
the Yang-Mills field equations plus the constraint, apart from a minor detail: the
boundary condition. Varying the gauge transformations, one finds, since Linv does
not vary, Dμλ

a(x) = 0. We need to impose the stricter equation λa(x) = 0, which
is obtained by imposing λa(x) = 0 at the boundaries of our system.

Alternatively, one can replace the invariant Lagrangian by

L(x) = Linv(x)− 1
2

(
Ca(x)

)2

,(113)

which has the advantage that, after partial integration, the bilinear part becomes
very simple: L = − 1

4FμνFμν − 1
2 (∂μAμ)2 → − 1

2 (∂μAν)2 , so that the vector field
can be treated as if it were just 4 scalars. Again, varying the gauge transformation
Λa(x) , one finds DμC

a(x) = 0, which must be replaced by the more stringent
condition Ca(x) = 0 by adding the appropriate boundary condition.

Note that the Lagrange-Hamilton formalism could give the wrong sign to the
energy of some field components; we should continue to use the energy deduced
before imposing the gauge constraint. If we use the timelike gauge (110), the
energy is correct, but the theory appears to lack Lorentz invariance. Lorentz
transformations must now be accompanied by gauge transformations.

How is the gauge constraint to be handled in the quantized theory? This prob-
lem was solved by B.S. DeWitt [1964; 1967a; 1967b] and by Faddeev and Popov
[1967; 1969; 1984]. The gauge constraint is to be imposed in the integrand of the
functional integral:

Z =
∫
DA(x)

∫
Dφ(x) · · · ei

R
d4xLinv(x)

∏
a,x

δ(Ca(x))Δ{A,φ} .(114)

Thus, we integrate only over those field configurations that obey the gauge con-
dition. Δ{A,φ} is a Jacobian factor, which we will discuss in a moment. The
formal delta function can be replaced by a Lagrange multiplier:∫

Dλa(x)ei
R

d4xλa(x)Ca(x) ,(115)

and indeed, if λa(x) is simply added to the list of dynamical field variables of
the theory, the Feynman rules can be derived unambiguously as they were for the
scalar and the spinor case.
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There is, however, a problem. It appears to be difficult to prove gauge-invariance.
More precisely: we need to ascertain that, if we make the transition to a different
gauge fixing function Ca(x), the physical contents of the theory, in particular the
scattering matrix, remains the same. The difficulty has to do with the measure of
the integral. It is not gauge-invariant, unless we add the extra term Δ{A,φ} in
Eq. (114). This term is associated to the volume of an infinitesimal gauge trans-
formation. Suppose that the field combination Ca(x) transforms under a gauge
transformation as

Ca′(x) = Ca(x) +
∂Ca(x)
∂Λb(x′)

Λb(x′) ,(116)

then the required volume term is the Jacobian

Δ{A,φ} = det
( ∂Ca(x)

∂Λb(x′)

)
.(117)

The determinant is computed elegantly by using the observation in subsection 3.4
that a Gaussian integral over anticommuting variables gives a determinant (Eq. (78)).
So, we introduce anticommuting scalar fields η and η , and then write

(117) =
∫
Dηa(x)

∫
Dηa(x) exp

(
ηa(x)

∂Ca(x)
∂Λb(x′)

ηb(x′)
)

.(118)

This is called the Faddeev-Popov term in the action. Taking everything together,
we arrive at the following action for a Yang-Mills theory:

L(x) = Linv(x) + λa(x)Ca(x) + ηa(x)
∂Ca(x)
∂Λb(x′)

ηb(x′) .(119)

It is also possible to find the quantum analogue for the classical Lagrangian
(113). First, replace Ca(x) by Ca(x) − F a(x) , where F a(x) is a fixed but x -
dependent quantity in the functional integral (119). Physical effects should be
completely independent of F a(x). Therefore, we can functionally integrate over

F a(x), using any weight factor we like. Choose the weight factor e−
1
2

R
d4x(Fa(x))2 .

The Lagrange multiplier λa(x) now simply forces Ca(x) to be equal to F a(x).
We end up with the effective Lagrangian5

L(x) = Linv(x)− 1
2

(
Ca(x)

)2

+ ηa(x)
∂Ca(x)
∂Λb(x′)

ηb(x′) .(120)

This is the most frequently used Lagrangian for gauge theories. In contrast to
the Lagrangians for scalar and spinor fields, not all fields here represent physical
particles. The longitudunal part of the vector fields, and the fermionic yet scalar
fields η and η are “ghosts”.

5One usually absorbs the factor 1/g of Eq. (99) into the definition of the η field.
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4.5 Feynman rules

The Feynman rules, needed for the computation of the scattering matrix elements
using perturbation theory, can be read off directly from the gauge-fixed Lagrangian
(119) or (120). In both cases, we first split off the bilinear parts6, writing the
Lagrangian as

L = −Aα(x)M̂αβAβ(x)− ψα(x)D̂αβψβ(x) + Lint ,(121)

where Lint contains all trilinear and quadrilinear terms. Here, Aα(x) is short for
all bosonic (scalar and vector) fields, and ψ and ψ for both the Dirac fermions
and the Faddeev-Popov fermions. The coefficients M̂αβ , D̂αβ and the trilinear
coefficients may contain the gradient operator ∂/∂xμ . After Fourier expansion,
this will turn into a factor ikμ .

— The propagators P̂αβ and P̂ ferm
αβ will be the inverse of the coefficients M̂−iε

and D̂ − iε , so, for instance

if M̂αβ = (m(α) − ∂2
μ)δαβ then P̂αβ =

δαβ
m2

(α) + k2 − iε
;

if D̂αβ = (m(α) + γμ∂μ)δαβ then P̂ ferm
αβ =

(m(α) − iγμkμ)δαβ
m2

(α) + k2 − iε
. (122)

— The vertices are generated by the trilinear and quadrilinear terms of Lint ,
just as in subsection 2.5. If we have source terms such as Ja(x)φa(x), ηi(x)ψi(x)
or ψ

i
(x)ηi(x), then these correspond to propagators ending into points,

where the momentum k has to match a given Fourier component of the
source. All this can be read off neatly from formal expansions of the func-
tional integral such as (47).

— There is an overall minus sign for every fermionic closed loop.

— Every diagram comes with canonical coefficients such as 1/k! and (2π)−4N

where k! is the dimension of the diagram’s internal symmetry group, and N
counts the number of loop integrations. These coefficients can be obtained
by comparing functional integrals with ordinary integrals.

— There is a normalization coefficient for every external line, depending on the
wave function chosen for the in- and out-going particles. We return to this
in section 6.

6One may decide to leave small corrections to the bilinear parts of the Lagrangian to be
treated together with the higher order terms as if they were ‘two-point vertices’.
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Note that any terms in the Lagrangian that can be written as a gradient of some
(locally defined) field configuration can be replaced by zero. This is because (under
sufficiently carefully chosen boundary conditions) such terms do not contribute to
the total action S =

∫
d4xL(x).

4.6 BRST symmetry

As the reader may have noted, we departed from our original intention, to keep
space and time on a lattice and only turn to the continuum limit at the very end
of a calculation. We have not even started doing calculations, and already the
Feynman rules were formulated as if the fields lived on a space-time continuum.
Indeed, we should have kept space and time discrete, so that the functional integral
is nothing but an ordinary integral in a space with very many, but still a finite
number of, dimensions. In practice, however, the continuum is a lot easier to
handle, so, often we do not explicitly mention the finite size meshes of space and
time.

Our first attempt to formulate the continuum limit will be in section 7. We
will then see that the coefficients in the Lagrangian (120) have to be renormalized.
The following question then comes up:

If we see a Lagrangian that looks like (120), how can we check that its coefficients
are those of a genuine gauge theory?

The answer to this question is that the gauge-fixed Lagrangians (4.35) and (4.36)
possess a symmetry. The first attempts to identify the symmetry in question gave
negative results, because the ghost field is fermionic while the gauge fixing terms
are bosonic. In the early days we thought that the required relation between the
gauge fixing terms and the ghost terms had to be checked by inspection [’t Hooft
and Veltman, 1972a]. But the complete answer was discovered by Becchi, Rouet
and Stora [1975; 1976], and independently by Tyutin [Tyutin, 1975]. The symme-
try, called BRST symmetry, is a supersymmetry. For the Lagrangian (120), which
is slightly more general than (119), the transformation rules are

A′
α(x) = Aα(x) + ε ∂Aα(x)

∂Λb(x′) ηb(x′) ; (a)

ηa′(x) = ηa(x) + 1
2ε fabcη

b(x)ηc(x) ; (b)

η a′(x) = η a(x) + ε Ca(x) , (c)

(123)

where the anticommuting number ε is the infinitesimal generator of this (global)
supersymmetry transformation.

The invariance of the Lagrangian (120) under this supersymmetry transforma-
tion is easy to check, except perhaps the cancellation of the variation of the last
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term against the contribution of (123 b):

η a
∂Ca

∂Λb
1
2ε fbcdη

cηd + η a%,
∂

∂Λc
∂Ca

∂Λd
ηcηd = · · · .(124)

Substituting some practical examples for the gauge constraint function Ca , one
discovers that these terms always cancel out. The reason for (124) to vanish is the
fact that gauge transformations form a group, implying the Jacobi identity:

fasbfscd + fascfsdb + fasdfsbc = 0 .(125)

The converse is more difficult to prove: If a theory is invariant under a transfor-
mation of the form (123) (BRST invariance), then it is a gauge-fixed local gauge
theory. What is really needed in practice, is to show that the ghost particles do not
contribute to the S -matrix. This indeed follows from BRST invariance, via the
so-called Slavnov-Taylor identities [Slavnov, 1972; Taylor, 1971], relations between
amplitudes that follow from this symmetry.

5 THE BROUT-ENGLERT-HIGGS MECHANISM

The way it is described above, Yang-Mills gauge theory does not appear to be
suitable to describe massive particles with spin one. However, in our approach we
concentrated only on the high-energy, high-momentum limit of theories for vector
particles, by assuming the Lagrangian to take the form (85) there. Mass terms
dominate in the infra-red, or low energy domain. Here, one may note that we have
not yet exploited all possibilities.

We need to impose exact local gauge-invariance, as explained in subsection 4.3.
So our theory must be constructed along the lines expounded in subsection 4.2.
All scalar and spinor fields must come as representations of the gauge group. So,
what did we overlook?

In our description of the most general, locally gauge-invariant Lagrangian, it
was tacitly assumed that the minimum of the scalar potential function V (φ) occurs
at φ = 0, so that, as one may have in global symmetries, the symmetry is evident
in the particle spectrum: physical particles come as representations of the full
local symmetry group. But, as we have seen in the case of a global symmetry, in
subsection 2.2, the minimum of the potential may occur at other values of φ . If
these values are not invariant under the gauge group, then they form a non-trivial
representation of the group, invariant only under a subgroup of the gauge group.
It is the invariant subgroup, if at all non-trivial, of which the physical particles
will form representations, but the rest of the symmetry is hidden. Indeed, if we
switch off the coupling to the vector fields, we obtain again the situation described
in subsection 2.2. As was emphasized there, the particle spectrum then contains
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massless particles, the Goldstone bosons. These Goldstone bosons represent the
field excitations associated to a global symmetry transformation, which does not
affect the energy: hence the absence of mass.

But, global gauge Goldstone bosons do carry a kinetic term. Therefore, they
do carry away energy when moving with the speed of light. This is because a
global symmetry only dictates the Goldstone field to carry no energy if the field
is space-time independent.

In contrast, local gauge symmetries demand that Goldstone fields also carry no
energy when they do depend on space and time. In the case of a local symmetry,
therefore, Goldstone modes are entirely in the ghost sector of the theory; Goldstone
particles then are unphysical. Let us see how this happens in an example.

5.1 The SO(3) case

As a prototype, we take the group SO(3) as our local gauge group, and for sim-
plicity we ignore the contributions of loop diagrams, which represent the higher
order quantum corrections to the field equations. Let the scalar field φa be in the
3-representation. The invariant part of the Lagrangian is then:

Linv = − 1
4 (F a

μν)
2 − 1

2 (Dμφa)2 − V (φ) ; V (φ) = 1
8λ
(
(φa)2 − F 2

)2

.(126)

Here, Dμ stands for the covariant derivative: Dμφa = ∂μφa + gεabcA
b
μφc . As in

section 2.2, Eq. (18), we define shifted fields φ̃a by

φa ≡ φ̃a +

⎛⎝0
0
F

⎞⎠ ; V (φ̃) = 1
2λF 2φ̃2

3 + 1
2λF φ̃2φ̃3 + 1

8λ(φ̃2)2 .(127)

The shift must also be carried out in the kinetic term for φ :

Dμφa = Dμφ̃a + gF

(
A2
μ

−A1
μ

)
; −1

2 (Dμφa)2 =

− 1
2 (Dμφ̃a)2 − gF

(
A2
μDμφ̃1 −A1

μDμφ̃2

)
− 1

2g2F 2
(
A1
μ
2

+ A2
μ
2
)

.(128)

Defining the complex fields

Φ̃ = 1√
2
(φ̃1 + iφ̃2) ; Aμ = 1√

2
(A1

μ + iA2
μ) ;

DμΦ̃ = (∂μ + iA3
μ)Φ̃− iAμφ̃3 ,(129)
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we see that the Lagrangian (126) becomes

Linv = − 1
4 (F a

μν)
2 − 1

2 (Dμφ̃3)2 −DμΦ̃∗DμΦ̃

− 1
2M2

H φ̃2
3 −M2

VA∗
μAμ + MV �(A∗

μDμΦ̃)− V int(φ̃) ,

where MH =
√

λF ; MV = gF ,(130)

and V int is the remainder of the potential term. � stands for imaginary part.

Thus, the ‘neutral’ component of the scalar field, the Higgs particle, gets a
mass MH (see Eq. 127) and the ‘charged’ components of the vector field receive a
mass term with mass MV . The mechanism that removes (some of) the Goldstone
bosons and generates mass for the vector particles, is called the Brout-Englert-
Higgs (BEH) mechanism [Englert and Brout, 1964; Higgs, 1964b; Higgs, 1964a;
Higgs, 1966]. In every respect, the neutral, massless component of the vector field
behaves like an electromagnetic vector potential, and the complex vector particle
is electrically charged.

5.2 Fixing the gauge

If one would try to use the rules of Subsection 4.5 to derive the Feynman rules
directly from Linv , one would find that the matrix M̂ describing the bilinear
part of the Lagrangian has no inverse. This is because the gauge must first be
fixed. Choosing ∂μA

a
μ(x) = 0 has the advantage that the somewhat awkward term

�(A∗
μ∂μΦ̃) can be put equal to zero by partial integration. The vector propagator

(in momentum space) is then easily computed to be

P ab
μν(k) =

δμν − kμkμ/(k2 − iε)
k2 + m2

(a) − iε
δab ,(131)

where m(a) = MV for the charged vector field and 0 for the neutral one.

This indeed appears to describe a vector particle with mass m(a) and an addi-
tional transversality constraint. One can do something smarter, though. If, in the
gauge-fixed lagrangian (120), we choose

C3 = ∂μA
3
μ ; C1 = ∂μA

1
μ −MV φ̃2 ; C2 = ∂μA

2
μ + MV φ̃1 ,(132)

then we find that the scalar-vector mixing terms cancel out, but now also the
(∂μAμ)2 term cancels out, so that the vector propagator looses its kμkν term.
The vector propagator is then

P ab
μν(k) =

δμνδab
k2 + m2

(a) − iε
,(133)
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and the charged scalar ghost gets a mass MV . The physical field φ̃3 is unaffected.

It is instructive to compute the Faddeev-Popov ghost Lagrangian in this gauge.
One easily finds it to be

Lghost = ηa∂2ηa −M2
V (η1η1 + η2η2) + interaction terms .(134)

As can be confirmed by more explicit calculations, the theory has physical,
charged vector particles with masses MV , a neutral (massless) photon and a neu-
tral scalar particle with mass MH . The latter is called the Higgs particle of this
theory. All other fields in the Lagrangian describe ghost fields. Apparently, in the
gauge described above, all ‘unphysical’ charged particles, the ghosts, the timelike
components of the vector fields, as well as the Goldstone bosons, have the same
mass MV . The unphysical neutral particles all have mass zero.

One concludes that the symmetry pattern of this example is as follows: the
local gauge group, SO(3), is broken by the Brout-Englert-Higgs mechanism into
its subgroup SO(2) (the rotations about a fixed axis, formed by the vacuum value
of φa ), or equivalently, U(1). Therefore two of the three vector bosons obtain
a mass, while one massless U(1) photon remains. At the same time, two of the
three scalars turn into ghosts, the third into a Higgs particle.

The Brout-Englert-Higgs mechanism does not alter the total number of inde-
pendent physical states in the particle spectrum. In our example, two of the three
scalar particles disappeared, but the two massive spin-1 particles now each have
three spin helicities, whereas the massless photons only had two.

5.3 Coupling to other fields

The shift (127) in the definition of the fields, gives all interactions an asymmetric
appearance. This is why, in the literature, one talks of “spontaneous breaking of
the local symmetry”. Actually, this is something of a misnomer. In the case of a
global symmetry, spontaneous breakdown means that the vacuum state is degen-
erate. After a global symmetry transformation, the vacuum state is transformed
into a physically inequivalent vacuum state, which is not realized in the system.
The existence of a massless Goldstone boson testifies to that. In the case of a local
symmetry, nothing of the sort happens. There is only one vacuum state, and it
is invariant under the local symmetry, always. This is why the Goldstone boson
became unphysical. In fact, all physical states are formally invariant under local
gauge transformations. Apparent exceptions to this rule are, of course, the charged
particles in QED, but this is because we usually wish to ignore their interactions
with the vector potential at infinity. In reality a full discussion of charged particles
is obscured by their long-range interactions.

In view of all of this, it is better not to say that a local symmetry is sponta-
neously broken, but, rather, to talk of the Brout-Englert-Higgs mechanism [Englert
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and Brout, 1964; Higgs, 1964b], which is the phenomenon that the spectrum of
physical particles do not form a representation of the local symmetry group. The
local symmetry can only be recognized by shifting the scalar fields back to their
symmetric notation, the original fields φ . Local symmetry must not be regarded as
a property of the physical states, but rather as a property of our way of describing
the physical states.

If, however, we perform a perturbation expansion for small values of the gauge
field coupling, we find that at vanishing gauge coupling a local symmetry is sponta-
neously broken. Therefore, it is still quite useful to characterize our perturbative
description by listing the gauge groups and the subgroups into which they are
broken.

Now, let us assume that there are other fields present, such as the Dirac
fermions, ψi . In the symmetric notation, they must form a representation of
the local gauge group. So, we have

LDirac = −ψ
i
(γμDμ + m(i))ψi − ψ

i
gY taijφaψj ,(135)

where Dμ is the appropriate covariant derivative, containing those matrices T a

that are appropriate for the given representation (see 95 and 96), and gY stands
for one or more Yukawa coupling parameters. The mass terms m(i) and coupling
coefficients taij are invariant tensors of the gauge group (masses are only allowed
if the fermions are not chiral, see the discussion following Eq. (106)).

Here, again, we started with the more transparent symmetric fields φa , but the
physical fields φ̃ are obtained by the shift φa = Fa + φ̃a . Thus, the lowest order
bilinear part of the Dirac Lagrangian becomes

LDirac → −ψ
i
(
(γμ∂μ + m(i))δij + gY taijFa

)
ψj ,(136)

In particular, if the symmetry acts distinctly on the chiral parts of the fermion
fields, the mass term m(i) is forbidden, but the less symmetric second term may
generate masses and in any case mass differences for the fermions. Thus, not only
do the vector and scalar particles no longer form representations of the original
local gauge group, but neither do the fermions.

5.4 The Standard Model

What is presently called the ‘Standard Model’ is just an example of a Higgs theory.
The gauge group is SU(3) × SU(2) × U(1). This means that the set of vector
fields falls apart into three groups: 8 associated to SU(3), then 3 for SU(2),
and finally one for U(1). The scalar fields φi form one two-dimensional, complex
representation of two of the three groups: it is a doublet under SU(2) and rotates
as a particle with charge 1

2 under U(1).
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Representing the Higgs scalar in terms of four real field components, the Brout-
Englert-Higgs mechanism is found to remove three of them, leaving only one neu-
tral, physical Higgs particle. SU(2) × U(1) is broken into a diagonal subgroup
U(1). Three of the four gauge fields gain a mass. The one surviving photon field
is obtained after re-diagonalizing the vector fields; it is a linear composition of the
original U(1) field and one of the three components of the SU(2) gauge fields.

The SU(3) group is not affected by the Brout-Englert-Higgs mechanism, so
one would expect all ‘physical’ particles to come in representations of SU(3).
What happens instead is further explained in section 11: only gauge-invariant
combinations of fields are observable as particles in our detectors.

The fermions in the Standard Model form three ‘families’. In each family, we
see the same pattern. The left handed fields, ψL , all form doublets under SU(2),
and a combination of a triplet (‘quarks’) and singlets (‘leptons’) under SU(3).
The right handed components, ψR , form the same representations under SU(3),
but form a pair of two singlets under SU(2); so they do not couple to the SU(2)
vector fields. The U(1) charges of the left-handed SU(2) doublets are − 1

2 for the
leptons and 1

6 for the quarks; the U(1) charges of the right-handed singlets are
−1 and 0 (for the leptons) or − 1

3 and 2
3 (for the quarks).

The Standard Model owes its structure to the various possible Yukawa interac-
tion terms with the Higgs scalars. They are all of the form ψ φ ψ , and invariant
under the entire gauge group, but since there are three families of fermions, each
having left and right handed chiral components, there are still a fairly large num-
ber of such terms, each of which describes an interaction strength whose value is
not dictated by the principles of our theory [Hoddeson et al., 1997].

6 UNITARITY

As we saw in subsection 4.5, the Feynman rules unambiguously follow from the
expression one has for the Lagrangian of the theory. More precisely, what was
derived there was the set of rules for the vacuum-to-vacuum amplitude in the pres-
ence of possible source insertions Ji(x), including anticommuting sources ηi, ηi .
The overall multiplicative constant C in our Gaussian integrals such as (47) is
completely fixed by the demand that, in the absence of sources, the vacuum-to-
vacuum amplitude should be 1. By construction then, the resulting scattering
matrix should turn out to be unitary.

In practice, however, things are not quite that simple. In actual calculations,
one often encounters divergent, hence meaningless expressions. This happens when
one makes the transition to the continuum limit too soon — remember that we
insisted that space and time are first kept discrete. Unitarity of the S -matrix
turns out to be a sensitive criterion to check whether we are performing the con-
tinuum limit correctly. It was one of our primary demands when we initiated the
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program of constructing workable models for relativistic, quantized particles. An-
other demand, the validity of dispersion relations, can be handled the same way
as unitarity; these two concepts will be shown to be closely related. The formal-
ism described below is based on work by Cutkosky and others, but was greatly
simplified by Veltman [’t Hooft and Veltman, 1994].

Parts of this section are fairly technical and could be skipped at first reading.

6.1 The largest time equation

Let us start with the elementary Feynman propagator, (k2 + m2 − iε)−1 , and
its Fourier transform back to configuration space (omitting for simplicity a factor
(2π)4 ):

ΔF (x) = −i

∫
d4k

eikx

k2 + m2 − iε
, x = x(1) − x(2) .(137)

In addition, we define the on-shell propagators

Δ±(x) = 2π
∫

d4k eikxδ(k2 + m2)θ(±k0) ; k x = �k · �x− k0x0 ,(138)

and θ is the Heaviside step function, θ(x) = 1 for x ≥ 0 and = 0 otherwise.
The integrals are over Minkowski variables �k, k0 . The operators (138) propagate
particles on mass shell with the given sign of the energy from x(2) to x(1) , or back
with the opposite sign. We have

Δ+(x) = (Δ−(x))∗ ; Δ+(x) = Δ−(−x) .(139)

Our starting point is the decomposition of the propagator into forward and back-
ward parts:

ΔF (x) = θ(x0)Δ+(x) + θ(−x0)Δ−(x) .(140)

Obviously:

ΔF ∗
(x) = θ(x0)Δ−(x) + θ(−x0)Δ+(x) .(141)

One easily proves this by deforming the contour integration in the complex k0

plane.

Consider now a Feynman diagram with n vertices, where lines are attached
with a given topological structure, which will be kept fixed. The external lines
are assumed to be ‘amputated’: there are no propagators attached to them. The
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Feynman rules are applied as described in Subsections 2.5 and 4.5. The diagram is
then part of our calculation of an S -matrix element. We consider the diagram in
momentum representation and in the coordinate representation. The expression
we get in coordinate representation is called F (x(1), x(2), · · · , x(n)).

Next, we introduce an expression associated to the same diagram, but where
some of the vertices are underlined:

F (x(1), x(2), · · · , x(i), · · · , x(j), · · · , x(n)) ,

where x(i) refer to the coordinates that must be integrated over when one elab-
orates the Feynman rules. The rules for computing this new amplitude are as
follows:

i) A propagator ΔF (x(i)−x(j)) is used if neither x(i) nor x(j) are underlined.

ii) A propagator Δ+(x(i) − x(j)) is used if x(i) but not x(j) is underlined.

iii) A propagator Δ−(x(i) − x(j)) is used if x(j) but not x(i) is underlined.

iv ) A propagator ΔF ∗(x(i) − x(j)) is used if both x(i) and x(j) are underlined.

v ) A minus sign is added for every underlined vertex.

In all other respects, the rules for the calculation of the amplitude are unchanged.

Figure 3. Diagram with underlined vertices, which are indicated by little circles

One now derives the largest time equation:

Let x(k) be the coordinate with the largest time:

x(k)0 ≥ x(i)0 , ∀i .

Then,
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F (x(1), x(2), · · · , x(k), · · · , x(n)) = −F (x(1), x(2), · · · , x(k), · · · , x(n)),(142)

where in both terms the points other than x(k) are underlined or not
in identical ways.

One easily proves this using Eqs. (140) and (141). One consequence of this theorem
is ∑

all 2n possible underlinings

F ({x(i)}) = 0 .(143)

We now show that these are the diagrams contributing to the unitarity equation,
or ‘optical theorem’:∑

n

S|n〉〈n|S† = II .(144)

The diagrams for the matrix S are as described earlier. The diagrams for S†

contain the complex conjugates of the propagators. Since also the vertices in
the functional integral are all multiplied by i , they must all change sign in S† .
Also the momenta k in eikx switch sign. In short, the diagrams needed for the
computation of S† indeed are the underlined Green functions. Note that, in
momentum space, the largest time equation (142) cannot be applied to individual
vertices, since, while being integrated over, the vertex with largest time switches
position. However, the summed equation (143) is valid. The identity II on the
r.h.s. of Eq. (144) comes from the one structure that survives: the diagram with
no vertices at all.

We observe that unitarity may follow if we add all possible ways in which a
diagram with given topology can be cut in two, as depicted in Fig. 3. The shaded
line separates S from S† .

The lines joining S to S† represent the intermediate states |n〉 in Eq. (144).
They are on mass shell and have positive energies, which is why we need the factors
δ(k2 + m2)θ(k0) there. If a propagator is equipped with some extra coefficients
Rij :

Pij(k) =
−i Rij(k)

k2 + m2 − iε
,(145)

then we can still use the same decomposition (140), provided Rij is local : it must
be a finite polynomial in k . Writing

Rij =
∑
k

fi(k)f∗
j (k) ,(146)
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we can absorb the factors fi(k) into the definition of S , provided that all eigen-
values of Rij are non-negative. Indeed, kinetic terms in the Lagrangian must all
have the same sign.

Note that we are not allowed to replace the terms in the Lagrangian by their
complex conjugates. This implies that, for the unitarity proof, it is mandatory
that the Lagrange density is a real function of the fields.

An important feature of these equations is the theta functions for k0 . They
guarantee that the intermediate states contribute only if their total energy does
not exceed the energy available in the given channel.

6.2 Dressed propagators

In the previous subsection, not all diagrams that contribute to S S† have yet been
handled correctly. There is a complication when self-energy diagrams occur. If
one of the lines at both sides of a self-energy blob is replaced by Δ± , then the
other propagator ΔF places a pole on top of that Dirac delta. In this case, we
have to use a more sophisticated prescription. To see what happens, we must first
sum the geometric series of propagator insertions, see Fig. 4(a). We obtain what is
called the dressed propagator. In momentum space, let us write the contribution
of a single blob in Fig. 4(a) as −iδM(k). It represents the summed contribution
of all irreducible diagrams, which are the diagrams with two external lines that
cannot fall apart if one cuts one internal line. We need its real and imaginary
parts: δM(k) ≡ δm2(k)− iΓ(k). Write the full propagator as

P dr(k) = P 0(k)− P 0(k)iδM(k)P 0(k) + · · ·

= P 0(k)
∞∑
n=0

(
− iδM(k)P 0(k)

)n
=

P 0(k)
1 + iδM(k)P 0(k)

; (147)

if P 0(k) = −i(M(k)− iε)−1

then P dr(k) = −i(M(k) + δM(k)− iε)−1 , (148)

where P 0(k) is the unperturbed (‘bare’) propagator.

If we define the real part of the dressed propagator (in momentum space) to be


(P dr(k)) =
Γ(k)

(k2 + M + δm2)2 + Γ2
= π�(−k2) ,(149)

then, by contour integration,

P dr(k) =
∫ ∞

0

dm2 �(m2)
k2 + m2 − iε

;(150)
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we call this the Källen-Lehmann representation of the propagator. Later, it will
be assured that �(m2) = 0 if m2 < 0 .

= + + +  ⋅⋅⋅ (a)

= (b)

Figure 4. (a) The dressed propagator as a geometric series;
(b) Cutting the dressed propagator

The best strategy now is to apply a largest time equation to the entire dressed
propagator. Write, instead of Eqs. (140) and (141),

P dr(x) = θ(x0)Δ+
dr(x) + θ(−x0)Δ−

dr(x) ;

P dr(x)∗ = θ(x0)Δ−
dr(x) + θ(−x0)Δ+

dr(x) .(151)

Then,

Δ±
dr(k) = 2π

∫
d4k eikx�(−k2)θ(±k0) .(152)

The imaginary part Γ(k) of the irreducible diagrams can itself again be found by
applying the cutting rules. Writing S = II + iT , we find that unitarity for all
non-trivial diagrams corresponds to i(T − T †) + T T † = 0, and the diagrams for
T T † are depicted in Fig. 4b. They are exactly the diagrams needed for unitarity
of the entire scattering matrix involving a single virtual particle in the channel of
two external ones.

One observes that the function �(−k2) must be non-negative, and only nonvan-
ishing for timelike k . The latter is guaranteed by the theta functions in k0 . Only
the delta peaks in � are associated to stable particles that occur in the initial and
final states of the scattering matrix. Resonances with finite widths contribute to
the unitarity of the scattering matrix via their stable decay products.

6.3 Wave functions for in- and out-going particles

Many technical details would require too much space for a full discussion, so we
have to keep this sketchy. In case we are dealing with vector or spinor particles,
the residues Rij of the propagators represent the summed absolute squares of the
particle wave functions. We have seen in Eq. (145) how this comes about. If, for
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example, a vector particle is described by a propagator

Pμν = −i
δμν + kμkν/M

2

k2 + M2 − iε
,(153)

then we see that, first of all, the numerator is a polynomial in k , as was required,
and, if we go on mass shell, k2 = −M2 , then we see that the field component
proportional to kμ is projected out. In particular, if we put k = (0, 0, 0, iM),
then Rij = δij and its timelike components disappear, so indeed there are three
independent states for the particle described.

For the fermions, the bare propagator is

PDirac = −i
m− iγk

k2 + m2 − iε
.(154)

Before relating this to the renormalization of the wave functions, we must note
that all γμ are hermitean, while ki are real and k4 is imaginary. We observe that
the Feynman rules for S† are like those of S , but with γ4 replaced by −γ4 . Next,
the arrows in the propagators must be reversed. This leads to an extra minus sign
for every vector kμ , while γμ are replaced by γμ† . All together, one requires
that γi → −γi while γ4 remains unchanged. This amounts to the replacement
γμ → γ4γμγ4 . One concludes that the rules for S† are like those for S if all
fermion lines enter or leave the diagram with an extra factor γ4 . This means that
the wave functions for external fermions in a diagram are to be normalized as

(m− iγik
i + γ4k0)γ4 =

2∑
i=1

|ψi(k)〉〈ψi(k)| , (k0 > 0) ;(155)

while for the anti-fermions, we must demand

γ4(m− iγik
i − γ4k0) = −

4∑
i=3

|ψi(k)〉〈ψi(k)| , (k0 > 0) .(156)

The minus sign is necessary because the operator in (156) has two negative eigen-
values. One concludes that unitarity requires spin- 1

2 particles to carry one extra
minus sign for each closed loop of these particles. This leads to the necessity of
Fermi-Dirac statistics. Again, it is important that none of the higher order correc-
tions ever affect the signs of the eigenvalues for these projection operators, since
these can never be accommodated for by a renormalization of the particle wave
function.

The conclusion of this section, that the scattering matrix is unitary in the space
of physical particle states, should not come as a surprise because our theory has
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been constructed to be that way. Yet it is important that we see here in what way
the Feynman diagrams intertwine to produce unitarity explicitly.

We also see that unitarity is much more difficult to control when we have ghosts
due to the gauge fixing procedure. Our vector particles then have propagators
where Eq. (153) is replaced by expressions such as

P ren
μν =

−i gμν
k2 + M2 − iε

.(157)

We write here gμν rather than δμν in order to emphasize that our arguments are
applied in Minkowski space, where clearly the time components ‘carry the wrong
sign’. The field components associated to that would correspond to particles that
contribute negatively to the scattering probabilities. To correct this, one would
have to replace |n〉〈n| by −|n〉〈n| , which cannot be achieved by renormalizing the
states |n〉 . Here, we use the BRST relations to show that all unphysical states
can be transformed away. In practice, we use the fact that the scattering matrix
does not depend on the choice of the gauge fixing function Ca(x), so we choose it
such that all ghost particles have a mass exceeding some critical value Λ. In the
intermediate states, their projector operators Δ±(k) then only contribute if the
total energy in the given channel exceeds Λ . This then means that there are no
ghosts in the intermediate states, so the scattering matrix is unitary in the space
of physical particles only — an absolutely essential step in the argument that these
theories are internally consistent. The required gauge fixing functions Ca(x) are
not difficult to construct, but their existence is only needed to complete this formal
argument. They are rather cumbersome to use in practical calculations.

6.4 Dispersion relations

The largest time equation can also be employed to derive very important dispersion
relations for the diagrams. These imply that any diagram D can be regarded as
a combination of two sets of diagrams Di and D†

i :

D =
∑
i

∫ ∞

0

dk0

−k0 − iε
Di(k0)D†

i (k
0) .(158)

Here, Di(k0) and D†
i (k

0) stand for amplitudes depending on various external mo-
menta k , where one of the timelike components, k0 , is integrated over. This, one
derives by singling out two points, x(1) and x(2) in a diagram, and time-ordering
them. The details of the derivation go beyond the scope of this paper (although
they are not more difficult than the previous derivations in this section). Eq. (158)
can be used to express diagrams with closed loops in terms of diagrams with fewer
closed loops, and discuss the subtraction procedures needed for renormalization.
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7 RENORMALIZATION

For a proper discussion of the renormalization concept, we must emphasize what
our starting point was: first, replace the continuum of space by a dense lattice
of points, and only at the very end of all calculations do we make an attempt to
take the continuum limit. The path integral procedure, illuminated in subsection
2.4, implies that time, also, can be replaced by a lattice. In Fourier space, the
space-time lattice leads to finite domains for the values of energies and momenta
(the Brillouin zones), so that all ultra-violet divergences disappear. If we also wish
to ensure the absence of infra-red divergences, we must replace the infinite volume
of space and time by a finite box. This is often required if complications arise
due to divergent contributions of soft virtual particles, typically photons. Nasty
infra-red divergences occur in theories with confinement, to be discussed in section
11.

The instruments that we shall use for the ultra-violet divergences of a theory
are as follows. We assume that all freely adjustable physical constants of the
theory, referred to as the ‘bare’ parameters, such as the ’bare’ mass and charge
of a particle, should be carefully tuned to agree with observation, but the tuning
process may depend critically on the mesh size a of the space-time lattice. Thus,
while we vary a , we allow all bare parameters, λ say, in the theories to depend
on a , often tending either to infinity or to zero as a → 0. If this procedure is
combined with a perturbation expansion, say in terms of a small coupling g , we
expect to find that observable features depend minimally on a provided that the
bare couplings g(a) remain small in the limit a ↓ 0.

This will be an important condition for our theories to make sense at all. How
do we know whether g(a) tends to zero or not? The simplest thing to look at, is
the dimensionality of g . All parameters of a field theory have a dimension of a
length to some power. These dimensions usually depend on the dimensionality n
of space-time. The rules to compute them are easy to obtain:

- An action S =
∫

dnxL(x) is dimensionless;

- The dimension of a Lagrange density L is therefore (length)−n = mn ,
where m is a mass.

- The dimension of the fields can be read off from the kinetic terms in the
Lagrangian, because they contain no further parameters. A scalar field φ
has dimension m(n−2)/2 , a fermionic field ψ has dimension m(n−1)/2 .

- A gauge coupling constant g has dimension m(4−n)/2 and the coupling pa-
rameter λ in an interaction term of the form λφk has dimension mn+k−nk/2 ,

and so on.
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A theory is called power-counting renormalizable, if all expansion pa-
rameters have mass-dimension positive or zero.

This is why, in 4 space-time dimensions, we cannot accept higher than quartic
interactions among scalars. In practice, in 4 space-time dimensions, most expan-
sion parameters have dimension zero. In Section 9, we will see that dimensionless
coupling parameters nevertheless depend on the size of a , but only logarithmically:

λ(a) ≈ λ0 + Cλ2
0 log(a) + higher orders.(159)

Regardless of whether this tends to zero or to infinity in the continuum limit,
one finds that, in the continuum theory, the perturbative corrections to the bare
parameters λ diverge. This is nothing to be alarmed about. However, if λ itself
is also a small parameter in terms of which we wish to perform a perturbation
expansion, then clearly trouble is to be expected if its bare value tends to infinity.
Indeed, we shall argue that, in general, such theories are inconsistent.

There are two very important remarks to be made:

— Theories can be constructed where all couplings really tend to zero in the
continuum limit. These theories are called asymptotically free (Section 9),
and they allow for accurate approximations in the ultra-violet. It is generally
believed that such theories can be defined in a completely unambiguous
fashion through their perturbation expansions in the ultra-violet; in any
case, they allow for very accurate calculation of all their physical properties.
QCD is the prime example.

— If a theory is not asymptotically free, but has only small coupling parame-
ters, the perturbation expansion formally diverges, and the continuum limit
formally does not exist. But the first N terms of perturbation expansion do
make sense, where N = O(1/g). This means that uncontrollable margins of
error are exponentially small, of order e−C/g or e−C/g

2
, which in practice

is much smaller than other uncertainties in the theory, so they are of hardly
any practical consequence. Thus, in such a case, our theory does have in-
trinsic inaccuracies, but these are exponentially suppressed. In practice, such
theories are still highly valuable. The Standard Model is an example.

A useful approach is to substitute all numbers in a theory by formal series expan-
sions, where the expansion parameter, a factor common to all coupling parameters
of the theory, is formally kept infinitesimal. In that case, all perturbation coeffi-
cients are uniquely defined, though one has little direct knowledge concerning the
convergence or divergence of the expansions.

In both the cases mentioned above, our theories are defined from their perturba-
tion expansion; clearly, the perturbation expansion is not only a convenient device
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for calculations, it is an essential ingredient in our theories. Let us therefore study
how renormalization works, order-by-order in perturbation theory.

In a connected diagram, let the number of external lines be E , the number
of propagators be P , and let Vn be the number of vertices with n prongs. By
drawing two dots on each propagator and one on each external line, one finds that
the number of dots is

2P + E =
∑
n

nVn = 3V3 + 4V4.(160)

For tree diagrams (simply connected diagrams), one finds by induction, with V
the number of vertices, V =

∑
n Vn ,

V = P + 1 .(161)

A diagram with L closed loops (an L-fold connected diagram) turns into a tree
by cutting away L propagators. Therefore, one has

P = V − 1 + L .(162)

Combining Eqs. (160) and (162), one has

E + 2L− 2 =
∑
n

(n− 2)Vn = V3 + 2V4 .(163)

Consequently, if every 3-vertex comes with a factor g and every 4-vertex with a
factor λ , and if a diagram with a given number E of external lines, behaves as
g2nλk , it must have L = n + k + 1− 1

2E closed loops. Perturbation expansion is
therefore often regarded as an expansion in terms of the number of closed loops.

7.1 Regularization schemes

In a tree diagram, in momentum space, no integrations are needed to be done
— the momentum flowing through every propagator is fixed by the momenta of
the in- and out-going particles. But if there are L loops, one has to perform 4L
integrations in momentum space. It is these integrations that often tend to diverge
at large momenta.

Of course, these divergences are stopped if momentum space is cut off, as is the
case in a finite lattice. However, since our lattice is not Lorentz-invariant and may
lack other symmetries such as gauge-invariance, it is useful to find other ways to
modify our theory so that UV divergences disappear. This is called ‘regularization’.
We give two examples.
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Pauli-Villars regularization

Assume that a propagator of the form shown is replaced as follows:

A(k)
k2 + m2 − iε

→
∑
i

ei
A(k)

k2 + Λ2
i − iε

;
∑
i

ei = 0 ,
∑
i

eiΛ2
i = 0 .(164)

If we take e1 = 1, Λ1 = m , while all other Λi tend to +∞ , we get back the original
propagator. With finite Λi , however, we can make all momentum integrations
converge at infinity. Our theory is then finite. This is (a somewhat simplified
version of) Pauli-Villars regularization.

However, the new propagators cannot describe ordinary particles. The ones
with ei < 0 contribute to the unitarity relation with the wrong sign! On the other
hand, the iε prescription is as usual, so that these particles do carry positive
energy. In any channel where the total energy is less than Λi , the ‘Pauli-Villars
ghosts’ do not contribute to the unitarity relation at all. So, in a theory where we
put a limit to the total energy considered, Pauli-Villars regularization is physically
acceptable. In practice, we will try to send all ghost masses Λi to infinity.

Dimensional regularization

Dimensional regularization [’t Hooft and Veltman, 1972b] consists of formally per-
forming all loop integrations in 4− ε dimensions, where ε may be any (possibly
complex) number. As long as ε is irrational, all integrations can be replaced by
finite expressions following an unambiguous prescription, to be explained below.
If ε = 0, one can also subtract the integrals, but the prescription is then often
not unambiguous, so that anomalies might arise. This is why dimensional regu-
larization will be particularly important whenever the emergence of anomalies is
a problem one wishes to understand and control.

It is important to realize that also when ε �= 0, integrals may be divergent,
but that, for irrational ε , unambiguous subtractions may be made. This needs
to be explained, but first, one needs to define what it means to have non-integral
dimensions. Such a definition is only well understood within the frame of the
perturbation-, or loop-, expansion. Consider an irreducible diagram with L loops
and N external lines, where we keep the external momenta p(1), · · · , p(N) fixed.
It is obvious from the construction of the theory that the integrand is a purely
rational function in L(4−ε) variables. Observing that the external momenta span
some N − 1 dimensional space, we now employ the fact that the integration in
the remaining dimensions is rotationally invariant. There, we write the formula
for the � -dimensional (Euclidean) sphere of radius r as∫

d�kδ(k2 − r2) =
π�/2

Γ(�/2)
r�−2 .(165)



The Conceptual Basis of Quantum Field Theory 711

Here, Γ stands for the Euler gamma function, Γ(z) = (z − 1)! for integral z .

It is at this point where we can decide that this expression defines the integral
for any, possibly complex, value for � . It converges towards the usual values
whenever � happens to be a positive integer. After having used Eq. (165), one
ends up with an integral over s variables kμ of a function f(k) , where s is an
integer, but f(k) contains ε -dependent powers of polynomials in k .

Convergence or divergence of an integral can be read off from simple power
counting arguments, and, at first sight, one sees hardly any improvement when ε
is close to zero. However, what is achieved is that infra-red divergences (kμ → 0)
are separated from the ultra-violet divergences (kμ → ∞), and this allows us to
define the “finite parts” of the integrals unambiguously:

• All integrals
∫

dskf(k) are replaced by functionals I({f(k)}) that obey the
same combinatorial rules as ordinary integrals:

I(αf1 + βf2) = αI(f1) + βI(f2) ,

I({f(k + q)}) = I({f(k)}) ,(166)

• I(f) =
∫

dskf(k) if this converges.

• I(f) = 0 if f(k) = (k2)p when 2p + s is not an integer.

This latter condition is usually fulfilled, if we started with ε not integer.

These rules are sufficient to replace any integral one encounters in a Feynman
diagram by some finite expression. Note, however, that complications arise if one
wants to use these rules when 2p + s is an integer, particularly when it is zero.
In that case, the expression diverges in the ultra-violet and in the infra-red, so, in
this case, it cannot be used to remove all divergences — it can only replace one
by another. Consequently, our finite expressions tend to infinity as ε→ 0.

It is important to verify that dimensional regularization fully respects unitar-
ity and the dispersion relations discussed above. Therefore, the ‘dimensionally
regularized’ diagrams correspond to solutions of the dispersion relations and the
unitarity relations, providing some ‘natural’ subtraction.

Equivalence of regularization schemes

The subtractions provided by the various regularization schemes discussed above,
in general, are not the same. At any given order, they do all obey the same
dispersion relations of the form (158). If we ask, which amplitudes can be added
to one scheme to reproduce the other, or, what is the amplitude of the difference
between the two schemes (after having eliminated these differences at the order
where the subdiagrams Di(k0) had been computed), we find the following. This
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difference must be a Lorentz-covariant expression; and it can only come from the
dimensionally regularized contributions of the unphysical Pauli-Villars ghosts in
Eq. (158). Because of their large masses, only very large values of k0 in this
equation contribute. The p0 -dependence then must reduce to being a polynomial
one (p being the momenta of the fixed external lines), and because of Lorentz-
invariance, the expression must be polynomial in all components of pμ . This is
exactly what can be achieved by putting a counter term inside the bare Lagrangian
of the theory. This way, one derives that the various regulators differ from one
another by different effective couplings in the bare Lagrangian.

It is then a question of taste which regulator one prefers. Since dimensional
regularization often completely respects local gauge-invariance7, and also because
it turned out to be very convenient and efficient in practice, one often prefers
that. It should always be kept in mind, however, that dimensional regularization
is something of a mathematical trick, and the physical expressions only make sense
in the limit ε→ 0.

7.2 Renormalization of gauge theories

Using the results from the previous Sections, we decide to treat quantum field
theories in general, and gauge theories in particular, as follows: first, we regularize
the theory, by using a ‘lattice cut-off’, or a Pauli-Villars cut-off, or by turning
towards n = 4− ε dimensions. All these procedures are characterized by a small
parameter, such as ε , such that the physical theory is formally obtained in the
limit ε→ 0. These procedures are all equivalent, in the sense that by adding local
interaction terms to the Lagrangian, one can map the results of one scheme onto
those of another. Subsequently, we renormalize the theory. This means that all
parameters in the Lagrangian are modified by finite corrections, which however
may diverge in the limit ε→ 0. If these counter terms have been chosen well, the
theory may stay finite and well defined in this limit. In particular, we should have
a unitary, causal theory.

Unitarity is only guaranteed if the theory is gauge-invariant. Therefore, one
prefers regulator schemes that preserve gauge-invariance throughout. This is what
dimensional regularization often does. In that case, the renormalization procedure
respects BRST-invariance, see Subsect. 4.6.

8 ANOMALIES

The Sections that follow will (again) be too brief to form a complete text for
learning Quantum Field Theory. Our aim is here to give a summary of the features

7Only in one case, there is a complication, namely, when there are Adler-Bell-Jackiw anoma-
lies; see Section 8.
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that are all extremely important to understand the general structure of relativistic
Quantum Field Theories.

If, for a given theory, no obviously gauge-invariant regularization procedure
appears to exist, this might be for a reason: such a theory might not be renormal-
izable at all. In principle, this could be checked, as follows. One may always decide
to use a regularization procedure that does not respect the symmetries one wants,
provided that the symmetry can be restored in the limit where the physically ob-
servable effects of the regulator go away, such as ε → 0, or Λi → ∞, i > 0. If a
gauge-invariant regulator does exist, but it hasn’t yet been explicitly constructed,
then we know that it differs from any other regulator by a bunch of finite counter
terms. To find such counter terms is not hard, in practice; just add all terms
needed to restore BRST invariance of the amplitudes.

But, in case that regulator is not known, how can we then be sure that such
terms exist at all? BRST invariance requires the validity of the Slavnov-Taylor
identities, but they appear to overdetermine the subtraction terms. This is the
way we originally phrased the problem in [’t Hooft, 1971]. In fact, indeed there
may be a clash. If this happens, it is called an anomaly [Jackiw, 1995, Ch.1].

Actually, the incidence of such anomalies is limited, fortunately. This is because
for most theories completely gauge-invariant regulator techniques were found. Di-
mensional regularization often works. The one case where it does not is when
there are chiral fermions. Classically, one may separate any fermionic field into a
left-handed and a right handed part, as was mentioned in Subsection 4.2:

ψ(x) = P+ψL(x) + P−ψR(x) ; P± = 1
2 (1± γ5) ;

γ5 = 1
24εμναβγ

μγνγαγβ .(167)

Indeed, since (γ5)2 = 1, the operators P± are genuine projection operators: P 2
± =

P± .

The left- and right sectors of the fermions, see Eq. (106), may be separately
gauge-invariant, transforming differently under gauge transformations. This, how-
ever, requires γ5 to anti-commute with all other γμ, μ = 1, · · · , n . But, as we
see from their definition, Eq. (167), γ5 only anti-commutes with four of the γμ ,
not all n . This is why the contributions from the −ε remaining dimensions will
not be gauge-invariant.

It was discovered by Bell and Jackiw [Bell and Jackiw, 1969], and indepen-
dently by Adler [Adler, 1969; Adler and Bardeen, 1969; Bardeen, 1969], that no
local counter term exists that obeys all symmetry conditions and has the desired
dimensionality; Bell and Jackiw tried to use unconventional regulators, but those
turned out not to be admissible. The basic culprit is the triangle diagram, Fig. 5(a),
representing the matrix element of the axial vector current ψ γμγ5 ψ in the field
of two photons, each being coupled to the vector current ψ γα ψ .

For simplicity, we assume here the fermions to be massless. Let us call this
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(b)(a)

k, μ

p, α

q, β

Figure 5. (a) The anomalous triangle diagram. μ, α and β are the polarizations,
k, p and q = k − p are the external momenta. (b) An anomalous diagram in
non-Abelian theories

amplitude then Γα,βμ (p, q). It is linearly divergent. Upon regularization, there are
two counter terms, or subtraction terms, whose coefficients should be determined,
in a correct combination with the finite parts of the amplitude. Limiting ourselves
to the correct quantum numbers and dimensions, we find the two quantities,

δ1Γα,βμ (p, q) = εμαβγpγ ;

δ2Γα,βμ (p, q) = εμαβγqγ .(168)

We can determine their coefficients by applying the condition that the total am-
plitude be invariant under gauge transformations of the photon field. This implies
that the expression must vanish when any of the two photons are longitudinal:
Aμ = ∂μΛ, which means

pαΓα,βμ (p, q) = 0 ; qβΓα,βμ (p, q) = 0 .(169)

Since

pαδ1Γα,βμ (p, q) = 0 ; qβδ1Γα,βμ (p, q) = Aμ,α ;

pαδ2Γα,βμ (p, q) = Aμ,β ; qβδ2Γα,βμ (p, q) = 0 ;(170)
Aμ,α = εμαβγpγqβ ,

this fixes the coefficients in front of δ1Γ and δ2Γ.

When now we investigate whether this amplitude is also transversal with respect
to the axial vector current, we are struck by a surprise. The counter terms, fixed
by condition (170), also contribute here:

kμδ1Γα,βμ (p, q) = −kμδ2Γα,βμ (p, q) = Aα,β ,(171)

but they do not cancel against the contribution of the finite part. After imposing
gauge-invariance with respect to the two vector insertions, one finds (in the case
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of a single chiral fermion)

kμΓα,βμ (p, q) = (4π2)−1εμαβγpμqγ ,(172)

and this can be rewritten as an effective divergence property of a vector current:

∂μJ
5
μ = − iLe2

8π2
FμνF̃μν ,(173)

where F̃μν = 1
2εμναβFαβ , L is the dumber of left-handed minus the number of

right-handed fermions, and it was assumed that the photons couple with charges
e .

What is surprising about this is, that the triangle diagram itself, Fig. 5a, appears
to be totally symmetric under all permutations, since γ5 can be permuted to any
of the other end-points. Imposing gauge-invariance at two of its three end-points
implies breaking of the invariance at the third.

This result is very important. It implies an induced violation of a conservation
law, apparently to be attributed to the regularization procedure. It also means that
it is not possible to couple three gauge bosons to such a triangle graph, because
this cannot be done in a gauge-invariant way. In most theories, however, we have
couplings both to left-handed and to right-handed fermions. Their contributions
are of opposite sign, which means that they can cancel out. Therefore, one derives
an important constraint on gauge theories with chiral fermions: The triangle
anomalies must cancel out.

Let the left handed chiral fermions be in representations of the total set of gauge
groups that transform as

ψiL → ψiL + iΛaT aL
i
jψ

j
L ,(174)

where Λ is infinitesimal, and T aL are the gauge generators for the left-handed
fermions. Similarly for the right-handed ψiR . Define

dabcL = Tr(T aLT bLT cL + T bLT aLT cL) ,(175)

and similarly dabcR . The anomaly constraint is then∑
dabcL =

∑
dabcR ,(176)

where the sum is over all fermion species in the theory. In the Standard Model, the
only contributions could come if either one or all three indices of dabc refer to the
U(1) group. One quickly verifies that indeed the U(1) charges of the quarks and
leptons are distributed in such a way that (176) is completely verified, but only if
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the number of quark generations and lepton generations are equal. In Subsection
10.3, we will see the physical significance of this observation.

Note, that in the non-Abelian case, there are also anomalies in diagrams with
4 external legs, see Fig. 5(b). They arise from the trilinear terms in FμνF̃μν (the
quadrilinear terms cancel). These are the only cases where the regularization
procedure may violate gauge invariance. In diagrams with more loops, or sub
diagrams with more external lines, regularization procedures could be found that
preserve gauge invariance.

9 ASYMPTOTIC FREEDOM

9.1 The Renormalization group

It was observed by Stueckelberg and Peterman [Stueckelberg and Peterman, 1953]
in 1953, that, although the perturbative expansion of a theory depends on how
one splits up the bare parameters in the Lagrangian into lowest order parameters,
and counter terms required for the renormalization, the entire theory should not
depend on this. This they interpreted as an invariance, and the action of replacing
parameters from lowest order to higher order corrections as a group operation. One
obtains the ‘Renormalization Group’.

There is only one instance where such transformtions really matter, and that
is when one compares a theory at one mass- or distance-scale to the same theory
at a different scale. A scale transformation must be associated with a replace-
ment of counter terms. Thus, physicists began to identify the notion of a scale
transformation as a ‘renormalization group transformation’.

Gell-Mann and Low [Gell-Mann and Low, 1954] observed that this procedure
can be used to derive the small-distance behavior of QED. One finds that the
effective fine-structure constant depends on the scale μ , described by the equation

μ2d
dμ2

α(μ) = β(α) =
α2 N

3π
+O(α3) ,(177)

where N is the number of charged fermion types. As long as α(μ) stays small, so
that the O(α3) terms can be neglected, we see that its μ -dependence is

α(μ) =
α0

1− (α0N/3π) log(μ2/μ2
0)

, if α(μ0) = α0 .(178)

Things run out of control when μ reaches values comparable to exp(3π/2Nα0),
but, at least in the case of QED, where α0 ≈ 1/137, this mass scale is so large that
in practice no problems are expected. The pole in Eq. (178) is called the Landau
pole; Landau concluded that quantum field theories such as QED have no true
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continuum limit because of this pole. Gell-Mann and Low suspected, however,
that β(α) might have a zero at some large value of α , so that, at high values of
μ , α approaches this value, but does not exceed this stationary point.

What exactly happens at or near the Landau pole, cannot be established using
perturbation expansion alone, since this will depend on all higher order terms in
Eq. (177); in fact, it is not even known whether Quantum Field Theory can be
reformulated accurately enough to decide. The question, however, might be not as
important as it seems, since the Landau pole will be way beyond the Planck mass,
where we know that gravitational terms will take over; it will be more important
to solve Quantum Gravity first.

An entirely different situation emerges in theories where the function β(λ) is
negative. It was long thought that this situation can never arise, unless the cou-
pling strength λ itself is given the wrong sign (the sign that would render the
energy density of the classical theory unbounded from below), but this turns out
only to be the case in theories that only contain scalar and spinor fields. If there is
a non-Abelian Yang-Mills component in the theory, negative β functions do occur.
In the simplest case, an SU(2) gauge theory with Nf fermions in the elementary
doublet representation, the beta function is

μ2d
dμ2

g2(μ) = β(g2) =
Nf − 11

24π2
g4(μ) +O(g6) ,(179)

so, as long as Nf < 11 we have that the coupling strength g(μ) tends to zero,
logarithmically, as μ → ∞ . This feature is called asymptotic freedom. In an
SU(Nc) gauge theory, the β function is proportional to Nf − 11

2 Nc , so, with the
present number of Nf = 6 quark flavors, QCD (Nc = 3) is asymptotically free. In
line with a notation often used, the subscript c here stands for ”colour”; in QCD,
the number of colours is Nc = 3.

9.2 An algebra for the beta functions

In theories with gauge fields, fermions, and scalars, the situation is more complex.
A general algorithm for the beta functions has been worked out. The most compact
notation for the general result can be given by writing how the entire Lagrange
density L scales under a scale transformation. Let the Lagrangian L be

L = − 1
4Ga

μνG
a
μν − 1

2 (Dμφi)2 − V (φ)− ψiγμDμψi

−ψi

(
Sij(φ) + iγ5Pij(φ)

)
ψj ,(180)

where the covariant derivatives are defined as follows:8

Dμφi ≡ ∂μφi + iT aijA
a
μφj ; Dμψi = ∂μψi + iUa

ijA
a
μψj ,(181)

8 T and U are hermitean, but since φ is real, the elements of T must be imaginary.
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and the structure constants fabc are defined by

[T a, T b] = −ifabcTc ,(182)

so that

Ga
μν = ∂μA

a
ν − ∂νA

a
μ + fabcAb

μA
c
ν .(183)

We split the fermions into right- and left-handed representations, so that

Ua = Ua
LPL + Ua

RPR ; PL =
1 + γ5

2
, PR =

1− γ5

2
.(184)

The functions S(φ) and P (φ) are at most linear in φ and V (φ) is at most quartic.
The Lagrangian (180) is the gauge-invariant part; we do not write the gauge-fixing
part or the ghost; the final result will not depend on those details.

The result of an algebraical calculation is that

16π2 μ2dL
dμ2

=

Ga
μνG

b
μν [−

11
12

Cab
1 +

1
24

Cab
2 +

1
6
Cab

3 ]−ΔV − ψ(ΔS + iγ5ΔP )ψ , (185)

in which

Cab
1 = fapqf bpq ,(186)

Cab
2 = Tr (T aT b) ,(187)

Cab
3 = Tr (Ua

LU b
L + Ua

RU b
R) ,(188)

ΔV = 1
4V 2

ij − 3
2Vi(T 2φ)i + 3

4 (φT aT bφ)2

+φiVjTr (S,iS,j + P,iP,j)− Tr (S2 + P 2)2 + Tr [S, P ]2 ,(189)

where

Vi ≡ ∂V (φ)
∂φi

; S,i ≡ ∂S

∂φi
, etc.,(190)

and writing S + iP = W , one finds ΔS and ΔP from

ΔW = 1
4WiW

∗
i W + 1

4WW ∗
i Wi + WiW

∗Wi

− 3
2 (U2

RW )− 3
2W (UL)2 + WiφjTr (SiSj + PiPj) .(191)

This expression does not include information on how fields φi and ψi transform
under scaling. The fields are not directly observable.
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This algebraic expression can be used to find how, in general, coupling strengths
run under rescalings of the momenta. It is an interesting exercise to work out what
the conditions are for asymptotic freedom, that is, for all coupling strengths to run
to zero at infinite momentum. In general, one finds that scalar fields can only exist
if there are also gauge fields and fermions present; the latter must be in sufficiently
high representations of the gauge group.

10 TOPOLOGICAL TWISTS

The Lagrangian (180) is the most general one allowed if we wish to limit ourselves
to coupling strengths that run logarithmically under rescalings of the momenta,
see for instance Eq. (178). Such theories have a domain of validity that range over
exponentially large values of the momenta (in principle over all momenta if the
theory is asymptotically free). The most striking feature of this general Lagrangian
is that it is topologically highly non-trivial. Locally stable field configurations may
exist that have some topological twist in them. In particular, this can be made
explicit in the case of a Brout-Englert-Higgs mechanism. Here, these twists can
already be seen at the classical level (i.e., ignoring quantum effects).

If we say that a scalar field φi has a vacuum expectation value, then this means
that we perform our perturbation expansion starting with a field value of the form
φi = (F, 0, · · · ) in the vacuum, after which field fluctuations δφ around this value
are assumed to be small. One assumes that the potential V (φ) has its minimum
there. This may appear to violate gauge-invariance, if φi transform into each other
under local gauge transformations, but strictly speaking the phrase “spontaneous
breakdown of local gauge symmetry” is inappropriate, because it may also simply
mean that we choose a gauge condition. It is however a fact that the spectrum of
physical particles comes out to be altogether different if we perturb around φi = 0,
so this ‘Higgs mode’ is an important notion in any case.

10.1 Vortices

If the Higgs field has only two real components (such as when U(1) is broken into
the identity group), one may consider a configuration where this field makes a full
twist over 360◦ when following a closed curve. Inside the curve there must be a
zero. The zeros must form a curve themselves, and they cost energy. This is the
Abrikosov vortex. Away from its center, one may transform φi back to a constant
value, but this generates a vector potential Aμ(x), obeying

∮
Aμdxμ =

2π

e
,(192)



720 Gerard ’t Hooft

which means that this vortex carries an amount of magnetic flux, of magnitude
exactly 2π/e . Apparently, in this model, magnetic field lines condense into locally
stable vortices [Nielsen and Olesen, 1973]. This is also what happens to magnetic
fields inside a superconductor.

10.2 Magnetic Monopoles

Something similar may happen if the Higgs field has three real components. In
that case, one can map the S2 sphere of minima of V (φ), onto a sphere in 3-
space. There will be isolated zeros inside this sphere. These objects behave as
locally stable particles. If one tries to transform the field locally to a constant
value, one finds that a vector potential again may emerge.

If, for example, in an SU(2) theory, a Higgs in the adjoint representation (which
has 3 real components) breaks the gauge group down to U(1), then one finds the
vector potential of an isolated magnetic source inside the sphere. This means that
the source is a magnetic monopole with magnetic charge gm = 4π

e , where e is
the original coupling strength of the SU(2) theory. Indeed, Dirac [1931; 1948] has
derived, back in 1931, that magnetic charges gm and electric charges q must obey
the Dirac quantization condition

q gm = 2πn .(193)

Apparently, for the monopole in this model, n = 2. However, it is easy to introduce
particles in the elementary representation, which have q = 1

2e ; these then saturate
the Dirac condition (193).

Dirac could not say much about the mass of his magnetic monopoles. In
the present theories, however, the mass is calculable. In general, the magnetic
monopole mass turns out to be the mass of an ordinary particle divided by a
number of the order of the gauge coupling strength squared.

Careful analysis of the existing Lie groups and the way they may be broken
spontaneously into one or more subgroups U(1), reveals a general feature: Only
if the underlying gauge group is compact, and has a compact covering group, must
electric charges in the U(1) gauge groups be quantized (otherwise, it would not
be forbidden to add arbitrary real numbers to the U(1) charges), and whenever
the covering group of the underlying gauge group is compact, magnetic monopole
solutions can be constructed. Apparently, whenever the gauge group structure
provides for a compelling reason for electric charges to be quantized, the existence
of magnetic monopole solutions is guaranteed. Thus, assuming that Nature has
compelling reasons for the charge units of electrons and protons to be equal, and
quantized into multiples of e , we must assume that magnetic monopole solutions
must exist. However, in most ‘Grand Unification Schemes’, the relevant mass scale
is many orders of magnitude higher than the mass scale of particles studied today,
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so the monopoles, whose mass is that divided by a coupling strength squared, are
even heavier.

From the structure of the Higgs field of a monopole, one derives that the system
is invariant under rotations provided that rotations are associated with gauge
rotations. A consequence of this is, that elementary particles with half-odd isospin,
when bound to a monopole, produce bound states with half-odd integer orbital
angular momentum [Hasenfratz and ’t Hooft, 1976]. What is strange about this,
is that such particles should develop Dirac statistics. Indeed, one can derive that
both the spin and the statistics of bound states of electric and magnetic charges,
flip from Bose-Einstein to Fermi-Dirac or back [Goldhaber, 1976] if they form odd
values of the Dirac quantum n (Eq. 193).

10.3 Instantons

A Higgs field with two real components gives rise to vortices, a Higgs with three
components gives magnetic monopoles, so what do we get if a Higgs field has four
real components? This is the case if, for instance, SU(2) is broken spontaneously
into the identity by a Higgs in the fundamental representation (two complex =
4 real components). The topologically stable objects one finds are stable points
in four-dimensional space-time. They represent events, and, referring to their
particle-like appearance, the resulting solutions (in Euclidean space) were called
‘instantons’. Because this Higgs field, in the case of SU(2), breaks the gauge
symmetry completely, one can argue that this solution is also topologically stable
in pure gauge theories, without a Higgs mechanism at all. Far from the origin, the
vector potential field is described as a local gauge rotation of the value Aa

μ(x) = 0.
The gauge rotation in question, Ω(x), is described by noting that the SU(2)
matrices form an S3 space, i.e., the three dimensional surface of a sphere in four
dimensions. Mapping this S3 one-to-one onto the boundary of some large region
in (Euclidean) space-time, gives the field configuration of an instanton.

It was noted by Belavin, Polyakov, Schwarz and Tyupkin [Belavin et al., 1975]
(who also were the first to write down this solution) that this solution has a non-
vanishing value of∫

d4x F a
μνF̃

a
μν =

32π2

g2
.(194)

The integrand is the divergence of a current:

F a
μνF̃

a
μν = ∂μKμ ; Kμ = 2εμναβA

a
ν(∂αAa

β + 1
3gfabcAb

αAc
β) ,(195)

the so-called Chern-Simons current. This current, however, is not gauge-invariant,
which is why it does not vanish at infinity. It does vanish after the gauge trans-
formation Ω(x) that replaces Aa

μ at infinity by 0. Eq. (194) is most easily derived
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by using this Chern-Simons current. It so happens that the instanton is also a
solution of the equation

Fμν = F̃μν ,(196)

so that we also find the action to be given by −8π2/g2 .

In a pure gauge theory (one without fermions), instantons can be interpreted
as representing tunneling transitions. In ordinary Quantum Mechanics, tunneling
is an exponentially suppressed transition. The exponential suppression is turned
into an oscillating expression if we replace time t by an imaginary quantity iτ .
The oscillating exponent is the action of a classical transition in imaginary time.
One may also say that a tunneling transition can be described by a classical me-
chanical transition if the potential V (�q) is replaced by 2E−V (�q) , where E is the
energy. The classical action then represents the quantity in the exponent of the
(exponentially suppressed) tunneling transition.

The above substitution is exactly what one gets by replacing time t by iτ .
In relativistic Quantum Field Theory, this is also exactly the Wick rotation from
Minkowski space-time into Euclidean space-time. In short, instantons represent
tunneling that is associated with the suppression factor e−8π2/g2 .

The transition can be further understood by formulating a gauge theory in the
temporal gauge, A0 = 0. In this gauge, there is a residual invariance under gauge
transformations Λ(x) that are time-independent. All ‘physical states’, therefore,
come as representations of this local gauge group. Normally, however, we restrict

ourselves to the trivial representation, Ω|ψ〉 = |ψ〉 , where Ω = ei
R

Λ(x)d3x , because
this configuration is conserved in time, and because any other choice would violate
Lorentz invariance. However, closer analysis shows that one only has to impose
this constraint for those gauge transformations that can be continuously reached
from the identity transformation. This is not the case for transformations obtained
by mapping the S3 space of the SU(2) transformations non-trivially onto three-
space RR3 . These transformations form a discrete set, characterized by the integers
k = 0, ±1, ±2, . . . . Writing

Ωk(x) = Ω1(x)k , Ωk|ψ〉 = eiθk|ψ〉 ,(197)

we find that the tunneling transitions described by instantons cause an exponen-
tially suppressed θ dependence of physical phenomena in the theory. Since, under
parity transformations P , the angle θ turns into −θ , a non-vanishing θ also
implies an explicit parity (eventually, PC ) violation of the strong interactions.

In the presence of fermions, the situation is altogether different. Due to the
chiral anomaly, we have for the current of chiral fermions J5

μ(x), the equation
(173). The total number of chiral fermions, Q5 =

∫
d3xJ5

0 (x) changes by one unit
due to an instanton: ΔQ5 = ±1. This can be understood by noting that the Dirac
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equation for massless, chiral fermions has one localized solution in the Euclidean
space of an instanton. In Minkowski space-time, this solution turns into a state
that describes a chiral fermion either disappearing into the Dirac sea, or emerging
from it, so that, indeed, the number of particles minus anti-particles changes by
one unit for every chiral fermion species. If left- and right handed fermions are
coupled the same way to the gauge field, as in QCD, the instanton removes a
left-handed fermion and creates a right-handed one, or, in other words, it flips the
chirality. This ΔQ5 = ±2 event has exactly the quantum numbers of a mass term
for the Goldstone boson that would be associated to the conservation of chiral
charge, the η particle. This explains why the η particle is considerably heavier
than the pions, which have lost most of their mass due to chiral symmetry of the
quarks [’t Hooft, 1986].

What one concludes from the study of instantons is that QCD, the theory for the
strong interactions, neatly explains the observed symmetry structure of the hadron
spectrum, including the violation of chiral charge conservation that accounts for
the η mass.

In the electro-weak sector, one also has instantons. We now see that the can-
cellation of the anomalies in the quark and the lepton sector implies an important
property of the electro-weak theory: since the anomalies do not respect gauge-
invariance of the quark sector alone, quarks can be shown not to be exactly con-
served. One finds that instantons induce baryon number violating events: three
baryons (nine different quarks all together) may transmute into three anti-leptons,
or vice versa.

11 CONFINEMENT

An important element in the Standard Model is the gauge theory for the strong
interactions, based on the gauge group SU(3). Quarks are fermions in the ele-
mentary representation of SU(3). The observed hadronic particles all are bound
states of quarks and/or anti-quarks, in combinations that are gauge-invariant un-
der SU(3). An important question is: what is the nature of the forces that binds
these quarks together? We have seen that vortex solutions can be written down
that would cause an interesting force pattern among magnetic monopoles: in a
Higgs theory with magnetic monopoles, these monopoles could be bound together
with Abrikosov vortices.

Indeed, this would be a confining force: every magnetic monopole must be the
end point of a vortex, whose other end point is a monopole of opposite magnetic
charge. Indeed, the confinement would be absolute: isolated monopoles cannot
exist. It was once thought that, therefore, quarks must be magnetic monopoles.
This, however, would be incompatible with the finding that quarks only interact
weakly at small distances, magnetic charges being always quite strong. A more
elegant idea is that the binding force forms electric rather than magnetic vortices.
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An electric vortex can be understood as the dual transformation of a magnetic
vortex. It comes about when the Brout-Englert-Higgs mechanism affects freely
moving magnetically charged particles. Further analytic arguments, as well as
numerical investigations, have revealed that indeed such objects are present in
QCD, and that the Higgs mechanism may occur in this sector. Let us briefly
explain the situation in words.

11.1 The maximally Abelian gauge

A feature that distinguishes non-Abelian gauge theories from Abelian ones, is that
a reference frame for the gauge choice, the gauge condition, can partly be fixed
locally in terms of the pure gauge fields alone; noticing that the covariant field
strengths Gμν transform as the adjoint representation, one may choose the gauge
such that one of these components, say G12 , is diagonal. This then removes the
non-Abelian part of the gauge group, but the diagonal part, called the Cartan
subgroup, remains. In this way, a non-Abelian gauge theory turns into an Abelian
one. A slightly smarter, but non-local gauge that does the same is the condition
that

∑
i�=j(A

i
μ j)

2 is minimized. It is called the maximally Abelian gauge.

However, such a gauge choice does produce singularities. These typically occur
when two eigenvalues of G12 coincide. It is not difficult to convince oneself that
these singularities behave as particles, and that these particles carry magnetic
charges with respect to the Cartan subgroup. Absolute confinement occurs as soon
as these magnetically charged particles undergo a Brout-Englert-Higgs mechanism.

Although this still is the preferred picture explaining the absolute nature of
the quark confining force, it may be noted that the magnetically charged particles
do not have to be directly involved with the confinement mechanism. Rather,
they are indicators. This, we deduce from the fact that confinement also occurs in
theories with a very large number Nc of colors; in the limit Nc →∞ , magnetically
charged particles appear to be suppressed in the perturbative regime, but the
electric vortices are nevertheless stable. The strength of a vortex is determined
by its finite width, and this width is controlled by the lightest gluonic state, the
‘glueball’. At distance scales large compared to the inverse mass of the lightest
glueball, an electric vortex cannot break.

Confinement is a condensation phase that is a logical alternative of the Brout-
Englert-Higgs phase. In some cases, however, these two phases may coexist. An
example of such a coexistence is the SU(2) sector of the Standard Model. Con-
ventionally, this sector is viewed as a prototype of the Higgs mechanism, but it so
happens that the SU(2) sector of the Standard Model can be treated exactly like
the colour SU(3) sector: as if there is confinement. To see this, one must observe
that the Higgs doublet field can be used to fix the SU(2) sector of the gauge group
unambiguously. This means that all physical particles can be connected to gauge-
invariant sources by viewing them as gauge-invariant bound states of the Higgs
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particle with the other elementary doublets of the model. For instance, writing
the Higgs doublet as φa =

(
F
0

)
+ φ̃a , and the lepton doublet as ψa , the electron

is seen to be associated to the ‘baryonic’ field εabφaψb , the neutrino is φ∗aψa , the
Z0 boson is φ∗aDμφa , and so on.

Theories in which the confinement phase is truly distinct from the Higgs phase
are those where the Higgs field is not a one-to-one representation of the gauge
group, such as the adjoint representation of SU(2).

12 OUTLOOK

Quantum Field Theory has reached a respectable status as an accurate and well-
studied description of sub-atomic particles. From a purely mathematical point
of view, there are some inherent limitations to the accuracy by which it defines
the desired amplitudes, but in nearly all conceivable circumstances, its intrinsic
accuracy is much higher than what can be reached in experiments. This does
not mean that we can reach such accuracy in real calculations, which more often
than not suffer from technical limitations, particularly where the interactions are
strong, as in QCD. In this domain, there is still a need for considerable technical
advances.

12.1 Naturalness

When the Standard Model, as known today, is extrapolated to energy domains
beyond approximately 1 TeV, a difficulty is encountered that is not of a mathe-
matical nature, but rather a physical one: it becomes difficult to believe that it
represents the real world. The bare Lagrangian, when considered on a very fine
lattice, is required to have parameters that must be tuned very precisely in order
to produce particles such as the Higgs particle and the weak vector bosons, whose
masses are much less than 1 TeV. This fine-tuning is considered to be unnatural.
In a respectable physical theory, such a coincidence is not expected. With some
certainty, one can state that the fundamental laws of Nature must allow for a more
elegant description at high energies than a lattice with such fine-tuning. What is
generally expected is either a new symmetry principle or possibly a new regime
with an altogether different set of physical fields.

A candidate for a radically different regime is the so-called technicolour theory,
a repetition of QCD but with a typical energy scale of a TeV rather than a GeV.
The quarks, leptons and Higgs particles of the Standard Model would then all turn
out to be the hadrons of this technicolour theory. Different gauge groups could
replace SU(3) here. However, according to this scheme, a new strong interaction
regime would be reached, where perturbation expansions used in the weak sector
of the Standard Model would have to break down. As precision measurements and
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calculations continue to confirm the reliability of these perturbation expansions,
the technicolour scenario is considered to be unlikely.

12.2 Supersymmetry

A preferred scenario is a simple but beautiful enhancement of the symmetries of
the Standard Model: supersymmetry. This symmetry, which puts fermions and
bosons into single multiplets, does not really modify the fundamental aspects of
the theory. But it does bring about considerable simplifications in the expressions
for the amplitudes, not only in the perturbative sector, but also, in many cases, it
allows us to look deeper into the non-perturbative domains of the theories. There
is a vast amount of literature on supersymmetry, but some aspects of it are still
somewhat obscure. We would like to know more about the physical origin and
meaning of supersymmetry, as well as the mechanism(s) causing it to be broken
— and made almost invisible — at the domain of the Standard Model that is
today accessible to experimental observation.

12.3 Resummation of the Perturbation Expansion

The perturbation expansion in Quantum Field Theory is almost certain to be
divergent for any value of the coupling parameter(s). A simple argument for its
divergence has been put forward by Dyson [Dyson, 1952]: imagine that in the
theory of QED there were a bound ε such that, whenever |α| < ε , where α is the
fine-structure constant, perturbation expansions would converge. Then it would
converge for some negative real value of α . However, one can easily ascertain that
for any negative value of α , the vacuum would be unstable: vacuum fluctuations
would allow large numbers of electrons to be pair-created, and since like charges
attract, highly charged clouds of electrons could have negative energies.

Theories with asymptotic freedom may allow for a natural way to re-sum the
perturbation series, by first solving the theory at high energy with extreme pre-
cision, after which one has to integrate the Schrödinger equation to obtain the
physical amplitudes at lower energy. Such a program has not yet been carried out,
because integrating these Schrödinger equations is beyond our present capabilities,
but one may suspect that, as a matter of principle, it should be possible. Theories
that are not asymptotically free may perhaps allow for more precise treatments if
an ultra-violet fixed point can be established.

The extent of the divergence of the perturbation expansion can be studied or
predicted. This one does using the Borel resummation technique. An amplitude

Γ(λ) =
∞∑
n=1

anλ
n ,(198)
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can be rewritten as

Γ(λ) =
∫ ∞

0

B(z)e−z/λdz ,

B(z) =
∞∑
k=0

ak+1z
k/k! .(199)

The series for B(z) is generally expected to have a finite radius of convergence.
If B(z) can be analytically extended to the domain 0 ≤ z < ∞ , then that (re-)
defines our amplitude. In general, however, one can derive that B(z) must have
singularities on the real axis, for instance where z corresponds to the action of
instantons or instanton pairs. In addition, singularities associated to the infrared
and/or ultraviolet divergences of the theory are expected. Sometimes, these dif-
ferent singularities interfere.

12.4 General Relativity and Superstring Theory

It is dubious, however, whether the issue of convergence or divergence of the per-
turbation expansion is of physical relevance. We know that Quantum Field Theory
cannot contain the entire truth concerning the sub-atomic world; the gravitational
force is guaranteed not to be renormalizable, so at those scales where this force
becomes comparable to the other forces, the so-called Planck scale, a radically new
theory is called for. Superstring Theory is presently holding the best promise to
evolve into such a theory. With this theory, physicists are opening a new chapter,
where we leave conventional Quantum Field Theory, as described in this paper,
behind. In its present form, Superstring Theory appears to have turned into a
collection of wild ideas called M -theory, whose foundations are still extremely
shaky. Some of the best minds of the world are competing to turn this theory
into something that can be used to provide for reliable predictions and that can
be taught in a text book, but this has not yet been achieved.
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