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1 INTRODUCTION

In search for the headwaters of the Missouri during their 1804–1806 expedition,
Lewis and Clark decreed that the river begins at the confluence of three streams
— the Jefferson, Gallatin, and Madison rivers — and ends as a main tributary to
the mighty Mississippi.

Similarly, and with some of the same arbitrariness, three major headings can
be used to mark the beginnings of quantum statistical physics (QSP): Planck’s
“quantum hypothesis” following his 1900 papers [Planck, 1900a; Planck, 1900b],
Gibbs’ 1902 book on “statistical mechanics” [Gibbs, 1902], and what is now known
as Einstein’s 1905 “Brownian motion” [Einstein, 1905b]. Pushing the metaphor
into our own days, the power of QSP is manifest in the landscape of condensed
matter physics (from solid state physics to astrophysics). The navigation there,
albeit often tentative, has brought to shore predictions that have been confirmed
with a precision impressive enough to clamor for a consistent explanation. The
purpose of this chapter is to point to directions along which such explanations may
be found. I begin this search by tracing briefly the course of the three tributaries
mentioned above, thus by identifying the initial motivations for QSP.

Planck’s long-lasting hesitations indicate how much in advance he was, not only
of his own time, but perhaps even of himself; e.g., at first, he had put forward his
black-body radiation law on account of the nature of the body — little oscillators in
the walls — rather than on account of the nature of the radiation. As Planck was
transposing to the description of electromagnetic waves the counting arguments
Boltzmann used in the thermal physics of material bodies, he initially left open
the question of whether this was a mere formal analogy, or whether it was one
that could be justified from putative interactions between radiation and matter;
or whether, yet, this speculative analogy had deeper roots. Planck’s reluctance still
shows through in the recommendation he wrote in 1913 to support young Einstein’s
early election to the Prussian Academy of Sciences: “That he may sometimes
have missed the target of his speculations, as for example in his hypothesis of
the light quanta, cannot really be held against him.” While this may be seen as
a barb directed to [Einstein, 1905a], note nevertheless that Planck’s reference to
a quantum hypothesis is not a passing accident: he was meticulous in his use of
words; consider, for instance the use of “theory”, “theorem”, and “hypothesis”
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in the title of his 1911 address to the German Chemical Society [Planck, 1911].
Soon thereafter, the rest of the world overcame his scruples: the Nobel prize was
awarded to Planck in 1918 for “his discovery of energy quanta”; and to Einstein
in 1921 for “his discovery of the law of the photoelectric effect.” For each of them,
the laudatio calls attention to their respective contributions to the nascent QSP,
specifically: the black body radiation for Planck and the specific heat of solids for
Einstein; see subsections 2.1 and 2.3 below.

Gibbs’ book [Gibbs, 1902] focuses on classical statistical physics. While the
basic concepts had been apprehended differently by the German Clausius, the
Austrian Boltzmann and the British Maxwell, the American Gibbs proposes that
the field has reached the modicum of maturity necessary for a consolidation of
the foundations; for axiomatization in other fields, compare with Hilbert [Hilbert,
1900; Hilbert, 1899; Hilbert, 1918], and Einstein [Einstein, 1921]. Even in the
classical context, Gibbs’ reluctance to invoke Boltzmann’s ergodic postulate points
to the persistence of unresolved issues regarding what Gibbs calls in the very title
of his book “the rational foundation of thermodynamics”; for a brief presentation
of those aspects of Gibbs’ work that may be most relevant to my purpose here,
see [Uffink, 2006, section 5]. It pertains to the present chapter to examine how
much of this dichotomy persists in the quantum realm, and the extent to which
whatever persists is relevant to the explanatory purposes of QSP.

Einstein’s papers on Brownian motion still reside conceptually in the realm
of classical physics. In spite of the neglect in which many mathematicians still
held the foundations of probabilistic theories around the turn of the twentieth
century (cf. e.g. [Hilbert, 1900, Problem 6]), Einstein’s approach stands as a
witness to the fact that stochastic arguments — i.e. arguments involving ran-
dom processes — had gained currency in the physicists’ marketplace. Einstein’s
conclusions were widely (if not universally) accepted at face value as empirical
proof of the existence of molecules, as not just computationally convenient small
entities or units, but as objects with definite dimensions [Einstein, 1906b]. Fur-
thermore, Einstein’s papers were not the isolated manifestation of a singular genius
that the cumbersome title of his first paper might suggest [Einstein, 1905b]. On
the one hand, from the physicist’s perspective, it must be noted that Einstein
begins his second paper in the sequence with an ackowledgment that he had ig-
nored the earlier contributions of Siedentopf and Gouy who had interpreted the
“so-called Brownian motion” [Einstein dixit ] as caused by the irregular thermal
motions of the molecules [Einstein, 1906c; Gouy, 1888]. On the other hand, the
modern mathematician will recognize, with the hindsight of practitioners such
as Kac and Chandrasekhar, that Smolukowski simultaneously distilled from the
same empirical sources the mathematical intuition allowing him to post a claim
on what was to become the theory of stochastic processes [Smolukowski, 1906a;
Smolukowski, 1916]. Yet, it was only in 1933 that Kolmogorov made precise the
essentials of the underlying syntax, namely the mathematical theory of probability
[Kolmogorov, 1933]. Even so, an unresolved issue remains to this day as to the
proper semantics: von Mises’ collectives [von Mises, 1928] or de Finetti’s subjec-
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tive assignments [de Finetti, 1937]. I post my stakes — see subsection 3.1 — on
the latter issue when considering the extension of the theory of probability to the
quantum realm, with special regard to the specific demands of QSP.

As this essay opens, the question arises as to whether the confluence of three
streams of interest compounds the foundational problems of each of them or, on the
contrary, whether they can be brought to inform one another. I aim my argument
towards the latter view, although I am not oblivious to such ubiquitous problems
as questioning what elements of reality should — or should not — be ascribed
to individual microscopic quantum systems. As part of the larger problem of the
reduction of thermodynamics by statistical mechanics, I consider specifically the
question whether and how QSP can claim to explain the collective properties of
many-body systems: it does postulate a quantum description at the microscopic
level, while it has not obtained as yet an ontological grasp of the individual compo-
nents of these systems. In my presentation I follow Einstein’s admonition: “If you
want to find out anything from the theoretical physicists about the methods they
use ... don’t listen to their words, fix your attention on their deeds.” [Einstein,
1933].

2 EARLY SUCCESSES

In [Jammer, 1966] Max Jammer provides much of the specific historical documen-
tation pertaining to the beginnings of quantum theory; and he discusses some of
the ensuing debates in [Jammer, 1974]. Here, I start with a discussion of the early
pragmatic successes of QSP, with special attention to two aspects: their classical
mooring in the high temperature regime; and the understanding QSP gives of the
particle-wave duality. Both of these aspects illustrate the added insight gained
from the contextual differences coloring the answers to the same questions when
asked in QSP rather than in the quantum theories of, say, the Bohr atom or scat-
tering processes; compare with Mara Beller’s perspective on the making of the
quantum revolution [Beller, 1999].

2.1 Planck’s interpolating formula for black-body radiation

The experimental evidence available to Planck was the spectral density ρT (ν)
of the energy per unit volume of electromagnetic radiation, as a function of its
frequency ν , when electromagnetic radiation is in equilibrium with a black-body
at temperature T . In [Planck, 1900a; Planck, 1900b], Planck proposes to fit these
data with the formula

(1) ρT (ν) = A
hν

e
hν
kT − 1

with A =
8πν2

c3

where c is the speed of light, k = R/NAv is the Boltzmann constant, R is the
universal gas constant and NAv is the Avogadro number. In addition, a new
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constant enters the formula, h , known nowadays as the Planck constant. While
Planck himself would pretend that (1) had been a “lucky guess” such a formula
could not have come into existence in a conceptual vacuum.

Two qualitative laws had been identified by Wien [1894], Stefan [1879] and
Boltzmann [1884]. The Wien displacement law states that

(2) ρT (ν) = ν3 f(
ν

T
)

where f is some undetermined function, satisfying the condition that the following
integral converges

(3)
1
V

E(T ) =
∫ ∞

o

dνρT (ν)

which expresses the density, per unit volume, of the energy of the radiation at
temperature T . Upon inserting (2) in (3), one receives immediately the Stephan–
Boltzmann law:

(4) E(T ) = σT 4

where σ is a constant. Planck’s proposal complies with these laws.
Two analytic expressions (or “laws”) had been proposed, which specify the

function f in (2). One law, due to Wien [1896], reads:

(5) ρT (ν) = α ν3 exp−γ ν
T .

With α and γ being two constants, this law had been confirmed empirically in the
range where ν/T is large. In contrast, the other law, due to Rayleigh [1900], see
also Jeans [1905a], is:

(6) ρT (ν) =
8π

c3
ν2 kT

which had been confirmed empirically in the range where ν/T is small.
Clearly, (1) interpolates analytically between the Wien and Rayleigh–Jeans for-

mulas; and it gives a quantitative meaning to the conditions that ν/T be “large”
(resp. “small”), namely ν/T � k/h (resp. ν/T � k/h ). In the intermedi-
ate range, Planck’s interpolating formula fits experimental results very well, both
qualitatively and quantitatively.

Planck’s colleagues could not fail to be impressed and Planck’s triumph would
have been complete had he been able to explain his formula from first principles,
at least to the considerable extent with which (2) to (6) could be understood.
Instead, Planck has to resort to “an act of desperation” — his own words [Jammer,
1966] — and he constructs, after several attempts, a heuristic model in which
the radiation exchanges energy in discrete quanta with putative “resonators” in
thermodynamical equilibrium within the walls. The model suffers from several
shortcomings — among them Planck’s adaptation of Boltzmann’s counting —
and much uncertainty concerning its theoretical status:
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Walter Nernst ... initially disliked quantum theory, claiming that it
was ‘really nothing else than an interpolation formula ... only a rule
for calculations ... but has proven so fruitful by the work of Planck ...
and ... of Einstein that the duty of science is to take it seriously and
to subject it to careful investigations’. [Jammer, 1966, p. 59]

The consensus that later settled in the physics community is that any attempt
— Planck’s included — to derive (1) from first principles would be doomed to
failure: (1) is a fundamental or primary law, i.e. one that is not to be explained,
but the consequences of which ought to be explored.

2.2 Einstein’s fluctuation formula and the particle-wave
duality

For a start, Einstein notes two shortcomings in Planck’s derivation. The first is
formal, but nevertheless essential: Planck’s account does not conform to Boltz-
mann’s statistical counting as closely as Planck suggests. The second is pointed
out in [Einstein, 1906a]: Planck’s treatment involves an inconsistency between:
(a) his use of the (classical) Maxwell theory of electromagnetism to compute the
average energy of a resonator in a radiation field; and (b) the assumption that
the energy of a resonator can change only discontinuously. Together with other
empirical problems — among which the photoelectric effect [Einstein, 1905a] —
these difficulties led Einstein to propose that, while Planck’s radiation formula (1)
has incontestable empirical merits, the “quantization” itself is to be looked for
in the radiation field rather than in a dubious mechanism of interaction with the
walls. Einstein’s criticism raises, in the same volley, the question of whether light
is wave-like as accounted for by Maxwell’s electromagnetic theory; or whether
it is particle-like as Newton’s theory had it before its purported falsification in
interference experiments conducted in the early nineteenth century .

Einstein’s fluctuation formula [Einstein, 1909a] proposes that light should be
viewed simultaneously as both particle and wave; specifically:

SCHOLIUM 1. Let the Planck’s spectral density ρT (ν) in (1) be interpreted as
the average energy 〈uT (ν)〉 of quantum oscillators of frequency ν of the radiation
in thermal equilibrium at temperature T . Then for all values of hν/kT , the energy
fluctuation 〈(∆u)2〉 = kT 2∂T 〈uT (ν)〉 is the sum of two terms

(7)

〈(∆u)2〉 = 〈(∆u)2〉p + 〈(∆u)2〉w where



〈(∆u)2〉p = 〈uT (ν)〉hν

〈(∆u)2〉w = 〈uT (ν)〉2 c3

8πν2


 and 〈(∆u)2〉p / 〈(∆u)2〉w = exp

hν
kT −1

Hence, the particle-like contribution 〈(∆u)2〉p dominates when hν/kT >> 1 , and
the wave-like contribution 〈(∆u)2〉w dominates when hν/kT << 1 . In this in-
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terpretation, the particle-wave duality is thus a matter of degree, rather than an
alternative between the two mutually exclusive horns of a dilemma.

Less of a conceptual problem in QSP, this duality becomes more difficult to
master in other empirical contexts where one may prefer to view a photon either
as a particle or as a wave packet. Moreover, this duality has since been extended
to all (sub-atomic) particles; e.g. phenomena usually associated with waves, such
as diffraction of beams of light, have been observed as well with beams of electrons
and then neutrons; cf. e.g. [Jammer, 1966, pp. 249-253]; or for an update [Rauch,
2005]. In other circumstances, one prefers to use a particle language, as for in-
stance in the description of the photo-electric effect [Einstein, 1905a]; as reported
in most QM textbooks, a photon impinging on a metallic surface causes an elec-
tron to be expelled; or in atomic spectroscopy, a particle — the atom — emits a
beam of light; cloud- and bubble-chambers have since let us visualize interparticle
collisions; and yet their description in scattering theory uses the so-called wave
operator; cf. e.g. [Amrein et al., 1977]. In the light of this duality, and follow-
ing upon the speculations of Einstein and de Broglie, physicists have learned to
adapt their language to the aspect they wish to emphasize. Yet, the persistent
arguments about “self-interference” show that some residual ambiguities have yet
to be resolved; cf. the long debate extending from [Taylor, 1909] to [Aichele et al.,
2005], and surely beyond.

Upon returning to the early manifestations of QSP, one ought to mention that
the Einstein fluctuation formula (7) above, as well as the explanation of the tem-
perature dependence of the specific heat of solids — see subsection 2.3 below —
motivate the Ehrenfests’ suggestion [Ehrenfest and Ehrenfest, 1911] that in statis-
tical mechanics, quantum behaviour manifests itself mostly at low temperatures,
whereas classical behaviour emerges at high temperatures. The fact is that in
many expressions, such as the Planck distribution (1), the Planck constant h and
the temperature T appear together in a factor h/T , or in the form used in the
sequel, � β ; hence in these expressions the “classical limit” h→ 0 and the “high-
temperature limit” T →∞ are included in (� β)→ 0 . All refer to cases where the
relevant energies, or energy densities, are extremely large when measured in the
scale determined by the numerical value of the Planck constant.

2.3 Debye’s specific heat of solids below the classical regime

For the purpose of this subsection, the situation down in the field is that Dulong
& Petit (1819) had proposed an argument to the effect that the specific heat —
measured in calories per mole per degree — ought to be the same for all solids:
3R where R is the universal gas constant. Yet, it later became apparent that this
“constant” could decrease dramatically with temperature, so much so that by the
end of the nineteenth century, the experimental data led to the conjecture that the
specific heat of solids becomes vanishingly small as the temperature approaches
absolute 0K . In the meantime, the discovery of X-rays by Roentgen (1895) had
allowed several experimentalists — Ewald (1911), and at the suggestion of von
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Laue, Friedrich and Knipping (1912) — to obtain diffraction patterns corroborat-
ing speculations that crystalline solids are regular lattices, at the vertices of which
sit the atoms.

As no classical explanation of the observed drastic temperature dependence of
the specific heat seemed forthcoming, Einstein and Debye offered the following
model; cf. [Einstein, 1907; Einstein, 1911b; Debye, 1912].

The starting point is (1) above, the Planck formula for black-body radiation,
now reinterpreted in terms of the vibrational modes of a solid at temperature T :

(8) U(T ) =
∫

dν g(ν)U(ν, T ) with U(ν, T ) =
hν

e
hν
kT − 1

and
∫

0

∞
dν g(ν) =

3N

where N is the number of 3-dimensional oscillators in the solid. Where Einstein
had assumed that g is concentrated on a fixed frequency νo , Debye chooses for
g the simplest vibrational distribution that takes into account that in a crystal,
say of volume V , the vibrations have a minimal wavelength of the order of the
interatomic distance in the lattice:

(9) g(ν) = G

{
1 if 0 ≤ ν ≤ νo
0 if ν > νo

}
with G =

12πν2

s3
V .

G takes into account that vibrations are now sound waves rather than electromag-
netic waves — compare with A = 8πν2

c3 in (1) — thus s is now the speed of sound,
instead of the speed c of light; and the replacement of 8π = 2·4π by 12π = (2+1)·4π
reflects the fact that sound-waves in solids have, in addition to the two transverse
polarizations also present in light, a third degree of freedom, namely longitudinal
modes. These hypotheses entail the following consequence.

SCHOLIUM 2. There exists a temperature Θ , such that the specific heat satisfies

(10) CV �



3R for T � Θ

12
5 π4R(TΘ )3 for T � Θ

.

Hence, the Debye model differentiates between two regimes: at high temperatures
it recovers the Dulong–Petit law; and it predicts that as the temperature ap-
proaches 0 K , the specific heat vanishes according to CV ∼ T 3 . In this model, the
temperature Θ , now called the Debye temperature, depends on the solid consid-
ered through the cut-off frequency νo , and thus on the speed of sound in that solid
and on its density N/V . The numerical value of Θ gives a quantitative estimate
— for details, see subsection 6.1 — of what is meant by high and low temperature
regimes for the specific heat of crystalline solids. Moreover, in Debye’s model, CV
decreases monotonically and continuously over the whole range of temperatures
T ∈ IR+ .

As a last comment on the passage from (1) to (8), note that by analogy with
the photons as the quanta of light, the elementary sound vibrations in solids are
viewed as quanta, now known as phonons .
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2.4 BE-condensation: the long haul

When taking seriously the idea that the microscopic picture of the macroscopic
world may be a quantum one, the most immediate question is to obtain the cor-
responding description of a quantum ideal gas; this came to be known as the
Bose—Einstein gas, or simply the Bose gas [Bose, 1924; Einstein, 1924]. The
starting point is the grand canonical partition function Z(Λ, T, µ) of an assem-
bly of identical massive particles of mass m in equilibrium at temperature T and
chemical potential µ ; this assembly is enclosed in a cubical box of volume Λ ⊂ IR3 ,
with periodic boundary conditioms. As these particles are non-interacting, the to-
tal energy is the sum of their individual energies εk = �

2|k|2/2m, where k ∈ Z3 .
The quantum hypothesis is that the Planck distribution (1) applies here so as to
entail (with β = 1/kT ) :

(11) Z(Λ, T, µ) =
∏
k∈Z3

(1− exp−β(εk−µ))−1 .

From this formula, one computes the specific volume v and the pressure P , ac-
cording to the rules learned in classical statistical mechanics; the so-called activity
is defined as z = exp(βµ) :

(12) v−1 = z∂z
1
|Λ| ln Z(Λ, T, µ) and β P =

1
|Λ| ln Z(Λ, T, µ) .

The problem is thus stated completely, although the consequences of (11–2.12)
are not easy objects to compute directly. The solution involves a mathematical
excursion through some classical analysis, and the reward is a nice physical bounty:
a phase transition with the onset of a condensed phase at very low temperatures;
not your classical ideal gas!

The necessary classical analysis — now widely available, cf. e.g. [Whittaker and
Watson, 1927, p.280, ex. 7], [Erdélyi, 1953, I, pp. 27–30], or for some historical
perspective [Truesdell, 1945] — was already known to our pioneers, and they did
recognize that in the limit Λ ↑ IR3 , these sums reduce to:

(13)
v−1 = 4π

∫∞
o

dp p2 z[exp(�2p2/2mkT )− z]−1

β P = 4π
∫∞
o

dp p2 ln[1− z exp(−�
2p2/2mkT )]




which are known in classical analysis as Appell integrals, namely

(14)
v−1 = λ−3g( 3

2 , z)

β P = λ−3g( 5
2 , z)


 with




λ2 = 2π�
2/mkT

g(s, z) = z
Γ(s)

∫∞
o

dt ts−1

expt −z

.

For every s with Re(s) > 0 , g defines a function of z which is analytic in the cut
complex plane C\[1,∞) . For |z| < 1 and Re(s) > 0 , one receives the well-studied
Lerch zeta functions which can be expanded in power series
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(15) g(s, z) = z ζ(s, z) with ζ(s, z) =
∞∑
n=0

zn (n + 1)−s .

For z = 1 and Re(s) > 1 the above series converges to the Riemann zeta function
ζ(s) . Note that the values s = 3

2 and s = 5
2 — which are needed in (14) — fall

within this range. Moreover g(3
2 , ·) : z ∈ (0, 1) → R+ is smooth, strictly increasing,

with limz→1 g( 3
2 , z) = ζ( 3

2 ) = 2.612 . . . . The problem is thus mathematically under
complete control.

Now to the physics. This divides into two steps.
The first step is easy: it considers the high temperature and low density regime,

where λ3 v−1 < g( 3
2 , 1) = ζ( 3

2 ) . In particular, by straightforward 1st-order power
expansion:

(16) for λ3 v−1 << 1 : P v = kT [1− 2−5/2(λ3 v−1) + . . . ] .

Hence, in this high temperature and low density regime, the quantum gas behaves
asymptotically like the classical ideal gas of Boyle/Mariotte/Gay–Lussac. This is
yet another confirmation of the Ehrenfests’ remark according to which the classical
limit obtains in QSP as a high temperature limit; note indeed that the so-called
thermal wavelength λ that appears in (14) satisfies λ ∼ � β

1
2 , i.e. in this problem

again, the limits T →∞ (⇔ β → 0) and �→ 0 have formally the same effect.
The second step in the treatment of the problem is where the bounty is to

be found. The question is how to go beyond the above regime, i.e. beyond the
unnatural limit

(17) λ3v−1 = ζ(
3
2
) ,

a restriction no actual gas should be expected to respect. Mathematically, this
limiting condition seems to appear as the consequence of the breakdown of ana-
lyticity in (14) that begins at z = 1 . Physically, the problem appears because the
limit |Λ| → ∞ has been taken too carelessly.

Let us therefore return to the expression of v−1 when |Λ| <∞ . We have then,
with 〈nk〉 denoting the average number of particles in mode k :

(18)
1
|Λ|

∑
k∈Z3

〈nk〉 =
1
|Λ|

∑
k∈Z3,k �=0

〈nk〉+ 1
|Λ|

z

1− z
.

As the 〈nk〉 with k �= 0 are well-behaved as z → 1 , the separation of (18) into
two terms suggests that we take simultaneously the limits |Λ| → ∞ and z → 1 in
such a manner that the second term in (18) approaches a finite limit, say vo

−1 ,
resulting in the replacement of (14) by:

(19)
v−1 = λ−3 ζ( 3

2 ) + vo
−1

β P = λ−3 ζ( 5
2 )


 .

The above limiting procedure, interpreted as
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(20) vo
−1 = lim

|Λ|
1
|Λ| 〈no〉 ,

leads to a macroscopic occupation of the ground state k = 0 ; the theory does
not predict the value of vo : it may depend on the temperature. Note that the
pressure P in (19) depends on temperature only (namely through λ ). The state
of the system described by (19) is called its condensed phase; the transition to this
phase from the normal phase λ3v−1 < ζ( 3

2 ) is referred to as the Bose–Einstein
condensation, (or BEC ) and its appearance at low temperature is a prediction of
purely quantum origin, one that has no equivalent in the classical world.

This begs for an instantiation in the world of the laboratory. At low temperature
a superfluid phase appears in 4He. The density at the onset of this phenomenon
is about ρ � .178 g/cm3 . Upon taking into account the value of the Avogadro
number, one receives v−1 � 2.7 · 1023 cm−3 , from which (17) gives a thermal
wavelength λ � 4.6 ·10−8 cm which is not unreasonable for a quantity that is to be
interpretated as a measure of the interparticle distance. To this value corresponds,
via the definition of λ in (14), a temperature T � 3.2K . The experimental value of
the temperature at the onset of the superfluid phase in 4He is T � 2.2K , a rather
remarkable fit, considering how crude the model is. Moreover, the thermodynamics
of the model can be worked out — cf. e.g. [Huang, 1965] — and shows that the
specific heat Cv(T ) at first increases monotonically from Cv(0) = 0 to exceed the
classical value 3/2 but then experiences a sharp peak — a discontinuity in the
first derivative — from which it decreases monotonically to limT→∞ Cv(T ) = 3/2 .
The specific heat of 4He also exhibits such a singularity, albeit more pronounced:
it is logarithmic; hence its name λ − point, as the graph of the specific heat as a
function of temperature looks like the Greek lower case letter lambda.

All this represented a great success in the the mid-1920s. The next batch
of problems appeared when the theory tried to account for the fact that 4He
is not a gas, but a liquid; for this, the ideal gas assumption of the model is
quite unrealistic: a liquid is not made of non-interacting particles. Putting the
interactions into the theory proved to be a formidable problem, long compounded
by the experimental fact that 4He was the only substance recognized to exhibit
Bose–Einstein condensation: theoreticians had no variable parameter to guide and
adjust their speculations. Following up on a proposal made in the late 1950s, the
situation changed drastically during the 1980s and 1990s with the advent of micro-
Kelvin technology which allowed BEC to be observed in atomic gases in harmonic
traps; for two deep, but very different, reviews, cf. [Lieb, 2001] and [Pitaevskii and
Stringari, 2003]; and for a brief overview [Emch and Liu, 2002, subsection 14.2.2].

The account in this subsection was limited mostly to the macroscopic, thermo-
dynamical aspects of BEC in its infancy; in subsection 5.2 below, a C∗−algebraic
treatment of the Bose–Einstein model is discussed in connection with the appear-
ance in QSP of the modular structures to be associated to the equilibrium KMS
condition.
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2.5 Beyond the Bohr atom: the Thomas–Fermi model

The entry in quantum mechanics of Schrödinger wave-mechanics (1926) was
marked by a resounding success: the physics community could recognize immedi-
ately the application of a then already well-established method to a new realm; the
theoretical explanation of the energy spectrum of the hydrogen atom was reduced
to solving an eigenvalue problem in a differential equation. Every entry-level text
in quantum mechanics presents this derivation.

And yet, beyond the Bohr atom, the solution of the Schrödinger equation for an
atom with even a few electrons turned to be an insurmontable task: the electrons
are charged particles and while the interaction between a single electron and the
nucleus had been rigorously accounted for in the hydrogen atom, one could not deal
analytically with the mutual electromagnetic interactions between the electrons.

Very soon thereafter, Thomas [1927] and Fermi [1927] came up with a semi-
classical model in which two ingredients enter. The first is the ground state electron
density ρ which is assumed to be spherically symmetric and normalized by the
condition

(21) 4π
∫ ∞

o

drr2ρ(r) = Z

where eZ is the charge of the nucleus. The second is the average electric potential
Φ(r) in the atom. These two ingredients are assumed to satisfy the classical
equation, the Poisson equation of electrostatics

(22) ∆Φ ≡ 1
r

d2

dr2
(rΦ) = 4πeρ with lim

r→0
Φ(r) = eZ .

And yet the model has a quantum aspect to account for the Pauli exclusion prin-
ciple; this is the so-called Fermi–Dirac statistics that had been proposed just the
previous year [Fermi, 1926]. Here, this shows up in:

(23) n(r, p) =
{

2h−3 if ε := 1
2m − eΦ < εo

0 if ε > εo
.

from which one gets, by integration over p (upon putting εo = 0), that ρ satisfies

(24) ρ(r) =
{

8π
3h3 (2meΦ)3/2 if Φ > 0
0 if Φ < 0

.

Clearly, the model is conceptually inconsistent, with stakes in each of the classi-
cal and the quantum realms. Yet, in my student days this model was a routine sta-
ple of the quantum mechanics curriculum [Schiff, 1955; Landau and Lifshitz, 1958a;
Messiah, 1960] as it can be solved without any further assumptions than those
listed above; the solution is exact up to the fact that it requires a numerical com-
putation well within the realm of a controllable approximation.

Upon using the numerical values of the Planck constant h , the charge e and
the mass m of the electron, the model predicts that the radius of the atom, taken
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to be the radius of the sphere that contains all the electrons but one increases
monotonically from 2.2 · 10−8 cm for Z = 25 , to 2.8 · 10−8 cm for Z = 100 . The
order of magnitude is correct. This can be counted therefore as an early success
of quantum theory.

However, one should expect that such a crude model does not tell the whole
story. Indeed: (1) the predicted increase stops at Z = 55 (corresponding to the
cesium atom) after which the radius decreases, albeit slowly; (2) when looked at
more closely, the model yields an electron density that has unreasonable properties
both very close and very far from the nucleus. Besides, the model needs serious re-
considerations to explain the existence of stable molecules or to accommodate a rel-
ativistic treatment. These problems never completely left the scene of theoretical
physics, but remained somewhat in the background for about half-a-century, until
rigorous analytic methods clarified the sense in which the model is asymptotically
exact and may be used to study the stability of atoms, molecules and even stars;
cf. [Lieb and Simon, 1977; Lieb, 1982a; Lieb, 1990]; see also [Catto et al., 1998;
Le Bris and Lions, 2005].

2.6 White dwarfs: the Chandrasekhar bound

Returning to the quantum ideal gas discussed in subsection 2.4, let us examine
now the Fermi gas. Instead of (11), start with the partition function

(25) Z(Λ, T, µ) =
∏
k∈Z3

(1 + exp−β(εk−µ))

which now entails in the limit Λ ↑ Z3 , instead of (13):

(26)
v−1 = 4π

∫∞
o

dp p2 z[exp(�2p2/2mkT ) + z]−1

β P = 4π
∫∞
o

dp p2 ln[1 + z exp(−�
2p2/2mkT )]


 .

In the high temperature and low density regime — λ3v−1 � 1 — one recovers
again an asymptotic expansion, the leading term of which is the classical ideal gas:

(27) for λ3 v−1 << 1 : P v � kT [1 + 2−5/2(λ3 v−1) + . . . ] .

Again, up to the sign of the correction, this is very similar to the Bose–Einstein re-
sult (16): it also coincides asymptotically with the classical ideal gas as T becomes
large.

In the low temperature and high density regime — λ3v−1 � 1 — the situation
differs drastically from what it was in subsection 2.4: whereas bosons tend to
congregate, no two fermions are allowed in the same state on account of the Pauli
exclusion principle. Recall that in chemistry, this is the principle that underpins
a quantum explanation for the Mendeleev table of elements. In QSP the Pauli
principle is visible through (26): in the ground state of the system, the fermions
occupy the lowest possible energy states up to a finite energy, called the Fermi–
energy



Quantum Statistical Physics 1087

(28) εF =
�

2

2m

[
(3π2) v−1

] 2
3 .

For temperatures such that kT � εF the momentum distribution will be

(29) < np >=




1 for (|p|2/2m)
∼
< εF

0 for (|p|2/2m)
∼
> εF

with a steep sigmoid of narrow breadth kT around εF . This regime is called the
degenerate Fermi gas. To characterize this regime, rewrite kT � εF , with εF as
in (28), as:

(30) β v−
2
3 �

[
�

2

2m
(3π2)

2
3

]−1

which gives a quantitative meaning to the expression low temperature and high
density regime; for instance, this yields a useful first approximation for the gas of
electrons in metals at usual temperatures. The condition kT � εF corresponds to
λ3v−1 � 1 and in this regime (26) entails

(31) Pv � 2
5
εF

[
1 +

5π2

12
(
kT

εF
)2 + . . .

]
i.e. lim

kT
εF

→0
Pv

5
3 =

2
5
(3π2)

2
3

�
2

2m
.

Hence, at fixed density, the pressure approaches a strictly positive constant as
T → 0 , in marked contrast with the behaviour of the classical ideal gas (see (27))
where T → 0 implies P → 0 .

Less mundane examples are provided by celestial objects, white dwarfs and
neutron stars. With a temperature similar to that of the sun, i.e. 107K to 108K
in the center, and a mass of the same order of magnitude as the sun, the white
dwarfs have a very high density, about 106 to 107 times that of the sun. They are
stars where all the hydrogen fuel has been burned, and thus they are constituted of
completely ionized helium atoms. From these hypotheses on the composition and
condition of a white dwarf, one computes the density of the electron gas, and then
from (28) the corresponding Fermi energy εF which, when expressed in terms of
TF = εF /k , turns out to give TF � 1011K . Hence T � TF and it is consistent to
assume — as R.H. Fowler did already in 1926 [Fowler, 1926] — that the electron
assembly in the white dwarfs may be described as a degenerate Fermi gas, and that
it is the enormous pressure in such a gas that prevents the star from gravitational
collapse. It is however true that at such density and pressure, electrons must be
treated relativistically, i.e. ε =

√
(pc)2 + (mc2)2 instead of ε = p2/2m. This brings

about all sorts of analytic difficulties, among which is a change from 5/3 towards
4/3 in the power of v in (31). In the course of his computations of this effect,
Chandrasekhar [1931a] remarked that since the gravitational pressure is governed
by the mass of the star, the latter would collapse if the mass were to become too
large; he actually evaluated this critical mass Mmax to be
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(32) Mmax � (3π)
1
2 (

�c

G
)3/2(µmN )−2 � 1.4M�

where (in cgs units) � = h/2π with h � 6.62 × 10−27 ergs cm is the Planck
constant, c � 3 × 1010 cm/sec is the speed of light, G � 6.67 × 10−8 dyn cm2

g−2 is Newton’s gravitational constant, mN � 1.66 × 10−24 g, µ is the number
of nucleons per electron; here µ = 2 since the star is supposed to have used its
hydrogen supply, and be made of 4

2He. Finally, to reduce the result in astronomic
units, M� � 1.99× 1033 g is the mass of the sun. Astronomers today refer to the
maximum mass Mmax as the Chandrasekhar limit [where mathematicians would
speak of a “bound”].

Chandrasekhar’s original derivation is mathematically correct, yet somewhat
cumbersome. Already by the end of 1932, L.D. Landau [1932] presented a more
elementary argument, and in addition, upon hearing of the discovery of the neu-
tron, he applied the above formula to then putative neutron stars.

To have included these predictions here among the early “successes” of QSP
may be justified only by hindsight. When they appeared in the early 1930s they
and their consequences caused quite a wave, on the crest of which rode A.S. Ed-
dington, an astronomer of commanding authority, who spoke of a reductio ab
absurdum calling for the interposition of an as yet unknown fundamental theory:
for him a massive star (M > Mmax) collapsing to a black hole was heresy, and
he was in a position not to mince his words about it. Eddington’s fierce attack
on a junior colleague did not cause Chandrasekhar to recant; unconvinced, Chan-
dra nevertheless decided to turn to other astronomical problems until the late
1950s [Chandrasekhar, 1958] and early 1960s, when his speculations, and Lan-
dau’s, found observational confirmations.

For the unfolding of the resolution of the Chandrasekhar–Eddington conflict, cf.
e.g. [Shapiro and Teukolsky, 1983], the title of which already indicates the complete
extent to which Chandrasekhar was ultimately vindicated. A pristine, yet non-
technical presentation of the physics of the Chandrasekhar bound may be read in
[Thorne, 1994, chapter 4]; the story of the neutron stars, albeit more involved is
also told there in [Thorne, 1994, chapter 5]; for the fundamental technical support,
cf. [Weinberg, 1972, chapter 11].

3 AXIOMATIC PRUNINGS

Usually, either one of two reasons prompts the process of axiomatization. The
first is the search for the soul — some would say the skeleton — hidden inside the
aleatory appearances of the body: a ritual of purification. The second is the need
for fundamental changes when a theory faces increasingly insuperable limitations.
Both of these reasons motivate the developments I retrace in the present section;
as I write this I am reminded of the essential tensions described elsewhere in [Segal,
1990].

It is an interesting coincidence that the early 1930s saw the almost simultane-
ous — albeit independent — axiomatizations of two of the ingredients of QSP:
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Quantum mechanics with von Neumann’s treatise [von Neumann, 1932c]; and
Statistics, a.k.a. probability and stochastic processes, with Kolmogorov’s paper
[Kolmogorov, 1933]. As both of these belong to other chapters of this Handbook,
only a few words will suffice here.

3.1 Kolmogorov’s and von Neumann’s formalisms compared

In a nutshell, Kolmogorov’s syntax for probability starts with a seminal description
of measure theory: a triple {Ω, E , µ} is given where E is a σ−algebra of measurable
subsets of a set Ω, and µ is a countably additive function

(33) µ : E ∈ E → µ(E) ∈ IR+ with µ(Ω) = 1

i.e. µ is a probability measure on {Ω, E}. µ naturally extends to a functional on
the algebra A = L∞(Ω, E , µ) of all essentially bounded functions A : Ω→ |C :

(34) µ : A ∈ A → µ(A) =
∫∫

Ω

dµ(ω)A(ω) ∈ |C .

Hereafter, I will refer to this extension as a classical state.
Similarly, von Neumann’s syntax involves a triple: {H,P, ψ} where P is the

orthomodular lattice of all closed subspaces of a Hilbert space H , ψ is a countably
additive positive function

(35)
ψ : P ∈ P → ψ(P ) ∈ IR+ with ψ(I) = 1 and

ψ(
∑
n Pn) =

∑
n ψ(Pn) ∀ {Pn} ⊂ P such that n �= m |= Pn ⊥ Pm


 .

I shall refer to any such funtion ψ as a quantum state. Gleason’s theorem asserts
in particular — see below for a complete statement — that for every quantum state
ψ there exists a density operator, i.e. a positive operator ρ of unit trace, such that
ψ extends to the W ∗−algebra B = B(H) of all bounded linear operators from H
into itself:

(36) ψ : B ∈ B → ψ(B) = TrρB ∈ IR .

When working within the von Neumann formalism, I will identify any closed
subspace P ⊆ H and the projector P ∈ B(H) on this subspace; I will indifferently
refer to ψ or to ρ as a state on B ; and I will refer to the restriction of ψ to P as
a quantum measure. I will also follow the physicist’s custom of referring to ρ as a
density matrix, thus ignoring the mathematician’s distinction between an operator
and its expression in a specified (orthonormal) basis.

The mathematical similarities and differences between the classical and quan-
tum realms are emphasized by the Koopman formalism of classical mechanics; cf.
e.g. [Emch and Liu, 2002, pp. 255, 267]. This formalism — actually a precursor of
the GNS construction — associates to {Ω, E , µ} the Hilbert space H = L2(Ω, E , µ)
of all functions Ψ : ω ∈ Ω → Ψ(ω) ∈ |C that are square-integrable with respect to
µ . Every element A ∈ A = L∞(Ω, E , µ) is then viewed as an element of B = B(H),
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namely under the identification of the function A : ω ∈ Ω → A(ω) ∈ |C with the
multiplication operator A : Ψ ∈ H → AΨ ∈ H where (AΨ)(ω) = A(ω)Ψ(ω) .
Under this identification A becomes a maximal abelian W ∗− subalgebra of B ;
while the center of B , namely {C ∈ B | ∀B ∈ B : [B,C] = 0} is trivial, i.e. con-
sists of the multiples of the identity operator. Note further that every element
B ∈ B(H) can be viewed as a continuous linear functional on the Banach space
T (H) of all trace-class operators, spanned by the countably additive states; namely
B : T ∈ T (H) → Tr TB ∈ |C ; conversely every norm-continuous linear functional
on B(H) obtains in this manner; i.e. B(H) is the Banach space dual of T (H) ;
equivalently, T (H) is the predual of B(H) . Similarly, the predual of L∞(Ω, E , µ) is
the Banach space of L1(Ω, E , µ) , spanned by the probability distributions which
are absolutely continuous with respect to µ .

The interpretation of a quantum state ψ in terms of classical probabilities ob-
tains upon reading (35) separately for each family {Pn} of mutually compatible
quantum events. The bijective equivalence between the objects described by (35)
and (36) is the pragmatic content of Gleason’s theorem; cf. e.g. [Emch and
Liu, 2002, p. 225]: every quantum state can be uniquely written in the form
(36), and every density operator ρ defines through (36) a function ψ satisfying
(35), i.e. a quantum state ψ . For the semantic, i.e. the empirical (frequen-
tist vs. subjective) interpretations of states, first in classical probability theo-
ries, and then in quantum theories, cf. e.g. [Jaynes, 1967; Emch and Liu, 2002;
Emch, 2005]; in particular, see [Uffink, 2006] for the evolution in CSP of the
primacy of one over the other of these interpretations of probabilities.

Again in a nutshell, I believe that it serves my purpose well, in most of this essay,
to espouse the ‘subjective’ rather than their ‘frequentist’ interpretation, namely to
view the state of a physical system — be it classical or quantum, macroscopic or
microscopic — as a faithful summary of the knowledge one has of the process by
which this system has been prepared. In particular, this semantic view of the quan-
tum state shall translate well from the case of systems with finitely many degrees
of freedom considered in von Neumann’s quantum mechanics, to the systems with
infinitely many degrees of freedom to be considered in QSP; see subsections 3.4
to 6.3. In particular, while von Neumann’s beams or ‘ensembles’, of independent,
identically prepared systems — [von Neumann, 1932c, note 156] — are adequate
to describe scattering experiments or the atomic spectroscopy of his time, the view
of quantum states that I choose to adopt here accomodates better the description
of single macroscopic systems — such as a cup of coffee or a measuring apparatus.

3.2 QSP in von Neumann’s formalism

The centerpiece of equilibrum QSP in von Neumann’s formalism is the following
result [von Neumann, 1932c]:

THEOREM 3. Let H be a Hilbert space, H be a self-adjoint operator acting in H
and such that for all β > 0 : the partition function Z := Tr exp(−βH) be finite.
And, with k > 0 fixed, let for any state ρ on B(H)
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(37) S[ρ] = −k Trρ log ρ .

As H has discrete spectrum and is bounded below, let εo be its smallest eigenvalue;
and let s denote either the largest eigenvalue of H if H is bounded above, or ∞
if it is not. Then, for any given εo < E < s , the maximum of S[ρ] , subject to the
constraint TrρH = E is reached on the state

(38) ρ = Z−1 e−βH with Z = Tre−βH

where the value of β is determined by the value E of the constraint.

The first part of the proof consists in showing that the maximum occurs on the
class of states of the form ρ =

∑
n λn Pn where

∑
n εn Pn is the spectral resolution

of H . After this, the result follows from the classical argument using Lagrange
multipliers with respect to the collection of variables Λ = {λn} ⊂ IR+ , namely
from determining the maximum of the function S[Λ] = −k

∑
n λn log λn subject

to the simultaneous constraints
∑
n λnεn = E and

∑
n λn = 1 .

Note that this variational principle could have been rephrased as defining the
state ρ in (38) as the state that minimizes — now under the single constraint
Trρ = 1 , i.e.

∑
n λn = 1 — the Helmholtz free-energy defined as F := E − TS

with E and S as in the theorem, and β = kT where k is known as the Boltzmann
constant (see below).

Note also that, in either of these two forms, this variational principle has its
root in the classical statistical physics (CSP) of Boltzmann and Gibbs; cf. [Uffink,
2006]. Conceptually, and very much as in CSP, the von Neumann QSP result
involves a consensus on two questions. The first question is to justify the inter-
pretation of S as an entropy. There are two ways to do this.

(i) Firstly, as in CSP, one may identify S with the equilibrium entropy of macro-
scopic thermal physics upon computing S for well-controlled model(s), such
as the ideal gas and finding — for in each of the specific cases considered —
that the value of Smax obtained through the above theorem coincides with the
value of the thermodynamical entropy. It is only at that stage that k may be
identified with the universal Boltzmann constant k � 1.3810−23 J/deg ; note
the units, namely [energy]/[temperature], as is proper for the thermal entropy
where T is the integrating factor that allows one to pass from the “heating”
differential η to the exact differential dS = η/T . As fine as that may be for
equilibrium CSP/QSP, this identification leaves open the interpretation of S
as entropy in non-equilibrium situations.

(ii) The second route to an interpretation of S is to show that I(ρ) = −S(ρ) is
a measure of the information content of the state ρ , namely to find empir-
ically meaningful conditions that express the intuitive concept of “informa-
tion content” and to show that — up to a multiplicative constant — there
exists exactly one S that satisfies these conditions. The argument offered by
Khinchin [1957] for classical probability distributions involves — inter alia —
the axiom of consistency under refinements. This argument was transposed
to the quantum case by Thirring [1983b] to give:
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THEOREM 4. S[ρ] = −k Trρ log ρ is the only functional satisfying:

1. S[ρ] is continuous in ρ , in the sense that it is a continuous function of the
eigenvalues of ρ .

2. For every finite probability distribution P = {pn |n = 1, 2, . . . , N} and every
finite collection of states {ρn |n = 1, 2, . . . , N} on a finite collection of Hilbert
spaces {Hn |n = 1, 2, . . . , N} , let ρ be the state defined on H = ⊕Nn=1Hn by
ρ = ⊕Nn=1pnρn . One has then: S[ρ] = S[P ] +

∑N
n=1 pnS[ρn] where S[P ] is

the value of the Khinchin functional for the probability distribution P .

3. S

[(
1
2 0
0 1

2

)]
= k log 2.

The first of the three conditions of theorem 4 is clear: an arbitrarily small
change in the state should result in an arbitrarily small change in the information
it conveys. The second condition expresses refinement under a particular class of
partitionings; while the third is only a normalization. Just as in CSP, the quantum
information content (−S), uniquely specified by these conditions, is formally used
to define the quantum entropy S .

The second question concerning the conceptual relevance of theorem 3 is to
justify the very use of a variational principle; compare with [Uffink, 1995]. In
my view, for both the classical and the quantum cases, this comes most naturally
when one opts for the subjective interpretation of states rather than the frequentist
interpretation. Indeed, if one wants the state to account for the knowledge one
has of the system, it seems consistent to select for ρ the state that assumes no
more information than that expressed explicitly by the constraint.

When the operator H in theorem 3 is taken to represent the energy of the
system, the state (38) is called — by analogy to the Gibbs canonical equilibrium
state of CSP — the quantum canonical equilibrium state for the natural tempera-
ture β = 1/kT . Note in particular that, in the Schrödinger picture, the evolution
generated by H , namely:

(39) ∀ t ∈ IR : ρ(t) = U(t)ρU(−t) with U(t) = exp−i 1
�
Ht

leaves the canonical equilibrium state invariant, as is to be expected when one
wishes to identify the energy-operator with the Hamiltonian of the system.

At first sight, the von Neumann formalism affords a good start for the develop-
ment of a quantum ergodic theory. To keep things as simple as possible, consider
the Hilbert space L = {X ∈ B(H) |Tr X∗X <∞} equipped with the scalar prod-
uct (X,Y ) = Tr X∗Y . This space is known to mathematicians as the space of
Hilbert–Schmidt operators acting on H . In particular, every density matrix is an
element of L ; and thus this space is also known to physicists as the Liouville space
of the quantum system described on H . The advantage of restricting attention to
this space is that (39) extends to a unitary action on L :

(40) V : (t,X) ∈ IR× L → V (t)[X] = U(t)XU(−t) ∈ L .



Quantum Statistical Physics 1093

In the same way as the self-adjoint generator H of the continuous unitary group
{U(t)|t ∈ IR} is called the Hamiltonian of the quantum system considered, the
self-adjoint generator L of the continuous unitary group {V (t)|t ∈ IR} is called the
Liouvillian of this system. One has then

THEOREM 5. Let H ∈ B have purely discrete spectrum, i.e. H can be written in
the form H =

∑
n εnPn where the Pn are mutually orthogonal projectors adding

to I . Then the following limit exists

(41) Eerg[X] = lim
T→∞

1
T

∫ T

0

dt V (t)[X] with X ∈ L ;

and

Eerg[X] =
∑
n

PnXPn and ∀ t ∈ IR : V (t)[Eerg[X]] = Eerg[X].

In particular, the ergodic average Eerg[ρ] of a density matrix ρ exists, is again a
density matrix, and is time-invariant.

It is tempting to try and consider theorem 5 as proper quantum version of the
classical ergodic theorems of Birkhoff [1931] or von Neumann [1932a]. Indeed,
the conclusions of these classical theorems and of theorem 5 are similar when one
reads them in terms of (countably additive) ‘states’ respectively defined as:

• A ∈ L∞(Ω, µ) → ∫
Ω
dµ fA ∈ |C where f ∈ L1(Ω, µ) , f positive with f

normalized by
∫
Ω
dµ f = 1 (for the classical case);

• A ∈ B(H) → Tr ρA ∈ |C where ρ is a density matrice, i.e. a positive trace-
class operator with ρ normalized by Trρ = 1 (for the quantum case);

and similarly for their respective time-averages.
Note that while the classical theorems are usually followed by a corollary in-

volving the (quasi-)ergodic hypothesis and some discussion of the relevance of the
results for the foundations of CSP — for a critical presentation see e.g. [Uffink,
2006, section 6.1] — I do not intend to try and follow suit here, in view of theorems
7 and 8 below which, for the purposes of QSP, cast a shadow on the adequacy of
the assumptions theorem 5 makes on the Hamiltonian H . For a quantum ergodic
theorem better adapted to the needs of QSP, see theorem 25 below.

Nevertheless, two related interesting comments may be made about theorem 5.

(i) If, in this theorem, H is non-degenerate, i.e. if ∀n : dimPn = 1 , then Eerg[ρ]
coincides with

(42) Qo[ρ] =
∑
n

Tr(ρPn)Pn =
∑
n

(ρΨn,Ψn)Pn

where PnΨn = Ψn with (Ψn,Ψm) = δmn , and where Qo[ρ] is thus the density
matrix resulting from the von Neumann quantum measuring process [von
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Neumann, 1932c, p. 351]; see also subsection 6.3 below. In particular, if ρ
is a pure state, i.e. is a projector PΨ on some vector Ψ =

∑
n cnΨn , then

Qo[PΨ] =
∑
n |cn|2Pn has lost all the information encoded in the relative

phases of the coefficients cn .

(ii) In [von Neumann, 1932c, pp. 380 ff] von Neumann shows that the entropy S
of a state does not decrease — and in the generic case does increase — as the
result of a measurement, whereas it is constant under the unitary evolution
(40). He thus sees in

(43) S[Qo[ρ]] ≥ S[ρ]

a confirmation that quantum measurements are generically irreversible pro-
cesses. Similarly then, the information encoded in a (non-degenerate) density
matrix ρ may only decrease as a result of taking its time-average, a reasonable
feature indeed.

Yet, while theorem 5 could have been regarded as the germ of a quantum ergodic
theory, the occurrence of monotonic irreversibility in QSP is significantly more
elusive, as the next subsection demonstrates.

3.3 Some reasons to go beyond von Neumann’s formalism

Some of the problems non-equilibrium QSP has to face are illustrated in a simple
spin-lattice model that was originally suggested to me by an actual experiment,
the so-called nuclear free-induction relaxation; cf. [Emch and Liu, 2002, section
15.3].

The system consists of a linear chain of N interacting spins {σk = (σxk , σ
y
k , σ

n
k )

|k = 1, . . . , N} with N even (and large, in a sense to be specified later on), and let

(44) σxk =
(

0 1
1 0

)
, σyk =

(
0 −i
i 0

)
, σzk =

(
1 0
0 −1

)
be the Pauli matrices acting on Hk � C2 . The Hilbert space of the system is
then H = ⊗kHk � |C2N

. In this chain, two spins on sites k and k + n interact
with an energy −Jnσ

z
kσ

z
k+n , with Jn > 0 so that a lower energy is ascribed to

configurations in which the z−components of these spins are parallel rather than
anti-parallel. The whole system is plunged in a homogeneous magnetic field B in
the direction z . The total Hamiltonian is chosen to be

(45) HN = −B
N∑
k=1

σzk −
N∑
k=1

N/2∑
n=1

Jnσ
z
kσ

z
k+n with Jn = 2−nJo > 0 .

The system is initially prepared in the state

(46) ρN = Z−1
N exp−βBPN

k=1 σ
x
k with ZN = Tr exp−βBPN

k=1 σ
x
k .

For the three “macroscopic” observables
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(47) SαN =
1
N

N∑
k=1

σαk with α standing for x, y, z

one computes easily from (39–40) with H = HN given by (45):

(48)
Tr (VN (t)[ρN ]SxN ) = Tr (ρN SxN ) cos(2Bt)fN (t)
Tr (VN (t)[ρN ]SyN ) = Tr (ρN SyN ) sin(2Bt)fN (t)
Tr (VN (t)[ρN ]SzN ) = Tr (ρN SzN )




where

(49)
fN (t) = f(t)/WN (t) with

f(t) =
[ sin(Jot)

Jo t

]2 and WN (t) =
[ sin(2−N/2Jot)

2−N/2Jo t

]2

 .

REMARKS 6.

1. For the purpose of discussing the putative irreversibility of the model, the
(conservative) Larmor precession {cos(Bt), sin(Bt)} of the magnetization
around the direction z of the magnetic field B is of little or no interest.

2. In favour of the “irreversibility” of the model, one first notes that

(50) ∀ t with |t| << TN = 2N/2πJ−1
o : fN (t) � f(t)

and then the decay of |TrVN (t)[ρ]SαN | is governed by t−2 . Therefore, in
this time frame, the magnetization (48) exhibits an apparent approach to
equilibrium.

3. However, against the statement that the model would show an irreversible
approach to equilibrium, one observes that

(51) lim
t→TN

fN (t) = 1 = fN (0)

and thus, over the long run the system is periodic in time. This quantum
model therefore would seem to confirm the classical Zermelo recurrence ob-
jection, or Wiederkehreinwand ; for the latter, see [Uffink, 2006, section 4.5].

4. The saving grace, nevertheless, is that the period TN increases exponentially
with the size N of the system; see (50). This exponential behaviour is al-
ready encountered is CSP, as demonstrated by the Ehrenfest dog-flea model
briefly mentioned in subsection 6.1 below. Thus, a modern Galileo would
have his Simplicio argue that for macroscopically large systems, unaccount-
able perturbations would set in before TN is approached, thus irremediably
masking this periodicity; compare this to Boltzmann’s responses to the Zer-
melo objection; see again [Uffink, 2006, section 4.5].
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5. Upon taking stock of this objection Salviati would invoke some modern ver-
sion of the apocryphal commandment to the effect that “Thou shalt not
interchange limits” since:

(52) lim
N→∞

lim
t→∞ fN (t) does not exist but lim

t→∞ lim
N→∞

fN (t) exists and is 0 .

6. The present model presents also a quantum manifestation of the classical
Loschmidt reversibility objection, or Umkehreinwand — cf. [Uffink, 2006,
section 4.3] — as one has, here also:

(53) fN (−t) = fN (t) and even f(−t) = f(t)

confirming the classical Janus dictum according to which the security of a
postdiction is the same as that of a prediction. Hence, this model indicates
that, if the Umkehreinwand were indeed a genuine objection to QSP —
which I do not believe it is — the thermodynamical limit would not avoid
it, whereas remarks (4) and (5) above show how it may respond to the
Wiederkehreinwand.

7. Finally, one serious shortcoming of the present model — not as a model of
the particular experiment considered above, but as a model for the approach
to equilibrium in a QSP accounting for transport coefficients — is that, even
in the limit of N → ∞ , the evolution is monitored by an inverse power
law in time, rather than an exponential law, as would be required for the
type of behaviour encountered in such macroscopic situations as described
by Newton’s cooling law, Fourier’s heat equation, or more generally any
macroscopic differential transport equation with linear coefficients.

The model illustrates explicitly some of the essential limitations of the von Neu-
mann formalism for QSP, as manifested in the following two general results. The
main assumption of theorems 3 and 5, namely that the Hamiltonian operator H
has discrete spectrum, though seemingly innocuous — and actually necessary —
when dealing with equilibrium QSP, has one potentially disastrous consequence
when one attempts to extend the formalism to non-equilibrium situations: metas-
tases of the classical objections spread into the quantum realm, as we shall now
see.

The first result is a quantum version of the classical recurrence theorem of Zer-
melo. To be mathematically precise recall, in the words of Besicovitch’s standard
text [Besicovitch, 1954], that a function f : t ∈ IR → f(t) ∈ |C is said to be almost
periodic in the sense of Harald Bohr, if f(t + T ) is approximately equal to f(t)
— with an arbitrary degree of accuracy — for infinitely many values of T , these
values being spread over the whole real line, in such a way as not to leave empty
intervals of arbitrarily great length.

THEOREM 7. If the Hamiltonian H = H∗ ∈ B(H) has purely discrete spectrum,
i.e. if H =

∑
n εnPn ; and if {V (t) | t ∈ IR} is the unitary action in the Liouville

space L defined in (40), then
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(54) ∀X,Y ∈ L : fX,Y (t) = Tr (V (t)[X]Y )

is an almost periodic function in t in the sense of H. Bohr.

Proof. f(t) is a Fourier series
∑
n,m an,m exp−i 1

�
(εn−εm)t with an,m = Tr(PnX

Pm y) ; by the Schwartz inequality in L :
∑
n,m |an,m|2 converges and thus — cf.

[Besicovitch, 1954] — f is an almost periodic function of t in the sense of H. Bohr.
�

One might then attempt to get rid of recurrences by assuming — as is certainly
allowed in the von Neumann formalism of quantum mechanics, provided dimH =
∞ — that the spectrum of the Hamiltonian is purely continuous. From the point
of view of QSP, however, this cure would raise the following new difficulty, namely
that ergodic states may not be countably additive, i.e. may not be representable
by density matrices.

To describe this phenomenon, consider the Banach space B = B(H) equipped
with its usual operator norm; and denote by B∗ its dual, i.e. the Banach space of
all continuous, linear functionals on B . Then

(55) B∗ = A∗ ⊕A⊥

where

i. A is the space of compact operators on H , i.e. A = {A ∈ B(H) | Ψn ⇀
Ψ ⇒ AΨn → AΨ} ; here, ⇀ and → respectively denote weak- and strong-
convergences in H . When the ∗−algebra A is equipped with the operator
norm it inherits from B(H) , A is closed in B(H) and thus is a Banach space
on its own; in fact A is the only non-trivial closed two-sided ∗−ideal of B .

ii. For every ϕ ∈ A∗ , the dual of A , there exists a unique trace-class operator
R ∈ T = {B ∈ B |Tr (B∗B)

1
2 < ∞} such that ∀A ∈ A : ϕ(A) = Tr(R A) .

In particular, to every positive, continuous linear functional ψ on A such
that supA∈A,‖A‖≤1 ‖ψ(A)‖ = 1 there corresponds a unique density matrix,
and conversely.

iii. A⊥ = {ϕ ∈ B |A ∈ A ⇒ ϕ(A) = 0} .
Note that each of the inclusions T ⊆ L ⊆ A ⊆ B is strict iff H is infinite-
dimensional, a condition that is required whenever one wants to avoid recurrences,
since dimH <∞ obviously entails that the spectrum of H is purely discrete, and
then theorem 7 applies.

We can now make precise the above mentioned difficulty concerning the descrip-
tion of ergodic states within the context of countably additive states:

THEOREM 8. Let H ∈ B(H) be the self adjoint generator of any strongly con-
tinuous unitary group {U(t) | t ∈ R} acting on H ; and, with t running over
IR , let ρ ∈ T → ρ(t) = U(t)ρU(−t) ∈ T describe the evolution of any den-
sity matrix ρ ; further, let ψt denote the corresponding (countably additive!) state
ψt : B ∈ B(H) → ψt(B) = Tr(ρ(t)B) ∈ |C. Then, it follows that:



1098 Gérard G. Emch

a. For every compact observable A ∈ A the ergodic limit

(56) lim
T→∞

1
T

∫ T

o

dt ψt(A)

exists and defines a positive linear functional E∞[ψ] on A .

b. If, moreover, the spectrum of H is purely continous, then E∞[ψ] cannot be
extended to a countably additive state on B(H) .

Proof. For the part (a), the economical strategy is to take advantage of two
density theorems, namely: (i) when L is equipped with its Hilbert-Schmidt norm,
it contains T as a dense subspace; and (ii) when A is equipped with the operator
norm it inherits from B(H) , it contains L as a dense subspace. Hence, one can
uniquely lift the evolution from T (H) to a unique unitary evolution on the Hilbert
space L where one can use the classical ergodic theorem — [von Neumann, 1932a],
or [Emch and Liu, 2002; Uffink, 2006] — to assert the existence of the ergodic limit
for any pair (X,Y ) ∈ L×L , and in particular for any pair (ρ,A) ∈ T ×L . Upon
recalling the duality A = T ∗ , the ergodic result is then extended by continuity
from T × L to (ρ,A) ∈ T ×A .

To prove part (b), one notices that, on the one hand, this limit is given, for every
A ∈ A by Eo[ψ](A) = Tr(

∑
n(Pn ρPn A) where {Pn} is the set of all the projectors

corresponding to the discontinuous jumps in the spectral family of H . Hence, when
H has continuous spectrum, this set is empty and thus ∀A ∈ A : Eo[ψ](A) = 0 .
On the other hand, Eo[ψ] certainly extends further thanA ; for instance the ergodic
limit obviously exists for any X ∈ {H}′ , i.e. for all bounded observables that are
constants of the motion; in particular E[ψo](I) = 1 . Hence, even if E[ψo] could be
extended to a state on B , this state would belong to A⊥ and thus would have no
countably additive component in the direct sum decomposition (55). �

The proof of the theorem shows that the same objection can be raised with any
Hamiltonian the spectrum of which contains even only one interval of continuity.
Taking Hamiltonians that are still self-adjoint, but not bounded above would only
raise more technical problems without providing a solution to the basic limitation
exposed in theorem 8.

Hence, von Neumann’s formalism for QSP leads non-equilibrium QSP into the
horns of a dilemma: either the evolution is almost periodic or the ergodic states
are not countably additive. In particular, non-equilibrium states cannot approach
asymptotic states that can be described by density matrices.

To make a bad situation even worse, Zeh discovered — admittedly, long after von
Neumann’s treatise had appeared and yet relevant to the thrust of this section —
that there are serious empirical difficulties with the concept of an isolated quantum
system [Zeh, 1970; Wigner, 1984]. Could certainty be fading out? [Prigogine,
1997]. Zeh’s original observation has led to the development of the concept of
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decoherence; cf. Landsman [Landsman, 2006, section 7.1]. I very briefly address
this and some related issues in section 6 below.

Even in equilibrium QSP, the anchor provided by von Neumann was slipping:
the formalism cannot account for the coexistence of thermodynamical phases; for
a response to this objection, see subsection 5.7 below.

In counterpoint to these questions, one fundamental problem needs to be ad-
dressed: namely that the von Neumann formalism is not adequate to describe
typical many-body systems where an infinite number of degrees of freedom are
brought into the picture. The prescribed remedy is discussed in the next subsec-
tion.

3.4 Haag–Kastler’s axioms and Takeda’s inductive limits

This subsection outlines a formalism proposed to deal effectively with the non-
relativistic many-body problems in QSP. This formalism was born out of the
axiomatic responses prompted by the diagnosis of a mid-life crisis in relativis-
tic Quantum Field Theory [QFT] [van Hove, 1952; Friedrichs, 1953; Wightman
and Schweber, 1955]; the nail in the coffin was driven by Haag [1955]; cf. e.g. the
famous Haag theorem and its embalmings in [Barton, 1963, section 14], [Streater
and Wightman, 1964, section IV.5], and/or [Emch, 1972a, section 3.d]. The al-
gebraic axiomatization is presented here with sufficiently elementary details, yet
with enough restraint to eschew the “imperialistic” label sometimes attached to
it.

The main idea is to account for the local structure of infinitely extended systems.
In their original proposal, Haag and Kastler [1964] mention several precedents in
axiomatic QFT; among these [Haag, 1959a; Haag and Schroer, 1962]; see also
[Haag, 1959b]. (I first heard of the algebraic approach in seminars in Geneva,
where Araki presented some aspects of his Zurich lectures [Araki, 1961/2].) Segal’s
early advocacy of an algebraic approach [Segal, 1947] ought also to be mentioned.

This subsection is divided in two complementary parts: the first part presents
a description of the general structure; the second illustrates this structure with an
example, the 1-dimensional quantum spin-lattice.

Part I. The general structure.
One begins by selecting an absorbing directed net F of regions Λ of finite extension
in space; usually, the space is the Minkowski space M

n+1 for relativistic QFT, the
Euclidean space IRn or a lattice Z

n for non-relativistic QSP. The case of immediate
physical interest is n = 3 , but exploratory models are often constructed with
n = 1, 2 . Recall that a directed net is a partially ordered set — here the order
relation is the usual set-theoretical inclusion — such that for every pair of elements
Λ1,Λ2 in F there is at least one element Λ ∈ F such that Λ1 ⊆ Λ and Λ2 ⊆ Λ .
To say that this net is absorbing is to say that for every point x in space there
exists at least one element Λ ∈ F such that x ∈ Λ . The symbol Λ1 �� Λ2 will be
used to signify that two regions Λ1 and Λ2 are causally disjoint, i.e. in QFT, these
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regions are spacelike to one another; and in non-relativistic QSP, they are disjoint
in the set-theoretical sense, i.e. Λ1 ∩ Λ2 = ∅ . G denotes a group of rigid motions
in the space, namely the inhomogeneous Lorentz group for M

n+1 ; the Euclidean
group for IRn ; or the group of lattice translations for Z

n .
Secondly, to every Λ ∈ F one assigns a C∗−algebra AΛ ; without loss of gener-

ality, one may assume that AΛ has an identity IΛ . This assignment is subject to
the following three postulates.

POSTULATE 9 (Isotony). Whenever Λ1 ∈ F and Λ2 ∈ F satisfy Λ1 ⊆ Λ2 , one
is given an injective ∗−homomorphism i21 : AΛ1 → AΛ2 such that

1. i21(IΛ1) = IΛ2

2. Λ1 ⊆ Λ2 ⊆ Λ3 ⇒ i32 ◦ i21 = i31 .

The following result was proven by Takeda [1955].

THEOREM 10. Let F be a directed net, and {AΛ | Λ ∈ F} satisfy the isotony
postulate. Then there exist: a C∗−algebra A with unit I ; and a family of injective
∗ −homomorphisms {iΛ : AΛ → A | Λ ∈ F} such that

1. ∀Λ ∈ F : iΛ(IΛ) = I ;

2. Λ1 ⊆ Λ2 ⇒ iΛ1(AΛ1) ⊆ iΛ2(AΛ2) ;

3.
⋃

Λ∈F iΛ(AΛ) is a norm-dense sub−∗algebra of A .

The C∗−algebra A is called the C∗−inductive limit of the net {AΛ | Λ ∈ F} . We
will use hereafter the notations

Ao :=
⋃

Λ∈F
iΛ(AΛ) and A =

nAo.

POSTULATE 11 (Local commutativity). Whenever Λ1,Λ2 ∈ F satisfy Λ1 �� Λ2 ,
and Λ3 ∈ F is such that both Λ1 ⊆ Λ3 and Λ2 ⊆ Λ3 :

A1 ∈ AΛ1 and A2 ∈ AΛ2 ⇒ i31(A1) i32(A2) = i32(A2) i31(A1) .

The following result is then immediate.

COROLLARY 12. If Λ1 �� Λ2 , then

A1 ∈ AΛ1 and A2 ∈ AΛ2 ⇒ iΛ1(A1) iΛ2(A2) = iΛ2(A2) iΛ1(A1) .

For the aspects of QSP considered here, it will be an innocent abuse of language
to refer to the above postulate as simply the postulate of locality.
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POSTULATE 13 (Covariance). An action ν : (g,A) ∈ G × Ao → νg[A] ∈ Ao
is given so that for every region Λ ∈ F , νg induces a ∗−isomorphism between
AΛ and Ag[Λ] , where g[Λ] denotes the image of the region Λ under the point
transformation g .

Upon using theorem 10, this can be lifted toA , namely νg[iΛ(AΛ)] = ig[Λ](Ag[Λ]) :

COROLLARY 14. The action of G extends by continuity to a norm-continuous
group representation ν : g ∈ G→ Aut(A) .

DEFINITION 15. With the above notations, Ao is called the algebra of local
observables; and A is called the algebra of quasi-local observables. Moreover, if ϕ
is a state on A such that ∀ g ∈ G : ϕ ◦ νg = ϕ , let πϕ be the corresponding GNS
representation. The von Neumann algebra Nϕ = πϕ(A)′′ is called the algebra of
global observables relative to the state ϕ .

Note that quasi-local observables involve norm limits; they are therefore general,
algebraic objects that can be defined abstractly, i.e. without reference to any
particular Hilbert space representation. In contrast, global observables that are
not quasi-local involve weak-operator limits, and thus depend on the Hilbert space
representation in which these limits are taken; for the purposes of QSP these
observables depend, via the GNS construction, on the physical situation for which
they are defined, i.e. on the state with respect to which they are considered. This
aspect of the theory will be discussed in details in subsection 3.5 — see in particular
the preliminaries to scholium 23, and remark 26(1) — and it will be essential for the
treatment of phase transitions, inasmuch as these involve averages of observables,
for instance the spontaneous magnetization in ferromagnets; see subsection 5.7
below.

Part II. A concrete example of a net of observable-algebras.
This example exhibits the construction of the algebra of observables for an infinite
quantum spin-lattice system that obtains in the thermodynamical limit of finite
systems such as the one treated in subsection 3.3 above. Consider indeed an infinite
1-dimensional lattice Z with a quantum 1

2−spin sitting at each node (or “site”);
hence a copy Ak of the C∗−algebraM(2, |C) of 2×2 matrices with complex entries
is associated to each site k ∈ Z ; i.e. Ak is generated by the Pauli matrices (44),
i.e. by the three observables corresponding to the three components of a 1

2−spin
sitting at site k .

Let now F be the net of all finite subsets Λ ⊂ Z . To each of these Λ is then asso-
ciated the “local” C∗−algebra AΛ = ⊗k∈ΛAk which is thus a copy ofM(2|Λ|, |C) ,
where |Λ| denotes the number of sites in Λ .

Let now Λ1 and Λ2 be two finite regions, with Λ1 ⊆ Λ2 . An injective ∗−homo-
morphism of AΛ1 into AΛ2 obtains by linearity from its restriction to monomials,
namely

i21(A1 ⊗A2 ⊗ . . .⊗A|Λ1|) = B1 ⊗B2 ⊗ . . .⊗B|Λ2|
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with

∀ k ∈ Λ2 : Bk =
{

Ak if k ∈ Λ1

Ik if k /∈ Λ1
.

These inclusions satisfy postulate 9.
Here, two finite regions are in the relation Λ1 �� Λ2 whenever Λ1 ∩ Λ2 = ∅ .

Since the commutators of observables attached to individual sites vanish whenever
the two sites are different, any two observables attached to disjoint regions do
commute. Formally, this is to say that postulate 11 is satisfied.

Finally, let G := Z denote the additive group of translations of the lattice. To
define the action of G on the algebra of local observables it is sufficient to notice
that for all g ∈ G and all Λ ∈ F : |g[Λ]| = |Λ| , so that both Ag[Λ] and AΛ

are copies of the same matrix algebra, namely M(2|Λ|, |C) : the images of a local
observable and its translate are simply different copies of the same matrix; this
indeed defines νg in such a way that postulate 13 is satisfied.

3.5 Quantum ergodic theory and macroscopic observables

While classical ergodic theory concerns itself with measures µ that are invariant
under a group G and their mixing properties, quantum ergodic theory discusses
the properties of G−invariant states and their clustering properties. Accordingly,
in this subsection I will discuss also the roles of space and/or time averages in
explaining at least part of the success of QSP; compare with [Uffink, 2006] and,
in particular, with [Earman and Rédei, 1996].

Therefore, one question to be addressed in this subsection must be whether
and how ergodic theory may serve as a cornerstone to build up statistical me-
chanics. Traditionally, under the impetus of the emphasis the Ehrenfests’ placed
on Boltzmann’s ergodic hypothesis (or rather its measure-theoretical version, the
quasi-ergodic hypothesis), the group G is taken to be the group IR governing
the time evolution. Nevertheless, partly in response to some swaying to and fro
in Boltzmann’s own writings, the jury is still out on the fundamental issue of
this hypothesis’ relevance for the foundations of CSP; see in particular [Uffink,
2006, section I.3, and subsections I.4.3 and I.6.1]. It is also remarkable that al-
ready Gibbs [Gibbs, 1902] chose to emphasize the role of mixing properties, i.e.
properties which are stronger than metric transitivity and make more precise the
presumption that the dynamics is ‘erratic’; cf. e.g. [Uffink, 2006, sections I.4.1
and I.5]; other issues are touched upon in [Emch and Liu, 2002, pp. 317–330];
and, for a pertinent account that takes stock of the work done in the second half
of the twentieth century, by the Lebowitz and Sinai schools, see [Szasz, 1996].

Consequently, I will concentrate here on two sub-questions: (i) the extent to
which the mathematics of classical ergodic theory may be generalized to the for-
malism of quantum theory; and (ii) the extent to which such generalizations may
help formulate better certain aspects of the foundations of QSP.

The answer to the first of these sub-questions is that much of the mathematics
goes through, with some minor adjustments. The answers to the second is more
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complex. On the one hand, as long as the focus remains on the time evolution the
main issues persist, among which is the paucity of realistic models. On the other
hand, when the group G deals with the geometry of the problem, quantum ergodic
theory — especially and the roles of averages, and theorems linking extremal
invariance and clustering properties — does help distinguish, within QSP, the
quantum aspects of the microscopic description and the classical aspects of the
macroscopic world. Thus, I divide the presentation in two parts, according to
whether ergodicity is considered with respect to the time evolution or with respect
to space symmetries.

A. Ergodicity with respect to time
Some insight is gained from a model first proposed in [Ford et al., 1965], which
comes in two versions, classical and quantum. The quantum version has been
controlled mathematically in [Davies, 1972]. It is proven there that an infinite 1-
dimensional chain of weakly coupled 1-dimensional quantum harmonic oscillators
may serve as a thermal reservoir for a single 1-dimensional quantum oscillator in
the chain and that a diffusion equation governs the evolution of the latter. This
is accomplished by a rigorous treatment of the van Hove weak-coupling/long-time
limit about which more will be said in subsection 6.1 below. Anticipating some
mathematical definitions to be made precise later on — see paragraph 5.3.C —
it is sufficient for the present discussion to register that, in this van Hove limit, a
reduced evolution obtains which is a contractive semi-group of completely positive
maps {γs | s ∈ IR+} acting on the von Neumann algebra No � B(L2(IR, |C)) at-
tached to the site of the single oscillator considered. Moreover this evolution, when
observed from any one-dimensional subspace {xu | x ∈ IR} in the 2-dimensional
phase space {ξP + ηQ | ζ = (ξ, η) ∈ IR2} of the single oscillator, is described by a
classical distribution µ(x, s) that satisfies for all s ∈ IR+ the diffusion equation:

(57) ∂sµ(x, s) = D
[
∂2
x + β(V ′(x) ∂x + V ′′(x))

]
µ(x, s)

where β = 1/kT is the natural temperature, V = 1
2ω x2 is a harmonic po-

tential, while the diffusion constant D and the frequency ω are numbers, the
values of which depend only on the direction ζ/|ζ| ∈ IR2/S1 . Note that the
corresponding invariant measure is the canonical equilibrium, Gaussian measure
µ(x) = Z−1 exp(−βV (x)) with Z =

∫
R
dxµ(x) , i.e. Z−1 =

√
2πβω .

The point of the model here is that the dissipative system described by the
contractive semi-group {γs | s ∈ IR+} governing this Markovian diffusion process
admits a canonical dilation to a conservative dynamical system. Indeed, there
exists a group {αs | s ∈ IR} of automorphisms of the von Neumann algebra
N = πϕ(A)′′ describing the full chain of oscillators in the equilibrium state ϕ
corresponding to the temperature β when the interactions are switched off. In
conformity with subsection 3.4 the algebra of quasi-local observables A is here the
C∗−algebra ⊗k∈ ZNk where the Nk are copies of No . The free equilibrium state
has the form ϕ = ⊗ϕk where ϕk is the von Neumann canonical equilibrium state
for the oscillator at the site k . Let now i be the injection of No into N and ϕo
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denote the restriction of ϕ to No , i.e. ∀No ∈ No : ϕo(No) = ϕ(i[No]) . Let further
E : N → No be the canonical conditional expectation with respect to the state
ϕ , satisfying ϕo ◦E = ϕ . The sense in which {N , α,E} is a dilation of {No, γ} is
that

(58) ∀ (s,No) ∈ IR+ ×No : γs[No] = E ◦ αs ◦ i [No] .

For details, see [Emch, 1976] where, in particular, this result was noted to be very
reminiscent of the classical flow of Brownian motion constructed by Hida [Hida,
1970] who also proved that this flow is a classical Kolmogorov flow, in the sense
of the following definition.

DEFINITION 16. A classical dynamical system {Ω, E , µ, α∗} consisting of a prob-
ability space {Ω, E} , a probability measure µ , and a group {α∗

t | t ∈ IR} of au-
tomorphisms of {Ω, E} such that ∀ t ∈ IR : µ ◦ α∗

t = µ , is said to be a classical
Kolmogorov flow whenever there exists a σ−subring A ⊂ E such that, with the
notation At = α∗

t[A] :
(1) ∀ t > 0 : A ⊂ At ; (2)

∨
t∈IRAt = E ; and (3)

∧
t∈IRAt = {∅,Ω} .

Kolmogorov flows are characterized among classical dynamical systems by their
having strictly positive dynamical entropy; thus they sit pretty high in the classical
ergodic hierarchy, above the Lebesgue spectrum condition, and thus above the
weaker conditions of mixing and ergodicity; for didactic accounts, cf. e.g. [Arnold
and Avez, 1968; Cornfeld et al., 1982].

The conservative quantum dynamical system described above as the canoni-
cal dilation of a contractive semigroup, does satisfy a quantum generalization of
definition 16, namely:

DEFINITION 17. A quantum dynamical system {N , ϕ, α} consisting of a von
Neumann algebraN , a faithful normal state ϕ onN , and a group α = {αt | t ∈ IR}
of automorphisms of N , with ∀ t ∈ IR : ϕ ◦ αt = ϕ , is said to be a generalized
Kolmogorov flow whenever there exists a von Neumann subalgebra A ⊂ N such
that, with the notation At = αt[A] :

(1) ∀ t > 0 : A ⊂ At ; (2)
∨
t∈IRAt = N ; (3)

∧
t∈IRAt = |CI ; and

(4) ∀ t ∈ IR : τt[A] = A ,

where {τt | t ∈ IR} is the modular group canonically associated to ϕ .

REMARKS 18.

1. The
∨

in condition (2) involves a weak-operator closure, namely (2) means
that N is the smallest von Neumann algebra that contains all the At ; the∧

in condition (3) is simply the usual intersection; thus (3) signifies that no
operator belongs to all At unless it is a multiple of the identity.

2. The modular group τ will be introduced in section 4; let it suffice to say
here that, if we were dealing with a finite system, τ would be the group of
automorphisms of N associated to the Hamiltonian corresponding to von
Neumann’s canonical equilibrium density matrix.
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3. Definition 17 encompasses definition 16 when N is taken to be the abelian
von Neumann algebra L∞(Ω, E) acting on the Hilbert spaceH = L2(Ω, E , µ) ;
in this case ∀ t ∈ R : τt = id , and condition (4) is then trivially satisfied.

4. In the general case, condition (4) is necessary to ensure the existence of a
conditional expectation E : N → A .

5. Except for the positivity of the dynamical entropy — which depends on a con-
sensus that is still pending about a physically meaningful definition of quan-
tum dynamical entropy; see nevertheless [Narnhofer and Thirring, 1994b;
Tuyls, 1998] and references therein — all the ergodic properties of classical
Kolmogorov systems carry over straightforwardly from the classical to quan-
tum realm [Emch, 1976]. In the model described above these properties are
exhibited in the quantum triple {N , ϕ, α} .

6. Definition 17 was first proposed in [Emch, 1976]. Generalizations of this def-
inition, involving the passage from W∗− to C∗−algebras, were then explored
in [Narnhofer and Thirring, 1989].

7. The material of the present remark may be found in [Arnold and Avez, 1968]
and is inserted here only as a preparation for the next remark. In classical
ergodic theory the next rung up the ergodic ladder, just above Kolmogorov
flows, is occupied by Anosov flows. These flows formalize an observation
made in 1898 by Hadamard, namely that the geodesics on manifolds of
negative curvature exhibit exponential sensitivity to initial conditions, in
contrast with the usual linear sensitivity characteristic of free flows on flat
manifolds. If the manifold is furthermore compact, one may intuitively ex-
pect that Hadamard’s observation entails some kind of mixing behaviour.
This is indeed the case: the first ever Hamiltonian flow shown to be ergodic
— the geodesic flow on a compact surface of constant negative curvature —
is already an Anosov flow. These flows exhibit exponentially contracting and
expanding directions transversal to the direction of the flow, thus prefiguring
a microscopic explanation for the empirically observed Lyapunov coefficients.
The discrete-time archetype is the Arnold CAT map operating of the torus
T 2 : = IR2/Z

2 . One ought to note that up to Kolmogorov flows, classical
ergodic theory may be viewed as a chapter in probability theory; Anosov
flows, in addition, involve an essential appeal to differential geometry, as
was recognized only in the second half of the twentieth century through the
work of the Russian school.

8. In order to explore possible quantum extensions of the concept of Anosov
flow, a quantum analog of the latter has been devised by the present author
in collaboration with Narnhofer, Sewell and Thirring [Emch et al., 1994a];
for an antecedent, see [Benatti et al., 1991a]; for a discussion of dynamical
entropy in this context, see [Andries et al., 1995]; for reviews and some
general perspectives, see [Narnhofer, 2001; Narnhofer, 2005].
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One essential feature of this extension is that now the phase space of this
quantum CAT map is the noncommutative torus T 2

θ , an ubiquitous staple
of Connes’ noncommutative geometry; cf. e.g. [Connes, 2000, section XIII]
or [Garcia–Bondia et al., 2003, chapter 12]; and for the place these tori
occupy in the geometric quantization programme, cf. [Emch, 1998b]. As for
quantum ergodic theory, it was noted already in [Emch et al., 1994a] that the
generators of the expanding and contracting horocycles form a basis in the
2-dimensional distinguished space of derivations that are not approximately
inner — i.e. cannot be uniformly approximated by inner derivations [Garcia–
Bondia et al., 2003, section 12.3].

The presence of expanding and contracting directions in quantum as well
as in classical Anosov flows offers a bridge from classical to quantum chaos.
The problem of what is quantum chaos — or what it ought to be — has
received attention from different prospectives; cf. e.g. [Gutzwiller, 1990]; for
a philosophical perspective, cf. [Belot and Earman, 1997], and for a recent
review, cf. in this volume [Landsman, 2006, section 5.6].

The investigations sketched in this remark, with applications to QSP in view,
also have a mathematical parallel in QFT, cf. [Borchers, 1999; Wiesbrock,
1997]; see also subsection 5.5 below.

Summary and warning. It seems fair to infer that the mathematical general-
ization of classical ergodic kinematics to the quantum realm will carry through
quite well. Nevertheless, the discussion of the underlying physical dynamics, when
confronted with Hamiltonian mechanics, does not fare any more smoothly in the
quantum case than it does in the classical case. Some of the conceptual problems
may already be illustrated with the help of the model discussed at the begin-
ning of this subsection. There, the dissipative dynamical system {No, γ} may be
viewed as the reduced dynamics of two different conservative dynamical systems;
both of these act on the same infinite assembly of harmonic oscillators. From the
first system the reduced dynamics obtains only through the van Hove limit which
compounds the very long-time effects — on a single subsystem — of a very weak
coupling with, and within, the bath. But there is nothing in common between the
time scale of the dynamics that governs the original conservative system and the
time scale pertaining to the other conservative system, viz. the one obtained as
the canonical dilation of the dissipative system. So there is little reason to believe
that the ergodic behaviour of the latter reflects any global dynamical property of
the former.

While this may be blamed on some naive modeling, it nevertheless emphasizes
that the time scale of the conservative microscopic description and that of the
emerging macroscopic description may differ significantly. In more sophisticated
models, this will have to be taken into consideration and the complicated behaviour
of the microscopic description may have to be washed away — one way or another
— before a clean ergodic behaviour is manifested at the macroscopic level. It
appears that van Hove’s idea is a reasonable way to do this; see subsection 6.1
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below.

Starting with their initial motivation in Boltzmann’s works, most presentations
of classical ergodic theory focus on the properties of the time-evolution, in par-
ticular on the transitivity of measures and the time-averages of observables. Its
generalization to the quantum realm invites the consideration of other aspects of
classical ergodic theory, namely the space averages with respect to the actions of
other groups beside those that govern the evolution. This will be done in the
second part of this subsection.

B. Ergodicity with respect to space
As was already recognized by Haag [1959b] for QFT, the “other” group of most
immediate relevance to QSP is the group of space translations, introduced as a part
of the postulate of covariance in the Haag–Kastler axioms; cf. postulate 13 above.
With n = 1, 2, . . . , let X

n denote either the Euclidean space IRn or the “cubic”
lattice Z

n ; and let |x| denote the length of the vector x ∈ X
n . Henceforth, we

concentrate on the abelian group G � X
n of all translations x ∈ X

n → x+a ∈ X
n

where a ∈ X
n . Let further {AΛ | Λ ∈ F} be the corresponding Haag–Kastler net

of local algebras, and A be their C∗− inductive limit, with A equipped with the
group of automorphisms {νa | a ∈ Xn} defined as in corollary 14. Let again
Ao ⊂ A denote the algebra of local observables. For any fixed pair (Λ1,Λ2)
of elements in F , there exists a12 ∈ G such that a[Λ1] �� Λ2 for all a ∈ G with
|a| > |a12| . Consequently, by locality (see postulate 11) whenever a ∈ G with |a| >
|a12| , A1 ∈ A1 and A2 ∈ A2 , we have νa[A1]A2 = A2 νa[A1] . By continuity, this
entails

COROLLARY 19. For all A,B ∈ A : lim|a|→∞ ‖ νa[A]B − B νa[A] ‖ = 0 , i.e.
the group G of translations acts on the algebra A of quasi-local observables in a
norm-asymptotic abelian manner.

This property makes no sense in the original von Neumann framework for the
quantum mechanics of finite systems. In the generalized Haag–Kastler framework
devised for infinite systems, this statement which is straighforwardly correct for
space translations is rarely satisfied by the time evolution in realistic models that
have been controlled.

This raises three questions: the first is whether this property has useful conse-
quences; the second is whether this property can be weakened without jeopardizing
the consequences that may be derived from it; and the third is whether any of the
weakened forms of this property may be satisfied by the time evolution. I will
argue that the answers to the first two questions are “yes”. Specifically, in regard
to the first question, see in particular corollary 30 below; and in response to the
second, see the forthcoming theorem 25. However, here again, I will warn against
the seduction of hypotheses that may ensure a positive answer to the third ques-
tion, but may be hard to satisfy in specific models; see also the last paragraph in
5.4.B and remark 63(6) below.

DEFINITION 20. A state ϕ on the algebra A of quasi-local observables is said to
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be translation invariant whenever ∀ (a,A) ∈ G×A : ϕ(νa[A]) = ϕ(A) , a situation
denoted by ϕ ◦ ν = ϕ . The state ϕ is said to be extremal translation invariant
if it is translation invariant and may not be written as a convex sum of different
translation invariant states.

With G denoting the group of translations of X
n = IRn or Z

n , G is triv-
ially identified with X

n . Let C = C(G) be the set of all complex-valued, contin-
uous, bounded functions f : G → |C . Henceforth, this set is equipped with the
usual point-wise addition and multiplication of functions, and with the sup-norm
‖f‖ = supx∈G |f(x)|. These operations equip C with the structure of an (abelian)
C∗−algebra. Define then an action of G on C by a[f ](x) = f(x− a) .

DEFINITION 21. With the above notations, an invariant mean on C is a state η
on C such that ∀ (a, f) ∈ G× C : η(a[f ]) = η(f) .

Given X
n , there are several such means. For instance, the ergodic mean on IR

may be defined as follows. Let Ce = {f ∈ C | lima→∞ 1/2a
∫ a
−adx f(x) exists } .

Then ∀ f ∈ Ce , let ηe(f) : = lima→∞ 1/2a
∫ a
−adx f(x) ; which then extends by

continuity to C , so as to give an invariant mean, which is the one I will prefer to
use in the sequel. One may wish to define similarly the mean η+ on C+ = {f ∈ C |
limx→∞ f(x) exists } . And, similarly, another mean η− obtains from the functions
that admit a limit as x→ −∞ .

To define averages of states and of observables, notice that for every state ϕ
on the algebra A of quasi-local observables and any A,B ∈ A , the functions
ϕ(ν•[A]B) : a ∈ G → ϕ(νa[A]B) ∈ |C — here the symbol • serves as a reminder
to mark the place of the variable a — are continuous and bounded, namely by
‖A‖ ‖B‖. Thus the functions ϕ(ν•[A]B) belong to C. When B = I we write simply
ϕ(ν•[A]) for ϕ(ν•[A]I) . With these notations, the following definition makes sense.

DEFINITION 22. Given an invariant mean η on C and any state ϕ on the algebra
A of quasi-local observables, the average η[ϕ] of the state ϕ is defined as the
translation invariant state

η[ϕ] : A ∈ A → η (ϕ(ν•[A])) ∈ |C .

A translation invariant state ϕ is said to be η−clustering whenever

∀A,B ∈ A : η (ϕ(ν•[A]B)) = ϕ(A)ϕ(B) .

Warnings concerning terminology:

1. η−clustering is also referred to as “weak clustering”.

2. η−clustering should not be confused with the stronger property called “weak
mixing”, namely

∀A,B ∈ A : η |ϕ(ν•[A]B) − ϕ(A)ϕ(B)| = 0



Quantum Statistical Physics 1109

where for any complex number z , |z| denotes absolute value of z . The name
“weak mixing” conforms to the usage in classical ergodic theory, cf. e.g.
[Arnold and Avez, 1968, p. 21].

3. The property simply called clustering does not involve averaging, and thus
is stronger; it is:

∀ a ∈ IRn and ∀A,B ∈ A : lim
λ→∞

ϕ(νλa[A]B) = ϕ(A)ϕ(B) .

This property is called “mixing” in classical ergodic theory, cf. e.g. [Arnold
and Avez, 1968, p. 20].

4. An even stronger property is introduced in definition 27 below.

5. Each of the above properties expresses how much the correlations between
νa[A] and B decay with large distances |a| when the system is in the state ϕ .
The term “clustering” affixed to these properties, also used in QFT, seems
to be inherited from scattering theory where it expresses the asymptotic
independence of separate scattering products, or “clusters”.

The definition of the average of an observable is a little bit more involved. For
the general mathematical framework, cf. e.g. [Emch, 1972a, subsection 2.2.d];
in particular, for the general statements and proofs corresponding to scholium
23 and theorem 25 below, cf. [Emch, 1972a, lemma, pp. 174–175] and [Emch,
1972a, theorem 8, pp. 183–184]. Note that, here, the asymptotic abelianness
of the action of the group of space translations — corollary 19 above — allows
the simpler presentation offered below. This is where global observables — cf.
definition 15 above — enter the picture.

Let ϕ be a translation invariant state on the algebra A of quasi–local observ-
ables, and {πϕ,H,Φ} be the GNS triple associated to ϕ . Let further Nϕ = πϕ(A)′′

and Zϕ = Nϕ ∩N ′
ϕ .

For a ∈ G fixed, and A running over A , the map πϕ(A)Φ ∈ H → πϕ(νa[A])Φ ∈
H extends uniquely to a unitary operator Ua ∈ U(H) : = {U ∈ B(H) | U∗U =
UU∗ = I} . This defines a continuous unitary representation U : a ∈ G → Ua ∈
U(H) such that ∀ (a,A) ∈ G×A : Uaπϕ(A)U∗

a = πϕ(νa[A]) .
As usual, let U(G)′ := {B ∈ B(H) | ∀ a ∈ G : UaB = BUa} denote the com-

mutant of U(G) . Equivalently here, U(G)′ = {B ∈ B(H) | ∀ a ∈ G : UaBU∗
a =

B} .
Finally, let P : = {Ψ ∈ H | ∀ a ∈ G : UaΨ = Ψ } ; and denote by P the

orthogonal projector from H onto P .

SCHOLIUM 23. For every invariant mean η on C , the map

ηϕ : A ∈ A → ηϕ[A] ∈ Zϕ ∩ U(G)′

defined, for all A ∈ A by

∀ Ψ1,Ψ2 ∈ H : (Ψ1, ηϕ[A]Ψ2) = η (Ψ1, πϕ(ν•[A])Ψ2)
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is a ∗−homomorphism and satisfies ηϕ[A]P = P ηϕ[A] = P ηϕ[A]P .

DEFINITION 24. Let η be an invariant mean on C ; ϕ be a translation invariant
state on the algebra A of quasi-local obervables; Nϕ = πϕ(A)′′ be the algebra of
global observables associated to the state ϕ , via the GNS triple {πϕ,H,Φ} ; and
NG
ϕ = {N ∈ Nϕ | ∀ a ∈ G : UaNU∗

a = N} be the algebra of translation invariant
global observables. Then the average of a quasi-local observable A ∈ A is defined
as the translation invariant global observable ηϕ[A] ∈ NG

ϕ .

We are now ready to enunciate the central quantum ergodic theorem relative
to the action of the group of space translations.

THEOREM 25. Let ν : a ∈ G→ Aut(A) denote the action of the space-translation
group on the algebra A of quasi-local observables; and let η be any invariant mean
on C . Then the following conditions on a translation invariant state ϕ on A are
equivalent:

1. ϕ is extremal translation invariant;

2. ϕ is η−clustering, i.e. ∀A,B ∈ A : η (ϕ(ν•[A]B)) = ϕ(A)ϕ(B) ;

3. the canonical extension ϕ̃ : N ∈ Nϕ → (Φ, N Φ) ∈ |C of ϕ to the von Neu-
mann algebra Nϕ of global observables associated to ϕ is the only translation
invariant normal state on this algebra;

4. the invariant subspace P ⊂ H is one-dimensional;

5. the average ηϕ[A] of every quasi-local observable A ∈ A is a multiple of the
identity, namely ηϕ[A] = ϕ(A) I ;

6. all translation invariant global observables N ∈ NG
ϕ

: = Nϕ ∩ U(G)′ are
multiples of the identity;

7. Zϕ ∩ U(G)′ = |C I where Zϕ := Nϕ ∩Nϕ′ .

REMARKS 26.

1. Recall that in definition 15 three kinds of observables were introduced.
The local observables relative to some finite region Λ are described in the
original von Neumann formalism [von Neumann, 1932c] where, typically,
AΛ = B(HΛ) , and HΛ = L2(Λ, dx) . Thus one refers to local observables as
self-adjoint elements of Ao = ∪Λ∈FAΛ . The quasi-local observables, defined
abstractly as observables that are norm-limits of local observables, pertain
to the microscopic description of many-body systems that are infinitely ex-
tended in space; section 5 below opens with three concrete QSP examples.
These ‘quasi-local’ observables belong to the C∗−algebra A =

nAo . Observ-
ables of the third kind, the global observables, appear at the macroscopic
level when bulk properties of matter are investigated; they belong to the
von Neumann algebra Nϕ : = πϕ(A)′′ obtained as the weak-closure of the
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GNS representation πϕ (of A) corresponding to a state ϕ (on A) specifically
obtained by a process called the thermodynamical limit, several examples of
which are discussed in the following sections.

Space averages are examples of such global observables. A concrete exam-
ple in ferromagnetism obtains with any one of the three components of the
magnetization. Observables of this third kind depend on the global state
of the system considered, thus reflecting the preparation of the system. For
instance, when the state is extremal translation invariant, these observables
are multiples of the identity operator — recall the equivalence of conditions
(1) and (5) in theorem 25 — hence their value is the same in all configura-
tions that differ only locally from the given state. Their assuming different
values in configurations that differ globally from one another serves as wit-
ness for the existence of different thermodynamical phases; cf. subsection
5.7.

2. A global state ϕ on A =
nAo with Ao =

⋃
Λ∈F AΛ is usually defined by

continuity from

(59) ∀Λ and ∀AΛ ∈ AΛ : ϕ(AΛ) = lim
|Ω|→∞,

Ω∈F,Ω⊇Λ

ϕΩ(AΛ)

where {ϕΩ|Ω ∈ F} is a consistent family of local states. The local states
are themselves defined with respect to some consistent boundary conditions;
e.g. periodic boundary conditions on every Λ . Hence, the global state ϕ
and thus the von Neumann algebra Nϕ : = πϕ(A)′′ of global observables
may depend on the boundary conditions one has chosen. This happens in
particular in the presence of the long-range order that often accompanies
the onset of phase transitions. This dependence on initial conditions, even
in the thermodynamical limit, is an ubiquitous phenomenon, known already
in classical statistical physics.

Indeed, in an argument that was later confirmed to be correct — for refer-
ences, cf. e.g. [Emch and Liu, 2002, pp. 416–417] — Peierls [1936] pointed
out the fact that the Ising model in two dimensions develops, for sufficiently
low temperatures, a sensitivity to boundary conditions: one phase — say
the one with strictly positive magnetization — may be selected by clamping
all spins on the boundary in the “up” position.

3. Here again, in the special case where {N , ϕ} is {L∞(Ω), µ} , the above the-
orem reduces to the known classical case. Note however that the theorem
is stated here for space translations rather than for the time evolution; the
reason is that the proof uses asymptotic abelianness which space translations
satisfy — see corollary 19 above — or some weakened form such as (61) in
remark 31 below. Yet, even such a weakened form of asymptotic abelianness
is hard to come by for the time evolution of quantum dynamical models.
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The clustering condition (2) in the theorem may be strengthened when the rep-
resentation πϕ is primary, i.e. when the center Zϕ : = πϕ(A)′′ ∩ πϕ(A)′ satisfies
Zϕ = |CI . Specifically, for any region Λ ∈ F , let

AΛ
c :=

n∪Ω∈F ;Ω��ΛAΩ ,

where, for any subset B ⊂ A ,
nB denotes the closure of B in the norm-topology

of A . As a consequence of locality A ∈ AΛ and B ∈ AΛ
c entail AB − BA = 0 .

Let now Nϕ,Λc := πϕ(AΛ
c)′′ .

DEFINITION 27. A state ϕ on the algebra A of quasi-local observables is said to
be uniformly clustering whenever for any A ∈ A and every ε > 0 , there exists a
region Λ ∈ F depending on A and ε , such that

(60) ∀B ∈ AΛ
c : |ϕ(AB)− ϕ(A)ϕ(B)| ≤ ε ‖B‖ .

DEFINITION 28. The elements of the von Neumann algebraNϕ∞ :=
⋂

Λ∈F Nϕ,Λc
are called observables at infinity with respect to ϕ .

SCHOLIUM 29. For each state ϕ separately, the observables at infinity are central,
i.e. Nϕ∞ ⊆ Zϕ . Moreover the following two conditions on a state ϕ are equivalent:

1. all observables at infinity are multiples of the identity operator, i.e. Nϕ∞ =
|C I ;

2. ϕ is uniformly clustering.

Note that definitions 27, 28 and scholium 29 do not require that ϕ be space-
translation invariant, although they involve in an essential manner the local struc-
ture of A . For space-translation invariant states one has in addition:

COROLLARY 30. The following two conditions:

1. ϕ is a translation invariant state on the algebra A of quasi-local observables;

2. the algebra Nϕ of global observables is a factor, i.e. Zϕ = |C I

jointly entail that

a. ϕ is extremal translation invariant (and so satisfies the equivalent conditions
noted in theorem 25);

b. ϕ is uniformly clustering.

REMARKS 31.

1. Condition (2) in corollary 30 is satisfied whenever ϕ is an extremal KMS
state; cf. subsection 5.6 below.

2. The proofs of theorem 25, scholium 29, and corollary 30 are not trivial, but
they were all known by the early 1970s; cf. e.g. [Emch, 1972a, theorem II.2.8
and theorem IV.1.7].
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3. In particular, the proof of theorem 25 shows that the equivalence of its seven
conditions may be obtained in more general contexts where the action of the
group of space translations is replaced by an action with respect to which
the invariant state ϕ satisfies the condition of η−abelianness, namely the
condition:

(61) ∀A,B,C ∈ A : η {ϕ(C∗[νg[A]B −Bνg[A]]C)} = 0 .

This condition is much weaker that the norm-asymptotic abelianness proven
in corollary 19 for the action of the translation group.

4. It is therefore tempting to try and transfer the above considerations to the
group IR governing the time evolution of a quantum dynamical system. In
fact if ϕ is an extremal IR−invariant state, then such a dynamical system
will be η−abelian in the sense of (61), provided the vector Φ of the GNS
representation — which, by construction, is cyclic for πϕ(A) — is also cyclic
for the von Neumann algebra πϕ(A)′ , a condition equivalent to the require-
ment that Φ be separating for the von Neumann algebra Nϕ := πϕ(A)′′ , i.e.
N ∈ Nϕ and NΦ = 0 entail N = 0 . The condition that a von Neumann
algebra N admits a vector Φ that is cyclic for both N and N ′ is referred
to by saying that this von Neumann algebra is in standard form; for the
relevance of this condition in the present context cf. definition 36 and theo-
rem 39 below. This however only raises again the question of whether ϕ is
extremal under the evolution responsible for the approach to equilibrium. In
this respect, we may note that this is the case for the dilated evolution in the
example of a chain of weakly coupled harmonic oscillators, discussed at the
beginning of this subsection, and in general for the evolution α of generalized
Kolmogorov flows; cf. definition 17; see nevertheless the “warning” following
remark 18, or subsection 5.4(B).

5. On the mathematical side, quantum ergodic theory may be concerned with
group actions more general than space or time translations. In fact, the-
orem 25 and the third remark just above extend without modifications to
the actions of amenable groups, i.e. groups G that admit an invariant mean
in the sense of definition 21 (where G = IRn or Z

n is replaced by G) . For a
general presentation of the theory of amenable groups, cf. e.g. [Greenleaf,
1969] or for a brief review geared to applications in QSP [Emch, 1972a, pp.
164–172]. Restricting attention here to locally compact groups, let it suf-
fice to note that compact groups, abelian groups, and semi-direct products
thereof are amenable; in particular the rotation groups, translation groups,
and Euclidean groups in finite-dimensional Euclidean spaces are amenable.
However, no non-compact semi-simple Lie group is amenable, so that in par-
ticular the Lorentz group of 4-dimensional relativisitic QFT is not amenable.

6. Pushing the theory even further than amenable group actions may be done
by considering “large groups of automorphisms” of a C∗−algebra A , i.e.
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actions α : G → Aut(A) that satisfy for every self-adjoint A ∈ A and every
G−invariant state ϕ on A :

(62) w−opco{πϕ(αg[A]) | g ∈ G} ∩ πϕ(A)′ �= ∅ ,

where for any subset S of a vector space, co{S} denotes the “convex hull” of
S , i.e. the collection of all convex combinations of elements in S ; and for any
set B ⊂ B(H) , w−opB denotes the closure of B in the weak-operator topology
of B(H) . The notion of large group of automorphisms was introduced by
Størmer in 1967 who used it soon afterwards to prove a quantum analogue of
de Finetti’s exchangeability theorem in classical probability theory [Størmer,
1969]; for a review and some applications to the semantic foundations of
quantum theory, cf. e.g. [Emch, 2005] and references therein. Note that any
amenable group action for which the system is η−abelian for some mean η
is a large group of automorphisms for this system.

Here again, one can hardly resist the conclusion that quantum ergodic theory
is now a mature mathematical theory in search of further physical applications to
QSP, most notably through the understanding it provides for the various clustering
(or mixing) properties described in the present section; cf. e.g. subsections 5.4
and 5.7 below.

4 THE KMS CONDITION FOR EQUILIBRIUM

The identification of the KMS condition as a canonical characterization of equi-
librium states appears in the confluence of two currents of thought.

The first source is the recognition by Kubo [1957] and by Martin & Schwinger
[1959] that objects which play a central role in condensed matter physics, namely
the so-called thermal Green functions — cf. e.g. [Bonch-Bruevich and Tyablikov,
1962] — possess remarkable analytic properties. For a foretaste, see scholium 32
below.

The second source of inspiration is recognizable in the original texts [Murray
and von Neumann, 1936] of what was to become the theory of von Neumann
algebras, and is emphasized in the candid reminiscences of one of the pioneers
of this theory [Murray, 1990]. A great deal of the theory could be built from
the following observation: there are matrix algebras N which, together with their
commutant N ′ , satisfy the following properties:

(i) they are factors, i.e. have trivial center: N ∩N ′ = |CI ; (ii) N and N ′ admit
a common cyclic vector Φ ; (iii) there exists an involutive antiunitary operator J
such that JΦ = Φ and N ∈ N → JNJ ∈ N ′ is bijective. For a concrete, simple
example, see equation (71) below.

Each of the two facets of the theory — analytic and algebraic — involves some
mathematical intricacies; hence the division of this section into two subsections:
first, a simple example; and second, the general theory.
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4.1 A Wignerian Approach

In this subsection, I wish to abide by Wigner’s famous dictum [Wigner, 1962]:
“Please explain it with 2 × 2 matrices.” Accordingly I proceed with the descrip-
tion of what happens to a quantum 1/2−spin in canonical equilibrium at natural
temperature β > 0 in a magnetic field B parallel to the z-axis. The observables are
the self-adjoint elements of the algebraM of 2× 2 matrices with complex entries.
The Hamiltonian is

(63) H = −Bσz =
(

ε1 0
0 ε2

)
with ε1 = −B , ε2 = +B.

The canonical equilibrium state is, according to von Neumann’s characterization
(38):

(64) ψH : M ∈M→ Tr(ρHM) with ρH =
(

λ1 0
0 λ2

)
where λn = ZH

−1 exp(−βεn) , with ZH = exp(−βε1) + exp(−βε2) denoting the
partition function of the system.

In the Heisenberg picture, conjugate to Schrödinger’s picture (39), the evolution
is

(65)

αt : M ∈M→ αt[M ] = U∗(t)MU∗(−t) ∈M

with U∗(t) =
(

eiε1t 0
0 eiβε2t

)
.




To make computations easier and, moreover, immediately generalizable to higher
dimensions, consider the matrices

Emn : Ψ ∈ |C2 → (Ψn,Ψ)Ψm ∈ |C2

where {Ψn | n = 1, 2} are eigenvectors of H , i.e. with

Ψ1 =
(

1
0

)
; Ψ2 =

(
0
1

)
:

E11 =
(

1 0
0 0

)
; E12 =

(
0 1
0 0

)
; E21 =

(
0 0
1 0

)
; E22 =

(
0 0
0 1

)
.

These matrices form a basis in M and — with ψH and αt as in (64) and (65) —
satisfy

EklEmn = δlmEkn , ψH(Emn) = λmδmn , αt(Emn) = ei(εm−εn)tEmn .

From these relations and the identity exp[−β(εm− εn)]λn = λm , one obtains that
the analytic functions

fklmn : z ∈ |C→ λn ei(εm−εn)zδlmδkn
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satisfy ∀ t ∈ IR : fklmn(t) = ψH(Eklαt[Emn]) and fklmn(t+iβ) = ψH(αt[Emn]Ekl) .
Moreover, on the strip

Ωβ := {z ∈ |C | 0 ≤ Im z ≤ β} ,
the analytic functions fklmn are bounded, namely by exp(|εm − εn|β) .

These two properties of the canonical equilibrium state ψH extend by linearity
to the time correlation functions

(66) fMN (t) = ψH(Mαt[N ]) and fMN (t + iβ) = ψH(αt[N ]M)

with M and N arbitrary inM .
Conversely, suppose that ϕ is a state on M such that for every pair M,N of

elements in M there exists a function fM,N : z ∈ Ωβ → fM,N (z) ∈ |C such that

(i) fM,N is bounded and continuous on the strip Ωβ ;

(ii) fM,N is analytic inside that strip;

(iii) for all t ∈ IR : fM,N (t) = ϕ(Mαt[N ]) and fM,N (t + iβ) = ϕ(αt[N ]M) .

Then in particular, with M = I , the function fI,N is periodic with period iβ . It
may then be extended to a function that is both bounded and analytic on the whole
complex plane. The classical Liouville’s theorem — cf. e.g. [Churchill and Brown,
1990, theorem 43.1] — thus entails that this function must be constant, i.e. for all
(t,N) ∈ IR×M : ϕ(αt[N ]) := Tr U∗(−t)ρU∗(t)N is equal to TrρN = ϕ(N) ; and
thus

ρ =
(

µ1 0
0 µ2

)
where the values of µ1 , µ2 positive with µ1+µ2 = 1 are computed presently. Upon
comparing, for every pair of indices (m,n) the analytic continuation of

fmn(t) = ϕ(Enmαt[Emn]) = ei(εm−εn)tµn

and
fmn(t + iβ) = ϕ(αt[Emn]Enm) = ei(εm−εn)tµm

one obtains exp[−β(εm− εn)]µm = µn and thus, upon imposing the normalization
ϕ(I) = 1 , i.e. µ1 + µ2 = 1 :

µn =
e−βµn

e−βµ1 + e−βµ2
= λn .

Thus, indeed ϕ = ψH .
In summary, one obtained by elementary means an elementary illustration of

the first facet of the theory, its analytic aspect:

SCHOLIUM 32. Let H = −Bσz be the Hamiltonian describing a spin 1
2 in a

magnetic field B . Then, for any state ϕ onM =M(2, |C) , the following conditions
are equivalent:
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(I) ϕ is the canonical equilibrium state ψH with respect to the Hamiltonian H ;

(II) for every pair (M,N) of elements of M there exists a function fM,N : z ∈
Ωβ → |C such that

(67)

fM,N is bounded and continuous on Ωβ ;
fM,N is analytic in the interior of Ωβ ;

∀ t ∈ IR :
{

fM,N (t) = ϕ(M αt[N ])
fM,N (t + iβ) = ϕ(αt[N ]M)


 .

Moving now towards the algebraic aspect of the theory, one pursues with the
same simple model, and let ϕ be a faithful state overM , i.e. a state such that M ∈
M and ϕ(M∗M) = 0 entail M = 0 . Without loss of generality one may choose a
basis in which the density matrix ρ corresponding to ϕ is diagonal, with eigenvalues
λn (n = 1, 2) strictly positive since ϕ is supposed to be faithful. Consider the
representation π of M given by:

(68) ∀M =
(

a b
c d

)
∈M : π(M) =




a b 0 0
c d 0 0
0 0 a b
0 0 c d


 = M ⊗ I

acting on the Hilbert space |C4 equipped with its standard scalar product in which
Ψkl defined by

Ψ11 =




1
0
0
0


 , Ψ21 =




0
1
0
0


 , Ψ12 =




0
0
1
0


 , Ψ22 =




0
0
0
1




is an orthonormal basis. The vector

(69) Φ =
∑
k

λk
1
2 Ψkk =




λ1
1
2

0
0

λ2
1
2




satisfies Ψmn = λn
1
2 π(Emn)Φ , from which one reads:

|C4 = {π(M)Φ |M ∈M} and ∀M ∈M : (Φ, π(M)Φ) = ϕ(M) .

Hence {H : = |C4, π,Φ} is the canonical GNS triple associated to the state ϕ .
Moreover, since ϕ is assumed to be faithful, ‖π(M)Φ‖ = 0 entails M = 0 , i.e. Φ is
also separating for π(M) . The essential step now is to introduce the two operators
J and ∆ defined on H by the conditions that J is antilinear, ∆ is linear, with

JΨmn = Ψnm and ∆Ψmn =
λm
λn

Ψmn .
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Note that, since ∆ is given here with its spectral resolution, the functions of this
operator may be defined by linearity from f(∆) : Ψmn ∈ |C4 → f(λm

λn
)Ψmn ∈ |C4 .

In particular, {∆is|s ∈ IR} is a continuous group of unitary operators acting on
|C4 .

One verifies immediately from their definition above that the operators J and
∆ satisfy the following properties. Firstly,

(70) J is an isometry , J2 = I , ∆ is self−adjoint , J∆J = ∆−1 , JΦ = Φ =
∆Φ .

Secondly,

(71) J




a b 0 0
c d 0 0
0 0 a b
0 0 c d


 J =




a∗ 0 b∗ 0
0 a∗ 0 b∗

c∗ 0 d∗ 0
0 c∗ 0 d∗


 ∈ I ⊗M

i.e. upon denoting by N the image π(M) of M through the representation π ,
we have: J N J = N ′ ; hence (71) gives an explicit bijection from N onto its
commutant N ′ . The relation (71) is a particular case of the general Tomita–
Takesaki duality (see theorem 39 below).

Thirdly, with β > 0 arbitrary, but fixed, we have ∀ t ∈ IR : ∆−it/β Ψmn =
exp[i(εm−εn)t] Ψmn . Hence ∆−it/βπ(Emn)∆it/βΨkl = exp[i(εm−εn)t]π(Emn)Ψkl

with εn = c− (1/β) ln λn where c is an arbitrary real constant. Consequently, the
unitary group {∆it/β | t ∈ IR} implements a group of automorphisms ofN , namely

(72) τt : N ∈ N → τt[N ] = ∆−it/βN∆it/β ∈ N
with, for all (t,M) ∈ IR × M , τt[π(M)] = π(αt[M ]) with αt[M ] = expiHt M
exp−iHt and H =

∑
n εnEnn . Summing up, this establishes that ϕ is the canon-

ical equilibrium state at natural temperature β for the Hamiltonian H just con-
structed.

Fourthly, the operator S = J∆
1
2 satisfies S π(Emn)Φ = π(Enm)Φ and thus,

since J and therefore S are antilinear:

(73) ∀N ∈ N : S N Φ = N∗ Φ .

Finally, the generator L of the unitary group {∆it/β | t ∈ T} on |C4 = |C2⊗ |C2 is

(74) L = H ⊗ I − I ⊗H ,

so that the spectrum of L is symmetric around 0 : Sp(L) = {ε2− ε1, 0, 0, ε1− ε2} .
SCHOLIUM 33. Let {|C4, π,Φ} be the GNS triple canonically associated to a
faithful state ϕ on the algebraM of 2×2 matrices; and let N be the von Neumann
algebra π(M) = {π(M) |M ∈M} acting on H = |C4 . Then

1. N is isomorphic to M and ϕ may be regarded as a faithful state on N ;
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2. Φ is both cyclic and separating for N ;

3. the anti-linear operator defined by S : NΦ ∈ H = N∗Φ ∈ H has polar
decomposition S = J∆

1
2 where J is an involutive, anti-linear isometry from

H onto itself, and ∆ is a positive operator acting on H ;

4. J establishes a duality between N and its commutant; specifically: N ∈
N → JNJ ∈ N ′ is an anti-linear bijection;

5. {∆−it/β | t ∈ IR} implements a group of automorphisms τt of N with respect
to which the state ϕ satisfies the analyticity condition described in scholium
32;

6. JΦ = Φ = ∆Φ , J2 = J and ∀ s ∈ IR : J∆is = ∆isJ .

REMARKS 34. Upon surveying the proofs of scholia 32 and 33, one verifies that
they can be extended verbatim from M = M(2, |C) to M = M(n, |C) where n is
any finite positive integer. These scholia extend further toM = B(H) where H is
a Hilbert space (with countable basis) provided that:

(i) the Hamiltonian H satisfies Tr(−βH) <∞ ;

(ii) the state ϕ is countably additive, retaining the condition that ϕ be faithful.

Indeed, under these circumstances one can read again the proofs of the scholia,
now for the ∗−algebra E = Span{π(Emn) | m,n = 1, . . .} of all finite linear
combinations of the operators π(Emn) with Emn : Ψ ∈ H → (Ψn,Ψ)Ψm ∈ H
where again {Ψn | n = 1, 2, . . .} is an orthonormal basis in H . The extension
from E to the von Neumann algebra B(H) obtains since the assumptions that ϕ
is countably additive and faithful allow one to use standard continuity arguments,
namely here, e.g. [Dixmier, 1957, theorem I.3.5, lemma I.4.4, proposition I.4.1];
or [Kadison and Ringrose, 1983/1986, volume ii, chapter 7]. In particular, N =
π(B(H)) = {π(M) | M ∈ B(H)} is already a von Neumann algebra — i.e. N =
N ′′ — and is isomorphic to B(H) . Since B(H) is a factor, so is N , i.e. the
center of this von Neumann algebra is trivial: N ∩N ′ = |CI . Moreover N may be
identified with B(H)⊗ |CI and N ′ with |CI ⊗ B(H) .

The von Neumann formalism for quantum mechanics [von Neumann, 1932c]
allows one to go this far, but no further. Recall that some of the reasons why one
needs to proceed further were indicated in subsection 3.3. The next subsection
provides an important tool toward achieving this.

4.2 The Kubo–Martin–Schwinger condition and the Tomita–Takesaki
theory

The above results suggest three definitions; the first two are just matters of math-
ematical terminology, but the third is at the heart of this section.
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DEFINITION 35. A state ϕ on a von Neumann algebra N is said to be normal
whenever it is countably additive., i.e. ϕ(

∑
n Pn) =

∑
n ϕ(Pn) for each countable

family {Pn} of mutually orthogonal projections in N .

This simply extends to general von Neumann algebras condition (35), already
recognized in [von Neumann, 1932c] as the quantum analogue of the complete
additivity of probability measures. The next definition formalizes in the present
context some of the notions encountered in the motivating examples covered in
the previous subsection.

DEFINITION 36. A von Neumann algebra N acting on a Hilbert space H is said
to be in standard form whenever there exists a vector Φ ∈ H that is both cyclic
and separating for N , i.e. NΦ is norm dense in H and for N ∈ N , NΦ = 0 entails
N = 0 .

REMARKS 37. This concept has been around for a long time, but it seems fair
to say that full recognition of its central importance in the general theory of von
Neumann algebras had to wait for the Tomita–Takesaki modular theory [Tomita,
1967; Takesaki, 1970a]. At the most basic level, notice that if N is in standard
form, one may assume without loss of generality that ‖Φ‖ = 1 , so that ϕ : N ∈
N → (Φ, NΦ) ∈ |C is a faithful normal state on N .

Conversely it follows, from the same continuity arguments as those used in
remark 34 above, that if ϕ is any normal state on a von Neumann algebra N , the
GNS representation π corresponding to ϕ is already a von Neumann algebra; if ϕ
is faithful, then N is isomorphic to π(N ) . Thus the canonical GNS vector Φ is not
only cyclic, but it is also separating. Hence whenever ϕ is a faithful normal state,
N is isomorphic to π(N ) which is a von Neumann algebra presented in standard
form

The third definition pertains to the core of this section. It is an adaptation of
the work of [Kubo, 1957; Martin and Schwinger, 1959], proposed by [Haag et al.,
1967] as an extension of the definition of canonical equilibrium states on the global
C∗−algebra to be associated to an infinite system.

DEFINITION 38. Let A be a C∗−algebra, and let α : t ∈ IR→ αt ∈ Aut(A) be a
group of automorphisms of A . A state ϕ on A is said to satisfy the KMS condition
with respect to α for the natural temperature β if for every pair (A,B) of elements
of A there exists a function fA,B defined on the strip Ωβ = {z ∈ |C | 0 ≤ Imz ≤ β} ,
such that fA,B is bounded and continuous on Ωβ ; fA,B is analytic in the interior
of Ωβ ; and ∀ t ∈ IR : fA,B(t) = ϕ(Aαt[B]) and fA,B(t + iβ) = ϕ(αt[B]A) .

The main mathematical result of this section, taken from the Tomita–Takesaki
modular theory [Tomita, 1967; Takesaki, 1970a], may now be stated.

THEOREM 39 (Tomita–Takesaki). Let N be a von Neumann algebra acting on
a Hilbert space H and admitting a cyclic and separating unit vector Φ . Then the
closed antilinear operator S obtained as the closure of the map N Φ → N∗ Φ ,
defined for all N ∈ N , has polar decomposition S = J∆ where J = J2 is an
antilinear isometry from H onto itself, satisfying JNJ = N ′ ; and ∆ is a self-
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adjoint operator (not necessarily bounded!) that is positive, and such that J∆it =
∆itJ ; and for any β > 0 ∀(t,N) ∈ IR × N : τt[N ] = ∆−it/β N ∆it/β defines a
group {τt} of ∗−automorphisms of N with respect to which the faithful normal
state ϕ : N ∈ N → (Φ, N Φ) ∈ |C satisfies the KMS condition for β . Moreover
{τt | t ∈ IR} is the unique group of ∗−automorphisms of N with respect to which
ϕ satisfies this condition.

REMARKS 40.

1. The theorem generalizes to any arbitrary von Neumann algebra in standard
form the result we described — in remark 34 — for the GNS representation
of B(H) associated to any of its faithful normal states.

2. It is essential to the purpose of the present review to emphasize that the
theorem does not require that N be a factor.

3. Whereas the theorem asserts that the dynamics τ is uniquely determined by
the KMS condition, the converse is not true: when N is not a factor, there
exist other normal states on N that also satisfy the KMS condition with
respect to the same dynamics. Indeed, when N is not a factor, one verifies
that for every Z �= 0 that belongs to the center Z = N ∩N ′ , ψ : N ∈ N →
[ϕ(Z∗Z)]−1ϕ(Z∗NZ) defines a normal state that again satisfies the KMS
condition with respect to τ for the same β . This remark, the proof of which
will be given in subsection 5.6, is essential to the arguments presented in
subsection 5.7.

4. Beyond its mathematical attractiveness, the legitimacy of the conjecture that
the KMS condition may be regarded as a definition of canonical equilibrium
states in the QSP of macroscopic systems will also be discussed in the next
section.

5. Finally, mathematical probity requires us to mention that — factor or not
— a major difficulty in the proof of theorem 39 resides in showing that the
map N Φ → N∗ Φ is closable; for the resolution of this problem, cf. the
original papers [Tomita, 1967; Takesaki, 1970a]; it is probably fair to warn
the reader that even the didactic presentation in [Kadison and Ringrose,
1983/1986, chapter 9] would have carried us beyond the bounds of this es-
say. To convey nevertheless an idea of the structures involved in the theorem,
I resorted therefore to presenting first the models covered in the preliminary
scholia 32 and 33, as these could be treated with mathematically elementary
tools. The drawback was however that these models, as well as their routine
extensions from M(2, |C) to B(H) described in remark 34, only involve fac-
tors, in fact faithful representations of B(H) , that are not sufficient to cover
the macroscopic purposes of QSP where infinitely many degrees of freedom
are brought to play. As Haag, Hugenholtz, and Winnink [1967] correctly
envisaged, it is the generality involved in theorem 39 that is actually needed
in physical applications. The temporal coincidence of this physical intuition
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and the arrival on the scene of the mathematical theory of Tomita–Takesaki
[1967; 1970a] is a truly remarkable event vividly recounted in [Kadison, 1990,
pp. 77–79].

5 KMS CONDITION, QSP AND THERMODYNAMICS

This section presents some of the evidences supporting the physical interpreta-
tion of the KMS condition proposed in [Haag et al., 1967] as an alternative
definition of equilibrium states in QSP. We already saw that for finite systems
the KMS condition is satisfied by the canonical equilibrium states of von Neu-
mann, and only by those states. Now, in subsections 5.1–5.3 models are described
to show how the modular structures invented and developed by [Tomita, 1967;
Takesaki, 1970a] — which we saw (cf. scholium 33) are realized in finite sys-
tems in canonical equilibrium — are also encountered in the equilibrium QSP of
infinite systems, thus allowing one to go beyond von Neumann’s formalism [von
Neumann, 1932c]. In subsection 5.4 various stability conditions are exhibited that
give a thermodynamical characterization of KMS states in QSP. A brief excursion
is undertaken in subsection 5.5 to indicate some vistas toward the recognition of
the role the KMS condition has later been called to play in relativistic QFT, a role
dubbed “revolutionary” by the practitioners. Subsection 5.6 is a mathematical
interlude devoted to the algebraic characterization of extremal KMS states. When
we return to QSP in subsection 5.7, systems that exhibit phase transitions are con-
sidered and the unique decomposition of any canonical equilibrium state into its
pure thermodynamical phases is shown to be closely modeled by a unique decom-
position of KMS states into extremal KMS states. In particular, this subsection is
oriented toward substantiating the overarching idea that the KMS condition pro-
vides the thermodynamics of infinite systems with a conceptual scheme in which
phase transitions occur accompanied by spontaneous symmetry breakdown.

5.1 Beyond Fock space: The BCS model

The first indication that something was amiss in the use of the von Neumann for-
malism in QSP was the Bardeen–Cooper–Schrieffer model for superconductivity,
the BCS model. Indeed, in the original treatment of this model [Bardeen et al.,
1957], the Hamiltonian chosen to describe a specific interaction between the elec-
trons in a finite but large metallic solid is invariant under gauge transformations
of the first kind; an approximation is then proposed, which is asserted to become
exact in the infinite volume limit; in this formal process however this symmetry
is lost; moreover, the spectrum of the resulting Hamiltonian presents an energy
gap that is temperature–dependent. One might argue that the experimentalist
may not wish to be concerned with the breaking of that symmetry, but the energy
gap cannot be ignored: experimentalists do measure it in the laboratory. Thus,
mathematical physicists thought that they ought to understand — how or rather
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whether — the Hamiltonian itself may indeed depend on the temperature. Within
five years, the culprit was found by Haag [1962] to be that the whole treatment
was allegedly carried out in a fixed irreducible representation of the CCR, the then
ubiquitous Fock representation, and that this constraint was doing violence to the
model.

Specifically, the original Hamiltonian is

(75) HΛ =
∑
p,s

ε(p)as(p)∗as(p) +
∑
p,q

b(p)∗ṽ(p, q)b(q)

where Λ is the region of space in which the system is contained, typically a cubic
box of finite volume |Λ| ; p and q label momentum and are integer multiples of
2π|Λ|− 1

2 ; s = ± 1
2 ; as(p)∗ and as(p) are the creation and annihilation operators

for an electron of spin s and momentum p ; ε(p) = −µ+ 1
2p2/2m is the energy of a

free electron of momentum p ; b(p)∗ = a↑(p)∗a↓(−p)∗ is the creation operator of a
so-called Cooper pair; and b(p)∗ṽ(p, q)b(q) is the interaction energy between two
Cooper pairs, i.e. four electrons, so that the Hamiltonian (75) is not quadratic in
the original field operators. The form of ṽ(p, q) will be discussed later on.

The approximating Hamiltonian is

(76) H̃Λ =
∑
p,s

E(p)γs(p)∗γs(p)

where γs(p)∗ and γs(p) are the creation and annihilation operators for the elemen-
tary excitations given by a Bogoliubov–Valatin transformation

(77)
γ↑(p) = u(p)a↑(p) + v(p)a↓(−p)∗

γ↓(p) = −v(−p)a↑(−p)∗ + u(−p)a↓(p)

}
where

(78)
E(p) = {ε(p)2 + [∆(p)∆(p)∗]} 1

2

D(p) = {[E(p)− ε]2 + [∆(p)∆(p)∗]} 1
2

;
u(p) = ∆(p)∗/D(p)
v(p) = [E(p)− ε(p)]/D(p)

and ∆ satisfies the all-important self-consistency equation

(79) ∆(p) = −
∑
q

ṽ(p, q)
∆(q)
2E(q)

tanh
(

1
2
βE(q)

)
.

Clearly ∆ = 0 is always a solution, in which case the spectra of H and H̃ coincide;
this is the normal phase in which nothing particularly interesting happens. The
essence of the model is that there is a critical temperature Tc (recall β = 1/kT )
below which an energetically more favorable solution ∆ �= 0 develops. This cor-
responds to the superconducting phase. We henceforth pursue the discussion for
0 < T < Tc .

This is the phase we are interested in, and it may be useful to recall in physical
terms what the physicists first saw in (76)–(79). BCS devised a limiting procedure
— involving the thermodynamical limit and a “mean-field approximation” (weak,
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but very long range interaction) — by which the original Hamiltonian (75) and the
new Hamiltonian (76) become interchangeable in the sense that they are claimed
to lead to the same limit. While (75) is expressed in terms of the electrons’ creation
and annhilation operators as(p) ; the new Hamiltonian (76) is free in terms of the
elementary excitations γs(p) . The energy spectrum of these excitations is {E(p)}
and differs — see (78) — from the energy spectrum {ε(p)} of the free electrons by a
temperature-dependent “gap” which is observable in the laboratory; the numerical
results so obtained for this gap are in very good agreement with the prediction
(79); cf. [Schrieffer, 1974, Figure 1–3].

The mathematical picture however demands some explanation. Indeed: (i) the
initial Hamiltonian (75) is invariant under the gauge symmetry defined, for any
θ ∈ (0, 2π] by as(p)→ exp(iθ)as(p) whereas the Hamiltonian (76) is not; and (ii)
the energy spectrum {E(p)} of the Hamiltonian (76) is temperature dependent,
whereas there is no temperature dependence in (75).

The question therefore is to account for how one could possibly claim — as was
done in the prevailing folklore — that such an approximation could become exact
in the thermodynamical limit. For this, one has to examine where ∆ comes from,
namely that ∆(p) is a scalar multiple of the identity operator, to be viewed as
an approximation of the operator ∆̂(p) =

∑
q ṽ(p, q)b(q) . The argument for this

is based on the remark that, under suitable assumptions on ṽ , one can arrange
for the limit |Λ| → ∞ of ∆̂(p) to exist — in the weak-operator topology — and
to commute with all the creation and annihilation operators as(q)∗ and as(q)
which generate an algebra which is tacitly assumed to be irreducible. In this
limit, the operator ∆(p) would be replaced by a scalar multiple of the identity.
Some “suitable” assumptions seemed to be achieved when ṽ is the double Fourier
transform

ṽ(p, q) =
∫

Λ

dxdyf(p, x)v(x, y)f(q, y)∗ where f(p, x) =
{ |Λ|− 1

2 eipx x ∈ Λ
0 x /∈ Λ

with a nonlocal potential v such that v(x, y)∗ = v(y, x) , c =
∫

dxdy|v(x, y)| <∞
and

∑
q |ṽ(p, q)| <∞ , so that limΛ→∞ |ṽ(p, q)| = 0 and |ṽ(p, q)| ≤ c/|Λ| .

The practitioner will recognize here an approximation of the mean molecular
field type, a heuristic tool introduced, during the first ten years of the twentieth
century, by P. Weiss and L.S. Ornstein in the classical theory of phase transitions.
Yet, the approximation is not acceptable here without some further discussion
since it leads to the paradoxes already mentioned.

We are now in a position to recognize Haag’s seminal contribution [Haag, 1962]:
the tacit assumption of the irreducibility of the representation of the field algebra
is untenable. Giving up this assumption allows one to resolve the paradoxes: ∆
and hence the coefficients u and v in the Bogoliubov–Valatin transformation (77)
— rather than being multiples of the identity — now belong to the non-trivial
center Z of the representation canonically associated by the GNS construction
corresponding to the equilibrium state of the system. The gauge group now acts
in a non-trivial manner on Z and thus restores the symmetry of the theory. And in
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the limit considered, the time-evolution is well defined as an automorphism group
of the von Neumann algebra generated by the representation. These technical
niceties have been succesively refined — and confirmed — in subsequent investiga-
tions, cf. e.g. [Emch and Guenin, 1966; Thirring and Wehrl, 1967; Thirring, 1968;
Dubin and Sewell, 1970; Sewell, 1982b].

5.2 Beyond Fock space: The Bose gas

Even before the modular structures were formally recognized by mathematicians,
their first instantiation appeared in QSP. One can indeed discern these struc-
tures in the pioneering re-examination Araki and Woods [1963] made of the Bose–
Einstein model for an ideal quantum gas; for the original version of the model, cf.
subsection 2.4. The present subsection summarizes the principal aspects of the
Araki–Woods treatment.

The reader is assumed to be familiar with the definition of the Weyl form of
the canonical commutation relations (CCR) for a countably infinite number of
degrees of freedom, as a family {W (f) | f ∈ D(IR3)} of unitary operators acting
on the (boson) Fock space F : =

⊕∞
N=0

sHN and satisfying ∀ f, g ∈ D(IR3) :
W (f)W (g) = exp{−i Im(f, g)/2)} ; where D(IR3) is the space of all infinitely
differentiable functions f : IR3 → |C which have compact support; and sHN is the
symmetric N−fold tensor product of the one-particle space H1 = L2(IR3) with
itself; cf. e.g. [Emch, 1972a], or [Halvorson, 2006].

For the Bose gas at temperatures T > Tc where Tc is the critical temperature
found by Bose and Einstein, the GNS representation πg corresponding to the
gaseous normal phase — in the thermodynamical limit at fixed density ρ and
chemical activity z — is given as follows. The Hilbert space of the representation
πg may be identified with H = F ⊗F ; its cyclic vector is Φ = Φo ⊗Φo , where Φo
is the vacuum vector in F . Then

(80) πg[W (f)] = W (ζ+f)⊗W (Kζ−f)

where completeness demands that we specify that (ζ+f)˜(k) = [1+ρ(β, z; k)]
1
2 f̃(k) ,

and (ζ−f)˜(k) = [ρ(β, z; k)]
1
2 f̃(k) , (Kf)˜(k) = f̃(k)∗ ; ρ(β, z; k) = z[exp(βε(k)) −

z]−1 with ε(k) = |k|2/2m and z is determined by ρ and β through ρ = (2π)−3
∫

d3k
ρ(β, z; k) .

The von Neumann algebra Ng = {πg[W (f)] | f ∈ D(IR3)}′′ is a factor, the
commutant of which is Ng ′ = {νg[W (f)] | f ∈ D(IR3)}′ where

(81) νg[W (f)] = W (Kζ−f)⊗W (ζ+f) .

Note that νg also gives a representation of the Weyl CCR.
In what I believe was the first presentation of the programme proposed in [Haag

et al., 1967] to a wide audience of mainstream physicists, namely the huge IU-
PAP 1966 Copenhagen meeting on statistical mechanics, Winnink [Winnink, 1967]
started indeed with a summary of the above results. As the duality between the
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von Neumann algebra and its commutant is already a property of finite systems
— see scholium 33 and remark 34 above — Winnink’s emphasis was that this
property may persist in general for systems endowed with infinitely many degrees
of freedom, as is the case in this specific model — the Bose gas — where the
thermodynamical limit of canonical equilibrium is controlled. The emphasis on
dealing with infinite systems — also advocated in the lecture [Verboven, 1967]
preceding Winnink’s — raised eyebrows with many of the physicists in the Copen-
hagen audience, to wit: “Wouldn’t one think that, so to say, the motivation of
going to an infinite system would be to obtain simpler results than are obtained
for a finite system?” [Uhlenbeck, 1967]; or even more pointedly: “What does this
have to do with statistical mechanics?”[van Kampen, 1967]. The conjecture was
already floated that the formalism could be useful for an adequate description of
phase transitions, a conjecture I will examine in subsections 5.6 and 5.7.

In retrospect, it is quite remarkable that Araki and Woods [1963] had already
unearthed several features that were later placed in the context of the general the-
ory that was to be built on the subsequent work of Tomita and Takesaki [Tomita,
1967; Takesaki, 1970a] for the mathematical formalism and the work of Haag et
al. [1967] for its application to QSP. Among the results by Araki and Woods, one
may note that the von Neumann factor Ng they constructed for T > Tc is of type
III — a type of factor the existence of which was known, but for which examples
were then quite elusive even in the pure mathematics literature — and this was
the first occurrence of this type of factor in QSP, although their ubiquity was later
recognized all over in QSP and in QFT; and also in pure mathematics, but that
is another story. In addition, Araki and Woods established that the unitary op-
erators implementing time-evolution and space-translation on the von Neumann
algebra Ng do not belong to this algebra. They also discussed the representations
relative to the superfluid phase which occurs for temperatures 0 < T < Tc , and
they found that the associated GNS representation is an integral of factor rep-
resentations. Incidentally, they do mention that this points to a formal analogy
with the mathematical structure Haag found in his study of the BCS model; see
subsection 5.1 above.

5.3 The KMS condition and the Heisenberg model

The first proof that the KMS conditions themselves are actually satisfied in con-
crete infinite quantum systems was provided by Araki [1969] for a class of one-
dimensional quantum spin-lattice models which includes the archetypal model —
originally proposed by Heisenberg [1928] as a putative model for ferromagnetism
— defined by the local, so-called “exchange” Hamiltonian:

(82) HΛ = −J
b−1∑
k=a

σk · σk+1

where J is the coupling constant describing interactions of neighbouring quantum
spins σk = (σkx, σky, σkz) sitting on a regular, one-dimensional finite string Λ =
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[a, b] ⊂ Z1 ; and σk · σk+1 denotes σk
xσk+1

x + σk
yσk+1

y + σk
zσk+1

z .

The problem of determining whether this quantum model would support ferro-
magnetism in its thermodynamical limit — even in this one-dimensional version
— turned out to be much harder to handle than the classical Ising model where
only interactions Jσk

zσk+1
z are considered.

For the classical models, a method known as the transfer-matrix — and actually
proposed for the two-dimensional Ising model [Kramers and Wannier, 1941] —
allows one to treat the one–dimensional version of this classical model in a few lines
for nearest neighbour interactions, or even with strictly finite-range interactions,
i.e. when the interactions are strictly zero between spins that are further apart
than a finite distance (the same for all pairs). At the cost of quite some work
[Ruelle, 1968b], the method can be made to work for interactions that extend to
infinity, while decaying sufficently fast so as to have finite moment or so that the
surface energy has a bound independent of the volume.

As emphasized in some detail in [Emch, 1972b], even the nearest neighbour
quantum Heisenberg model requires an extension akin to the method used for
the infinite range classical case. Araki [1969] thus managed to control the ther-
modynamical limit ϕ of the canonical equilibrium state and its time correlation
functions well enough to establish that for all positive temperatures β > 0 , the
state ϕ satisfies the KMS condition; and that it is extremal with respect to this
condition — i.e. cannot be decomposed into a mixture of states satisfying the KMS
condition — and shows no spontaneous magnetization. Thus, while physicists —
with their understanding of the onset of collective behaviour in the classical case
— could anticipate that this quantum one-dimensional model would not exhibit
any ferromagnetic phase transition, Araki proves it.

The class of models for which Araki established the above results is strongly
dependent on the one-dimensionality of the “lattice” Z . Nevertheless, the proof
does not require that the interactions be isotropic, i.e. couplings between the
different components of the spins do not need to be the same in all directions.
Moreover the proof does not require that the interactions between the spins on
the lattice be restricted to nearest neighbours: in the original version of the proof,
it was only required that they vanish between spins that are further apart than
a fixed (but arbitrary) finite distance, but even this restriction has been relaxed
to cover the same range as the corresponding classical models. Finally, whereas
in the Heisenberg model the individual half-spins are described by copies of the
algebra M(2, |C) , the proof accommodates as well the cases where Ak �M(n, |C)
with n <∞ .

Hence Araki’s results support a conjecture that pure thermodynamical phases
may be described by extremal KMS states; see subsection 5.7 below for further
evidences.

It may be added that if, in addition, lattice translation invariance is built into
the theory through the local Hamiltonian HΛ , e.g. as in (82), then the limiting
KMS state ϕ is invariant under the group Z of the lattice translations, and — since
its GNS representation leads to a factor — ϕ is also extremal with respect to this
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condition, so that space-correlations between spins decay very fast as their distance
increases. Here, technically speaking, ϕ is exponentially, uniformly clustering in
space; i.e. for any quasi-local observable A ∈ Ao , there exist positive constants γ
and δ such that for all finite N and all B ∈ A Z\[−N,N ] : |ϕ(AB)− ϕ(A)ϕ(B)| ≤
δ ‖B‖ exp(−γN) .

Before leaving the Heisenberg model, note that in the case T = 0, it also offers
a very nice toy model for QFT; cf. e.g. [Streater, 1967].

5.4 The KMS condition and stability

The following five points summarize the KMS story I have told so far.

1. Von Neumann’s definition of quantum canonical states at finite temperature
is limited to finite systems; and this limitation renders cumbersome (at best)
the formalism’s application to QSP — see subsection 3.3.

2. For finite systems, the von Neumann equilibrium states are exactly those
that satisfy a formal analytic condition, the so-called KMS condition — see
subsection 4.1.

3. The KMS condition can be extended beyond the mathematical formalism
laid down by von Neumann — see subsection 4.2.

4. The KMS condition is satisfied in some concrete models of infinite systems for
states that have a reliable interpretation as temperature equilibrium states
— see subsections 5.2 and 5.3.

5. The KMS condition appears as well in a purely mathematical context, the
Tomita–Takesaki theory of modular algebras which turns out to be very
fertile; while the latter aspect of the story would carry us beyond the bounds
of this essay, some hints are briefly alluded to in see subsections 4.2 and 5.2.

Before the KMS theory could be deemed adequate as a physical theory, it ought to
meet at least two more concerns: (i) the formalism should allow the mathematical
description of quantum phenomena that escape the grip of von Neumann’s formal-
ism; (ii) the KMS states should be stable. Subsections 5.2 and 5.3 above indicate
how the first of these two concerns is met; further examples will be presented in
subsection 5.7. The present subsection addresses the second concern, as various
stability criteria — labeled A to E — are discussed. The order of the presentation
is to direct the reader’s attention to the progressive emergence of formulations
whereby KMS states are characterized in terms increasingly germane to those of
variational principles.

A. Cut-and-paste stability.
We begin with a model that is sufficiently simple to provide exact results support-
ing the expectation that a large system in a canonical equilibrium state should be



Quantum Statistical Physics 1129

able to serve as a thermal reservoir for “any” of its parts. The model is a vari-
ation on the theme of the so-called XY-model; this variation was proposed and
solved in [Emch and Radin, 1971]; further references will be given at the end of
this subsection.

The X-Y model itself — referred to below as the ‘un-partitioned system’ — is
a one-dimensional quantum spin-lattice gas with finite-range interactions. Specif-
ically, for any region Λ = {k ∈ Z | a ≤ k ≤ b} with −∞ < a + 1 < b < ∞ , the
Hamiltonian is

(83) H[a,b] = −
b−1∑
k=a

(1 + ζ)σkxσk+1
x + (1− ζ)σkyσk+1

y .

From the work of Araki — see subsection 5.3 above — we learned that the ther-
modynamical limit (as a → −∞ , b → ∞) of both of the following objects exists:
(i) the canonical equilibrium state ϕ[a,b] at any finite natural temperature β > 0
and (ii) the time-evolution α[a,b] ; and that the resulting state ϕ and evolution α
of the infinite system satisfy the KMS condition.

We now split the total system in two non-interacting parts: a finite region
to which we affix the subscript S , and an infinite region to which we affix the
subscript R , which is the complement of ΛS in Z , namely:

ΛS = [c, d] and ΛR = (−∞, c− 1] ∪ [d + 1,∞)

with −∞ < a < c− 1 ; c < d− 1 ; d + 1 < b <∞ .
This partitioned system can be viewed as the thermodynamical limit of a finite

system with Hamiltonian:

(84) H̃[a,b] = H[a,c−1] + H[c,d] + H[d+1,b] .

Clearly the C∗−algebras for both the original system and the partitioned system
are the same, namely the C∗−inductive limit A : = ⊗k∈ ZAk where the Ak are
copies of the algebra M(2, |C) of the 2 × 2 matrices with complex entries. Thus
A = AS ⊗AR where AS := ⊗k∈ΛS

Ak and AR := ⊗k∈ΛR
Ak .

Again, as for the original (un-partitioned) system, the thermodynamical limit
of the canonical equilibrium state and of the evolution of the partitioned system,
defined from (84), do exist and satisfy the KMS condition; they are denoted here
by ϕ̃ and α̃ .

Note that ϕ and ϕ̃ are different. For instance, ϕ is invariant with respect to
translations along the chain, while ϕ̃ is not. Nevertheless, a first stability property
of this model is established in [Emch and Radin, 1971], namely:

(85) ∀A ∈ A : lim
|t|→∞

ϕ̃(αt[A]) = ϕ(A) .

Hence, as the full evolution α unfolds, the correlations between S and R that were
cut by the partitioning are re-established: the partition is erased.

Moreover, let ϕ̃S denote the restriction of ϕ̃ to AS ; and similarly for R; one
has ϕ̃ = ϕ̃S ⊗ ϕ̃R . The evolution α̃ preserves the partitioning, namely ∀A ∈
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AS [resp.AR] : α̃t[A] ∈ AS [resp.AR] . Hence, we have α̃ = α̃S ⊗ α̃R ; i.e. the two
systems evolve independently. Again the KMS conditions are satisfied for S and
R separately.

After this partitioning, let us now change the temperatures of S and R so
that (i) ϕ̃S,βS

is the canonical equilibrium on AS at some temperature βS with
respect to the evolution α̃S ; and similarly (ii) with βR (possibly different from
βS) for ϕ̃R,βR

(w.r.t α̃R) on AR . Let thus ϕ̃S,βS
⊗ ϕ̃R,βR

be the initial state of
the partitioned system; and denote by ϕβ the canonical equilibrium on the whole
system, at temperature β with respect to the original interacting evolution α .
Then, the following is proven [Emch and Radin, 1971] for all βS , βR > 0 and for
all A ∈ A :

(86) lim
|t|→∞

ϕ̃S,βS
⊗ ϕ̃R,βR

(αt[A]) = ϕβ(A) with β = βR .

Hence the name ‘cut-and-paste stability’. The system is first partitioned in two
parts, a finite system S surrounded by an infinite system R that do not interact
with one another: the interactions across the boundaries [i.e. between the sites c−1
and c ; and between the sites d and d + 1 ] have been ‘cut’. In this configuration,
the finite system S and the infinite system R are separately put at (different)
temperatures βS and βR . When these systems are ‘pasted’ back together, one
finds that the joint evolution drives the full system S ∪ R to a temperature β
which has to be the temperature at which R was initially, namely β = βR . In this
sense, R serves as a thermal reservoir for S .

The special property of the model responsible for this result is that it satisfies
a remarkable condition which I now describe.

Let γ be the automorphism of A uniquely determined by

(87) ∀ k ∈ Z :




γ[σkz] = σk
z

γ[σkx] = − σk
x

γ[σky] = − σk
y

.

Note in particular that the original Hamiltonian H[a,b] and the cut Hamitonian
H̃[a,b] belong to the even algebra Ae := {A ∈ A | γ[A] = A} . This entails that in
the thermodynamical limit ϕ ◦ γ = ϕ and γ ◦ α ◦ γ = α ; and similarly for all the
corresponding objects obtained after the partitioning. In particular, the evolution
preserves the even algebra, i.e. ∀ (t, A) ∈ IR×Ae : αt[A] ∈ Ae .

Now, the special property of the model can be explicitly stated:

(88) ∀A,B ∈ Ae : lim
|t|→∞

‖Aαt[B]− αt[B]A‖ = 0 ;

i.e. the evolution, when restricted to the even observables of the model, is strongly
asymptotically abelian.

The proof — and an immediate generalization — of (86) above is a direct
consequence of quantum ergodic theory (see subsection 3.5). First, one notices that
ϕ is uniformly clustering in space, i.e. for every ε > 0 and every A ∈ A there exists
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a finite region Λ such that for every B outside this region |ϕ(AB)−ϕ(A)ϕ(B)| ≤
ε‖B‖ . This entails that the KMS state ϕ is extremal with respect to this condition,
i.e. cannot be decomposed into a convex combination of other KMS states; see
subsection 5.6 below, and in particular definition 57. These properties are inherited
by the restriction ϕe of ϕ to the even algbra Ae . The asymptotic abelianness of
the evolution then implies [Araki and Miyata, 1968] that the state ϕe is not only
time-invariant — as we know every KMS state must be — but it is also extremal
with respect to this condition, i.e. cannot be decomposed into other time-invariant
states, which is to say that ϕe cannot be written as ϕe = λψe + (1 − λ)χe with
0 < λ < 1 and ψe, χe time-invariant, unless ψe = χe = ϕe .

Since ϕ,ϕe, ϕ̃S , ϕ̃R are even, one looses no information by carrying out the proof
of (85) and (86) in Ae ; in particular, (88) implies the existence of the point-wise
limit of (ϕS ⊗ϕR) ◦αt in the LHS of (86); then the above argument shows that it
must coincide with ϕ.

Note further that what is proven in [Emch and Radin, 1971] is in fact a stronger
result, which implies (86) and thus (85) as particular cases, namely that for all
even states ψS of the system S :

(89) ∀A ∈ A : lim
|t|→∞

ψS ⊗ ϕ̃R(αt[A]) = ϕβ(A)

which therefore reinforces the ‘cut-and-paste stability’ interpretation proposed im-
mediately after equation (86).

This result may be further generalized in two ways. First, the restriction that
ψS in (89) be an even state can be dispensed with; cf. [Araki and Barouch, 1982].
Second, as was already noticed in [Emch and Radin, 1971], an ergodic or averaged
version of (89), specifically, with η denoting an invariant mean on the group IR :

(90) ∀A ∈ A : η{ψS ⊗ ϕ̃R(α[A])} = ϕβ(A)

obtains [Emch and Radin, 1971], even if only a weaker version of (88) holds, namely
the condition of η−asymptotic abelianness (60), i.e.

(91) ∀A,B,C ∈ Ae : η{ϕ(C∗ [Aα[B]− α[B]A]C)} = 0 .

Depending on one’s intellectual temperament, either the general argument pre-
sented earlier, or the specific model just reviewed, raises the question of whether
the KMS condition could be derived from some general stability argument. This
question is addressed from several angles in (B)–(E) below.

The model presented above was discussed again in [Robinson, 1973]; see also
[Araki and Barouch, 1982] and references therein. It belongs to a long line of
inquiries that started as attempts to derive Newton’s cooling law from first prin-
ciples; related problems are usually understood under the generic label ‘return to
equilibrium’. As of this writing, the latest comprehensive entry on the subject may
be [Bach et al., 2000] where a wealth of “novel technical devices” are brought to
bear; the reader will also find there an informative sample of the large literature on
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the subject. In a broad sense, several — but not all — of the criteria of stability in
this subsection also address this perennial problem of return to equilibrium from
small or local deviations. Its ubiquity however should not overshadow two other
important and largely unsolved problems; cf. subsection .6.4 below.

B. Stability against local perturbations.
Various conditions of asymptotic abelianness were investigated by Kastler et al.
For a summary, see [Kastler, 1976] which also offers a annotated bibliography. For
their main stability theorem, they settled on the notions described in definitons
41 and 42 below.

DEFINITION 41. Let A be a C∗−algebra. An evolution α : IR→ Aut(A) is said
to be L1− asymptotically abelian on a norm dense ∗−subalgebra Ao ⊂ A when

∀ (t, A) ∈ IR×Ao : αt[A] ∈ Ao ;

and

∀A,B ∈ Ao :
∫ +∞

−∞
dt ‖B αt[A]− αt[A]B‖ <∞ .

Some preliminary notations are required for Definition 42 below. With A and α
as in definition 41 let Asa = {A ∈ A | A = A∗} , and let S be the set of all states
on A , equipped with its weak topology. For ϕ ∈ S and an element h ∈ Asa with
ϕ(h2) > 0 , define

(i) the perturbed state ϕh by ϕh : A ∈ A → 1
ϕ(h2) ϕ(hAh) ∈ A ;

(ii) the perturbed evolution {αht | t ∈ IR} by αht : A ∈ A → Uh
t αt[A]Uh

t
∗

where {Uh
t | t ∈ IR} satisfies the so-called ‘co-cycle differential equation’

(the derivative is w.r.t. the norm-topology)

∀ t ∈ IR : i d
dtU

h
t = Uh

tαt[h] with initial condition Uh
o = I .

To understand the sense in which αh may be viewed as the perturbed evolution cor-
responding to h , note that the above co-cycle equation admits a unique continuous
solution t ∈ IR → Uh

t ∈ A ; it can be computed explicitly as the norm-convergent
Dyson series:

Uh
t =

∞∑
n=0

Ch
t,n with Ch

t,n = (−i)n
∫ t

o

dtn

∫ tn

o

dtn−1 . . .

∫ t2

o

dt1αt1 [h] . . . αtn [h].

This solution satisfies: (i) Uh
t unitary, and

(ii) ∀ s, t ∈ IR : Uh
s+t = Uh

s αs[Uh
t] .

Consequently, the evolution defined as {αht | t ∈ IR} is a group of automorphisms
of A with, in particular:

∀ s, t ∈ IR : αhs+t = αhs ◦ αht .
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The interpretation of αh as the evolution resulting from the perturbation of α by
the operator h obtains from the following relation between the generators of αh

and α :

i
d

dt
αht
∣∣
t=0

= i
d

dt
αt
∣∣
t=0

+ δh with δh : A ∈ A → [h,A] := hA−Ah ∈ A .

DEFINITION 42. With the above notations, an α−invariant state ϕ on A is
said to be stable against inner perturbations, whenever there is a neighbourhood
Vϕ ⊂ S of ϕ such that ∀A ∈ A , and ∀h ∈ Asa with ϕh ∈ Vϕ :

1. ∀ t ∈ IR : ϕh(αht[A]) = ϕh(A) ;

2. with λ ∈ IR : limλ→0 ϕλh(A) = ϕ(A) ;

3. limt→∞ ϕh(αt[A]) = ϕ(A) .

THEOREM 43. With A , Ao and α as in definition 41, assume that α is L1−
asymptotically abelian on Ao . Let ϕ be an α−invariant state on A and assume
that ϕ is stable against inner perturbations in the sense of definition 42. Then
— under three ancillary conditions to be discussed below — ϕ satisfies the KMS
condition with respect to α for some natural temperature β .

REMARKS 44. The ancillary conditions of the theorem are sketched in the three
entries below.

1. The state ϕ is assumed not to be a trace, i.e. there exist A,B ∈ A such that
ϕ(AB) �= ϕ(BA) . This is meant to avoid the classical circumstance that
would arise in the limit of infinite temperature, i.e. β = 0 , i.e. T =∞ .

2. In the GNS representation canonically associated to ϕ , the generator of the
unitary group U(IR) that implements α(IR) is assumed not to be one-sided.
This is meant to avoid the opposite circumstance where ϕ would be a zero-
temperature ground state, i.e. β =∞ , i.e. T = 0 .

3. The state ϕ is assumed to be hyperclustering of order 4 on the ∗−subalgebra
Ao . This technical condition requires the following to hold: for every positive
integer p ≤ 4 and all A1, . . . , Ap ∈ Ao , there exist positive constants C and
δ such that

(92) ∀ t1, . . . , tp ∈ R : ϕTp (αt1 [A1] · · ·αtp [Ap]) ≤ C { 1+max |tk− tl|1+δ }−1

where the truncated correlations ϕTp are defined recursively by 0 = ϕTo ,

ϕ(A) = ϕT1 (A) and ϕ(A1, . . . , Ap) =
∑
P ϕTn1

(Ak1 , . . . , Akn1
) . . . ϕTnj

(Aq1 ,
. . . , Aqnj

) and the sum carries over all order-preserving partitions of S =
{1, 2, . . . , p} in subsets Sj ⊆ S satisfying the following conditions: S =
∪jSj , j �= k ⇒ Sj ∩ Sk = ∅ , and within each Sj = {k1, k2, . . . , knj

} :
k1 < k2 < . . . < knj

. The reader will verify immediately that ϕ(A1, A2) =
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ϕT2 (A1, A2) + ϕT1 (A1)ϕT1 (A2) , and then realize that the recursion relation
explains better what is going on with higher truncated correlations than
writing explicitly the summations over P .

Note that the ϕTp provide a hierarchy where all correlations of lower order
already have been taken into account. In particular in the case of the CCR,
a remarkable result of Robinson [Robinson, 1965] shows that either this
hierachy goes up indefinitely or, if the truncated ϕTn vanish for all n ≥ N
with N > 2 , then they must vanish for all n > 2 .

The concept of truncated ϕTn is not a stranger. It comes to us as a quan-
tum cousin of the “cumulants” of classical probability theory and of the
“Ursell functions” of classical statistical mechanics. The classical equivalent
of Robinson’s theorem gives a characterization of the Gaussian distribution,
which translates in quantum statistics as yet another characterization of
the canonical equilibrium state of an assembly of free harmonic oscillators.
Robinson’s theorem thus gives a foretaste of why it is so difficult to produce
and/or control models of QFT and QSP that are not “quasi-free”.

To sum up, the third ancillary condition of the theorem aims to convey that
in the course of time all time-correlations of order p ≤ 4 are to decay rapidly
enough for long time separations.

The investigations by Kastler et al. reported above appear to be systematically
predicated on conditions of time-asymptotic abelianness (definition 41) and time-
hyperclustering (remark 44(3)). Thus compare these with any of the conditions
encountered in sections 3 and 4; the latter are naturally satisfied for space trans-
lations, but in constructing specific models, even these conditions are extremely
difficult to impose straight on the microscopic dynamics, i.e. on the Hamiltonian
that is to describe the time evolution. Whether this is an intrinsic shortcoming
of the theory behind theorem 43 above, or an indication of some lack of either
imagination or technical dexterity on the part of model builders remains open at
this stage. Nevertheless, it appears that one weak form of asymptotic abelian-
ness is not only sufficient but also necessary when one wants to identify, among
KMS states, those that are merely extremal with respect to this condition, from
those that are, moreover, extremal with respect to time-invariance; cf. e.g. [Emch,
1972a, corollary 2, p. 206]; or remark 63(6) below. Here again, reminiscences from
the perennial ergodic dreams in classical statistical Hamiltonian mechanics would
incline some to hope that such an identification could perhaps be in the cards.
As I have recognized in several other parts of this essay, my crystal ball remains
clouded on this issue.

C. Thermal reservoir stability.
Consider the intuitive idea that a system R may be construed as a “thermal reser-
voir” at temperature β , if it drives suitably devised test systems S to equilibrium
at temperature β when they are coupled to R . Kossakowski et al. [1977] proposed
to formalize this idea in the following manner; see also [Sewell, 2002, pp. 114–116].
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For a concrete motivation, compare the specific XY-model described in part A of
this subsection.

To model situations where one expects that R ought to be very much larger
than S in order to exclude feedbacks from the test system S onto the reservoir R,
one assumes that R is infinite and S is finite.

The putative reservoir R is described by a triple {AR, αR, ϕR} where AR is
a C∗−algebra; αR is an evolution group of automorphisms of AR ; and ϕR is a
state on AR , invariant under the evolution αR . Denote by δR := i ddtα

R
t

∣∣
t=o

the
generator of the evolution αR . Some ancillary conditions on R will be specified
later.

The test system S is a dynamical system in the sense of von Neumann, i.e. is
described by: {AS , αS , ϕSβ} where AS = B(H) ; αS is the evolution generated by a
Hamiltonian HS such that for all temperatures β > 0 , Z := Tr exp(−βHS) <∞ ;
and ϕS is given by

(93) ϕSβ (AS) = Tr ρSβ AS with ρSβ = Z−1e−βH
S

.

δS = i [HS , · ] will denote the generator of αS . Finally, SS will denote the set of
all countably additive states on AS .

A family {αλ | λ ≥ 0} of dynamical couplings between R and S is described by
groups of automorphisms on A = AR⊗AS , the generator of which is of the form:

(94) δλ = δR ⊗ I + I ⊗ δS + λδV where
δV : A ∈ A → i λ[V , A] ∈ A , with V ∈ Asa

}
.

As the ancillary conditions on R are specified, so will be the form of V ; see (97)
and (98) below.

The next step in the modeling is devised to emphasize the sense in which the
long-time cumulative effects on S of the evolution αλ are accounted for when R
and S are coupled. For this Kossakowski et al. [1977] appeal to the so-called
van Hove limit, an instance of which already appeared in subsection 3.5; see also
remark 45 below. For the system at hand here, the van Hove limit takes the
following form. First, it considers only a reduced evolution, namely only what
the system S experiences of the total evolution; mathematically this reduction is
achieved by E : A → AS , the conditional expectation defined, for all AS ⊗ AR ,
by E[AS ⊗ AR] = AS ϕR(AR) , and then extended by linearity and continuity to
A . Secondly, the van Hove limit requires to focus on a long-time/weak-coupling
regime defined by rescaling time with an inverse power of the interaction strength.
Thus, the van Hove limiting procedure consists here in proving that the following
limit exists for all positive ‘rescaled’ times s :

(95) γSs : AS ∈ AS → lim
λ→0 ; t→∞
s=λ2 t

αS−t ◦ E ◦ αλt [AS ] ∈ AS .

REMARKS 45. This type of limit has a long history. I learned it first from
van Hove [van Hove, 1955] where the author had proposed it as a tool to relate
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macroscopic transport phenomena to the microscopic dynamics that is expected
to underlie them. It emphasizes that in such discussions time ought to be rescaled
in a way determined by the strength λ of the interaction. Some justifications for
taking such a limit will be discussed in subsection 6.1 below.

Finally, given two C∗− algebras A and B , and n a non-negative integer, one
says that a map γ : A → B is n-positive whenever it is linear, and the induced
map γn : A ⊗M(n, |C) → B ⊗M(n, |C) is positive, i.e. the image of any positive
element in A⊗M(n, |C) is a positive element in B⊗M(n, |C) . When either A or B
is abelian, a positive map is necessarily n−positive; hence n−positivity is a notion
new to the non-commutative context of QSP. Furthermore, a map is said to be
completely positive whenever it is n−positive for all n ∈ Z

+ . In connection with
expressions like the right-hand side of (95) above, note that the composition of
completely positive maps is again completely positive; and that automorphisms,
states, injections and conditional expectations are completely positive maps. A
collection {γs | s ∈ IR+} of maps of A into itself is said to form a semi-group
whenever γo is the identity map, and ∀ (s, t) ∈ IR+ × IR+ : γs+t = γs ◦ γt .

This should exhaust the list of general preliminaries necessary to describe the
stability criterion proposed by Kossakowski et al. [1977], namely:

DEFINITION 46. A system {AR, αR, ϕR} is said to be a thermal reservoir at
temperature β whenever there is a “large enough” collection Tβ of test systems
{AS , αS , ϕSβ} and dynamical couplings {αλ} such that

1. the van Hove limit (95) exists, and defines a semi-group of completely positive
transformations {γSs | s ∈ IR+} of AS ;

2. the canonical von Neumann equilibrium state ϕSβ on AS is the only state
ϕ ∈ SS that is invariant under both αS and γS ;

(96) 3 . ∀ (ψS , AS) ∈ SS⊗AS : lim
s→∞ ψS (γSs [AS ]) = ϕSβ (AS) .

The term “large enough” in the above definition admittedly needs to be made
more precise: this is where the ancillary conditions on the interaction V and the
reservoir R enter the picture and allow one to prove scholium 47 and theorem 48
below.

One condition is that the interaction V in (94) be of the form

(97) V =
n∑
k=1

BR
k ⊗BS

k with




n is finite
BR
k ∈ ARsa and ϕR(BR

k ) = 0
BS
k ∈ ASsa


 .

Note that the conditional expectation E[V ] of V vanishes.
An additional condition is that there exists ARo ⊆ AR such that: (i) Span{ARo ∪

I} (where I is the identity in AR ) is norm dense in AR ; (ii) for all BR
k ∈ ARo ,

the functions t → ϕR(BR
j αRt [BR

k ]) are in L1 ; and (iii) the multi-time truncated
correlations, for the state ϕR to be tested, satisfy
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(98) t1 < . . . < tl with |tj − tk| → ∞ ⇒ {ϕR}T (αRt1 [B
R
t1 ] · · · αRtn [BR

tn ]) → 0.

Upon taking advantage of [Davies, 1974, theorem 2.3], the following results were
obtained in [Kossakowski et al., 1977]:

SCHOLIUM 47. These ancillary conditions are sufficient to imply that condition
(1) in definition 46 is satisfied for all finite S .

This ensures that the collection Tβ of test systems will indeed be large enough.

THEOREM 48. When the circumstances just outlined are realized, the following
conditions are equivalent:

1. for some temperature β , the state ϕR is a KMS state on AR with respect to
the evolution αR ;

2. the system R, in the state ϕR , is a thermal reservoir for temperature β in
the sense of definition 46 with “large enough” sharpened by scholium 47.

REMARKS 49.

1. Hence, every test system S in Tβ is driven to equilibrium at temperature
β by the reservoir R exactly when ϕR satisfies the KMS condition for this
temperature.

2. As mentioned before, this result is largely model-independent, and does not
involve, at least explicitly, any assumption of time asymptotic abelianness.
Moreover, instead of a single model for which one can prove that a special
infinite system in equilibrium serves as thermal reservoir for each of its finite
parts, the present theorem characterizes a collection Tβ of test systems S
for which the infinite system R serves as a thermal reservoir. Thus, the
theorem is an improvement on the particular motivating model discussed in
paragraph A above.

3. Yet, as [Kossakowski et al., 1977] noticed, the decay of multi-time correla-
tions (98) that enables their proposal to work is reminiscent of the similar
conditions imposed by Kastler et al. in their result on stability against local
perturbations; see (92) in paragraph B above.

4. From an empirical point of view, the theorem may be regarded as specifying
a procedure to lift the notion of temperature in equilibrium QSP from finite
systems to infinite systems.

5. Nevertheless, it must be noted that the circumstances under which γS is
known to satisfy condition (1) of definition 46 and the decay of correlations
in (98) do appear to involve some clustering properties that may limit the
domain of applicability of the theorem to cases where πϕ(AR)′′ is a factor,
and where ϕR is extremal under both the KMS condition and the condition
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of time-invariance. Hence, asymptotic abelianness enters less conspiciously
here.

D. Passivity.
In [Pusz and Woronowicz, 1978] the authors noticed a property of KMS states
which they called passivity; and they found ways to show that this property in
turn entails the KMS property under assumptions that do not involve asymptotic
abelianness in time.

Specifically, let {A, ϕ, α} be a dynamical system where A is a C∗−algebra, ϕ
be a state on A , and {αt | t ∈ R} is a one-parameter group of automorphisms of
A . Let then D(δ) denote the domain of the generator δ of the evolution α , i.e.
D(δ) is the linear subspace of all A ∈ A such that the derivative δ[A] := i ddtαt[A]
exists.

Consider now the situation obtained by letting this system interact during a
finite time-interval with an outside system, so that the effect of their interaction on
the system of interest may be assumed to be described as the perturbed dynamics
αh satisfying the differential equations:

(99) ∀A ∈ D(δ) :




i ddtα
h
t[A] = αht[δ[A] + [ht, A]]

αht=0[A] = A

where h is an element of C1
+(IR,Asa) , the set of all continuously differentiable

functions, with compact support in IR+ and taking their values in the self-adjoint
part of A . The system is thus an open system for all times t in the support of h ,
i.e. for all times when the perturbation h is actually in effect. The condition that
the support of h be compact and contained in IR+ ensures that, for all times T >
sup {t ∈ IR |ht �= 0} , the external conditons are as they were at time t = 0 . The
smoothness condition h ∈ C1 on the time-dependence of the external pertubation
is a mathematical convenience that is physically reasonable. Then

(100) LhT (ϕ) :=
∫ T

o

dt ϕ(αht [
d

dt
ht])

describes the energy transmitted to the system in the time interval [0, T] during
which the system was under the influence of the external perturbation h .

DEFINITION 50. The state ϕ is said to be passive if for all h ∈ C1
+(R,Asa) and

all T > sup {t ∈ IR |ht �= 0} : LhT (ϕ) ≥ 0.

Upon having advanced this definition, Pusz and Woronowicz [1978] proved the
following result:

THEOREM 51. Let {A, ϕ, α} be a C∗− dynamical system, and consider the fol-
lowing conditions: (I) ϕ is either a KMS state with respect to α for some temper-
ature β > 0; or is a ground state; and (II) ϕ is passive in the sense of definition
50. Then:

1. Without further assumptions: (I)⇒ (II) .
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2. If furthermore: (i) A admits an action ν : G → Aut(A) where G is a
locally compact amenable group; (ii) ν commutes with the evolution α, i.e.
∀ (t, g) ∈ R×G : νg ◦αt = αt ◦νg ; and (iii) ϕ is η−clustering with respect to
the action of G . Then these conditions, taken together, entail (II)⇒ (I) .

REMARKS 52. The following remarks focus on part (2) of the theorem, i.e. the
operational characterization of KMS states as passive.

1. In the passivity condition (II), ϕ has not been assumed to be invariant under
the unperturbed evolution α ; in part (2) this property obtains as ϕ is proven
to satisfy the KMS condition.

2. The condition that ν commutes with α is natural in view of the conclusion
to be obtained: if an automorphism leaves invariant a KMS state, then it
must commute with the evolution with respect to which this state is KMS.

3. Invariant means and amenable groups were introduced in subsection 3.5; see
in particular definition 21 and remark 31(5).

4. Among the ancillary assumptions listed in (2), it is not even necessary to
impose as a precondition that ϕ be G−invariant; this follows from the explicit
assumption that it is η−clustering, i.e. (see definition 22):

∀ A , B ∈ A : ηG (ϕ(νg[A]B)) = ϕ(A)ϕ(B) .

Actually, this condition entails furthermore that ϕ cannot be decomposed in
a convex combination of other G−invariant states.

5. In QSP, the natural candidate for G is the group of translations in space.
Hence, in contrast with the stability conditions studied earlier, the assumed
clustering property does not need to be with respect to time. This allows
us to consider systems for which the evolution is not asymptotically abelian.
This opening is significant when it comes to concrete modeling for the pur-
poses of QSP: one may not wish to have to identify the weak-clustering with
respect to the group {νg | g ∈ G} and any putative clustering with respect
to the evolution {αt | t ∈ IR} .

6. In addition, Pusz and Woronowicz [Pusz and Woronowicz, 1978] propose
an alternative route, replacing all the ancillary conditions in part (2) of
the theorem by a strengthened form of passivity. Specifically, instead of
considering a single dynamical system, they consider, for every positive
integer, identical non-interacting copies {Ak, ϕk, αk | k = 1, . . . , N} from
which one constructs the collective dynamical system {AN , ϕN , αN} where
{AN = ⊗Nk=1Ak , ϕN = ⊗Nk=1ϕk , and αN = ⊗Nk=1αk }. The perturbation
h however is allowed to be a general element in C1

+(IR,AN ) , so that αh is
allowed not to act independently on each of the component systems. Then
ϕ is said to be completely passive whenever for every positive integer N the
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state ϕN is passive. Now, without further ado — i.e. without having to
impose condition (2) in theorem 51 — the complete passivity of ϕ can be
proven to be equivalent to the condition that ϕ satisfy the KMS condition.
For QSP, the choice between the condition of complete passivity or condition
(2) in the theorem, is largely a question of taste.

E. Thermodynamical stability.
To close this subsection, I wish to indicate how the concept of thermodynamical
stability gives rise to yet another characterization of KMS states, this one without
restriction on whether the states considered are to be extremal with respect to
the KMS condition. To avoid technicalities, I present these considerations in the
simplest case, namely where the system is a quantum spin-lattice and thus is
described by a C∗−algebra A = ⊗k∈ Zd Ak where the Ak are copies of a finite
matrix algebra, say M(n,C) , with n and d finite. Throughout Λ ⊂ Z

d denotes
a connected finite subset of the lattice Z

d ; ϕ denotes a state on A ; ϕΛ denotes
the restriction of ϕ to the finite matrix algebra AΛ = ⊗k∈ΛAk ; and ρΛ is the
density matrix corresponding to ϕΛ . Furthermore it is convenient to assume here
that the dynamics obtains from short-range — or possibly suitably tempered —
interactions between the sites. The reader interested in how far the considerations
presented below may be pursued will find a review in [Sewell, 2002]; among the
original papers, let it suffice to mention for orientation purposes [Araki, 1974;
Araki and Sewell, 1977; Sewell, 1977; Sewell, 1980b; Ruelle, 1968a; Robinson, 1971;
Araki and Moriya, 2002].

A version of the second law of thermodynamics — compare with the equivalent
form of the variational principle defined immediately after theorem 3 — defines
the local free-energy relative to Λ at natural temperature β = 1/kT as:

FΛ,β(ϕ) = EΛ(ϕ)− T SΛ(ϕ) with




EΛ(ϕ) = ϕΛ(HΛ)

SΛ(ϕ) = −k Tr ρΛ log ρΛ

.

Two states ψ and ϕ on A are said to satisfy the equivalence relation Λo∼ whenever
they coincide outside the finite region Λo . We then write ψ ∼ ϕ whenever there
exists Λo such that ψ

Λo∼ ϕ . For the quantum lattice considered here, one can then
prove that the following limit exists

(101) ∀ψ ∼ ϕ : ∆Fβ(ψ |ϕ) := lim
Λ↑ Zd

(FΛ,β(ψ)− FΛ,β(ϕ)) .

For the order of the arguments ψ and ϕ in ∆Fβ recall that mathematicians (and
some philosophers) read from right to left, while most physicists seem to read from
left to right. Thus, ∆Fβ(ψ |ϕ) , as written above, represents the increment of free-
energy when passing from the state ϕ to any state ψ that differs from ϕ only in a
finite region. Araki and Sewell [Araki and Sewell, 1977; Sewell, 1977] introduced
the following definition and prove the following result; see also [Sewell, 1980b;
Sewell, 2002].
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DEFINITION 53. With ∆Fβ(ϕ |ψ) as in (101), a state ϕ on A is said to be locally
thermodynamically stable at natural temperature β whenever

∀ψ ∼ ϕ : ∆Fβ(ψ |ϕ) ≥ 0 .

Hence, to require that this stability condition be satisfied is indeed a variational
principle: the free-energy of the state ϕ cannot be reduced by going to a state ψ
that differs from ϕ only locally.

THEOREM 54. For a state ϕ on a quantum lattice system of the type considered
here, the following conditions are equivalent:

1. ϕ satisfies the KMS condition at natural temperature β ;

2. ϕ is locally thermodynamically stable at natural temperature β .

REMARKS 55.

1. This result involves in an essential manner the local structure of the system
considered, namely that the global algebra A is the C∗−inductive limit of
local algebras AΛ relative to bounded regions of space, where the indexing
net F := {Λ} is absorbing, i.e. — recall subsection 3.4, part I — for every
point x in space, there is a bounded region Λ ∈ F such that x ∈ Λ . An
alternative version is requiring that for every bounded region Ω of space
there exists some Λ ∈ F such that Ω ⊆ Λ ; both versions are acceptable in
axiomatic QSP.

2. Also in contrast to reservoir stability — see theorem 48 — this result is
one of internal consistency in the sense that it establishes the equivalence of
two definitions of equilibrium for the same system when described from two
different points of view: the microscopic KMS condition and the local aspect
of thermodynamics of the system considered. In particular, the argument
does not involve any coupling of the system considered with any test system.

3. Extensions of the domain of validity of the theorem are desirable. In this
respect, quantum spin-lattice systems with reasonably long-range interac-
tions have been controlled. However, some technical difficulties often stand
in the way toward the expected extensions to continuous systems. Typically
these difficulties originate in the infinite dimensionality of the Hilbert spaces
HΛ corresponding to finite regions, and in the fact that the corresponding
Hamiltonians HΛ are unbounded; also, precautions may have to be taken to
ensure that the local particle-density remains bounded.

4. One type of extension of the above variational principle is instructive, namely
the shift from local stability to global stability requirements. Specifically,
consider again a quantum-lattice system defined on Z

d . Assume further
that the dynamics is invariant under the translation group G = Z

d , and
restrict attention to the set SG of states ψ each of which is G−invariant.
Assume finally that the following limits exist
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(102) fβ(ψ) = lim
Λ↑ Zd

|Λ|−1
FΛ,β(ψ) ; φβ = lim

Λ↑ Zd
|Λ|−1 log Tr exp−βHΛ .

A state ϕ ∈ SG is now said to be globally thermodynamically stable — or
GTS for short — whenever it minimizes the free-energy density, i.e. when

(103) fβ(ϕ) = min
ψ∈SG

fβ(ψ) = φβ .

As long as one remains with G−invariant states on quantum-lattices having
G−invariant dynamics with only short-range interactions, one has

ϕ is GTS ⇐⇒ ϕ is KMS .

However, while⇒ remains valid even when interactions are allowed to extend
over a reasonably long range, the “short-range” requirement is essential for
⇐ . It has been suggested [Sewell, 1980b] that KMS states that are not GTS,
i.e. do not minimize the free-energy density, may model metastable states.

5.5 A brief excursion into QFT

As a remark on the role of KMS states in mathematical physics I wish to men-
tion, however briefly, the appearance of modular structures beyond the confines
of non-relativistic QSP, namely their entry into relativistic QFT. For the general
framework of algebraic QFT, cf. e.g. in this volume [Halvorson, 2006]; for a pre-
sentation specifically geared to QFT on curved space-times, cf. also [Wald, 1994];
and for a discussion of some of the interpretation problems raised by the materials
in this section, cf. [Clifton and Halvorson, 2001].

From the perspective developed in this essay, the natural entry into the consid-
erations to be discussed in the present subsection is through a manifestation, in
Minkowski-space QFT, of the Tomita–Takesaki duality — recall scholium 33 or
theorem 39.

Bisognano and Wichmann [Bisognano and Wichmann, 1975] developed a con-
sequence of a standard result in axiomatic QFT — the Reeh–Schlieder theorem,
cf. e.g. [Streater and Wightman, 1964, p.168], or [Emch, 1972a, p. 290] and
references cited therein — which ensures in particular that the vacuum state
ϕ , when restricted to a wedge WR = {(x, y, z, t) ∈ M3+1 | z > |t|} , is faith-
ful on the corresponding algebra NR . Thus, this restriction ϕR of ϕ to NR
equips the latter with the structure of a Tomita–Takesaki modular algebra. Here,
the canonical objects of the Tomita–Takesaki theory have a seminal geometric
interpretation. The involutive antiunitary operator J — corresponding to the
reflection (x, y, z, t) → (x, y,−z,−t) which maps the wedge WR to the wedge
WL = {(x, y, z, t) ∈ M3+1 | z < |t|} — implements a bijection from NR to
NR′ � NL ; and the modular group {∆iλ | λ ∈ R} implements on NR the Lorentz
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boost 


x
y
z
t


 →




1 0 0 0
0 1 0 0
0 0 cosh(2πλ) − sinh(2πλ)
0 0 − sinh(2πλ) cosh(2πλ)






x
y
z
t


 .

Since uniformly accelerated observers moving in the interior of a wedge WR

perceive its boundaries as past and future horizons, the result of Bisognano and
Wichman could be interpreted as saying that in the universe of such observers —
the wedge WR — the vacuum of the field in M3+1 appears to be a thermal bath,
in the following sense. The state ϕR : N ∈ NR → ϕ(N) ∈ |C — where NR ⊂ N
is the algebra corresponding to the wedge WR , N is the algebra corresponding
to the full Minkowski space, and ϕ is the vacuum defined on N — is a KMS
state at temperature β > 0 with respect to the evolution {τt : N ∈ NR → τt[N ] =
∆−it/β N ∆it/β ∈ NR | t ∈ IR} (where, as usual, the numerical value of the natural
temperature β = 1/kT depends on the scale with respect to which the time t is
measured).

The physical interest of this interpretation is enhanced by an earlier remark
by Rindler [Rindler, 1966] to the effect that the universe of uniformly accelerated
observers in WR is similar to the universe around the Schwarzschild solution of
the Einstein equations, i.e. around a stationary “black hole”.

With this dictionary in hand, the phenomenon discovered by Bisognano and
Wichmann as a consequence of the Tomita–Takesaki theory translates into an
effect found independently by Unruh [1976] in an attempt to clarify the then
recently discovered Hawking effect [Hawking, 1975] (also known as the Hawking
radiation). The latter describes a related but different phenomenon, the creation
of thermally distributed particles around a collapsing black hole. The similarities
and differences between the Unruh and the Hawking effects are discussed in [Wald,
1994, chapters 5 and 7]; for some of the thermodynamical aspects of the subject
in the astrophysics literature, cf. e.g. [Davies, 1978; Hawking and Page, 1983] or
[Wald, 1994, chapter 6]; for the specific questions of what is actually measurable,
how and where, see [Unruh and Wald, 1984]; and for some of the philosophical
issues, see [Clifton and Halvorson, 2001].

The impact of the Bisognano and Wichmann discovery on the axiomatic QFT
literature began with the work of Sewell [Sewell, 1980a; Sewell, 1982a] who gen-
eralized their results to some curved manifolds, perceived the role that the bi-
furcate horizon plays in the Unruh effect, and proposed to identify the Hawk-
ing temperature and the temperature in the KMS condition associated with the
Tomita–Takesaki modular theory. The introduction of KMS structures in QFT
then turned out to be the harbinger of a “revolution” [Borchers, 2000]. A few
among the many developments that ensued are: an extension of the axiomatic
of algebraic QFT to curved manifolds; an interpretation of the intrinsic geom-
etry of space-time in terms of consistency relations between the modular struc-
tures to be attached to an absorbing net of intersecting wedge-like regions of GR
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space-times; and the beginnings of a relativistic QSP where local KMS condi-
tions are formulated in terms of future-directed time-like vectors that determine
local rest-frames; cf. e.g. [Summers and Verch, 1996; Buchholz et al., 2002;
Ojima, 2003; Wiesbrock, 1997; Buchholz, 2003; Summers and White, 2003; Buch-
holz and Lechner, 2004]; closer to the Hawking effect proper, [Haag et al., 1994;
Kay and Wald, 1991; Fredenhagen and Haag, 1990]; and for a new framework
[Fredenhagen, 2003].

5.6 A mathematical interlude: extremal KMS states

The role of extremal KMS states in QSP will be studied in subsection 5.7. The
purpose of this section is to review some mathematical preliminaries such as the
definition of extremal KMS states, their characterization in terms of their GNS
representation, and the decomposition of a KMS state into its extremal compo-
nents.

REMARKS 56.

1. Let A be a C∗−algebra, β > 0 and τ be a group of automorphisms of A . The
set Sβ of all KMS states on A that satisfy the KMS condition for τ and β
is convex, i.e. for any two KMS states ψ and χ on A , with respect to the
same τ and β , and any λ ∈ (0, 1) : ϕ = λψ + (1− λ)χ is again a KMS state
for τ and β .

2. The set Sβ is closed in the w∗− topology it inherits from A , and it is
bounded in the metric topology. Hence it is w∗−compact, and the Krein–
Milman theorem entails that Sβ is the w∗−closed convex hull of the set Eβ
of its extreme points [Dunford and Schwartz, 1964, theorem V.8.4]. This
ensures not only the existence of extremal points, but also that there are
sufficiently many of them: every element in Sβ is the limit of finite convex
sums of elements in Eβ ; see definition 57 below.

3. Moreover β1 �= β2 entails Sβ1 ∩ Sβ2 = ∅ . Incidentally, the GNS represen-
tations constructed from states ϕ1 ∈ Sβ1 and ϕ2 ∈ Sβ2 with β1 �= β2 are
disjoint in the sense that no subrepresentation of one of these is unitarily
equivalent to any subrepresentation of the other; cf. [Takesaki, 1970c].

DEFINITION 57. Given a von Neumann algebra N , a group {τt | t ∈ IR} of
automorphisms of N , β ∈ IR+, and Sβ as in remark 56(1) above. A state ϕ ∈ Sβ

is said to be extremal KMS at natural temperature β if it does not admit a convex
decomposition into states in Sβ — i.e. states that satisfy the KMS condition for
the same τ and β . The set of all extremal KMS states is denoted Eβ .

THEOREM 58. Let ϕ be a faithful normal state on a von Neumann algebra N and
τ be the unique group of automorphisms of N with respect to which ϕ satisfies the
KMS condition for some natural temperature β . Denote by Z the center N ∩N ′

of N . Then
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A. For every (t, Z) ∈ IR×Z , τt[Z] = Z .

B. For every positive non-zero element Z ∈ Z with 0 < Z < I ,

ψ(N) := ϕ(Z)−1ϕ(ZN) and χ(N) := ϕ(I − Z)−1ϕ((I − Z)N)

define two states ψ and χ on N that satisfy the KMS condition for the same
τ and β and provide a convex decomposition of ϕ .

C. For every ϕ that admits a convex decomposition ϕ = λψ + (1 − λ)χ into
states ψ and χ on N that satisfy the KMS condition for the same τ and β ,
there exists a unique positive non-zero element Z ∈ Z with ‖Z‖ ≤ 1 such
that for all N ∈ N

ψ(N) = ϕ(Z)−1ϕ(ZN) and χ(N) = ϕ(I − Z)−1ϕ((I − Z)N) .

Proof. As pointed out in remark 37, we may assume without loss of generality
that N is presented in standard form, so that there exists a cyclic and separating
vector Φ ∈ H for N with ∀N ∈ N : (Φ, NΦ) = ϕ(N) .

[A.] Z ∈ Z ⇒ ∀(t,N) ∈ IR × N , ϕ(N∗τt[Z]) = ϕ(τt[z]N∗) and thus ϕ being
KMS entails that ϕ(Nτt[Z]) is constant in t so that ∀ t ∈ IR : (NΦ, [τt[Z]−Z]Φ) =
0 . Φ being cyclic entails [τt[Z] − Z]Φ = 0 , and then Φ being separating entails
[τt[Z]− Z] = 0 .

[B.] ϕ being faithful and 0 < Z < I positive and non-zero entail 0 < ϕ(Z) < 1 ;
and, upon taking into account that Z and thus Z

1
2 belong to N ′ , one verifies that

ψ and χ are states onN and that they inherit from ϕ its KMS property. Moreover,
one reads immediately from their definition that ϕ = λψ(N)+(1−λ)χ(N) , where
0 < λ = ϕ(Z) < 1 .

[C.] Conversely, from ϕ = λψ(N) + (1 − λ)χ(N) , with 0 < λ < 1 one has
ψ ≤ λ−1ϕ and thus there exists an element X ∈ N ′ such ∀N ∈ N : ψ(N) =
(XΦ, NXΦ) , i.e. ψ is a vector state on N and thus is normal and majorized
by the normal functional λ−1ϕ . Hence the Sakai-Radon-Nikodym [Sakai, 1971,
proposition 1.24.4], entails that there exists some positive Y ∈ N with ‖Y ‖ ≤ 1
such that

∀N ∈ N : ψ(N) =
1
2
λ−1ϕ(NY + Y N) .

Suppose that there exists another element Ỹ ∈ N with the same properties. Let
then X = Y − Ỹ . We have then 0 = ϕ(X∗X +XX∗) and thus, since ϕ is a positive
linear functional and both X∗X and XX∗ are positive: ϕ(X∗X) = 0 . Since ϕ is
faithful, X = 0 i.e. Y = Ỹ i.e. Y is unique.

It remains to be shown that the assumptions of the theorem entail that Y also
belongs to N ′ . Since ϕ and ψ are KMS, they satisfy for all t ∈ IR : ϕ ◦ τt =
ϕ and ψ ◦ τt = ψ . Consequently

ψ(N) = ψ(τt[N ]) =
1
2
λ−1φ(τt[N ]Y + Y τt[N ]) =

1
2
λ−1φ(Nτ−t[Y ] + τ−t[Y ]N) .
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From the uniqueness of Y ∈ N which we just established, we have ∀ t ∈ IR :
τt[Y ] = Y . ϕ being KMS entails therefore ∀N ∈ N : ϕ(NY ) = ϕ(Y N) and thus
ψ(N) = λ−1ϕ(Y N) . Upon applying the KMS condition to both ψ and ϕ , we get
∀N ∈ N : NY = Y N i.e. Y ∈ N ′ . Clearly then λ = ϕ(Z) . The same argument
goes through with χ replacing ψ and (I − Z) replacing Z. �

The following characterization is an immediate consequence of the above theo-
rem:

COROLLARY 59. With the assumptions of theorem 58, the KMS state ϕ is ex-
tremal KMS iff N is a factor, i.e. iff N has trivial center: N ∩N ′ = |CI .

SCHOLIUM 60. With the assumptions of theorem 58, assume that ϕ is not ex-
tremal KMS, but that the center Z of N is generated by a family {Pk ∈ Z | k =
1, 2, ...} of mutually orthogonal projectors. Then there exists a unique decompo-
sition of ϕ into a convex combination

∑
k λk ϕk of states ϕk on N where the ϕk

are extremal KMS for the same dynamics τ and the same natural temperature β .

Proof. To say that ϕ is a KMS state that is not extremal KMS is to say that
there exist KMS states ψj and scalars µj ∈ (0, 1) such that ϕ =

∑
j µjψj . From

part C of the theorem, for every ψj there exists a positive Zj ∈ Z such that
∀N ∈ N : ψj = φ(Zj)−1φ(ZjN) . Since Z is an abelian von Neumann algebra
with discrete spectrum, every Zj may be written as

∑
k zkPk with zk ∈ IR+ and

the Pk are minimal projectors in Z . Hence the ϕk : N ∈ N → λk
−1 ϕ(PkN) ∈ |C

with λk = φ(Pk) are states on N . From part B of the theorem, these are still
KMS states for the same τ and β . Therefore, it only remains to show that the
states ϕk are extremal with respect to the KMS condition.

To see this, consider the decomposition H = ⊕kHk where Hk are the subspaces
{ΨH ∈ H | PkΨ = Ψ} . Since each Pk belongs to Z , the subspaces Hk are
stable under N and under N ′ , i.e. whenever X ∈ N or X ∈ N ′ , we have
∀Ψ ∈ Hk : XΨ ∈ Hk . Let then Nk = {PkNPk | N ∈ N} , N ′

k = {PkNPk |
N ∈ N ′} ; and note that these are von Neumann algebras acting on the space Hk
admitting there a cyclic and separating vector, namely PkΦ , such that ∀N ∈ Nk :
ϕ̃k(N) := (Φk, NΦk) defines a faithful normal state onNk ; it is thus the restriction
to this algebra of the state ϕ . Note further that for all t ∈ IR , Nk is stable
under τt . Since Nk ∩ Nk′ = |CIk (where Ik is the identity operator in Hk) ϕ̃k
is extremal KMS. Proceeding ab absurdo, suppose that ϕk itself is not extremal
KMS. Then there would exist some KMS state ψ on N and some λ ∈ (0, 1) such
that ψ ≤ λ−1ϕk . Denote by ψ̃k the restriction of ψ to Nk . We have then, in
particular, λ−1ϕk(N∗N) ≥ ψ([NPk]∗[NPk]) = ψk(N∗N) ; i.e. λ−1ϕ̃ ≥ ψ̃k . Since
ϕ̃k is extremal KMS and ψ̃k is KMS, the equality must prevail, i.e. λ−1ϕ̃ = ψ̃k ; and
since ϕ̃k and ψ̃k are states, λ = 1 , i.e. on (N)k : ψ̃k(N∗N) = ϕ̃k(N∗N) . By the
Schwartz inequality, we have for every N ∈ N , ψ̃k([PkNPk]∗[PkNPk]) ≤ ψ(N∗N) ,
and thus ψ ≥ ϕk . Together with the initial inequality, namely ψ ≤ ϕk (since we
know now that λ = 1), these two inequalities reduce to ψ = ϕk . Hence ϕk is indeed
an extremal KMS state on N . Since ϕk is extremal KMS on Nk , the restriction
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ψ̃k of ψ to this algebra must coincide with ϕ̃k ; and thus ϕk is maximal KMS on
N . Hence ϕ has been decomposed into a convex combination of extremal KMS
states. Uniqueness follows by contradiction. �

DEFINITION 61. A convex set C is said to be a simplex whenever every point in
C admits a unique convex decomposition into extremal points of C .

Recall that in two-dimensional Euclidean geometry, a triangle is a simplex; indeed
any point in the triangle obtains as a unique convex combination of points situated
at the vertices of the triangle. But a circle is not a simplex: the set of its extreme
points is the circumference of the circle, and given any point inside the circle, all
secants through this point give different convex combinations of extreme points.

REMARKS 62.

1. Scholium 60 may therefore be paraphrased by saying that under the assump-
tion that the spectrum Sp(Z) of the center Z is discrete, Sβ is a simplex; and
that the decomposition is a weighed sum with respect to a discrete probabil-
ity measure supported by the extreme points Eβ of the set Sβ of all normal
KMS states for the given dynamics τ and the given natural temperature β .
From the proof of the scholium, one checks that the latter statement extends
indeed to all normal states, and not just to those that are faithful.

2. In case Sp(Z) is not discrete, the above sum must be replaced by an integral,
and some measure-theoretical trimmings are necessary to specify the sense
in which ϕ defines a unique measure concentrated on the boundary of Sβ .
The general mathematical context in which these decompositions appear is
in the study of central measures, see [Takesaki, 1970a; Kadison and Ringrose,
1983/1986]. For the purpose of this essay, the simpler version just described
will suffice to anchor the conceptual structure of the theory governing the
unique decomposition of KMS states into their extremal components.

3. Note that the set of states on a quantum system described by the von Neu-
mann postulates is not a simplex: if a density matrix has at least one eigen-
value with multiplicity greater or equal to 2, its decomposition in pure states
is not unique. Hence the set of KMS states in quantum statistical physics
possesses a classical property that is otherwise not heard of in the quantum
realm.

4. It remains to demonstrate that this property is relevant to QSP; and thus
that QSP requires the consideration of situations for which the relevant rep-
resentations do not lead to factors, in contrast with the von Neumann for-
malism of quantum mechanics where the canonical equilibrium states lead
only to factor representations — recall the end of remark 34. This problem
is the object of the next subsection.
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5.7 Extremal KMS states, pure thermodynamical phases

The main argument one can advance to justify the claim that pure thermody-
namical phases be described in QSP as extremal KMS states originates in the
conjunction of three circumstances.

The first is based on subsections 5.3 and 5.4 where strong evidences were given
for the identification of canonical equilibrium states as KMS states.

The second is the fact that extremal KMS states are the elementary objects
in the KMS theory. This is reminiscent of the identification of atomic levels in
spectroscopy with irreducible representations of the group of symmetries of the sys-
tem, the famous “Gruppenpest” epitomized in [Wigner, 1931]. In mathematics,
this programme was extended to a systematic presentation of the familiar so-called
special functions where these functions now appear as bases of irreducible repre-
sentations of groups; cf. e.g. [Talman, 1968; Vilenkin, 1968]. Closer to the focus
of this essay, the early identification — in [Murray and von Neumann, 1936] — of
factors as the building blocks of the theory of von Neumann algebras proceeds from
the same principle: a methodological option confirmed by the central decomposi-
tion of a von Neumann algebra as a direct integral of factors; cf. e.g. [Kadison and
Ringrose, 1983/1986, theorem 14.2.2, pp. 1027–1028]. All the while, the group-
theoretical approach continues to contribute in sorting out qualitative clssification
problems in nuclear spectroscopy, and elementary particles high energy physics.

The third circumstance pointing to the description of pure thermodynamical
phases as extremal KMS states — i.e. KMS states the GNS representations of
which are factors, cf. corollary 59 above — is the mathematical fact that the
decomposition of a KMS state in extremal KMS states is unique; cf. scholium
60 and remark 62(2) above. In the context of QSP, this fact naturally directs
attention to the situation encountered in thermodynamics where an equilibrium
state decomposes uniquely into its pure thermodynamical phases.

Thus, this subsection is divided into two parts. In part A, the above specu-
lations are confronted with a model for QSP where everything can be computed
explicitly. In part B, the characterization of pure thermodynamical phases as
extremal KMS states is brought to bear on a famous argument by Landau of-
fering a fundamental microscopic distinction between solids and fluids in term of
space correlation functions. This exemplifies how the unique decomposition of
KMS states into their extremal components helps describe the coexistence of pure
thermodynamical phases in QSP and spontaneous symmetry breaking in systems
undergoing phase transitions. For further discussion of the latter, cf. [Liu and
Emch, 2005].

A. Quantum Weiss–Ising models for ferromagnetism
Recall first the results of Araki reported in subsection 5.3 concerning the absence
of a ferromagnetic phase transition: the unique KMS state for each of the models
covered there is extremal.

To check how this coincidence fares with systems that do exhibit several ther-
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modynamical phases, we turn now to a class of models that have a long history
in the physics of phase transitions [Weiss, 1907; Brout, 1965], and are accepted by
mathematicians to be amenable to a sufficiently rigorous treatment [Kac, 1968],
namely the Weiss–Ising models for ferromagnetism.

Consider a one-dimensional lattice Z where to every site k ∈ Z a quantum spin
σk is attached. To every finite string Λ ⊂ Z is associated a Hamiltonian

(104) H = −
∑
k∈Λ

[B + BΛ,k]σkz with BΛ,k =
1
2

∑
j∈Λ

JΛ,jkσj
z

where B is interpreted as a homogeneous external magnetic field parallel to a fixed
direction z ; and BΛ,k is an average magnetic field, the so-called “molecular” field,
experienced by the spin at site k resulting from all other spins in the region Λ .
The artificial assumption imposed on the models of the van der Waals or Weiss-
type, which makes them exactly solvable in the thermodynamical limit, is that
the strength of the interaction JΛ,jk decreases with the size |Λ| of Λ ; compare
this with the property |v(p, q)| ≤ c/|Λ| of the interaction of the BCS model in
subsection 5.1.

Adopting here a simplified version of [Emch and Knops, 1970], we will assume
that

(105) JΛ,jk =
{ |Λ|−1 J > 0 when j �= k

0 otherwise .

Upon controlling the thermodynamical limit |Λ| → ∞ , one finds that two ex-
tremal KMS states emerge when T < Tc where 1/kTc = βc = J−1 . These are
recognized by the following properties of a global observable — cf. definition 15
and scholium 23 — namely, the magnetization M , the three components of which

M i = weak op. limit |Λ|→∞
1
|Λ|
∑
k∈Λ

σk
i (i = x, y, z)

are defined in the corresponding temperature-dependent representation. They
satisfy

(106)
(i) Mx = My = 0

(ii) Mz = tanh[β(B + JMz)] .

REMARKS 63.

1. For the transverse components, Mx and My , (106.i) was to be expected
from the symmetry of the system. The interesting part is the result for the
component Mz parallel to the applied magnetic field: (106.ii) is the classical
self-consistency equation: the model exhibits a phase transition as there
exists a temperature Tc (with βc = J−1) below which Mz does not vanish
as B → 0 , but tends to a finite, temperature-dependent value, the so-called
spontaneous magnetization.
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2. Hence in the thermodynamical limit, the problem of determining the ex-
tremal KMS states of the model admits two new solutions, absent above Tc ;
these extremal KMS states exhibit the two opposite spontaneous magneti-
zations characteristic of the two pure thermodynamical phases familiar from
the treatment of the classical case in e.g. [Kac, 1968].

3. A phase transition has occurred at T = Tc and it is accompanied, for T < Tc ,
by a spontaneous breakdown of the flip-flop symmetry σk

z → −σk
z of the

local Hamiltonians (104).

4. One ought to note at this point that the treatment in [Kac, 1968] was in
the most orthodox spirit of classical statistical mechanics: an analysis by
steepest descent methods of the partition function in the limit |Λ| → ∞ .
The novelty in [Emch and Knops, 1970] was to consider also the evolution of
the x− and y− components of the quantum spins and to study the resulting
quantum dynamics in order to confront the interpretation of extremal KMS
states with results already known from a classical treatment.

As with the BCS model reviewed in subsection 5.1 above, which has also the
structure of a ‘molecular’ field model, some technicalities are involved here:
in the thermodynamical limit, the convergence of the evolution is estab-
lished only for the von Neumann algebras belonging to the representations
considered.

5. This simplified version of the model, where (105) is assumed, already allows
us to demonstrate the general features explored in this subsection. We may
nevertheless mention that in [Emch and Knops, 1970] JΛ,jk is allowed to
depend on the distance |j − k| , but only in such a way that for each k ∈
Z , there exists a constant ck such that

∑
k |JΛ,jk| < ck for every finite Λ

containing k , subject to the condition that ∀ j, k ∈ Z : lim|Λ|→∞ JΛ,jk = 0 ;
the set of thermodynamical phases then becomes more complex, but its
description still illustrates the adequacy of the decomposition account of
spontaneous symmetry breakdown.

6. We already pointed out — first in section 4.1 — that as a consequence
of the Liouville theorem of complex analysis, KMS states are necessarily
time-invariant. Nevertheless, as established in [Emch and Knops, 1970],
the present model admits extremal KMS states that are not extremal time-
invariant — i.e. KMS states that are convex sums of different time-invariant,
but not KMS, states — although these extremal KMS states do satisfy a very
strong clustering property with respect to space-translations. The occurrence
of extremal KMS states that are not extremal time-invariant reflects the
fact that the time-evolution is not asymptotically abelian. This is not an
unexpected peculiarity of the model since experience shows that asymptotic
abelianness for the group of time-translations is rarely satisfied in QSP —
although a few exceptions are known, among them the even part of the XY-
model discussed at the beginning of subsection 5.4, despite the fact that
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locality entails very strong asymptotic abelianness for the group of space-
translations.

The coexistence of liquid and gas — say vapour and liquid water — presents formal
similarities with the coexistence of magnetic phases oriented in opposite directions.
The lattice-gas models of classical statistical mechanics are treated in close anal-
ogy with those of their ferromagnetic counterparts: instead of attributing to each
site of a regular n-dimensional Ising model, a classical spin taking the values +1/2
and −1/2 , one considers a random variable indexed by the sites of the lattice and
taking the values 1 or 0 depending on whether the site is occupied by a molecule
or not; double (or higher) occupancy is ruled out by fiat in these models. Phe-
nomenologically, liquid-vapour coexistence curves in the phase diagram translate
closely to the coexistence curves in ferromagnetic materials. In particular both
present a critical point, precisely located in the phase space by the occurrence of
diverging fluctuations. For temperatures higher than the critical temperature, any
distinction between liquid and gas is untenable, and this state of matter is best
described as a fluid.

B. QSP brought to bear on the Landau argument
The situation encountered with the coexistence of fluid and crytalline phases of the
same substance — say water in its fluid phase and ice phase — is phenomenolog-
ically very different from the situation presented by a gas-liquid phase transition.
Here, no critical point has been located: the fluid-solid coexistence curve extends
indefinitely as pressure and density are increased. A heuristic argument for the
non-existence of a critical point for the fluid-solid coexistence curve was advanced
by Landau; see for instance [Landau and Lifshitz, 1958b, p. 260]. The argument
was taken up by Uhlenbeck in [Uhlenbeck, 1968, p. 17]: “Because the solid and
the fluid are with respect to long range order qualitatively different, there cannot
be a critical point, since by going around it this would imply that long range order
would appear gradually, which is impossible. This is the argument of Landau and
I find it completely convincing.” And yet, Uhlenbeck warns on the same page that
“one cannot escape the fact (intuitively evident, although not proved!) that there
is already long range order in the solid phase itself.”

In an impressive sequence of papers, Kastler et al. [1967] rose to the challenge;
the various assumptions of asymptotic abelianness, pervasive in these papers, was
shown to be dispensable in the version worked out in [Emch et al., 1970], which is
followed here.

The programme is to classify the extremal KMS states that appear in the de-
composition of a Euclidean invariant KMS state. Let A be the C∗−algebra ob-
tained as the C∗−inductive limit of local algebras A(Λ) over an absorbing net
F of finite regions Λ ⊂ IR3 (here ‘finite’ means finite volume: |Λ| < ∞ ). Let
α : t ∈ IR → αt ∈ Aut(A) describe an evolution; let ν : g ∈ IE3 → αg ∈ Aut(A)
describe the action of the Euclidean group IE3 ; and let ϕ be a KMS state on A
with respect to the evolution α for the temperature β ; ϕ is assumed to be invari-
ant under the action of the Euclidean group, i.e. ∀ g ∈ IE3 : ϕ ◦ νg = ϕ ; this
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condition is motivated by the phenomenological expectation that the underlying
interactions are Euclidean invariant.

It is convenient to assume further that ϕ is strongly transitive with respect to
the action of IE3 in the sense that the following two conditions are satisfied.

1. For any two states ψ and ψ′ appearing in the decomposition of ϕ in extremal
KMS states, there exists at least one g ∈ IE3 such that ψ′ = ψ ◦ νg .

2. For one — and therefore all — state ψ appearing in the decomposition of ϕ
into extremal KMS states, the isotropy subgroup Gψ := {g ∈ IE3 | ψ ◦ νg =
ψ} contains at least three non-coplanar translations.

Note that for any g ∈ IE3 and any ψ appearing in the decomposition of ϕ into
extremal KMS states, the state ψg := ψ ◦ νg also appears there; and that Gψg

=
g−1Gψg . Hence, up to conjugacy, all elements appearing in the decomposition of
ϕ have the same symmetry. This conjugacy class is denoted Gϕ , and is referred
to it as the intrinsic symmetry of ϕ . It is the part of the Euclidean symmetry
of ϕ that is preserved when ϕ is decomposed into its extremal KMS components.
Consequently, condition (1) is essentially one of convenience: if it were not satisfied,
one would first have to separate the decomposed states in classes of conjugate
elements, and carry out the analysis sketched below for each class separately.
Condition (2) excludes pathological cases which one does not want to consider
here. Mathematically, it strengthens condition (1) to ensure that the orbit of each
extremal state under the translation group IR3 ⊂ IE3 in the space of all states on
A is closed.

It is then proven in [Emch et al., 1970] that a Euclidean-invariant KMS state ϕ
that satisfies the above conditions must necessarily belong to one of the following
four classes.

The first class obtains when ϕ is already extremal KMS, i.e. its intrinsic sym-
metry is the group IE3 itself. This case occurs exactly when one — and thus all
— of the following equivalent conditions is satisfied:

1. ϕ is extremal IR3 invariant, i.e. cannot be decomposed into a convex combi-
nation of states that are invariant under all translations in IR3 .

2. The spectrum of the generator P of the unitary representation of IR3 canon-
ically associated to ϕ by the GNS construction consists of exactly one eigen-
value, namely k = 0 , and this eigenvalue is non-degenerate.

3. ϕ is uniformly clustering in space, i.e. : for every ε > 0 and A ∈ A there
exists a finite region of space Λ ⊂ IR3 such that

(107) ∀B ∈ A(Λc) : |ϕ(AB)− ϕ(A)ϕ(B)| ≤ ε‖B‖
where A(Λc) ⊂ A is the C∗−inductive limit of the local algebras A(Ω) with
Ω ∈ F and Ω �� Λ , (i.e. Ω ∩ Λ = ∅ ); see definition 27, scholium 29 and
corollary 30 above.
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In view of these properties, a state ϕ belonging to this class is intepreted as a
fluid phase.

To describe the other three classes, namely the strongly transitive Euclidean
invariant KMS states that do not describe fluids, let us focus now on the notion
of the intrinsic translational invariance of ϕ . For any state ψ that appears in
the decomposition of ϕ into extremal KMS states, let Gψ denote the subgroup
of Euclidean symmetries of ψ , and let Hψ = Gψ ∩ IR3 denote the subgroup of
space-translations that preserve ψ . As one reviews the definition of the conjugacy
classes one verifies that this group is indeed characteristic of the original state ϕ .
Note also that strong transitivity entails that IR3/Hψ is compact.

The second class of Euclidean, strongly transitive KMS states is now specified
by the following equivalent conditions, where ψ is any state appearing in the
decomposition of ϕ into its extremal KMS components.

1. Gψ is a crystallographic group.

2. ϕ is not extremal IR3−invariant, and Hψ is generated by three non-coplanar
translations.

3. With χ = ηIR3
[ψ] — where ηIR3

is any invariant mean over the translation
group IR3 — χ is η−clustering (see definition 22 above), but neither weakly
mixing nor even partially weakly mixing, i.e. χ satisfies

(108) ∀ A , B ∈ A : ηIR3
(χ(ν•[A]B)− χ(A)χ(B)) = 0

but does not satisfy any of the stronger conditions

(109) ∀ A , B ∈ A : ηIR3 |χ(ν•[A]B)− χ(A)χ(B) | = 0

(110) ∀ A , B ∈ A : ηIR1
∣∣∣ ηIR2

(χ(ν•[A]B))− χ(A)χ(B)
∣∣∣ = 0

(111) ∀ A , B ∈ A : ηIR2
∣∣∣ ηIR1

(χ(ν•[A]B))− χ(A)χ(B)
∣∣∣ = 0
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REMARKS 64.

1. Taken separately, each of the conditions (1–3) excludes that ϕ be a fluid
phase. Indeed, a fluid phase is extremal KMS, so that its intrinsic symme-
try is the Euclidian group IE3 , contradicting (1); a fluid phase is extremal
IR3−invariant, contradicting (2); a fluid phase is uniformly clustering (see
5.33), which implies that each of the relations (108–111) would be satisfied,
whereas (109–111) are not satisfied in the present phase.

2. The other two classes to which ϕ may belong are characterized as follows.
(109), if satisfied, would have entailed Hψ = IR3 , thus contradicting the
second part of condition (2). This would correspond to a situation where
the rotational symmetry is broken whereas the translational symmetry of
the state ϕ would be completely preserved in its decomposition into its ex-
tremal KMS components. Although this may occur in systems exhibiting
spontaneous magnetization, it is not immediately relevant to the purpose of
identifying the way in which the formalism distinguishes fluids from solids
in a world where fundamental interactions are invariant under the Euclidean
group IE3 .

Similarly, (110) or (111), if satisfied, would have entailed Hψ is continuous
in one or two direction(s) but discrete in the complementary direction(s).
Such situations have been envisaged also — as early as the mid 1930s, cf.
e.g. [Landau and Lifshitz, 1958b, p. 410] — but here again, their putative
existence does not bear directly on the problem at hand.

3. The space-averaged state χ , which is IR3−invariant by construction, nev-
ertheless keeps a memory of the symmetry of the state ψ from which it is
constructed. Indeed the discrete part of the spectrum of the generator Pχ of
the unitary group representation of IR3 , associated to the GNS construction
corresponding to χ , coincides with the reciprocal group of Hψ , namely with

(112) Hψ
∗ = {k ∈ IR3 | ∀a ∈ Hψ : k · a = 0 mod 2π}

which, in principle, is observable in X-ray diffraction patterns.

Upon keeping from the above what is relevant to the absence of a critical point in
the coexistence curve between fluid and solid, the analysis of the decomposition of
Euclidean invariant canonical equilibrium states into their pure thermodynamical
phase components provides a rigid relation between the clustering properties and
the geometric properties of these states. Namely: fluid phases exhibit a uniform
clustering property (107), while crystalline phases lead to the distinctly weaker
property of weak-clustering (108), thus vindicating the Landau argument.
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6 WHENCE AND WHITHER QSP?

This final section may serve as a summary, a conclusion, a collection of appendices
sharpening some aspects of the theory that have not been discussed in the main
text; and hopefully, as a constructive prospectus for territories beyond the scope
of this essay.

Let me summarize very briefly the story so far. First, recall that sections 1 to 3
reviewed some of the salient features that are variously treated in traditional texts
on QSP. Then, in sections 4 and 5, I argued that the algebraic formalism of the
KMS condition provides a well-defined syntax, the semantics of which supports
the following associations in equilibrium QSP.

• Canonical equilibrium states are described by KMS states, a notion that
translates naturally from finite systems to systems considered in the themo-
dynamical limit.

• Pure thermodynamical phases are described by extremal KMS states.

• Pure thermodynamical phase components that appear in the unique decom-
position of a canonical equilibrium state may have a symmetry lower than
that of the original state: only the manifold of the different contributing
phases reflects the original symmetry; cf. [Liu and Emch, 2005] where we de-
scribe the “decompositional account” of spontaneous symmetry breakdown
in the quantum theory of phase transitions.

Against this background, the material of the present section is presented in four
subsections. I first review the mathematical concept of a limit and its physical
interpretation as used in the main text. I then discuss again the notion of macro-
scopic observables, taking here a perspective that opens on the next subsection:
the quantum measurement problem. Finally, I present some remarks — prospec-
tive and/or revisionist? — on the pursuit of constructive confrontations between
mathematical and theoretical physicists in order that they better inform the wider
arenas where philosophers of science operate.

6.1 Four limiting procedures in QSP

In dealing with the topics just reviewed, and as early as in sections 2 and 3, at
least four different types of limits were encountered, alone or in concert.

1. the classical limit h→ 0 ;

2. the high temperature limit T →∞ ;

3. the thermodynamic limit |Λ| → ∞ ;

4. the van Hove limit {λ→ 0 and t→∞} with τ := λ2 t remaining finite.
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As the philosophical legitimacy of each of these four limits (or ‘limiting pro-
cedures’) has been variously questioned elsewhere, I ought to specify again — in
the vernacular, i.e. without an explicit mention of the traditional (ε, δε) — that
the limits were consistently understood in this essay to be controlled limits in the
sense of mathematics: you give me a tolerance, and I tell you the price; the smaller
the tolerance, the higher the price; but however small the error you are willing to
tolerate, there is a price under which you are guaranteed that the article will be
within what you decided you are going to tolerate. Mathematical physics adds to
this the requirement that the “price” be expressed in currencies recognized by the
putative laboratory technician. Let us examine successively the above four limits
from this perspective.

1. The classical limit.
The Planck constant is a fundamental physical constant: in cgs units h � 6.62 ×
10−27 ergsec; the familiar notation � := h/2π is used here. To say that it is small
is a “value judgement”, reflecting the energy scale which you believe is relevant for
the problem you wish to discuss. To illustrate the working of limiting processes,
and their physical meaning, let us examine a specific example, the classical limit
of a typically quantum phenomenon, the tunnel effect in which a particle of energy
E does “slip through” a barrier of height Vo > E . This effect was discovered in
1928 independently by Gamow and by Gurney and Condon [Gamov, 1928; Gurney
and Condon, 1928; Gurney and Condon, 1929] in their search for an explanation
of alpha-particle emission from heavy nuclei. The Josephson junction — an oxide
layer sandwiched between two superconductors — is a more recent manifestation
of this quantum phenomenon; cf. e.g. [Josephson, 1982]. Let us consider here the
simplest model, quantum tunelling through a square one-dimensional barrier.

One verifies immediately that the Schrödinger equation

(113)

[
− 1

2m�
2 d2

dx2 + V (x)
]

Ψ(x) = EΨ(x) with

V (x) =




0 if x < a
Vo if − a < x < a
0 if x > a

where 0 < a <∞ and 0 < Vo <∞

admits, whenever 0 < E < Vo , a solution of the form

(114) Ψ(x) =




A−eikx + B−e−ikx if x < a
Aeκx + Be−κx if − a < x < a
A+eikx if x > a

with

(115) k =
{

2mE

�2

} 1
2

and κ =
{

2m(Vo − E)
�2

} 1
2

where the relative ratio of the five coefficients A−, B−, A,B,A+ in (114) are deter-
mined by imposing four conditions, namely that Ψ and its derivative be continuous
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at the boundaries x = ±a . In particular, these conditions imply

A− = A+eika
1

4ikκ

[
(κ + ik)2e−2κa − (κ− ik)2e2κa

]
.

Then from the reverse triangle inequality |a− b| ≥ max{|a| − |b| , |b| − |a|} :∣∣∣∣A−
A+

∣∣∣∣ ≥ k2 + κ2

4kκ

(
e2κa − e−2κa

)
=

[
1
2

Vo√
E(Vo − E)

]
sinh 2κa

Since the term [...] is independent of � , let us emphasize the role of � by rewriting
the above formula as:

(116)
|A+|2
|A−|2 ≤ C [sinh 2κa]−2 .

From the definition of A± in (114), the left-hand side of (116) is to be inter-
preted as the transmission coefficient of the barrier. In the corresponding classical
model, 0 < E < Vo entails that this coefficient vanishes. Thus, to demand that
the quantum model approximates its classical counterpart is to require that the
quantum transmission coefficient be arbitrarily small, say

(117)
|A+|2
|A−|2 ≤ C [sinh 2K]−2

with K as large as one desires. To ensure that (117) is satisfied, the computation
leading to (116) shows that it is sufficient to have: κa > K , i.e.

(118) � < K−1 [2m(Vo − E)]
1
2 a .

Hence, the classical limit of the quantum system (113) now is controlled:

(i) mathematically, through the conjunction of (117) and (118);

(ii) physically, as (118) gives an estimate of its range of validity in terms of the
physical quantities that characterize this system

In this sense the classical limit is similar to the non-relativistic limit: the classi-
cal description emerges from the quantum theory in the same way as Newton’s
mechanics emerges from Einstein’s special relativity theory. The key to a proper
understanding is the evaluation of the domain of validity of the approximations.
Having done so, I have no qualm assuring my insurance agent that my car is not
going to tunnel out of my garage, nor do I worry about relativistic red-shift when I
drive my car in congested traffic. Such are the physical parameters that prevail in
my car, my garage and the town where I live; compare with [Gamov, 1940] where
Gamow pretends with didactic gusto that h � 1 ergsec or c � 15 km/hour.

2. The high temperature limit.
Following the Ehrenfests, I have repeatedly argued in this essay that in QSP, the
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classical regime emerges when the temperature is high enough. Typically, the
quantities that tell us the regime in which we operate are similar to (βh) with
β = 1/kT (where k is the Boltzmann constant k � 1.38× 10−16 erg degree−1).

To illustrate this point, let us review the results on the black-body radiation
(subsection 2.1) and the specific heat of solids (subsection 2.3).

We saw qualitatively that if hν � kT Planck’s formula of 1900, here (1), repro-
duces (5) which had been previously established by Wien in 1896 [Wien, 1896].
Quantitatively, Paschen and Wanner [Paschen and Wanner, 1899] had verified in
1899 that Wien’s formula is in agreement with laboratory data in the range of
visible light, i.e. for wave length λ = c/ν between 4000 Å and 7000 Å, for temper-
atures up to 4000 K; this is what we would call today the “quantum regime”. As
the temperature at the surface of the sun is about 6000 K, going to much higher
temperatures was then not an option. Nevertheless, as the ratio hν/kT is con-
cerned, raising T or lowering ν have the same effect; the latter means pushing the
observation into the infrared, which was possible at the time. Indeed, the following
year Lummer and Pringsheim [Lummer and Pringsheim, 1900] recorded system-
atic deviations from Wien’s formula when the wavelength reaches the range of 12
to 18 µ (recall 1µ = 10−6m and thus 12µ = 12 · 104Å, compared with ∼ 7 · 103Å
for visible red). This is the observation that prompted the purely classical deriva-
tion of the Rayleigh–Jones formula (6), and then Planck’s interpolation between
hν � kT (Wien) and hν � kT (Rayleigh–Jones). Experimentally, the passage
from Pashen and Wanner to Lummer and Pringsheim thus marks very sharply
in time (less than two years) the crossing of the boundary from the quantum to
the classical regimes. These two regimes are numerically characterized by their
distance |λ − λmax| from the wavelength λmax — or equivalently the frequency
νmax — at which the Planck distribution (1) passes through a maximum.

As for the specific heat of solids, upon revisiting equations (8) and (9) Debye
already verified that conclusion (10) can be sharpened to give the exact result

(119)
CV = 3R{4D(Θ

T )− 3(Θ
T )[ exp(Θ

T )− 1]−1}
where

D(x) =
∫ x
o

dt t3

et−1 and kΘ = hνo


 .

Scholium 2 was obtained by noticing that

D(x) �



1 for 0 < x� 1

1
5π4x−3 for x� 1

.

To go further than this, and determine the onset of the classical regime CV = 3R ,
requires one to notice two things. First, CV in (119) is a monotonically increasing
universal function of the variable Θ/T ; while it cannot be written in terms of
elementary functions, it can be computed numerically. Since Θ is known in term
of the cut-off νo on the vibrational frequencies of the crystal, its value can be
determined by mechanical means: for instance, at room temperature, Θ is about
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100 K (for lead) and about 400 K (for aluminium), with silver and copper in
between. For these, and many other metals, the measured values of the specific
heat fall remarkably close to the theoretical prediction (119); cf. e.g. [Wannier,
1966, fig.13.9, p.276]. This curve shows a monotonic and smooth passage from the
classical to the quantum regimes as the temperature decreases. Specifically, we can
now discuss quantitatively the onset of the classical regime. The exact expression
(119) entails that the first two terms in the expansion of CV for Θ/T � 1 give

(120) CV � 3R{1− 1
20

(
Θ
T

)2}
so that at room temperature T � 300 K, the correction to the classical value
CV = 3R ranges from about 0.6 % (for lead) to about 9 % for aluminium; both of
which are in good agreement with experimental data.

For other early recognitions of the emergence of the classical regime in high tem-
perature QSP, see subsections 2.4 and 2.6 where the classical ideal gas is recovered
as controlled high temperature limits of both the Bose and the Fermi quantum
gases.

3. The thermodynamical limit.
As its name indicates, the thermodynamical limit is designed to elicit various
macroscopic thermodynamical behaviours from microscopic mechanical models. I
find it convenient to separate here the problems addressed in non-equilibrium and
in equilibrium statistical physics.

a. Non-equilibrium physics. In the classical realm already, one appeals to the
large size of the systems considered to avoid the spurious appearance of recurrences
in the theoretical modeling of physical phenomena such as the thermodynamical
approach to equilibrium. For instance, to buttress Boltzmann’s kinetic theory of
gases, the Ehrenfests proposed the so-called dog-flea model, a stochastic model
later revisited by Mark Kac. This model is reviewed in [Emch and Liu, 2002,
section 3.4] where the results of a computer experiment are reported, involving N =
100 “fleas” jumping “at random” between two “dogs”: a tendency to approach
equilibrium is manifest during a few hundred jumps, whereas the frequency of
recurrences, which Kac showed to increase exponentially with N , is observed to
occur — as regularly as to be expected — over a range of several tens of thousands
of trials.

In the quantum realm, a model for an actual experiment, the nuclear free-
relaxation, is solved in subsection 3.3 above. Here again the model shows an
approach to equilibrium practically unaffected by a “recurrence time” that grows
as 2N , where N is the number of lattice sites in the system, a macroscopic CaF2

crystal. Hence the empirical justification for the limit N →∞ is that the relevant
time-parameter for the experimentalist is ∼ 21023

, which is indeed exorbitant;
accordingly, I could not discern from the laboratory [Lowe and Nordberg, 1957]
any concern about putative recurrences. The supporting analytic evidence is the
explicit size-correction given in equation (49) and discussed with some detail in
remarks 6.
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b. Equilibrium Physics. In equilibrium situations, the thermodynamical limit
is called upon to focus on properties of matter in bulk, so to speak navigating
the high seas, away from the shoals of boundary effects. This often requires some
elaborate rigging, in CSP as well as in QSP.

Roughly speaking, up to the middle of the twentieth century, this was achieved
by replacing sums by integrals, as in equations (13–14). As in other parts of
mathematical physics, this mathematical procedure is usually well under control,
albeit physics sometimes requires unusual precautions, as shown explicitly in the
caveat of equation (50).

Later on, especially in the modeling of phase transitions, when the emergence
of collective behaviour turned out to be essential for the understanding of the
phenomena at hand, and when existence questions were raised, more sophistication
was demanded. In particular, for the limit where the size of the system is allowed
to go to infinity, dimension enters the play; and then, in particular, the shapes of
the regions considered must be such that the ratio of the surface to the volume
goes to zero: cubes are fine; sponges are not. As indicated in the various models
presented in section 5, it is possible to carry out such limiting procedures explicitly
and successfully. The simplest examples are lattice systems, say spins on a lattice
Z
d . Examples of continuous systems are also given in this section 5; yet, in general,

such systems, say on IRd , require extra technical care to ensure spatial uniformity
and to avoid bundling effects; hence, in the latter cases the theory is not always
as fully controlled as one may desire; see nevertheless [Sewell, 2002]. Interactions
with extremely long range may pose further problems with regard to: (a) the
definition of the limiting state; and (b) the control of the limiting time evolution;
such situations were met in subsections 5.1 and 5.7.A.

4. The van Hove limit.
We encountered particular instances of this limiting procedure in subsections 3.5
and 5.4. But a more general discussion was postponed to the present section.

In a brillant transposition of a theme van Hove had heard played to justify the
Born approximation in the discussion of long-time asymptotic behaviour in scatter-
ing theory, he proposed in [van Hove, 1955] a variation allowing him to characterize
a regime where the time-scale of the irreversible macroscopic phenomena is em-
phasized over the time-scale of the underlying reversible, Hamiltonian microscopic
dynamics. Van Hove’s original presentations were conducted for specific models
by means of perturbation techniques, carried to all orders, in which he selected
for summation the “most divergent diagrams.” At first, his virtuoso performances
drew considerable scepticism; cf. e.g. [van Kampen, 1962]. The main problem
was to isolate the conditions under which the essentials of what would become
a theory may emerge from the contingent diagrammatics attached to the solu-
tion of particular models. Systematic mathematical treatments are now available
to show how a joint long-time/weak-coupling limit may lead from a conservative
unitary evolution to a contractive dynamical semi-group; cf. e.g. [Martin, 1979;
Davies, 1976a].
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In terms of the focus of this subsection, namely the control of limits that allow
one to ensure that the system considered is operating in a desired regime, here
exponential decay, one aims at proving a result of the following form; cf. e.g.
[Martin and Emch, 1975, section 4].

There exist finite constants τo > 0 and C > 0 such that for 0 ≤ λ2t ≤ τo :

(121)
∣∣∣∣ lim
|Λ|→∞

(Φ, Uo
−tUtΨ)Λ − (Φ, exp(−[Γ + i∆]λ2t)Ψ)

∣∣∣∣ ≤ λC

where Uo
−tUt describes the evolution in the so-called interaction picture, with Uo

t =
exp(−iHot) , Ut = exp(−i[Ho + λV ] t) ; Ho,H + λV,∆ are self-adjoint operators,
and Γ is not only self-adjoint, but also positive so as to describe decay in the
time range 0 ≤ τ := λ2t ≤ τo . Hence the term “long-time/weak-coupling limit”:
when the coupling constant λ is small enough [i.e. the RHS of 121 is small] the
evolution is approximated by the contractive semi-group S(τ) := exp(−[Γ+ i∆]τ)
with τ = λ2t ∈ [0, τo] , provided the time t is sufficiently large in the scale measured
by t � τ/λ2 .

The separation of the total Hamiltonian H = Ho+λV into an “unperturbed” or
“free” part Ho and an “interaction” λV must be justified. Van Hove proposed that
it is to be traced back to the fact that the observables of interest in irreversible
processes are macroscopic (see subsection 6.2 below), thus determining a joint
spectral resolution; then Ho appears as the “diagonal” part of H in this spectral
resolution. For instance, A =

∫
dkA(k)a∗(k)a(k) and Ho =

∫
dkε(k)a∗(k)a(k) .

This remark also helps justify the use of the interaction picture Uo
−tUt since it

entails that the observables of interest are invariant under the “free” evolution. As
the macroscopic observables are translation invariant, the notation

∫
dk is used to

suggest that the momentum representation corresponds to the spectral resolution
in which the observables and the free Hamiltonian are diagonal.

The understanding of the van Hove limit gained in the 1970s has since been
confirmed and extended; cf. e.g. [Bach et al., 2000; Derezinski and Früboes, 2005]
and references therein; for baselines [Davies, 1976a], [Emch and Liu, 2002, section
15.2] and [Alicki and Fannes, 2001].

Although I do not wish to elaborate on the following historical point, I may men-
tion incidentally that the use of the interaction picture helped van Hove discern in
his perturbation expansions some characteristic features of many-body physics by
which he suggested non-equilibrium QSP differ from the QFT supporting quan-
tum scattering theory. To this day, however, I am not sure whether van Hove’s
Delphian utterances have been properly digested into the corpus of contemporary
mathematical physics.

I should also mention here that coupled limits have been considered also in CSP.
An example is the Grad limit for classical gases in which the volume V is kept
fixed, the number of molecules N → ∞ , and the cross-section of the molecules
σ : = π d2 → 0 (thus the volume of each molecule v(∼ d3) → 0 and the density
of the gas ρ : = N

V → ∞ ), while the mean-free path λ = V
Nd2 is kept constant;

in [Grad, 1958], Grad proposed this limit as a mean to derive the Boltzmann
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equation. For further references relative to the latter problem, see [Uffink, 2006,
section I.6.2] or [Emch and Liu, 2002, section 3.3]; and in particular, for the 2-
dimensional Lorentz gas (with now σ = 2d), cf. [Martin, 1979] where it is pointed
out that the Grad limit and the van Hove limit (in a form of it adapted to this
model) are equivalent in one important sense: they both predict the same ratio
between the macroscopic time-scale validated by observations, and the microscopic
time-scale provided by the mean free time between two successive collisions.

The related philosophical issues about the roles that asymptotic reasoning plays
in explanation, reduction, and emergence are cogently discussed in [Batterman,
2002a]. The above four limiting procedures may bring additional water to this
epistemological mill; see already [Grad, 1967].

In closing this subsection, I should at least mention coarse-graining, yet an-
other procedure that has been transferred from the classical to the quantum realm
[van Kampen, 1954; Emch, 1964]. One of the reasons for not bringing it up in
this essay is that I did not need it for the considerations I developed here. And
the reason for this may be that I have come to believe that the primacy of coarse-
graining has been largely superseded by the syntax of infinite systems which allows
one to bypass several awkward issues about the relations between the micro- and
macroscopic worlds; see for instance in subsection 6.3 below. Yet, as with the ther-
modynamical limit, coarse-graining helped explore those macroscopic properties
one wishes to see emerging from finer descriptions; in so doing, it also emphasizes
that distinguishing differences of scales or tempi enables smooth negotiations of
such passages.

6.2 Macroscopic observables

Coming back to the general formalism, assuming that the thermodynamic limit has
been taken, and concentrating on space-translations, subsection 3.5 emphasized
one feature that is new to quantum ergodic theory. Space-averaged observables are
essential observables in the sense of the theory of superselection sectors prompted
by [Wick et al., 1952], i.e. they commute with all quasi-local observables and
among themselves. This is yet another classical aspect of quantum theory. The
specific classical description that emerges in this manner depends on the global
preparation of the system (but is insensitive to local perturbations) as the very
definition — and values — of these space-averaged observables depends on the
translation-invariant state ϕ of the system one considers. This aspect of quantum
ergodic theory shows up as a direct consequence of the “locality” assumed in the
Haag–Kastler axioms.

Hence it is proper to regard the emergence of a classical macroscopic descrip-
tion out of a quantum microscopic description as a consequence of translation-
invariance and locality; cf. subsections 3.5.B and 5.7. As we saw, the passage to
the thermodynamical limit and the attendant emergence of macroscopic observ-
ables allow one to discern the simultaneneous existence of several thermodynamical



Quantum Statistical Physics 1163

pure phases, as for instance the non-vanishing magnetization in zero magnetic field
signals the presence of a permanent magnet. Similarly, the laboratory observation
of a discontinuity in the derivative of the isotherms at the ends of the Maxwell
plateau is better understood if one takes the thermodynamical limit: otherwise,
the isotherms are analytic all along and the theoretical description of their experi-
encing so extreme a bend is simply neither convenient nor useful when considering
a cup of tea. And again, nobody would claim that when receiving their drinks
they recognize the ice-cubes only because the size of these is infinite ... which,
mercifully, it isn’t. Yet, the Landau criterion for distinguishing a solid from a
fluid (see subsection 5.7.b) is strictly valid only when the thermodynamical limit
is considered. This is a paradox only when the definition of limits is forgotten;
here as elsewhere in physics, the key to the proper understanding of limits lies in
their manifesting the emergence of qualitatively different regimes.

For time-averaged observables, the situation is more complicated. Recall some
basic facts. To any time-invariant state ϕ the GNS construction associates a
representation πϕ of the C∗−algebra A of quasi-local observables, and a unitary
representation of the time evolution under which the von Neumann algebra ob-
tained as the weak-operator closure of πϕ(A) , namely Nϕ : = πϕ(A)′′ , is stable.
Then, while the time-average of an observable always belongs to Nϕ as does its
space-average, the time-average now also belongs to the commutant Nϕ′ = πϕ(A)′

of this algebra, and thus to its center Zϕ := πϕ(A)′′ ∩ πϕ(A)′ , if and only if the
evolution is η−abelian. The latter condition — see equation (61) — may be sat-
isfied in some particular models, but its status is as yet too precarious to enshrine
this condition as a general “axiom” on the same footing as “locality”.

In spite of the limitation just described, some of the remaining ergodic properties
of observables under the time-evolution, together with some of the applications of
the theory, were discussed in subsection 3.5.A.

6.3 The quantum measurement process viewed from the perspective
of QSP

The technical literature on quantum measurement underwent some striking de-
velopments in the 1970s — cf. e.g. [Hepp, 1972; Bell, 1975; Whitten-Wolfe and
Emch, 1976]; and also [Emch, 2003; Sewell, 2005] — in part as a consequence of
the advent of the algebraic approach to QSP.

Insofar as there was a consensus on what the problem was, the original doctrine
is best expounded in Wigner’s careful exegesis of what he called the “orthodox”
theory of von Neumann [von Neumann, 1932c]; Wigner’s papers are collected in
[Wigner, 1997, Part II] and [Wigner, 1995, Part II]; Wigner’s positions on the
subject were last stated in [Wigner, 1984]. Some of the philosophical issues are
outlined in [Dickson, 2006].

A renewal in the understanding and implementation of several of the basic
tenets of the doctrine was largely motivated by two critiques repeatedly advanced
by Wigner himself. The first critique was that “to increase the accuracy of the
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measurement one has to use a very large measuring apparatus” [Wigner, 1995, p.
177] or “the large size of the apparatus appears to be essential for the possibility
of a measurement” [Wigner, 1995, p. 178]. The second critique is the problem of
infinite regress — the so–called Wigner’s friend argument; cf. e.g. [Wigner, 1995,
p. 215] — that follows from the necessity “to consider the system that has been
called, so far, the apparatus, to be the object of the measurement. In other words,
one will bring this apparatus into interaction with a new measuring object ... [and
so on]”; [Wigner, 1995, pp. 208-9]. As this does not appear to be a problem with
which one is usually concerned in the analysis of classical measurements, Wigner
reiterated a statement he attributed to Fock, but which he said he believed to
be part of the teaching of the “Copenhagen school”, namely that: “Measuring
instruments must be described classically”; of singular relevance to the present
essay, this quote is taken from a paragraph Wigner entitled “Is the measuring
apparatus macroscopic?” [Wigner, 1995, p. 205].

The reason I believe to be at the core of this awkwardness is that in Wigner’s
heydays, physicists were still in awe of a perceived dichotomy between the classical
and the quantum worlds. Hence a new branch of the literature on the quantum
measuring problem could develop when a solution of continuity was found that
bridges these two descriptions — quantum and classical — of the one world in
which we live. This happened when the conceptualization of the physical role of
limiting proceedures came under control and, in particular, the concept of macro-
scopic observables was understood; see subsections 6.1 and 6.2 above, references
therein, and [Landsman, 2006]. I claim that the concepts developed to deal with
QSP can help construct a measuring apparatus that is described in quantum terms
and yet behaves, qua measuring apparatus, in a classical regime. I will now indi-
cate how at least this part of the conceptual problems associated with quantum
measurement has been clarified.

Let AS be the algebra of observables for the system to be measured, and let
B ⊂ AS be an abelian subalgebra, the self-adjoint elements of which are the
observables of interest. In the interest of formal simplicity I make here the following
assumptions, parts of which are easy to dispense with.

• AS contains a unit IS and is a collection of finite-dimensional matrices.

• The spectrum of B is non-degenerate; hence every observable B ∈ B is of the
form B =

∑
k bkQk with Qk = Q∗

k ; QkQl = δklQk ;
∑
k Qk = I ; and dim

Qk = 1 .

Initially, the system of interest is in the state ϕS : A ∈ AS → TrρA ∈ |C , and we
want the measuring process to determine, for all B ∈ B the values ϕS(B) , i.e. for
all k , the values λk = ϕS(Qk) , so that we can compute ϕS(B) =

∑
k bkλk .

For this measurement, a team of quantum engineers will be asked to build
a dedicated measuring apparatus described by an algebra AM with self-adjoint
“pointers” Mk which are in bijective correspondence with the Qk . They prepare
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this apparatus in the state ϕM . For simplicity, they assume that their AM contains
a unit IM and that they arrange for

∑
k Mk = IM . And finally, they try to build

an interactive Hamiltonian mechanism such that when the system of interest and
the apparatus are brought into contact the initial state ϕo = ϕS⊗ϕM on AS⊗AM
will evolve in such a manner that the following two conditions are satisfied:

(a) concerning the measuring apparatus:

(122) ∀Ml :




ϕM (Ml) −→ ϕp(Ml) =
∑
k λkψk(Ml) where

ψk(Ml) = δkl with no dispersion
;

(b) concerning the system to be measured:

(123) ∀AS ∈ AS :




ϕS(AS) −→ ϕp(AS) =
∑
k λkϕk(AS) where

ϕk(AS) =
{

ϕS(Qk)−1ϕS(QkASQk) when λk �= 0
ϕS(AS) when λk = 0

.

Let me comment on these design requirements. Note first that (122) would
deliver the values λk = ϕS(Qk) from which one computes the expectation values
ϕS(B) of all observables for the measurement of which the apparatus was designed.
I will specify later — see (125) — what is meant by the requirement that the result
of the measurement be “without dispersion”, i.e. formally ϕp([X−ϕp(X)I]2) = 0 .

To relate the requirement (123) to the familiar textbook description of the
measuring process, consider briefly the particular form it takes in the von Neumann
framework where ϕS is a pure state on the algebra AS = B(HS) and the Qk are
one-dimensional; let {Φk} be an orthonormal basis in HS with QkΦl = δklΦk ; in
term of this basis, one can write, without loss of generality ϕS(AS) = (ΦS , ASΦS)
with ΦS =

∑
k ckΦk ; and λk = |ck|2 . Then (123) takes the form ϕp(AS ⊗ IM ) =

Tr(ρpAS) with ρp =
∑
k |ck|2Qk . Hence, viewed from AS , the pure state-vector

ΦS evolves to the mixed density matrix ρp . In this sense, (123) is the general form
of the so-called von Neumann (non-selective) collapse postulate for the case where
the initial state of the system is not necessarily a pure state.

Note that (122) and (123) are reduced descriptions of the evolution of the state
ϕo : these requirements demand only that the evolution of special observables be
followed; these special observables are: (a) the pointers Ml of the apparatus; and
(b) all observables AS pertaining to the system S . In particular, the requirement
(123) would not be incompatible with a measuring process (which we denote as
−→ ) driven by a unitary evolution of the composite system ∪ apparatus .

In line with von Neumann’s “relative frequencies” view of quantum probability
— explicitly inspired by von Mises [von Neumann, 1932c, fn. 156] — the general
form (123) applies best to a measurement performed on a beam of particles rather
than separately on individual particles. Hence — in line with the interpretation
of ‘states of physical systems’ stated in subsection 3.1 — this description of the
measuring process understands that the initial state of the system S is viewed
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as a summary of its preparation. For instance, in the historical Stern–Gerlach
experiment, an incident beam of silver atoms was produced by evaporation from
a heated oven; cf. [Jammer, 1966, p. 133]. Thus, what the experimentalists knew
was the direction of the beam and the temperature of the oven: the latter surely
a macroscopic notion! Similarly, the initial state of the measuring apparatus is
viewed here as the result of its preparation; adhering to this pragmatic interpreta-
tion, one ought not to impose on the initial state of a (large!) measuring apparatus
that it be pure: plainly this would require an exhorbitant amount of information
to be entered in its preparation — information that ought not to be actually nec-
essary for the adequate performance of measurements aiming to collect the simple
microscopic information described by the distribution {λk} .

Due to all sorts of pesky circumstances — e.g. the recurrences present in finite
systems or the intrusion of the “Wigner’s friend” (introduced earlier in this sub-
section) — our apparatus builders would be exposed to dire frustrations, unless
they be granted enough time and space so that the following idelaization is a close
enough approximation — to a degree chosen in advance — of their implementation
of the measuring process ϕo −→ ϕp , namely:

(124) ϕp(X) := lim
t→∞ lim

|Λ|→∞
ϕo(αΛ

t [X]) with X =




AS ⊗ IM
or
IS ⊗MΛ

k

,

choosing the pointers so that in the thermodynamical limit, lim|Λ|→∞ Mk exist
and define ‘essential’ observables — in the sense of subsection 6.2 above; in partic-
ular, the reader may want to review the connection with superselection rules — i.e.
observables that the orthodox theory would construe to be classical. The require-
ment “without dispersion” in (122) may now be specified, namely one demands
that

(125) lim
t→∞ lim

|Λ|→∞
[
ϕo(αt[(Mk]2)Λ − {ϕo(αt[(Mk])Λ}2

]
= 0 .

There is even an additional benefit in allowing the thermodynamical limit in
(124), namely that one may demand that the experimental set-up be such that the
result (124) of the measurement be empirically insensitive to local perturbations in
the preparation of the initial state ϕM of the apparatus. This requirement means
that ϕp(X) in (124) do not change when the initial state ϕM of the apparatus is
replaced by any state ψM : A ∈ AM → ϕM (D∗AD) ∈ |C where D is any (quasi-
)local element of AM satisfying the normalization ϕ(D∗D) = 1 ; or, even more
generally, by any state ψM normal on the von Neumann algebra πϕM

(AM )′′ . Such
robustness pertains to the pragmatic demand that the preparation of a large(!)
measuring apparatus be reasonably simple.

Here ends — at least for the main purpose of this subsection — the list of spec-
ifications demanded from our quantum engineers when constructing a measuring
device.

The contribution of algebraic QSP to the solution of the quantum measurement
problem is this: the above programme can be completely implemented in the
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sense that specific and rigorously controllable models have been built satisfying
all of the above specifications. These models therefore establish the applicability
of the algebraic approach to the foundations of physics beyond the limitations
of what Wigner called the orthodox theory. In sum, this approach encompasses
the description of classical regimes unknown within the confines of the orthodox
theory; cf. e.g. [Hepp, 1972; Whitten-Wolfe and Emch, 1976; Emch, 2003; Sewell,
2005] and other references listed in [Landsman, 2006, subsection 6.6].

An objection to (124), namely that real-world laboratories are finitely extended
in space and in time is seductive. But it neglects the main understanding that
presides over taking a limit: recall subsection 6.1 above. Here also the limit defines
an asymptotic regime; thus, the control of the limiting procedures allows to take
into account that good experiments do require expenses in room and allotments of
time, each to be evaluated in terms of the precision to which one aims. The mea-
suring process involves a particular instance of a general macroscopic phenomenon,
the “approach to equilibrium”. In subsection 6.1(3) above, I commented again on
the role of the thermodynamical limit |Λ| → ∞ in the emergence of this regime.

The role of the subsequent limit t → ∞ deserves a further comment in the
context of the measurement process: it does not say that an infinite time is required
to register the result of the measurement, but rather, in accordance with our
general understanding of the role of limits, the existence of the limit t→∞ asserts
that for every ε > 0 , there exists a time Tε that can be evaluated, and is such
that the measurement has been completed for ever, within the required precision ε ,
when t > Tε . Thus in contrast with the constraint of the orthodox theory requiring
that the unitary evolution be sharply interrupted at the ‘end’ of the measurement
process, our quantum engineers do not need to make provisions for switching off
the measuring device. Now, not taking first the limit |Λ| → ∞ , only requires them
to review their estimate of the effects of the finite size of the apparatus; from this
estimate, they evaluate how large the apparatus must be so as to allow a generous
time TΛ before which they have to switch off the measurement and avoid some
nasty kickback. The controlled limit |Λ| → ∞ is thus not a pragmatic limitation
to the validity of the theory any more than is the theoretical implementation of
the thermodynamical limit (N →∞ , |Λ| → ∞ with D := N/|Λ| fixed) to remove
astronomically long recurrences from the description of the cooloing down of your
everyday cup of coffee. The description obtained in the thermodynamical limit is
closer to the pragmatic account of the observed cooling down than would be its
description as occuring in a finite system: the latter description would indeed be
hampered by superfluous, irrelevant details. To sum up, in the actual construction
of models for the measuring process, the problems that our quantum engineers
encountered were not with satisfying the ancillary condition Tε � τ � TΛ where
τ denoted the laboratory time-scale on their wristwatch. See nevertheless [Bell,
1975].

While the models do prove that all the demands of the above programme are
compatible, it is in the very nature of models that they cannot prove that
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(i) the conditions of the programme are necessary to an understanding of the
measuring process; nor

(ii) the conditions of the programme are sufficient, as other demands may be
made, and other conditions may need to be required.

Concerning remark (i), the programme presented above emphasizes possible
contributions that QSP can bring to an understanding of the quantum measure-
ment process. One specific aim was to avoid having the theories of the measure-
ment process beached on a conceptual sandbar between the quantum and classical
worlds: the programme exploits circumstances where QSP shows how the quan-
tum description of the one world encompasses conceptually important classical
aspects. Thus the irreducible quantum/classical dichotomy has now faded into
more comprehensive views, QSP being one of them. The emergence of classical
behaviour in quantum theory is also one of the significant aspects of the deco-
herence programme, although the likely confluence of these two approaches has
not yet gained universal acceptance. For a fair description of the latter issues,
and their bearing on the measurement problem, I would recommend [Landsman,
2006]; and for a vivid and somewhat confrontational exchange on the relevance of
decoherence in this context, [Anderson, 1994; Adler, 2003].

Remark (ii) above has at least two aspects. One of these aspects is that while
the models that establish the internal consistency of the programme discussed in
this subsection are treated with mathematical rigour, they can hardly be viewed
as sufficiently realistic to satisfy our colleagues on the laboratory floor. Another
aspect of the above remark (ii) on sufficiency, is that I do not know how the
algebraic QSP would be helpful for formulating some of the remaining challenging
questions still open in the theory of quantum measurement. If I had to single out
one among these, I would direct attention first to measurements now “routinely”
performed on an individual quantum system; cf. e.g. [Rauch and Werner, 2000]
or [Rauch, 2005]. Whether the so-called “many worlds” and “consistent histories”
approaches are really called for here is too wide a question to be addressed in this
essay on QSP; cf. [Dickson, 2006; Landsman, 2006].

6.4 Mathematical physics vs. theoretical physics

Several largely unsolved problems may have been overshadowed by the abundant
literature on the “return to equilibrium” of small or local deviations that are driven
back to equilibrium by a thermal bath; for models of such coupled systems, see
paragraphs A and C in subsection 6.4.

Most of the problems discussed below occur also in classical statistical physics;
QSP offers little to alleviate them, but a little it does do, and here is how.

The first of these problems is to avoid an infinite regress: if a (small) system
of interest is driven to equilibrium by a (large) thermal reservoir, whence is the
reservoir getting its own canonical equilibrium and temperature? Rather than a



Quantum Statistical Physics 1169

conceptual answer to this question, the KMS condition was originally conceived
as a clever, but formal, transcription — from theoretical to mathematical physics
— that turned out to be a wonderfully useful organizing tool.

This very success demanded that the KMS condition be given a deeper physical
justification. Substantial answers were found later, diversely expressed as several
stability conditions. The latter were presented in subsection 5.4 in an order in
which their formulations increasingly sound more like bona fide variational prin-
ciples. This development is thus in line with the widely held opinion that “a
variational principle is considered to be the supreme form of a law of physics”
[Itô, 1987, Art. 441]. This is good, but as in other fields, a philosophical question
persists as to whether any science ought to be solely, or ultimately, founded on
variational principles as mechanics and so many sciences have since the eighteenth
century. Theoretical physics may have offered some other considerations in this
regard, such as the “big-bang” and “decoherence,” but their explanatory value,
consistency and adequacy remain to be proven. In the meantime, it is not unrea-
sonable to prefer the updated variational principles with which algebraic QSP has
proven able to refine their more traditional versions.

A second problem raised by the physics literature on the return to equilibrium
concerns the description of global transport phenomena such as heat conduction
and electric resistivity due to the interactions between electrons and phonons or
random impurities in metals. Van Hove proposed a programme — of which the
van Hove limiting procedure is a part, see subsection 6.1(4) above — to approach
this type of question. One of the remaining problems is to produce mathemat-
ically clean arguments for the claims that are made. An even larger problem
still to be fully mastered is to go beyond the contingencies of particular ad hoc
models. This will require one to explain in physical terms amenable to a math-
ematical description the general microscopic properties actually responsible for
a realistic delineation of the time-scales and/or regimes in which one observes
such macroscopic phenomena; the first examples that come to mind are New-
ton’s “cooling law” and Fourier’s “heat” theory, i.e. the exponential tempera-
ture equilibration of temperatures and the flow of heat that governs the steady
temperature distribution in materials placed between sources at different tem-
peratures. The materials presented in this essay, particularly in subsections 3.5
[e.g. eqn. (57)] or 5.4 [e.g. eqn. (86)], exemplify some of the first steps that
have been taken profitably along this road. Further, and promising but still for-
mal, results have been obtained in [Eckman et al., 1999; Bonetto et al., 2000;
Bach et al., 2000], yet much remains to be done to bridge these with earthly con-
cerns for an understanding that would allow one to compute realistic estimates of
the value of specific material transport coefficients.

A third and perhaps more troubling problem. Time-reversal or not [Earman,
2002; Fredenhagen, 2003], even in my dreams I have not yet seen any “cosmological
arrow of time” flying convincingly through the landscape of the C∗−algebraic
approach developed for QSP ... but neither may such a flight be ruled out as a
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heretical foray into this formalism [Buchholz, 2003].

A fourth direction in which to look for extensions of the programme of QSP is
concerned with situations arising far away from equilibrium.

Yet a fifth arena for investigations has opened, where a connection with the
algebraic approach to QSP is emerging. It will indeed be interesting to observe
whether and how the maturing mathematical theory of quantum stochastic pro-
cesses [Parthasarathy, 1995; Hudson, 1998] will or may throw new light on the
reduction process of statistical mechanics.

Finally, QSP has of course found most of its pragmatic confirmation in the
praxis of condensed matter physics and the extension of the latter into the study of
complex phenomena. However, getting enmeshed here into the technical concrete
details indispensable to the full mastery of this praxis would have carried us much
beyond the confines of this essay. A richly documented overview of the scope of
this field of enquiry may be found in [Anderson, 1994]. Yet, as with [Feynman,
1998], such matters need to be taken up again to weave in more threads and knots
as well as to incite new philosophical reflections:

Vingt fois sur le métier remettez votre ouvrage ...
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[Buchholz et al., 2002] D. Buchholz, I. Ojima and H. Roos. Thermodynamic properties of non–
equilibrium states in quantum field theory. Annals of Physics, 297:219–242, 2002.

[Bunge, 1967] M. Bunge, editor. Delaware seminar in the foundations of physics. Springer, New
York, 1967.

[Caldirola, 1961] P. Caldirola, editor. Ergodic theories. Academic Press, New York, 1961.
[Catto et al., 1998] I. Catto, C. Le Bris and P.-L. Lions, The mathematical theory of thermo-

dynamical limits: Thomas–Fermi type models. Oxford University Press, Oxford, New York,
1998.

[Chandrasekhar, 1931a] S. Chandrasekhar. The maximum mass of ideal white dwarfs. The As-
trophysical Journal, 74:81–82, 1931. See also [Chandrasekhar, 1931b], [Chandrasekhar, 1931c],
[Chandrasekhar, 1932].

[Chandrasekhar, 1931b] S. Chandrasekar. The highly collapsed configuration of a stellar mass.
Monthly Notices Royal Astronomical Society, 91:456-466, 1931.

[Chandrasekhar, 1931c] S. Chandrasekar. The density of white dwarf stars. Philosophical Mag-
azine, 11:592–596, 1931.

[Chandrasekhar, 1932] S. Chandrasekar. Some remarks on the state of matter in the interior of
stars. Zeitschrift für Astrophysik, 5:321–327, 1932.

[Chandrasekhar, 1958] S. Chandrasekhar. An Introduction to the study of stellar structure.
Dover, New York, 1958. (1st ed. University of Chicago Press, 1939).

[Chrétien et al., 1968] M. Chrétien, E.P. Gross and S. Deser, editors. Statistical Physics, Bran-
deis Summer Institute, 1966. Gordon and Breach, New York, 1968.

[Churchill and Brown, 1990] R.V. Churchill and J.W. Brown. Complex variables and applica-
tions, 5th ed. McGraw-Hill, New York, 1990.

[Clifton and Halvorson, 2001] R. Clifton and H. Halvorson. Are Rindler quanta real? Inequiva-
lent particle concepts in quantum field theory. British Journal for the Philosophy of Science,
52:417–470, 2001.

[Cohen, 1962/1968] E.G.D. Cohen, editor. Fundamental problems in statistical mechanics, i, ii.
North–Holland, Amsterdam, 1962, 1968.

[Connes, 2000] A. Connes. A short survey of noncommutative geometry. Journal of Mathemat-
ical Physics, 41:3832–3891, 2000.

[Cornfeld et al., 1982] I. Cornfeld, S.V. Fomin and Ya.G. Sinai. Ergodic theory, Springer, Berlin,
1982.



Quantum Statistical Physics 1173

[Davies, 1972] E.B. Davies. Diffusion for weakly coupled oscillators. Communications in Math-
ematical Physics, 27:309–325, 1972.

[Davies, 1974] E.B. Davies. Markovian master equations I. Communications in Mathematical
Physics, 39:91–110, 1974.

[Davies, 1976a] E.B. Davies Quantum theory of open systems, Academic Press, London, 1976.
See also [Davies, 1976b], [Davies, 1976c].

[Davies, 1976b] E.B. Davies. Markovian master equations II. Mathematische Annalen, 219:147–
158, 1976.

[Davies, 1976c] E.B. Davies. Markovian master equations III. Annales de l’Institut Henri
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Neumann). Gauthier–Villars, Paris, 1957.
[Domb and Green, 1972] C. Domb and M.S. Green, editors. Phase transitions and critical phe-

nomena, I: exact results. Academic Press, London, New York, 1972.
[Donkor et al., 2003] E. Donkor, A.R. Pirich and H.E. Brandt, editors. Quantum information

and computation, International Society for Optical Engineering (SPIE), (2003).
[Dubin and Sewell, 1970] D.A. Dubin and G.L. Sewell. Time–translations in the algebraic for-

mulation of statistical mechanics. Journal of Mathematical Physics, 11:2990–2998, 1970.
[Dunford and Schwartz, 1964] N. Dunford and J.T. Schwartz. Linear operators, part i; General

theory. Interscience, New York, 1964.
[Earman, 2002] J. Earman. What time–reversal invariance and why it matters. International

Journal for the Philosophy of Science, 16:245–264, 2002.
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atomo. Atti della Accademia Nazionale dei Lincei, Rendiconti, 6:602-607, 1927. See also
[Fermi, 1928].

[Fermi, 1928] E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des
Atomes und ihre Anwendungen auf die Theorie des periodischen Systems der Elemente.
Zeitschrift für Physik, 48:73-79, 1928.

[Feynman, 1998] R.P. Feynman. Statistical mechanics, a set of lectures. Addison Wesley, Read-
ing MA, 1998.

[Fokas et al., 2001] A. Fokas, A. Grigoryan, T. Kibble and B. Zegarlinski, editors. Mathematical
Physics 2000. International Press of Boston, Somerville MA, 2001.

[Ford et al., 1965] G.W. Ford, M. Kac and P. Mazur. Statistical mechanics of assemblies of
coupled oscillators. Journal of Mathematical Physics, 6:504–515, 1965.

[Fowler, 1926] R.H. Fowler. On dense matter. Monthly Notices Royal Astronomical Society,
87:114, 1926.

[Fredenhagen, 2003] K. Fredenhagen. Locally covariant quantum theory, in Proceedings of the
International Conference on Mathematical Physics, Lisbon, 2003.

[Fredenhagen and Haag, 1990] K. Fredenhagen and R. Haag. On the derivation of Hawking
radiation associated with the formation of a black hole. Communications in Mathematical
Physics, 127:273–284, 1990.

[Friedrichs, 1953] K.O. Friedrichs. Mathematical aspects of the quantum theory of fields. Wiley,
New York, 1953.

[Gamov, 1928] G. Gamow. Zur Quantentheorie des Atomkernes. Zeitschrift für Physik, 51:204–
212, 1928.

[Gamov, 1940] G. Gamow. Mr. Tompkins in Wonderland. Macmillan, New York, 1940.
[Garcia–Bondia et al., 2003] J.M. Garcia–Bondia, J. Varilly and H. Figueroa. Elements of non-

commutative geometry. Birkhäuser, Boston, 2001.
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de l’Institut Henri Poincaré, 6:299–310, 1967. See already [Kastler and Robinson, 1966].
[Ruelle, 1968a] D. Ruelle. Statistical mechanics. Benjamin, New York, 1968.
[Ruelle, 1968b] D. Ruelle. Statistical mechanics of a one–dimensional lattice gas. Communica-

tions in Mathematical Physics, 9:267–278, 1968.
[Sakai, 1971] S. Sakai. C∗−algebras and W∗−algebras. Springer, New York, 1971.
[Schiff, 1955] L.I. Schiff. Quantum mechanics, 2nd ed., MacGraw Hill, London, 1955.
[Schrieffer, 1974] J.R. Schrieffer. Theory of superconductivity. Benjamin, New York, 1974.
[Schroer and Wiesbrock, 2000] B. Schroer and H.W. Wiesbrock. Modular theory and geometry.

Reviews in Mathematical Physics, 12:301–326, 2000.
[Segal, 1990] A.F. Segal. Paul the convert: the apostolate and apostasy of Saul the Pharisee.

Yale University Press, New Haven, 1990.
[Segal, 1947] I.E. Segal. Postulates for general quantum mechanics. Annals of Mathematics,

48:930–948, 1947.
[Segal, 1958] I.E. Segal. Distributions in Hilbert space and canonical systems of operators.

Transactions of the American Mathematical Society, 88:12–41, 1958.
[Segal, 1959] I.E. Segal. Foundations of the theory of dynamical systems of infinitely many

degrees of freedom, i. Matematisk-Fysiske Meddelelser Danske Videnskabernes Selskab, 31:2,
1959.

[Segal, 1961] I.E. Segal. Foundations of the theory of dynamical systems of infinitely many
degrees of freedom, ii. Canadian Journal of Mathematics, 13:1–18, 1961.

[Segal, 1962] I.E. Segal. Foundations of the theory of dynamical systems of infinitely many
degrees of freedom, iii. Journal of Mathematics, 6:500-523, 1962.

[Segal, 1963] I.E. Segal. Mathematical problems of relativistic physics. Lecture Notes in Applied
Mathematics. American Mathematical Society, Providence RI, 1963.

[Sewell, 1973] G.L. Sewell. States and dynamics of infinitely extended physical systems. Com-
munications in Mathematical Physics, 33:42–51, 1973.



1180 Gérard G. Emch

[Sewell, 1977] G.L. Sewell. KMS conditions and local thermodynamical stability of quantum
lattice systems, ii. Communications in Mathematical Physics, 55:53–61, 1977.

[Sewell, 1980a] G.L. Sewell. Relativity of temperature and the Hawking effect. Physics Letters
A, 79:23–24, 1980. See also [Sewell, 1982a].

[Sewell, 1980b] G.L. Sewell. Stability, equilibrium and metastability in statistical mechanics.
Physics Reports, 57:307–342, 1980.

[Sewell, 1982a] G.L. Sewell. Quantum fields on manifolds: PCT and gravitationally induced
thermal states. Annals of Physics, 141:201–224, 1982.

[Sewell, 1982b] G.L. Sewell. W∗−dynamics of infinite quantum systems. Letters in Mathematical
Physics, 6:209–213, 1982. See already [Dubin and Sewell, 1970] and [Sewell, 1973].

[Sewell, 2002] G.L. Sewell. Quantum mechanics and its emergent macrophysics. Princeton Uni-
versity Press, Princeton and Oxford, 2002.

[Sewell, 2005] G.L. Sewell. On the mathematical structure of quantum measurement theory.
Reports on Mathematical Physics, 56:271–290, 2005.

[Shapiro and Teukolsky, 1983] S.L. Shapiro and S.A. Teukolsky. Black holes, white dwarfs, and
neutron stars: the physics of compact objects. Wiley, New York, 1983.

[Smolukowski, 1906a] M. Smolukowski. Sur le chemin moyen parcouru par les molécules d’un
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