COMPENDIUM OF THE FOUNDATIONS OF
CLASSICAL STATISTICAL PHYSICS

Jos Uffink

1 INTRODUCTION

It has been said that an advantage of having a mature, formalized version of a
theory is that one may forget its preceding history. This saying is certainly true
for the purpose of studying the conceptual structure of a physical theory. In a
discussion of the foundations of classical mechanics, for example, one need not
consider the work of the Parisian scholastics. In the foundations of quantum me-
chanics, one may start from the von Neumann axioms, and disregard the preceding
“old” quantum theory. Statistical physics, however, has not yet developed a set
of generally accepted formal axioms, and consequently we have no choice but to
dwell on its history.

This is not because attempts to chart the foundations of statistical physics have
been absent, or scarce [Ehrenfest and Ehrenfest-Afanassjewa, 1912; ter Haar, 1955;
Penrose, 1979; Sklar, 1993; Emch and Liu, 2001]e.g.. Rather, the picture that
emerges from such studies is that statistical physics has developed into a number
of different schools, each with its own programme and technical apparatus. Unlike
quantum theory or relativity, this field lacks a common set of assumptions that is
accepted by most of the participants; although there is, of course, overlap. But
one common denominator seems to be that nearly all schools claim the founding
fathers, Maxwell, Boltzmann and Gibbs as their champions.

Broadly understood, statistical physics may be characterized as a branch of
physics intended to describe the thermal behaviour and properties of matter in
bulk, i.e. of macroscopic dimensions in relation to its microscopic corpuscular con-
stituents and their dynamics.! In this review, we shall only deal with approaches
that assume a finite number of microscopic constituents, governed by classical dy-
namics. (See [Emch, 2006] for a discussion of quantum statistical physics that also
addresses infinite systems.)

The above description is deliberately vague; it does not yet specify what thermal
behaviour is, and being a characterization in terms of intentions, leaves open by
what methods the goals may be achieved. Let us expand a bit. There are two basic

IThe terms “in bulk” and the distinction “micro/macroscopic” should be understood in a
relative sense. Thus, statistical physics may apply to a galaxy or nebula, in which the constituent
stars are considered as ’microscopic constituents’.
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ingredients in statistical physics. The first is a mechanical model of a macroscopic
material system. For example, a gas may be modeled as a system of point particles,
or as hard spheres, or as composite objects, etc. Similarly, one may employ lattice
models for solids, and so forth. In general, the particulars of the mechanical model,
and its dynamics, will depend on the system of interest.

The second ingredient of the theory on which all approaches agree is the in-
troduction of probability and statistical considerations. Sometimes, textbooks
explain the need for this ingredient by pointing to the fact that an exact solution
of the equations of motion for mechanical models with a large number of degrees of
freedom is unfeasible. But this motivation from deficiency surely underestimates
the constructive and explanatory role that probability plays in statistical physics.
A slightly better motivation, also found in many textbooks, is that even if the
dynamical equations could be solved in detail, most of these details would turn
out to be irrelevant for the purpose of characterizing the thermal behaviour. There
is some truth in this observation, yet it can hardly be satisfactory as it stands.
Certainly, not all details about the microdynamics are irrelevant, e.g. in phase
transitions, and one naturally wishes for more concrete information about exactly
which details are irrelevant and which are not.

One of the foremost foundational problems in statistical physics is thus to spec-
ify and to clarify the status of probabilistic assumptions in the theory. As we
shall see, this task already leads to a rough distinction between approaches in
which probability arises as a notion explicitly defined in mechanical terms (ki-
netic theory), and approaches in which it is a conceptually independent ingredient
(statistical mechanics).

Next, there are ingredients on which much less consensus can be found. Here is
a (partial) list:

- Assumptions about the overwhelmingly large number of microscopic consti-
tuents (typically of the order of 10?3 or more).

- An assumption about the erratic nature of the dynamics (e.g. ergodicity).

- The choice of special initial conditions.

- The role of external influences on the system, i.e., assumptions about whether
the system is open to the exchange of energy/momentum with its environ-
ment, in combination with an assumed sensitivity of the dynamics under

such external disturbances.

- Symmetry of macroscopic quantities under permutation of the microscopic
constituents.

- Limits in the resolution or experimental accuracy of macroscopic observers.

- Appeal to a time-asymmetric principle of causality.
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The role of each of these ingredients in the recipe of statistical physics is contro-
versial. What many “chefs” regard as absolutely essential and indispensable, is
argued to be insufficient or superfluous by many others. A major goal in the foun-
dations of statistical physics should therefore lie in an attempt to sort out which
subset of the above ideas can be formulated in a precise and coherent manner
to obtain a unified and sufficiently general framework for a theory of statistical
physics.

Another issue in which the preceding discussion has been vague is what is meant
by the thermal behaviour and properties of macroscopic matter. There are two
sources on which one may draw in order to delineate this topic. The first is by
comparison to other (older) traditions in theoretical physics that have the same
goal as statistical physics but do not rely on the two main ingredients above viz.
a mechanical model and probabilistic arguments. There are two main examples:
thermodynamics and hydrodynamics. The other source, of course, is observation.
This provides a rich supply of phenomena, some of which have thus far withstood
full theoretical explanation (e.g. turbulence).

Obviously, a measure of success for statistical physics can be found in the ques-
tion to what extent this approach succeeds in reproducing the results of earlier,
non-statistical theories, where they are empirically adequate, and in improving
upon them where they are not. Thus, the foundations of statistical physics also
provides a testing ground for philosophical ideas about inter-theory relations, like
reduction (cf. [Brush, 1977; Sklar, 1993; Batterman, 2002]). However I will not
go into this issue. The remainder of this introduction will be devoted to a rough
sketch of the four theories mentioned, i.e. thermodynamics, hydrodynamics, ki-
netic theory and statistical physics.

1.1 Thermodynamics.

Orthodox thermodynamics is an approach associated with the names of Clausius,
Kelvin, and Planck. Here, one aims to describe the thermal properties of macro-
scopic bodies while deliberately avoiding commitment to any hypothesis about
the microscopic entities that might constitute the bodies in question. Instead,
the approach aims to derive certain general laws, valid for all such bodies, from a
restricted set of empirical principles.

In this approach the macroscopic body (or thermodynamic system) is conceived
of as a sort of black box, which may interact with its environment by means of
work and heat exchange. The most basic empirical principle is that macroscopic
bodies when left to themselves, i.e. when isolated from an environment, eventu-
ally settle down in an equilibrium state in which no further observable changes
occur. Moreover, for simple, homogeneous bodies, this equilibrium state is fully
characterized by the values of a small number of macroscopic variables.

Other empirical principles state which types of processes are regarded as im-
possible. By ingenious arguments one can then derive from these principles the
existence of certain quantities (in particular: absolute temperature, energy and
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entropy) as ‘state functions’, i.e. functions defined on a space of thermodynamical
equilibrium states for all such systems.

While the theory focuses on processes, the description it can afford of such
processes is extremely limited. In general, a process will take a system through
a sequence of non-equilibrium states, for which the thermodynamic state func-
tions are not defined, and thus cannot be characterized in detail with the tools
afforded by the theory. Therefore one limits oneself to the consideration of special
types of processes, namely those that begin and end in an equilibrium state. Even
more special are those processes that proceed so delicately and slowly that up
to an arbitrarily small error one may assume that the system remains in equilib-
rium throughout the entire process. The latter processes are called quasistatic, or
sometimes reversible.?

Of course, since equilibrium states are by definition assumed to remain in equi-
librium if unperturbed, all such processes are triggered by an external intervention
such as pushing a piston or removing a partition. For the first type of process,
orthodox thermodynamics can only relate the initial and final state. The second
type of process can be (approximately) represented as a curve in the equilibrium
state space.

The advantage of the approach is its generality. Though developed originally
for the study of gases and liquids, by the late nineteenth century, it could be ex-
tended to the behaviour of magnets and other systems. Indeed, the independence
of hypotheses about its micro-constituents means that the methods of orthodox
thermodynamics can also be —and have been— applied to essentially quantum-
mechanical systems (like photon gases) or to more exotic objects like black holes
(see [Rovelli, 2006]).

With regard to the foundations of statistical physics, two aspects of thermody-
namics are of outstanding importance. First, the challenge is to provide a coun-
terpart for the very concept of equilibrium states and to provide a counterpart for
the thermodynamic law that all isolated systems not in equilibrium evolve towards
an equilibrium state. Secondly, statistical physics should give an account of the
Second Law of thermodynamics, i.e. the statement that entropy cannot decrease in
an adiabatically isolated system. Obviously, such counterparts will be statistical;
i.e. they will hold on average or with high probability, but will not coincide with
the unexceptionally general statements of thermodynamics.

1.2 Hydrodynamics

It would be a mistake to believe that the goals of statistical physics are exhausted
by reproducing the laws of thermodynamics. There are many other traditions
in theoretical physics that provide a much more detailed, yet less general, char-
acterization of thermal behaviour. A concrete example is hydrodynamics or fluid
dynamics. In contrast to thermodynamics, hydrodynamics does rely on an assump-

2The reader may be warned, however, that there are many different meanings to the term
‘reversible’ in thermodynamics. See [Uffink, 2001] for a discussion.
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tion about microscopic constitution. It models a fluid as a continuous medium or
plenum. It is, in modern parlance, a field theory. Moreover it aims to describe
the evolution of certain macroscopic quantities in the course of time, i.e. during
non-equilibrium processes. As such it is an example of a theory which is much
more informative and detailed than thermodynamics, at the price, of course, that
its empirical scope is restricted to fluids.

Without going in detail (for a more comprehensive account, see e.g. [Landau
and Lifshitz, 1987; de Groot and Mazur, 1961]), hydrodynamics assumes there
are three fundamental fields: the mass density p(&,t), a velocity field ¥(Z,¢) and
a temperature field T(Z,t). There are also three fundamental field equations,
which express, in a differential form, the conservation of mass, momentum and
energy. Unfortunately, these equations introduce further quantities: the pressure
P(Z,t), the stress tensor 7(&,t), the energy density u(Z,t), the shear and bulk
viscosities n and ¢ and thermal conductivity x, each of which has to be related to
the fundamental fields by means of various constitutive relations and equations of
state (dependent on the fluid concerned), in order to close the field equations, i.e.
to make them susceptible to solution.

The resulting equations are explicitly asymmetric under time reversal. Yet
another remarkable feature of hydrodynamics is the fact that the equations can be
closed at all. That is: the specification of only a handful of macroscopic quantities
is needed to predict the evolution of those quantities. Their behaviour is in other
words autonomous. This same autonomy also holds for other theories or equations
used to describe processes in systems out of equilibrium: for example the theories
of diffusion, electrical conduction in metals, the Fourier heat equation etc. In
spite of a huge number of microscopic degrees of freedom, the evolution of a few
macroscopic quantities generally seems to depend only on the instantaneous values
of these macroscopic quantities. Apart from accounting for the asymmetry under
time reversal displayed by such theories, statistical physics should also ideally
explain this remarkable autonomy of their evolution equations.

1.3 Kinetic theory

I turn to the second group of theories we need to consider: those that do rely on
hypotheses or modeling assumptions about the internal microscopic constitution
or dynamics of the systems considered. As mentioned, they can be divided into
two rough subgroups: kinetic theory and statistical mechanics.

Kinetic theory, also called the kinetic theory of gases, the dynamical theory of
gases, the molecular-kinetic theory of heat etc., takes as its main starting point the
assumption that systems (gases in particular) consist of molecules. The thermal
properties and behaviour are then related in particular to the motion of these
molecules.

The earliest modern version of a kinetic theory is Daniel Bernoulli’s (1731).
Bernoulli’s work was not followed by further developments along the same line
for almost a century. But it regained new interest in the mid-nineteenth century.
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The theory developed into a more general and elaborate framework in the hands
of Clausius, Maxwell and Boltzmann. Clausius extended Bernoulli’s model by
taking into account the collisions between the particles, in order to show that the
formidable molecular speeds (in the order of 10% m/s) were compatible with rela-
tively slow rates of diffusion. However, he did not develop a systematic treatment
of collisions and their effects. It was Maxwell who was the first to realize that
collisions would tend to produce particles moving at a variety of speeds, rather
than a single common speed, and proceeded to ask how probable the various values
of the velocity would be in a state of equilibrium. Maxwell thus introduced the
concept of probability and statistical considerations into kinetic theory.

From 1868 onwards, Boltzmann took Maxwell’s investigations further. In his
famous memoir of 1872 he obtained an equation for the evolution of the distri-
bution function, the Boltzmann equation, and claimed that every non-stationary
distribution function for an isolated gas would evolve towards the Maxwellian
form, i.e. towards the equilibrium state. However, along the way, Boltzmann had
made various assumptions and idealizations, e.g. neglecting the effect of multi-
particle collisions, which restrict his derivations’ validity to dilute gases, as well
as the Stofizahlansatz, developed by Maxwell in 1867, (or ‘hypothesis of molecular
disorder’ as he later called it).

The Boltzmann equation, or variations of this equation, is the physicists’ work-
horse in gas theory. The hydrodynamical equations can be derived from it, as
well as other transport equations. However, it is well known that it is only an
approximation, and commonly regarded as a first step in a hierarchy of more
detailed equations. But the foremost conceptual problem is its time-asymmetric
nature, which highlights the fact that the Boltzmann equation itself could not
be derived from mechanics alone. During Boltzmann’s lifetime, this led to two
famous objections, the reversibility objection (Umkehreinwand) by Loschmidt and
the recurrence objection (Wiederkehreinwand) by Zermelo. A third important
challenge, only put forward much more recently by [Lanford, 1975], concerns the
consistency of the Boltzmann equation with the assumption that the gas system
is a mechanical system governed by Hamiltonian dynamics.

1.4 Statistical mechanics

There is only a vague borderline between kinetic theory and statistical mechanics.
The main distinctive criterion, as drawn by the Ehrenfests (1912) is this. Kinetic
theory is what the Ehrenfests call “the older formulation of statistico-mechanical
investigations” or “kineto-statistics of the molecule”. Here, molecular states, in
particular their velocities, are regarded as stochastic variables, and probabilities
are attached to such molecular states of motion. These probabilities themselves
are determined by the state of the total gas system. They are conceived of either as
the relative number of molecules with a particular state, or the relative time during
which a molecule has that state. (Maxwell employed the first option, Boltzmann
wavered between the two.) It is important to stress that in both options the
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“probabilities” in question are determined by the mechanical properties of the
gas. Hence there is really no clear separation between mechanical and statistical
concepts in this approach.

Gradually, a transition was made to what the Ehrenfests called a “modern for-
mulation of statistico-mechanical investigations” or “kineto-statistics of the gas
model”, or what is nowadays known as statistical mechanics. In this latter ap-
proach, probabilities are not attached to the state of a molecule but to the state
of the entire gas system. Thus, the state of the gas, instead of determining the
probability distribution, now itself becomes a stochastic variable.

A merit of this latter approach is that interactions between molecules can be
taken into account. Indeed, the approach is not necessarily restricted to gases,
but might in principle also be applied to liquids or solids. (This is why the name
‘gas theory’ is abandoned.) The price to be paid however, is that the proba-
bilities themselves become more abstract. Since probabilities are attributed to
the mechanical states of the total system, they are no longer determined by such
mechanical states. Instead, in statistical mechanics, the probabilities are usually
conceived of as being determined by means of an ‘ensemble’, i.e. a fictitious col-
lection of replicas of the system in question. But whatever role one may wish to
assign to this construction, the main point is that probability is now an indepen-
dent concept, no longer reducible to mechanical properties of the system.

It is not easy to pinpoint this transition in the course of the history, except to say
that Maxwell’s work in the 1860s definitely belong to the first category, and Gibbs’
book of 1902 to the second. Boltzmann’s own works fall somewhere in the middle
ground. His earlier contributions clearly belong to the kinetic theory of gases
(although his 1868 paper already applies probability to an entire gas system); while
his work after 1877 is usually seen as elements in the theory of statistical mechanics.
However, Boltzmann himself never indicated a clear distinction between these two
different theories, and any attempt to draw a demarcation at an exact location in
his work seems somewhat arbitrary.

From a conceptual point of view, the transition from kinetic gas theory to sta-
tistical mechanics poses two main foundational questions. First: on what grounds
do we choose a particular ensemble, or the probability distribution characterizing
the ensemble? Gibbs did not enter into a systematic discussion of this problem,
but only discussed special cases of equilibrium ensembles (i.e. canonical, micro-
canonical etc.) for which the probability distribution was stipulated by some spe-
cial simple form. A second problem is to relate the ensemble-based probabilities
to the probabilities obtained in the earlier kinetic approach for a single gas model.

The Ehrenfests [1912] paper was the first to recognize these questions, and to
provide a partial answer. Namely: Assuming a certain hypothesis of Boltzmann’s,
which they dubbed the ergodic hypothesis, they pointed out that for an isolated
system the micro-canonical distribution is the unique stationary probability dis-
tribution. Hence, if one demands that an ensemble of isolated systems describing
thermal equilibrium must be represented by a stationary distribution, the only
choice for this purpose is the micro-canonical one. Similarly, they pointed out
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that under the ergodic hypothesis, infinite time averages and ensemble averages
were identical. This, then, would provide a desired link between the probabili-
ties of the older kinetic gas theory and those of statistical mechanics, at least in
equilibrium and in the infinite time limit. Yet the Ehrenfests simultaneously ex-
pressed strong doubts about the validity of the ergodic hypothesis. These doubts
were soon substantiated when in 1913 Rosenthal and Plancherel proved that the
hypothesis was untenable for realistic gas models.

The Ehrenfests’ reconstruction of Boltzmann’s work thus gave a prominent role
to the ergodic hypothesis, suggesting that it played a fundamental and lasting
role in his thinking. Although this view indeed produces a more coherent view of
his multi-faceted work, it is certainly not historically correct. Boltzmann himself
also had grave doubts about this hypothesis, and expressly avoided it whenever he
could, in particular in his two great papers of 1872 and 1877b. Since the Ehren-
fests, many authors have presented accounts of Boltzmann’s work. Particularly
important are Klein [1973] and Brush [1976].

Nevertheless, the analysis of the Ehrenfests did thus lead to a somewhat clearly
delineated programme for or view about the foundations of statistical physics, in
which ergodicity was a crucial feature. The demise of the original ergodic hypoth-
esis did not halt the programme; the hypothesis was replaced by an alternative
(weaker) hypothesis, i.e. that the system is ‘metrically transitive’ (nowadays, the
name ‘ergodic’ is often used as synonym). What is more, certain mathematical re-
sults of Birkhoff and von Neumann (the ergodic theorem) showed that for ergodic
systems in this new sense, the desired results could indeed be proven, modulo a
few mathematical provisos that at first did not attract much attention.

Thus there arose the ergodic or “standard” view on the foundations of statisti-
cal mechanics; (see, e.g. [Khinchin, 1949, p. 44]). On that view, the formalism of
statistical mechanics emerges as follows: A concrete system, say a container with
gas, is represented as a mechanical system with a very large number of degrees of
freedom. All physical quantities are functions of the dynamical variables of the
system, or, what amounts to the same thing, are functions on its phase space.
However, experiments or observation of such physical quantities do not record the
instantaneous values of these physical quantities. Instead, every observation must
last a duration which may be extremely short by human standards, but will be
extremely long on the microscopic level, i.e. one in which the microstate has ex-
perienced many changes, e.g. because of the incessant molecular collisions. Hence,
all we can register are time averages of the physical quantities over a very long
periods of time. These averages are thus empirically meaningful. Unfortunately
they are theoretically and analytically obstreperous. Time averages depend on the
trajectory and can only be computed by integration of the equations of motion.
The expectation value of the phase function over a given ensemble, the phase av-
erage has the opposite qualities, i.e. it is easy to compute, but not immediately
empirically relevant. However, ergodicity ensures that the two averages are equal
(almost everywhere). Thus, one can combine the best of both worlds, and identify
the theoretically convenient with the empirically meaningful.
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While statistical mechanics is clearly a more powerful theory than kinetic theory,
it is, like thermodynamics, particularly successful in explaining and modeling gases
and other systems in equilibrium. Non-equilibrium statistical mechanics remains
a field where extra problems appear.

1.5 Prospectus

The structure of this chapter is as follows. In Section 2, I will provide a brief
exposition of orthodox thermodynamics, and in subsection 2.2 an even briefer
review of some less-than-orthodox approaches to thermodynamics. Section 3 looks
at the kinetic theory of gases, focusing in particular on Maxwell’s ground-breaking
papers of 1860 and 1867, and investigates the meaning and status of Maxwell’s
probabilistic arguments.

Section 4 is devoted to (a selection of) Boltzmann’s works, which, as men-
tioned above, may be characterized as in between kinetic theory and statistical
mechanics. The focus will be on his 1868 paper and his most celebrated papers
of 1872 and 1877. Also, the objections from Loschmidt [1877] and Zermelo [1897]
are discussed, together with Boltzmann’s responses. Our discussion emphasizes
the variety of assumptions and methods used by Boltzmann over the years, and
the open-endedness of his results: the ergodic hypothesis, the Stofizahlansatz, the
combinatorial argument of 1877, and a statistical reading of the H-theorem that
he advocated in the 1890s.

Next, Section 5 presents an account of Gibbs’ [1902] version of statistical me-
chanics and emphasizes the essential differences between his and Boltzmann’s ap-
proach. Sections 6 and 7 give an overview of some more recent developments
in statistical mechanics, In particular, we review some results in modern ergodic
theory, as well as approaches that aim to develop a more systematic account of
non-equilibrium theory, such as the BBGKY approach (named after Bogolyubov,
Born, Green, Kirkwood and Yvon) and the approach of Lanford. Section 7 ex-
tends this discussion for a combination of approaches, here united under the name
stochastic dynamics that includes those known as ‘coarse-graining’ and ‘interven-
tionism’ or ‘open systems’. In all cases we shall look at the question whether or
how such approaches succeed in a satisfactory treatment of non-equilibrium.

As this prospectus makes clear, the choice of topics is highly selective. There are
many important topics and developments in the foundations of statistical physics
that I will not touch. I list the most conspicuous of those here together with some
references for readers that wish to learn more about them.

- Maxwell’s demon and Landauer’s principle: [Klein, 1970; Earman and Nor-
ton, 1998; 1999; Leff and Rex, 2003; Bennett, 2003; Norton, 2005; Maroney,
2005; Ladyman et al., 2006].

- Boltzmann’s work in the 1880s (e.g. on monocyclic systems) [Klein, 1972;
1974; Bierhalter, 1992; Gallavotti, 1999; Uffink, 2005].
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- Gibbs’ paradox [van Kampen, 1984; Jaynes, 1992; Huggett, 1999; Saunders,
2006).

- Branch systems [Schrédinger, 1950; Reichenbach, 1956; Kroes, 1985; Wins-
berg, 2004].

- Subjective interpretation of probability in statistical mechanics [Tolman,
1938; Jaynes, 1983; von Plato, 1991; van Lith, 2001a; Balian, 2005].

- Prigogine and the Brussels-Austin school [Obcemea and Brindas, 1983;
Batterman, 1991; Karakostas, 1996; Edens, 2001; Bishop, 2004].

2 ORTHODOX THERMODYNAMICS

2.1 The Clausius-Kelvin-Planck approach

Thermodynamics is a theory that aims to characterize macroscopic physical bodies
in terms of macroscopically observable quantities (typically: temperature, pres-
sure, volume, etc.,) and to describe their changes under certain types of interac-
tions (typically exchange of heat or work with an environment).

The classical version of the theory, which evolved around 1850, adopted as a
methodological starting point that the fundamental laws of the theory should be
independent of any particular hypothesis about the microscopic constitution of
the bodies concerned. Rather, they should be based on empirical principles, i.e.
boldly generalized statements of experimental facts, not on hypothetical and hence
untestable assumptions such as the atomic hypothesis.

The reasons for this methodology were twofold. First, the dominant view on
the goal of science was the positivist-empirical philosophy which greatly valued
directly testable empirical statements above speculative hypotheses. But the sway
of the positivist view was never so complete that physicists avoided speculation
altogether. In fact many of the main founders of thermodynamics eagerly in-
dulged in embracing particular hypotheses of their own about the microphysical
constitution of matter.

The second reason is more pragmatic. The multitude of microphysical hypothe-
ses and conjectures was already so great in the mid-nineteenth century, and the
prospect of deciding between them so dim, that it was a clear advantage to obtain
and present results that did not depend on such assumptions. Thus, when Clau-
sius stated in 1857 that he firmly believed in the molecular-kinetic view on the
nature of gases, he also mentioned that he had not previously revealed this opin-
ion in order not to mix this conviction with his work on thermodynamics proper
[Clausius, 1857, p. 353].3

3The wisdom of this choice becomes clear if we compare his fame to that of Rankine. Rankine
actually predated Clausius in finding the entropy function (which he called ‘thermodynamic
potential’). However, this result was largely ignored due to the fact that it was imbedded in
Rankine’s rather complicated theory of atomic vortices.
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Proceeding somewhat ahistorically,* one might say that the first central concept
in thermodynamics is that of equilibrium. It is taken as a fact of experience
that macroscopic bodies in a finite volume, when left to themselves, i.e. isolated
from an environment eventually settle down in a stationary state in which no
further observable changes occur (the ‘Minus First Law’, cf. page 939). This
stationary state is called a (thermal) equilibrium state. Moreover, for simple,
homogeneous bodies, this state is fully characterized by the values of a small
number of macroscopic variables. In particular, for fluids (i.e. gases or liquids),
two independent variables suffice to determine the equilibrium state.

For fluids, the three variables pressure p, temperature # and volume V, are
thus related by a so-called equation of state, where, following Euler, it has become
customary to express pressure as a function of the two remaining variables:

(1) p=p(6,V)

The form of this function differs for different fluids; for n moles of an ideal gas it
is given by:

2) p(6,V)=nRo/V

where R is the gas constant and 6 is measured on the gas thermometer scale.

The content of thermodynamics developed out of three ingredients. The first is
the science of calorimetry, which was already developed to theoretical perfection
in the eighteenth century, in particular by Joseph Black [Fox, 1971; Truesdell,
1980; Chang, 2003; 2004]. It involved the study of the thermal changes in a body
under the addition of or withdrawal of heat to the system. Of course, the (silent)
presupposition here is that this process of heat exchange proceeds so delicately and
slowly that the system may always be regarded as remaining in equilibrium. In
modern terms, it proceeds ‘quasi-statically’. Thus, the equation of state remains
valid during the process.

The tools of calorimetry are those of differential calculus. For an infinitesimal
increment d@ of heat added to a fluid, one puts

(3) dQ = cydf + AgdV,

where cy is called the heat capacity at constant volume and Ay the latent heat at
constant temperature. Both ¢y and Ay are assumed to be functions of 6§ and V.
The notation d is used to indicate that the heat increment d@ is not necessarily
an exact differential, i.e. @ is not assumed to be a function of state.

The total heat @) added to a fluid during a process can thus be expressed as a
line integral along a path P in the (6,V) plane

(1) QP)= /P iQ = /P (cvdd + AgdV)

4] refer to [Uffink, 2001] for more details.
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A treatment similar to the above can be given for the quasistatic heat exchange
of more general thermal bodies than fluids. Indeed, calorimetry was sufficiently
general to describe phase transitions, say from water to ice, by assuming a discon-
tinuity in Ag.

All this is independent of the question whether heat itself is a substance or
not. Indeed, Black himself wished to remain neutral on this issue. Even so,
much of the terminology of calorimetry somehow invites the supposition that heat
is a substance, usually called caloric, and many eighteenth and early nineteenth
century authors adopted this view [Fox, 1971]. In such a view it makes sense
to speak of the amount of heat contained in a body, and this would entail that
d@ must be an exact differential (or in other words: Q(P) must be the same
for all paths P with the same initial and final points). But this turned out to
be empirically false, when the effects of the performance of work were taken into
account.

Investigations in the 1840s (by Joule and Mayer among others) led to the con-
viction that heat and work are “equivalent”; or somewhat more precisely, that in
every cyclic process C, the amount of heat (C) absorbed by the system is pro-
portional to the amount of work performed by the system. Or, taking W(C) as
positive when performed on the system :

(5) JQEC)+W(C)=0

where J ~ 4.2Nm/Cal is Joule’s constant, which modern convention takes equal
to 1. This is the so-called First Law of thermodynamics.

For quasistatic processes this can again be expressed as a line integral in a state
space ()oq of thermodynamic equilibrium states

(6) ﬁ(m9+dWU=0
where
(7) AW = —pdV.

Assuming the validity of (6) for all cyclic paths in the equilibrium state space
implies the existence of a function U on {l¢q such that

8) dU =dQ + dw.

The third ingredient of thermodynamics evolved from the study of the relations
between heat and work, in particular the efficiency of heat engines. In 1824, Carnot
obtained the following theorem.

CARNOT’S THEOREM: Consider any system that performs a cyclic
process C during which (a) an amount of heat Q4 (C) is absorbed from
a heat reservoir at temperature 6, (b) an amount of heat Q_(C) is
given off to a reservoir at a temperature §_, with §_ < 64, (c) there
is no heat exchange at other stages of the cycles, and (d) some work



Compendium of the Foundations of Classical Statistical Physics 935

W (C) is done on a third body. Let n(C) := gi((cc)) be the efficiency of
the cycle. Then:

(1) All quasistatic cycles have the same efficiency. This effi-
ciency is a universal function of the two temperatures, i.e.,

9) n(C) =n(04,0-).
(2) All other cycles have a efficiency which is less or equal to
that of the quasi-static cycle.

Carnot arrived at this result by assuming that heat was a conserved substance
(and thus: Q4+(C) = Q_(C) for all C), as well as a principle that excluded the
construction of a perpetuum mobile (of the first kind).

In actual fact, Carnot did not use the quasistatic/non-quasistatic dichotomy to
characterize the two parts of his theorem. °

In fact, he used two different characterizations of the cycles that would produce
maximum efficiency. (a): In his proof that Carnot cycles belong to class (1), the
crucial assumption is that they “might have been performed in an inverse direction
and order” [Carnot, 1824, p. 11]. But a little later (p. 13), he proposed a necessary
and sufficient condition for a cycle to produce maximum efficiency, namely (b):
In all stages which involve heat exchange, only bodies of equal temperature are
put in thermal contact, or rather: their temperatures differ by a vanishingly small
amount.

Carnot’s theorem is remarkable since it did not need any assumption about the
nature of the thermal system on which the cycle was carried out. Thus, when
his work first became known to the physics community (Thomson, later known as
Lord Kelvin, 1848) it was recognized as an important clue towards a general theory
dealing with both heat and work exchange, for which Kelvin coined the name
‘thermodynamics’. Indeed, Kelvin already showed in his first paper (1848) on the
subject that Carnot’s universal function n could be used to devise an absolute
scale for temperature, i.e. one that did not depend on properties of a particular
substance.

Unfortunately, around the very same period it became clear that Carnot’s as-
sumption of the conservation of heat violated the First Law. In a series of papers
Clausius and Kelvin re-established Carnot’s theorem on a different footing (i.e.
on the first law (5) or, in this case Q+(C) = Q_(C) + W(C), and a principle that
excluded perpetual motion of the second kind) and transformed his results into
general propositions that characterize general thermodynamical systems and their
changes under the influence of heat and work. For the most part, these investi-
gations were concerned with the first part of Carnot’s theorem only. They led to
what is nowadays called the first part of the Second Law; as follows.

First, Kelvin reformulated his 1848 absolute temperature scale into a new one,
T(0), in which the universal efficiency could be expressed explicitly as:

5Indeed, [Truesdell, 1980] argues that this characterization of his theorem is incorrect. See
[Uffink, 2001] for further discussions.
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T

(10) 77(T+7T7) =1- Tiv
+
where T; = T'(6;). Since the efficiency 7 is also expressed by W/Q4+ = 1—(Q—-/Q+),
this is equivalent to
(11) @= = @+
T T,

Next, changing the sign convention to one in which @ is positive if absorbed and
negative if given off by the system, and generalizing for cycles in which an arbitrary
number of heat reservoirs are involved, one gets:

(12) Z% =0.

In the case where the system is taken through a quasistatic cycle in which the
heat reservoirs have a continuously varying temperature during this cycle, this
generalizes to

(13) f’é";ﬁ? = 0.

Here, T still refers to the temperature of the heat reservoirs with which the
system interacts, not to its own temperature. Yet Carnot’s necessary and sufficient
criterion of reversibility itself requires that during all stages of the process that
involve heat exchange, the temperatures of the heat reservoir and system should
be equal. Hence, in this case one may equate T with the temperature of the system
itself.

The virtue of this result is that the integral (13) can now be entirely expressed in
terms of quantities of the system. By a well-known theorem, applied by Clausius
in 1865, it follows that there exists a function, called entropy S, defined on the
equilibrium states of the system such that

32@

(1) S(s2) = So2) = [

S1

or, as it more usually known:

aQ
(15) T = ds.

This result is frequently expressed as follows: dQ has an integrating divisor (namely
T): division by T turns the inexact (incomplete, non-integrable) differential d@
into an exact (complete, integrable) differential. For one mole of ideal gas (i.e. a
fluid for which ¢y is constant, Ay vanishes and the ideal gas law (2) applies), one
finds, for example:

(16) S(T,V)=cyInT + RInV + const.
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The existence of this entropy function also allows for a convenient reformulation
of the First Law for quasistatic processes (8) as

(17) dU = TdS — pdV,

now too expressed in terms of properties of the system of interest.

However important this first part of the Second Law is by itself, it never led to
much dispute or controversy. By contrast, the extension of the above results to
cover the second part of Carnot’s theorem gave rise to considerably more thought,
and depends also intimately on what is understood by ‘(ir)reversible processes’.

The second part of Carnot’s theorem was at first treated in a much more step-
motherly fashion. Clausius’ [1854] only devoted a single paragraph to it, obtaining
the result that for “irreversible” cycles

(18) ?{% <0.

But this result is much less easy to apply, since the temperature T here refers to
that of the heat reservoir with which the system is in contact, not (necessarily)
that of the system itself.

Clausius put the irreversible processes in a more prominent role in his 1865
paper. If an irreversible cyclic process consists of a general, i.e. possibly non-
quasistatic stage, from s; to sy, and a quasistatic stage, from sy back to s;, one
may write (18) as

St dQ Si dQ
= -* <.
(19)/8 T+/qusT0

i non—gs
Applying (14) to the second term in the left hand side, one obtains

e [T P s -6

Si non—gs

If we assume moreover that the generally non-quasistatic process is adiabatic, i.e.
dQ@ = 0, the result is

(21) S(si) < S(sy).

In other words, in any adiabatic process the entropy of the final state cannot be
less than that of the initial state.

Remarks: 1. The notation ¢ for cyclic integrals, and d for inexact differentials
is modern. Clausius, and Boltzmann after him, would simply write f % for the
left-hand side of (13) and (18).

2. An important point to note is that Clausius’ formulation of the Second
Law, strictly speaking, does not require a general monotonic increase of entropy
for any adiabatically isolated system in the course of time. Indeed, in orthodox



938 Jos Uffink

thermodynamics, entropy is defined only for equilibrium states. Therefore it is
meaningless within this theory to ask how the entropy of a system changes during
a non-quasistatic process. All one can say in general is that when a system starts
out in an equilibrium state, and ends, after an adiabatic process, again in an
equilibrium state, the entropy of the latter state is not less than that of the former.

Still, the Second Law has often been understood as demanding continuous mono-
tonic increase of entropy in the course of time, and often expressed, for adiabati-
cally isolated systems, in a more stringent form

ds
(22) 2 >0

There is, however, no basis for this demand in orthodox thermodynamics.

3. Another common misunderstanding of the Second Law is that it would
only require the non-decrease of entropy for processes in isolated systems. It
should be noted that this is only part of the result Clausius derived: the Second
Law holds more generally for adiabatic processes, i.e., processes during which
the system remains adiabatically insulated. In other words, the system may be
subject to arbitrary interactions with the environment, except those that involve
heat exchange. (For example: stirring a liquid in a thermos flask, as in Joule’s
‘paddle wheel’ experiment.)

4. Another point to be noted is that Clausius’ result that the entropy in an
adiabatically isolated system can never decrease is derived from the assumption
that one can find a quasistatic process that connects the final to the initial state,
in order to complete a cycle. Indeed, if such a process did not exist, the entropy
difference of these two states would not be defined. The existence of such qua-
sistatic processes is not problematic in many intended applications (e.g. if sy and
s; are equilibrium states of a fluid); but it may be far from obvious in more general
settings (for instance if one considers processes far from equilibrium in a complex
system, such as a living cell). This warning that the increase of entropy is thus
conditional on the existence of quasistatic transitions has been pointed out already
by [Kirchhoff, 1894, p. 69].

5. Apart from the well-known First and Second Laws of thermodynamics, later
authors have identified some more basic assumptions or empirical principles in the
theory that are often assumed silently in traditional presentations — or sometimes
explicitly but unnamed — which may claim a similar fundamental status.

The most familiar of these is the so-called Zeroth Law, a term coined by [Fowler
and Guggenheim, 1939]. To introduce this, consider the relation of thermal equi-
librium. This is the relationship holding between the equilibrium states of two
systems, whenever it is the case that the composite system, consisting of these
two systems, would be found in an equilibrium state if the two systems are placed
in direct thermal contact — i.e., an interaction by which they are only allowed to
exchange heat. The zeroth law is now that the assumption that this is a transitive
relationship, i.e. if it holds for the states of two bodies A and B, and also for the
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states of bodies B and C, it likewise holds for bodies A and C.5

2.2 Less orthodox versions of thermodynamics

Even within the framework of orthodox thermodynamics, there are approaches
that differ from the Clausius-Kelvin-Planck approach. The foremost of those is
undoubtedly the approach developed by Gibbs in 18731878 [Gibbs, 1906]. Gibbs’
approach differs much in spirit from his European colleagues. No effort is devoted
to relate the existence or uniqueness of the thermodynamic state variables U T or
S to empirical principles. There existence is simply assumed. Also, Gibbs focused
on the description of equilibrium states, rather than processes.

Previous authors usually regarded the choice of variables in order to represent a
thermodynamic quantity as a matter of convention, like the choice of a coordinate
system on the thermodynamic (equilibrium) state space. For a fluid, one could
equally well choose the variables (p, V'), (V, T, etc., as long as they are independent
and characterize a unique thermodynamic equilibrium state.” Hence one could
equally well express the quantities U, .S, etc. in terms of any such set of variables.
However, Gibbs had the deep insight that some choices are ‘better’ than others,
in the sense that if, e.g., the entropy is presented as a function of energy and
volume, S(U, V), (or energy as a function of entropy and volume, U (S, V')) all other
thermodynamic quantities could be determined from it, while this is generally not
true for other choices. For example, if one knows only that for one mole of gas
S(T,V) is given by (2), one cannot deduce the equations of state p = RT/V and
U = cyT. In contrast, if the function S(U,V) = ¢y InU + RInV + const.’ is

given, one obtains these equations from its partial derivatives: £ = (%)U and
1 _ (08
7 = (gu)v-

For this reason, Gibbs called

1
(23) dU =TdS—pdV or dS=—dU+ %dv

the fundamental equation.® Of course this does not mean that other choices of

variables are inferior. Instead, one can find equivalent fundamental equations for

6 Actually, transitivity alone is not enough. The assumption actually needed is that thermal
equilibrium is an equivalence relation, i.e., it is transitive, reflective and symmetric (cf. [Boyling,
1972, p. 45]). The idea of elevating this to a fundamental ‘Law’, is that this assumption, which
underlies the concept of temperature, can only be motivated on empirical grounds.

Another such assumption, again often stated but rarely named, is that any system contained
in a finite volume, if left to itself, tends to evolve towards an equilibrium state. This has also
sometimes been called a ‘zeroth law’ (cf. [Uhlenbeck and Ford, 1963, p.5; Lebowitz, 1994, p. 135])
in unfortunate competition with Fowler & Guggenheim’s nomenclature. The name Minus First
Law has therefore been proposed by [Brown and Uffink, 2001]. Note that this assumption already
introduces an explicitly time-asymmetric element, which is deeper than — and does not follow
from — the Second Law. However, most nineteenth (and many twentieth) century authors did
not appreciate this distinction, and as we shall see below, this Minus First Law is often subsumed
under the Second Law.

"The latter condition may well fail: A fluid like water can exist at different equilibrium states
with the same p, V, but different T [Thomsen and Hartka, 1962]

8Note how Gibbs’ outlook differs here from the Clausius-Kelvin-Planck view: These authors
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such pairs of variables too, in terms of the Legendre transforms of U. (Namely:
the Helmholtz free energy F' = U — T'S for the pair (T, V); the enthalpy U + pV
for (p,S), and the Gibbs free energy U + pV — T'S for (p,T).) Further, Gibbs
extended these considerations from homogeneous fluids to heterogeneous bodies,
consisting of several chemical components and physical phases.

Another major novelty is that Gibbs proposed a variational principle to dis-
tinguish stable from neutral and unstable equilibria. (Roughly, this principle en-
tails that for stable equilibrium the function S(U, V') should be concave.) This
criterium serves to be of great value in characterizing phase transitions in ther-
modynamic systems, e.g. the Van der Waals gas (Maxwell used it to obtain his
famous “Maxwell construction” or equal area rule [Klein, 1978]). Gibbs work also
proved important in the development of chemical thermodynamics, and physical
chemistry.

Another group of approaches in orthodox thermodynamics is concerned par-
ticularly with creating a more rigorous formal framework for the theory. This is
often called aziomatic thermodynamics. Of course, choosing to pursue a physi-
cal theory in an axiomatic framework does not by itself imply any preference for
a choice in its physical assumptions or philosophical outlook. Yet the Clausius-
Kelvin-Planck approach relies on empirical principles and intuitive concepts that
may seem clear enough in their relation to experience — but are often surprisingly
hard to define. Hence, axiomatic approaches tend to replace these empirical prin-
ciples by statements that are conceptually more precise, but also more abstract,
and thus arguably further removed from experience. The first example of this
work is Carathéodory 1909. Later axiomatic approaches were pursued, among
others, by [Giles, 1964]; [Boyling, 1972]; Jauch [1972; 1975], and by [Lieb and Yn-
gvason, 1999]. All these approaches differ in their choice of primitive concepts, in
the formulation of their axioms, and hence also in the results obtained and goals
achieved. However, in a rough sense, one might say they all focus particularly on
demonstrating under what conditions one might guarantee the mathematical ex-
istence and uniqueness of entropy and other state functions within an appropriate
structure.

Since the 1940s a great deal of work has been done on what is known as “non-
equilibrium thermodynamics” or “thermodynamics of irreversible processes” (see
e.g. [de Groot, 1951; Prigogine, 1955; de Groot and Mazur, 1961, Yourgrau, 1966;
Truesdell, 1969; Miiller, 2003]). This type of work aims to extend orthodox thermo-
dynamics into the direction of a description of systems in non-equilibrium states.
Typically, one postulates that thermodynamic quantities are represented as con-
tinuously variable fields in space and time, with equilibrium conditions holding
approximately within each infinitesimal region within the thermodynamic system.

would look upon (23) as a statement of the first law of thermodynamics, interpreting the dif-
ferentials as infinitesimal increments during a quasistatic process, cf. (17). For Gibbs, on the
other hand, (23) does not represent a process but a differential equation on the thermodynamic
state space whose solution U(S,V) or S(V,U) contains all information about the equilibrium
properties of the system, including the equations of state, the specific and latent heat, the com-
pressibility, etc. — much more than just First Law.
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Again, it may be noted that workers in the field seem to be divided into different
schools (using names such as “extended thermodynamics”,“generalized thermo-
dynamics”, “rational thermodynamics”, etc.) that do not at all agree with each
other (see [Hutter and Wang, 2003]).

This type of work has produced many successful applications. But it seems fair
to say that until now almost all attention has gone to towards practical application.
For example, questions of the type that axiomatic thermodynamics attempts to
answer, (e.g.: Under what conditions can we show the existence and uniqueness
of the non-equilibrium quantities used in the formalism?) are largely unanswered,
and indeed have given rise to some scepticism (cf. [Meixner, 1969; Meixner, 1970]).
Another inherent restriction of this theory is that by relying on the assumption
that non-equilibrium states can, at least in an infinitesimal local region, be well
approximated by an equilibrium state, the approach is incapable of encompassing
systems that are very far from equilibrium, such as in turbulence or living cells.)

The final type of approach that ought to be mentioned is that of statistical
thermodynamics. The basic idea here is that while still refraining from intro-
ducing hypotheses about the microscopic constituents of thermodynamic systems,
one rejects a key assumption of orthodox thermodynamics, namely, that a state
of equilibrium is one in which all quantities attain constant values, in order to
accommodate fluctuation phenomena such as Brownian motion or thermal noise.
Thus the idea becomes to represent at least some of the thermodynamic quantities
as random quantities, that in the course of time attain various values with various
probabilities. Work in this direction has been done by Szilard [1925], Mandelbrot
[1956; 1962; 1964], and Tisza and Quay [1963].

Of course the crucial question is then how to choose the appropriate probabil-
ity distributions. One approach, elaborated in particular by [Tisza, 1966], taking
its inspiration from Einstein [1910], relies on a inversion of Boltzmann’s principle:
whereas Boltzmann argued (within statistical mechanics) that the thermodynamic
notion of entropy could be identified with the logarithm of a probability; Einstein
argued that in thermodynamics, where the concept of entropy is already given,
one may define the relative probability of two equilibrium states by the exponent
of their entropy difference. Other approaches have borrowed more sophisticated
results from mathematical statistics. For example, Mandelbrot used the Pitman-
Koopman-Darmois theorem, which states that sufficient estimators exist only for
the “exponential family” of probability distributions to derive the canonical prob-
ability distribution from the postulate that energy be a sufficient estimator of the
system’s temperature (see also [Uffink and van Lith, 1999)]).

3 KINETIC THEORY FROM BERNOULLI TO MAXWELL

3.1  Probability in the mid-nineteenth century

Probability theory has a history dating back at least two centuries before the
appearance of statistical physics. Usually, one places the birth of this theory in
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the correspondence of Pascal and Fermat around 1650. It was refined into a mature
mathematical discipline in the work of Jacob Bernoulli [1713], Abraham de Moivre
[1738] and Pierre-Simon de Laplace [1813] (cf. [Hacking, 1975]).

In this tradition, often called ‘classical probability’, the notion of probability is
conceived of as a measure of the degree of certainty of our beliefs. Two points are
important to note here. First, in this particular view, probability resides in the
mind. There is nothing like uncertainty or chance in Nature. In fact, all authors
in the classical tradition emphasize their adherence to strict determinism, either
by appeal to divine omniscience (Bernoulli, de Moivre) or by appeal to the laws of
mechanics and the initial conditions (Laplace). A probability hence represents a
judgment about some state of affairs, and not an intrinsic property of this state of
affairs. Hence, the classical authors never conceived that probability has any role
to play in a description of nature or physical processes as such.? Secondly, although
Bernoulli himself used the term “subjective” to emphasize the fact that probability
refers to us, and the knowledge we possess, the classical interpretation does not
go so far as modern adherents to a subjective interpretation of probability who
conceive of probability as the degrees of belief of an arbitrary (although coherent)
person, who may base his beliefs on personal whims, prejudice and private opinion.

This classical conception of probability would, of course, remain a view without
any bite, if it were not accompanied by some rule for assigning values to proba-
bilities in specific cases. The only such available rule is the so-called ‘principle of
insufficient reason’: whenever we have no reason to believe that one case rather
than another is realized, we should assign them equal probabilities (cf. [Uffink,
1995]). A closely related version is the rule that two or more variables should be
independent whenever we have no reason to believe that they influence each other.

While the classical view was the dominant, indeed the only existent, view on
probability for the whole period from 1650 to 1813, it began to erode around
1830. There are several reasons for this, but perhaps the most important is,
paradoxically, the huge success with which the theory was being applied to the
most varied subjects. In the wake of Laplace’s influential Essai philosophique sir
les Probabilités, scientists found applications of probability theory in jurisdiction,
demography, social science, hereditary research, etc. In fact, one may say: almost
everywhere except physics (cf. [Hacking, 1990]). The striking regularity found
in the frequencies of mass phenomena, and observations that (say) the number of
raindrops per second on a tile follows the same pattern as the number of soldiers in
the Prussian army killed each year by a kick from their horse, led to the alternative
view that probability was not so much a representation of subjective (un)certainty,
but rather the expression of a particular regularity in nature (Poisson, Quetelet).
From these days onward we find mention of the idea of laws of probability, i.e.
the idea that theorems of probability theory reflect lawlike behaviour to which

9Daniel Bernoulli might serve as an example. He was well acquainted with the work on prob-
ability of his uncle Jacob and, indeed, himself one of the foremost probabilists of the eighteenth
century. Yet, in his work on kinetic gas theory (to be discussed in section 3.2), he did not find
any occasion to draw a connection between these two fields of his own expertise.
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Nature adheres. In this alternative, frequentist view of probability, there is no
obvious place for the principle of insufficient reason. Instead, the obvious way to
determine the values of probabilities is to collect empirical data on the frequencies
on occurrences of events. However, a well-articulated alternative to the classical
concept of probability did not emerge before the end of the century, and (arguably)
not before 1919 — and then within in a few years there were no less than three
alternatives: a logical interpretation by Keynes, a frequentist interpretation by
von Mises and a subjective interpretation by Ramsey and De Finetti. See [Fine,
1973, [Galavotti, 2004] or [Emch, 2005] for a more detailed exposition.

Summing up roughly, one may say that around 1850 the field of probability was
in a state of flux and confusion. Two competing viewpoints, the classical and the
frequency interpretation, were available, and often mixed together in a confusing
hodgepodge. The result was well-characterized in a famous remark of [Poincaré,
1896] that all mathematicians seem to believe that the laws of probability refer to
statements learned from experience, while all natural scientists seem to think they
are theorems derived by pure mathematics.

The work of Maxwell and Boltzmann in the 1860s emerged just in the middle
of this confusing era. It is only natural that their work should reflect the ambi-
guity that the probability concept had acquired in the first half of the nineteenth
century. Nevertheless, it seems that they mainly thought of probability in terms
of frequencies, as an objective quantity, which characterizes a many-particle sys-
tem, and that could be explicitly defined in terms of its mechanical state. This,
however, is less clear for Maxwell than for Boltzmann.

Gradually, probability was emancipated from this mechanical background. Some
isolated papers of Boltzmann [1871b] and Maxwell [1879] already pursued the idea
that probabilities characterize an ensemble of many many-particle systems rather
than a single system. Gibbs’s 1902 book adopted this as a uniform coherent
viewpoint. However, this ensemble interpretation is still sufficiently vague to be
susceptible to different readings. A subjective view of ensembles, closely related
to the classical interpretation of Bernoulli and Laplace, has emerged in the 1950s
in the work of Jaynes. This paper, will omit a further discussion of this approach.
I refer to [Jaynes, 1983; Uffink, 1995; 1996; Balian, 2005] for more details.

3.2 From Bernoulli to Mazwell (1860)

The kinetic theory of gases (sometimes called: dynamical theory of gases) is com-
monly traced back to a passage in Daniel Bernoulli’s Hydrodynamica of 1738.
Previous authors were, of course, quite familiar with the view that gases are com-
posed of a large but finite number of microscopic particles. Yet they usually
explained the phenomenon of gas pressure by a static model, assuming repulsive
forces between these particles.

Bernoulli’s discussion is the first to explain pressure as being due to their motion.
He considered a gas as consisting of a great number of particles, moving hither and
thither through empty space, and exerting pressure by their incessant collisions
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on the walls. With this model, Bernoulli was able to obtain the ideal gas law
pV = const. at constant temperature, predicted corrections to this law at high
densities, and argued that the temperature could be taken as proportional to the
square of the velocity of the particles. Despite this initial success, no further results
were obtained in kinetic gas theory during the next century. By contrast, the view
that modeled a gas as a continuum proved much more fertile, since it allowed the
use of powerful tools of calculus. Indeed, the few works in the kinetic theory in
the early nineteenth century e.g. by Waterston and Herapath were almost entirely
ignored by their contemporaries (cf. [Brush, 1976]).

Nevertheless, the kinetic view was revived in the 1850s, in works by Kronig
and Clausius. The main stimulus for this revival was the Joule-Mayer principle of
the equivalence of heat and work, which led to the First Law of thermodynamics,
and made it seem more plausible that heat itself was just a form of motion of gas
particles. (A point well-captured in the title of Clausius’ 1857 paper: “The kind
of motion we call heat”, subsequently adopted by Stephen Brush 1976 for his work
on the history of this period.)

Clausius also recognized the importance of mutual collisions between the parti-
cles of the gas, in order to explain the relative slowness of diffusion when compared
with the enormous speed of the particles (estimated at values of 400 m/s or more
at ordinary room temperature). Indeed, he argued that in spite of their great
speed, the mean free path, i.e. the distance a particle typically travels between
two collision, could be quite small (of the order of micrometers) so that the mean
displacement per second of particles is accordingly much smaller.

However, Clausius did not pay much attention to the consideration that such
collisions would also change the magnitude of the velocities. Indeed, although his
work sometimes mentions phrases like “mean speed” or “laws of probability” he
does not specify a precise averaging procedure or probability assumption, and his
calculations often proceed by crude simplifications (e.g. assuming that all but one
of the particles are at rest).

Mazwell (1860)

It was Maxwell’s paper of 1860 that really marks the re-birth of kinetic theory.
Maxwell realized that if a gas consists of a great number N of moving particles,
their velocities will suffer incessant change due to mutual collisions, and that a
gas in a stationary state should therefore consist of a mixture of slower and faster
particles. More importantly, for Maxwell this was not just an annoying complica-
tion to be replaced by simplifying assumptions, but the very feature that deserved
further study.
He thus posed the question

Prop. IV. To find the average number of particles whose velocities lie
between given limits, after a great number of collisions among a great
number of equal particles. [Maxwell, 1860, p. 380].
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Denoting this desired average number as N f(#)d3%, he found a solution to this
problem by imposing two assumptions: the distribution function f(%) should (i)
factorize into functions of the orthogonal components of velocity, i.e. there exists
some function g such that:

(24) f(¥) = g(ve)g(vy)g(v2),

and (ii) be spherically symmetric, i.e.,

(25) f(¥) depends only on v = ||7]|.

He observed that these functional equations can only be satisfied if
(26) f(7) =A™/,

where the constant A is determined by normalization: A = (Bw)~%/2; and constant
B is determined by relating the mean squared velocity to the absolute temperature

— i.e., adopting modern notation: 3kT = %2 (v?) — to obtain:

m \3/2 2
27 ) — ( ) —muv /QkT'
1) 1) = (50) ¢

Maxwell’s result led to some novel and unexpected predictions, the most striking
being that the viscosity of a gas should be independent of its density, which was,
nevertheless, subsequently experimentally verified. Another famous prediction of
Maxwell was that in this model the ratio of the specific heats v = ‘i—‘; must take

the value of %. This did not agree with the experimentally obtained value of
v = 1.408.10

Maxwell’s paper is the first to characterize the state of a gas by a distribution
function f. It is also the first to call f(¥)d>¥ a probability. Clearly, Maxwell
adopted a frequency interpretation of probability. The probability for the velocity
to lie within a certain range d>¥ is nothing but the relative number of particles in
the gas with a velocity in that range. It refers to an objective, mechanical property
of the gas system, and not to our opinions.

Now an obvious problem with this view is that if the gas contains a finite number
of particles, the distribution of velocities must necessarily be discrete, i.e., in Dirac
delta notation:

1 N
(28) f(7) = 5 D_0(F %),

10More generally, cy /cp = (f+2)/f where f is the number of degrees of freedom of a molecule.
This so-called cy /cp anomaly haunted gas theory for another half century. The experimental
value around 1.4 is partly due to the circumstance that most ordinary gases have diatomic
molecules for which, classically, f = 6. Quantum theory is needed to explain that one of these
degrees is “frozen” at room temperature. Experimental agreement with Maxwell’s prediction
was first obtained by Kundt and Warburg in 1875 for mercury vapour. (For more details, see
[Brush, 1976, p. 353-356]).
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and if the energy of the gas is finite and fixed, the distribution should have a
bounded support. The function (26) has neither of these properties.

It is not clear how Maxwell would have responded to such problems. It seems
plausible that he would have seen the function (26) as representing only a good
enough approximation,!! in some sense, to the actual state of the gas but not to be
taken too literally, just like actual frequencies in a chance experiment never match
completely with their expected values. This is suggested by Maxwell’s own illus-
tration of the continuous distribution function as a discrete cloud of points, each
of which representing the endpoint of a velocity vector (cf. Fig. 1 from [Maxwell,
1875]). This suggests he thought of an actual distribution more along the lines
of (28) than (26). But this leaves the question open in what sense the Maxwell
distribution approximates the actual distribution of velocities.

One option here would be to put more emphasis on the phrase “average” in
the above quote from Maxwell. That is, maybe f is not intended to represent
an actual distribution of velocities but an averaged one. But then, what kind of
average? Since an average over the particles has already been performed, the only
reasonable options could be an average over time or averaging over an ensemble
of similar gas systems. But I can find no evidence that Maxwell conceived of
such procedures in this paper. Perhaps one might argue that the distribution (26)
is intended as an expectation, i.e. that it represents a reasonable mind’s guess
about the number of particles with a certain velocity. But in that case, Maxwell’s
interpretation of probability ultimately becomes classical.

However this may be, it is remarkable that the kinetic theory was thus able
to make progress beyond Bernoulli’s work by importing mathematical methods
(functional equations) involving the representation of a state by continuous func-
tions; though at the price of making this state concept more abstractly connected
to physical reality.

A more pressing problem is that the assumptions (24, 25) Maxwell used to
derive the form of his distribution do not sit well with its intended frequency
interpretation. They seem to reflect a priori desiderata of symmetry, and are
perhaps motivated by an appeal to some form of the principle of insufficient reason,
in the sense that if there is, in our knowledge, no reason to expect a dependence
between the various orthogonal components of velocity, we are entitled to assume
they are independent.

This reading of Maxwell’s motivations is suggested by the fact that in 1867 he
described his 1860 assumption (24) as “the assumption that the probability of
a molecule having a velocity resolved parallel to  lying between given limits is
not in any way affected by the knowledge that the molecule has a given velocity
resolved parallel to 4" [Maxwell, 1867, emphasis added].

It has been pointed out (see e.g. [Brush, 1976, Vol. II, pp. 183-188]) that Max-
well’s 1860 argument seems to have been heavily inspired by [Herschel, 1850] review

11 This view was also expressed by [Boltzmann, 1896b]. He wrote, for example: “For a finite
number of molecules the Maxwell distribution can never be realized exactly, but only as a good
approximation” [Boltzmann, 1909, III, p. 569].
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Diagram of Velocities.

Figure 1. An illustration of the Maxwell distribution from [Maxwell, 1875]. Every
dot represents the end-point of a velocity vector.
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of Quetelet’s work on probability. This review essay contained a strikingly similar
argument, applied to a marksman shooting at a target, in order to determine the
probability that a bullet will land at some distance from the target. What is more,
Herschel’s essay is firmly committed to the classical interpretation of probability
and gives the principle of insufficient reason a central role. Indeed, he explains the
(analogue of) condition (25) as “nothing more than the expression of our state of
complete ignorance of the causes of the errors [i.e. the deviation from the target]
and their mode of action” [Herschel, 1850, p. 398, emphasis in the original]. If
Maxwell indeed borrowed so much from Herschel, it seems likely that he would
also have approved of, or at least be inspired by, this motivation of condition
(25).12

Whatever may have been Maxwell’s original motivation for these assumptions,
their dubious nature is also clear from the fact that, in spite of his formulation of
the problem (i.e. to determine the form of the function f “after a great number of
collisions”), they do not refer to collisions at all. Indeed, it would seem that any
motivation for their validity would just as well apply to a gas model consisting
of non-colliding (e.g. perfectly transparent) particles as well. As Maxwell himself
later remarked about certain derivations in the works of others, one might say that
the condition “after a great number of collisions” is intended “rather for the sake
of enabling the reader to form a mental image of the material system than as a
condition for the demonstration” ([Garber et al., 1995, p. 359]. [Maxwell, 1879]).

3.3 Mazwell (1867)

Whatever the merits and problems of his first paper, Maxwell’s next paper on gas
theory of 1867 rejected his previous attempt to derive the distribution function
from the assumptions (24, 25) as “precarious” and proposed a completely different
argument. This time, he considered a model of point particles with equal masses
interacting by means of a repulsive central force, proportional to the fifth power of
their mutual distance. What is more important, this time the collisions are used
in the argument.

Maxwell considers an elastic collision between a pair of particles such that the
initial velocities are @,7, and final velocities #1’,%,')."®> These quantities are
related by the conservation laws of momentum and energy, yielding four equations,
and two parameters depending on the geometrical factors of the collision process.

It is convenient to consider a coordinate frame such that particle 1 is at rest in
the origin, and the relative velocity vs —v7 is directed along the negative z axis, and

121t is interesting to note that Herschel’s review prompted an early and biting criticism of the
principle of insufficient reason as applied to frequencies of events by Leslie Ellis, containing the
famous observation: “Mere ignorance is no ground for any inference whatsoever. Ez nihilo nihil.
It cannot be that because we are ignorant of the matter, we know something about it” [Ellis,
1850]. It is not certain, however, whether Maxwell knew of this critique.

131In view of the infinite range of the interaction, ‘initial’ and ‘final’ are to be understood in an
asymptotic sense, i.e. in the limits ¢ — £o00. An alternative followed in the text is to replace
Maxwell’s (1867) model with the hard spheres he had considered in 1860.
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to use cylindrical coordinates. If (b, ¢, z) denote the coordinates of the trajectory of
the centre of particle 2, we then have b = const., ¢ = const, z(t) = zo — ||v2 — V1|t
before the collision. In the case where the particles are elastic hard spheres, a
collision will take place only if the impact parameter b is less than the diameter d
of the spheres. The velocities after the collision are then determined by |07 —¥2]|, b
and ¢. Transformed back to the laboratory frame, the final velocities ¥, ¥’ can
then be expressed as functions of v, s, b and ¢.

Maxwell now assumes what the Ehrenfests later called the Stofzahlansatz: the
number of collisions during a time d¢, say N (¥, 02), in which the initial velocities
U1, Uy within an element d®@,d®@, are changed into final velocities #,’, 7>’ in an ele-
ment d3%,'d?v," within a spatial volume element dV = bdbdpdz = |7 — s || bdbdgdt
is proportional to the product of the number of particles with velocity #; within
d3%y (i.e. Nf())dty), and those with velocity v within d®@, (i.e. Nf(vh)d>y),
and that spatial volume element. Thus:

(29) N (01, 72) = N2f(0)) f(0a) ||V — 01|30, d>Tobdbdpdt.

Due to the time reversal invariance of the collision laws, a similar consideration
. . o . . . o ey oy — !/ =/

applies to the so-called inverse collisions, in which initial velocities v, U5’ and final

velocities ¢, and ¥ are interchanged. Their number is proportional to

(30) N(&',%") = N2 f(0") f(0)|| 82" — & ||d*5:' vy bdbdpdt

Maxwell argues that the distribution of velocities will remain stationary, i.e.
unaltered in the course of time, if the number of collisions of these two kinds are
equal, i.e. if

(31) N(@', %)) = N(1, ).

Moreover, the collision laws entail that ||y’ — @[ = ||tk — 1 || and d3v, d>vh" =
d3¥1d3v,. Hence, the condition (31) may be simplified to

(32) f(01)f (o) = f(O)f(), for all ¥y, 7.

This is the case for the Maxwellian distribution (26). Therefore, Maxwell says,
the distribution (26) is a “possible” form.

He goes on to claim that it is also the only possible form for a stationary
distribution.This claim, i.e. that stationarity of the distribution f can only arise
under (32) is nowadays also called the principle of detailed balancing (cf. [Tolman,
1938, p. 165]).1* Although his argument is rather brief, the idea seems to be that
for a distribution violating (32), there must (because of the Stofizahlansatz) be two
velocity pairs'® @, U and iy, iz, satisfying @) + ¥ = i1 + 12 and v +v3 = u? +u3,
such that the collisions would predominantly transform (¥, ¥) — (@1, ) rather

4The reader might be warned, however, that the name ‘detailed balancing’ is also used to
cover somewhat different ideas than expressed here [Tolman, 1938, p. 521].

15 Actually, Maxwell, discusses only velocities of a single molecule. For clarity, I have transposed
his argument to a discussion of pairs.
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than (41, u3) — (¥, 02). But then, since the distribution is stationary, there must
be a third pair of velocities, (wy,ws), satisfying similar relations, for which the
collisions predominantly produce transitions (1, u3) — (W, ws), etc. Now, the
distribution can only remain stationary if any such sequence closes into a cycle.
Hence there would be cycles of velocity pairs (v, vs) — (i1, U2) — ... —
(th,U2) which the colliding particles go through, eventually returning to their
original velocities.

Maxwell then argues: “Now it is impossible to assign a reason why the successive
velocities of a molecule should be arranged in this cycle rather than in the reverse
order” [Maxwell, 1867, p.45]. Therefore, he argues, these two cycles should be
equally probable, and, hence, a collision cycle of the type (¥, ¥) — (7', 72) is
already equally probable as a collision cycle of the type (7', 72") — (¥, ¥s), i.e.
condition (32) holds.

Comments. First, a clear advantage of Maxwell’s 1867 derivation of the distri-
bution function (26) is that the collisions play a crucial role. The argument would
not apply if there were no collisions between molecules. A second point to note is
that the distribution (26) is singled out because of its stationarity, instead of its
spherical symmetry and factorization properties. This is also a major improvement
upon his previous paper, since stationarity is essential to thermal equilibrium.

A crucial element in the argument is still an assumption about independence.
But now, in the Stofizahlansatz, the initial velocities of colliding particles are as-
sumed independent, instead of the orthogonal velocity components of a single par-
ticle. Maxwell does not expand on why we should assume this ansatz; he clearly
regarded it as obvious. Yet it seems plausible to argue that he must have had in
the back of his mind some version of the principle of insufficient reason, i.e., that
we are entitled to treat the initial velocities of two colliding particles as indepen-
dent because we have no reason to assume otherwise. Although still an argument
from insufficient reason, this is at least a much more plausible application than in
the 1860 paper.

A main defect of the paper is his sketchy claim that the Maxwell distribution
(26) would be the unique stationary distribution. This claim may be broken in
two parts: (a) the cycle argument just discussed, leading Maxwell to argue for
detailed balancing; and (b) the claim that the Maxwell distribution is uniquely
compatible with this condition.

A demonstration for part (b) was not provided by Maxwell at all; but this gap
was soon bridged by Boltzmann (1868) — and Maxwell gave Boltzmann due credit
for this proof. But part (a) is more interesting. We have seen that Maxwell here
explicitly relied on reasoning from insufficient reason. He was criticized on this
point by [Boltzmann, 1872] and also by [Guthrie, 1874].

Boltzmann argued that Maxwell was guilty of begging the question. If we
suppose that the two cycles did not occur equally often, then this supposition by
itself would provide a reason for assigning unequal probabilities to the two types
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of collisions.'® This argument by Boltzmann indicates, at least in my opinion that
he was much less prepared than Maxwell to argue in terms of insufficient reason.
Indeed, as we shall see in Section 4, his view on probability seems much more
thoroughly frequentist than Maxwell.

In fact Boltzmann later repeatedly mentioned the counterexample of a gas in
which all particles are lined up so that they only collide centrally, and move per-
pendicularly between parallel walls [Boltzmann, 1872 (Boltzmann, 1909, I p. 358);
Boltzmann, 1878 (Boltzmann, 1909, IT p. 285)]. In this case, the velocity distri-
bution

(33) % (6(v — o) + 5(v + v0))
is stationary too.

Some final remarks on Maxwell’s work: As we have seen, it is not easy to
pinpoint Maxwell’s interpretation of probability. In his (1860), he identifies the
probability of a particular molecular state with the relative number of particles
that possess this state.!” Yet, we have also seen that he relates probability to a
state of knowledge. Thus, his position may be characterized as somewhere between
the classical and the frequentist view.

Note that Maxwell never made any attempt to reproduce the second law. Rather
he seems to have been content with the statistical description of thermal equilib-
rium in gases.'® All his writings after 1867 indicate that he was convinced that
a derivation of the Second Law from mechanical principles was impossible. In-
deed, his remarks on the Second Law generally point to the view that the Second
Law “has only statistical certainty” (letter to Tait, undated; [Garber et al., 1995,
p. 180]), and that statistical considerations were foreign to the principles of me-
chanics. Indeed, Maxwell was quite amused to see Boltzmann and Clausius engage
in a dispute about who had been the first to reduce the Second Law of thermody-
namics to mechanics:

It is rare sport to see those learned Germans contending the priority of
the discovery that the 2nd law of 8Acs is the ‘Hamiltonsche Prinzip’,

16 More precisely, Boltzmann argued as follows: “In order to prove the impossibility [of the hy-
pothesis| that the velocity of [a pair of] molecule[s] changes more often from [(¥1, ¥2) to (T1/, T2")]
than the converse, Maxwell says that there should then exist a closed series of velocities that
would be traversed rather in one order than the other. This, however, could not be, he claims,
because one could not indicate a reason, why molecules would rather traverse the cycle in one or-
der than the other. But it appears to me that this last claim already presupposes as proven what
is to be proved. Indeed, if we assume as already proven that the velocities change as often from
(¥1,T2) to (T1,72") as conversely, then of course there is no reason why the cycle should rather
be run through in one order than the other. But if we assume that the statement to be proven
is not yet proved, then the very fact that the velocities of the molecules prefer to change rather
from (¥1,72) to (@1, d2) than conversely, rather from (@1, u2) to (W1, w2) than conversely, etc.
would provide the reason why the cycle is traversed rather one way than the other” [Boltzmann,
1909, I, p. 319].

17Curiously, this terminology is completely absent in his 1867 paper.

18 Apart from a rather lame argument in [Maxwell, 1860] analyzed by [Brush, 1976, p.344].
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[...] The Hamiltonsche Prinzip, the while, soars along in a region un-
vexed by statistical considerations, while the German Icari flap their
waxen wings in nephelococcygia!® amid those cloudy forms which the
ignorance and finitude of human science have invested with the incom-
munable attributes of the invisible Queen of Heaven (letter to Tait,
1873; [Garber et al., 1995, p. 225])

Clearly, Maxwell saw a derivation of the Second Law from pure mechanics, “un-

vexed by statistical considerations”, as an illusion. This point appears even more
vividly in his thought experiment of the “Maxwell demon”, by which he showed
how the laws of mechanics could be exploited to produce a violation of the Sec-
ond Law. For an entry in the extensive literature on Maxwell’s demon, I refer
to [Earman and Norton, 1998; 1999; Leff and Rex, 2003; Bennett, 2003; Norton,
2005].

But neither did Maxwell make any effort to reproduce the Second Law on a
unified statistical/mechanical basis. Indeed, the scanty comments he made on
the topic (e.g. in [Maxwell, 1873; Maxwell, 1878b]) rather seem to point in an-
other direction. He distinguishes between what he calls the ‘statistical method’
and the ‘historical’ or ‘dynamical’ (or sometimes ‘kinetic’) method. These are two
modes of description for the same system. But rather than unifying them, Max-
well suggests they are competing, or even incompatible — one is tempted to say
“complementary”— methods, and that it depends on our own knowledge, abilities,
and interests which of the two is appropriate. For example:

In dealing with masses of matter, while we do not perceive the individ-
ual molecules, we are compelled to adopt what I have described as the
statistical method, and to abandon the strict dynamical method, in
which we follow every motion by the calculus [Maxwell, 1872, p. 309,
emphasis added].

In this respect, his position stands in sharp contrast to that of Boltzmann, who
made the project of finding this unified basis his lifework.

4 BOLTZMANNZ0

4.1  Early work: Stozahlansatz and ergodic hypothesis

Boltzmann had already been considering the problem of finding a mechanical
derivation of the Second Law in a paper of 1866. At that time, he did not know
of Maxwell’s work. But in 1868, he had read both Maxwell’s papers of 1860 and
1867. Like Maxwell, he focuses on the study of gases in thermal equilibrium, in-
stead of the Second Law. He also adopts Maxwell’s idea of characterizing thermal
equilibrium by a probability distribution, and the Stoffzahlansatz as the central

19¢Cloudcuckooland”, an illusory place in Aristophanes’ The Birds.
20Parts of this section were also published in [Uffink, 2004].
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dynamical assumption. But along the way in this extensive paper, Boltzmann
comes to introduce an entirely different alternative approach, relying on what we
now call the ergodic hypothesis.

As we saw in section 3.3, Maxwell had derived his equilibrium distribution for
two special gas models (i.e. a hard sphere gas in 1860 and a model of point particles
with a central r° repulsive force acting between them in 1867). He had noticed
that the distribution, once attained, will remain stationary in time (when the gas
remains isolated), and also argued (but not very convincingly) that it was the only
such stationary distribution.

In the first section of his 1868a, Boltzmann aims to reproduce and improve
these results for a system of an infinite number of hard discs moving in a plane.
He regards it as obvious that the equilibrium distribution should be independent
of the position of the discs, and that every direction of their velocities is equally
probable. It is therefore sufficient to consider the probability distribution over
the various values of the velocity v = ||7||. However, Boltzmann started out with
a somewhat different interpretation of probability in mind than Maxwell. He
introduced the probability distribution as follows:

Let ¢(v)dv be the sum of all the instants of time during which the
velocity of a disc in the course of a very long time lies between v and
v+ dv, and let N be the number of discs which on average are located
in a unit surface area, then

(34) No(v)dv

is the number of discs per unit surface whose velocities lie between v
and v + dv [Boltzmann, 1909, I, p. 50].2

Thus, ¢(v)dv is introduced as the relative time during which a (given) disc has
a particular velocity. But, in the same breath, this is identified with the relative
number of discs with this velocity.

This remarkable quote shows how he identified two different meanings for the
same function. We shall see that this equivocation returned in different guises
again and again in Boltzmann’s writings.?? Indeed, it is, I believe, the very heart of
the ergodic problem, put forward so prominently by the Ehrenfests (cf. paragraph
6.1). Either way, of course, whether we average over time or particles, probabilities
are defined here in strictly mechanical terms, and are therefore objective properties
of the gas.

21Here and below, “Abh.” refers to the three volumes of Boltzmann’s collected scientific papers
[Boltzmann, 1909].

22This is not to say that he always conflated these two interpretations of probability. Some
papers employ a clear and consistent choice for one interpretation only. But then that choice dif-
fers between papers, or even in different sections of a single paper. In fact, in [Boltzmann, 1871c]
he even multiplied probabilities with different interpretations into one equation to obtain a joint
probability. But then in 1872 he conflates them again. Even in his last paper [Boltzmann and
Nabl, 1904], Boltzmann identifies two meanings of probability with a simple-minded argument.
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Next he goes into a detailed mechanical description of a two-disc collision pro-
cess. If the variables which specify the initial velocities of two discs before the
collision lie within a given infinitesimal range, Boltzmann determines how the
collision will transform the initial values of these variables (7;, ;) into the final
values (17';,173) in another range. At this point a two-dimensional analogy of the
Stof$zahlansatz is introduced to obtain the number of collisions per unit of time.
As in Maxwell’s treatment, this amounts to assuming that the number of such
collisions is proportional to the product ¢(vy)@(v2). In fact:

(35) N(Q_}'l, ’172) X N2MMH’UQ — 171||d’l)1d1]2dt
U1 V2
where the proportionality constant depends on the geometry of the collision.

He observes that if, for all velocities v;, v; and all pairs of discs 1, j, the collisions
that transform the values of the velocities (v;,v;) from a first range dv;dv; into
values v, v} within the range dv;dv} occur equally often as conversely (i.e., equally
often as those collisions that transform initial velocities v;, v} within dv;dv} into fi-
nal values v;, v; within dv;dv;), the distribution ¢ will remain stationary. He states
“This distribution is therefore the desired one” [Boltzmann, 1909, I p. 55]. Actu-
ally, this is the first occasion in the paper at which the desideratum of stationarity
of the probability distribution is mentioned.

Using the two-dimensional version of the Stofizahlansatz this desideratum leads
to
) $(vi) p(v) _ ¢(v)) $(v))

v v v v

(36

j
He shows [Boltzmann, 1909, p. 57] that the only function obeying condition (36) for

all choices of v1, v2,v'1v’2, compatible with the energy equation v? +v3 = vi2 + v,
is of the form

(37) o(v) = 2hve*h”2,

for some constant h. Putting f(v) := vé(v) we thus obtain the two-dimensional
version of the Maxwell distribution (26). Boltzmann does not address the issue of
whether the condition (36) is necessary for the stationarity of ¢.

In the next subsections of 1868a, Boltzmann repeats the derivation, each time
in slightly different settings. First, he goes over to the three-dimensional version
of the problem, assuming a system of hard spheres, and supposes that one special
sphere is accelerated by an external potential V(Z). He shows that if the velocities
of all other spheres are distributed according to the Maxwellian distribution (26),
the probability distribution of finding the special sphere at place & and velocity v’ is
f(7,7) x e~ h(zmv*+V () [Boltzmann, 1909, I, p.63]. In a subsequent subsection,
he replaces the spheres by material points with a short-range interaction potential
and reaches a similar result.

At this point, (the end of Section I of the [1868a] paper), the argument sud-
denly switches course. Instead of continuing in this fashion, Boltzmann announces
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[Boltzmann, 1909, p. 80] that all the cases treated, and others yet untreated, follow
from a much more general theorem. This theorem, which, as we shall see relies on
the ergodic hypothesis, is the subject of the second and third Section of the paper.
I will limit the discussion to the third section and rely partly on Maxwell’s (1879)
exposition, which is somewhat simpler and clearer than Boltzmann’s own.

The ergodic hypothesis

Consider a general mechanical system of N material points, each with mass m,
subject to an arbitrary time-independent potential.?®> In modern notation, let
x = (q1,p1;---;4n,Pn) denote the canonical position coordinates and momenta
of the system. Its Hamiltonian is then2*

N
1 S S
(38) H@) = 55+ UG, @)

The state  may be represented as a phase point in the mechanical phase space
I'. Under the Hamiltonian equations of motion, this phase point evolves in time,
and thus describes a trajectory z; (¢t € R). This trajectory is constrained to lie
on a given energy hypersurface ' = {x € I' : H(xz) = E}. Boltzmann asks for
the probability (i.e. the fraction of time during a very long period) that the phase
point lies in a region dx = d>q; - - - d>pn, which we may write as:

(39) p(z)dx = x(x)0(H(x) — E)dx.

for some function y. Boltzmann seems to assume implicitly that this distribution is
stationary. This property would of course be guaranteed if the “very long period”
were understood as an infinite time. He argues, by Liouville’s theorem, that x is
a constant for all points on the energy hypersurface that are “possible”, i.e. that
are actually traversed by the trajectory. For all other points x vanishes. If we
neglect those latter points, the function y must be constant over the entire energy
hypersurface, and the probability density p takes the form

(40) puc®) = 5

the micro-canonical distribution, where

6(H(x) — E),

(41) w(E) = /(5H(33) = Edx

is the so-called structure function.
In particular, one can now form the marginal probability density for the posi-
tions ¢1,...,¢n by integrating over the momenta:

23 Although Boltzmann does not mention it at this stage, his previous section added the stip-
ulation that the particles are enclosed in a finite space, surrounded by perfectly elastic walls.
24 Actually Boltzmann allows the N masses to be different but restricts the potential as being

2
due to external and mutual two-particle forces only, i.e. H(z) =3, 2’;‘1 +3 i<, Ui (@ — @11 +
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(42) pmc((jl? sy (,TN) = /pmc(x> dgﬁl e dgﬁN -

2m

w(E) /5 (X257 —2m(E - U(q))) dp1 - - - dp.

The integral over the momenta can be evaluated explicitly (it is 2R times the
surface area of a hypersphere with radius R = /2m(F — U) in n = 3N dimen-
sions), to obtain

el
(43) pme(qs- .- qn) = w(E)L(%)

(2m(E —U(q)"~2/2,

where I denotes Euler’s gamma function: T'(z) := fooo t*=le=tdt.

Similarly, the marginal probability density for finding the first particle with a
given momentum component pi, as well as finding the positions of all particles at
(Tla ) (TN is

Pmc(Dizsq1 - - - GN) /Pmc(ﬂ?) dp1ydpr1,d°pa - - - d* Py

) (n—1)/2 e
(44) = T (om(E-U(g) - p2) "V

w(E)L(251)

These two results can be conveniently presented in the form of the conditional
probability that the z-component of momentum of the first particle has a value
between p and p+ dp, given that the positions have the values i .. ., ¢, by taking
the ratio of (44) and (43):

2
P~ \(n-2)/2
1 T(2) (E—U—2—)
45) pme(p|qi,-..,qn)dp = 2 m dp.

This, in essence, is the general theorem Boltzmann had announced. Further, he
shows that in the limit where n — oo, and the kinetic energy per degree of
freedom k := (E — U)/n remains constant, the expression (45) approaches

1 p?

(46) o exp ( 4mn> dp.
This probability thus takes the same form as the Maxwell distribution (26), if one
equates k = %kT. Presumably, it is this result that Boltzmann had in mind when
he claimed that all the special cases he has discussed in section 1 of his paper,
would follow from the general theorem. One ought to note however, that since
U, and therefore k, depends on the coordinates, the condition x = constant is
different for different values of (1, ..., qn).

Some comments on this result.

1. The difference between this approach and that relying on the StofSzahlansatz
is rather striking. Instead of concentrating on a gas model in which particles
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are assumed to move freely except for their occasional collisions, Boltzmann here
assumes a much more general Hamiltonian model with an arbitrary interaction
potential U(q, ... ¢n). Moreover, the probability density p is defined over phase
space, instead of the space of molecular velocities. This is the first occasion where
probability considerations are applied to the state of the mechanical system as
whole, instead of its individual particles. If the transition between kinetic gas
theory and statistical mechanics may be identified with this caesura, (as argued
by the Ehrenfests 1912 and by Klein 1973) it would seem that the transition has
already been made right here.

But of course, for Boltzmann the transition did not involve a major conceptual
move, thanks to his conception of probability as a relative time. Thus, the prob-
ability of a particular state of the total system is still identified with the fraction
of time in which that state is occupied by the system. In other words, he had no
need for ensembles or non-mechanical probabilistic assumptions.

However, one should note that the equivocation between relative time and rel-
ative number of particles, which was comparatively harmless in the first section of
the 1868 paper, is now no longer possible in the interpretation of p. Consequently,
the conditional probability p(p|qi, ... @n) gives us the relative time that the total
system is in a state for which particle 1 has a momentum with x-component be-
tween p and p + dp, for given values of all the positions. There is no immediate
route to conclude that this has anything to do with the relative number of particles
with the momentum p. In fact, there is no guarantee that the probability (45) for
particle 1 will be the same for other particles too, unless we use the assumption
that U is invariant under permutation of the particles. Thus, in spite of their
identical form, the distribution (46) has a very different meaning than (26).

2. The transition from (45) to (46), by letting the number of particles become
infinite, also seems to be the first instance of a thermodynamical limit. Since the
Maxwell distribution is thus recovered only in this limit, Boltzmann’s procedure
resolves some questions raised above concerning Maxwell’s distribution. For a
finite number of particles, the distribution (45) always has a finite support, i.e.
pme = 0 for those values of p? > 2m(E — U). Thus, we do not run into trouble
with the finite amount of energy in the gas.

3. Most importantly, the results (45,46) open up a perspective of great gener-
ality. It suggests that the probability of the molecular velocities for an isolated
system in a stationary state will always assume the Maxwellian form if the num-
ber of particles tends to infinity. Notably, this proof seems to completely dispense
with any particular assumption about collisions, or other details of the mechanical
model involved, apart from the assumption that it is Hamiltonian. Indeed it need
not even represent a gas.

4. The main weakness of the present result is its assumption that the trajectory
actually visits all points on the energy hypersurface. This is nowadays called the
ergodic hypothesis.?

25The literature contains some surprising confusion about how the hypothesis got its name. The
Ehrenfests borrowed the name from Boltzmann’s concept of an “Ergode”, which he introduced
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Boltzmann returned to this issue on the final page of the paper [Boltzmann,
1909, p. 96]. He notes there that there might be exceptions to his theorem, for
example, when the trajectory is periodic. However, Boltzmann observed, such
cases would be sensitive to the slightest disturbance from outside. They would
be destroyed, e.g. by the interaction of a single free atom that happened to be
passing by. He argued that these exceptions would thus only provide cases of
unstable equilibrium.

Still, Boltzmann must have felt unsatisfied with his own argument. According to
an editorial footnote in his collected works [Boltzmann, 1909, I p.96], Boltzmann’s
personal copy of the paper contains a hand-written remark in the margin stating
that the point was still dubious and that it had not been proven that, even in the
presence of interaction with a single external atom, the system would traverse all
possible values compatible with the energy equation.

Doubts about the ergodic hypothesis

Boltzmann’s next paper 1868b was devoted to checking the validity of the ergodic
hypothesis in a relatively simple solvable mechanical model. This paper also gives
a nice metaphoric formulation of the ergodic hypothesis: if the phase point were
a light source, and its motion exceedingly swift, the entire energy surface would
appear to us as homogeneously illuminated [Boltzmann, 1909, I, p. 103]. However,
his doubts were still not laid to rest. His next paper on gas theory 1871a returns
to the study of a detailed mechanical gas model, this time consisting of polyatomic

in [Boltzmann, 1884] and also discussed in his Lectures on Gas Theory [Boltzmann, 1898]. But
what did Boltzmann actually understood by an Ergode? Brush points out in his translation
of [Boltzmann, 1898, p. 297], and similarly in [Brush, 1976, p. 364], that Boltzmann used the
name to denote a stationary ensemble, characterized by the microcanonical distribution in phase
space. In other words, in in the context of Boltzmann’s 1898 an Ergode is just an microcanonical
ensemble, and seems to have nothing to do to do with the so-called ergodic hypothesis. Brush
criticized the Ehrenfests for causing confusion by their terminology.

However, in his original 1884 introduction of the phrase, the name Ergode is used for a station-
ary ensemble with only a single integral of motion , i.e. its total energy. As a consequence, the
ensemble is indeed micro-canonical, but, what is more, every member of the ensemble satisfies the
hypothesis of traversing every phase point with the given total energy. Indeed, in this context,
being an element of an Ergode implies satisfaction of this hypothesis. Thus, the Ehrenfests were
actually justified in baptizing the hypothesis “ergodic”.

Another dispute has emerged concerning the etymology of the term. The common opinion,
going back at least to the Ehrenfests has been that the word derived from ergos (work) and
hodos (path). [Gallavotti, 1994] has argued however that “undoubtedly” it derives from ergos
and eidos (similar). Now one must grant Gallavotti that it ought to expected that the etymology
of the suffix “-ode” of ergode is identical to that of other words Boltzmann coined in this paper,
like Holode, Monode, Orthode and Planode; and that a reference to path would be somewhat
unnatural in these last four cases. However, I don’t believe a reference to “eidos” would be more
natural. Moreover, it seems to me that if Boltzmann intended this etymology, he would have
written ”Ergoide” in analogy to planetoid, ellipsoid etc. That he was familiar with this common
usage is substantiated by him coining the term “Momentoide” for momentum-like degrees of
freedom (i.e. those that contribute a quadratic term to the Hamiltonian) in [Boltzmann, 1892].
The argument mentioned by [Cercignani, 1998, p. 141] (that Gallavotti’s father is a classicist)
fails to convince me in this matter.
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molecules, and avoids any reliance on the ergodic hypothesis. And when he did
return to the ergodic hypothesis in 1871b, it was with much more caution. Indeed,
it is here that he actually first described the worrying assumption as an hypothesis,
formulated as follows:

The great irregularity of the thermal motion and the multitude of forces
that act on a body make it probable that its atoms, due to the motion
we call heat, traverse all positions and velocities which are compati-
ble with the principle of [conservation of] energy [Boltzmann, 1909, I
p. 284].%6

Note that Boltzmann formulates this hypothesis for an arbitrary body, i.e. it is
not restricted to gases. He also remarks, at the end of the paper, that “the proof
that this hypothesis is fulfilled for thermal bodies, or even is fullfillable, has not
been provided” [Boltzmann, I p. 287].

There is a major confusion among modern commentators about the role and
status of the ergodic hypothesis in Boltzmann’s thinking. Indeed, the question
has often been raised how Boltzmann could ever have believed that a trajectory
traverses all points on the energy hypersurface, since, as the Ehrenfests conjectured
in 1911, and was shown almost immediately in 1913 by Plancherel and Rosenthal,
this is mathematically impossible when the energy hypersurface has a dimension
larger than 1 (cf. paragraph 6.1).

It is a fact that both his (1868a, Abh. I, p.96) and (1871b, Abh. I, p.284) mention
external disturbances as an ingredient in the motivation for the ergodic hypothe-
sis. This might be taken as evidence for ‘interventionism’, i.e. the viewpoint that
such external influences are crucial in the explanation of thermal phenomena (cf:
[Blatt, 1959; Ridderbos and Redhead, 1998]). Yet even though Boltzmann clearly
expressed the thought that these disturbances might help to motivate the ergodic
hypothesis, he never took the idea very seriously. The marginal note in the (1868a)
paper mentioned above indicated that, even if the system is disturbed, there is still
no easy proof of the ergodic hypothesis, and all his further investigations concern-
ing this hypothesis assume a system that is either completely isolated from its
environment, or at most acted upon by a static external force. Thus, intervention-
ism did not play a significant role in his thinking.?”

It has also been suggested, in view of Boltzmann’s later habit of discretizing
continuous variables, that he somehow thought of the energy hypersurface as a
discrete manifold containing only finitely many discrete cells [Gallavotti, 1994].
On this reading, obviously, the mathematical no-go theorems of Rosenthal and
Plancherel no longer apply. Now it is definitely true that Boltzmann developed
a preference towards discretizing continuous variables, and would later apply this

26 An equivalent formulation of the ergodic hypothesis is that the Hamiltonian is the only
independent integral of the Hamiltonian equations of motion. This version is given in the same
paper [Boltzmann, 1909, p. 281-2]

27Indeed, on the rare occasions on which he later mentioned external disturbances, it was only
to say that they are “not necessary” [Boltzmann, 1895b]. See also [Boltzmann, 1896, §91].
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procedure more and more (although usually adding that this was fictitious and
purely for purposes of illustration and more easy understanding, cf. paragraph 4.2).
However, there is no evidence in the (1868) and (1871b) papers that Boltzmann
implicitly assumed a discrete structure of the mechanical phase space or the energy
hypersurface.

Instead, the context of his 1871b makes clear enough how he intended the hy-
pothesis, as has already been argued by [Brush, 1976]. Immediately preceding
the section in which the hypothesis is introduced, Boltzmann discusses trajecto-
ries for a simple example: a two-dimensional harmonic oscillator with potential
U(z,y) = ax®+by?. For this system, the configuration point (x,y) moves through
the surface of a rectangle. (Cf. Fig. 2. See also [Cercignani, 1998, p. 148].) He
then notes that if a/b is rational, (actually: if y/a/b is rational) this motion is
periodic. However, if this value is irrational, the trajectory will, in the course
of time, traverse “almdahlich die ganze Fldche” [Boltzmann, 1909, p. 271] of the
rectangle. He says that in this case x and y are independent, since for each val-
ues of x an infinity of values for y in any interval in its range are possible. The
very fact that Boltzmann considers intervals for the values of x and y of arbitrary
small sizes, and stressed the distinction between rational and irrational values of
the ratio a/b, indicates that he did not silently presuppose that phase space was
essentially discrete, where those distinctions would make no sense.

Now clearly, in modern language, one should say that if m is irrational the
trajectory is dense in the rectangle, but not that it traverses all points. Boltzmann
did not possess this language. In fact, he could not have been aware of Cantor’s
insight that the continuum contains more than a countable infinity of points. Thus,
the correct statement that, in the case that \/m is irrational, the trajectory will
traverse, for each value of z, an infinity of values of y within any interval however
small, could easily have led him to believe (incorrectly) that all values of z and y
are traversed in the course of time.

It thus seems eminently plausible, in view of the fact that this discussion imme-
diately precedes the formulation of the ergodic hypothesis, that Boltzmann’s un-
derstanding of the ergodic hypothesis is really what Ehrenfests dubbed the quasi-
ergodic hypothesis: the assumption that the trajectory is dense (i.e. passes arbitrar-
ily close to every point) on the energy hypersurface.?® The quasi-ergodic hypothe-
sis is not mathematically impossible in higher-dimensional phase spaces. However,
the quasi-ergodic hypothesis does not entail the desired conclusion that the only
stationary probability distribution over the energy surface is micro-canonical.

Nevertheless, Boltzmann remained sceptical about the validity of his hypothesis,
and attempted to explore different routes to his goal of characterizing thermal
equilibrium in mechanics. Indeed, both the preceding 1871a and his next paper
1871c present alternative arguments, with the explicit recommendation that they
avoid hypotheses. In fact, he did not return to the ergodic hypothesis at all until

280r some hypothesis compatible with the quasi-ergodic hypothesis. As it happens, Boltz-
mann’s example is also compatible with the measure-theoretical hypothesis of ‘metric transitivity’
(cf. paragraph 6.1).
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Figure 2. Trajectories in configuration space for a two-dimensional harmonic os-
cillator with potential U(x,y) = ax? + by?. Tllustrating the distinction between
(i) the case where /a/b is rational (here 4/7) and (ii) irrational (1/e). Only a
fragment of the latter trajectory has been drawn.

the 1880s (stimulated by Maxwell’s 1879 review of the last section of Boltzmann’s
1868 paper). At that time, perhaps feeling fortified by Maxwell’s authority, he
was to express much more confidence in the ergodic hypothesis. However, after
1885, this confidence disappears again, and although he mentions the hypothesis
occasionally in later papers, he never assumes its validity. Most notably, the
ergodic hypothesis is not even mentioned in his Lectures on Gas Theory 1896, 1898.

To sum up, what role did the ergodic hypothesis play for Boltzmann? It seems
that Boltzmann regarded the ergodic hypothesis as a special dynamical assumption
that may or may not be true, depending on the nature of the system, and perhaps
also on its initial state and the disturbances from its environment. Its role was
simply to help derive a result of great generality: for any system for which the
hypothesis is true, its equilibrium state is characterized by (45), from which an
analogy to the Maxwell distribution may be recovered in the limit N — o0,
regardless of any details of the inter-particle interactions, or indeed whether the
system represented is a gas, fluid, solid or any other thermal body.

As we discussed in paragraph 1.4, the Ehrenfests 1912 have suggested that the
ergodic hypothesis played a much more fundamental role. In particular, if the
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hypothesis is true, averaging over an (infinitely) long time would be identical to
phase averaging with the microcanonical distribution. Thus, they suggested that
Boltzmann relied on the ergodic hypothesis in order to equate time averages and
phase averages, or in other words, to equate two meanings of probability (relative
time and relative volume in phase space.) There is however no evidence that
Boltzmann ever followed this line of reasoning neither in the 1870s, nor later. He
simply never gave any justification for equivocating time and particle averages, or
phase averages, at all. Presumably, he thought nothing much depended on this
issue and that it was a matter of taste.

4.2 The Boltzmann equation and H-theorem (1872)

In 1872 Boltzmann published one of his most important papers. It contained two
celebrated results nowadays known as the Boltzmann equation and the H-theorem.
The latter result was the basis of Boltzmann’s renewed claim to have obtained a
general theorem corresponding to the Second Law. This paper has been studied
and commented upon by numerous authors, and an entire translation of the text
has been provided by [Brush, 1966]. Thus, for the present purposes, a succinct
summary of the main points might have been sufficient. However, there is still
dispute among modern commentators about its actual content.

The issue at stake in this dispute is the question whether the results obtained
in this paper are presented as necessary consequences of the mechanical equations
of motion, or whether Boltzmann explicitly acknowledged that they would allow
for exceptions. Klein has written:

I can find no indication in his 1872 memoir that Boltzmann conceived
of possible exceptions to the H-theorem, as he later called it [Klein,
1973, p. 73].

Klein argues that Boltzmann only came to acknowledge the existence of such ex-
ceptions thanks to Loschmidt’s critique in 1877. An opposite opinion is expressed
by [von Plato, 1994]. Calling Klein’s view a “popular image”, he argues that,
already in 1872, Boltzmann was well aware that his H-theorem had exceptions,
and thus “already had a full hand against his future critics”. Indeed, von Plato
states that

Contrary to a widely held opinion, Boltzmann is not in 1872 claiming
that the Second Law and the Maxwellian distribution are mecessary
consequences of kinetic theory [von Plato, 1994, p. 81].

So it might be of some interest to try and settle this dispute.

Boltzmann (1872) starts with an appraisal of the role of probability theory in
the context of gas theory. The number of particles in a gas is so enormous, and
their movements are so swift that we can observe nothing but average values.
The determination of averages is the province of probability calculus. Therefore,
“the problems of the mechanical theory of heat are really problems in probability
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calculus” [Boltzmann, 1909, I, p. 317]. But, Boltzmann says, it would be a mistake
to believe that the theory of heat would therefore contain uncertainties.

He emphasizes that one should not confuse incompletely proven assertions with
rigorously derived theorems of probability theory. The latter are necessary conse-
quences of their premisses, just like in any other theory. They will be confirmed by
experience as soon as one has observed a sufficiently large number of cases. This
last condition, however, should be no significant problem in the theory of heat
because of the enormous number of molecules in macroscopic bodies. Yet, in this
context, one has to make doubly sure that we proceed with the utmost rigour.

Thus, the message expressed in the opening pages of this paper seems clear
enough: the results Boltzmann is about to derive are advertised as doubly checked
and utterly rigorous. Still, they are theoretical. Their relationship with experience
might be less secure, since any probability statement is only reproduced in obser-
vations by sufficiently large numbers of independent data. Thus, Boltzmann would
have allowed for exceptions in the relationship between theory and observation,
but not in the relation between premisses and conclusion.

He continues by saying what he means by probability, and repeats its equivo-
cation as a fraction of time and the relative number of particles that we have seen
earlier in 1868:

If one wants [...] to build up an exact theory [...] it is before all
necessary to determine the probabilities of the various states that one
and the same molecule assumes in the course of a very long time, and
that occur simultaneously for different molecules. That is, one must
calculate how the number of those molecules whose states lie between
certain limits relates to the total number of molecules [Boltzmann,
1909, I p. 317].

However, this equivocation is not vicious. For most of the paper the intended
meaning of probability is always the relative number of molecules with a particular
molecular state. Only at the final stages of his paper [Boltzmann, 1909, I, p. 400]
does the time-average interpretation of probability (suddenly) recur.

Boltzmann says that both Maxwell and he had attempted the determination
of these probabilities for a gas system but without reaching a complete solution.
Yet, on a closer inspection, “it seems not so unlikely that these probabilities can
be derived on the basis of the equations of motion alone...” [Boltzmann, 1909, I,
p. 317]. Indeed, he announces, he has solved this problem for gases whose molecules
consist of an arbitrary number of atoms. His aim is to prove that whatever the
initial distribution of state in such a system of gas molecules, it must inevitably
approach the distribution characterized by the Maxwellian form (ibid. p. 320).

The next section specializes to the simplest case of monatomic gases and also
provides a more complete specification of the problem he aims to solve. The gas
molecules are contained in a fixed vessel with perfectly elastic walls. They interact
with each other only when they approach each other at very small distances. These
interactions can be mimicked as collisions between elastic bodies. Indeed, these
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bodies are modeled as hard spheres [Boltzmann, 1909, I, p. 320]. Boltzmann
represents the state of the gas by a time-dependent distribution function f:(7),
called the “distribution of state”, which gives us, at each time ¢, the relative
number of molecules with velocity between ¥ and ¥ + d3¢.2°

He also states two more special assumptions:

1. Already in the initial state of the gas, each direction of velocity is equally
probable. That is:

(47) fo(0) = fo(v).
It is assumed as obvious that this will also hold for any later time.

2. The gas is spatially uniform within the container. That is, the relative
number of molecules with their velocities in any given interval, and their
positions in a particular spatial region R does not depend on the location of
R in the available volume.

The next and crucial assumption used by Boltzmann to calculate the change in
the number of particles with a velocity ¥; per unit time, is the StofSzahlansatz,
(29) and (30).

For modern readers, there are also a few unstated assumptions that go into the
construction of this equation. First, the number of molecules must be large enough
so that the (discrete) distribution of their velocities can be well approximated by
a continuous and differentiable function f. Secondly, f changes under the effect
of binary collisions only. This means that the density of the gas should be low (so
that three-particle collisions can be ignored) but not too low (which would make
collisions too infrequent to change f at all). These two requirements are already
hard enough to put in a mathematically precise form. The modern explicitation is
that of taking the so-called Boltzmann-Grad limit (cf. paragraph 6.4). The final
(unstated) assumption is that all the above assumptions remain valid in the course
of time.

He addresses his aim by constructing a differentio-integral evolution equation
for f;, by taking the difference of (29) and (30) and integrating over all variables
except 07 and t. The result (in a modern notation) is the Boltzmann equation:

(48) m N/ bdb/%déf’/ d*. ||U2*’Ul|| (ft( )ft( ) ft(ﬁ)ft(@))

which describes the change of f in the course of time, when this function at
some initial time is given. (Recall from paragraph 3.3 that the primed velocities
are to be thought of as functions of the unprimed velocities and the geometrical
parameters of the collision: o = v}’ (¥1, U2, b, ¢), and d denotes the diameter of the
hard spheres.)

29 Actually Boltzmann formulated the discussion in terms of a distribution function over kinetic
energy rather than velocity. I have transposed this into the latter, nowadays more common
formulation.
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The H-theorem

Assuming that the Boltzmann equation (48) is valid for all times, one can prove,
after a few well-known manipulations, that the following quantity

@) Hlf)i= [ 50 @

decreases monotonically in time, i.e.

dH([fi]

50) —— < 0;

(o) 8 <o,

as well as its stationarity for the Maxwell distribution, i.e.:
dH

(51) d[tf d_y (V) iff f,(v) = Ae=BY".

Boltzmann concludes Section I of the paper as follows:

It has thus been rigorously proved that whatever may have been the
initial distribution of kinetic energy, in the course of time it must neces-
sarily approach the form found by Maxwell. [...] This [proof] actually
gains much in significance because of its applicability to the theory of
multi-atomic gas molecules. There too, one can prove for a certain
quantity [H] that, because of the molecular motion, this quantity can
only decrease or in the limiting case remain constant. Thus, one may
prove that because of the atomic movement in systems consisting of
arbitrarily many material points, there always exists a quantity which,
due to these atomic movements, cannot increase, and this quantity
agrees, up to a constant factor, exactly with the value that I found in
[[Boltzmann, 1871c]] for the well-known integral [ dQ/T.

This provides an analytical proof of the Second Law in a way com-
pletely different from those attempted so far. Up till now, one has
attempted to proof that [dQ/T = 0 for a reversible (umkehrbaren)
cyclic®® process, which however does not prove that for an irreversible
cyclic process, which is the only one that occurs in nature, it is always
negative; the reversible process being merely an idealization, which can
be approached more or less but never perfectly. Here, however, we im-
mediately reach the result that [ dQ/T is in general negative and zero
only in a limit case... [Boltzmann, 1909, I, p. 345]

Thus, as in his 1866 paper, Boltzmann claims to have a rigorous, analytical and
general proof of the Second Law. From our study of the paper until now, (i.e.
section I) it appears that Klein’s interpretation is more plausible than von Plato’s.
I postpone a further discussion of this dispute to paragraph 4.2, after a brief look
at the other sections of the paper.

30The term “cyclic” is missing in Brush’s translation, although the original text does speak of
“Kreisprozef3”. The special notation § for cyclic integrals was not introduced until much later.
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Further sections of Boltzmann (1872)

Section II is entitled “Replacement of integrals by sums” and devoted to a rep-
etition of the earlier arguments, now assuming that the kinetic energies of the
molecules can only take values in a discrete set {0, ¢, 2¢, . .., pe}. Boltzmann shows
that in the limit € — 0, pe — oo the same results are recovered.

Many readers have been surprised by this exercise, which seems rather super-
fluous both from a didactic and a logical point of view. (However, some have felt
that it foreshadowed the advent of quantum theory.) Boltzmann offers as motiva-
tion for the detour that the discrete approach is clearer than the previous one. He
argues that integrals only have a symbolic meaning, as a sum of infinitely many
infinitesimal elements, and that a discrete calculation yields more understanding.
He does not argue, however, that it is closer to physical reality. Be that as it may,
the section does eventually take the limit, and recovers the same results as before.

The third section treats the case where the gas is non-uniform, i.e., when con-
dition 2 above is dropped. For this case, Boltzmann introduces a generalized
distribution function f;(7, ¥), such that f,d>7d®¥ represents the relative number of
particles with a position in a volume element d># around + and a velocity in an
element d>% around .

He obtains a corresponding generalized Boltzmann equation:

Of (7, 7)

. F
TR +U'met+%'vvft:
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—

where F denotes an external force field on the gas. The quantity H now takes the
form H[f}] := [ fi(7,¥)d*Fd>7; and a generalization of the H-theorem dH/dt <0
is obtained.

The last three sections are devoted to polyatomic molecules, and aim to obtain
generalized results for this case too. The key ingredient for doing so is, of course,
an appropriately generalized Stoffizahlansatz. The formulation of this assumption
is essentially the same as the one given in his paper on poly-atomic molecules
1871a, which was later shown wrong and corrected by Lorentz. I will not go into
this issue (cf. [Lorentz, 1887; Boltzmann, 1887b; Tolman, 1938]).

An interesting passage occurs at the very end of the paper, where he expands
on the relationship between H and entropy. He considers a monatomic gas in
equilibrium. The stationary distribution of state is given as:

3m >3/2 —3mw?
exp(

k(= 2\ -1
63 10 = (o Ll
where V' is the volume of the container. (Note that in comparison with (27),
Boltzmann adopts units for temperature that make & = 2/3.) He shows that

47TT)3/2 3

(54) H[f*]:= /f* log f*dxdv = —Nlog V' <3Tn °N:

2 )
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which agrees (assuming S = —kNH|[f*]) with the thermodynamical expression
for the ideal gas (16) up to an additive constant. A similar result holds for the
polyatomic gas.

Remarks and problems

1. The role of probability. As we have seen, the H-theorem formed the basis
of a renewed claim by Boltzmann to have obtained a theorem corresponding to the
full Second Law (i.e. including both parts) at least for gases. A main difference
from his 1866 claim, is that he now strongly emphasizes the role of probability
calculus in his derivation. It is clear that the conception of probability expounded
here is thoroughly frequentist and that he takes ‘the laws of probability’ as empir-
ical statements. Furthermore, probabilities can be fully expressed in mechanical
terms: the probability distribution f is nothing but the relative number of particles
whose molecular states lie within certain limits. Thus, there is no conflict between
his claims that on the one hand, “the problems of the mechanical theory of heat
are really problems in probability calculus” and that the probabilities themselves
are derived on the basis of the equations of motion alone, on the other hand. In-
deed, it seems to me that Boltzmann’s emphasis on the crucial role of probability
in this paper is only intended to convey that probability theory provides a partic-
ularly useful and appropriate language for discussing mechanical problems in gas
theory. There is no indication in this paper yet that probability theory could play
a role by furnishing assumptions of a non-mechanical nature, i.e., independent of
the equations of motion (cf. [Boltzmann and Nabl, 1904, p. 520]).

2. The role of the Stofizahlansatz. Note that Boltzmann stresses the gen-
erality, rigour and “analyticity” of his proof. He puts no emphasis on the special
assumptions that go into the argument. Indeed, the Stofizahlansatz, later iden-
tified as the key assumption that is responsible for the time-asymmetry of the
H-theorem, is announced as follows

The determination [of the number of collisions] can only be obtained
in a truly tedious manner, by consideration of the relative velocities
of both particles. But since this consideration has, apart from its
tediousness, not the slightest difficulty, nor any special interest, and
because the result is so simple that one might almost say it is self-
evident I will only state this result.” [Boltzmann, 1909, I, p. 32].)

It thus seems natural that Boltzmann’s contemporaries must have understood
him as claiming that the H-theorem followed necessarily from the dynamics of the
mechanical gas model.?! I can find no evidence in the paper that he intended this
claim to be read with a pinch of salt, as [von Plato, 1991, p.. 81] has argued.

31Indeed this is ezactly how Boltzmann’s claims were understood. For example, the recom-
mendation written in 1888 for his membership of the Prussian Academy of Sciences mentions as
his main feat that Boltzmann had proven that, whatever its initial state, a gas must necessarily
approach the Maxwellian distribution [Kirsten and Koérber, 1975, p.109].
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Is there then no evidence at all for von Plato’s reading of the paper? Von
Plato refers to a passage from Section II, where Boltzmann repeats the previous
analysis by assuming that energy can take on only discrete values, and replacing
all integrals by sums. He recovers, of course, the same conclusion, but now adds a
side remark, which touches upon the case of non-uniform gases:

Whatever may have been the initial distribution of states, there is one
and only one distribution which will be approached in the course of
time. [...] This statement has been proved for the case where the
distribution of states was already initially uniform. It must also be
valid when this is not the case, i.e. when the molecules are initially
distributed in such a way that in the course of time they mix among
themselves more and more, so that after a very long time the distribu-
tion of states becomes uniform. This will always be the case, with the
exception of very special cases, e.g. when all molecules were initially
situated along a straight line, and were reflected by the walls onto this
line [Boltzmann, 1909, I, p. 358].

It is this last remark that, apparently, led to the view that after all Boltzmann
did already conceive of exceptions to his claims. However, I should say that this
passage does not convince me. True enough, Boltzmann in the above quote indi-
cates that there are exceptions. But he mentions them only in connection with
an eztension of his results to the case when the gas is not initially uniform, i.e.
when condition (2) above is dropped. There can be no doubt that under the as-
sumption of the conditions (1) and (2), Boltzmann claimed the rigorous validity
of the H-theorem. (Curiously, his more systematic treatment of the non-uniform
gas (Section III of 1872) does not mention any exception to the claim that “H can
only decrease” [Boltzmann, 1909, I p. 362].

As a matter of fact, when Loschmidt formulated the objection, it happened
to be by means of an example of a non-uniform gas (although nothing essential
depended on this). Thus, if Boltzmann had in 1872 a “full hand against his future
critics”, as von Plato claims, one would expect his reply to Loschmidt’s objection
to point out that Loschmidt was correct but that he had already anticipated the
objection. Instead, he accused Loschmidt of a fallacy (see paragraph 4.3 below).

But apart from the historical issue of whether Boltzmann did or did not en-
visage exceptions to his H-theorem, it seems more important to ask what kind of
justification Boltzmann might have adduced for the Stofizahlansatz. An attempt
to answer this question must be somewhat speculative, since, as we have seen,
Boltzmann presented the assumption as “almost self-evident” and “having no spe-
cial interest”, and hence presumably as not in need of further explanation. Still
the following remarks may be made with some confidence.

First, we have seen that Maxwell’s earlier usage of the assumption was never
far away from an argument from insufficient reason. Thus, in his approach, one
could think of the Stoffizahlansatz as expressing that we have no reason to expect
any influence or correlation between any pair of particles that are about to collide.
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The assumption would then appear as a probabilistic assumption, reflecting a
‘reasonable judgment’, independent from mechanics.

In contrast, Boltzmann’s critique of Maxwell’s approach (cf. footnote 16) sug-
gests that he did not buy this argument for insufficient reason. But since the
Stofizahlansatz clearly cannot be conceived of as an assumption about dynamics
— like the ergodic hypothesis — , this leaves only the option that it must be due
to a special assumption about the mechanical state of the gas. Indeed, in the years
1895-6, when Boltzmann acknowledged the need for the ansatz in the proof of his
H-theorem more explicitly — referring to it as “Assumption A” [Boltzmann, 1895
or “the hypothesis of molecular disorder” [Boltzmann, 1896] — , he formulated it
as an assumption about the state of the gas.

Yet, even in those years, he would also formulate the hypothesis as expressing
that “haphazard governs freely” [Boltzmann, 1895, Abh. III, p. 546] or “that the
laws of probability are applicable for finding the number of collisions” [Boltzmann,
1895b). Similarly, he describes states for which the hypothesis fails as contrived “so
as to intentionally violate the laws of probability” [Boltzmann, 1896, §3]. However,
I think these quotations should not be read as claims that the Stofizahlansatz was
a consequence of probability theory itself. Rather, given Boltzmann’s empirical
understanding of “the laws of probability”, they suggest that Boltzmann thought
that, as a matter of empirical fact, the assumption would ‘almost always’ hold,
even if the gas was initially very far from equilibrium.

3. The H-theorem and the Second Law. Note that Boltzmann miscon-
strues, or perhaps understates, the significance of his results. Both the Boltzmann
equation and the H-theorem refer to a body of gas in a fixed container that evolves
in isolation from its environment. There is no question of heat being exchanged
by the gas during a process, let alone in an irreversible cyclic process. His com-
parison in the quotation on page 965 with Clausius’ integral f dQ/T (i.e. f dQ/T
in equation (18) above) is therefore really completely out of place.

The true import of Boltzmann’s results is rather that they provide (i) a gener-
alization of the entropy concept to non-equilibrium states,3? and (ii)a claim that
this non-equilibrium entropy —kH increases monotonically as the isolated gas
evolves for non-equilibrium towards an equilibrium state. The relationship with
the Second Law is, therefore, somewhat indirect: On the one hand, Boltzmann
proves much more than was required, since the second law does not speak of non-
equilibrium entropy, nor of monotonic increase; on the other hand it proves also
less, since Boltzmann does not consider the increase of entropy in general adiabatic
processes.

32Boltzmann emphasized that his expression for entropy should be seen as an extension of
thermodynamic entropy to non-equilibrium states in [1877b, (Boltzmann, 1909, II, p. 218);
1896, §5] . Of course there is no guarantee that this generalization is the unique candidate for a
non-equilibrium entropy.
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4.8  Boltzmann (1877a): the reversibility objection

According to [Klein, 1973], Boltzmann seemed to have been satisfied with his
treatments of 1871 and 1872 and turned his attention to other matters for a couple
of years. He did come back to gas theory in 1875 to discuss an extension of the
Boltzmann equation to gases subjected to external forces. But this paper does
not present any fundamental changes of thought. (However, it does contain some
further elucidation, for example, it mentions for the first time that the derivation
of the Boltzmann equation requires that the gas is so dilute that collisions between
three or more particles simultaneously can be ignored).

However, the 1875 paper did contain a result which, two years later, led to
a debate with Loschmidt. Boltzmann showed that (52) implied that a gas in
equilibrium in an external force field (such as the earth’s gravity) should have the
same average kinetic energy at all heights and therefore, a uniform temperature;
while its pressure and density would of course vary with height. This conclusion
conflicted with the intuition that when molecules travel upwards, they must do
work against the gravitational field, and pay for this by having a lower kinetic
energy at greater heights.

Now Boltzmann (1875) was not the first to reach the contrary result, and Lo-
schmidt was not the first to challenge it. Maxwell and Guthrie entered into a
debate on the very same topic in 1873. But actually their main point of con-
tention need not concern us very much. The discussion between Loschmidt and
Boltzmann is particularly important for quite another issue, which Loschmidt only
introduced as an side remark. Considering a gas container in a homogeneous grav-
itational field, Loschmidt discussed a situation where initially all atoms except one
lie at rest at the bottom of the container. The single moving atom could then,
by collisions, stir the others and send them into motion until a “stationary state”,
characterized by the Maxwell distribution, is obtained. He continues

By the way, one should be careful about the claim that in a system in
which the so-called stationary state has been achieved, starting from
an arbitrary initial state, this average state can remain intact for all
times. I believe, rather, that one can make this prediction only for a
short while with full confidence.

Indeed, if in the above case, after a time 7 which is long enough to
obtain the stationary state, one suddenly assumes that the velocities
of all atoms are reversed, we would obtain an initial state that would
appear to have the same character as the stationary state. For a fairly
long time this would be appropriate, but gradually the stationary state
would deteriorate, and after passage of the time 7 we would inevitable
return to our initial state: only one atom has absorbed all kinetic
energy of the system [...], while all other molecules lie still on the
bottom of the container.

Obviously, in every arbitrary system the course of events must be be-
come retrograde when the velocities of all its elements are reversed
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[Loschmidt, 1876, p. 139].

Boltzmann’s response (1877a)

Boltzmann’s response to Loschmidt is somewhat confusing. On the one hand, he
acknowledges that Loschmidt’s objection is “quite ingenious and of great signifi-
cance for the correct understanding of the Second Law.” However, he also brands
the objection as a “fallacy” and a “sophism”.3? But then, two pages later again,
the argument is “of the greatest importance since it shows how intimately con-
nected are the Second Law and probability theory.”

The gist of the response is this. First, Boltzmann captures the essential core of
the problem in an admirably clear fashion:

“Every attempt to prove, from the nature of bodies and the laws of
interaction for the forces they exert among each other, without any
assumption about initial conditions, that

(55)/?@

must be in vain” [Boltzmann, 1909, II. p.119-121].

The point raised here is usually known as the reversibility objection. And since
the H-theorem (which only received this name in the 1890s) was presented in 1872
as a general proof that [ % < 0 (cf. the long quotation on page 965), it would
imply that this theorem was invalid. Boltzmann aims to show, however, that this
objection is a fallacy. His argument might be dissected into 5 central points.

1. Conceding that the proof cannot be given. Boltzmann says that a proof
that every distribution must with absolute necessity evolve towards a uniform dis-
tribution cannot be given, claiming that this fact “is already taught by probability
theory”. Indeed, he argues, even a very non-uniform distribution of state is, al-
though improbable to the highest degree, not impossible. Thus, he admits that
there are initial states for which H increases, just as well as those for which H
decreases. This admission, of course, is hard to rhyme with his professed purpose
of showing that it is fallacious to conclude that some assumption about the initial
state would be needed.

Note that this passage announces a major conceptual shift. Whereas the 1872
paper treated the distribution of state f; as if it defines probability (i.e. of molec-
ular velocities), this time the distribution of states is itself something which can
be to a higher or lesser degree “probable”. That is: probabilities are attributed

33The very fact that Boltzmann called this conclusion — which by all means and standards is
correct — a fallacy shows, in my opinion, that he had not anticipated the objection. In fact, how
much Boltzmann had yet to learn from Loschmidt’s objection is evident when we compare this
judgment to a quotation from his Lectures on Gas Theory [1898, p. 442]: “this one-sidedness [of
the H-theorem] lies uniquely and solely in the initial conditions.”
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to distributions of state, i.e. the distribution of state itself is treated as a random
variable. This shift in viewpoint became more explicit in his (1877b); as we will
discuss in section 4.4 below.

2. Rethinking the meaning of “probability”. Boltzmann argues that every
distribution of state, whether uniform or non-uniform, is equally improbable. But
there are “infinitely many” more uniform distributions of state than non-uniform
distributions. Here we witness another conceptual shift. In (1872), the term
“distribution of state” referred to the function f(¥) or f(7,v), representing the
relative numbers of molecules with various molecular states. In that sense, there
would, of course, only be a single uniform distribution of state: the Maxwellian
distribution function (53). But since Boltzmann now claims there are many, he
apparently uses the term “distribution of state” to denote a much more detailed
description, that includes the velocity and position of every individual molecule,
so that permutations of the molecules yield a different distribution of state. That
is, he uses the term in the sense of what we would nowadays call a microstate,
and what he himself would call a “Komplezion” a few months later in his (1877b)
— on which occasion he would reserve the name ‘distribution of state’ for the
macrostate.

Note that Boltzmann assumes every Komplexion to be equally probable (or
improbable) so that the probability of a particular distribution of state is deter-
mined by the relative numbers. Indeed he remarks that it might be interesting to
calculate the probabilities of state distributions by determining the ratio of their
numbers; this suggestion is also worked out in his subsequent paper of 1877b.

This, indeed, marks another conceptual change. Not only are probabilities at-
tributed to distributions of state instead of being defined by them; they are deter-
mined by an equiprobability assumption. Boltzmann does not explicitly motivate
the assumption. In view of the discussion in paragraph 3.1, one might conjecture
that he must have had something like Laplace’s principle of insufficient reason in
mind, which makes any two cases which, according to our information are equally
possible, also equally probable. But this would indicate an even larger conceptual
change; and not just because Boltzmann is broadly a frequentist concerning prob-
ability. Also, the principle of insufficient reason, or any similar assumption, makes
sense only from the view point that probability is a non-mechanical notion: it
reflects our belief or information about a system. I cannot find any evidence that
he accepted this idea. Of course it is also possible to conjecture that he silently fell
back upon the ergodic hypothesis. But this conjecture also seems unlikely, given
his avoidance of the hypothesis since 1871.

3. A claim about evolutions. Boltzmann says: “Only from the fact that
there are so many more uniform than non-uniform distributions of state [i.e.: mi-
crostates| follows the larger probability that the distribution will become uniform
in the course of time” (p. 120). More explicitly, he continues:
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[...] one can prove that infinitely many more initial states evolve after
a long time towards a more uniform distribution of states than to a less
uniform one, and that even in that latter case, these states will become
uniform after an even longer time [Boltzmann, 1909, II, p. 120]3*

Note that this is a claim about evolutions of microstates. In fact, it is the first case
of what the Ehrenfests later called a statistical H-theorem, but what is perhaps
better called a statistical reading of the H-theorem, since in spite of Boltzmann’s
assertion, no proof is offered.

4. The (im)probability of Loschmidt’s initial state. Boltzmann maintains
that the initial conditions considered by Loschmidt only have a minute proba-
bility. This is because it is obtained by a time evolution and velocity reversal
of a non-uniform microstate. Since both time evolution and velocity reversal are
one-to-one mappings (or more to the point: they preserve the Liouville measure),
these operations should not affect the number or probability of states. Hence, the
probability of Loschmidt’s state is equal to that of the special non-uniform state
from which it is constructed. But by point 2 above, there are infinitely many more
uniform states than non-uniform states, so the probability of Loschmidt’s state is
extraordinarily small.

5. From (im)probability to (im)possibility. The final ingredient of Boltz-
mann’s response is the claim that whatever has an extraordinarily small probability
is practically impossible.

The conclusion of Boltzmann’s argument, based on these five points, is that the
state selected by Loschmidt may be considered as practically impossible. Note
that this is a completely static argument; i.e., its logic relies merely on the points
1,2,4 and 5, and makes no assumption about evolutions, apart from the general
feature that the dynamical evolution conserves states (or measure). Indeed, point
3, i.e. the statistical reading of the H-theorem, is not used in the argument.

As a consequence, the argument, although perfectly consistent, shows more
than Boltzmann can possibly have wanted. The same reasoning that implies Lo-
schmidt’s initial state can be ignored, also excludes other non-uniform states. In
particular, the same probability should be assigned to Loschmidt’s initial state
without the reversal of velocities. But that state can be produced in the labora-
tory, and, presumably, should not be considered as practically impossible. Indeed,
if we adopt the rule that all non-uniform states are to be ignored on account of
their low probability, we end up with a consideration of uniform states only, i.e.
the theory would be reduced to a description of equilibrium, and the H-theorem
reduced to dH /dt = 0, and any time-asymmetry is lost.

This, surely, is too cheap a victory over Loschmidt’s objection. What one would
like to see in Boltzmann’s argument is a greater role for assumptions about the
time evolution in order to substantiate his statistical reading of the H-theorem.

34The clause about ‘the latter case’ is absent in the translation by [Brush, 2003, p. 366).
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Summing up: From this point on, we shall see that Boltzmann emphasizes even
more strongly the close relations between the Second Law and probability theory.
Even so, it is not always clear what these relations are exactly. Further, one may
question whether his considerations of the probability of the initial state hit the
nail on the head. Probability theory is equally neutral to the direction of time as
is mechanics.

The true source of the reversibility problem was only identified by [Burbury,
1894a] and [Bryan, 1894] after Boltzmann’s lecture in Oxford, which created a
intense debate in the columns of Nature. They pointed out that the StofSzahlansatz
already contained a time-asymmetric assumption.

Indeed, this assumption requires that the number of collisions of the kind
(T, 72) — (¥, 72") is proportional to the product f(@)f(72) where, @, v, are
the velocities before the collisions. If we would replace this by the requirement that
the number of collisions is proportional to the product for the velocities #;', ¥’
after the collision, we would obtain, by a similar reasoning, dH/dt > 0. The
question is now, of course, why we should prefer one assumption above the other,
without falling into some kind of double standard. (I refer to [Price, 1996] for a
detailed discussion of this danger.) One thing is certain, and that is that any such
preference cannot be obtained from mechanics and probability theory alone.

4.4 Boltzmann (1877b): the combinatorial argument

Boltzmann’s next paper (1877b) is often seen as a major departure from the con-
ceptual basis employed in his previous work. Indeed, the conceptual shifts already
indicated implicitly in his reply to Loschmidt become in this article explicit. In-
deed, according to [ter Haar, 1955, p. 296] and [Klein, 1973, p. 83], it is this paper
that marks the transition from kinetic theory to statistical mechanics. Further,
the paper presents the famous link between entropy and ‘probability’ that later
became known as “Boltzmann’s principle”, and was engraved on his tombstone as
“S=klogW?”.

Boltzmann’s begins the paper by stating that his goal is to elucidate the re-
lationship between the Second Law and probability calculus. He notes he has
repeatedly emphasized that the Second Law is related to probability calculus. In
particular he points out that the 1872 paper confirmed this relationship by show-
ing that a certain quantity [i.e. H] can only decrease, and must therefore obtain
its minimum value in the state of thermal equilibrium. Yet, this connection of the
Second Law with probability theory became even more apparent in his previous
paper (1877a). Boltzmann states that he will now solve the problem mentioned
in that paper, of calculating the probabilities of various distributions of state by
determining the ratio of their numbers.

He also announces that, when a system starts in an improbable state, it will
always evolve towards more probable states, until it reaches the most probable
state, i.e. that of thermal equilibrium. When this is applied to the Second Law,
he says, “we can identify that quantity which is usually called entropy, with the
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probability of the state in question.” And: “According to the present interpre-
tation, [the Second Law] states nothing else but that the probability of the total
state of a composite system always increases” [Abh. II, pp. 165-6]. Exactly how
all this is meant, he says, will become clear later in the article.

The combinatorial argument

Succinctly, and rephrased in the Ehrenfests’ terminology, the argument is as fol-
lows. Apart from I', the mechanical phase space containing the possible states
x for the total gas system, we consider the so-called u-space, i.e. the state space
of a single molecule. For monatomic gases, this space is just a six-dimensional
Euclidean space with (7, ¥) as coordinates. With each mechanical state = we can
associate a collection of N points in u-space; one for each molecule.

Now, partition u-space into m disjoint cells: g = wy U ... U wy,. These cells
are taken to be rectangular in the coordinates and of equal size. Further, it is
assumed that the energy of each molecule in cell w; in has a value ¢;, depending
only on i. For each x, henceforth also called the microstate (Boltzmann’s term
was the Komplezion), we define the macrostate or ‘distribution of state’ as Z :=
(n1,...,Mm), with n; the number of particles whose molecular state is in cell w;.
The relation between macro- and microstate is obviously non-unique since many
different microstates, e.g. obtained by permuting the molecules, lead to the same
macrostate. One may associate with every given macrostate Z; the corresponding
set of microstates:

(56) T'z, :={z el : Z(x) = Zy}.

The phase space volume |I"z,| of this set is proportional to the number of permu-
tations of the particles that do not change the macrostate Zy. Indeed, when the
six-dimensional volume of the cells w; is dw, i.e., the same for each cell, the phase
space volume of the set I'z is

N!
(67) [Tz| = P P

(6w)™N.

Moreover, assuming that n; > 1 for all ¢ and using the Stirling approximation
for the factorials, one finds

(58) InTz ~ NInN — Y “n;Inn; + Nlndw.

This expression is in fact proportional to a discrete approximation of the H-
function. Indeed, putting

where (7, ¥;) are the coordinates of a representative point in w;, we find

Smln, = S ONf(,E) 1n(Nf(ﬁ,@)5w)5w
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Q

N/f(F, 7) (lnf(F, ) +1In N + lnéw) Brd3T
(60) — NH+ NN + Nndw;

and therefore, in view of (58):

(61) —NH =~ In|Tz|.

And since Boltzmann had already identified —kN H with the entropy of a macro-
state, one can also take entropy as proportional to the logarithm of the volume
of the corresponding region in phase space. Today, In|I'z| is often called the
Boltzmann entropy.

Boltzmann next considers the question for which choice of Z does the region
I'z have maximal size, under the constraints of a given total number of particles
N, and a total energy E:

(62) N:ini, E:iniq.
i=1 =1

This problem can easily be solved with the Lagrange multiplier technique. Under
the Stirling approximation (58) one finds

(63) n; = e,

which is a discrete version of the Maxwell distribution. (Here, u an A are deter-
mined in terms of N and E by the constraints (62).)

Boltzmann proposes to take the macrostate with the largest volume as repre-
senting equilibrium. More generally, he also refers to these volumes as the “prob-
ability” or “permutability” of the macrostate. He therefore now expresses the
Second Law as a tendency for the system to evolve towards ever more probable
macrostates, until, in equilibrium, it has reached the most probable state.

Remarks and problems

1. The role of dynamics. In the present argument, no dynamical assumption
has been made. In particular, it is not relevant to the argument whether the
ergodic hypothesis holds, or how the particles collide. At first sight, it might seem
that this makes the present argument more general than the previous one. Indeed,
Boltzmann suggests at the end of the paper [Boltzmann, 1909, IT p. 223] that the
same argument might be applicable also to dense gases and even to solids.

However, it should be noticed that the assumption that the total energy can be
expressed in the form E = ). n;e; where the energy of each particle depends only
on the cell in which it is located, and not on the state of other particles is very
strong. This can only be maintained, independently of the number N, if there is
no interaction at all between the particles. The validity of the argument is thus
really restricted to ideal gases (cf. [Uhlenbeck and Ford, 1963]).
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2. The choice of cells. One might perhaps hope, at first sight, that the pro-
cedure of partitioning p-space into cells is only a technical or didactic device and
can be eliminated by finally taking a limit in which dw — 0; similar to the proce-
dure of his 1872 paper. This hope is dashed because the expression (58) diverges.
Indeed, the whole prospect of using combinatorics would disappear if we did not
adopt a finite partition. But also the special choice to give all cells equal volume
in position and velocity variables is not quite self-evident, as Boltzmann himself
shows. In fact, before he develops the argument given here, his paper presents
a discussion in which the particles are characterized by their energy instead of
position and velocity. This leads him to carve up p-space into cells of equal size de
in energy. He then shows that the combinatorial argument fails to reproduce the
desired Maxwell distribution for particles moving in 3 spatial dimensions.®® This
failure is then remedied [Boltzmann, 1909, II, p. 190] by switching to a choice of
equally sized cells in dw in position and velocity. The latter choice is apparently
'right’, in the sense that leads to the desired result. However, since the choice
clearly cannot be relegated to a matter of convention, it leaves open the question
of justification.

Modern commentators are utterly divided in the search for a direction in which
a motivation for the choice of the size of these cells can be found. Some argue
that the choice should be made in accordance with the actual finite resolution of
measuring instruments or human observation capabilities. The question whether
these do in fact favour a partition into cells of equal phase space volume has hardly
been touched upon. Others [Popper, 1982; Redhead, 1995] reject an appeal to
observation capacities on the grounds that these would introduce a ‘subjective’ or
‘anthropocentric’ element into the explanation of irreversibility (see also [Jaynes,
1965; Griinbaum, 1973; Denbigh and Denbigh, 1985; Ridderbos, 2002]).

3. Micro versus macro. The essential step in the argument is the distinction
between micro- and macrostates. This is indeed the decisive new element, that al-
lowed Boltzmann a complete reinterpretation of the notion and role of probability.

In 1872 and before, the distribution of state f was identified with a probability
(namely of a molecular state, cf. Remark 1 of paragraph 4.2). On the other
hand, in the present work it, or its discrete analogue Z, is a description of the
macrostate of the gas, to which a probability is assigned. Essentially, the role
of the distribution of state has been shifted from defining a probability measure
to being a stochastic variable. Its previous role is taken over by a new idea:
Probabilities are not assigned to the particles, but to the macrostate of the gas as
a whole, and measured by the corresponding volume in phase space.

Another novelty is that Boltzmann has changed his concept of equilibrium.
Whereas previously the defining characteristic of equilibrium was its stationarity,

35The problem is that for an ideal gas, where all energy is kinetic, de oc vdv. On the other
hand, for three-dimensional particles, dw o v2§v. The function f derived from (59) and (63)
thus has a different dependence on v in the two cases. As Boltzmann notes, the two choices are
compatible for particles in two dimensions (i.e. discs moving in a plane).
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in Boltzmann’s new view it is conceived as the macrostate (i.e. a region in phase
space) that takes up the largest volume. As a result, a system in a state of equi-
librium need not remain there: in the course of time, the microstate of the system
may fluctuate in and out of this equilibrium region. Boltzmann briefly investi-
gated the probability of such fluctuations in his [Boltzmann, 1878]. Almost thirty
years later, the experimental predictions for fluctuation phenomena by Einstein
and Smoluchowski provided striking empirical successes for statistical mechanics.

4. But what about evolutions? Perhaps the most important issue is this.
What exactly is the relation of the 1877b paper to Loschmidt’s objection and
Boltzmann’s primary reply to it (1877a)? The primary reply (cf. paragraph 4.3)
can be read as an announcement of two subjects of further investigation:

From the relative numbers of the various distributions of state, one
might even be able to calculate their probabilities. This could lead to
an interesting method of determining thermal equilibrium [Boltzmann,
1909, 11, p. 121]

This is a problem about equilibrium. The second announcement was that Boltz-
mann said “The case is completely analogous for the Second Law” [Boltzmann,
1909, II, p. 121]. Because there are so very many more uniform than non-uniform
distributions, it should be extraordinarily improbable that a system should evolve
from a uniform distribution of states to a non-uniform distribution of states. This
is a problem about evolution (cf. point 3 of section 4.3). In other words, one would
like to see that something like the statistical H-theorem actually holds.

Boltzmann’s [1877b] is widely read as a follow-up to these announcements. In-
deed, Boltzmann repeats the first quote above in the introduction of the paper
[Boltzmann, 1909, II, p. 165], indicating that he will address this problem. And
so he does, extensively. Yet he also states:

Our main goal is not to linger on a discussion of thermal equilibrium,
but to investigate the relations of probability with the Second Law of
thermodynamics [Boltzmann, 1909, II, p. 166].

Thus, the main goal of [1877b] is apparently to address the problem concerning
evolutions and to show how they relate to the Second Law. Indeed, this is what
one would naturally expect since the reversibility objection is, after all, a problem
concerned with evolutions. Even so, a remarkable fact is that the 1877b paper
hardly ever touches its self-professed “main goal” at all. As a matter of fact, I can
find only one passage in the remainder of the paper where a connection with the
Second Law is mentioned.

It occurs in Section V [Boltzmann, 1909, II, p. 216-7]. After showing that
in equilibrium states for monatomic gases the ‘permutability measure’ In |T'z| (for
which Boltzmann’s notation is ) is proportional to the thermodynamical entropy,
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up to an arbitrary additive constant, he concludes that, by choosing the constant
appropriately:36

(64) /? - gﬂ [ glnfzq

and adds:

It is known that when a system of bodies goes through reversible
changes, the total sum of the entropies of all these bodies remains
constant; but when there are among these processes also irreversible
(nicht umkehrbar) changes, then the total entropy must necessarily
increase. This follows from the familiar circumstance that [ dQ/T is
negative for an irreversible cyclic process. In view of (64), the sum of all
permutability measures of all bodies Y €2, or their total permutability
measure, must also increase. Hence, permutability is a quantity which
is, up to a multiplicative and additive constant, identical to entropy,
but which retains a meaning also during the passage of an irreversible
body [sic— read: “process”], in the course of which it continually in-
creases [Boltzmann, 1909, 1T p.217]

How does this settle the problem about evolutions, and does it provide a satisfac-
tory refutation of the reversibility objection? In the literature, there are at least
four views about what Boltzmann’s response actually intended or accomplished.

4a. Relying on the separation between micro- and macroscales: A view
that has been voiced recently, e.g. by [Goldstein, 2001], is that Boltzmann had, by
his own argument, adequately and straightforwardly explained why entropy should
tend to increase. In particular, this view argues, the fact of the overwhelmingly
large phase space volume of the set I'oq of all equilibrium phase points, compared
to the set of non-equilibrium points already provides a sufficient argument.

For a non-equilibrium phase point = of energy F, the Hamiltonian
dynamics governing the motion x; arising from z would have to be
ridiculously special to avoid reasonably quickly carrying z; into I'eq
and keeping it there for an extremely long time — unless, of course x
itself were ridiculously special [Goldstein, 2001, p. 6].

In fact, this view may lay some claim to being historically faithful. As we have
seen, [Boltzmann, 1877a) did claim that the large probability for an evolution
towards equilibrium did follow from the large differences in number of states.
The main difficulty with this view is that, from a modern perspective, it is
hard to maintain that it is adequate. States don’t evolve into other states just
because there are more of the latter, or because they make up a set of larger

36 Actually, equation (64) is the closest he got to the famous formula on his tombstone, since
Q = InW, and Boltzmann adopts a temperature scale that makes k = 2/3.
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measure. The evolution of a system depends only on its initial state and its
Hamiltonian. Questions about evolution can only be answered by means of an
appeal to dynamics, not by the measure of sets alone. To take an extreme example,
the trajectory covered by zy, i.e. the set {z; : ¢t € R} is a set of measure zero
anyway; and hence very special. By contrast, its complement, i.e. the set of states
not visited by a given trajectory is huge: it has measure one.  Certainly, we
cannot argue that the system cannot avoid wandering into the set of states that it
does not visit. Another example is that of a system of non-interacting particles,
e.g., the ideal gas. In this case, all the energies of the individual particles are
conserved, and because of these conserved quantities, the phase point can only
visit a very restricted region of phase space.?”

The lesson is, of course, that in order to obtain any satisfactory argument why
the system should tend to evolve from non-equilibrium states to the equilibrium
state, we should make some assumptions about its dynamics. In any case, judg-
ments like “reasonable” or “ridiculous” remain partly a matter of taste. The
reversibility objection is a request for mathematical proof (which, as the saying
goes, is something that even convinces an unreasonable person).

43. Relying on the ergodic hypothesis: A second, and perhaps the most
well-known, view to this problem is the one supplied by the Ehrenfests. In essence,
they suggest that Boltzmann somehow relied on the ergodic hypothesis in his
argument.

It is indeed evident that if the ergodic hypothesis holds, a state will spend time in
the various regions of the energy hypersurface in phase space in proportion to their
volume. That is to say, during the evolution of the system along its trajectory,
regions with a small volume, corresponding to highly non-uniform distributions of
state are visited only sporadically, and regions with larger volume, corresponding
to more uniform distributions of state more often.

This should also make it plausible that if a system starts out from a very
small region (an improbable state) it will display a tendency to evolve towards the
overwhelmingly larger equilibrium state. Of course, this ‘tendency’ would have
to be interpreted in a qualified sense: the same ergodic hypothesis would imply
that the system cannot stay inside the equilibrium state forever and thus there
would necessarily be fluctuations in and out of equilibrium. Indeed, one would
have to state that the tendency to evolve from improbable to probable states is
itself a probabilistic affair: as something that holds true for most of the initial
states, or for most of the time, or as some or other form of average behaviour. In
short, we would then hopefully obtain some statistical version of the H-theorem.
What exactly the statistical H-theorem should say remains an open problem in the
Ehrenfests’ point of view. Indeed they distinguish between several interpretations
(the so-called ‘concentration curve’ and the ‘bundle of H-curves’ [Ehrenfest and
Ehrenfest-Afanassjewa, 1912, p. 31-35)).

371t is somewhat ironic to note, in view of remark 1 above, that this is the only case compatible
with Boltzmann’s argument. This gives rise to Khinchin’s “methodological paradox” (cf. 1019).
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Now, it is undeniable that the Ehrenfests’ reading of Boltzmann’s intentions
has some clear advantages. In particular, even though nobody has yet succeeded
in proving a statistical H-theorem on the basis of the ergodic hypothesis, or on
the basis of the assumption of metric transitivity (cf. paragraph 6.1, one might
hope that some statistical version of the H-theorem is true.

One problem here is that the assumptions Boltzmann used in his paper are re-
stricted to non-interacting molecules, for which the ergodic hypothesis is demon-
strably false. But even more importantly, it is clear that Boltzmann did not follow
this line of argument in 1877b at all. Indeed, he nowhere mentions the ergodic
hypothesis. In fact he later commented on the relation between the 1877b paper
and the ergodic hypothesis of 1868, saying;:

On that occasion [i.e. in (1877b)] ... I did not wish to touch upon the
question whether a system is capable of traversing all possible states
compatible with the equation of energy [Boltzmann, 1881a, Abh. II
p. 572].

4v. Relying on the H-theorem: A third point of view, one to which this
author adhered until recently, is that, in (1877b) Boltzmann simply relied on the
validity of the H-theorem of 1872. After all, it was the 1872 paper that proposed
to interpret —N H as entropy (modulo multiplicative and additive constants), on
the basis of the alleged theorem that it could never decrease. The 1877b paper
presents a new proposal, to link the entropy of a macrostate with In|I'z|. But this
proposal is motivated, if not derived, by showing that In |I'z| is (approximately)
equal to —NH, as in (61), whose interpretation as entropy was established in
(1872). It thus seems plausible to conjecture that Boltzmann’s thinking relied on
the results of that paper, and that the claim that states will evolve from improbable
to probable states, i.e. that In|T'z| shows a tendency to increase in time, likewise
relied on the H-theorem he had proved there.?® The drawback of this reading is
that it makes Boltzmann’s response to the reversibility objection quite untenable.
Since the objection as formulated in his (1877a) calls the validity of the H-theorem
into question, a response that presupposes the validity of this theorem is of no help
at all.

45. Bypassing the H-theorem: [Janssen, 2002] has a different reading. He
notes: “In Boltzmann’s 1877 paper the statement that systems never evolve from
more probable to less probable states is presented only as a new way of phrasing the
Second Law, not as a consequence of the H-theorem” (p. 13). Indeed, any explicit
reference to the H-theorem is absent in the 1877b paper. However, what we are
to make of this is not quite certain. The earlier paper (1877a) did not mention
the theorem either, but only discussed “any attempt to prove that [ % < 0.
Still, this is commonly seen as an implicit reference to what is now known as the

38The conjecture is supported by the fact Boltzmann’s later exposition in 1896 is presented
along this line.
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H-theorem, but which did not yet have a particular name at that time. Indeed,
the H-theorem itself was characterized in 1872 only as a new proof that [ % <0
(cf. the quotation on page 965). So, the fact that the H-theorem is not explicitly
mentioned in (1877b) is not by itself a decisive argument that he did not intend
to refer to it.

Even so, the fact that he presented the increase of entropy as something which
was well-known and did not refer to the 1872 paper at all, does make Janssen’s
reading plausible. So, perhaps Boltzmann merely relied on the empirical valid-
ity of the Second Law as a ground for this statement, and not at all on any
proposition from kinetic theory of gases.3® This, of course, would undermine even
more strongly the point of view that Boltzmann had a statistical version of the
H-theorem, or indeed any theorem at all, about the probability of time evolution.

The reversibility objection was not about a relationship between the phenomeno-
logical Second Law and the H-theorem, but about the relationship between the
H-theorem and the mechanical equations of motion. So even though Janssen’s
reading makes Boltzmann’s views consistent, it does not make the 1877b paper
provide a valid answer to Loschmidt’s objection.

4e. The urn analogy — victory by definition? At the risk of perhaps
overworking the issue, I also want to suggest a fifth reading. Boltzmann’s (1877b)
contains an elaborate discussion of repeated drawings from an urn. In modern
terms, he considers a Bernoulli process, i.e., a sequence of independent identically
distributed repetitions of an experiment with a finite number of possible outcomes.
To be concrete, consider an urn filled with m differently labeled lots, and a sequence
of N drawings, in which the lot i is drawn n; times (}..", n; = N). He represents
this sequence by a “distribution of state” Z = (nq,...,n,,). In this discussion, the
probability of these distributions of state is at first identified with the (normalized)
number of permutations by which Z can be produced. In other words

N!

(65) Prob(Z) —
nil- - ng,!

But halfway this discussion [Boltzmann, 1909, II, p. 171], he argues that one can
redefine probabilities in an alternative fashion, namely, as the relative frequency
of occurrence during later drawings of a sequence of N lots. Thus, even when,
on a particular trial, an improbable state Z occurred, we can still argue that on
a later drawings, a more probable state will occur. Boltzmann speaks about the
changes in Z during the consecutive repetitions as an evolution. He then says:

39Further support for this reading can be gathered from later passages. For example, [Boltz-
mann, 1897b] writes “Experience shows that a system of interacting bodies is always found
‘initially’ in an improbable state and will soon reach the most probable state (that of equilib-
rium). [Boltzmann, 1909, III, p. 607]. Here too, Boltzmann presents the tendency to evolve from
improbable to more probable states as a fact of experience rather than the consequence of any
theorem.
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The most probable distribution of state must therefore be defined as
that one to which most [states] will evolve to [Boltzmann, 1909, II,
p. 172].

Although he does not make the point quite explicitly, the discussion of urn
drawings is undoubtedly meant as an analogy for the evolution of the distribution
of state in a gas. Hence, it is not implausible that, in the latter case too, Boltzmann
might have thought that by definition the most probable distribution of state is
the one that most states will evolve to. And this, in turn, would mean that he
regarded the problem about evolutions not as something to be proved, and that
might depend on the validity of specific dynamical assumptions like the ergodic
hypothesis or the Stofizahlansatz, but as something already settled from the outset.
This would certainly explain why Boltzmann did not bother to address the issue
further.

Even so, this reading too has serious objections. Apart from the fact that it
is not a wise idea to redefine concepts in the middle of an argument, the analogy
between the evolution of an isolated gas and a Bernoulli process is shaky. In the
first case, the evolution is governed by deterministic laws of motion; in the latter
one simply avoids any reference to underlying dynamics by the stipulation of the
probabilistic independence of repeated drawings. However, see paragraph 6.2.

To sum up this discussion of Boltzmann’s answer to the reversibility objection:
it seems that on all above readings of his two 1877 papers, the lacuna between
what Boltzmann had achieved and what he needed to do to answer Loschmidt
satisfactorily — i.e. to address the issue of the evolution of distributions of state
and to prove that non-uniform distributions tend, in some statistical sense, to
uniform ones, or to prove any other reformulation of the H-theorem — remains
striking.

4.5 The recurrence objection
Poincaré

In 1890, in his famous treatise on the three-body problem of celestial mechan-
ics, Poincaré derived what is nowadays called the recurrence theorem . Roughly
speaking, the theorem says that for every mechanical system with a bounded phase
space, almost every initial state of the system will, after some finite time, return
to a state arbitrarily closely to this initial state, and indeed repeat this infinitely
often.

In modern terms, the theorem can be formulated as follows:

RECURRENCE THEOREM: Consider a dynamical system*® (I", A, u, T')

40Gee section 6.1 for a definition of dynamical systems. But in short: I' is a phase space, A a
family of measurable subsets of I' and 7T is a one-parameter continuous group of time evolutions
T:: T xR —T.
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with p(I') < co. Let A € A be any measurable subset of I',and define,
for a given time 7, the set

(66) B={x : c€ A&Vt>1:Tix & A}
Then
(67) w(B) =0.

In particular, for a Hamiltonian system, if we choose I' to be the energy hyper-
surface ', take A to be a ‘tiny’ region in I'g, say an open ball of diameter € in
canonical coordinates, the theorem says that the set of points in this region whose
evolution is such that they will, after some time 7, never return to region A, has
measure zero. In other words, almost every trajectory starting within A will after
any finite time we choose, later return to A.

Poincaré had already expressed his objections against the tenability of a me-
chanical explanation of irreversible phenomena in thermodynamics earlier (e.g.
[Poincaré, 1889]). But armed with his new theorem, he could make the point even
stronger. In his 1893, he argued that the mechanical conception of heat is in con-
tradiction with our experience of irreversible processes. According to the English
kinetic theories, says Poincaré:

[t}he world tends at first towards a state where it remains for a long
time without apparent change; and this is consistent with experience;
but it does not remain that way forever, it the theorem cited above is
not violated; it merely stays there for an enormously long time, a time
which is longer the more numerous are the molecules. This state will
not be the final death of the universe but a sort of slumber, from which
it will awake after millions and millions of centuries.

According to this theory, to see heat pass from a cold body into a warm
one, it will not be necessary to have the acute vision, the intelligence
and the dexterity of Maxwell’s demon; it will suffice to have a little
patience [Brush, 2003, p.380].

He concludes that these consequences contradict experience and lead to a “definite
condemnation of mechanism” [Brush, 2003, p.381].

Of course, Poincaré’s “little patience”, even for “millions and millions of cen-
turies” is a rather optimistic understatement. Boltzmann later estimated the time
needed for a recurrence in 1 cc of air to be 101" seconds (see below): utterly be-
yond the bounds of experience. Poincaré’s claim that the results of kinetic theory
are contradicted by experience is thus too hasty.

Poincaré’s article does not seem to have been noticed in the contemporary
German-language physics community — perhaps because he criticized English
theories only. However, Boltzmann was alerted to the problem when a slightly
different argument was put forward by Zermelo in 1896. The foremost difference
is that in Zermelo’s argument experience does not play a role.
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Zermelo’s argument

Zermelo (1896a) points out that for a Hamiltonian mechanical system with a
bounded phase space, Poincaré’s theorem implies that, apart from a set of singular
states, every state must recur almost exactly to its initial state, and indeed repeat
this recurrence arbitrarily often. As a consequence, for any continuous function F'
on phase space, F(z;) cannot be monotonically increasing in time, (except when
the initial state is singular); whenever there is a finite increase, there must also
be a corresponding decrease when the initial state recurs. (see [Olsen, 1993] for a
modern proof of this claim) Thus, it would be impossible to obtain ‘irreversible’
processes. Along the way, Zermelo points out a number of options to avoid the
problem.

1. Either we assume that the gas system has no bounded phase space. This
could be achieved by letting the particles reach infinite distances or infinite ve-
locities. The first option is however excluded by the assumption that a gas is
contained in a finite volume. The second option could be achieved when the
gas consists point particles which attract each other at small distances, (e.g. an
F o« r~2 inter-particle attractive force can accelerate them toward arbitrarily high
velocities.) However, on physical grounds one ought to assume that there is always
repulsion between particles at very small distances.

2. Another possibility is to assume that the particles act upon each other by
velocity-dependent forces. This, however would lead either to a violation of the
conservation of energy or the law of action and reaction, both of which are essential
to atomic theory.

3. The H-theorem holds only for those special initial states which are the
exception to the recurrence theorem, and we assume that only those states are
realized in nature. This option would be unrefutable, says Zermelo. Indeed, the
reversibility objection has already shown that not all initial states can correspond
to the Second Law. However, here we would have to exclude the overwhelming
majority of all imaginable initial states, since the exceptions to the Recurrence
Theorem only make up a set of total extension (i.e. in modern language: measure)
zero. Moreover, the smallest change in the state variables would transform a
singular state into a recurring state, and thus suffice to destroy the assumption.
Therefore, this assumption “would be quite unique in physics and I do not believe
that anyone would be satisfied with it for very long.”

This leaves only two major options:

4. The Carnot-Clausius principle must be altered.*!

5. The kinetic theory must be formulated in an essentially different way, or even
be given up altogether.

Zermelo does not express any preference between these last two options. He
concludes that his aim has been to explain as clearly as possible what can be
proved rigorously, and hopes that this will contribute to a renewed discussion and

41By this term, Zermelo obviously referred to the Second Law, presumably including the Zeroth
Law.
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final solution of the problem.

I would like to emphasize that, in my opinion, Zermelo’s argument is entirely
correct. If he can be faulted for anything, it is only that he had not noticed that
in his very recent papers, Boltzmann had already been putting a different gloss on
the H-theorem.

Boltzmann’s response

[Boltzmann, 1896b] response opens by stating that he had repeatedly pointed out
that the theorems of gas are statistical. In particular, he says, he had often em-
phasized as clearly as possible that the Maxwell distribution law is not a theorem
from ordinary mechanics and cannot be proven from mechanical assumptions.*?
Similarly, from the molecular viewpoint, the Second Law appears merely as a
probability statement. He continues with a sarcastic remark:

Zermelo’s paper shows that my writings have been misunderstood; nev-
ertheless it pleases me for it appears to be the first indication that these
works have been noticed in Germany.*3

Boltzmann agrees that Poincaré’s recurrence theorem is “obviously correct”, but
claims that Zermelo’s application of the theorem to gas theory is not. His counter
argument is very similar to his (1895) presentation in Nature, a paper that Zermelo
had clearly missed.

In more detail, this argument runs as follows. Consider a gas in a vessel with
perfectly smooth and elastic walls, in an arbitrary initial state and let it evolve
in the course of time. At each time t we can calculate H(t). Further, consider
a graph of this function, which Boltzmann called: the H-curve. In his second
reply to Zermelo [Boltzmann, 1897a], he actually produced a diagram. A rough
an modernized version of such an H-curve is sketched in Fig. 3.

Barring all cases in which the motion is ‘regular’, e.g. when all the molecules
move in one common plane, Boltzmann claims the following properties of the
curve:

(i). For most of the time, H(t) will be very close to its minimum value, say Hpip.
Moreover, whenever the value of H(t) is very close to Hyp, the distribution
of molecular velocities deviates only very little from the Maxwell distribution.

42This is, as we have seen, a point Boltzmann had been making since 1877. However, one might
note that just a few years earlier, [Boltzmann, 1892], after giving yet another derivation of the
Maxwell distribution (this time generalized to a gas of hard bodies with an arbitrary number of
degrees of freedom that contribute quadratic terms to the Hamiltonian), had concluded: “I believe
therefore that its correctness [i.e. of the Maxwell distribution law] as a theorem of analytical
mechanics can hardly be doubted” [Boltzmann, 1909, III p.432]. But as we have seen on other
occasions, for Boltzmann, statements that some result depended essentially on probability theory,
and the statement that it could be derived as a mechanical theorem, need not exclude each other.

43Eight years earlier, Boltzmann had been offered the prestigious chair in Berlin as successor
of Kirchhoff, and membership of the Prussian Academy. The complaint that his works did not
draw attention in Germany is thus hard to take seriously.
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Figure 3. A (stylized) example of an H-curve

(ii). The curve will occasionally, but very rarely, rise to a peak or summit, that
may be well above Hpiy.

(iii). The probability of a peak decreases extremely rapidly with its height.

Now suppose that, at some initial time ¢ = 0, the function takes a very high value
Hy, well above the minimum value. Then, Boltzmann says, it will be enormously
probable that the state will, in the course of time, approach the Maxwell dis-
tribution, i.e., H(t) will decrease towards Hpn; and subsequently remain there
for an enormously long time, so that the state will deviate only very little from
the Maxwell distribution during vanishingly short durations. Nevertheless, if one
waits even longer, one will encounter a new peak, and indeed, the original state
will eventually recur. In a mathematical sense, therefore, these evolutions are
periodic, in full conformity with Poincaré’s recurrence theorem.

What, then, is the failure of Zermelo’s argument? Zermelo had claimed that only
very special states have the property of continually approaching the Maxwell dis-
tribution, and that these special states taken together make up an infinitely small
number compared to the totality of possible states. This is incorrect, Boltzmann
says. For the overwhelming majority of states, the H-curve has the qualitative
character sketched above.

Boltzmann also took issue with (what he claimed to be Zermelo’s) conclusion
that the mechanical viewpoint must somehow be changed or given up. This con-
clusion would only be justified, he argues, if this viewpoint led to some consequence
that contradicted experience. But, Boltzmann claims, the duration of the recur-
rence times is so large that no one will live to observe them.

To substantiate this claim about the length of the recurrence time, he presents,
in an appendix an estimate of the recurrence time for 1 cc of air at room tempera-
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ture and pressure. Assuming there are 10° molecules in this sample,** and choos-
ing cells in the corresponding j-space as six-dimensional cubes of width 10™° m in
(physical) space and 1 m/s in velocity space, Boltzmann calculates the number of
different macrostates, i.e. the number of different ways in which the molecules can
be distributed over these cells as (roughly) 1019°. He then assumes that, before
a recurrence of a previous macrostate, the system has to pass through all other
macrostates. Even if the molecules collide very often, so that the system changes
its macrostate 1027 times per second, the total time it takes to go through this
huge number of macrostates will still take 101°"~27 ~ 101%° seconds. In fact, this
time is so immensely large that its order of magnitude is not affected whether we
express it in seconds, years, millennia, or what have you.

The upshot is, according to Boltzmann: if we adopt the view that heat is
a form of motion of the molecules, obeying the general laws of mechanics, and
assume that the initial state of a system is very unlikely, we arrive at a theorem
which corresponds to the Second Law for all observed phenomena. He ends with
another sarcasm:

All the objections raised against the mechanical view of Nature are
therefore empty and rest on errors. But whoever cannot overcome the
difficulties, which a clear understanding of the theorems of gas theory
poses, should indeed follow the advice of Mr Zermelo and decide to
give up the theory completely. [Boltzmann, 1909, III p. 576].

Zermelo’s reply

[Zermelo, 1896b] notes that Boltzmann’s response confirms his views by admit-
ting that the Poincaré theorem is correct and applicable to a closed system of
gas molecules. Hence, in such a system, “all [sic] motions are periodic and not
irreversible in the strict sense”. Thus, kinetic gas theory cannot assert that there
is a strict monotonic increase of entropy as the Second Law would require. He
adds: “I think this general clarification was not at all superfluous” [Brush, 2003,
p. 404].

Therefore, Zermelo argues, his main point had been conceded: there is indeed
a conflict between thermodynamics and kinetic theory, and it remains a matter
of taste which of the two is abandoned. Zermelo admits that observation of the
Poincaré recurrences may well fall beyond the bounds of human experience. He
points out (correctly) that Boltzmann’s estimate of the recurrence time presup-
poses that the system visits all other cells in phase space before recurring to an
initial state. This estimate is inconclusive, since the latter assumption is somewhat
ad hoc. In general, these recurrence times need not “come out so ‘comfortingly’
large” [Brush, 2003, p. 405]. But, as I stressed before, the relation with experience
simply was no issue in Zermelo’s objection.

44 Actually, modern estimates put the number of molecules in lcc of air closer to 1019, which

. . - 19
would make Boltzmann’s estimate for recurrence time even larger still, i.e. 1010,
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The main body of Zermelo’s reply is taken by an analysis of the justification
of and consequences drawn from Boltzmann’s assumption that the initial state is
very improbable, i.e., that H is very high. Zermelo argues that even in order to
obtain an approximate or empirical analogue of the Second Law, as Boltzmann
envisaged, i.e. an approach to a long-lasting, but not permanent equilibrium state,
it would not suffice to show this result for one particular initial state. Rather, one
would have to show that evolutions always take place in the same sense, at least
during observable time spans.

As Zermelo understands it, Boltzmann does not merely assume that the initial
state has a very high value for H, but also that, as a rule, the initial state lies on
a maximum, or has just passed a maximum. If this assumption is granted, then it
is obvious that one can only observe a decreasing flank of the H-curve. However,
Zermelo protests, one could have chosen any time as the initial time. In order to
obtain a satisfactorily general result, the additional assumption would thus have
to apply at all times. But then the H-curve would have to consist entirely of
maxima. But this leads to nonsense, Zermelo argues, since the curve cannot be
constant. Zermelo concludes that Boltzmann’s assumptions about the initial state
are thus in need of further physical explanation.

Further, Zermelo points out that probability theory, by itself, is neutral with
respect to the direction of time, so that no preference for evolutions in a particular
sense can be derived from it. He also points out that Boltzmann apparently equates
the duration of a state and its extension (i.e. the relative time spent in a region
and the relative volume of that region in phase space). “I cannot find that he has
actually proved this property” [Brush, 2003, p. 406].

Boltzmann’s second reply

In his second reply 1897a, Boltzmann rebuts Zermelo’s demand for a physical
explanation of his assumptions about the initial state of the system with the claim
that the question is not what will happen to an arbitrarily chosen initial state, but
rather what will happen to a system in the present state of the universe.

He argues that one should depart from the (admittedly unprovable) assumption
that the universe (or at least a very large part of the universe that surrounds us
started in a very improbable state and still is in an improbable state. If one then
considers a small system (e.g. a gas) that is suddenly isolated from the rest of the
universe, there are the following possibilities: (i) The system may already be in
equilibrium, i.e. H is close to its minimum value. This, Boltzmann says, is by far
the most probable case. But among the few cases in which the system is not in
equilibrium, the most probable case is (ii) that H will be on a maximum of the
H-curve, so that it will decrease in both directions of time. Even more rare is the
case in which (iii) the initial value of H will fall on a decreasing flank of the H
curve. But such cases are just as frequent as those in which (iv) H falls on an
increasing flank.*?

45The Ehrenfests 1912 later added a final possible case (v): H may initially be on a local
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Thus, Boltzmann’s explanation for the claim that H is initially on a maximum
is that this would be the most likely case for a system not in equilibrium, which
isolated from the rest of the universe in its present state.

This occasion is perhaps the first time that Boltzmann advanced an explana-
tion of his claims as being due to an assumption about initial state of the system,
ultimately tied to an assumption about the initial conditions of the universe. To-
day, this is often called the past-hypothesis (cf. [Albert, 2000; Winsberg, 2004;
Callender, 2004; Earman, 2006]).

He ends his reply with the observation that while the mechanical conception of
gas theory agrees with the Clausius-Carnot conception [i.e. thermodynamics] in all
observable phenomena, a virtue of the mechanical view is that it might eventually
predict new phenomena, in particular for the motion of small bodies suspended
in fluids. These prophetic words were substantiated eight years later in Einstein’s
work on Brownian motion.

However, he does not respond to Zermelo’s requests for more definite proofs of
the claims (1) —(3), or of the equality of phase space volume and time averages
in particular. He bluntly states that he has thirty years of priority in measuring
probabilities by means of phase space volume (which is true) and adds that he has
always had done so (which is false). Even so, one cannot interpret this claim of
Boltzmann as a rejection of the time average conception of probability. A few lines
below, he claims that the most probable states will also occur most frequently, ex-
cept for a vanishingly small number of initial states. He does not enter into a proof
of this. Once again, this provides an instance where the Ehrenfests conjectured
that Boltzmann might have had the ergodic hypothesis in the back of his mind.

Remarks

Boltzmann’s replies to Zermelo have been recommended as “superbly clear and
right on the money” [Lebowitz, 1999, p. S347]. However, as will clear from the
above and the following remarks, I do not share this view. See also [Klein, 1973;
Curd, 1982; Batterman, 1990; Cercignani, 1998; Brush, 1999; Earman, 2006] for
other commentaries on the Zermelo-Boltzmann dispute.

1. The issues at stake It is clear that, in at least one main point of the dispute,
Boltzmann and Zermelo had been talking past each other. When Zermelo argued
that in the kinetic theory of gases there can be no continual approach towards a
final stationary state, he obviously meant this in the sense of a limit ¢ — oc.
But Boltzmann’s reply indicates that he took the “approach” as something that is
not certain but only probable, and as lasting for a very long, but finite time. His
graph of the H-curve makes abundantly clear that lim;_ .. H(t) does not exist.
It is true that his statistical reading of the H-theorem, as laid down in the claims
(1)—(3) above, was already explicit in (Boltzmann 1895), and thus Boltzmann could

minimum of the H-curve, so that it increases in both directions of time. But by a similar
reasoning, that case is even less probable than the cases mentioned by Boltzmann.
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claim with some justification that his work had been overlooked. But in fairness,
one must note that, even in this period, Boltzmann was sending mixed messages
to his readers. Indeed, the first volume of Boltzmann’s Lectures on Gas Theory,
published in 1896, stressed, much like his original [1872] paper on the H-theorem,
the necessity and exceptionless generality of the H-theorem, adding only that the
theorem depended on the assumption of molecular disorder (as he then called the
Stoffzahlansatz): ¢

[T]he quantity designated as H can only decrease; at most it can re-
main constant.[...] The only assumption we have made here is that
the distribution of velocities was initially ‘molecularly disordered’ and
remains disordered. Under this condition we have therefore proved
that the quantity called H can only decrease and that the distribution
of velocities must necessarily approach the Maxwell distribution ever
more closely [Boltzmann, 1896, § 5, p. 38].

Zermelo might not have been alone in presuming that Boltzmann had intended
this last claim literally, and was at least equally justified in pointing out that
Boltzmann’s clarification “was not at all superfluous”.

On the other hand, Boltzmann misrepresented Zermelo’s argument as conclud-
ing that the mechanical view should be given up. As we have seen, Zermelo only
argued for a dilemma between the strict validity of the kinetic theory and the strict
validity of thermodynamics. Empirical matters were not relevant to Zermelo’s
analysis. Still, Boltzmann is obviously correct when he says that the objection
does not yet unearth a conflict with experience. Thus, his response would have
been more successful as a counter-argument to Poincaré than to Zermelo.

2. The statistical reading of the H-theorem. Another point concerns the
set of claims (1)—(3) that Boltzmann lays down for the behaviour of the H-curve.
Together, they form perhaps the most clearly stated and explicit form of the
“statistical reading of the H-theorem” (cf remark 3 on page 972). Yet they only
have a loose connection to the original theorem. It is unclear, for example, whether
these claims still depend on the Stofizahlansatz, the assumption that the gas is
dilute, etc. It thus remains a reasonable question what argument we have for their
validity. Boltzmann offers none. In his 1895 paper in Nature, he argued as if
he had proved as much in his earlier papers, and added tersely: ”I will not here
repeat the proofs given in my papers” [Boltzmann, 1909, III p. 541]. But surely,
Boltzmann never proved anything concerning the probability of the time evolution
of H, and at this point there remains a gap in his theory. Of course, one might

46in his reply to Zermelo, Boltzmann claimed that his discussion of the H-theorem in the Lec-
tures on Gas theory was intended under the explicitly emphasized assumption that the number
of molecules was infinite, so that the recurrence theorem did not apply. However, I can find no
mention of such an assumption in this context. On the contrary, the first occasion on which this
latter assumption appears is in §6 on page 46 where it is introduced as “an assumption we shall
make later”, suggesting that the previous discussion did not depend on in it.
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speculate on ways to bridge this gap; e.g. that Boltzmann implicitly and silently
relied on the ergodic hypothesis, as the Ehrenfests suggested or in other ways, but
I refrain from discussing this further. The most successful modern attempt so far
to formulate and prove a statistical H-theorem has been provided by Lanford, see
paragraph 6.4 below.

5 GIBBS’ STATISTICAL MECHANICS

The birth of statistical mechanics in a strict sense, i.e. as a coherent and systematic
theory, is marked by the appearance of J.W. Gibbs’s book (1902) which carries
this title: Elementary Principles in Statistical Mechanics; developed with especial
reference to the rational foundation of thermodynamics. His point of departure is
a general mechanical system governed by Hamiltonian equations of motion, whose
(micro)states are represented by points in the mechanical phase space T

Gibbs avoids specific hypotheses about the microscopic constitution of such a
system. He refers to the well-known problem concerning the anomalous values of
the specific heat for gases consisting of diatomic molecules (mentioned in footnote
10), and remarks:

Difficulties of this kind have deterred the author from attempting to
explain the mysteries of nature, and have forced him to be contented
with the more modest aim of deducing some of the more obvious propo-
sitions relating to the statistical branch of mechanics [Gibbs, 1902,
p. viii].
It is clear from this quote that Gibbs’ main concern was with logical coherence,
and less with the molecular constitution. (Indeed, only the very last chapter of
the book is devoted to systems composed of molecules.) This sets his approach
apart from Maxwell and Boltzmann.*”
The only two ingredients in Gibbs’ logical scheme are mechanics and probability.
Probability is introduced here as an ingredient not reducible to the mechanical
state of an individual system, but by means of the now familiar “ensemble”:

We may imagine a great number of systems of the same nature, but
differing in the configurations and velocities which they have at a given
instant, and differing not merely infinitesimally, but it may be so as
to embrace every conceivable combination of configuration and veloc-
ities. And here we may set the problem, not to follow a particular
system through its succession of configurations, but to determine how
the whole number of systems will be distributed among the various
conceivable configurations and velocities at any required time, when
the distribution has been given for some one time [Gibbs, 1902, p. v].

47Tt also sets him apart from the approach of Einstein who, in a series of papers (1902, 1903,
1904) independently developed a formalism closely related to that of Gibbs, but used it as a probe
to obtain empirical tests for the molecular/atomic hypothesis (cf. [Gearhart, 1990; Navarro, 1998;
Uffink, 2006]).
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and

What we know about a body can generally be described most accu-
rately and most simply by saying that it is one taken at random from
a great number (ensemble) of bodies which are completely described.

(p. 163)

Note that Gibbs is somewhat non-committal about any particular interpretation
of probability. (Of course, most of the presently distinguished interpretations of
probability were only elaborated since the 1920s, and we cannot suppose Gibbs
to have pre-knowledge of those distinctions.) A modern frequentist (for whom a
probability of an event is the frequency with which that event occurs in a long
sequence of similar cases) will have no difficulty with Gibbs’ reference to an ensem-
ble, and will presumably identify that notion with von Mises’ notion of a Kollektiv.
On the other hand, authors like Jaynes who favour a subjectivist interpretation
of probability (in which the probability of an event is understood as a state of
knowledge or belief about that event) have emphasized that in Gibbs’ approach
the ensemble is merely ‘imagined’ and a tool for representing our knowledge.

The ensemble is usually presented in the form of a probability density function
p over T, such that [, p(x)dz is the relative number of systems in the ensemble
whose microstate = (¢1,p1;.--;dn,Pn) lies in the region A. The evolution of
an ensemble density pg at time ¢ = 0 is dictated by the Hamiltonian equations of
motion. In terms of the (formal) time evolution operator T, we get

(68) pila) = po(Tsx)
or, in differential form:

(69) 220D 41 p)

where {-,-} denotes the Poisson bracket:

N
OH 0p OH 0p
70) {Hpt=Y o0 =220
(70) {H,p} ;3%‘ op;  Op; 0G;

A case of special interest is that in which the density function is stationary, i.e.
Ipe(z)
ot
This is what Gibbs calls the condition of statistical equilibrium. Gibbs notes that

any density which can be written as a function of the Hamiltonian is stationary,
and proceeds to distinguish special cases, of which the most important are:

(71) Vt: =0.

12)  pule) ﬁd(H(x) _E) (microcanonical)
(73) po(z) = Z%&) exp(—H(x)/6) (canonical)
(714) poa(z,N) = . exp(—H(z)/0 + aN) (grand-canonical)

NIZ (6, «)
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where w(E), Z(0) and Z(6,a) are normalization factors. In the following I will
mainly discuss the canonical and microcanonical ensembles.

5.1 Thermodynamic analogies for statistical equilibrium

As indicated by the subtitle of the book, Gibbs’ main goal was to provide a 'rational
foundation’ for thermodynamics. He approaches this issue quite cautiously, by
pointing out certain analogies between relations holding for the canonical and
microcanonical ensembles and results of thermodynamics. At no point does Gibbs
claim to have reduced thermodynamics to statistical mechanics.

The very first analogy noticed by Gibbs is in the case of two systems, A and B
put into thermal contact. This is modeled in statistical mechanics by taking the
product phase space, ' yp = 'y XI'g, and a Hamiltonian H g = Ha+ Hg + Hins.-
If both A and B are described by canonical ensembles and if Hj, is ‘infinitely
small’ compared to the system Hamiltonian, then the combined system will be
in statistical equilibrium if 64 = fp. This, he says, “is entirely analogous to
...the corresponding case in thermodynamics” where “the most simple test of the
equality of temperature of two bodies is that they remain in thermal equilibrium
when brought into thermal contact” (ibid. p. 37). Clearly, Gibbs invites us to
think of statistical equilibrium as analogous to thermal equilibrium, and 6 as the
analogue of the temperature of the system.*®

A second point of analogy is in reproducing the ‘fundamental equation’ (23) of
thermodynamics:

(75) dU =TdS + > Fida;

where a; are the so-called external parameters (e.g. volume) and F; the associated

generalized forces (e.g. minus the pressure). For the canonical ensemble, Gibbs

derives a relation formally similar to the above fundamental equation:*?

(76) d{H) = 0do — > (A;)da;.

i

Here, (H) is the expectation value of the Hamiltonian in the canonical ensemble,
0 the modulus of the ensemble, o the so-called Gibbs entropy of the canonical
distribution:

(1) olou] =~ [ pu(o) 0 pu(z)da,

a; are parameters in the form of the Hamiltonian and the (A;) = <%> represent

48 A more elaborate discussion of the properties of the parameter # and their analogies to
temperature, is in Einstein (1902). That discussion also addresses the transitivity of thermal
equilibrium, i.e. the Zeroth Law of thermodynamics (cf. paragraph 2).

49Gee [Uhlenbeck and Ford, 1963; van Lith, 2001b] for details.
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the ‘generalized forces’.’® The equation suggests that the canonical ensemble

averages might serve as analogues of the corresponding thermodynamic quantities,
and 6 and o as analogues of respectively temperature and entropy.®!

Note the peculiarly different role of 8 and o in (76): these are not expectations
of phase space functions, but a parameter and a functional of the ensemble density
pe. This has a significant conceptual implication. The former quantities may be
thought of as averages, taken over the ensemble of some property possessed by
each individual system in the ensemble. But for temperature # and entropy o,
this is not so. In the case of  one can diminish this contrast — at least when H is
the sum of a kinetic and a potential energy term and the kinetic part is quadratic
in the momenta, i.e. H = Y, a;p; + U(q1,...qn) — because of the well-known
equipartition theorem. This theorem says that 6 equals twice the expected kinetic
energy for each degree of freedom:

(78) § = ailolo

Thus, in this case, one can find phase functions whose canonical expectation values
are equal to 6, and regard the value of such a function as corresponding to the
temperature of an individual system.??> But no function x on phase space exists
such that

(79) olpe] = (x)e for all 6.

Thus, the Gibbs entropy cannot be interpreted as an average of some property of
the individual members of the ensemble.

The next question is whether a differential equation similar to (76) can be
obtained also for the microcanonical ensemble. In this case, it is natural to con-
sider the same expressions (A;) and (H) as above, but now taken as expectations
with respect to the microcanonical ensemble, so that obviously (H)y,. = E. The
problem is then to find the microcanonical analogies to T and S. [Gibbs, 1902,
p. 124-128, 169-171] proposes the following:

dinQ(E)\
T R S
(50) — (E)
(81) S — InQ(E),
where
(82) QE) = / dpy ...dqn
H(z)<E
50 A more delicate argument is needed if one wishes to verify that 7(‘3—5> can really be identified

with pressure, i.e. the average force per unit area on the walls of the container. Such an argument
is given by [Martin-Lof, 1979, p. 21-25]

51 A crucial assumption in this derivation is that the differential expressions represent infinites-
imal elements of quasistatic processes during which the probability density always retains its
canonical shape. This assumption is in conflict with a dynamical evolution [van Lith, 2001b,
p. 141].

52For proposals of more generally defined phase functions that can serve as an analogy of
temperature, see [Rugh, 1997; Jepps et al., 2000].
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is known as the integrated structure function.

Remarkably, in a later passage, [Gibbs, 1902, p. 172-178] also provides a second
pair of analogies to temperature and entropy, namely:

(83) T (‘“I:”];E)) -

(84) S Inw(E),

where w is the structure function
dQFE
w(E) = AUE) = / dx.
dE H(z)=F

For this choice, the relation (75) is again reproduced. Thus, there appears to be a
variety of choice for statistical mechanical quantities that may serve as thermody-
namic analogue. Although Gibbs discussed various pro’s and con’s of the two sets,
— depending on such issues as whether we regard the energy or the temperature
as an independent variable, and whether we prefer expected values of most prob-
able values — he does not reach a clear preference for one of them. (As he put it,
system (80,81) is the more natural, while system (83,84) is the simpler of the two.)
Still, Gibbs argued (ibid., p. 183) that the two sets of analogies will approximately
coincide for a very large number degrees of freedom. Nevertheless, this means
there remains an underdetermination in his approach that one can hope to avoid
only in the thermodynamic limit.

The expressions (81) and (84) are also known as the ‘volume entropy’ and
the ‘surface entropy’. In modern textbooks the latter choice has been by far
the most popular, perhaps because it coincides with the Gibbs entropy for the
microcanonical ensemble: o[pg] = Inw(E). However, it has been pointed out
that there are also general theoretical reasons to prefer the volume entropy (81),
in particular because it is, unlike the surface entropy, an adiabatic invariant (see
[Hertz, 1910; Rugh, 2001; Campisi, 2005)).

Of course, all of this is restricted to (statistical) equilibrium. In the case of non-
equilibrium, one would obviously like to obtain further thermodynamical analogies
that recover the approach to equilibrium (the ‘Minus First Law’, cf. p. 939) and
an increase in entropy for adiabatic processes that start and end in equilibrium,
or even to reproduce the kinetic equations on a full statistical mechanical basis.
What Gibbs had to say on such issues will be the subject of the paragraphs 5.3
and 5.4.

But Gibbs also noted that a comparison of temperature and entropy with their
analogies in statistical mechanics “would not be complete without a consideration
of their differences with respect to units and zeros and the numbers used for their
numerical specification” [Gibbs, 1902, p.183]. This will be taken up below in §5.2.
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5.2 Units, zeros and the factor N

The various expressions Gibbs proposed as analogies for entropy, i.e. (77,81,84),
were presented without any discussion of ‘units and zeros’, i.e. of their physical
dimension and the constants that may be added to these expressions. This was
only natural because Gibbs singled out those expressions for their formal merit
of reproducing the fundamental equation, in which only the combination T'dS
appears. He discussed the question of the physical dimension of entropy by noting
that the fundamental equation remains invariant if we multiply the analogue for
temperature — i.e. the parameter # in the canonical case, or the functions (80 or
(83) for the microcanonical case — by some constant K and the corresponding
analogues for entropy — (77), (81) and (84) — by 1/K. Applied to the simple
case of the monatomic ideal gas of N molecules, he concluded that, in order to
equate the analogues of temperature to the ideal gas temperature, 1/K should be
set equal to
(%) = =3,

K 3N
where ¢y is the specific heat at constant volume. He notes that “this value had
been recognized by physicists as a constant independent of the kind of monatomic
gas considered” [Gibbs, 1902, p. 185]. Indeed, in modern notation, 1/K = k, i.e.
Boltzmann’s constant.

Concerning the question of ‘zeros’, Gibbs noted that all the expressions pro-
posed as analogy of entropy had the dimension of the logarithm of phase space
volume and are thus affected by the choice of our units for length mass and time
in the form of some additional constant (cf. [Gibbs, 1902, p. 19,183]). But even
if some choice for such units is fixed, further constants could be added to the sta-
tistical analogs of entropy, i.e. arbitrary expressions that may depend on anything
not varied in the fundamental equation. However, their values would disappear
when differences of entropy are compared. And since only entropy differences have
physical meaning, a question of determining these constants would thus appear to
be immaterial. However, Gibbs went on to argue that “the principle that the en-
tropy of any body has an arbitrary additive constant is subject to limitations when
different quantities of the same substance are compared” [Gibbs, 1902, p. 206]. He
formulated further conditions on how the additive constant may depend on the
number N of particles in his final chapter.

Gibbs starts this investigation by raising the following problem. Consider the
phase (i.e. microstate) (q1,p1;...;qn,Pn) of an N-particle system where the par-
ticles are said to be “indistinguishable”, “entirely similar” or “perfectly similar”.%3
Now, if we perform a permutation on the particles of such a system, should we
regard the result as a different phase or not? Gibbs first argues that it “seems in
accordance with the spirit of the statistical method” to regard such phases as the

53Presumably, these terms mean (at least) that the Hamiltonian is invariant under their per-
mutation, i.e. they have equal mass and interact in exactly the same way.
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same. It might be urged, he says, that for such particles no identity is possible ex-
cept that of qualities, and when comparing the permuted and unpermuted system,
“nothing remains on which to base the identification of any particular particle of
the first system with any particular particle of the second” [Gibbs, 1902, p. 187].

However, he immediately rejects this argument, stating that all this would be
true for systems with “simultaneous objective existence”, but hardly applies to
the “creations of the imagination”. On the contrary, Gibbs argues:

“The perfect similarity of several particles of a system will not in the
least interfere with the identification of a particular particle in one case
and with a particular particle in another. The question is one to be
decided in accordance with the requirements of practical convenience
in the discussion of the problems with which we are engaged” [Gibbs,
1902, p. 188]

He continues therefore by exploring both options, calling the viewpoint in which
permuted phases are regarded as identical the gemeric phase, and that in which
they are seen as distinct the specific phase. In modern terms the generic phase
space is obtained as the quotient space of the specific phase space obtained by iden-
tifying all phase points that differ by a permutation (see [Leinaas and Myrheim,
1977]). In general, there are N! different permutations on the phase of a system of
N particles,’® and there are thus N! different specific phases corresponding to one
generic phase. This reduces the generic phase space measure by an overall factor
of % in comparison to the specific phase space. Since the analogies to entropy all
have a dimension equal to the logarithm of phase space measure, this factor shows
up as an further additive constant to the entropy, namely —In N! in comparison
to an entropy calculated from the specific phase. Gibbs concludes that when N is
constant, “it is therefore immaterial whether we use [the generic entropy] or [the
specific entropy], since this only affects the arbitrary constant of integration which
is added to the entropy [Gibbs, 1902, p. 206].%°

However, Gibbs points out that this is not the case if we compare the entropies
of systems with different number of particles. For example, consider two identical
gases, each with the same energy U, volume V and number of particles N, in
contiguous containers, and let the entropy of each gas be written as S(U,V, N).
Gibbs puts the entropy of the total system equal to the sum of the entropies:

(86) Sior = 2S(U,V, N).

Now suppose a valve is opened, making a connection between the two containers.
Gibbs says that “we do not regard this as making any change in the entropy,
although the gases diffuse into one another, and this process would increase the
entropy if the gases were different” [Gibbs, 1902, p. 206-7]. Therefore, the entropy
in this new situation is

54This assumes that the molecular states p;, ;) of the particles do not coincide. However the
points in specific phase space for which one or more molecular states do coincide constitute a set
of Lebesgue measure zero anyway.

55The same conclusion also obtains for the Boltzmann entropy (61) [Huggett, 1999].
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(87) Sior = Stot-

But the new system, is a gas with energy 2U, volume 2V, and particle number
2N. Therefore, we obtain:

(83) Slo = S(2U,2V,2N) = 25(U,V, N),

where the right-hand side equation expresses the extensivity of entropy. This
condition is satisfied (at least for large N) by the generic entropy but not by the
specific entropy. Gibbs concludes “it is evident therefore that it is equilibrium
with respect to generic phases, and not that with respect to specific, with which

we have to do in the evaluation of entropy, ...except in the thermodynamics of
bodies in which the number of molecules of the various kinds is constant” [Gibbs,
1902, p. 207).

The issue expressed in these final pages is perhaps the most controversial in
Gibbs’ book; at least it has generated much further discussion. Many later authors
have argued that the insertion of a factor 1/N! in the phase space measure is oblig-
atory to obtain “correct” results and, ultimately due to a lack of any metaphysical
identity or “haecceity” of the perfectly similar particles considered. Some have
even gone on to argue that quantum mechanics is needed to explain this. For exam-
ple, [Huang, 1987, p. 154] writes “It is not possible to understand classically why we
must divide [...] by N! to obtain the correct counting of states. The reason is in-
herently quantum mechanical . ..”. However, many others deny this [Becker, 1967;
van Kampen, 1984; Ray, 1984]. It would take me too far afield to discuss the var-
ious views and widespread confusion on this issue.

Let it suffice to note that Gibbs rejected arguments from the metaphysics of
identity for the creations of the imagination. (I presume this may be taken to
express that the phases of an N-particles system are theoretical constructs, rather
than material objects.) Further, Gibbs did not claim that the generic view was
correct and the specific view of incorrect; he preferred to settle the question by
“practical convenience”. There are indeed several aspects of his argument that
rely on assumptions that may be argued to be conventional. for example the
‘additivity’ demand (86) could be expanded to read more fully:

(89) Stot(Ur, Vi, N1;Us, Va, No)+Kior = S1(Ur, Vi, N1)+K1+52(Us, Va, No)+ Ko,

Applied to the special case where S; and Sy are identical functions taken at the
same values of their arguments. The point to note here is that this relation only
leads to (86) if we also employ the conventions Ko, = K; + K3 and K7 = K.
Also, his cautious choice of words concerning (87) — “we do not regard this as
making any change” — suggest that he wants to leave open whether this equation
expresses a fact or a conventional choice on our part. But by and large, it seems
fair to say that Gibbs’ criterion for practical convenience is simply the recovery of
the properties usually assumed to hold for thermodynamic entropy.

As a final remark, note that the contrast mentioned here in passing by Gibbs,
i.e. that in thermodynamics the mixing of identical gases, by allowing them to
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diffuse into one another, does not change the entropy, whereas this process does
increase entropy if the gases are different, implicitly refers to an earlier discussion
of this issue in his 1875 paper [Gibbs, 1906, pp. 165-167]. The contrast between
the entropy of mixing of identical fluids and that of different fluids noted on that
occasion is now commonly known as the Gibbs paradoz. (More precisely, this
‘paradox’ is that the entropy of mixing different fluids is a constant (k7' In2 in the
above case) as long as the substances are different, and vanishes abruptly when
they are perfectly similar; thus negating the intuitive expectation one might have
had that the entropy of mixing should diminish gradually when the substances
become more and more alike). Now note that in the the specific view, mixing
different substances and mixing identical substances both lead to an entropy in-
crease: in that view there is no Gibbs paradox, since there is no abrupt change
when the substances become more and more alike. On the other hand, the adop-
tion of the generic view, i.e. the division of the phase space measure by N!, is
used by Gibbs to recover the usual properties of thermodynamic entropy including
the Gibbs paradox — the discontinuity between mixing of different and identical
gases.

Still, many authors seem to believe that the division by N!is a procedure that
solves the Gibbs paradox. But this is clearly not the case; instead, it is the specific
viewpoint that avoids the paradox, while the generic viewpoint recovers the Gibbs
paradox for the statistical mechanical analogies to entropy. The irony of it all
is that, in statistical mechanics, the term “Gibbs paradox” is sometimes used to
mean or imply the absence of the original Gibbs paradox in the specific point
of view, so that a resolution of this “Gibbs paradox” requires the return of the
original paradox.

5.8 Gibbs on the increase of entropy

As we have seen, the Gibbs entropy may be defined as a functional on arbitrary
probability density functions p on phase space I':?6

(90) olo) =~ [ pla) npla)ds

This expression has many well-known and useful properties. For example, under
all probability densities restricted to the energy hypersurface H(xz) = F, the mi-
crocanonical density (72) has the highest entropy. Similarly, one can show that of
all distributions p with a given expectation value (H),, the canonical distribution
(73) has the highest entropy, and that of all distributions for which both (H) and
(N) are given, the grand-canonical ensemble has the highest entropy.

56Gibbs actually does not use the term entropy for this expression. He calls the function In p
the “index of probability”, and —o “the average index of probability”. As we have seen, Gibbs
proposed more than one candidate for entropy in the microcanonical ensemble, and was well
aware that: “ [t]here may be [...], and there are, other expressions that may be thought to have
some claim to be regarded as the [...] entropy with respect to systems of a finite number of
degrees of freedom” [Gibbs, 1902, p. 169].
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But suppose that p is not stationary. It will therefore evolve in the course
of time, as given by p:(x) = p(T—ix). One might ask whether this entropy will
increase in the course of time. However, Liouville’s theorem implies immediately

(91) alp] = alpo]-

In spite of the superficial similarity to Boltzmann’s H, the Gibbs entropy thus
remains constant in time. The explanation of the Second Law, or an approach to
equilibrium, cannot be so simple.

However, Gibbs warns us to proceed with great caution. Liouville’s theorem
can be interpreted as stating that the motion of p; can be likened to motion in a
(multidimensional) incompressible fluid. He thus compared the evolution of p to
that of the stirring of a dye in a incompressible medium [Gibbs, 1902, p. 143-151].
In this case too, the average density of the dye, as well as the average of any
function of its density, does not change. Still, it is a familiar fact of experience
that by stirring tends to bring about a uniform mixture, or a state with uniform
density, for which the expression — [ pln pdx would have increased to attain its
maximum value.

Gibbs saw the resolution of this contradiction in the definition of the notion
of density. This, of course, is commonly taken as the limit of the quantity of
dye in a spatial volume element, when the latter goes to zero. If we apply this
definition, i.e. take this limit first, and then consider the stirring motion, we will
arrive at the conclusion that — [ pIn pda remains constant. But if we consider the
density defined for a fixed finite (non-zero) volume element, and then stir for an
indefinitely long time, the density may become ’sensibly’ uniform, a result which is
not affected if we subsequently let the volume elements become vanishingly small.
The problem, as Gibbs saw it, is therefore one of the order in which we proceed
to take two limits.

Gibbs was aware that not all motions in phase space produce this tendency
toward statistical equilibrium, just as not every motion in an incompressible fluid
stirs a dy to a sensibly homogeneous mixture. Nevertheless, as he concluded
tentatively,: “We might perhaps fairly infer from such considerations as have been
adduced that an approach to a limiting condition of statistical equilibrium is the
general rule, when the initial condition is not of that character” [Gibbs, 1902,
p. 148].

5.4  Coarse graining

The most common modern elaboration of Gibbs’ ideas is by taking recourse to
a partitioning of phase space in cells, usually called “coarse graining. Instead
of studying the original distribution function p(x) we replace p(x)dx by its phase
average over each cell, by the mapping:

(92) €G: plx) = CGp(x) = 3 pi)Le, (@),
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where
I, pla)dz
fwi dr

and 1 denotes the characteristic function:

(94) lA(m):{ 1 if z€ A,

(93) p(i) :=

0 elsewhere.

The usual idea is that such a partition matches the finite precision of our obser-
vational capabilities, so that a “coarse grained” distribution might be taken as a
sufficient description of what is observable. Obviously, the average value of any
function on I' that does not vary too much within cells is approximately the same,
whether we use the fine-grained or the coarse-grained distribution.

For any p one can also define the coarse grained entropy X[p] as the composition
of (92) and (90):

(95) Xp] := o[CGp].

This coarse grained entropy need not be conserved in time. Indeed, it is easy to
show (cf. [Tolman, 1938, p. 172]). that:

(96) S[p] = o).

Hence, if we assume that at some initial time that py = CGpy, e.g. if pg x %]lwi
for some cell 4, then for all ¢:

(97) Elpe] = olpi] = olpo] = Zpo].

However, this does not imply that 3[p;] is non-decreasing or that it approaches a
limiting value as t — oo.

If a property, similar to the stirring of a dye holds for the dynamical evolution
of p¢, one may have

(98) tE»nooE[pt} = Z[pmc}

and hence, an approach towards equilibrium could emerge on the coarse-grained
level. This convergence will of course demand a non-trivial assumption about the
dynamics. In modern work this assumption is that the system has the mizing
property (see paragraph 6.1).

5.5 Comments

Gibbs’ statistical mechanics has produced a formalism with clearly delineated con-
cepts and methods, using only Hamiltonian mechanics and probability theory. It
can and is routinely used to calculate equilibrium properties of gases and other
systems by introducing a specific form of the Hamiltonian. The main problems
that Gibbs has left open are, first, the motivation for the special choice of the
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equilibrium ensembles and, second, that the quantities serving as thermodynamic
analogies are not uniquely defined. However, much careful work has been devoted
to show that, under certain assumptions about tempered interaction of molecules,
unique thermodynamic state functions, with their desired properties are obtained
in the ‘thermodynamic limit’ (cf. §6.3).

1. Motivating the choice of ensemble. While Gibbs had not much more to
offer in recommendation of these three ensembles than their simplicity as candi-
dates for representation for equilibrium, modern views often provide an additional
story. First, the microcanonical ensemble is particularly singled out for describing
an ensemble of systems in thermal isolation with a fixed energy F.

Arguments for this purpose come in different kinds. As argued by Boltzmann
(1868), and shown more clearly by Einstein (1902), the microcanonical ensemble
is the unique stationary density for an isolated ensemble of systems with fixed
energy, if one assumes the ergodic hypothesis. Unfortunately, for this argument,
the ergodic hypothesis is false for any system that has a phase space of dimension
2 or higher (cf. paragraph 6.1).

A related but more promising argument relies on the theorem that the measure
Py associated with the microcanonical ensemble via Prc(A) = [ pme(2)da is the
unique stationary measure under all measures that are absolutely continuous with
respect to Py, if one assumes that the system is metrically transitive (again, see
paragraph 6.1).

This argument is applicable for more general systems, but its conclusion is
weaker. In particular, one would now have to argue that physically interesting
systems are indeed metrically transitive, and why measures that are not absolutely
continuous with respect to the microcanonical one are somehow to be disregarded.
The first problem is still an open question, even for the hard-spheres model (as we
shall see in paragraph 6.1). The second question can be answered in a variety of
ways.

For example, [Penrose, 1979, p. 1941] adopts a principle that every ensemble
should be representable by a (piecewise) continuous density function, in order to
rule out “physically unreasonable cases”. (This postulate implies absolute con-
tinuity of the ensemble measure with respect to the microcanonical measure by
virtue of the Radon-Nikodym theorem.) See [Kurth, 1960, p. 78] for a similar
postulate. Another argument, proposed by [Malament and Zabell, 1980], assumes
that the measure P associated with a physically meaningful ensemble should have
a property called ‘translation continuity’. Roughly, this notion means that the
probability assigned to any measurable set should be a continuous function under
small displacements of that set within the energy hypersurface. Malament & Zabell
show that this property is equivalent to absolute continuity of P with respect to
tme, and thus singles out the microcanonical measure uniquely if the system is
metrically transitive (see [van Lith, 2001b, for a more extensive discussion]).

A third approach, due to Tolman and Jaynes, more or less postulates the mi-
crocanonical density, as a appropriate description of our knowledge about the
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microstate of a system with given energy (regardless of whether the system is
metrically transitive or not).

Once the microcanonical ensemble is in place as a privileged description of an
isolated system with a fixed energy, one can motivate the corresponding status for
the other ensembles with relatively less effort. The canonical distribution is shown
to provide the description of a small system S; in weak energetic contact with a
larger system Sy, acting as a ‘heat bath’ (see [Gibbs, 1902, p. 180-183]). Here,
it is assumed that the total system is isolated and described by a microcanonical
ensemble, where the total system has a Hamiltonian Hyos = Hy + Ho + Hjny with
Hy; > Hi > Hiy. More elaborate versions of such an argument are given by
Einstein (1902) and Martin-Lo6f (1979). Similarly, the grand-canonical ensemble
can be derived for a small system that can exchange both energy and particles
with a large system. (see [van Kampen, 1984]).

2. The ‘equivalence’ of ensembles. It is often argued in physics textbooks
that the choice between these different ensembles (say the canonical and micro-
canonical) is deprived of practical relevance by a claim that they are all “equiva-
lent”. (See [Lorentz, 1916, p. 32] for perhaps the earliest version of this argument,
or [Thompson, 1972, p. 72; Huang, 1987, p. 161-2] for recent statements.) What is
meant by this claim is that if the number of constituents increases, N — oo, and
the total Hamiltonian is proportional to /N, the thermodynamic relations derived
from each of them will coincide in this limit.

However, these arguments should not be mistaken as settling the empirical
equivalence of the various ensembles, even in this limit. For example, it can
be shown that the microcanonical ensemble admits the description of certain
metastable thermodynamic states, (e.g. with negative heat capacity) that are ex-
cluded in the canonical ensemble (see [Touchette, 2003; Touchette et al., 2004, and
literature cited therein]).

3. The coarse-grained entropy. The coarse-graining approach is reminiscent
of Boltzmann’s construction of cells in his (1877b); cf. the discussion in para-
graph 4.4). The main difference is that here one assumes a partition on phase-
space I', where Boltzmann adopted it in the pu-space. Nevertheless, the same issues
about the origin or status of a privileged partition can be debated (cf. p. 977). If
one assumes that the partition is intended to represent what we know about the
system, i.e. if one argues that all we know is whether its state falls in a particular
cell w;, it can be argued that the its status is subjective. If one argues that the
partition is meant to represent limitations in the precision of human observational
possibilities, perhaps enriched by instruments, i.e. that we cannot observe more
about the system than that its state is in some cell w;, one might argue that its
choice is objective, in the sense that there are objective facts about what a given
epistemic community can observe or not. Of course, one can then still maintain
that the status of the coarse-graining would then be anthropocentric (see also the
discussion in §7.5). However, note that Gibbs himself did not argue for a prefer-
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ential size of the cells in phase space, but for taking the limit in which their size
goes to zero in a different order.

4. Statistical equilibrium. Finally, a remark about Gibbs’ notion of equilib-
rium. This is fundamentally different from Boltzmann’s 1877 notion of equilibrium
as the macrostate corresponding to the region occupying the largest volume in
phase space (cf. section 4.4). For Gibbs, statistical equilibrium can only apply to
an ensemble. And since any given system can be regarded as belonging to an infin-
ity of different ensembles, it makes no sense to say whether an individual system
is in statistical equilibrium or not. In contrast, in Boltzmann’s case, equilibrium
can be attributed to a single system (namely if the microstate of that system is
an element of the set 'y C I'). But it is not guaranteed to remain there for all
times.

Thus, one might say that in comparison with the orthodox thermodynamical
notion of equilibrium (which is both stationary and a property of an individual
system) Boltzmann (1877b) and Gibbs each made an opposite choice about which
aspect to preserve and which aspect to sacrifice. See [Uffink, 1996b; Callender,
1999; Lavis, 2005] for further discussions.

6 MODERN APPROACHES TO STATISTICAL MECHANICS

This section will leave the more or less historical account followed in the previ-
ous sections behind, and present a selective overview of some influential modern
approaches to statistical physics. In particular, we focus on ergodic theory (§ 6.1—
6.2), the theory of the thermodynamic limit §6.3, the work of Lanford on the
Boltzmann equation (§6.4), and the BBGKY approach in §6.5.

6.1 FErgodic theory

When the Ehrenfests critically reviewed Boltzmann’s and Gibbs’ approach to sta-
tistical physics in their renowned Encyclopedia article 1912, they identified three
issues related to the ergodic hypothesis.

1. The ambiguity in Boltzmann’s usage of “probability” of a phase space region
(as either the relative volume of the region or the relative time spent in the
region by the trajectory of the system).

2. The privileged status of the microcanonical probability distribution or other
probability distributions that depend only on the Hamiltonian.

3. Boltzmann’s argument that the microstate of a system, initially prepared in a
region of phase space corresponding to a non-equilibrium macrostate, should
tend to evolve in such a way that its trajectory will spend an overwhelmingly
large majority of its time inside the region of phase space corresponding to
the equilibrium macrostate I'eq.
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In all these three problems, a more or less definite solution is obtained by
adopting the ergodic hypothesis. Thus, the Ehrenfests suggested that Boltzmann’s
answer to the above problems depended on the ergodic hypothesis. As we have
seen, this is correct only for Boltzmann’s treatment of issue (2) in his 1868a. The
doubtful status of the ergodic hypothesis, of course, highlighted the unresolved
status of these problems in the Ehrenfests’ point of view.

In later works the “ergodic problem” has become more exclusively associated
with the first issue on the list above, i.e., the problem of showing the equality of
phase and time averages. This problem can be formulated as follows. Consider
a Hamiltonian system and some function f defined on its phase space I". The
(infinite) time average of f, for a system with initial state 2o may be defined as:

T—oo T

T
(99) Fla) = Jim 7= [ Ty

where T} is the evolution operator. On the other hand, for an ensemble of systems
with density p;(x), the ensemble average of f is

(100) t—/f z)pi(@

The ergodic problem is the question whether, or under which circumstances, the

time average and ensemble average are equal, i.e.: f(xg) - (f):. Note that there
are immediate differences between these averages. f depends on the initial state
xo, in contrast to (f). Indeed, each choice of an initial phase point gives rise to
another trajectory in phase space, and thus gives, in general, another time aver-
age. Secondly, (f) will in general depend on time, whereas f is time-independent.
Hence, a general affirmative answer to the problem cannot be expected.
However, in the case of a stationary ensemble (statistical equilibrium) the last
disanalogy disappears. Choosing an even more special case, the microcanonical
ensemble py,., the simplest version of the ergodic problem is the question:

(101) F(o) = (f)me-

Now it is obvious that if Boltzmann’s ergodic hypothesis is true, i.e. if the
trajectory of the system traverses all points on the energy hypersurface I'g, the
desired equality holds. Indeed, take two arbitrary points z and y in I'p. The
ergodic hypothesis implies that there is a time 7 such that y = T, z. Hence:

— 1
fly) = IJEHOO T, f(Tgrx)dt
_ %K&T(/ thde—/ foxdt>



Compendium of the Foundations of Classical Statistical Physics 1007

In other words, f must be constant over I'g, and hence, also equal to the micro-
canonical expectation value.

For later reference we note another corollary: the ergodic hypothesis implies
that pmc is the only stationary density on I'g (cf. section 4.1).

The Ehrenfests doubted the validity of the ergodic hypothesis, as Boltzmann
had himself, and therefore proposed an alternative, which they called the quasi-
ergodic hypothesis. This states that the trajectory lies dense in I'g, i.e., z; will pass
through every open subset in I'g, and thus come arbitrarily close to every point
in I'g. The system may be called quasi-ergodic if this holds for all its trajectories.
As we have seen, this formulation seems actually closer to what Boltzmann may
have intended, at least in 1871, than his own literal formulation of the hypothesis.

Not long after the Ehrenfests’ review, the mathematical proof was delivered that
the ergodic hypothesis cannot hold if I'g is a more than one-dimensional manifold
[Rosenthal, 1913; Plancherel, 1913]. The quasi-ergodic hypothesis, on the other
hand, cannot be immediately dismissed. In fact, it may very well be satisfied for
Hamiltonian systems of interest to statistical mechanics. Unfortunately, it has
remained unclear how it may contribute to a solution to the ergodic problem. One
might hope, at first sight, that for a quasi-ergodic system time averages and micro-
canonical averages coincide for continuous functions, and that the microcanonical
density pp,c is the only continuous stationary density. But even this is unknown. It
is known that quasi-ergodic systems may fail to have a unique stationary measure
[Nemytskii and Stepanov, 1960, p. 392]. This is not to say that quasi-ergodicity
has remained a completely infertile notion. In topological ergodic theory, the con-
dition is known under the name of “minimality”, and implies several interesting
theorems (see [Petersen, 1983, p. 152ff]).

While the Rosenthal-Plancherel result seemed to toll an early death knell over
ergodic theory in 1913, a unexpected revival occurred in the early 1930s. These
new results were made possible by the stormy developments in mathematics and
triggered by Koopman’s results, showing how Hamiltonian dynamics might be
embedded in a Hilbert space formalism where the evolution operators T; are rep-
resented as a unitary group. This made a whole array of mathematical techniques
(e.g. spectral analysis) available for a new attack on the problem.

The first result was obtained by von Neumann in a paper under the promising
(but misleading) title “Proof of the Quasi-Ergodic Hypothesis” 1932. His theo-
rem was strengthened by G.D. Birkhoff in a paper entitled “Proof of the Ergodic
Theorem” 1931, and published even before von Neumann'’s.

Since their work, and all later work in ergodic theory, involves more precise
mathematical notions, it may be worthwhile first to introduce a more abstract
setting of the problem. An abstract dynamical system is defined as a tuple
(T, A, u, T), where T' as an arbitrary set, A is a o-algebra of subsets of T', called
the ‘measurable’ sets in I', and p is a probability measure on I', and T denotes a
one-parameter group of one-to-one transformations T; on I' (with t € R or ¢ € Z)
that represent the evolution operators. The transformations 7} are assumed to
be measure-preserving, i.e. u(T;A) = u(A) for all A € A. In the more concrete
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setting of statistical mechanics, one may take I' to be the energy hypersurface, A
the collection of its Borel subsets, p the microcanonical probability measure and
T the evolution induced by the Hamiltonian equations.

The von Neumann-Birkhoff ergodic theorem can be formulated as follows:

Ercopic THEOREM: Let (I, A, u, T') be any dynamical system and f
be an integrable function on I'. Then

(i) f(z)=limy_oo 7 fOT f(Tix)dt  exists for almost all x;

i.e. the set of states € T for which f(z) does not exist has
J-easure zero.

(ii) f(xz) = (f), for almost all z iff the system is metrically transitive.

Here, metric transitivity means that it is impossible is to carve up I in two regions
of positive measure such that any trajectory starting in one region never crosses
into the other. More precisely:

METRIC TRANSITIVITY: A dynamical system is called metrically tran-
sitive®” iff the following holds: for any partition of I' into disjoint sets
Al, Ag such that TtAl = A1 and TtAQ = AQ, it holds that u(Al) =0
or 1(Az) = 0.

It is not difficult to see why this theorem may be thought of as a successful so-
lution of the original ergodic problem under a slight reinterpretation. First, metric
transitivity captures in a measure-theoretic sense the idea that trajectories wan-
der wildly across the energy hypersurface, allowing only exceptions for a measure
zero set. Secondly, the theorem ensures the equality of time and microcanonical
ensemble average, although only for integrable functions and, again, with the ex-
ception of a measure zero set. But that seemed good enough for the taste of most
physicists.

The ergodic theorem was therefore celebrated as a major victory. In the words
of Reichenbach:

Boltzmann introduced [...]| under the name of ergodic hypothesis |...]
the hypothesis that the phase point passes through every point of the
energy hypersurface. This formulation is easily shown to be untenable.
It was replaced by P. and T. Ehrenfest by the formulation that the
path comes close to every point within any small distance ¢ which we
select and which is greater than 0.

There still remained the question whether the ergodic hypothesis must
be regarded as an independent supposition or whether it is derivable
from the canonical equations, as Liouville’s theorem is.

57This name is somewhat unfortunate, since the condition has nothing to do with metric in
the sense of distance, but is purely measure-theoretical. Metrically transitive systems are also
called ‘metrically indecomposable’ or, especially in the later literature ‘ergodic’. I will stick to
the older name in order to avoid confusion with the ergodic hypothesis.
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This problem] ...] was finally solved through ingenious investigations
by John von Neumann and George Birkhoff, who were able to show
that the second alternative is true. [...] With von Neumann and
Birkhoff’s theorem, deterministic physics has reached its highest degree
of perfection: the strict determinism of elementary processes is shown
to lead to statistical laws for macroscopic occurrences.” [Reichenbach,
1956, p. 78]

Unfortunately, nearly everything stated in this quotation is untrue.

Problems

1. Do metrically transitive systems exist? An immediate question is of
course whether metrically transitive systems exist. In a mathematical sense of
‘exist’ the answer is affirmative. More interesting is the question of whether one
can show metric transitivity for any model that is realistic enough to be relevant
to statistical mechanics.

A few mechanical systems have been explicitly proven to be metrically transi-
tive. For example: one hard sphere moving in a vessel with a convex scatterer,
or a disc confined to move in a ‘stadium’ (two parallel line-segments connected by
two half circles) or its three-dimensional analogue: one hard sphere moving in a
cylinder, closed on both sides by half-spheres. But in statistical mechanics one is
interested in systems with many particles.

In [1963], Sinai announced he had found a proof that a gas consisting of N hard
spheres is metrically transitive. The ergodic theorem thus finally seemed to be
relevant to physically interesting gas models. Of course, the hard-spheres-model
is an idealization too, but the general expectation among physicists was that a
transition to more sophisticated models of a gas system would only make the
metric transitivity even more likely and plausible, even though admittedly harder
to prove.

The problem proves to be extraordinarily tedious, and Sinai’s proof was com-
plicated and, actually, never completely published. But many partial results were.
In fact, the development of ideas and techniques needed for the effort contributed
much to the emergence of a vigorous mathematical theory, nowadays called ‘er-
godic theory’. And since Sinai’s claim seemed so desirable, many books and arti-
cles presented the claim as a solid proven fact (e.g. [Lebowitz and Penrose, 1973;
Sklar, 1993]).

But by the 1980s, the delay in the publication of a complete proof started to
foster some doubts about the validity of the claim. Finally, [Sinai and Chernov,
1987, p. 185] wrote: “The announcement made in [[Sinai, 1963]] for the general
case must be regarded as immature.” What has been shown rigorously is that a
system of three hard spheres is metrically transitive. Recently, the problem has
been taken further by [Szdsz, 1996] and [Simanyi and Szdsz, 1999]. They have
ascertained that for a model of N hard spheres, the ergodic component, i.e. a
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subset of the energy hypersurface on which the assumption of metric transitivity
holds has positive measure. The full problem, however, still awaits solution.

2. Infinite times. In the definition of the time average (99) the limit T'— oo
is taken. This brings along a number of problems:

(i). The time average is interesting because it is experimentally accessible. The
hope is that it represents the equilibrium value of f. But the limit T — oo
tells us nothing about what happens in a finite time. What is empirically
accessible, at best, is the quantity + fOT f(Tyxp)dt for a large but finite T'.
This expression can still deviate arbitrarily far from the limiting value.

(ii). The limit may even exist while the system is not in equilibrium. A time-
averaged value need not be an equilibrium value, because in general

1 (7

(102) lim —/ f(Tyx)dt # lim f(Tix).
T—oo T 0 t—o0

For periodical motions, for example, the left-hand side exists but the right-

hand side does not.

(iii) Empirically, equilibrium often sets in quite rapidly. But the time 7" needed

to make fOT f(Tixzp)dt even remotely close to (f)me might be enormous,
namely of the order of Boltzmann’s estimate of the Poincaré-recurrence
times! (See also [Jaynes, 1967, p. 94].)

3. The measure-zero problem. The result that the ergodic theorem provides
is that for metrically transitive systems f(z) = (f)mc except for a set of microstates
with measure zero. So the suggestion here is that this set of exceptions is in
some sense negligible. And, as judged from the probability measure piyc, that
is obviously true. But a set of measure zero need not be negligible in any other
sense. It is well-known that if one compares ‘smallness in measure’ with other
natural criteria by which one can judge the ‘size’ of sets, e.g. by their cardinality,
dimension or Baire category, the comparisons do not match. Sets of measure zero
can be surprisingly large by many other standards [Sklar, 1993, pp. 181-188].

More importantly, one might choose another measure ', such that p-measure
zero sets are no longer sets of p/-measure zero and conversely. It is of course the
choice of the measure that determines which sets have measure zero. Thus, if
one decides to disregard or neglect sets with a microcanonical measure zero, a
privileged status of the microcanonical measure is already presupposed. But this
means the virtue of the ergodic theorem as a means of motivating a privileged role
of the microcanonical measure is diminished to a self-congratulating one.
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6.2 The mixing property, K systems and Bernoulli systems

Ergodic theory, the mathematical field that emerged from the theorems of Birkhoff
and von Neumann, may be characterized as a rigorous exploration of the question
to what extent a deterministic, time-reversal invariant dynamical system may give
rise to random-like behaviour on a macroscopic scale, by assuming various special
properties on its dynamics.

In its modern incarnation, this theory distinguishes a hierarchy of such prop-
erties that consists of various strengthenings of metric transitivity. Perhaps the
most important are the mixing property, the property of being a ‘K system’ and
the Bernoulli systems. The higher up one goes this ladder, the more ‘random’
behaviour is displayed. The evolution at the microlevel is in all cases provided
by the deterministic evolution laws. In the (extensive) literature on the subject,
many more steps in the hierarchy are distinguished (such as ‘weak mixing’, ‘weak
Bernoulli’, ‘very weak Bernoulli’ etc.), and also some properties that do not fit into
a strict linear hierarchy (like the ‘Anosov’ property, which relies on topological no-
tions rather than on a purely measure-theoretical characterization of dynamical
systems). It falls beyond the scope of this paper to discuss them.

Mizing

The idea of mizing is usually attributed to Gibbs, in his comparison of the evolution
of ensembles with stirring of a dye into an incompressible fluid (cf. section 5.4).
Even if initially the fluid and the dye particles occupy separate volumes, stirring

will eventually distribute the dye particles homogeneously over the fluid. The
formal definition is:

MIXING: A dynamical system (I, A, u, T') is called mixing iff VA, B €
A

(103) Jim p(T,AN B) = p(A)u(B).

In an intuitive sense the mixing property expresses the idea that the dynamical
evolution will thoroughly stir the phase points in such a way that points initially
contained in A eventually become homogeneously distributed over all measurable
subsets B of I'. One can easily show that mizing is indeed a stronger property
than metric transitivity, by applying the condition to an invariant set A and choos-
ing B = A. The converse statement does not hold. (E.g.: the one-dimensional
harmonic oscillator is metrically transitive but not mixing).

Again, there is an interesting corollary in terms of probability measures or
densities. Consider a mixing system, and a time-dependent probability density p;,
such that p; is absolutely continuous with respect to the microcanonical measure
p. (This means that all sets A € A with p(A) = 0, also have [, pi(x)dz = 0, or
equivalently, that p; is a proper density function that is integrable with respect
to p.) In this case, the probability measure associated with p; converges, as
t — 00, to the microcanonical measure. Thus, an ensemble of mixing systems
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with an absolutely continuous density will asymptotically approach to statistical
equilibrium. Note that the same result will also hold for ¢ — —o0, so that there
is no conflict with the time reversal invariance. Is it in conflict with Poincaré’s
recurrence theorem? No, the recurrence theorem is concerned with microstates
(phase points), and not probability densities. Even when almost all trajectories
eventually return close by their original starting point, the recurrence time will
differ for each phase point, so that the evolution of an ensemble of such points can
show a definite approach to statistical equilibrium.

Note also that if the result were used as an argument for the privileged status
of the microcanonical measure (viz., as the unique measure that all absolutely
continuous probability distributions evolve towards), the strategy would again be
marred by the point that the condition of absolute continuity already refers to the
microcanonical measure as a privileged choice.

Despite the elegance of the mixing property, we can more or less repeat the
critical remarks made in the context of the ergodic theorem. In the first place,
the condition considers the limit ¢ — oo, which implies nothing about the rate at
which convergence takes place. Secondly, the condition imposed is trivially true
if we choose A or B to be sets of measure zero. Thus, the mixing property says
nothing about the behaviour of such sets during time evolution. And thirdly, one
is still faced with the question whether the mixing property holds for systems that
are physically relevant for statistical mechanics. And since the property is strictly
stronger than metric transitivity, this problem is at least as hard.

K systems

The next important concept is that of a K system (‘K’ after Kolmogorov). For
simplicity, we assume that time is discrete, such that Ty = T*¢, for ¢t € Z. There
is a perfectly analogously defined concept for continuous time, called K flows (cf.
Emch, this volume, Definition 10.3.2).

K SysTEM:®® A dynamical system (I', A, u, T is called a K system if
there is a subalgebra Ay C A, such that

1. T" Ay C T™ Ay for times m < n; where C denotes proper inclu-
sion.

2. the smallest o-algebra containing U2 T~ " Ag is A.

3. NS, T" Ay = N, where N is the o-algebra containing only sets

of M-measure zZero or one.

At first sight, this definition may appear forbiddingly abstract. One may gain
some intuition by means of the following example. Consider a finite partition

58 There is a considerable variation in the formulation of this definition [Cornfeld et al., 1982;
Batterman, 1991; Berkovitz et al., 2006]. The present formulation adds one more. It is identical
to more common definitions if one replaces n and m in the exponents of T" by —n and —m
respectively.
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a = {A4,... Ay} of T into disjoint cells and the so-called coarse-grained history
of the state of the system with respect to that partition. That is, instead of the
detailed trajectory x;, we only keep a record of the labels ¢ of the cell A; in which
the state is located at each instant of time, until time t=0:

(104) ey ey 3,0 _9,0_1,1%0 i,kE{l,...,m}, ke N.

This sequence is completely determined by the microstate = at t = 0:

m

(105) ip(x) =Y jla, (T~ )

Jj=1

where 1 denotes the characteristic function (94). Yet, as we shall see, for a K
system, this sequence typically behaves in certain respects like a random sequence.
Observe that

(106) i_g(2) =j <= T "x € Aj <=2 € TFA;

so we can alternatively express the coarse-grained history by means of evolutions
applied to the cells in the partition. If Taw := {T'A;,...,TAp,}, let aVTa =
{A;UTA; :4,j =1,...m} denote the common refinement of o and Te. Saying
that 2 belongs to A; UT' A, is, of course, equivalent to providing the last two terms
of the sequence (104). Continuing in this fashion, one can build the refinement

(107) \/Tka:Oz\/TOé\/TQOé“'\/Tka\/'--,
k=0

each element of which corresponds to a particular coarse-grained history (104) up
to t=0. The collection (107) is no longer finite, but still a countable partition of
r.

Now take Ag to be the o-algebra generated from the partition \/j—,T"a.
Clearly, the events in this algebra are just those whose occurrence is completely
decided whenever the coarse-grained history is known. In other words, for all
A € Ay, u(A|C) is zero or one, if C' is a member of (107). It is easy to see that
T-™Aj is just the o-algebra generated from T-™\/;2 TFa = \/}2_, T*a, ie.
from the partition characterizing the coarse-grained histories up to t = m. Since
the latter partition contains the history up to ¢t = n for all n < m, we have:

(108) T™™Ay CT™"Ap for all n < m.

This is equivalent to condition 1, but with ‘C’ replaced by ‘C’.

Further, to explain condition 2, note that the smallest o-algebra containing
UM T~ ™A, is generated by the union of the partitions \/;-._ T« for alln < N,
which in view of (108) is just 7~V Ag. Thus, condition 2 just says that if we extend
the record of the coarse-grained history to later timest = N > 0, and let N — o0,
the partition eventually becomes sufficiently fine to generate all measurable sets
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in A. This is a strong property of the dynamics. It means that the entire coarse-
grained record, extending from —oo to oo, provides all information needed to
separate all the measurable sets in A, (except, possibly, if they differ by a measure
zero set.)

Similarly, in order to explain condition 3, note that (108) implies that NY_,; 7" Ay =
TN Ay, which is generated from \/}—, 7", i.e., the coarse-grained histories up to
time —N. Thus, condition 3 expresses the demand that, as we let N — oo, the
class of events that are settled by the coarse-grained histories up to time t = — N
shrinks to the ‘trivial’ algebra of those sets that have probability one or zero. In
other words, for every event A € A, with 0 < pu(A) < 1, the occurrence of A is
undecided at some early stage of the coarse-grained history.

Yet the truly remarkable feature of K systems lies in the strict inclusion de-
manded in condition 1: at any time n, the collection of events decided by the
coarse-grained histories up to n, is strictly smaller than the collection of events
decided at time n+ 1. Since the latter is generated from the former by adding the
partition 7~ ("tDq to the partition \/ T~*a, this means that at each time n the
question which cell of the partition is occupied at time n+1 is not answerable from
the knowledge of the previous coarse-grained history. This is quite a remarkable
property for a sequence generated by a deterministic law of motion, although, of
course, it is familiar for random sequences such as tosses with a die or spins of a
roulette wheel.

In this attempt at elucidation, we have presupposed a particular finite partition
a. One may ask whether there always is, for each Kolmogorov system, such a
partition. The answer is yes, provided the system obeys some mild condition
(that (T, A, u) is a Lebesgue space).”® Another question is whether the claims
made about coarse-grained histories are specific for this particular partition. The
answer is no. One may show that, given that they hold for some partition «,
they also hold for any choice of a finite partition of I'. (Very roughly speaking:
because the partition \/,, 7"« generates the o-algebra of all events, the coarse-
grained histories constructed from another finite partition can be reconstructed in
terms of the coarse-grained histories in terms of a.

Bernoulli systems

The strongest property distinguished in the ergodic hierarchy is that of Bernoulli
systems. To introduce the definition of this type of dynamical systems, it is useful
to consider first what is usually known as a ‘Bernoulli’ scheme. Consider an elemen-
tary chance set-up with outcomes {41, ... A,,} and probabilities p;. A Bernoulli
scheme is defined as the probability space obtained from doubly infinite sequences
of independent identically distributed repetitions of trials on this elementary set-
up. Formally, a Bernoulli scheme for a set (or “alphabet”) a = {1,...,m} with

59Roughly, this condition means that (T, A, i) is isomorphic (in a measure-theoretic sense) to
the interval [0, 1], equipped with the Lebesgue measure. (See [Cornfeld et al., 1982, p. 449] for
the precise definition).
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probabilities {p;} is the probability space (I, A, 1), where I' is the set of all doubly
infinite sequences

(109) n=1_(...,0—2,i-1,%0,%1,%2...,) ire{l,....mhkeZ
and A is defined as the smallest o-algebra on I' containing the sets:
(110) AL :={neTl : ir=j}.

A is also known as the cylinder algebra. Further, we require of a Bernoulli scheme
that:

(111) p(AL) = p; for all k € Z.

One can turn this probability space into a dynamical system by introducing the
discrete group of transformations T™, m € Z, where T denotes the shift, i.e. the
transformation on I' that shifts each element of a sequence 1 one place to the left:

(112) For all k € Z: T(ig) = ip—1.
Thus we define:

BERNOULLI SYSTEM: A dynamical system (I, A, u, T) with a discrete
time evolution T is a Bernoulli-system iff there is a finite partition
a = {A1,...,An} of T such that the doubly infinite coarse-grained
histories are (isomorphic to) a Bernoulli scheme for o with distribution

(113) p; = p(A;) ie€{l,...m}.

Thus, for a Bernoulli system, the coarse-grained histories on a behave as ran-
domly as independent drawings from an urn. These histories show no correlation
at all, and the best prediction one can make about the location of the state at
time n + 1, even if we know the entire coarse-grained history from minus infinity
to time n, is no better than if we did not know anything at all. One can show that
every Bernoulli-system is also a K-system, but that the converse need not hold.

Discussion

Ergodic theory has developed into a full-fledged mathematical discipline with nu-
merous interesting results and many open problems (for the current state of the
field, see [Cornfeld et al., 1982; Petersen, 1983; Maiié, 1987]). Yet the relevance of
the enterprise for the foundations of statistical mechanics is often doubted. Thus
[Earman and Rédei, 1996] argue that the enterprise is not relevant for explaining
‘why phase averaging works’ in equilibrium statistical mechanics; [Albert, 2000,
p. 70] even calls the effort poured into rigorous proofs of ergodicity “nothing more
nor less — from the standpoint of foundations of statistical mechanics — than a
waste of time”. (For further discussions, see: [Farquhar, 1964; Sklar, 1973; Fried-
man, 1976; Malament and Zabell, 1980; Leeds, 1989; van Lith, 2001a; Frigg, 2004;
Berkovitz et al., 2006])
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This judgment is usually based on the problems already indicated above; i.e. the
difficulties of ascertaining that even the lowest property on the ergodic hierarchy
actually obtains for interesting physical models in statistical mechanics, the empir-
ical inaccessibility of infinite time averages, and the measure zero problem. Also,
one often appeals to the Kolmogorov-Arnold-Moser (KAM) results®® in order to
temper the expectations that ergodicity could be a generic property of Hamilto-
nian systems. These difficulties are serious, but they do not, in my opinion, justify
a definitive dismissal of ergodic theory.

Instead, it has been pointed out by [Khinchin, 1949; Malament and Zabell, 1980;
Pitowsky, 2001] that further progress may be made by developing the theory in
conditions in which (i) the equality of ensemble averages and time averages need
not hold for all integrable functions, but for only a physically motivated subclass,
(ii) imposing conditions that fix the rate of convergence in the infinite time limits
in (99) and (103) and (iii) relaxing the conditions on what counts as an equilibrium
state. Indeed important progress concerning (i) has been achieved in the ‘theory
of the thermodynamic limit’, described in paragraph 6.3. It is clear that further
alterations may be mathematically obstreperous; and that any results that might
be obtained will not be as simple and general as those of the existing ergodic theory.
But there is no reason why progress in these directions should be impossible. See
e.g. [Vranas, 1998; van Lith, 2001b).

The measure zero problem, I would argue, is unsolvable within any “merely”
measure-theoretic setting of the kind we have discussed above. The point is, that
any measure theoretic discussion of dynamical systems that differ only on mea-
sure zero sets are, in measure-theoretical terms, isomorphic and usually identified.
Measure theory has no way of distinguishing measure zero sets from the empty
set. Any attempt to answer the measure zero problem should call upon other
mathematical concepts. One can expect further light only by endowing the phase
space with further physically relevant structure, e.g. a topology or a symplectic
form (cf. [Butterfield, 2006; Belot, 2006]).

Furthermore, even if ergodic theory has little of relevance to offer to the ex-
planation of ‘why phase averaging works’ in the case of equilibrium statistical
mechanics, this does not mean it is a waste of time. Recall that the equality of
phase and time averages was only one of several points on which the Ehrenfests
argued that claims by Boltzmann could be substantiated by an appeal to the
ergodic hypothesis. Another point was his (1877) claim that a system initially
in a non-equilibrium macrostate should tend to evolve towards the equilibrium
macrostate.

60Quite roughly, the KAM theorems show that some Hamiltonian systems for which trajectories
are confined to an invariant set in phase space of small positive measure — and therefore not
metrically transitive — , will continue to have that property when a sufficiently small perturbation
is added to their Hamiltonian (for a more informative introduction, see [Tabor, 1989]). This
conclusion spoilt the (once common) hope that non-metrically transitive systems were rare and
idealized exceptions among Hamiltonian systems, and that they could always be turned into a
metrically transitive system by acknowledging a tiny perturbation from their environment. As we
have seen (p. 958), Boltzmann (1868) had already expressed this hope for the ergodic hypothesis.
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It is ironic that some critics of ergodic theory dismiss the attempt to show in
what sense and under which conditions the microstate does display a tendency
to wander around the entire energy hypersurface as irrelevant, while relying on
a rather verbal and pious hope that this will “typically” happen without any
dynamical assumption to fall back on. Clearly, the ergodic hierarchy might still
prove relevant here.

Still, it is undeniable that many concrete examples can be provided of systems
that are not ergodic in any sense of the word and for which equilibrium statistical
mechanics should still work. In a solid, say an ice cube, the molecules are tightly
locked to their lattice site, and the phase point can access only a minute region
of the energy hypersurface. Similarly, for a vapour/liquid mixture in a N-shaped
vessel in a gravity field, molecules may spend an enormously long proportion of
time confined to the liquid at the bottom of one leg of the vessel, even though the
region corresponding to being located in the other leg is dynamically accessible.
And still one would like to apply statistical mechanics to explain their thermal
properties.

Summing up, even admitting that ergodic theory cannot provide the whole
story in all desired cases does not mean it is irrelevant. I would argue that,
on a qualitative and conceptual level, one of the most important achievements of
ergodic theory is that it has made clear that strict determinism on the microscopic
level is not incompatible with random behaviour on a macroscopic level, even in
the strong sense of a Bernoulli system. This implies that the use of models with
a stochastic evolution like urn drawings, that Boltzmann used in 1877, or the
dog flea model of the Ehrenfests, (cf. §7.2), are not necessarily at odds with an
underlying deterministic dynamics.

6.3 Khinchin’s approach and the thermodynamic limait

In the ‘hard core’ version of ergodic theory, described in the previous two para-
graphs, one focuses on abstract dynamical systems, i.e. the only assumptions used
are about a measure space equipped with a dynamical evolution. It is not neces-
sary that this dynamics arises from a Hamiltonian. Further, it is irrelevant in this
approach whether the system has a large number of degrees of freedom. Indeed,
the ‘baker transformation’, an example beloved by ergodic theorists because it
provides a dynamical system that possesses all the properties distinguished in the
ergodic hierarchy, uses the unit square as phase space, and thus has only two de-
grees of freedom. On the other hand, Hamiltonian systems with large numbers of
degrees of freedom, may fail to pass even the lowest step of the ergodic hierarchy,
i.e. metric transitivity.

This aspect of ergodic theory is often criticized, because the thermal behaviour
of macroscopic systems that the foundations of statistical mechanics ought to
explain, arguably appears only when their number of degrees of freedom is huge.
As Khinchin puts it:

All the results obtained by Birkhoff and his followers [...] pertain to
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the most general type of dynamic systems [...]. The authors of these
studies have not been interested in the problem of the foundations of
statistical mechanics which is our primary interest in this book. Their
aim was to obtain the results in the most general form; in particular all
these results pertain equally to the systems with only a few degrees of
freedom as well as to the systems with a very large number of degrees
of freedom.

From our point of view we must deviate from this tendency. We would
unnecessarily restrict ourselves by neglecting the special properties of
the systems considered in statistical mechanics (first of all their funda-
mental property of having a very large number of degrees of freedom)
[...]. Furthermore, we do not have any basis for demanding the possibil-
ity of substituting phase averages for the time averages of all functions;
in fact the functions for which such substitution is desirable have many
specific properties which make such a substitution apparent in these
cases (Khinchin, 1949, p. 62).

Thus, partly in order to supplement, partly in competition to ergodic theory,
Khinchin explored an approach to the ergodic problem that takes the large number
of degrees of freedom as an essential ingredient, but only works for a specific class
of functions, the so-called sum functions.

In particular, consider a Hamiltonian dynamical system (I', A, T, ) of N point
particles. That is, we assume: = = (¢1,p1;-..;qn,pn) € I € RV, A function f
on I' is a sum function if

N
(114) f(z) = Z bi(zs)

where z; = (p;, ;) is the molecular state of particle . Under the further as-
sumption that the Hamiltonian itself is a sum function, Khinchin proved:

KHINCHIN’S ERGODIC THEOREM: For all sum functions f there are
positive constants k1, kg such that, for all N:

(115) p ({x el:

In words: as N becomes larger and larger, the measure of the set where f and (f)
deviate more than a small amount goes to zero.

This theorem, then, provides an alternative strategy to address the ergodic prob-
lem: it says that time average and microcanonical phase average of sum functions
will be roughly equal, at least in a very large subset of the energy hypersurface,

f(@) = (fu

7)
P

2 H1N1/4}> < H2N71/4

61Note that Khinchin does not demand that sum functions are symmetric under permutation
of the particles.
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provided that the number of particles is large enough. Of course, this ‘rough equal-
ity’ is much weaker than the strict equality ‘almost everywhere’ stated in the von
Neumann-Birkhoff ergodic theorem. Moreover, it holds only for the sum functions
(114). However, the assumption of metric transitivity is not needed here; nor is
any of the more stringent properties of the ergodic hierarchy.

The advantages of this approach to the ergodic problem are clear: first, one
avoids the problem that ergodic properties are hard to come by for physically
interesting systems. Second, an important role is allotted to the large number of
degrees of freedom, which, as noted above, seems a necessary, or at least welcome
ingredient in any explanation of thermal behaviour,%2 and thirdly a physically
motivated choice for special functions has been made.

However, there are also problems and drawbacks. First, with regard to the
“infinite-times” problem (cf. p. 1010), Khinchin’s approach fares no better or worse
than the original ergodic approach. Second, since the rough equality does not hold
“almost everywhere” but outside of a subset whose measure becomes small when
N is large, the measure-zero problem of ergodic theory (p. 1010) is now replaced
by a so-called “measure-epsilon problem”: if we wish to conclude that in practice
the time average and the phase average are (roughly) equal, we should argue that
the set for which this does not hold, i.e. the set in the left-hand side of (115) is
negligible. This problem is worse than the o measure-zero problem. For example,
we cannot argue that ensembles whose density functions have support in such sets
are excluded by an appeal to absolute continuity or translation continuity (cf. the
discussion on p. 1003). Further, if we wish to apply the result to systems that are
indeed not metrically transitive, there may be integrals of the equations of motion
that lock the trajectory of the system into a tiny subset of I" for all times, in which
case such a set cannot be neglected for practical purposes (cf. [Farquhar, 1964]).

Khinchin argued that the majority of physically important phase functions that
one encounters in statistical mechanics are sum functions (cf. [Khinchin, 1949,
p. 63,97]). However, this view is clearly too narrow from a physical point of view.
It means that all quantities that depend on correlations or interactions between
the particles are excluded.

Finally there is the ‘methodological paradox’ [Khinchin, 1949, p. 41-43]. This
refers to the fact that Khinchin had to assume that the Hamiltonian itself is
also a sum function. Let me emphasize that this assumption is not made just
for the purpose of letting the Hamiltonian be one of the functions to which the
theorem applies; the assumption is crucial to the very derivation of the theorem.
As Khinchin clearly notes, this is paradoxical because for an equilibrium state to
arise at all, it is essential that the particles can interact (e.g. collide), while this
possibility is denied when the Hamiltonian is a sum function.

In Khinchin’s view, the assumption should therefore not be taken literally. In-

62The point can be debated, of course. Some authors argue that small systems can show ther-
mal behaviour too, which statistical mechanics then ought explain. However, the very definition
of thermal quantities (like temperature etc.) for such small systems is more controversial [Hill,
1987; Feshbach, 1987; Rugh, 2001; Gross and Votyakov, 2000].
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stead, one should assume that there really are interaction terms in the Hamil-
tonian, but that they manifest themselves only at short distances between the
particles, so that they can be neglected, except on a tiny part of phase space.
Still, it remains a curious feature of his work that his theorem is intended to ap-
ply in situations that are inconsistent with the very assumptions needed to derive
it (cf. [Morrison, 2000, p. 46-47]). As we shall see in the next paragraph, later
work has removed this paradox, as well as many other shortcomings of Khinchin’s
approach.

The theory of the thermodynamic limit

The approach initiated by Khinchin has been taken further by van der Linde and
Mazur (1963), and merged with independent work of van Hove, Yang and Lee,
Fisher, Griffiths, Minlos, Ruelle, Lanford and others, to develop, in the late 60s
and early 70s, into what is sometimes called the ’rigorous results’ approach or the
‘theory of the thermodynamic limit’. The most useful references are [Ruelle, 1969;
Lanford, 1973; Martin-Lof, 1979]. The following is primarily based on [Lanford,
1973], which is the most accessible and also the most relevant for our purposes,
since it explicitly addresses the ergodic problem, and on [van Lith, 2001b].

As in Khinchin’s work, this approach aims to provide an explanatory programme
for the thermal behaviour of macroscopic bodies in equilibrium by relying mostly
on the following central points,

- One adopts the microcanonical measure on phase space.
- the observable quantities are phase functions F of a special kind (see below).

- The number of particles N is extremely large.

It is shown that, under some conditions, in the ‘thermodynamic limit’, to be
specified below, the microcanonical probability distribution for F//N becomes con-
centrated within an narrow region around some fixed value. This result is similar
to Khinchin’s ergodic theorem. However, as we shall see, the present result is more
powerful, while the assumptions needed are much weaker.

To start of, we assume a Hamiltonian, of the form

N -2
(116) H(z) =Y 2% LU, -, dy)-

defined on the phase space I' for N particles. For technical reasons, it is more con-
venient and simpler to work in the configuration space, and ignore the momenta.
Consider a sequence of functions F(g1,...q,), n = 1,2,... with an indefinite num-
ber of arguments, or, what amounts to the same thing, a single function F' defined
on

(117) U2, (R3)™.

n=1
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Such a function is called an ‘observable’ if it possesses the following properties:
(a). Continuity: For each n, F(qi,...q,) is a continuous function on R3"

(b). Symmetry: For each n, F(q,...q,) is invariant under permutation of its
arguments.

— —

(c). Translation invariance: For each n, and each @ € R3, F(§ + @, ..., + @) =

F(qy, ... q)
(d). Normalization: F(q1) =0

(e). Finite range: There exists a real number R € R such that, for each n, the
following holds: Suppose we divide the n particles into two clusters labeled
byi=1,...m,and ¢ =1,...m/, where m +m' = n. If |§; — ¢| > R for all
i,i', then F(Q1y. .- Gm; Qs s @mr) = F(@1y - @) + F(G1y- -y Gmr)-

For the most part, these conditions are natural and self-explanatory. Note that
the symmetry condition (b) is very powerful. It may be compared to Boltzmann’s
(1877b) combinatorial approach in which it was argued that macrostates occupy
an overwhelmingly large part of phases space due to their invariance under per-
mutations of the particles (see §4.4). Note further that condition (e) implies that
F reduces to a sum function if all particles are sufficiently far from each other.
It also means that the observables characterized by Lanford may be expected to
correspond to extensive quantities only. (Recall that a thermodynamical quantity
is called extensive if it scales proportionally to the size of the system, and intensive
if it remains independent of the system size.) In the present approach, intensive
quantities (like temperature and pressure) are thus not represented as observables,
but rather identified with appropriate derivatives of other quantities, after we have
passed to the thermodynamical limit.

Further, it is assumed that the potential energy function U in (116) also satisfies
the above conditions. In addition, the potential energy is assumed to be stable,%?
ie.

(f). Stability: There is a number B € R, such that, for all n and all ¢1, ... gy:
(118) U(di,...G) > —nB.

This condition — which would be violated e.g. for Newtonian gravitational inter-
action — avoids that as n becomes large, the potential energy per particle goes to
minus infinity, i.e., it avoids a collapse of the system.

For some results it is useful to impose an even stronger condition:

63Strictly speaking, condition (f) is not needed for the existence of the thermodynamic limit
for the configurational microcanonical measure. It is needed, however, when these results are ex-
tended to phase space (or when using the canonical measure). Note also that the term “stability’
here refers to an extensive lower bound of the Hamiltonian. This should be distinguished from
thermodynamic concept of stability, which is expressed by the concavity of the entropy function
(cf. p. 940).
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(f'.) Superstability: The potential energy U is called superstable if, for every
continuous function ® of compact support in R3:

(119) U(di,...qn) + A D> _ (G — @)
i#j

is stable for a sufficiently small choice of A > 0. In other words, a stable
potential is superstable if it remains stable when perturbed slightly by a
continuous finite-range two-body interaction potential.

As in Khinchin’s approach, the assumption (f) or (f’) is not just needed because
one would like to count the potential energy among the class of observables; rather
it is crucial to the proof of the existence of the thermodynamic limit. Of course,
the assumption that the interaction potential is continuous and of finite range is
still too restrictive to model realistic inter-molecular forces. As Lanford notes,
one can weaken condition (e) to a condition of ‘weakly tempered’ potentials,%*,
dropping off quickly with distance (cf. [Fisher, 1964, p. 386; Ruelle, 1969, p. 32]
, although this complicates the technical details of the proofs. Again, it is clear,
however, that some such condition on temperedness of the long range interactions
is needed, if only to avoid another catastrophe, namely that the potential energy
per particle goes to +oo as n increases, so that system might tend to explode. (As
could happen, e.g. for a system of charges interacting by purely repulsive Coulomb
forces.)

Now, with the assumptions in place, the idea is as follows. Choose a given
potential U and an observable F' obeying the above conditions. Pick two numbers
u and p, that will respectively represent the (potential) energy per particle and
the particle density (in the limit as N gets large), a bounded open region A C R?,
and a large integer N, such that % ~ p. ( Here, V(A) denotes the volume of

A.) Further, choose a small number du > 0, and construct the (thickened) energy
hypersurface in configuration space, i.e. the shell:

I Iv) € (u—ému—i—éu)}.

U(qi,...q
(120) QA,N,u,(su - {((ﬁ, .. (TN) - AN . (ql’i

Let p denote the Lebesgue measure on A%; its (normalized) restriction to the
above set may then be called the ‘thickened configurational microcanonical mea-
sure’. Note that

(121) w(E) := /AN dqi -+ gn6(U(q1 ... dn) — E)

may be considered as the configurational analogue of the structure function (41).
Thus

641f, for simplicity, the potential U is a sum of pair interactions U = Z#j (@ — q5), it
is weakly tempered iff there are real constants R,D,e > 0, such that ¢(7) < D|#||3t¢ when
7 > R.
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N (u+6u)

d(jl""le(u—éu7u+6u)(U/N)_/( s dE w(E),
N((u—du

(122) 1(QnNge) = /

AN

so that ﬁﬂ(QA, N,u,6u) Provides a thickened or smoothened version of this con-
figurational structure function. The reason for working with this thickened hy-
pershell instead of the thin hypersurface is of course to circumvent singularities
that may appear in the latter. In any case, we may anticipate that, when du is
small, this expression will represent the configurational part of the microcanonical
entropy (84. A further factor 1/N! may be added to give this entropy a chance of
becoming extensive.%® (See also paragraph §5.2.

We are interested in the probability distribution of F/N with respect to this
thickened microcanonical measure on configuration space. For this purpose, pick
an arbitrary open interval .J, and define

1 F(@,....q@
(128) V(AN u,8u, F,J) i= —n ({(q’i,...,(j}v) € Qusa : w € J}) .
So,

. V(A, N, u,éu, F,.J)
124) ——— V(AN FJ) =
(124) . V(A, N,u,ou, F,J) V(A, N,u, u, F,R)

(QA,N,uﬁu)

gives the probability that F/N lies in the interval J with respect to the above
microcanonical measure.

We wish to study the behaviour of this probability in the thermodynamic limit,
i.e. as N becomes large, and V (A) grows proportional to N, such that N/V(A) = p.
This behaviour will depend on the precise details of the limiting procedure, in
particular on the shape of A. Lanford chooses to take the limit in the sense of van
Hove: A sequence of bounded open regions A in R3 is said to become infinitely
large in the sense of Van Hove if, for all » > 0, the volume of the set of all points
within a distance r from the boundary of A, divided by the volume of A, goes
to zero as N goes to infinity. In other words, the volume of points close to the
surface becomes negligible compared to the volume of the interior. This avoids
that surface effects could play a role in the limiting behaviour — and eliminates
the worry that interactions with the walls of the container should have been taken
into account.

Now, the first major result is:

(EXISTENCE OF THE THERMODYNAMIC LIMIT.) As N — oo, and A
becomes infinitely large in the sense of Van Hove, in such a way that
N/V(A) = p, then either of the following cases holds:

(). V(A,N,u,du, F,J) goes to zero faster than exponentially in N,
or:

65For example, if the system is an ideal gas, i.e. if U(d1,...,qn) = 0, one will have w(E) =

VN = (X N so that In —w°f(E) scales proportionally to N, but Inw<f(E) d t
—\p ) NI prop y to IV, but Inw oes not.
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(B). V(A, N, u,du, F,J) ~ eNs(pwdwFJ) where s(p, F,.J) does not de-
pend on A or N, except through the ration % =p.

In other words, this result asserts the existence of

1
(125) s(p,u,ou, F,J):= lim Nan(A,N,u,éu,F, J)
where s is either finite or —co. (The possibility that s = —oo for all values of
the arguments of s is further ignored.) This already gives some clue for how the
probability (123) behaves as a function of J. If J; and J are two open intervals,
N is large, and we suppress the other variables for notational convenience, we
expect:

F
(126) ,u(ﬁ S Jl) V(Jl) zeN(s(kh)—S(Jz)).

w(Eedy)  V(h)
If s(J2) > s(Jp), this ratio goes to zero exponentially in N. Thus, for large systems,
the probability u(% € J) will only be appreciable for those open intervals J for
which s(J) is large.
A stronger statement can be obtained as follows. Associated with the set func-
tion s(J) one may define a point function s:

(127) s(z):= inf s(J)
Jjoapfzn

It can then be shown that, conversely, for all open J:

(128) s(J) =sups(x)
xeJ

Moreover, — and this is the second major result — one can show:
(129) s(z) is concave.

Further, s(z) is finite on an open convex subset of its domain [Lanford, 1973,
p. 26].

Now, it is evident that a concave function s(x) may have three general shapes:
It either achieves its maximum value: (i) never; (ii) exactly once, say in some
point xzp; or (iii) on some interval. 1In case (i), F/N ‘escapes to infinity’ in the
thermodynamic limit; this case can be excluded by imposing the superstability
condition (f'). Case (ii) is, for our purpose, the most interesting one. In this case,
we may consider intervals Jo = (z¢ — €, xg + €), for arbitrarily small ¢ > 0 and J;
any open interval that does not contain xg; infer from (127,128) that s(J2) > s(J1),
and conclude from (126) that the relative probability for F//N to take a value in
Jo rather than J; goes to zero exponentially with the size of the system.

Thus we get the desired result: As N becomes larger and larger, the proba-
bility distribution of F/N approaches a delta function. Or in other words, the
function F//N becomes roughly constant on an overwhelmingly large part of the
configurational energy-hypershell:
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) . . F(@,...,q
(130) N]E>100M<{(Q1’...7qN)EQA,N7U’6u: |w_xo| >6}> =0

In case (iii), finally, one can only conclude that the probability distribution be-
comes concentrated on some interval, but that its behaviour inside this interval
remains undetermined. One can show, if this interval is bounded, that this case is
connected to phase transitions (but see [p. 12, 58 for caveats]). %6

Remarks.

1. Phase transitions. First, it is obviously an immense merit of the theory
of the thermodynamic limit that, in contrast to ergodic theory, it is, in principle,
capable of explaining and predicting the occurrence of phase transitions from a
model of the microscopic interaction, in further work often in conjunction with
renormalization techniques. Indeed, this capability is its major claim to fame,
quite apart from what it has to say about the ergodic problem. What is more, it is
often argued that phase transitions are strictly impossible in any finite system, and
thus absolutely require the thermodynamic limit [Styer, 2004; Kadanoff, 2000].

This argument raises the problem that our experience, including that of phase
transitions in real physical bodies, always deals with finite systems. A theory
that presents an account of phase transitions only in the thermodynamic limit,
must then surely be regarded as an idealization. This conclusion will not come as
a shock many physicists, since idealizations are ubiquitous in theoretical physics.
Yet a curious point is that this particular idealization seems to be ‘uncontrollable”.
See [Sklar, 2002] and [Liu, 1999; Callender, 2001; Batterman, 2005] for further dis-
cussion. I also note that an alternative approach has been proposed recently. In
this view phase transitions are associated with topology changes in the micro-
canonical hypersurface {x : H(z) = E} with varying E. The crucial distinction
from the theory of the thermodynamic limit is, of course, is that such topology
changes may occur in finite, — indeed even in small — systems (cf. [Gross, 1997;
Gross and Votyakov, 2000; Casetti et al, 2003]). However this may be, I shall focus
below on the virtues of the thermodynamic limit for the ergodic problem.

2. The ergodic problem revisited. When compared to ergodic theory or
Khinchin’s approach, the theory of the thermodynamic limit has much to speak in

66To see the connection (loosely), note that if one removes the condition F/N € J from the
definition (123) — or equivalently, chooses J = R — | then s in (125) can be interpreted as the
(thickened, configurational) microcanonical entropy per particle. Considered now as a function
of the open interval (u — du,u + du), s has the same properties as established for s(J), since
U itself belongs to the class of observables. Thus, here too, there exists a point function s(u)
analogous to (127), and this function is concave (Actually, if we restore one more variable in the
notation, and write s(p,u), the function is concave in both variables). In case (iii), therefore,
this function is constant in w over some interval, say [u(.ug]. This means that there is then a
range of thermodynamical states with the same temperature 7' = (%);1, for a range of values
of u and p, which is just what happens in the condensation phase transition in a van der Waals
gas.
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its favour. As in Khinchin’s work, the problem of establishing metric transitivity
for physically interesting systems does not arise, because the approach does not
need to assume it. Further, as in Khinchin’s work, the approach works only for
special functions. But the class of functions singled out by the assumptions (a—f.)
or (a—f'.) above is not restricted to (symmetric) sum functions, and allows for
short-range interactions between the particles. Thus, unlike Khinchin, there is no
methodological paradox (cf. p.1019).

Yet one might still question whether these assumptions are not too restrictive
for physically interesting systems. On the one hand, it is clear that some conditions
on temperedness and stability are needed to rule out catastrophic behaviour in the
thermodynamic limit, such as implosion or explosion of the system. One the other
hand, these assumptions are still too strong to model realistic thermal systems.
The Coulomb interaction, which according to [Lieb and Lebowitz, 1973, p. 138]
is “the true potential relevant for real matter”, is neither tempered nor stable.
A tour the force, performed by Lenard, Dyson, Lebowitz and Lieb, has been to
extend the main results of the theory of the thermodynamical limit to systems
interacting purely by Coulomb forces (if the net charge of the system is zero or
small), both classically and quantum mechanically (for fermions) (see [Lieb, 1976,
and literature cited therein]). This result, then, should cover most microscopic
models of ordinary matter, as long as relativistic effects and magnetic forces can
be ignored. But note that this extension is obtained by use of the canonical,
rather than the microcanonical measure, and in view of the examples of non-
equivalence of these ensembles (cf. p. 5.5) one might worry whether this result
applies to ordinary matter in metastable states (like supersaturated vapours, and
superheated or supercooled liquids).

Another remarkable point is that, unlike Khinchin’s result (115), the result
(130) does not refer to time averages at all. Instead, the instantaneous value
of F/N is found to be almost constant for a large subset of the configurational
energy hypersurface. Hence, there is also no problem with the infinite time limit
(cf. p. 1010. Indeed, dynamics or time evolutions play no role whatsoever in the
present results, and the contrast to the programme of ergodic theory is accordingly
much more pronounced than in Khinchin’s approach.

3. Problems left. What is left, in comparison to those two approaches to
the ergodic problem, are two problems. First, there is still the question of how
to motivate the choice for the configurational microcanonical measure (i.e. the
normalized Lebesgue measure restricted to the energy hypershell). Lanford is
explicit that the theory of the thermodynamic limit offers no help in this question:

It is a much more profound problem to understand why events which
are very improbable with respect to Lebesgue measure do not occur in
nature. I, unfortunately, have nothing to say about this latter problem.
[Lanford, 1973, p. 2].

For this purpose, one would thus have to fall back on other attempts at motivation
(cf. p. 1003).
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Secondly, there is the measure-epsilon problem (cf. p. 1019). The desired
equality F//N =~ z holds, according to (130), if N is large, outside of a set of
small measure. Can we conclude that this set is negligible, or that its states do
not occur in nature? In fact, the result (130) instantaneous values is so strong
that one ought to be careful of not claiming too much. For example, it would be
wrong to claim that for macroscopical systems (i.e. with NV ~ 1027), the set in the
left-hand side of (130) does not occur in nature. Instead, it remains a brute fact
of experience that macroscopic systems also occur in non-equilibrium states. In
such states, observable quantities take instantaneous values that vary appreciably
over time, and thus differ from their microcanonical average. Therefore, their
microstate must then be located inside the set of tiny measure that one would like
to neglect. Of course, one might argue differently if NV is larger still, say N = 10100
but this only illustrates the ‘uncontrollability’ of the idealization involved in this
limit, i.e. one still lacks control over how large N must be to be sure that the
thermodynamic limit is a reasonable substitute for a finite system.

Further points. Other points, having no counterpart in the approaches dis-
cussed previously, are the following. The approach hinges on a very delicately
construed sequence of limits. We first have to take the thickened energy shell,
then take N, A to infinity in the sense of van Hove, finally take du to zero. But
one may ask whether this is clearly and obviously the right thing to do, since
there are alternative and non-equivalent limits (the sense of Fisher), the order of
the limits clearly do not commute (the thickness of the energy hypershell is pro-
portional to Néu), and other procedures like the ‘continuum limit’ [Compagner,
1989] have also been proposed.

Finally, in order to make full contact to classical statistical mechanics, on still
has to lift restriction to configuration space, and work on phase space. [Lanford,
1973, p. 2] leaves this as a ”straightforward exercise” to the reader. Let’s see if we
can fill in the details.

Suppose we start from a thickened microcanonical measure on phase space, with
the same thickness 2N du, around a total energy value of Eg = Neg. Its probability
density is then given by

1 Eo+Nou 1

131) pes Now(Prs- - PN GL- - ON) = —_§(H(z) — E)dE
(8) prcosvon(fi B ) = ge [ T () - )

For the Hamiltonian (116), the integral over the momenta can be performed (as
was shown by Boltzmann [1868] (cf. Eqn (43). This yields a marginal density

1 2mnsh/2

)= 2Nou VES
BotNou (3N-2)/2

— 2m(E —-U(q B dE
/E o o mE - U@)

This is not quite the normalized Lebesgue measure on configuration space em-
ployed by Lanford, but since the factor (2m(E — U(q))®V¥=2/2 is a continuous

(132) ﬁNeo, Néu((ﬁ, ey (jN
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function of U, — at least if g — Ndu — U > 0 — it is absolutely continuous with
respect to the Lebesgue measure on the shell, and will converge to it in the limit
ou — 0.

But in a full phase space setting, the physical quantities can also depend on
the momenta, i.e., they will be functions F(pi,...pn;q1 ---qn) and, even if one
assumes the same conditions (a—f) as before for their dependence on the second
group of arguments, their probability distribution cannot always be determined
from the configurational microcanonical measure. For example, let F} and Fj
be two observables on configuration space, for which Fy/N and Fy/N converge
to different values in the thermodynamical limit, say x; and x5, and let G be
any symmetric function of the momenta that takes two different values each with
probability 1/2. For example, take

. . 1 if p;-m >0,
(133) G(pr,-..PN) = { 0 else%;flere.

)

for some fixed unit vector 7. Now consider the following function on phase space:

(134)  A(1,...DNi@L---GN)) =
Gp1,. . pN) Fi(qy ... qn) + G'(P1, - . DN) Fa(G1 - - - ),

where G’ = 1—G. If we first integrate over the momenta, we obtain A = %(Fl +F),
which converges in the thermodynamical limit to %(xl + x2). However, it would
be wrong to conclude that A is nearly equal to (21 + x2) (z1 + 22)/2 in an
overwhelmingly large part of phase space. Instead, it is nearly equal to x; on
(roughly) half the available phase space and nearly equal to z2 on the remaining
half.

The extension of (130) to phase space functions will thus demand extra as-
sumptions on the form of such functions; for example, that their dependence on
the momenta comes only as some function of the kinetic energy, i.e.

=2
- o o o Di
(135) Apla---pN§Q17~-~QN):w(§ om

for some continuous function .

)+F(§17a§N)

6.4 Lanford’s approach to the Boltzmann equation

We now turn to consider some modern approaches to non-equilibrium statistical
mechanics. Of these, the approach developed by Lanford and others (cf. [Lanford,
1975; Lanford, 1976; Lanford, 1981; Spohn, 1991; Cercignani et al., 1994]) deserves
special attention because it stays conceptually closer to Boltzmann’s 1872 work
on the Boltzmann equation and the H-theorem than any other modern approach
to statistical physics. Also, the problem Lanford raised and tried to answer is
one of no less importance than the famous reversibility and recurrence objections.
Furthermore, the results obtained are the best efforts so far to show that a sta-
tistical reading of the Boltzmann equation or the H-theorem might hold for the
hard spheres gas.
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The question Lanford raised is that of the consistency of the Boltzmann equation
and the underlying Hamiltonian dynamics. Indeed, if we consider the microstate
of a mechanical system such as a dilute gas, it seems we can provide two competing
accounts of its time evolution.

(1) On the one hand, given the mechanical microstate xo of a gas, we can
form the distribution of state f(7,@), such that f(7,7)d>vd>7 gives the relative
number of molecules with a position between 7 and 7+ d># and velocity between ¥/
and ¥ + d3¥. Presumably, this distribution should be uniquely determined by the
microstate . Let us make this dependence explicit by adopting the notation fl*ol.
This function, then, should ideally serve as an initial condition for the Boltzmann
equation (48), and solving this equation — assuming, that is, that it, that it has a
unique solution — would give us the shape of the distribution function at a later
time, f1°0(F, 7).

(2) On the other hand, we can evolve the microstate z¢ for a time ¢t with the
help of the Hamiltonian equations. That will give us x; = Tixo. This later state
x; will then also determine a distribution of state f*!(7, o).

It is a sensible question whether these two ways of obtaining a later distribution
of state from an initial microstate are the same, i.e. whether the two time evolu-
tions are consistent. In other words, the problem is whether the diagram below
commutes:

o Haﬂlt}on T

(136) | l

flwo]  Beltzmann ft[%];f[zt]

The first issue that has to be resolved here is the precise relation between a
microstate and the distribution of state f. It is obvious that, in so far as this
function represents the physical property of a gas system, it should be determined
by the momentary microstate x. It is also clear, that in so far as it is assumed to
be continuous and differentiable in time in order to obey the Boltzmann equation,
this cannot be literally and exactly true.

So let us assume, as Boltzmann did, that the gas consists of N hard spheres,
each of diameter d and mass m, contained in some fixed bounded spatial region A
with volume |A| = V. Given a microstate x of the system one can form the ‘exact’
distribution of state:

—

N
2] 1 I
(137) FUE0) = = 3 67— 3)8° (7 - biy.

m

This distribution is, of course, not a proper function, and being non-continuous
and non-differentiable, clearly not a suitable object to plug into the Boltzmann
equation. However, one may reasonably suppose that one ought to be able to
express Boltzmann’s ideas in a limit in which the number of particles, NV, goes to
infinity. However, this limit clearly must be executed with care.
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On the one hand, one ought to keep the gas dilute, so that collisions involving
three or more particles will be rare enough so that they can safely be ignored in
comparison to two-particle collisions. On the other hand, the gas must not be so
dilute that collisions are altogether too rare to contribute to a change of f. The
appropriate limit to consider, as Lanford argues, is the so-called Boltzmann-Grad
limit in which N — oo, and:%7

Nd?
(138) - = constant > 0.

Denote this limit as “N 25 o0”, where it is implicitly understood that d oc N—1/2.
The hope is then that in this Boltzmann-Grad limit, the exact distribution F "]
will tend to a continuous function that can be taken as an appropriate initial
condition for the Boltzmann equation. For this purpose, one has to introduce a
relevant notion of convergence for distributions on the pu-space AxR3. A reasonable
choice is to say that an arbitrary sequence of distributions f,, (either proper density
functions or in the distributional sense) converges to a distribution f, f, — f,
iff the following conditions hold:

For each rectangular parallelepiped A C A x R3

(139) lim fnd3Fd3 = / fd37d>T,
(140) and lim [ @*f,d*fd>s = / P fd3rd>v,

where the second condition is meant to guarantee the convergence of the mean
kinetic energy.

It is also convenient to introduce some distance function between (proper or
improper) distributions that quantifies the sense in which one distribution is close
to another in the above sense. That is to say, one might define some distance
d(f,g) between density functions on A x R? such that

(141) d(fn, f) — 0= fr, — f.

There are many distance functions that could do this job, but I won’t go into the
question of how to pick out a particular one.

The hope is then, to repeat, that Fle™ f in the above sense when NV BG, 0,
where f is sufficiently smooth to serve as an initial condition in the Boltzmann
equation, and that with this definition, the Boltzmannian and Hamiltonian evolu-
tion become consistent in the sense that the diagram (136) commutes. But clearly
this will still be a delicate matter. Indeed, increasing N means a transition from
one mechanical system to another with more particles. But there is no obvious

67The condition can be explained by the hand-waving argument that Nd?/V is proportional to
the ‘mean free path’, i.e. a typical scale for the distance traveled by a particle between collisions,
or also by noting that the collision integral in the Boltzmann equation is proportional to Nd?/V,
so that by keeping this combination constant, we keep the Boltzmann equation unchanged.
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N and thus no way to enforce con-

algorithm to construct the state V! from x

vergence on the level of individual states.
Still, one might entertain an optimistic guess, which, if true, would solve the

consistency problem between the Boltzmann and the Hamiltonian evolution in an

approximate fashion if N is very large.

OPTIMISTIC GUESS: If F[#0] is near to f then FI#¢) is near to f; for
all ¢ > 0, and where f; is the solution of the Boltzmann equation with
initial condition f.

As [Lanford, 1976] points out, the optimistic guess cannot be right. This is an
immediate consequence of the reversibility objection: Indeed, suppose it were true
for all z € T', and ¢t > 0. (Here, we momentarily drop the superscript N from zv
to relieve the notation.) Consider the phase point Rz obtained from z by reversing
all momenta: R(q1,pi;...:qn-ON) = (@1, —P1;-- -3 0N, —Pn). If FI7] (7, ¥) is near
to some distribution f(7, ), then FI (7 §) is near to f(7, —7). But as x evolves
to x;, Rz, evolves to TyRz, = RT_,x, = Rx. Hence FITE*l(7 5) = FIE (7, 7)
is near to f(7, —v). But the validity of the conjecture for Rx; would require that
FITe Rz (7 ) is near to f; (7, —¥) and these two distributions of state are definitely
not near to each other, except in some trivial cases.

But even though the optimistic guess is false in general, one might hope that it
is ‘very likely’ to be true, with some overwhelming probability, at least for some
finite stretch of time. In order to make such a strategy more explicit, Lanford takes
recourse to a probability measure on I', or more precisely a sequence of probability
measures on the sequence of I' 5’s.

Apart from thus introducing a statistical element into what otherwise would
have remained a purely kinetic theory account of the problem, there is a definite
advantage to this procedure. As mentioned above, there is no obvious algorithm to
construct a sequence of microstates in the Boltzmann-Grad limit. But for measures
this is different. The microcanonical measure, for example is not just a measure
for the energy hypersurface of one N-particles-system; it defines an algorithmic
sequence of such measures for each V.

In the light of this discussion, we can now state Lanford’s theorem as follows
[Lanford, 1975; 1976]:

LANFORD’S THEOREM: Let t — f; be some solution of the Boltzmann
equation, say for t € [0,a) C R. For each N, let Ay denote the set
in the phase space I'y of N particles, on which Fl=™1 is near to fo
(the initial condition in the solution of the Boltzmann equation) in the
sense that for some chosen distance function d and for tolerance ¢ > 0:

(142) Ay ={zV €Ty : d(F*"] fo) < e}

Further, for each N, conditionalize the microcanonical measure py on
ANZ
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(143) pan() == pn(]AN).

In other words, pa, N is a sequence of measures on the various I'y that
assign measure 1 to the set of microstates 2N € T'y that are close to
fo in the sense that d(F[zN],fo) <e.

Then: 37, 0 < 7 < a such that for all t with 0 <t < 7:

(144) pan({zN €Ty « dFF f)<ep)>1-0
Where5—>0asb0th6—>0andNB—G>oo.

In other words: as judged from the microcanonical measure on I'y restricted to
those states "V that have their exact distribution of state close to a given initial
function fp, a very large proportion (1 — §) evolve by the Hamiltonian dynamics
in such a way that their later exact distribution of state F @] yemains close to
the function f;, as evolved from fy by the Boltzmann equation.

Remarks

Lanford’s theorem shows that a statistical and approximate version of the Boltz-
mann equation can be derived from Hamiltonian mechanics and the choice of an
initial condition in the Boltzmann-Grad limit. This is a remarkable achievement,
that in a sense vindicates Boltzmann’s intuitions. According to [Lanford, 1976,
p. 14], the theorem says that the approximate validity of the Boltzmann equation,
and hence the H-theorem, can be obtained from mechanics alone and a consider-
ation of the initial conditions.

Still the result established has several remarkable features, all of which are
already acknowledged by Lanford. First, there are some drawbacks that prevent
the result from having practical impact for the project of justifying the validity of
the Boltzmann equation in real-life physical applications. The density of the gas
behaves like N/d?, and in the Boltzmann-Grad limit this goes to zero. The result
thus holds for extremely rarified gases. Moreover, the length of time for which
the result holds, i.e. 7, depends on the constant in (138), which also provides a
rough order of magnitude for the mean free path of the gas . It turns out that,
by the same order of magnitude considerations, 7 is roughly two fifths of the
mean duration between collisions. This is a disappointingly short period: in air
at room temperature and density, 7 is in the order of microseconds. Thus, the
theorem does not help to justify the usual applications of the Boltzmann equation
to macroscopic phenomena which demand a much longer time-scale.

Yet note that the time scale is not trivially short. It would be a misunder-
standing to say that the theorem establishes only the validity of the Boltzmann
equation for times so short that the particles have had no chance of colliding: In
two fifths of the mean duration between collisions, about 40 % of the particles
have performed a collision.
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Another issue is that in comparison with Boltzmann’s own derivation no explicit
mention seems to have been of the Stofizahlansatz. In part this is merely apparent.
In a more elaborate presentation (cf. Lanford 1975, 1976), the theorem is not
presented in terms of the microcanonical measure, but an arbitrary sequence of
measures vy on (the sequence of phase spaces) I'y. These measures are subject
to various assumptions. One is that each vy should be absolutely continuous with
respect to the microcanonical measure py, i.e. vy should have a proper density
function

(145) dI/N(x) = nN(xl, . $N)d331 TN

where x; = (¢, p;) denotes the canonical coordinates of particle i. Further, one
defines, for each N and m < N, the reduced density functions by

N! 1

(m) L L
(146) ny '(x1,...2pm) = N—m)i N

/nN(xl, o ZN)ATpg - dT N

i.e. as (slightly renormalized) marginal probability distributions for the first m
particles. The crucial assumption is now that

(147)  lim 20 (@1, zm) = 2O (@) 0D (2,)
BG

— 00

uniformly on compact subsets of (A x R3)™. This assumption (which can be
shown to hold for the microcanonical measures) is easily recognized as a measure-
theoretic analogy to the Stofizahlansatz. It demands, in the Boltzmann-Grad limit,
statistical independence of the molecular quantities for any pair or m-tuple of
particles at time ¢ = 0. As Lanford also makes clear, it is assumption (146) that
would fail to hold if we run the construction of the reversibility objection; (i.e. if
we follow the states = in Ay for some time ¢, 0t < 7, then reverse the momenta,
and try to apply the theorem to the set Ay = {Rxz; : = € An}).

But another aspect is more positive. Namely: Lanford’s theorem does not need
to assume explicitly that the Stofizahlansatz holds repeatedly. Indeed a remarkable
achievement is that once the factorization condition (146) holds for time ¢ = 0 it
will also hold for 0 < ¢ < 7, albeit in a weaker form (as convergence in measure,
rather than uniform convergence). This is sometimes referred to as “propagation
of chaos” [Cercignani et al., 1994].

But the main conceptual problem concerning Lanford’s theorem is where the
apparent irreversibility or time-reversal non-invariance comes from. On this is-
sue, various opinions have been expressed. [Lanford, 1975, p. 110] argues that
irreversibility is the result of passing to the Boltzmann-Grad limit. Instead, [Lan-
ford, 1976] argues that it is due to condition (146) plus the initial conditions (i.e.:
TN € AN)

However, I would take a different position. The theorem equally holds for
—7 < t < 0, with the proviso that f; is now a solution of the anti-Boltzmann
equation. This means that the theorem is, in fact, invariant under time-reversal.
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6.5 The BBGKY approach

The so-called BBGKY-hierarchy (named after Bogolyubov, Born, Green, Kirk-
wood and Yvon) is a unique amalgam of the description of Gibbs and the approach
of Boltzmann. The goal of the approach is to describe the evolution of ensembles
by means of reduced probability densities, and to see whether a Boltzmann-like
equation can be obtained under suitable conditions — and thereby an approach
to statistical equilibrium.

First, consider an arbitrary time-dependent probability density p;. The evolu-
tion of p is determined via the Liouville-equation by the Hamiltonian:

Ipt

(148) Bt = (11, ).
Central in the present approach is the observation that for relevant systems in
statistical mechanics, this Hamiltonian will be symmetric under permutation of the
particles. Indeed, the Hamiltonian for a system of N indistinguishable particles
usually takes the form

—

N o N N
Lo Di . .
(149) H(q1,pi;--:dn.Pn) = Y m+ZV(Qi)+Z¢(||Qi_Qj||)
=1 i

2 —
1<

where V is the potential representing the walls of the bounded spatial region A,
say:

(150) V(q’):{ 0 if geA

oo elsewhere

and ¢ the interaction potential between particle ¢ and j. This is not only symmetric
under permutation of the particle labels, but even has the more special property
that it is a sum of functions that never depend on the coordinates of more than
two particles. (cf. the discussion in §6.3.)

Let us again use the notation © = (q1,p1;...;qn,DN) = (z1,...,2N); with
x; = (G, P;), and consider the sequence of reduced probability density functions,
defined as the marginals of p:

pM (1) = /pt(w) dy---xN
(151)

p(m)(xlv'-wzm) = /Pt(z)d$m+1"'d931v

Here, p(™ gives the probability density that particles 1,...,m are located at
specified positions ¢i, ... ¢, and moving with the momenta pi, ... p,,, whereas all
remaining particles occupy arbitrary positions and momenta.
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Symmetry of the Hamiltonian need not imply symmetry of p. But one might
argue that we may restrict ourselves to symmetric probability densities if all ob-
servable quantities are symmetric. In that case, it makes no observable difference
when two or more particles are interchanged in the microstate and one may replace
p by its average under all permutations without changing the expectation values
of any observable quantity. However this may be, we now assume that p is, in fact,
symmetric under permutations of the particle labels. In other words, from now
on p{™) gives the probability density that any arbitrarily chosen set of m particles
have the specified values for position and momentum.

The guiding idea is now that for relevant macroscopic quantities, we do not
need the detailed form of the time evolution of p;. Rather, it suffices to focus on
no more than just a few marginals from the hierarchy (151). For example, suppose
a physical quantity represented as a phase function A is a symmetric sum function
on I

(152) A(w) =Y Ala)
Then

(153) (A) = N / A(z)pD (21) da

which is a considerable simplification. But this is not to say that we can compute
the evolution of (A) in time so easily.

Consider in particular pgl) in (151). This is the one-particle distribution func-
tion: the probability that an arbitrary particle is in the one-particle state () ).
This distribution function is in some sense analogous to Boltzmann’s f. But note:
p1 is a marginal probability distribution; it characterizes an ensemble, whereas f
is (in this context) a stochastic variable, representing a property of a single gas:

(154) f(7, 7)) NZ5 F)év——)

How does p( ) evolve? From the Liouville-equation we get
8/)(1)(9:1) 3> S o =
(155) o = /{va}d P2 PNAG2 - qN

It is convenient here to regard the Poisson bracket as a differential operator on p,
usually called the Liouville operator L:

N
oOH 0 OH 0
0 2= (G 37 ~ o7t or)

i=1

For the Hamiltonian (149) this can be expanded as:
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(157) £ = Zz(”+25(2)

1<J
where
158) £V .= ;.
(188) L;":=p o
and
o6 (O 0
159) £ .= (H - ﬂ>
(159) L3 9q; op;  Op;
The evolution of p(!) is then given by:
optM (z
(160) )~ L)+ [ el 1,2

More generally, for higher-order reduced distribution functions p(™) (m > 2), the
evolution is governed by the equations:

O™ (21, ... ) LI
5 = Zﬁi )pgm)(xl,.. Z ﬁz] pgm) Tiyeny Tm)
i 1<j=1
(161) +Z/dxm+1ﬁz m+1pgm+1)($1» e Tmg1)

The equations (160,161) form the BBGKY hierarchy. It is strictly equivalent to
the Hamiltonian formalism for symmetric p and H, provided that H contains no
terms that depend on three or more particles. As one might expect, solving these
equations is just as hard as for the original Hamiltonian equations. In particular,

the equations are not closed: in order to know how pgl) evolves, we need to know

p§2). In order to know how pg ) evolves, we need to know p( ) ete.

The usual method to overcome this problem is to cut off the hierarchy, i.e.
to assume that for some finite m, p("™ is a functional of p(¥ with ¢ < m. In
particular, if we just consider the easiest case (m = 2) and the easiest form of the
functional, we can take p(?) to factorize in the distant past (t — —00), giving:

(162) pi” (w1, 22) = pi” (21)p " (22);  if t — —o00

i.e., requiring that the molecular states of any pair of particles are uncorrelated
before their interaction. This is analogous to the Stofzahlansatz (29), but now, of
course, formulated in terms of the reduced distribution functions of an ensemble.

It can be shown that for the homogeneous case, i.e. when p(®) is uniform over the
positions @ and g, i.e. when p() (x1, 25) = p( (P}, p3) and when ¢ is a interaction
potential of finite range, the evolution equation for p") becomes formally identical
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to the Boltzmann equation (48). That is to say, in (160) we may substitute Egl) =0
and:

op") ()
Bt
N - N
(163) _ E/bdbd(ﬁ/dpg”pg Al

(p @t 32) = o) )t (52)

- /L@mmmwfm

(See [Uhlenbeck and Ford, 1963, p. 131] for more details.)

Remarks

The BBGKY approach is thoroughly Gibbsian in its outlook, i.e. it takes a prob-
ability density over phase space as its basic conceptual tool. An additional ingre-
dient, not used extensively by Gibbs, is its reliance on permutation symmetry. It
gives an enormous extension of Gibbs’ own work by providing a systematic hierar-
chy of evolution equations for reduced (or marginalized) density functions, which
can then be subjected to the techniques of perturbation theory. An ensemble-based
analogy of the Boltzmann equation comes out of this approach as a first-order ap-
proximation for dilute gases with collision times much smaller than the mean free
time. The Boltzmann equation for inhomogeneous gases cannot be obtained so
easily— as one might expect also on physical grounds that one will need extra
assumptions to motivate its validity.

It is instructive to compare this approach to Lanford’s. His analogy of the
Boltzmann equation is obtained for a different kind of function, namely the one-
particle distribution function FI¥l, i.e. the exact relative number of particles with
molecular state (7,%), instead of p(). Of course, there is a simple connection
between the two. Noting that FI#] is a sum function (cf. equation (137), we see
that

—

(160) (F¥) = [ 0G0, G)F 6~ 3)6 - 2 )dprdar = oV 9)

In other words, the one-particle distribution function p(*) is the expected value of
the exact distribution of state. It thus appears that where Lanford describes the
probability of the evolution of the exact distribution of state, the BBGKY result
(164) describes the evolution of the average of the exact distribution of state.
Lanford’s results are therefore much more informative.

One might be tempted here to argue that one can justify or motivate that
that actual particle distribution might be taken equal to its ensemble average
by arguments similar to those employed in ergodic theory. In particular, we have
seen from Khinchin’s work (cf. §6.3) that for large enough systems, the probability
that a sum function such as F[* deviates significantly from its expectation value is
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negligible. However, an important complication is that this reading of Khinchin’s
results holds for equilibrium, i.e. they apply with respect to the microcanonical
distribution pp,c, not to an arbitrary time-dependent density p; envisaged here.

The time asymmetry of the resulting equation does not derive from the hier-
archy of equations, but from the ensemble-based analogy of the StofSzahlansatz
(162). That is to say, in this approach time asymmetry is introduced via an initial
condition on the ensemble, i.e. the absence of initial correlations. It can be shown,
just like for the original Boltzmann equation, that when the alternative boundary
condition is imposed that makes the momenta independent after collisions, (i.e.
if (162) is imposed for ¢ — oo instead) the anti-Boltzmann equation is obtained
(see [Uhlenbeck and Ford, 1963, p. 127]).

7 STOCHASTIC DYNAMICS

7.1 Introduction

Over recent decades, some approaches to non-equilibrium statistical mechanics,
that differ decidedly in their foundational and philosophical outlook, have never-
theless converged in developing a common unified mathematical framework. T will
call this framework ‘stochastic dynamics’, since the main characteristic feature of
the approach is that it characterizes the evolution of the state of a mechanical
system as evolving under stochastic maps, rather than under a deterministic and
time-reversal invariant Hamiltonian dynamics.5®

The motivations for adopting this stochastic type of dynamics come from dif-
ferent backgrounds, and one can find authors using at least three different views.

1. “Coarse graining” (cf. [van Kampen, 1962; Penrose, 1970]): In this view
one assumes that on the microscopic level the system can be characterized as
a (Hamiltonian) dynamical system with deterministic time-reversal invariant dy-
namics. However, on the macroscopic level, one is only interested in the evolution
of macroscopic states, i.e. in a partition (or coarse graining) of the microscopic
phase space into discrete cells. The usual idea is that the form and size of these
cells are chosen in accordance with the limits of our observational capabilities. A
more detailed exposition of this view is given in §7.5.

On the macroscopic level, the evolution now need no longer be portrayed as
deterministic. When only the macrostate of a system at an instant is given, it is in
general not fixed what its later macrostate will be, even if the underlying micro-
scopic evolution is deterministic. Instead, one can provide transition probabilities,
that specify how probable the transition from any given initial macrostate to later
macrostates is. Although it is impossible, without further assumptions, to say
anything general about the evolution of the macroscopically characterized states,
it is possible to describe the evolution of an ensemble or a probability distribution
over these states, in terms of a stochastic process.

68 Also, the name has been used in precisely this sense already by Sudarshan and coworkers,
cf. [Sudarshan et al., 1961; Mehra and Sudarshan, 1972].
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2. “Interventionism”, “tracing” or “open systems” (cf. [Blatt, 1959; Davies,
1976; Lindblad, 1976; Lindblad, 1983; Ridderbos, 2002]): On this view, one as-
sumes that the system to be described is not isolated but in interaction with the
environment. It is assumed that the total system, consisting of the system of inter-
est and the environment can be described as a (Hamiltonian) dynamical system
with a time-reversal invariant and deterministic dynamics. If we represent the
state of the system by z € I'® and that of the environment by y € T'(®)| their
joint evolution is given by a one-parameter group of evolution transformations,
generated from the Hamiltonian equations of motion for the combined system:
Uy : (z,y) — Uz, y) € T x T(©). The evolution of the state z in the course of
time is obtained by projecting, for each t, to the coordinates of Ui(z,y) in INOR
call the result of this projection x;. Clearly, this reduced time evolution of the
system will generally fail to be deterministic, e.g. the trajectory described by x;
in T®) may intersect itself.

Again, we may hope that this indeterministic evolution can nevertheless, for
an ensemble of the system and its environment, be characterized as a stochastic
process, at least if some further reasonable assumptions are made.

3. A third viewpoint is to deny [Mackey, 1992; 2001], or to remain agnostic
about [Streater, 1995), the existence of an underlying deterministic or time-reversal
invariant dynamics, and simply regard the evolution of a system as described by
a stochastic process as a new fundamental form of dynamics in its own right.

While authors in this approach thus differ in their motivation and in the inter-
pretation they have of its subject field, there is, as we shall see, a remarkable unity
in the mathematical formalism adopted for this form of non-equilibrium statistical
mechanics. The hope, obviously, is to arrange this description of the evolution
of mechanical systems in terms of a stochastic dynamics in such a way that the
evolution will typically display ‘irreversible behaviour’: i.e. an ‘approach to equi-
librium’, that a Boltzmann-like evolution equation holds, that there is a stochastic
analogy of the H-theorem, etc. In short, one would like to recover the autonomy
and irreversibility that thermal systems in non-equilibrium states typically display.

We will see that much of this can be achieved with relatively little effort once
a crucial technical assumption is in place: that the stochastic process is in fact a
homogeneous Markov process, or, equivalently, obeys a so-called master equation.
Much harder are the questions of whether the central assumptions of this approach
might still be compatible with an underlying deterministic time-reversal invariant
dynamics, and in which sense the results of the approach embody time-asymmetry.
In fact we shall see that conflicting intuitions on this last issue arise, depending
on whether one takes a probabilistic or a dynamics point of view towards this
formalism.

From a foundational point of view, stochastic dynamics promises a new ap-
proach to the explanation of irreversible behaviour that differs in interesting ways
from the more orthodox Hamiltonian or dynamical systems approach. In that
approach, any account of irreversible phenomena can only proceed by referring to
special initial conditions or dynamical hypotheses. Moreover, it is well-known that
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an ensemble of such systems will conserve (fine-grained) Gibbs entropy so that the
account cannot rely on this form of entropy for a derivation of the increase of
entropy.

In stochastic dynamics, however, one may hope to find an account of irreversible
behaviour that is not tied to special initial conditions, but one that is, so to
say, built into the very stochastic-dynamical evolution. Further, since Liouville’s
theorem is not applicable, there is the prospect that one can obtain a genuine
increase of Gibbs entropy from this type of dynamics.

As just mentioned, the central technical assumption in stochastic dynamics is
that the processes described have the Markov property.%? Indeed, general aspects
of irreversible behaviour pour out almost effortlessly from the Markov property,
or from the closely connected “master equation”. Consequently, much of the
attention in motivating stochastic dynamics has turned to the assumptions needed
to obtain this Markov property, or slightly more strongly, to obtain a non-invertible
Markov process [Mackey, 1992]. The best-known specimen of such an assumption
is [van Kampen, 1962] “repeated randomness assumption”. And similarly, critics
of this type of approach [Sklar, 1993; Redhead, 1995; Callender, 1999] have also
focused their objections on the question just how reasonable and general such
assumptions are (cf. paragraph 7.5).

I believe both sides of the debate have badly missed the target. Many authors
have uncritically assumed that the assumption of a (non-invertible) Markov pro-
cess does indeed lead to non-time-reversal-invariant results. As a matter of fact,
however, the Markov property (for invertible or non-invertible Markov processes)
is time-reversal invariant. So, any argument to obtain that property need not pre-
suppose time-asymmetry. In fact, I will argue that this discussion of irreversible
behaviour as derived from the Markov property suffers from an illusion. It is due
to the habit of studying the prediction of future states from a given initial state,
rather than studying retrodictions towards an earlier state. As we shall see, for
a proper description of irreversibility in stochastic dynamics one needs to focus
on another issue, namely the difference between backward and forwards transition
probabilities.

In the next subsections, I will first (§7.2) recall the standard definition of a
homogeneous Markov process from the theory of stochastic processes. Subsection
7.3 casts these concepts in the language of dynamics, introduces the master equa-
tion, and discusses its analogy to the Boltzmann equation. In §7.4, we review
some of the results that prima facie display irreversible behaviour for homoge-
neous Markov processes. In subsection 7.5 we turn to the physical motivations
that have been given for the Markov property, and their problems, while §7.6 fo-
cuses on the question how seemingly irreversible results could have been obtained
from a time-symmetric assumptions. Finally, §7.7 argues that a more promising
discussion of these issues should start from a different definition of reversibility of
stochastic processes.

69Some authors argue that the approach can and should be extended to include non-Markovian
stochastic processes as well. Nevertheless I will focus here on Markov processes.
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7.2 The definition of Markov processes

To start off, consider an example. One of the oldest discussions of a stochastic
process in the physics literature is the so-called ‘dog flea model’ of P. and T.
Ehrenfest (1907).

Consider N fleas, labeled from 1 to N, situated on either of two dogs. The
number of fleas on dog 1 and 2 are denoted as n; and ny = N — n;. Further, we
suppose there is an urn with IV lots carrying the numbers 1, ... IV respectively. The
urn is shaken, a lot is drawn (and replaced), and the flea with the corresponding
label is ordered to jump to the other dog. This procedure is repeated every second.

It is not hard to see that this model embodies an ‘approach equilibrium’ in some
sense: Suppose that initially all or almost all fleas are on dog 1. Then it is very
probable that the first few drawings will move fleas from dog 1 to 2. But as soon
as the number of fleas on dog 2 increases, the probability that some fleas will jump
back to dog 1 increases too. The typical behaviour of, say, |n1 — ns| as a function
of time will be similar to Boltzmann’s H-curve, with a tendency of |n; — na| to
decrease if it was initially large, and to remain close to the ‘equilibrium’ value
ny1 ~ ng for most of the time. But note that in contrast to Boltzmann’s H-curve
in gas theory, the ‘evolution’ is here entirely stochastic, i.e. generated by a lottery,
and that no underlying deterministic equations of motion are provided.

In general, a stochastic process is, mathematically speaking, nothing but a
probability measure P on a measure space X, whose elements will here be denoted
as &, on which there are infinitely many random variables Y;, with ¢ € R (or
sometimes ¢ € Z). Physically speaking, we interpret ¢ as time, and Y as the
macroscopic variable(s) characterizing the macrostate — say the number of fleas
on a dog, or the number of molecules with their molecular state in some cell of u-
space, etc. Further, £ represents the total history of the system which determines
the values of Y;(€). The collection Y; may thus be considered as a single random
variable Y evolving in the course of time.

At first sight, the name ‘process’ for a probability measure may seem somewhat
unnatural. From a physical point of view it is the realization, in which the random
variables Y; attain the values Y;(£) = y; that should be called a process. In the
mathematical literature, however, it has become usual to denote the measure that
determines the probability of all such realizations as a ‘stochastic process’.

For convenience we assume here that the variables Y; may attain only finitely

many discrete values, say y: € Y = {1,...,m}. However, the theory can largely
be set up in complete analogy for continuous variables.
The probability measure P provides, for n = 1,2,..., and instants ty,...,t,

definite probabilities for the event that Y; at these instants attains certain values
Yls-nvsYn:

Py (y1,t1)
Poy(y2,t2;y1,t1)
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(165) Py Ynstni 591, t1)

Here, Py (Ynstn;---;y1,t1) stands for the joint probability that at times t1,...,t,
the quantities Y; attain the values y1, . ..y,, with y; € ). It is an abbreviation for

(166) Py (Ynstn;--3y1,t1) = PHEEX Y, () =yn & -+ &Y, () =1 })

Obviously the probabilities (165) are normalized and non-negative, and each P,
is a marginal of all higher-order probability distributions:

(167) P(n)(ynatn; cee ;yl,tl) = Z e Z P(n—&-m)(yn—o—m’tn—o—m; cee ;y1,t1)-

Yn+m Yn+1

In fact, the probability measure P is uniquely determined by the hierarchy (165).7°

Similarly, we may define conditional probabilities in the familiar manner, e.g.:

Py Wn—1,tn-15-.-3y1,t1)

(168) P(l\n—l)(ynatn‘ynflatnfﬂ cee ylvtl) =

provides the probability that Y; attains the value y,, under the condition that
Y:, ,s-.., Yy have the values yp_1,...,9y1.

In principle, the times appearing in the joint and conditional probability distri-
butions (165,168) may be chosen in an arbitrary order. However, we adopt from
now on the convention that they are ordered as t; < --- < t,,.

A special and important type of stochastic process is obtained by adding the
assumption that such conditional probabilities depend only the condition at the
last instant. That is to say: for all n and all choices of y1,...y, and t1 < ... < t,:

(169) P(l\n)(ymtn|yn—17tn—1§ 3 Ynstn) = P(l\l)(ymtn|yn—17tn—1)

This is the Markov property and such stochastic processes are called Markov pro-
cesses.

The interpretation often given to this assumption, is that Markov processes
have ‘no memory’. To explain this slogan more precisely, consider the following
situation. Suppose we are given a piece of the history of the quantity Y: at the
instants t¢1,...,t,_1 its values have been y1,...,y,_1. On this information, we
want to make a prediction of the value y, of the variable Y at a later instant ¢,,.
The Markov-property (169) says that this prediction would not have been better
or worse if, instead of knowing this entire piece of prehistory, only the value y,_1
of Y at the last instant ¢,_1 had been given. Additional information about the
past values is thus irrelevant for a prediction of the future value.

For a Markov process, the hierarchy of joint probability distributions (165) is
subjected to stringent demands. In fact they are all completely determined by:

70 At least, when we assume that the o-algebra of measurable sets in X is the cylinder algebra
generated by sets of the form in the right-hand side of (166).
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(a) the specification of Py(y,0) at one arbitrary chosen initial instant ¢ = 0, and
(b) the conditional probabilities P(yj1)(y2, t2|y1,t1) for all £ > t;. Indeed,

(170) Puy(y,t) = Z Py (y, tlyo, 0) Py (4o, 0);

Yo

and for the joint probability distributions P,y we find:

PioyWnotns sy, t1) = Py Wns talyn—1,tn—1) Pajy (Un—1, ta—1|Yn—2,tn—2) X
(171) X o X Py (e, ta|y1, t1) Pay (v, t1)-

It follows from the Markov property that the conditional probabilities 1)1y have
the following property, known as the Chapman-Kolmogorov equation:

(172) Pajy(ys, talyr, t1) = ZP(1\1)(y3,t3|y2,tz)P(1|1)(y2,t2|y1,t1) for t; <ty < ts.
Y2

So, for a Markov process, the hierarchy (165) is completely characterized by
specifying P(;) at an initial instant and a system of conditional probabilities P11
satisfying the Chapman-Kolmogorov equation. The study of Markov processes
therefore focuses on these two ingredients.”

A following special assumption is homogeneity. A Markov process is called
homogeneous if the conditional probabilities Pq)1(y2,t2|y1,t1) do not depend on
the two times ¢1, to separately but only on their mutual difference t = t5 — ¢1; i.e.
if they are invariant under time translations. In this case we may write

(173) Paj1y(ye, talyr, t1) = Ti(y2, y1)

such conditional probabilities are also called transition probabilities.

Is the definition of a Markov process time-symmetric? The choice in (169) of
conditionalizing the probability distribution for Y; on earlier values of Y; is of
course special. In principle, there is nothing in the formulas (165) or (168) that
forces such an ordering. One might, just as well, ask for the probability of a value
of Y; in the past, under the condition that part of the later behaviour is given (or,
indeed, conditionalize on the behaviour at both earlier and later instants.)

At first sight, the Markov property makes no demands about these latter cases.
Therefore, one might easily get the impression that the definition is time-asymmetric.
However, this is not the case. One can show that (169) is equivalent to:

(174) Papn—1) (Y1, tily2, t2; - - 5 yns tn) = Pajny(yitilyz, ta)

"INote, however, that although every Markov process is fully characterized by (i) an initial
distribution P(1)(y,0) and (ii) a set of transition probabilities P(;);) obeying the Chapman-
Kolmogorov equation and the equations (171), it is not the case that every stochastic process
obeying (i) and (ii) is a Markov process. (See [van Kampen, 1981, p. 83] for a counterexample).
Still, it is true that one can define a unique Markov process from these two ingredients by
stipulating (171).
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where the convention t; < ty < --- < t, is still in force. Thus, a Markov process
does not only have ‘no memory’ but also ‘no foresight’. Some authors (e.g. [Kelly,
1979]) adopt an (equivalent) definition of a Markov process that is explicitly time-
symmetric: Suppose that the value y; at an instant ¢; somewhere in the middle of
the sequence t; < --- < t, is given. The condition for a stochastic process to be
Markov is then

P(n|1)(ynatn; cee ylvtl‘yiati) =
(175)  Pr—ijtyUn>tns - - 5 Yirrs tig [Yin ta) Pra—1n) (ie1, tim1s 91, talyi, i)

foralln=1,2,... and all 1 <4 < n. In another slogan: The future and past are
independent if one conditionalizes on the present.

7.8 Stochastic dynamics

A homogeneous Markov process is for ¢ > 0 completely determined by the specifica-
tion of an initial probability distribution P1)(y,0) and the transition probabilities
T:(y2|y1) defined by (173). The difference in notation (between P and T') also
serves to ease a certain conceptual step. Namely, the idea is to regard T; as a
stochastic evolution operator. Thus, we can regard T;(y2|y1) as the elements of a
matrix, representing a (linear) operator T that determines how an initial distribu-
tion P (y,0) will evolve into a distribution at later instants ¢ > 0. (In the sequel
I will adapt the notation and write P1)(y,t) as P(y).)

(176) Pi(y) = (T,P)(y) == ZTt(my/)Po(y/)-

The Chapman-Kolmogorov equation (172) may then be written compactly as
(177) Tt+t’ = Tt o Tt/ for t, t/ 2 0

where o stands for matrix multiplication, and we now also extend the notation to
include the unit operator:

(178) 1(y,y") = To(y,y) == by

where ¢ denotes the Kronecker delta.

The formulation (177) can (almost) be interpreted as the group composition
property of the evolution operators 7. It may be instructive to note how much
this is due to the Markov property. Indeed, for arbitrary conditional probabilities,
say, if A;, B; and C} denote three families of complete and mutually exclusive
events (1e U;A; = Uij =UrCr = Y; A;NAy = Bj N Bj/ =Cp,NCy = 0 for
i1 £ 1,5 #j and k # k'), the rule of total probability gives :

(179) P(Ai|Cr) =Y P(Ai| B}, Cy)P(B;|Cy).

J
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In general, this rule can not be regarded as ordinary matrix multiplication or a
group composition! But the Markov property makes P(A;|B;,Cy) in (179) reduce
to P(A;|B;), and then the summation in (179) coincides with familiar rule for
matrix multiplication.

I wrote above: ‘almost’, because there is still a difference in comparison with
the normal group property: in the Chapman-Kolmogorov-equation (177) all times
must be positive. Thus, in general, for ¢ > 0, T; may not even be defined and so
it does not hold that

(180) T, 0T, = 1.

A family of operators {T,t > 0} which is closed under a operation o that obeys
(177), and for which Ty = 1 is called a semigroup. It differs from a group in the
sense that its elements T; need not be invertible, i.e., need not have an inverse. The
lack of an inverse of T3 may be due to various reasons: either T; does not possess
an inverse, i.e. it is not a one-to-one mapping, or 7; does possess an inverse matrix
T/™v, which however is itself non-stochastic (e.g. it may have negative matrix-
elements). We will come back to the role of the inverse matrices in Sections 7.4
and 7.7.

The theory of Markov processes has a strong and natural connection with linear
algebra. Sometimes, the theory is presented entirely from this perspective, and
one starts with the introduction of a semigroup of stochastic matrices, that is to
say, m by m matrices T with T;; > 0 and ), T;; = 1. Or, more abstractly, one
posits a class of states P, elements of a Banach space with a norm ||P||; = 1, and
a semigroup of stochastic maps T}, (¢ > 0), subject to the conditions that T} is
linear, positive, and preserves norm: ||T;P||; = || P||1, (cf. [Streater, 1995]).

The evolution of a probability distribution P (now regarded as a vector or a
state) is then particularly simple when ¢ is discrete ( ¢ € N):

(181) P, =T'Py, where T"*=To---oT.
—

t times

Homogeneous Markov processes in discrete time are also known as Markov chains.

Clearly, if we consider the family {7};} as a semigroup of stochastic evolution op-
erators, or a stochastic form of dynamics, it becomes attractive to look upon Py(y)
as a contingent initial state, chosen independently of the evolution operators T;.
Still, from the perspective of the probabilistic formalism with which we started,
this might be an unexpected thought: both P;) and P(1}1) are aspects of a single,
given, probability measure P. The idea of regarding them as independent ingre-
dients that may be specified separately doesn’t then seem very natural. But, of
course, there is no formal objection against the idea, since every combination of a
system of transition probabilities T} obeying the Chapman-Kolmogorov equation,
and an arbitrary initial probability distribution Py(y) = P(1)(y, 0) defines a unique
homogeneous Markov process (cf. footnote 71). In fact, one sometimes even goes
one step further and identifies a homogeneous Markov process completely with
the specification of the transition probabilities, without regard of the initial state
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Py(y); just like the dynamics of a deterministic system is usually presented without
assuming any special initial state.

For Markov chains, the goal of specifying the evolution of P;(y) is now already
completely solved in equation (181). In the case of continuous time, it is more
usual to specify evolution by means of a differential equation. Such an equation
may be obtained in a straightforward manner by considering a Taylor expansion of
the transition probability for small times [van Kampen, 1981, p.101-103] — under
an appropriate continuity assumption.

The result (with a slightly changed notation) is:

(182) 29 _ 5wyl ) - W ) P)

y/

Here, the expression W (y|y’) is the transition probability from 3’ to y per unit
of time. This differential equation, first obtained by Pauli in 1928, is called the
master equation. (This name has become popular because an equation of this type
covers a great variety of processes.)

The interpretation of the equation is suggestive: the change of the probability
Pi(y) is determined by making up a balance between gains and losses: the proba-
bility of value y increases in a time dt because of the transitions from ¥’ to ¥, for
all possible values of y'. This increase per unit of time is - , W(y|y')P(y). But
in same period dt there is also a decrease of P;(y) as a consequence of transitions
from the value y to all other possible values 3’. This provides the second term.

In this “balancing” aspect, the master equation resembles the Boltzmann equa-
tion (48), despite the totally different derivation, and the fact that P.(y) has
quite another meaning than Boltzmann’s f;(v). (The former is a probability dis-
tribution, the latter a distribution of particles.) Both are first-order differential
equations in ¢. A crucial mathematical distinction from the Boltzmann equation
is that the master equation is linear in P, and therefore much easier to solve.

Indeed, any solution of the master equation can formally be written as:

(183) P, = €'t Py,

where L represents the operator

(184) L(yly") =W yly') = >_ W Y3y -

The general solution (183) is similar to the discrete time case (181), thus showing
the equivalence of the master equation to the assumption of a homogeneous Markov
process in continuous time.

A final remark(not needed for later paragraphs). The analogy with the Boltz-
mann equation can even be increased by considering a Markov process for particle
pairs, i.e. by imagining a process where pairs of particles with initial states (i, 7)
make a transition to states (k,l) with certain transition probabilities (cf. [Al-
berti and Uhlmann, 1982, p. 30]) Let W (4, j|k,1) denote the associated transition
probability per unit of time. Then the master equation takes the form:
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apt(la.])

(185) ——

= (W (i, jlk, ) Pu(k, 1) = W (k, 1]d, 5)Pe(i, §)) -

k,l

Assume now that the transitions (i,j) — (k,1) and (k,I) — (4,j) are equally
probable, so that the transition probability per unit of time is symmetric: W (i, j|k, 1) =
W (k,lli, ), and, as an analogue to the Stofizahlansatz, that P(i,j) in the right-
hand side may be replaced by the product of its marginals:

(186) P(i,j) ZP@] ZP” "(i)P" (4)

Summing the above equation (185) over j, we finally obtain

R e = 3Tk (R0 - HORG)

i.e., an even more striking analogue of the Boltzmann equation (48). But note
that although (185) describes a Markov process, the last equation (187) does not:
it is no longer linear in P, as a consequence of the substitution (186).

7.4 Approach to equilibrium and increase of entropy?

What can we say in general about the evolution of P;(y) for a homogeneous Markov
process? An immediate result is this: the relative entropy is monotonically non-
decreasing. That is to say, if we define

(188) H =-) Py

yeY

as the relative entropy of a probability distribution P relative to 2, then one can
show (see e.g. Moran 1961; Mackey 1991, p. 30):

(189) H(P;, Qi) > H(P,Q)

where P, = Ty P, Q; = T;Q, and T} are elements of the semigroup (181) or (183).

One can also show that a non-zero relative entropy increase for at least some pair
probability distributions P and @, the stochastic matrix 7; must be non-invertible.

The relative entropy H (P|Q) can, in some sense, be thought of as a measure of
how much P and @ “resemble” each other.”® Indeed, it takes its maximum value
(i.e. 0) if and only if P = @Q; it may become —oo if P and @ have disjoint support,
(i.e. when P(y)Q(y) = 0 for all y € Y.) Thus, the result (189) says that if the
stochastic process is non-invertible, pairs of distributions P; and @); will generally
become more and more alike as time goes by.

Hence it seems we have obtained a general weak aspect of “irreversible be-
haviour” in this framework. Of course, the above result does not yet imply that

720f course, this is an asymmetric sense of “resemblance” because H(P, Q) # H(Q, P).
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the ‘absolute’ entropy H(P):= —3_ P(y)InP(y) of a probability distribution is
non-decreasing. But now assume that the process has a stationary state. In other
words, there is a probability distribution P*(y) such that

(190) T,P* = P*.

The intention is, obviously, to regard such a distribution as a candidate for the
description of an equilibrium state. If there is such a stationary distribution P*,
we may apply the previous result and write:

(191) H(P,P*) < H(T;P,T:P*) = H(P,;, P").
In other words, as time goes by, the distribution T; P will then more and more

resemble the stationary distribution than does P. If the stationary distribution is
also uniform, i.e.:

1
192) P*(y) = —
(192) P (y) = —,
then not only the relative but also the absolute entropy H(P) := — 3 P(y)In P(y)

increases, because
(193) H(P,P*)=H(P) —1lnm.

In order to get a satisfactory description of an ‘approach to equilibrium’ the
following questions remain:

(i) is there such a stationary distribution?

(ii) if so, is it unique?

(iii) does the monotonic behaviour of H(P;) imply that lim;_, o, P = P*?
Harder questions, which we postpone to the next subsection 7.5, are:

(iv) how to motivate the assumptions needed in this approach or how to make
judge their (in)compatibility with an underlying time deterministic dynamics; and

(v) how this behaviour is compatible with the time symmetry of Markov pro-
cesses.

Ad (i). A stationary state as defined by (190), can be seen as an eigenvector
of T; with eigenvalue 1, or, in the light of (183), an eigenvector of L for the
eigenvalue 0. Note that T or L are not necessarily Hermitian (or, rather, since we
are dealing with real matrices, symmetric), so that the existence of eigenvectors is
not guaranteed by the spectral theorem. Further, even if an eigenvector with the
corresponding eigenvalue exists, it is not automatically suitable as a probability
distribution because its components might not be positive.

Still, it turns out that, due to a theorem of Perron (1907) and Frobenius (1909),
every stochastic matrix indeed has a eigenvector, with exclusively non-negative
components, and eigenvalue 1 (see e.g. [Gantmacher, 1959; Van Harn and Holewijn,
1991]). But if the set Y is infinite or continuous this is not always true.

A well-known example of the latter case is the so-called Wiener process that
is often used for the description of Brownian motion. It is characterized by the
transition probability density:
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(y—y)?
2t

1,y € R.

(194) Ty(yly') = exp

1
V27t
The evolution of an arbitrary initial probability density py can be written as a
convolution:

(195) pi(y) = / Tu(yly ) po(y' )y

which becomes gradually lower, smoother and wider in the course of time, but
does not approach any stationary probability density. Because this holds for every
choice of pg, there is no stationary distribution in this case.

However, it is not reasonable to see this as a serious defect. Indeed, in thermo-
dynamics too one finds that a plume of gas emitted into free space will similarly
diffuse, becoming ever more dilute without ever approaching an equilibrium state.
Thermodynamic equilibrium is only approached for systems enclosed in a vessel
of finite volume.

However, for continuous variables with a range that has finite measure, the
existence of a stationary distribution is guaranteed under the condition that the
probability density p, is at all times bounded, i.e. 3M € R such that V¢ p, < M,
(see [Mackey, 1992, p. 36)).

Ad (ii). The question whether stationary solutions will be unique is somewhat
harder to tackle. This problem exhibits an analogy to that of metric transitivity
in the ergodic problem (cf. paragraph 6.1).

In general, it is very well possible that the range ) of Y can be partitioned in two
disjoint regions, say A and B, with ) = AU B, such that there are no transitions
from A to B or vice versa (or that such transitions occur with probability zero).
That is to say, the stochastic evolution 7; might have the property

(196) Ty(Y e AlY e B)=Ti(Y e BlY € A) =0

In other words, its matrix may, (perhaps after a conventional relabeling of the
outcomes) be written in the form:

Ty O
(197) < 0 Ts > .
The matrix is then called (completely) reducible. In this case, stationary distribu-
tions will generally not be unique: If P} is a stationary distribution with support

in the region A, and P is a stationary distribution with support in B, then every
convex combination

(198) aPi(y)+ (1 —a)Pi(y) with0<a <1.

will be stationary too. In order to obtain a unique stationary solution we will
thus have to assume an analogue of metric transitivity. That is to say: we should
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demand that every partition of ) into disjoint sets A and B for which (196) holds
is ‘trivial’ in the sense that P(A) =0 or P(B) = 0.

So, one may ask, is the stationary distribution P* unique if and only if the
transition probabilities T are not reducible? In the ergodic problem, as we saw in
6.1, the answer is positive (at least if P* is assumed to be absolutely continuous
with respect to the microcanonical measure). But not in the present case!

This has to do with the phenomenon of so-called ‘transient states’, which has
no analogy in Hamiltonian dynamics. Let us look at an example to introduce this
concept. Consider a stochastic matrix of the form:

(199) (%‘ TTE; )

where T” is a matrix with non-negative entries only. Then:

Ty T Pa\ [ TaPs T, T 0\
oo (55 ) (5) = (") o5 )(m) -

T'Pg

Ty Pp

so that here transitions of the type a — b have probability zero, but transitions
of the type b — a occur with positive probability. (Here, a, b stand for arbitrary
elements of the subsets A and B.) It is clear that in such a case the region B
will eventually be ‘sucked empty’. That is to say: the total probability of being
in region B (i.e. |T*Pg||) will go exponentially to zero. The distributions with
support in B are called ‘transient’ and the set A is called ‘absorbing’ or a ‘trap’.

It is clear that these transient states will not play any role in the determination
of the stationary distribution, and that for this purpose they might be simply
ignored. Thus, in this example, the only stationary states are those with a support
in A. And there will be more than one of them if T4 is reducible.

A matrix T that may be brought (by permutation of the rows and columns) in
the form (199), with T4 reducible is called incompletely reducible [van Kampen,
1981, p. 108].  Further, a stochastic matrix is called irreducible if it is neither
completely or incompletely reducible. An alternative (equivalent) criterion is that
all states ‘communicate’ with each other, i.e. that for every pair of i,j € ) there
is some time ¢ such that P.(j|i) > 0.

The Perron-Frobenius theorem guarantees that as long as T irreducible, there
is a unique stationary distribution. Furthermore, one can then prove an analogue
of the ergodic theorem:[Petersen, 1983, p. 52]

ERGODIC THEOREM FOR MARKOV PROCESSES: If the transition prob-
ability T3 is irreducible, the time average of P, converges to the unique
stationary solution:

(201) lim 1 /OTTtP(y)dt = P*(y).

T—00 T
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Ad (iii). If there is a unique stationary distribution P*, will T; P converge to
P*, for every choice of P? Again, the answer is not necessarily affirmative. (Even
if (201) is valid!) For example, there are homogeneous and irreducible Markov
chains for which P, can be divided into two pieces: P; = @+ R; with the following
properties [Mackey, 1992, p. 71]:

1. @ is a term with ||@Q¢|| — 0. This is a transient term.

2. The remainder R, is periodic, i.e. after some finite time 7 the evolution
repeats itself: Ryyr = R,

These processes are called asymptotically periodic. They may very well occur in
conjunction with a unique stationary distribution P*, and show strict monotonic
increase of entropy, but still not converge to P*. In this case, the monotonic
increase of relative entropy H (P, P*) is entirely due to the transient term. For
the periodic piece R;, the transition probabilities are permutation matrices, which,
after 7 repetitions, return to the unit operator.

Besides, if we arrange that P* is uniform, we can say even more in this example:
The various forms R; that are attained during the cycle of permutations with
period 7 all have the same value for the relative entropy H (R, P*), but this
entropy is strictly lower than H(P*, P*) = 0. In fact, P* is the average of the
Ry’s, ie: P* = %Zi; Ry, in correspondence with (201).

Further technical assumptions can be introduced to block examples of this kind,
and thus enforce a strict convergence towards the unique stationary distribution,
e.g. by imposing a condition of ‘exactness’ [Mackey, 1992]. However, it would take
us too far afield to discuss this in detail.

In conclusion, it seems that a weak aspect of “irreversible behaviour”, i.e. the
monotonic non-decrease of relative entropy is a general feature for all homogeneous
Markov processes, (and indeed for all stochastic processes), and non-trivially so
when the transition probabilities are non-invertible. Stronger versions of that
behaviour, in the sense of affirmative answers to the questions (i), (ii) and (iii),
can be obtained too, but at the price of additional technical assumptions.

7.5 Motivations for the Markov property and objections against them

Ad (iv). We now turn to the following problem: what is the motivation behind
the assumption of the Markov property? The answer, of course, is going to depend
on the interpretation of the formalism that one has in mind, and may be different
in the ‘coarse-graining’ and the ‘open systems’ or interventionist approaches (cf.
Section 7.1). I shall discuss the coarse-graining approach in the next paragraph
below, and then consider the similar problem for the interventionist point of view.
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Coarse-graining and the repeated randomness assumption

In the present point of view, one assumes that the system considered is really
an isolated Hamiltonian system, but the Markov property is supposedly obtained
from a partitioning of its phase space. But exactly how is that achieved?

One of the clearest and most outspoken presentations of this view is [van Kam-
pen, 1962]. As in paragraph 5.4, we assume the existence of some privileged
partition of the Hamiltonian phase space I' — or of the energy hypersurface I'g
— into disjoint cells: I' = w; U -+ Uw,,. Consider an arbitrary ensemble with
probability density p on this phase space. Its evolution can be represented by an
operator

(202) Ufp(a) = p(U_sz),

where, — in order to avoid conflation of notation — we now use U; to denote
the Hamiltonian evolution operators, previously denoted as T}, e.g. in (68) and
throughout section 6. Let transition probabilities between the cells of this partition
be defined as

/ p(x)dx
(U,twj-)ﬁwi
fwi p(z)dx ’

Obviously such transition probabilities will be homogeneous, due to the time-
translation invariance of the Hamiltonian evolution U;. Further, let po (i) := P(x €
w;) = fw p(x)dz, i € Y ={1,...,m}, be an arbitrary initial coarse-grained prob-
ability distribution at time t=0.

Using the coarse-graining map defined by (92), one may also express the coarse-
grained distribution at time ¢ as

(203) Ti(jl0) :== P(zy € wjlz € wy) = P(Ux € wjlz € w;) =

(204) €GU; ) = Y- Ti71)n(i) 1 (0

where g is the canonical measure on I', or the microcanonical measure on I'g. This
expression indicates that, as long as we are only interested in the coarse grained
history, it suffices to know the transition probabilities (203) and the initial coarse
grained distributions.

But in order to taste the fruits advertised in the previous paragraphs, one needs
to show that the transition probabilities define a Markov process, i.e., that they
obey the Chapman-Kolmogorov equation (172),

(205) Ty o(kli) = Ty (k|j)To(jli); for all £, > 0.

Applying (204) for times ¢, ¢ and t 4+ t/, it follows easily that the Chapman-
Kolmogorov equation is equivalent to

(206) CGU; ., = CGU,; CGU;, for all t,t' > 0.
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In other words, the coarse-grained probability distribution at time ¢ + ¢’ can be
obtained by first applying the Hamiltonian dynamical evolution during a time t,
then performing a coarse-graining operation, next applying the dynamical evolu-
tion during time ', and then coarse-graining again. In comparison to the relation
i = ULUY, we see that the Chapman-Kolmogorov condition can be obtained
by demanding that it is allowed to apply a coarse-graining, i.e. to reshuffle the
phase points within each cell at any intermediate stage of the evolution. Of
course, this coarse-graining halfway during the evolution erases all information
about the past evolution apart from the label of the cell where the state is located
at that time; and this ties in nicely with the view of the Markov property as having
no memory (cf. the discussion on p. 1042).
What is more, the repeated application of the coarse-graining does lead to a
monotonic non-decrease of the Gibbs entropy: If, for simplicity, we divide a time
interval into m segments of duration 7, we have

(207) pur = CGU; CGUS ---CGUS p

m times

and from (96):

(208) olpmr] = olpm-1)r] = ... = alps] > alpo].

But since the choice of 7 is arbitrary, we may conclude that o[p;] is monotonically
non-decreasing.

Thus, van Kampen argues, the ingredient to be added to the dynamical evolu-
tion is that, at any stage of the evolution, one should apply a coarse-graining of
the distribution. It is important to note that it is not sufficient to do that just
once at a single instant. At every stage of the evolution we need to coarse-grain
the distribution again and again. Van Kampen [1962, p. 193] calls this the repeated
randomness assumption.

What is the justification for this assumption? Van Kampen points out that it is
“not unreasonable” (ibid., p. 182), because of the brute fact of its success in phe-
nomenological physics. Thermodynamics and other phenomenological descriptions
of macroscopic systems (the diffusion equation, transport equations, hydrodynam-
ics, the Fokker-Planck equation, etc.) all characterize macroscopic systems with
a very small number of variables. This means that their state descriptions are
very coarse in comparison with the microscopic phase space. But their evolution
equations are autonomous and deterministic: the change of the macroscopic vari-
ables is given in terms of the instantaneous values of those very same variables.
The success of these equations shows, apparently, that the precise microscopic
state does not add any relevant information beyond this coarse description. At
the same time, van Kampen admits that the coarse-graining procedure is clearly
not always successful. It is not difficult to construct a partition of a phase space
into cells for which the Markov property fails completely.

Apparently, the choice of the cells must be “just right” [van Kampen, 1962,
p. 183]. But there is as yet no clear prescription how this is to be done. Van
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Kampen [1981, p. 80] argues that it is “the art of the physicist” to find the right
choice, an art in which he or she succeeds in practice by a mixture of general
principles and ingenuity, but where no general guidelines can be provided. The
justification of the repeated randomness assumption is that it leads to the Markov
property and from there onwards to the master equation, providing a success-
ful autonomous, deterministic description of the evolution of the coarse-grained
distribution.

It is worth noting that van Kampen thus qualifies the ‘usual’ point of view
(cf. p. 977 above, and paragraph 5.4) on the choice of the cells; namely, that the
cells are chosen in correspondence to our finite observation capabilities. Observ-
ability of the macroscopic variables is not sufficient for the success of the repeated
randomness assumption. It is conceivable (and occurs in practice) that a particu-
lar partition in terms of observable quantities does not lead to a Markov process.
In that case, the choice of observable variables is simply inadequate and has to
be extended with other (unobservable) quantities until we (hopefully) obtain an
exhaustive set, i.e. a set of variables for which the evolution can be described au-
tonomously. An example is the spin-echo experiment: the (observable) total mag-
netization of the system does not provide a suitable coarse-grained description. For
further discussion of this theme, see: [Blatt, 1959; Ridderbos and Redhead, 1998;
Lavis, 2004; Balian, 2005].

Apart from the unsolved problem for which partition the repeated randomness
assumption is to be applied, other objections have been raised against the repeated
randomness assumption. Van Kampen actually gives us not much more than the
advice to accept the repeated randomness assumption bravely, not to be distracted
by its dubious status, and firmly keep our eyes on its success. For authors as [Sklar,
1993], who refers to the assumption as a ”rerandomization posit”, this puts the
problem on its head. They request a justification of the assumption that would
explain the success of the approach. (Indeed, even [van Kampen, 1981, p. 80]
describes this success as a “miraculous fact”!). Such a request, of course, will not
be satisfied by a justification that relies on its success. (But that does not mean,
in my opinion, that it is an invalid form of justification.)

Another point that seems repugnant to many authors, is that the repeated
coarse-graining operations appear to be added ‘by hand’, in deviation from the true
dynamical evolution provided by U;. The increase of entropy and the approach to
equilibrium would thus apparently be a consequence of the fact that we shake up
the probability distribution repeatedly in order to wash away all information about
the past, while refusing a dynamical explanation for this procedure. [Redhead,
1995, p. 31] describes this procedure as “one of the most deceitful artifices I have
ever come across in theoretical physics” (see also [Blatt, 1959] [Sklar, 1993] and
[Callender, 1999] for similar objections).

One might ask whether the contrast between the repeated randomness assump-
tion and the dynamical evolution need be so bleak as Van Kampen and his critics
argue. After all, as we have seen in paragraph 6.2, there are dynamical systems
so high in the ergodic hierarchy that they possess the Bernoulli property for some
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partition of phase space (cf. paragraph 6.2). Since the Markov property is weaker
than the Bernoulli property, one may infer there are also dynamical systems whose
coarse grained evolutions define a homogeneous Markov process.” Thus one might
be tempted to argue that the Markov property, or the repeated randomness as-
sumption proposed to motivate it, need not require a miraculous intervention from
an external ‘hand’ that throws information away; a sufficiently complex determin-
istic dynamics on the microscopic phase space of the system might do the job all by
itself. However, the properties distinguished in the ergodic hierarchy all rely on
a given measure-preserving evolution. Thus, while some dynamical systems may
have the Markov property, they only give rise to stationary Markov processes.
Its measure-preserving dynamics still implies that the Gibbs entropy remains con-
stant. Thus, the result (208) can only be obtained in the case when all inequality
signs reduce to equalities. To obtain a non-trivial form of coarse-graining, we
should indeed suspend the measure-preserving dynamics.

In conclusion,!!! although the choice of a privileged partition remains an un-
solved problem, there need not be a conflict between the repeated randomness
assumption and the deterministic character of the dynamics at the microscopic
level. However, whether the assumption (206) might actually hold for Hamilto-
nian systems interesting for statistical mechanics is, as far as I know, still open.

Interventionism or ‘open systems’

Another approach to stochastic dynamics is by reference to open systems. The
idea is here that the system in continual interaction with the environment, and
that this is responsible for the approach to equilibrium.

Indeed, it cannot be denied that in concrete systems isolation is an unrealistic
idealization. The actual effect of interaction with the environment on the micro-
scopic evolution can be enormous. A proverbial example, going back to [Borel,
1914], estimates the gravitational effect caused by displacing one gram of matter
on Sirius by one centimeter on the microscopic evolution of an earthly cylinder
of gas. Under normal conditions, the effect is so large, that, roughly and for a
typical molecule in the gas, it may be decisive for whether or not this molecule
will hit another given molecule after about 50 intermediary collisions. That is
to say: microscopic dynamical evolutions corresponding to the displaced and the
undisplaced matter on Sirius start to diverge considerably after a time of about
1075 sec. In other words, the mechanical evolution of such a system is so extremely
sensitive for disturbances of the initial state that even the most minute changes
in the state of the environment can be responsible for large changes in the micro-
scopic trajectory. But we cannot control the state of environment. Is it possible
to regard irreversible behaviour as the result of such uncontrollable disturbances

73Strictly speaking this is true only for discrete dynamical systems. For continuous time, e.g.
for Hamiltonian dynamics, the Markov property can only be obtained by adding a time smoothing
procedure to the repeated randomness assumption [Emch, 1965],[Emch and Liu, 2001, pp. 484—
486].
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from outside?™

Let (2,y) be the state of a total system, where, as before, x € T'®) represents
the state of the object system and y € I'(® that of the environment. We assume
that the total system is governed by a Hamiltonian of the form

(209) Htot(xv y) = H(b) + H(e) + )‘Hint(z7 y)a
so that the probability density of the ensemble of total systems evolves as

(210) pe(z,y) = Ui po(z,y) = p(U—t(x,y))

i.e., a time-symmetric, deterministic and measure-preserving evolution.
At each time, we may define marginal distributions for both system and envi-
ronment:

(211) p¥ (x) = / dy pi( ),

(212) o (z) = / dz p,(x,1).

We are, of course, mostly interested in the object system, i.e. in (211). Assume
further that at time ¢ = 0 the total density factorizes:

(213) polz,y) = p§ ()0 ().
(s)

What can we say about the evolution of p;”’(2)? Does it form a Markov process,
and does it show increase of entropy?
An immediate result (see e.g. [Penrose and Percival, 1962]) is this:

(214) ool + o[p{”] > o[p§] + oo},

where o denotes the Gibbs fine-grained entropy (90). This result follows from the
fact that o[p;] is conserved and that the entropy of a joint probability distribution
is always smaller than or equal to the sum of the entropies of their marginals; with
equality if the joint distribution factorizes. This gives a form of entropy change for
the total system, but it is not sufficient to conclude that the object system itself
will evolve towards equilibrium, or even that its entropy will be monotonically
increasing. (Notice that (214) holds for ¢ < 0 too.)

Actually, this is obviously not to be expected. There are interactions with an
environment that may lead the system away from equilibrium. We shall have to
make additional assumptions about the situation. A more or less usual set of
assumptions is:

(a). The environment is very large (or even infinite); i.e.: the dimension of I'(¢)
is much larger than that of I'®), and H) < He).

74Note that the term ‘open system’ is employed here for a system in (weak) interaction with
its environment. This should be distinguished from the notion of ‘open system’ in other branches
of physics where it denotes a system that can exchange particles with its environment.
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(b). The coupling between the system and the environment is weak, i.e. A is very
small.

(¢). The environment is initially in thermal equilibrium, e.g., p(®)(y) is canonical:

(e) 1 —BH®
215 P, = e
( ) 0 Z(ﬁ)

(d). One considers time scales only that are long with respect to the relaxation
times of the environment, but short with respect to the Poincaré recurrence
time of the total system.

Even then, it is a major task to obtain a master equation for the evolution of
the marginal state (211) of the system, or to show that its evolution is generated
by a semigroup, which would guarantee that this forms a Markov process (under
the proviso of footnote 71). Many specific models have been studied in detail (cf.
[Spohn, 1980]). General theorems were obtained (although mostly in a quantum
mechanical setting) by [Davies, 1974; Davies, 1976a; Lindblad, 1976; Gorini et al.,
1976]. But there is a similarly to the earlier approach: it seems that, here too, an
analogue of ‘repeated randomness’ must be introduced. [Mehra and Sudarshan,
1972; van Kampen, 1994; Maes and Netoény, 2003).

At the risk of oversimplifying and misrepresenting the results obtained in this
analysis, I believe they can be summarized as showing that, in the so-called ‘weak
coupling’ limit, or some similar limiting procedure, the time development of (211)
can be modeled as

(216) o\ (2) = T1pP (z) t >0,

where the operators T; form a semigroup, while the environment remains in its
steady equilibrium state:

217) P\ (y) = p{(y) t>o0.

The establishment of these results would also allow one to infer, from (214), the
monotonic non-decrease of entropy of the system.

To assess these findings, it is convenient to define, for a fixed choice of p(()e) the
following linear map on probability distributions of the total system:

(218) TR : p(ar.) — TR, y) = / o, 9)dy - po(y)

This map removes the correlation between the system and the environment, and
projects the marginal distribution of the environment back to its original equilib-
rium form.

Now, it is not difficult to see that the Chapman-Kolmogorov equation (which
is equivalent to the semigroup property) can be expressed as

(219) TRU/ ,, = TRUSTRU; for all t,t’ >0
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which is analogous to (206).

There is thus a strong formal analogy between the coarse-graining and the open-
systems approaches. Indeed, the variables of the environment play a role compa-
rable to the internal coordinates of a cell in the coarse graining approach. The
exact microscopic information about the past is here translated into the form of
correlations with the environment. This information is now removed by assuming
that at later times, effectively, the state may be replaced by a product of the form
(213), neglecting the back-action of the system on the environment. The map-
pings CG and 7R are both linear and idempotent mappings, that can be regarded
as special cases of the projection operator techniques of Nakajima and Zwanzig,
which allows for a more systematical and abstract elaboration, sometimes called
subdynamics.

Some proponents of the open systems approach, (e.g. [Morrison, 1966; Red-
head, 1995]), argue that in contrast to the coarse-graining approach, the present
procedure is ‘objective’. Presumably, this means that there is supposed to be a
fact of the matter about whether the correlations are indeed ‘exported to the en-
vironment’. However, the analogy between both approaches makes one suspect
that any problem for the coarse-graining approach is translated into an analogous
problem of the open systems approach. Indeed, the problem of finding a privileged
partition that we discussed in the previous paragraph is mirrored here by the ques-
tion where one should place the division between the ‘system’ and ‘environment’.
There is no doubt that it practical applications this choice is also arbitrary.

7.6 Can the Markov property explain irreversible behaviour?

Ad (v). Finally, I turn to what may well be the most controversial and surprising
issue: is the Markov property, or the repeated randomness assumption offered to
motivate it, responsible for the derivation of time-reversal non-invariant results?

We have seen that every non-invertible homogeneous Markov process displays
“irreversible behaviour” in the sense that different initial probability distributions
will tend to become more alike in the course of time. Under certain technical con-
ditions, one can obtain stronger results, e.g. an approach to a unique equilibrium
state, monotonic non-decrease of absolute entropy, etc. All these results seem to
be clearly time-asymmetric. And yet we have also seen that the Markov property
is explicitly time symmetric. How can these be reconciled?

To start off, it may be noted that it has often been affirmed that the Markov
property is the key towards obtaining time-asymmetric results. For example, Pen-
rose writes:

“ ...the behaviour of systems that are far from equilibrium is not
symmetric under time reversal: for example: heat always flows from
a hotter to a colder body, never from a colder to a hotter. If this be-
haviour could be derived from the symmetric laws of dynamics alone
there would, indeed, be a paradox; we must therefore acknowledge the
fact that some additional postulate, non-dynamical in character and
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asymmetric under time reversal must be adjoined to the symmetric
laws of dynamics before the theory can become rich enough to explain
non-equilibrium behaviour. In the present theory, this additional pos-
tulate is the Markov postulate” (Penrose 1970, p. 41).

In the previous paragraph, we have already questioned the claim expressed here
that the Markov property is “non-dynamical”. But now we are interested in the
question whether postulating the Markov property would be asymmetric under
time-reversal. Many similar statements, e.g. that the repeated randomness as-
sumption is “the additional element by which statistical mechanics has to be sup-
plemented in order to obtain irreversible equations” [van Kampen, 1962, p. 182],
or that the non-invertibility of a Markov process provides the origin of thermo-
dynamic behaviour [Mackey, 1992] can be found in the works of advocates of this
approach.
But how can this be, given that the Markov property is explicitly time-symmetric?

In order to probe this problem, consider another question. How does a given proba-
bility distribution P(y, 0) evolve for negative times? So, starting again from (170),
let us now take t < 0. We still have:

(220) P(y’t) = ZP(y’t7 ‘y/’O)P(y/7O)'

These conditional probabilities P(y,t,|y’,0) satisfy the ‘time-reversed’ Markov
property (174), that says that extra specification of later values is irrelevant for
the retrodiction of earlier values. As a consequence, we get for t < ¢ <¢”,0:

(221) P(y,tly",t") = > Plytly,t)PW/ t'ly" ")
y/

i.e., a time-reversed analogue of the Chapman-Kolmogorov equation.

We may thus also consider these conditional probabilities for negative times
as backward evolution operators. If we could assume their invariance under time
translation, i.e. that they depend only on the difference 7 =t — ¢/, we could write

(222) S (yly') := P(y,tly,t') witht=t—# <0,
and obtain a second semigroup of operators S, obeying
(223) Srip =S, 08, 77 <0

that generate stochastic evolutions towards the past.
Further, these backward conditional probabilities are connected to the forward
conditional probabilities by means of Bayes’ theorem:

P(1|1)(yl7t/|y7t)P(y7t) .
Py, t) ’

(224) P(l\l) (y7t|y/7t/> =

and if the process, as before, is homogeneous this becomes
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T - (y'ly)Pi(y)
Py (y') ’

The matrix Pj1)(y,tly’,t') always gives for ¢t < ' the correct ‘inversion’ of Tj.
That is to say:

(226) > P(y,tly',t')(Tv—+P)(y') = Pi(y)

(225) Papy(y.tly',t') = r=t—t <0.

Note firstly that (225) is not the matrix-inverse of T;! Indeed, the right-hand side
of (225) depends on P; and Py as well as T. Even if the matrix-inverse 70™) does
not exist, or is not a bona fide stochastic matrix, the evolution towards the past
is governed by the Bayesian inversion, i.e. by the transition probabilities (225).

Note also that if the forward transition probabilities are homogeneous, this is
not necessarily so for the backward transition probabilities. For example, if in
(225) one translates both ¢ and ¢’ by §, one finds

T+ (y'|y) Py, t +9)
Py, t' +6)

Py, t+6ly',t' +6) =

Here, the right-hand side generally still depends on §. In the special case that
the initial distribution is itself stationary, the backward transition probabilities
are homogeneous whenever the forward ones are. If P(y,t) is not stationary, we
might still reach the same conclusion, as long as the non-stationarity is restricted
to those elements y or ¢’ of Y for which T;(y|y’) = 0 for all t. Otherwise, the two
notions become logically independent.

This gives rise to an unexpected new problem. Usually, an assumption of ho-
mogeneity (or time translation invariance) is seen as philosophically innocuous, as
compared to time reversal invariance. But here we see that assuming time trans-
lation invariance for a system of forward transition probabilities is not equivalent
to assuming the same invariance for the backward transition probabilities. If one
believes that one of the two is obvious, how will one go about explaining the fail-
ure of the other? And how would one explain the preference for which one of the
two is obvious, without falling into the “double standards” accusation of the kind
raised by [Price, 1996]?

But what about entropy increase? We have seen before that for every non-
invertible Markov process the relative entropy of the distribution P with respect
to the equilibrium distribution increases, and that the distribution evolves towards
equilibrium. (Homogeneity of the process is not needed for this conclusion.) But
the backward evolution operators form a Markov process too, for which exactly the
same holds. This seems paradoxical. If T; Py = P;, we also have P, = S_;FPy. The
entropy of P; can hardly be both higher and lower than that of Py! An example may
clarify the resolution of this apparent problem: namely, the stationary solutions
of S are not the same as the stationary solutions of T'!

Example Consider a Markov chain with J = {1,2} and let
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).

Choose an initial distribution Py = (

)

which is also the (unique) stationary distribution P*. The backward transition
probabilities are given by Bayes’ theorem, and one finds easily:

(229) S:(lf‘a 13‘@).

The stationary distribution for this transition probability is

(230) P*:(lf‘a)

That is to say: for the forward evolution operator the transition

o (1) = (1)

is one for which a non-stationary initial distribution evolves towards a station-
ary one. The relative entropy increases: H(FPy, P*) < H(TP,P*). But for the
backward evolution, similarly:

o (1) (,%)

represents an evolution from a non-stationary initial distribution to the stationary
distribution P* and, here too, relative entropy increases: H (P, P*) < H(FPy, P*).

ISEENIE

(227) T = (

INEENIE

(07

1—a > After one step we already get

(228) TP = (

N[ =

The illusion that non-invertible Markov processes possess a built-in time-
asymmetry is (at least partly) due to the habit of regarding T, as a fixed evo-
lution operator on an independently chosen distribution Py. Such a view is of
course very familiar in other problems in physics, where deterministic evolution
operators generally do form a group and may be used, at our heart’s desire, for
positive and negative times.

Indeed, the fact that these operators in general have no inverse might seem to
reflect the idea that Markov processes have no memory and ‘loose information’
along the way and that is the cause of the irreversible behaviour, embodied in
the time-asymmetric master equation, increase of relative or absolute entropy or
approach to equilibrium. But actually, every Markov process has apart from a
system of forward, also a system of backward transition probabilities, that again
forms a semigroup (when they are homogeneous). If we had considered them as
given we would get all conclusions we obtained before, but now for negative times.
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I conclude that irreversible behaviour is not built into the Markov property, or in
the non-invertibility of the transition probabilities, (or in the repeated randomness
assumption”®, or in the Master equation or in the semigroup property). Rather
the appearance of irreversible behaviour is due to the choice to rely on the forward
transition probabilities, and not the backward. A similar conclusion has been
reached before [Edens, 2001] in the context of proposals of Prigogine and his
coworkers. My main point here is that the same verdict also holds for more
‘mainstream’ approaches as coarse-graining or open systems.

7.7 Reversibility of stochastic processes

In order not to end this chapter on a destructive note, let me emphasize that I do
not claim that the derivation of irreversible behaviour in stochastic dynamics is
impossible. Instead, the claim is that motivations for desirable properties of the
forward transition probabilities are not enough; one ought also show that these
properties are lacking for the backward transitions.

In order to set up the problem of irreversibility in this approach to non-equilibrium
statistical mechanics for a more systematic discussion, one first ought to provide a
reasonable definition for what it means for a stochastic process to be (ir)reversible;
a definition that would capture the intuitions behind its original background in
Hamiltonian statistical mechanics.

One general definition that seems to be common (cf. [Kelly, 1979 p. 5]) is to
call a stochastic process reversible iff, for all n and ¢1,...,%, and 7:

(233) Piuy(y1stis- - 5Ynstn) = Py (Y, T —tnj o 5Yn, T — b)),

See [Grimmett and Stirzaker, 1982, p. 219] for a similar definition restricted to
Markov processes) The immediate consequence of this definition is that a stochas-
tic process can only be reversible if the single-time probability Pq(y,t) is sta-
tionary, i.e. in statistical equilibrium. Indeed, this definition seems to make the
whole problem of reconciling irreversible behaviour with reversibility disappear.
As [Kelly, 1979, p. 19] notes in a discussion of the Ehrenfest model: “there is
no conflict between reversibility and the phenomenon of increasing entropy — re-
versibility is a property of the model in equilibrium and increasing entropy is a
property of the approach to equilibrium”

But clearly, this view trivializes the problem, and therefore it is not the appropri-
ate definition for non-equilibrium statistical mechanics. Recall that the Ehrenfest
dog flea model (§7.2) was originally proposed in an attempt of showing how a ten-
dency of approaching equilibrium from a initial non-equilibrium distribution (e.g.

75In recent work, van Kampen acknowledges that the repeated randomness assumption by
itself does not lead to irreversibility: “This repeated randomness assumption [...] breaks the
time symmetry by explicitly postulating the randomization at the beginning of the time interval
At. There is no logical justification for this assumption other than that it is the only thing
one can do and that it works. If one assumes randomness at the end of each At coefficients for
diffusion, viscosity, etc. appear with the wrong sign; if one assumes randomness at the midpoint
no irreversibility appears” [van Kampen, 2002, p.475, original emphasis].
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a probability distribution that gives probability 1 to the state that all fleas are lo-
cated on the same dog) could be reconciled with a stochastic yet time-symmetric
dynamics.

If one wants to separate considerations about initial conditions from dynam-
ical considerations at all, one would like to provide a notion of (ir)reversibility
that is associated with the stochastic dynamics alone, independent of the initial
distribution is stationary.

It seems that an alternative definition which would fulfill this intuition is to say
that a stochastic process is reversible if, for all y and y" and ' > ¢,

(234) P(l\l) (yat|y/7t/) = P(1|1) (yvtl|ylvt)'

In this case we cannot conclude that the process must be stationary, and indeed,
the Ehrenfest model would be an example of a reversible stochastic process. 1
believe this definition captures the intuition that if at some time state y’ obtains,
the conditional probability of the state one time-step earlier being y is equal to
that of the state one time-step later being y.

According to this proposal, the aim of finding the “origin” of irreversible be-
haviour or “time’s arrow”, etc. in stochastic dynamics must then lie in finding
and motivating conditions under which the forward transition probabilities are
different from the backwards transition probabilities, in the sense of a violation
of (234). Otherwise, irreversible behaviour would essentially be a consequence of
the assumptions about initial conditions, a result that would not be different in
principle from conclusions obtainable from Hamiltonian dynamics.
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