
BETWEEN CLASSICAL AND QUANTUM

N.P. Landsman

‘But the worst thing is that I am quite unable to clarify the transition
[of matrix mechanics] to the classical theory.’ [Heisenberg to Pauli,
October 23th, 1925]1

‘Hendrik Lorentz considered the establishment of the correct relation
between the classical and the quantum theory as the most fundamental
problem of future research. This problem bothered him as much as it
did Planck.’ [Mehra and Rechenberg, 2000, 721]

‘Thus quantum mechanics occupies a very unusual place among phys-
ical theories: it contains classical mechanics as a limiting case, yet at
the same time it requires this limiting case for its own formulation.’
[Landau and Lifshitz, 1977, 3]

1 INTRODUCTION

Most modern physicists and philosophers would agree that a decent interpretation
of quantum mechanics should fullfil at least two criteria. Firstly, it has to eluci-
date the physical meaning of its mathematical formalism and thereby secure the
empirical content of the theory. This point (which we address only in a derivative
way) was clearly recognized by all the founders of quantum theory.2 Secondly
(and this is the subject of this paper), it has to explain at least the appearance
of the classical world.3 As shown by our second quotation above, Planck saw the
difficulty this poses, and as a first contribution he noted that the high-temperature

1‘Aber das Schlimmste ist, daß ich über den Übergang in die klassische Theorie nie Klarheit
bekommen kann.’ See [Pauli, 1979, 251].

2The history of quantum theory has been described in a large number of books. The most
detailed presentation is in [Mehra and Rechenberg, 1982–2001], but this multi-volume series has
by no means superseded smaller works such as [Jammer, 1966; van der Waerden, 1967; Hendry,
1984; Darrigol, 1992], and [Beller, 1999]. Much information may also be found in biographies
such as [Heisenberg, 1969; Pais, 1982; Moore, 1989; Pais, 1991; Cassidy, 1992; Heilbron, 2000;
Enz, 2002], etc. See also [Pauli, 1979]. A new project on the history of matrix mechanics led by
Jürgen Renn is on its way.

3That these points are quite distinct is shown by the Copenhagen Interpretation, which exclu-
sively addresses the first at utter neglect of the second. Nonetheless, in most other approaches
to quantum mechanics there is substantial overlap between the various mechanisms that are
proposed to fullfil the two criteria in question.
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limit of his formula for black-body radiation converged to the classical expression.
Although Bohr believed that quantum mechanics should be interpreted through
classical physics, among the founders of the theory he seems to have been unique
in his lack of appreciation of the problem of deriving classical physics from quan-
tum theory. Nonetheless, through his correspondence principle (which he proposed
in order to address the first problem above rather than the second) Bohr made
one of the most profound contributions to the issue. Heisenberg initially recog-
nized the problem, but quite erroneously came to believe he had solved it in his
renowned paper on the uncertainty relations.4 Einstein famously did not believe
in the fundamental nature of quantum theory, whereas Schrödinger was well aware
of the problem from the beginning, later highlighted the issue with his legendary
cat, and at various stages in his career made important technical contributions
towards its resolution. Ehrenfest stated the well-known theorem named after him.
Von Neumann saw the difficulty, too, and addressed it by means of his well-known
analysis of the measurement procedure in quantum mechanics.

The problem is actually even more acute than the founders of quantum the-
ory foresaw. The experimental realization of Schrödinger’s cat is nearer than
most physicists would feel comfortable with [Leggett, 2002; Brezger et al., 2002;
Chiorescu et al., 2003; Marshall et al., 2003; Devoret et al., 2004]. Moreover, awk-
ward superpositions are by no means confined to physics laboratories: due to its
chaotic motion, Saturn’s moon Hyperion (which is about the size of New York)
has been estimated to spread out all over its orbit within 20 years if treated as
an isolated quantum-mechanical wave packet [Zurek and Paz, 1995]. Furthermore,
decoherence theorists have made the point that “measurement” is not only a proce-
dure carried out by experimental physicists in their labs, but takes place in Nature
all the time without any human intervention. On the conceptual side, parties as
diverse as Bohm and Bell and their followers on the one hand and the quantum
cosmologists on the other have argued that a “Heisenberg cut” between object
and observer cannot possibly lie at the basis of a fundamental theory of physics.5

These and other remarkable insights of the past few decades have drawn wide at-
tention to the importance of the problem of interpreting quantum mechanics, and
in particular of explaining classical physics from it.

We will discuss these ideas in more detail below, and indeed our discussion of
the relationship between classical and quantum mechanics will be partly historical.
However, other than that it will be technical and mathematically rigorous. For
the problem at hand is so delicate that in this area sloppy mathematics is almost
guaranteed to lead to unreliable physics and conceptual confusion (notwithstand-

4‘One can see that the transition from micro- to macro-mechanics is now very easy to under-
stand: classical mechanics is altogether part of quantum mechanics.’ (Heisenberg to Bohr, 19
March 1927, just before the submission on 23 March of Heisenberg [1927]. See Bohr’s Scientific
Correspondence in the Archives for the History of Quantum Physics).

5Not to speak of the problem, also raised by quantum cosmologists, of deriving classical
space-time from some theory of quantum gravity. This is certainly part of the general program
of deriving classical physics from quantum theory, but unfortunately it cannot be discussed in
this paper.
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ing the undeniable success of poor man’s math elsewhere in theoretical physics).
Except for von Neumann, this was not the attitude of the pioneers of quantum
mechanics; but while it has to be acknowledged that many of their ideas are still
central to the current discussion, these ideas per se have not solved the problem.
Thus we assume the reader to be familiar with the Hilbert space formalism of
quantum mechanics,6 and for some parts of this paper (notably Section 6 and
parts of Section 4) also with the basic theory of C∗-algebras and its applications
to quantum theory.7 In addition, some previous encounter with the conceptual
problems of quantum theory would be helpful.8

Which ideas have solved the problem of explaining the appearance of the clas-
sical world from quantum theory? In our opinion, none have, although since the
founding days of quantum mechanics a number of new ideas have been proposed
that almost certainly will play a role in the eventual resolution, should it ever be
found. These ideas surely include:

• The limit �→ 0 of small Planck’s constant (coming of age with the mathe-
matical field of microlocal analysis);

• The limit N → ∞ of a large system with N degrees of freedom (studied in
a serious way only after the emergence of C∗-algebraic methods);

• Decoherence and consistent histories.

Mathematically, the second limit may be seen as a special case of the first,
though the underlying physical situation is of course quite different. In any case,
after a detailed analysis our conclusion will be that none of these ideas in isolation
is capable of explaining the classical world, but that there is some hope that by
combining all three of them, one might do so in the future.

Because of the fact that the subject matter of this review is unfinished business,
to date one may adopt a number of internally consistent but mutually incompatible
philosophical stances on the relationship between classical and quantum theory.
Two extreme ones, which are always useful to keep in mind whether one holds one
of them or not, are:

1. Quantum theory is fundamental and universally valid, and the classical world
has only “relative” or “perspectival” existence.

2. Quantum theory is an approximate and derived theory, possibly false, and
the classical world exists absolutely.

6Apart from seasoned classics such as [Mackey, 1963; Jauch, 1968; Prugovecki, 1971; Reed and
Simon, 1972], or [Thirring, 1981], the reader might consult more recent books such as [Gustafson
and Sigal, 2003] or [Williams, 2003]. See also [Dickson, 2005].

7For physics-oriented introductions to C∗-algebras see [Davies, 1976; Roberts and Roepstorff,
1969; Primas, 1983; Thirring, 1983; Emch, 1984; Strocchi, 1985; Sewell, 1986; Roberts, 1990;
Haag, 1992; Landsman, 1998; Araki, 1999], and [Sewell, 2002]. Authoratitive mathematical texts
include [Kadison and Ringrose, 1983; 1986] and [Takesaki, 2003].

8Trustworthy books include, for example, [Scheibe, 1973; Jammer, 1974; van Fraassen, 1991;
d’Espagnat, 1995; Peres, 1995; Omnès, 1994; 1999; Bub, 1997], and [Mittelstaedt, 2004].
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An example of a position that our modern understanding of the measurement
problem9 has rendered internally inconsistent is:

3. Quantum theory is fundamental and universally valid, and (yet) the
classical world exists absolutely.

In some sense stance 1 originates with Heisenberg [1927], but the modern era
started with Everett [1957].10 These days, most decoherence theorists, consistent
historians, and modal interpreters seem to support it. Stance 2 has a long and
respectable pedigree unequivocally, including among others Einstein, Schrödinger,
and Bell. More recent backing has come from Leggett as well as from “spontaneous
collapse” theorists such as Pearle, Ghirardi, Rimini, Weber, and others. As we
shall see in Section 3, Bohr’s position eludes classification according to these terms;
our three stances being of an ontological nature, he probably would have found
each of them unattractive.

Of course, one has to specify what the terminology involved means. By quantum
theory we mean standard quantum mechanics including the eigenvector-eigenvalue
link.11 Modal interpretations of quantum mechanics [Dieks, 1989a; 1989b; van
Fraassen, 1991; Bub, 1999; Vermaas, 2000; Bene & Dieks, 2002; Dickson, 2005]
deny this link, and lead to positions close to or identical to stance 1. The projection
postulate is neither endorsed nor denied when we generically speak of quantum
theory.

It is a bit harder to say what “the classical world” means. In the present
discussion we evidently can not define the classical world as the world that exists
independently of observation – as Bohr did, see Subsection 3.1 – but neither can
it be taken to mean the part of the world that is described by the laws of classical
physics full stop; for if stance 1 is correct, then these laws are only approximately
valid, if at all. Thus we simply put it like this:

The classical world is what observation shows us to behave – with ap-
propriate accuracy – according to the laws of classical physics.

There should be little room for doubt as to what ‘with appropriate accuracy’
means: the existence of the colour grey does not imply the nonexistence of black
and white!

We can define the absolute existence of the classical world à la Bohr as its
existence independently of observers or measuring devices. Compare with Moore’s
[1939] proof of the existence of the external world:

9See the books cited in footnote 8, especially [Mittelstaedt, 2004].
10 Note, though, that stance 1 by no means implies the so-called Many-Worlds Interpretation,

which also in our opinion is ‘simply a meaningless collage of words’ [Leggett, 2002].
11Let A be a selfadjoint operator on a Hilbert space H, with associated projection-valued

measure P (∆), ∆ ⊂ R, so that A =
R
dP (λ)λ (see also footnote 99 below). The eigenvector-

eigenvalue link states that a state Ψ of the system lies in P (∆)H if and only if A takes some value
in ∆ for sure. In particular, if Ψ is an eigenvector of A with eigenvalue λ (so that P ({λ}) �= 0
and Ψ ∈ P ({λ})H), then A takes the value λ in the state Ψ with probability one. In general, the
probability pΨ(∆) that in a state Ψ the observable a takes some value in ∆ (“upon measurement”)
is given by the Born–von Neumann rule pΨ(∆) = (Ψ, P (∆)Ψ).



Between Classical and Quantum 421

How? By holding up my two hands, and saying, as I make a certain
gesture with the right hand, ‘Here is one hand’, and adding, as I make
a certain gesture with the left, ‘and here is another’.

Those holding position 1, then, maintain that the classical world exists only as
an appearance relative to a certain specification, where the specification in question
could be an observer (Heisenberg), a certain class of observers and states (as in de-
coherence theory), or some coarse-graining of the Universe defined by a particular
consistent set of histories, etc. If the notion of an observer is construed in a suffi-
ciently abstract and general sense, one might also formulate stance 1 as claiming
that the classical world merely exists from the perspective of the observer (or the
corresponding class of observables).12 For example, Schrödinger’s cat “paradox”
dissolves at once when the appropriate perspective is introduced; cf. Subsection
6.6.

Those holding stance 2, on the other hand, believe that the classical world
exists in an absolute sense (as Moore did). Thus stance 2 is akin to common-
sense realism, though the distinction between 1 and 2 is largely independent of
the issue of scientific realism.13 For defendants of stance 1 usually still believe
in the existence of some observer-independent reality (namely somewhere in the
quantum realm), but deny that this reality incorporates the world observed around
us. This justifies a pretty vague specification of such an important notion as the
classical world: one of the interesting outcomes of the otherwise futile discussions
surrounding the Many Worlds Interpretation has been the insight that if quantum
mechanics is fundamental, then the notion of a classical world is intrinsically vague
and approximate. Hence it would be self-defeating to be too precise at this point.14

Although stance 1 is considered defensive if not cowardly by adherents of stance
2, it is a highly nontrivial mathematical fact that so far it seems supported by the
formalism of quantum mechanics. In his derision of what he called ‘FAPP’ (= For
All Practical Purposes) solutions to the measurement problem (and more general
attempts to explain the appearance of the classical world from quantum theory),
Bell [1987; 2001] and others in his wake mistook a profound epistemological stance
for a poor defensive move.15 It is, in fact, stance 2 that we would recommend to
the cowardly: for proving or disproving stance 1 seems the real challenge of the

12The terminology “perspectival” was suggested to the author by Richard Healey.
13See [Landsman, 1995] for a more elaborate discussion of realism in this context. Words like

“objective” or “subjective” are not likely to be helpful in drawing the distinction either: the claim
that ‘my children are the loveliest creatures in the world’ is at first glance subjective, but it can
trivially be turned into an objective one through the reformulation that ‘Klaas Landsman finds
his children the loveliest creatures in the world’. Similarly, the proposition that (perhaps due to
decoherence) ‘local observers find that the world is classical’ is perfectly objective, although it
describes a subjective experience. See also [Davidson, 2001].

14See [Wallace, 2002; 2003]; also cf. [Butterfield, 2002]. This point was not lost on Bohr and
Heisenberg either; see [Scheibe, 1973].

15The insistence on “precision” in such literature is reminiscent of Planck’s long-held belief in
the absolute nature of irreversibility [Darrigol, 1992; Heilbron, 2002]. It should be mentioned
that although Planck’s stubbornness by historical accident led him to take the first steps towards
quantum theory, he eventually gave it up to side with Boltzmann.
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entire debate, and we regard the technical content of this paper as a survey of
progress towards actually proving it. Indeed, to sum up our conclusions, we claim
that there is good evidence that:

1. Classical physics emerges from quantum theory in the limit �→ 0 or N →∞
provided that the system is in certain “classical” states and is monitored with
“classical” observables only;

2. Decoherence and consistent histories will probably explain why the system
happens to be in such states and has to be observed in such a way.

However, even if one fine day this scheme will be made to work, the explanation
of the appearance of the classical world from quantum theory will be predicated
on an external solution of the notorious ‘from “and” to “or” problem’: If quantum
mechanics predicts various possible outcomes with certain probabilities, why does
only one of these appear to us?16

For a more detailed outline of this paper we refer to the table of contents above.
Most philosophical discussion will be found in Section 3 on the Copenhagen inter-
pretation, since whatever its merits, it has undeniably set the stage for the entire
discussion on the relationship between classical and quantum.17 The remainder of
the paper will be of an almost purely technical nature. Beyond this point we will
try to avoid controversy, but when unavoidable it will be confined to the Epilogues
appended to Sections 3-6. The final Epilogue (Section 8) expresses our deepest
thoughts on the subject.

2 EARLY HISTORY

This section is a recapitulation of the opinions and contributions of the founders
of quantum mechanics regarding the relationship between classical and quantum.
More detail may be found in the books cited in footnote 2 and in specific literature
to be cited; for an impressive (but incomplete) bibliography see also [Gutzwiller,
1998]. The early history of quantum theory is of interest in its own right, con-
cerned as it is with one of the most significant scientific revolutions in history.
Although this history is not a main focus of this paper, it is of special significance
for our theme. For the usual and mistaken interpretation of Planck’s work (i.e.
the idea that he introduced something like a “quantum postulate”, see Subsection
3.2 below) appears to have triggered the belief that quantum theory and Planck’s
constant are related to a universal discontinuity in Nature. Indeed, this discon-
tinuity is sometimes even felt to mark the basic difference between classical and
quantum physics. This belief is particularly evident in the writings of Bohr, but
still resonates even today.

16It has to be acknowledged that we owe the insistence on this question to the defendants of
stance 2. See also footnote 10.

17We do not discuss the classical limit of quantum mechanics in the philosophical setting of
theory reduction and intertheoretic relations; see, e.g., [Scheibe, 1999] and [Batterman, 2002].
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2.1 Planck and Einstein

The relationship between classical physics and quantum theory is so subtle and
confusing that historians and physicists cannot even agree about the precise way
the classical gave way to the quantum! As Darrigol [2001] puts it: ‘During the
past twenty years, historians [and physicists] have disagreed over the meaning of
the quanta which Max Planck introduced in his black-body theory of 1900. The
source of this confusion is the publication (. . . ) of Thomas Kuhn’s [1978] icono-
clastic thesis that Planck did not mean his energy quanta to express a quantum
discontinuity.’

As is well known (cf. [Mehra and Rechenberg, 1982a], etc.), Planck initially
derived Wien’s law for blackbody radiation in the context of his (i.e. Planck’s)
program of establishing the absolute nature of irreversibility (competing with
Boltzmann’s probabilistic approach, which eventually triumphed). When new
high-precision measurements in October 1900 turned out to refute Wien’s law,
Planck first guessed his expression

Eν/Nν = hν/(ehν/kT − 1)(1)

for the correct law, en passant introducing two new constants of nature h and k,18

and subsequently, on December 14, 1900, presented a theoretical derivation of his
law in which he allegedly introduced the idea that the energy of the resonators
making up his black body was quantized in units of εν = hν (where ν is the
frequency of a given resonator). This derivation is generally seen as the birth of
quantum theory, with the associated date of birth just mentioned.

However, it is clear by now [Kuhn, 1978; Darrigol, 1992; 2001; Carson, 2000;
Brush, 2002] that Planck was at best agnostic about the energy of his resonators,
and at worst assigned them a continuous energy spectrum. Technically, in the
particular derivation of his empirical law that eventually turned out to lead to the
desired result (which relied on Boltzmann’s concept of entropy),19 Planck had to
count the number of ways a given amount of energy Eν could be distributed over a
given number of resonators Nν at frequency ν. This number is, of course, infinite,
hence in order to find a finite answer Planck followed Boltzmann in breaking up Eν
into a large number Aν of portions of identical size εν , so that Aνεν = Eν .20 Now,
as we all know, whereas Boltzmann let εν → 0 at the end of his corresponding
calculation for a gas, Planck discovered that his empirical blackbody law emerged
if he assumed the relation εν = hν.

However, this postulate did not imply that Planck quantized the energy of
his resonators. In fact, in his definition of a given distribution he counted the
number of resonators with energy between say (k − 1)εν and kεν (for some k ∈

18Hence Boltzmann’s constant k was introduced by Planck, who was the first to write down
the formula S = k logW .

19Despite the fact that Planck only converted to Boltzmann’s approach to irreversibility around
1914.

20The number in question is then given by (N +A− 1)!/(N − 1)!A!, dropping the dependence
on ν in the notation.
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N), as Boltzmann did in an analogous way for a gas, rather than the number of
resonators with energy kεν , as most physicists came to interpret his procedure.
More generally, there is overwhelming textual evidence that Planck himself by
no means believed or implied that he had quantized energy; for one thing, in
his Nobel Prize Lecture in 1920 he attributed the correct interpretation of the
energy-quanta εν to Einstein. Indeed, the modern understanding of the earliest
phase of quantum theory is that it was Einstein rather than Planck who, during
the period 1900–1905, clearly realized that Planck’s radiation law marked a break
with classical physics [Büttner et al., 2003]. This insight, then, led Einstein to
the quantization of energy. This he did in a twofold way, both in connection
with Planck’s resonators — interpreted by Einstein as harmonic oscillators in the
modern way — and, in a closely related move, through his concept of a photon.
Although Planck of course introduced the constant named after him, and as such
is the founding father of the theory characterized by �, it is the introduction of the
photon that made Einstein at least the mother of quantum theory. Einstein himself
may well have regarded the photon as his most revolutionary discovery, for what
he wrote about his pertinent paper is not matched in self-confidence by anything
he said about relativity: ‘Sie handelt über die Strahlung und die energetischen
Eigenschaften des Lichtes und ist sehr revolutionär.’21

Finally, in the light of the present paper, it deserves to be mentioned that
Einstein [1905] and Planck [1906] were the first to comment on the classical limit
of quantum theory; see the preamble to Section 5 below.

2.2 Bohr

Bohr’s brilliant model of the atom reinforced his idea that quantum theory was a
theory of quanta.22 Since this model simultaneously highlighted the clash between
classical and quantum physics and carried the germ of a resolution of this conflict
through Bohr’s equally brilliant correspondence principle, it is worth saying a few
words about it here.23 Bohr’s atomic model addressed the radiative instability
of Rutherford’s solar-system-style atom:24 according to the electrodynamics of
Lorentz, an accelerating electron should radiate, and since the envisaged circular
or elliptical motion of an electron around the nucleus is a special case of an ac-
celerated motion, the electron should continuously lose energy and spiral towards

21‘[This paper] is about radiation and the energetic properties of light, and is very revolution-
ary.’ See also the Preface to Pais [1982].

22Although at the time Bohr followed practically all physicists in their rejection of Einstein’s
photon, since he believed that during a quantum jump the atom emits electromagnetic radiation
in the form of a spherical wave. His model probably would have gained in consistency by adopting
the photon picture of radiation, but in fact Bohr was to be the last prominent opponent of the
photon, resisting the idea until 1925. See also Blair Bolles [2004] and footnote 33 below.

23Cf. [Darrigol, 1992] for a detailed treatment; also see [Liboff, 1984] and [Steiner, 1998].
24The solar system provides the popular visualization of Rutherford’s atom, but his own picture

was more akin to Saturn’ rings than to a planet orbiting the Sun.
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the nucleus.25 Bohr countered this instability by three simultaneous moves, each
of striking originality:

1. He introduced a quantization condition that singled out only a discrete num-
ber of allowed electronic orbits (which subsequently were to be described
using classical mechanics, for example, in Bohr’s calculation of the Rydberg
constant R).

2. He replaced the emission of continuous radiation called for by Lorentz by
quantum jumps with unpredictable destinations taking place at unpredictable
moments, during which the atom emits light with energy equal to the energy
difference of the orbits between which the electron jumps.

3. He prevented the collapse of the atom through such quantum jumps by
introducing the notion of a ground state, below which no electron could fall.

With these postulates, for which at the time there existed no foundation whatso-
ever,26 Bohr explained the spectrum of the hydrogen atom, including an amazingly
accurate calculation of R. Moreover, he proposed what was destined to be the
key guiding principle in the search for quantum mechanics in the coming decade,
viz. the correspondence principle (cf. [Darrigol, 1992, passim], and [Mehra and
Rechenberg, 1982a, 249–257]).

In general, there is no relation between the energy that an electron loses during
a particular quantum jump and the energy it would have radiated classically (i.e.
according to Lorentz) in the orbit it revolves around preceding this jump. Indeed,
in the ground state it cannot radiate through quantum jumps at all, whereas
according to classical electrodynamics it should radiate all the time. However,
Bohr saw that in the opposite case of very wide orbits (i.e. those having very
large principal quantum numbers n), the frequency ν = (En − En−1)/h (with
En = −R/n2) of the emitted radiation approximately corresponds to the frequency
of the lowest harmonic of the classical theory, applied to electron motion in the
initial orbit.27 Moreover, the measured intensity of the associated spectral line
(which theoretically should be related to the probability of the quantum jump,
a quantity out of the reach of early quantum theory), similarly turned out to be
given by classical electrodynamics. This property, which in simple cases could
be verified either by explicit computation or by experiment, became a guiding
principle in situations where it could not be verified, and was sometimes even

25In addition, any Rutherford style atom with more than one electron is mechanically unstable,
since the electrons repel each other, as opposed to planets, which attract each other.

26What has hitherto been mathematically proved of Bohr’s atomic model is the existence of
a ground state (see [Griesemer et al., 2001], and references therein for the greatest generality
available to date) and the metastability of the excited states of the atom after coupling to the
electromagnetic field (cf. [Bach et al., 1998; 1999] and [Gustafson and Sigal, 2003]). The energy
spectrum is discrete only if the radiation field is decoupled, leading to the usual computation of
the spectrum of the hydrogen atom first performed by Schrödinger and Weyl. See also the end
of Subsection 5.4.

27Similarly, higher harmonics correspond to quantum jumps n→ n− k for k > 1.
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extended to low quantum numbers, especially when the classical theory predicted
selection rules.

It should be emphasized that Bohr’s correspondence principle was concerned
with the properties of radiation, rather than with the mechanical orbits them-
selves.28 This is not quite the same as what is usually called the correspondence
principle in the modern literature.29 In fact, although also this modern correspon-
dence principle has a certain range of validity (as we shall see in detail in Section
5), Bohr never endorsed anything like that, and is even on record as opposing such
a principle:30

‘The place was Purcell’s office where Purcell and others had taken Bohr
for a few minutes of rest [during a visit to the Physics Department
at Harvard University in 1961]. They were in the midst of a general
discussion when Bohr commented: “People say that classical mechanics
is the limit of quantum mechanics when h goes to zero.” Then, Purcell
recalled, Bohr shook his finger and walked to the blackboard on which
he wrote e2/hc. As he made three strokes under h, Bohr turned around
and said, “you see h is in the denominator.”’

2.3 Heisenberg

Heisenberg’s [1925] paper Über die quantentheoretische Umdeutung kinematischer
und mechanischer Beziehungen31 is generally seen as a turning point in the devel-
opment of quantum mechanics. Even A. Pais, no friend of Heisenberg’s,32 conceded
that Heisenberg’s paper marked ’one of the great jumps — perhaps the greatest —
in the development of twentieth century physics.’ What did Heisenberg actually
accomplish? This question is particularly interesting from the perspective of our
theme.

At the time, atomic physics was in a state of crisis, to which various camps
responded in different ways. Bohr’s approach might best be described as damage
control : his quantum theory was a hybrid of classical mechanics adjusted by means
of ad hoc quantization rules, whilst keeping electrodynamics classical at all cost.33

28As such, it remains to be verified in a rigorous way.
29A typical example of the modern version is: ‘Non-relativistic quantum mechanics was founded

on the correspondence principle of Bohr: “When the Planck constant � can be considered small
with respect to the other parameters such as masses and distances, quantum theory approaches
classical Newton theory.”’ [Robert, 1998, 44]. The reference to Bohr is historically inaccurate!

30Quoted from [Miller, 1984, 313].
31On the quantum theoretical reinterpretation of kinematical and mechanical relations. English

translation in [van der Waerden, 1967].
32For example, in [Pais, 2000], claiming to portray the ‘genius of science’, Heisenberg is con-

spicously absent.
33 Continuing footnote 22, we quote from [Mehra and Rechenberg, 1982a, 256–257]: ‘Thus, in

the early 1920s, Niels Bohr arrived at a definite point of view how to proceed forward in atomic
theory. He wanted to make maximum use of what he called the “more dualistic prescription”
(. . . ) In it the atom was regarded as a mechanical system having discrete states and emitting
radiation of discrete frequencies, determined (in a nonclassical way) by the energy differences
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Einstein, who had been the first physicist to recognize the need to quantize classical
electrodynamics, in the light of his triumph with General Relativity nonetheless
dreamt of a classical field theory with singular solutions as the ultimate explanation
of quantum phenomena. Born led the radical camp, which included Pauli: he saw
the need for an entirely new mechanics replacing classical mechanics,34 which was
to be based on discrete quantities satisfying difference equations.35 This was a
leap in the dark, especially because of Pauli’s frowning upon the correspondence
principle [Hendry, 1984; Beller, 1999].

It was Heisenberg’s genius to interpolate between Bohr and Born.36 The mean-
ing of his Umdeutung was to keep the classical equations of motion,37 whilst rein-
terpreting the mathematical symbols occurring therein as (what were later rec-
ognized to be) matrices. Thus his Umdeutung x �→ a(n,m) was a precursor of
what now would be called a quantization map f �→ Q�(f), where f is a classical
observable, i.e. a function on phase space, and Q�(f) is a quantum mechanical
observable, in the sense of an operator on a Hilbert space or, more abstractly, an
element of some C∗-algebra. See Section 4 below. As Heisenberg recognized, this
move implies the noncommutativity of the quantum mechanical observables; it is
this, rather than something like a “quantum postulate” (see Subsection 3.2 below),
that is the defining characteristic of quantum mechanics. Indeed, most later work
on quantum physics and practically all considerations on the connection between
classical and quantum rely on Heisenberg’s idea of Umdeutung. This even applies
to the mathematical formalism as a whole; see Subsection 2.5.

We here use the term “observable” in a loose way. It is now well recognized
[Mehra and Rechenberg, 1982b; Beller, 1999; Camilleri, 2005] that Heisenberg’s
claim that his formalism could be physically interpreted as the replacement of
atomic orbits by observable quantities was a red herring, inspired by his discussions
with Pauli. In fact, in quantum mechanics any mechanical quantity has to be
“reinterpreted”, whether or not it is observable. As Heisenberg [1969] recalls,
Einstein reprimanded him for the illusion that physics admits an a priori notion
of an observable, and explained that a theory determines what can be observed.
Rethinking the issue of observability then led Heisenberg to his second major
contribution to quantum mechanics, namely his uncertainty relations.

These relations were Heisenberg’s own answer to the quote opening this paper.
Indeed, matrix mechanics was initially an extremely abstract and formal scheme,

between stationary states; radiation, on the other hand, had to be described by the classical
electrodynamic theory.’

34It was Born who coined the name quantum mechanics even before Heisenberg’s paper.
35This idea had earlier occurred to Kramers.
36Also literally! Heisenberg’s traveled between Copenhagen and Göttingen most of the time.
37This crucial aspect of Umdeutung was appreciated at once by Dirac [1926]: ‘In a recent

paper Heisenberg puts forward a new theory which suggests that it is not the equations of
classical mechanics that are in any way at fault, but that the mathematical operations by which
physical results are deduced from them require modification. (. . . ) The correspondence between
the quantum and classical theories lies not so much in the limiting agreement when � → 0 as
in the fact that the mathematical operations on the two theories obey in many cases the same
laws.’
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which lacked not only any visualization but also the concept of a state (see below).
Although these features were initially quite to the liking of Born, Heisenberg, Pauli,
and Jordan, the success of Schrödinger’s work forced them to renege on their
radical stance, and look for a semiclassical picture supporting their mathematics;
this was a considerable U-turn [Beller, 1999; Camilleri, 2005]. Heisenberg [1927]
found such a picture, claiming that his uncertainty relations provided the ‘intuitive
content of the quantum theoretical kinematics and mechanics’ (as his paper was
called). His idea was that the classical world emerged from quantum mechanics
through observation: ‘The trajectory only comes into existence because we observe
it.’38 This idea was to become extremely influential, and could be regarded as the
origin of stance 1 in the Introduction.

2.4 Schrödinger

The history of quantum mechanics is considerably clarified by the insight that
Heisenberg and Schrödinger did not, as is generally believed, discover two equiv-
alent formulations of the theory, but rather that Heisenberg [1925] identified the
mathematical nature of the observables, whereas Schrödinger [1926a] found the
description of states.39 Matrix mechanics lacked the notion of a state, but by
the same token wave mechanics initially had no observables; it was only in his
attempts to relate wave mechanics to matrix mechanics that Schrödinger [1926c]
introduced the position and momentum operators40

Q�(qj) = xj ;

Q�(pj) = −i�
∂

∂xj
.(2)

This provided a new basis for Schrödinger’s equation41− �2

2m

n∑
j=1

∂2

∂x2
j

+ V (x)

Ψ = i�
∂Ψ
∂t

,(3)

by interpreting the left-hand side as HΨ, with H = Q�(h) in terms of the classical
Hamiltonian h(p, q) =

∑
j p2

j/2m + V (q). Thus Schrödinger founded the theory of
the operators now named after him,42 and in doing so gave what is still the most
important example of Heisenberg’s idea of Umdeutung of classical observables.

38‘Die Bahn entsteht erst dadurch, daß wir sie beobachten.’
39See also [Muller, 1997].
40Here j = 1, 2, 3. In modern terms, the expressions on the right-hand side are unbounded

operators on the Hilbert space H = L2(Rn). See Section 4 for more details. The expression
xi is a multiplication operator, i.e. (xjΨ)(x) = xjΨ(x), whereas, obviously, (∂/∂xjΨ)(x) =
(∂Ψ/∂xj)(x).

41Or the corresponding time-independent one, with EΨ on the right-hand side.
42 See [Reed and Simon, 1972; 1975; 1987; 1979; Cycon et al., 1987; Hislop and Sigal, 1996;

Hunziker and Sigal, 2000; Simon, 2000; Gustafson and Sigal, 2003]. For the mathematical origin
of the Schrödinger equation also cf. [Simon, 1976].
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Subsequently, correcting and expanding on certain ideas of Dirac, Pauli, and
Schrödinger, von Neumann [1932] brilliantly glued these two parts together through
the concept of a Hilbert space. He also gave an abstract form of the formulae of
Born, Pauli, Dirac, and Jordan for the transition probabilities, thus completing
the mathematical formulation of quantum mechanics.

However, this is not how Schrödinger saw his contribution. He intended wave
mechanics as a full-fledged classical field theory of reality, rather than merely as
one half (namely in modern parlance the state space half) of a probabilistic de-
scription of the world that still incorporated the quantum jumps he so detested
[Mehra and Rechenberg, 1987; Götsch, 1992; Bitbol and Darrigol, 1992; Bitbol,
1996; Beller, 1999]. Particles were supposed to emerge in the form of wave packets,
but it was immediately pointed out by Heisenberg, Lorentz, and others that in re-
alistic situations such wave packets tend to spread in the course of time. This had
initially been overlooked by Schrödinger [1926b], who had based his intuition on
the special case of the harmonic oscillator. On the positive side, in the course of his
unsuccessful attempts to derive classical particle mechanics from wave mechanics
through the use of wave packets, Schrödinger [1926b] gave the first example of what
is now called a coherent state. Here a quantum wave function Ψz is labeled by a
‘classical’ parameter z, in such a way that the quantum-mechanical time-evolution
Ψz(t) is approximately given by Ψz(t), where z(t) stands for some associated clas-
sical time-evolution; see Subsections 4.2 and 5.2 below. This has turned out to be
a very important idea in understanding the transition from quantum to classical
mechanics.

Furthermore, in the same paper Schrödinger [1926b] proposed the following
wave-mechanical version of Bohr’s correspondence principle: classical atomic states
should come from superpositions of a very large number (say at least 10,000) of
highly excited states (i.e. energy eigenfunctions with very large quantum num-
bers). After decades of limited theoretical interest in this idea, interest in wave
packets in atomic physics was revived in the late 1980s due to the development
of modern experimental techniques based on lasers (such as pump-probing and
phase-modulation). See [Robinett, 2004] for a recent technical review, or [Nauen-
berg et al., 1994] for an earlier popular account. Roughly speaking, the picture
that has emerged is this: a localized wave packet of the said type initially follows
a time-evolution with almost classical periodicity, as Schrödinger hoped, but sub-
sequently spreads out after a number of orbits. Consequently, during this second
phase the probability distribution approximately fills the classical orbit (though
not uniformly). Even more surprisingly, on a much longer time scale there is a
phenomenon of wave packet revival, in which the wave packet recovers its initial
localization. Then the whole cycle starts once again, so that one does see periodic
behaviour, but not of the expected classical type. Hence even in what naively
would be thought of as the thoroughly classical regime, wave phenomena continue
to play a role, leading to quite unusual and unexpected behaviour. Although a
rigorous mathematical description of wave packet revival has not yet been forth-
coming, the overall picture (based on both “theoretical physics” style mathematics
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and experiments) is clear enough.
It is debatable (and irrelevant) whether the story of wave packets has evolved

according to Schrödinger’s intentions (cf. [Littlejohn, 1986]); what is certain is
that his other main idea on the relationship between classical and quantum has
been extremely influential. This was, of course, Schrödinger’s [1926a] “derivation”
of his wave equation from the Hamilton–Jacobi formalism of classical mechanics.
This gave rise to the WKB approximation and related methods; see Subsection
5.5.

In any case, where Schrödinger hoped for a classical interpretation of his wave
function, and Heisenberg wanted to have nothing to do with it whatsoever [Beller,
1999], Born and Pauli were quick to realize its correct, probabilistic significance.
Thus they deprived the wave function of its naive physical nature, and effectively
degraded it to the purely mathematical status of a probability amplitude. And
in doing so, Born and Pauli rendered the connection between quantum mechanics
and classical mechanics almost incomprehensible once again! It was this incom-
prehensibility that Heisenberg addressed with his uncertainty relations.

2.5 von Neumann

Through its creation of the Hilbert space formalism of quantum mechanics, von
Neumann’s book [1932] can be seen as a mathematical implementation of Heisen-
berg’s idea of Umdeutung. Von Neumann in effect proposed the following quantum-
theoretical reinterpretations:

Phase space M �→ Hilbert space H;

Classical observable (i.e. real-valued measurable function on M) �→ self-adjoint
operator on H;

Pure state (seen as point in M) �→ unit vector (actually ray) in H;

Mixed state (i.e. probability measure on M) �→ density matrix on H;

Measurable subset of M �→ closed linear subspace of H;

Set complement �→ orthogonal complement;

Union of subsets �→ closed linear span of subspaces;

Intersection of subsets �→ intersection of subspaces;

Yes-no question (i.e. characteristic function on M) �→ projection operator.43

Here we assume for simplicity that quantum observables R on a Hilbert space
H are bounded operators, i.e. R ∈ B(H). Von Neumann actually derived his
Umdeutung of classical mixed states as density matrices from his axiomatic char-
acterization of quantum-mechanical states as linear maps Exp : B(H) → C that

43Later on, he of course added the Umdeutung of a Boolean lattice by a modular lattice, and
the ensuing Umdeutung of classical logic by quantum logic [Birkhoff and von Neumann, 1936].
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satisfy Exp(R) ≥ 0 when R ≥ 0,44 Exp(1) = 1,45, and countable additivity on
a commuting set of operators. For he proved that such a map Exp is necessar-
ily given by a density matrix ρ according to Exp(R) = Tr (ρR).46 A unit vector
Ψ ∈ H defines a pure state in the sense of von Neumann, which we call ψ, by
ψ(R) = (Ψ, RΨ) for R ∈ B(H). Similarly, a density matrix ρ on H defines a (gen-
erally mixed) state, called ρ as well, by ρ(R) = Tr (ρR). In modern terminology,
a state on B(H) as defined by von Neumann would be called a normal state. In
the C∗-algebraic formulation of quantum physics (cf. footnote 7), this axiomati-
zation has been maintained until the present day; here B(H) is replaced by more
general algebras of observables in order to accommodate possible superselection
rules [Haag, 1992].

Beyond his mathematical axiomatization of quantum mechanics, which (along
with its subsequent extension by the C∗-algebraic formulation) lies at the basis of
all serious efforts to relate classical and quantum mechanics, von Neumann con-
tributed to this relationship through his analysis of the measurement problem.47

Since here the apparent clash between classical and quantum physics comes to a
head, it is worth summarizing von Neumann’s analysis of this problem here. See
also [Wheeler and Zurek, 1983; Busch et al., 1991; Auletta, 2001] and [Mittel-
staedt, 2004] for general discussions of the measurement problem.

The essence of the measurement problem is that certain states are never seen
in nature, although they are not merely allowed by quantum mechanics (on the
assumption of its universal validity), but are even predicted to arise in typical
measurement situations. Consider a system S, whose pure states are mathemat-
ically described by normalized vectors (more precisely, rays) in a Hilbert space
HS . One wants to measure an observable O, which is mathematically represented
by a self-adjoint operator O on HS . Von Neumann assumes that O has discrete

44I.e., when R is self-adjoint with positive spectrum, or, equivalently, when R = S∗S for some
S ∈ B(H).

45Where the 1 in Exp(1) is the unit operator on H.
46This result has been widely misinterpreted (apparently also by von Neumann himself) as a

theorem excluding hidden variables in quantum mechanics. See [Scheibe, 1991]. However, Bell’s
characterization of von Neumann’s linearity assumption in the definition of a state as “silly” is
far off the mark, since it holds both in classical mechanics and in quantum mechanics. Indeed,
von Neumann’s theorem does exclude all hidden variable extensions of quantum mechanics that
are classical in nature, and it is precisely such extensions that many physicists were originally
looking for. See [Rédei and Stöltzner, 2001] and [Scheibe, 2001] for recent discussions of this
issue.

47Von Neumann [1932] refrained from discussing either the classical limit of quantum mechanics
or (probably) the notion of quantization. In the latter direction, he declares that ‘If the quantity
R has the operator R, then the quantity f(R) has the operator f(R)’, and that ‘If the quantities
R, S, · · · have the operators R, S, · · · , then the quantity R+S+· · · has the operator R+S+· · · ’.
However, despite his legendary clarity and precision, von Neumann is rather vague about the
meaning of the transition R �→ R. It is tempting to construe R as a classical observable whose
quantum-mechanical counterpart is R, so that the above quotations might be taken as axioms
for quantization. However, such an interpretation is neither supported by the surrounding text,
nor by our current understanding of quantization (cf. Section 4). For example, a quantization
map R �→ Q�(R) cannot satisfy f(R) �→ f(Q�(R)) even for very reasonable functions such as
f(x) = x2.
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spectrum, a simplification which does not hide the basic issues in the measure-
ment problem. Hence O has unit eigenvectors Ψn with real eigenvalues on. To
measure O, one couples the system to an apparatus A with Hilbert space HA
and “pointer” observable P, represented by a self-adjoint operator P on HA, with
discrete eigenvalues pn and unit eigenvectors Φn. The pure states of the total
system S + A then correspond to unit vectors in the tensor product HS ⊗HA. A
good (“first kind”) measurement is then such that after the measurement, Ψn is
correlated to Φn, that is, for a suitably chosen initial state I ∈ HA, a state Ψn⊗ I
(at t = 0) almost immediately evolves into Ψn ⊗Φn. This can indeed be achieved
by a suitable Hamiltonian.

The problem, highlighted by Schrödinger’s cat, now arises if one selects the
initial state of S to be

∑
n cnΨn (with

∑ |cn|2 = 1), for then the superposition
principle leads to the conclusion that the final state of the coupled system is∑
n cnΨn ⊗ Φn. Now, basically all von Neumann said was that if one restricts

the final state to the system S, then the resulting density matrix is the mixture∑
n |cn|2[Ψn] (where [Ψ] is the orthogonal projection onto a unit vector Ψ),48

so that, from the perspective of the system alone, the measurement appears to
have caused a transition from the pure state

∑
n,m cncmΨnΨ∗

m to the mixed state∑
n |cn|2[Ψn], in which interference terms ΨnΨ∗

m for n �= m are absent. Here
the operator ΨnΨ∗

m is defined by ΨnΨ∗
mf = (Ψm, f)Ψn; in particular, ΨΨ∗ =

[Ψ].49 Similarly, the apparatus, taken by itself, has evolved from the pure state∑
n,m cncmΦnΦ∗

m to the mixed state
∑
n |cn|2[Φn]. This is simply a mathematical

theorem (granted the possibility of coupling the system to the apparatus in the
desired way), rather than a proposal that there exist two different time-evolutions
in Nature, viz. the unitary propagation according to the Schrödinger equation side
by side with the above “collapse” process.

In any case, by itself this move by no means solves the measurement problem.50

Firstly, in the given circumstances one is not allowed to adopt the ignorance in-
terpretation of mixed states (i.e. assume that the system really is in one of the
states Ψn); cf., e.g., [Mittelstaedt, 2004]. Secondly, even if one were allowed to do
so, one could restore the problem (i.e. the original superposition

∑
n cnΨn ⊗ Φn)

by once again taking the other component of the system into account.
Von Neumann was well aware of at least this second point, to which he re-

sponded by his construction of a chain: one redefines S + A as the system, and
couples it to a new apparatus B, etc. This eventually leads to a post-measurement
state

∑
n cnΨn ⊗ Φn ⊗ χn (in hopefully self-explanatory notation, assuming the

vectors χn form an orthonormal set), whose restriction to S + A is the mixed
state

∑
n |cn|2[Ψn] ⊗ [Φn]. The restriction of the latter state to S is, once again,∑

n |cn|2[Ψn]. This procedure may evidently be iterated; the point of the con-
struction is evidently to pass on superpositions in some given system to arbitrary

48I.e., [Ψ]f = (Ψ, f)Ψ; in Dirac notation one would have [Ψ] = |Ψ〉〈Ψ|.
49In Dirac notation one would have ΨnΨ∗

m = |Ψn〉〈Ψm|.
50Not even in an ensemble-interpretation of quantum mechanics, which was the interpretation

von Neumann unfortunately adhered to when he wrote his book.
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systems higher up in the chain. It follows that for the final state of the original
system it does not matter where one “cuts the chain” (that is, which part of the
chain one leaves out of consideration), as long as it is done somewhere. Von Neu-
mann ([1932], in beautiful prose) and others suggested identifying the cutting with
the act of observation, but it is preferable and much more general to simply say
that some end of the chain is omitted in the description.

The burden of the measurement problem, then, is to

1. Construct a suitable chain along with an appropriate cut thereof; it doesn’t
matter where the cut is made, as long as it is done.

2. Construct a suitable time-evolution accomplishing the measurement.

3. Justify the ignorance interpretation of mixed states.

As we shall see, these problems are addressed, in a conceptually different but
mathematically analogous way, in the Copenhagen interpretation as well as in the
decoherence approach. (The main conceptual difference will be that the latter
aims to solve also the more ambitious problem of explaining the appearance of the
classical world, which in the former seems to be taken for granted).

We conclude this section by saying that despite some brilliant ideas, the founders
of quantum mechanics left wide open the problem of deriving classical mechanics
as a certain regime of their theory.

3 COPENHAGEN: A REAPPRAISAL

The so-called “Copenhagen interpretation” of quantum mechanics goes back to
ideas first discussed and formulated by Bohr, Heisenberg, and Pauli around 1927.
Against the idea that there has been a “party line” from the very beginning, it has
frequently been pointed out that in the late 1920s there were actually sharp differ-
ences of opinion between Bohr and Heisenberg on the interpretation of quantum
mechanics and that they never really arrived at a joint doctrine [Hooker, 1972;
Stapp, 1972; Hendry, 1984; Beller, 1999; Howard, 2004; Camilleri, 2005]. For ex-
ample, they never came to agree about the notion of complementarity (see Subsec-
tion 3.3). More generally, Heisenberg usually based his ideas on the mathematical
formalism of quantum theory, whereas Bohr’s position was primarily philosophi-
cally oriented. Nonetheless, there is a clearly identifiable core of ideas on which
they did agree, and since this core has everything to do with the relationship
between classical and quantum, we are going to discuss it in some detail.

The principal primary sources are Bohr’s Como Lecture, his reply to epr, and
his essay dedicated to Einstein [Bohr, 1927; 1935; 1949].51 Historical discussions
of the emergence and reception of these papers are given in Bohr [1985; 1996]
and in Mehra and Rechenberg [2001]. As a selection of the enormous literature

51These papers were actually written in collaboration with Pauli (after first attempts with
Klein), Rosenfeld, and Pais, respectively.
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these papers have given rise to, we mention among relatively recent works [Hooker,
1972; Scheibe, 1973; Folse, 1985; Murdoch, 1987; Lahti and Mittelstaedt, 1987;
Honner, 1987; Chevalley, 1991; 1999; Faye, 1991; Faye and Folse, 1994; Held,
1994; Howard, 1994; Beller, 1999; Faye, 2002], and [Saunders, 2005]. For Bohr’s
sparring partners see [Heisenberg, 1930; 1942; 1958; 1984a,b; 1985] with associated
secondary literature [Heelan, 1965; Hörz, 1968; Geyer et al., 1993; Camilleri, 2005]
and [Pauli, 1933; 1949; 1979; 1985; 1994]), along with [Laurikainen, 1988] and
[Enz, 2002].

As with Wittgenstein (and many other thinkers), it helps to understand Bohr
if one makes a distinction between an “early” Bohr and a “later” Bohr.52 Despite
a good deal of continuity in his thought (see below), the demarcation point is
his response to epr [Bohr, 1935],53 and the main shift he made afterwards lies
in his sharp insistence on the indivisible unity of object and observer after 1935,
focusing on the concept of a phenomenon. Before epr, Bohr equally well believed
that object and observer were both necessary ingredients of a complete description
of quantum theory, but he then thought that although their interaction could
never be neglected, they might at least logically be considered separately. After
1935, Bohr gradually began to claim that object and observer no longer even
had separate identities, together forming a “phenomenon”. Accordingly, also his
notion of complementarity changed, increasingly focusing on the idea that the
specification of the experimental conditions is crucial for the unambiguous use of
(necessarily) classical concepts in quantum theory [Scheibe, 1973; Held, 1994]. See
also Subsection 3.3 below. This development culminated in Bohr’s eventual denial
of the existence of the quantum world:

‘There is no quantum world. There is only an abstract quantum-
physical description. It is wrong to think that the task of physics
is to find out how nature is. Physics concerns what we can say about
nature. (. . . ) What is it that we humans depend on? We depend on
our words. Our task is to communicate experience and ideas to others.
We are suspended in language.’ (quoted by [Petersen, 1963, 8].)54

3.1 The doctrine of classical concepts

Despite this shift, it seems that Bohr stuck to one key thought throughout his
career:

52Here we side with Held [1994] and Beller [1999] against Howard [1994] and Saunders [2005].
See also [Pais, 2000, 22]: ‘Bohr’s Como Lecture did not bring the house down, however. He
himself would later frown on expressions he used there, such as “disturbing the phenomena by
observation”. Such language may have contributed to the considerable confusion that for so long
has reigned around this subject.’

53This response is problematic, as is epr itself. Consequently, there exists a considerable
exegetical literature on both, marked by the fact that equally competent and well-informed pairs
of commentators manage to flatly contradict each other while at the same time both claiming to
explain or reconstruct what Bohr “really” meant.

54See [Mermin, 2004] for a witty discussion of this controversial quotation.
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‘However far the phenomena transcend the scope of classical physical
explanation, the account of all evidence must be expressed in classical
terms. (. . . ) The argument is simply that by the word experiment we
refer to a situation where we can tell others what we have done and
what we have learned and that, therefore, the account of the exper-
imental arrangements and of the results of the observations must be
expressed in unambiguous language with suitable application of the
terminology of classical physics.’ [Bohr, 1949, 209].

This is, in a nutshell, Bohr’s doctrine of classical concepts. Although his many
drawings and stories may suggest otherwise, Bohr does not quite express the idea
here that the goal of physics lies in the description of experiments.55 In fact, he
merely points out the need for “unambiguous” communication, which he evidently
felt threatened by quantum mechanics.56 The controversial part of the quote lies in
his identification of the means of unambiguous communication with the language
of classical physics, involving particles and waves and the like. We will study
Bohr’s specific argument in favour of this identification shortly, but it has to be
said that, like practically all his foundational remarks on quantum mechanics, Bohr
presents his reasoning as self-evident, necessary, and not in need of any further
analysis [Scheibe, 1973; Beller, 1999]. Nonetheless, young Heisenberg clashed with
Bohr on precisely this point, for Heisenberg felt that the abstract mathematical
formalism of quantum theory (rather than Bohr’s world of words and pictures)
provided those means of unambiguous communication.57

By classical physics Bohr undoubtedly meant the theories of Newton, Maxwell,
and Lorentz, but that is not the main point.58 For Bohr, the defining property of
classical physics was the property that it was objective, i.e. that it could be studied
in an observer-independent way:

‘All description of experiences so far has been based on the assumption,
already inherent in ordinary conventions of language, that it is possible
to distinguish sharply between the behaviour of objects and the means
of observation. This assumption is not only fully justified by everyday
experience, but even constitutes the whole basis of classical physics’

55Which often but misleadingly has been contrasted with Einstein’s belief that the goal of
physics is rather to describe reality. See [Landsman, 2006b] for a recent discussion.

56Here “unambiguous” means “objective” [Scheibe, 1973; Chevalley, 1991].
57It is hard to disagree with Beller’s [1999] conclusion that Bohr was simply not capable of

understanding the formalism of post-1925 quantum mechanics, turning his own need of under-
standing this theory in terms of words and pictures into a deep philosophical necessity.

58Otherwise, one should wonder why one shouldn’t use the physics of Aristotle and the scholas-
tics for this purpose, which is a much more effective way of communicating our naive impressions
of the world. In contrast, the essence of physics since Newton has been to unmask a reality
behind the phenomena. Indeed, Newton himself empasized that his physics was intended for
those capable of natural philosophy, in contrast to ye vulgar who believed naive appearances.
The fact that Aristotle’s physics is now known to be wrong should not suffice to disqualify its use
for Bohr’s purposes, since the very same comment may be made about the physics of Newton
etc.
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[Bohr, 1958, 25; italics added].59

See also [Hooker, 1972; Scheibe, 1973] and [Howard, 1994]. Heisenberg [1958,
55] shared this view:60

‘In classical physics science started from the belief — or should one say
from the illusion? — that we could describe the world or at least part of
the world without any reference to ourselves. This is actually possible
to a large extent. We know that the city of London exists whether
we see it or not. It may be said that classical physics is just that
idealization in which we can speak about parts of the world without
any reference to ourselves. Its success has led to the general idea of an
objective description of the world.’

On the basis of his “quantum postulate” (see Subsection 3.2), Bohr came to
believe that, similarly, the defining property of quantum physics was precisely the
opposite, i.e. the necessity of the role of the observer (or apparatus — Bohr did
not distinguish between the two and never assigned a special role to the mind of
the observer or endorsed a subjective view of physics). Identifying unambiguous
communication with an objective description, in turn claimed to be the essence
of classical physics, Bohr concluded that despite itself quantum physics had to
be described entirely in terms of classical physics. Thus his doctrine of classical
concepts has an epistemological origin, arising from an analysis of the conditions
for human knowledge.61 In that sense it may be said to be Kantian in spirit
[Hooker, 1972; Murdoch, 1987; Chevalley, 1991; 1999].

Now, Bohr himself is on record as saying: ‘They do it smartly, but what counts
is to do it right’ [Rosenfeld, 1967, 129].62 The doctrine of classical concepts is
certainly smart, but is it right? As we have seen, Bohr’s argument starts from the
claim that classical physics is objective (or ‘unambiguous’) in being independent
of the observer. In fact, nowadays it is widely believed that quantum mechanics
leads to the opposite conclusion that “quantum reality” (whatever that may be) is
objective (though “veiled” in the terminology of d’Espagnat [1995]), while “clas-
sical reality” only comes into existence relative to a certain specification: this is

59Despite the typical imperative tone of this quotation, Bohr often regarded certain other
properties as essential to classical physics, such as determinism, the combined use of space-time
concepts and dynamical conservation laws, and the possibility of pictorial descriptions. However,
these properties were in some sense secondary, as Bohr considered them to be consequences
of the possibility of isolating an object in classical physics. For example: ‘The assumption
underlying the ideal of causality [is] that the behaviour of the object is uniquely determined, quite
independently of whether it is observed or not’ [Bohr, 1937], and then again, now negatively:
‘the renunciation of the ideal of causality [in quantum mechanics] is founded logically only on
our not being any longer in a position to speak of the autonomous behaviour of a physical object’
[Bohr, 1937]. See [Scheibe, 1973].

60As Camilleri [2005, 161] states: ‘For Heisenberg, classical physics is the fullest expression of
the ideal of objectivity.’

61See, for example, the very title of Bohr [1958]!
62‘They’ refers to epr.
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stance 1 discussed in the Introduction.63 Those who disagree with stance 1 cannot
use stance 2 (of denying the fundamental nature of quantum theory) at this point
either, as that is certainly not what Bohr had in mind. Unfortunately, in his most
outspoken defence of Bohr, even Heisenberg [1958, 55] was unable to find a bet-
ter argument for Bohr’s doctrine than the lame remark that ‘the use of classical
concepts is finally a consequence of the general human way of thinking.’64

In our opinion, Bohr’s motivation for his doctrine has to be revised in the light
of our current understanding of quantum theory; we will do so in Subsection 3.4.
In any case, whatever its motivation, the doctrine itself seems worth keeping:
apart from the fact that it evidently describes experimental practice, it provides a
convincing explanation for the probabilistic nature of quantum mechanics (cf. the
next subsection).

3.2 Object and apparatus: the Heisenberg cut

Describing quantum physics in terms of classical concepts sounds like an impossi-
ble and even self-contradictory task (cf. [Heisenberg, 1958]). For one, it precludes
a completely quantum-mechanical description of the world: ‘However far the phe-
nomena transcend the scope of classical physical explanation, the account of all
evidence must be expressed in classical terms.’ But at the same time it precludes
a purely classical description of the world, for underneath classical physics one has
quantum theory.65 The fascination of Bohr’s philosophy of quantum mechanics
lies precisely in his brilliant resolution of this apparently paradoxical situation.

The first step of this resolution that he and Heisenberg proposed is to divide
the system whose description is sought into two parts: one, the object, is to be
described quantum-mechanically, whereas the other, the apparatus, is treated as
if it were classical. Despite innumerable claims to the contrary in the literature
(i.e. to the effect that Bohr held that a separate realm of Nature was intrinsi-
cally classical), there is no doubt that both Bohr and Heisenberg believed in the
fundamental and universal nature of quantum mechanics, and saw the classical
description of the apparatus as a purely epistemological move without any coun-

63Indeed, interesting recent attempts to make Bohr’s philosophy of quantum mechanics precise
accommodate the a priori status of classical observables into some version of the modal interpre-
tation; see [Dieks, 1989b; Bub, 1999; Halvorson and Clifton, 1999; 2002], and [Dickson, 2005]. It
should give one some confidence in the possibility of world peace that the two most hostile inter-
pretations of quantum mechanics, viz. Copenhagen and Bohm [Cushing, 1994] have now found
a common home in the modal interpretation in the sense of the authors just cited! Whether or
not one agrees with Bub’s [2004] criticism of the modal interpretation, Bohr’s insistence on the
necessity of classical concepts is not vindicated by any current version of it.

64And similarly: ‘We are forced to use the language of classical physics, simply because we
have no other language in which to express the results.’ [Heisenberg, 1971, 130]. This in spite
of the fact that the later Heisenberg thought about this matter very deeply; see, e.g., his [1942],
as well as [Camilleri, 2005]. Murdoch [1987, 207–210] desperately tries to boost the doctrine of
classical concepts into a profound philosophical argument by appealing to Strawson [1959].

65This peculiar situation makes it very hard to give a realist account of the Copenhagen
interpretation, since quantum reality is denied whereas classical reality is neither fundamental
nor real.
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terpart in ontology, expressing the fact that a given quantum system is being used
as a measuring device.66 For example: ‘The construction and the functioning of
all apparatus like diaphragms and shutters, serving to define geometry and timing
of the experimental arrangements, or photographic plates used for recording the
localization of atomic objects, will depend on properties of materials which are
themselves essentially determined by the quantum of action’ [Bohr, 1948, 315], as
well as: ‘We are free to make the cut only within a region where the quantum
mechanical description of the process concerned is effectively equivalent with the
classical description’ [Bohr, 1935, 701].67

The separation between object and apparatus called for here is usually called
the Heisenberg cut, and it plays an absolutely central role in the Copenhagen inter-
pretation of quantum mechanics.68 The idea, then, is that a quantum-mechanical
object is studied exclusively through its influence on an apparatus that is described
classically. Although described classically, the apparatus is a quantum system, and
is supposed to be influenced by its quantum-mechanical coupling to the underlying
(quantum) object.

The alleged necessity of including both object and apparatus in the description
was initially claimed to be a consequence of the so-called “quantum postulate”.
This notion played a key role in Bohr’s thinking: his Como Lecture [Bohr, 1927]
was even entitled ‘The quantum postulate and the recent development of atomic
theory’. There he stated its contents as follows: ‘The essence of quantum theory
is the quantum postulate: every atomic process has an essential discreteness —
completely foreign to classical theories — characterized by Plancks quantum of
action.’69 Even more emphatically, in his reply to epr [Bohr, 1935, 697]: ‘Indeed
the finite interaction between object and measuring agencies conditioned by the

66See especially [Scheibe, 1973] on Bohr, and [Heisenberg, 1958]). The point in question has
also been made by R. Haag (who knew both Bohr and Heisenberg) in most of his talks on
quantum mechanics in the 1990s. In this respect we disagree with Howard [1994], who claims
that according to Bohr a classical description of an apparatus amounts to picking a particular
(maximally) abelian subalgebra of its quantum-mechanical algebra of ‘beables’, which choice is
dictated by the measurement context. But having a commutative algebra falls far short of a
classical description, since in typical examples one obtains only half of the canonical classical
degrees of freedom in this way. Finding a classical description of a quantum-mechanical system
is a much deeper problem, to which we shall return throughout this paper.

67This last point suggests that the cut has something to do with the division between a mi-
croscopic and a macroscopic realm in Nature, but although this division often facilitates making
the cut when it is well defined, this is by no means a matter of principle. Cf. [Howard, 1994]. In
particular, all objections to the Copenhagen interpretation to the effect that the interpretation
is ill-defined because the micro-macro distinction is blurred are unfounded.

68Pauli [1949] went as far as saying that the Heisenberg cut provides the appropriate gener-
alization modern physics offers of the old Kantian opposition between a knowable object and a
knowing subject: ’Auf diese Weise verallgemeinert die moderne Physik die alte Gegenüberstellung
von erkennenden Subjekt auf der einen Seite und des erkannten Objektes auf der anderen Seite
zu der Idee des Schnittes zwischen Beobachter oder Beobachtungsmittel und dem beobachten
System.’ (‘In this way, modern physics generalizes the old opposition between the knowing sub-
ject on the one hand and the known object on the other to the idea of the cut between observer
or means of observation and the observed system.’) He then continued calling the cut a necessary
condition for human knowledge: see footnote 72.

69Instead of ‘discreteness’, Bohr alternatively used the words ‘discontinuity’ or ‘individuality’
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very existence of the quantum of action entails — because of the impossibility of
controlling the reaction of the object on the measurement instruments if these are
to serve their purpose — the necessity of a final renunication of the classical ideal
of causality and a radical revision of our attitude towards the problem of physical
reality.’ Also, Heisenberg’s uncertainty relations were originally motivated by the
quantum postulate in the above form. According to Bohr and Heisenberg around
1927, this ‘essential discreteness’ causes an ‘uncontrollable disturbance’ of the ob-
ject by the apparatus during their interaction. Although the “quantum postulate”
is not supported by the mature mathematical formalism of quantum mechanics
and is basically obsolete, the intuition of Bohr and Heisenberg that a measure-
ment of a quantum-mechanical object causes an ‘uncontrollable disturbance’ of
the latter is actually quite right.70

In actual fact, the reason for this disturbance does not lie in the “quantum pos-
tulate”, but in the phenomenon of entanglement, as further discussed in Subsection
3.4. Namely, from the point of view of von Neumann’s measurement theory (see
Subsection 2.5) the Heisenberg cut is just a two-step example of a von Neumann
chain, with the special feature that after the quantum-mechanical interaction has
taken place, the second link (i.e. the apparatus) is described classically. The lat-
ter feature not only supports Bohr’s philosophical agenda, but, more importantly,
also suffices to guarantee the applicability of the ignorance interpretation of the
mixed state that arises after completion of the measurement.71 All of von Neu-
mann’s analysis of the arbitrariness of the location of the cut applies here, for one
may always extend the definition of the quantum-mechanical object by coupling
the original choice to any other purely quantum-mechanical system one likes, and
analogously for the classical part. Thus the two-step nature of the Heisenberg cut
includes the possibility that the first link or object is in fact a lengthy chain in
itself (as long as it is quantum-mechanical), and similarly for the second link (as
long as it is classical).72 This arbitrariness, subject to the limitation expressed by
the second [1935] Bohr quote in this subsection, was well recognized by Bohr and
Heisenberg, and was found at least by Bohr to be of great philosophical impor-
tance.

It is the interaction between object and apparatus that causes the measurement
to ‘disturb’ the former, but it is only and precisely the classical description of

as well. He rarely omitted amplifications like ‘essential’.
70Despite the fact that Bohr later distanced himself from it; cf. [Beller, 1999] and footnote

52 above. In a correct analysis, what is disturbed upon coupling to a classical apparatus is the
quantum-mechanical state of the object (rather than certain sharp values of classical observables
such as position and momentum, as the early writings of Bohr and Heisenberg suggest).

71In a purely quantum-mechanical von Neumann chain the final state of system plus apparatus
is pure, but if the apparatus is classical, then the post-measurement state is mixed.

72 Pauli [1949] once more: ’Während die Existenz eines solchen Schnittes eine notwendige
Bedingung menschlicher Erkenntnis ist, faßt sie die Lage des Schnittes als bis zu einem gewissen
Grade willkürlich und als Resultat einer durch Zweckmäßigkeitserwägungen mitbestimmten, also
teilweise freien Wahl auf.’ (‘While the existence of such a [Heisenberg] cut is a necessary
condition for human knowledge, its location is to some extent arbitrary as a result of a pragmatic
and thereby partly free choice.’)
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the latter that (through the ignorance interpretation of the final state) makes
the disturbance ‘uncontrollable’.73 In the Copenhagen interpretation, probabilities
arise solely because we look at the quantum world through classical glasses.

‘Just the necessity of accounting for the function of the measuring agen-
cies on classical lines excludes in principle in proper quantum phenom-
ena an accurate control of the reaction of the measuring instruments
on the atomic objects.’ [Bohr, 1956, 87]

‘One may call these uncertainties objective, in that they are simply a
consequence of the fact that we describe the experiment in terms of
classical physics; they do not depend in detail on the observer. One
may call them subjective, in that they reflect our incomplete knowledge
of the world.’ [Heisenberg, 1958, 53–54]

Thus the picture that arises is this: Although the quantum-mechanical side of
the Heisenberg cut is described by the Schrödinger equation (which is determin-
istic), while the classical side is subject to Newton’s laws (which are equally well
deterministic),74 unpredictability arises because the quantum system serving as
an apparatus is approximated by a classical system. The ensuing probabilities
reflect the ignorance arising from the decision (or need) to ignore the quantum-
mechanical degrees of freedom of the apparatus. Hence the probabilistic nature of
quantum theory is not intrinsic but extrinsic, and as such is entirely a consequence
of the doctrine of classical concepts, which by the same token explains this nature.

Mathematically, the simplest illustration of this idea is as follows. Take a
finite-dimensional Hilbert space H = Cn with the ensuing algebra of observables
A = Mn(C) (i.e. the n×n matrices). A unit vector Ψ ∈ Cn determines a quantum-
mechanical state in the usual way. Now describe this quantum system as if it were
classical by ignoring all observables except the diagonal matrices. The state then
immediately collapses to a probability measure on the set of n points, with prob-
abilities given by the Born rule p(i) = |(ei,Ψ)|2, where (ei)i=1,...,n is the standard
basis of Cn. Similarly, the Born–Pauli rule for the probabilistic interpretation
of the wave function Ψ ∈ L2(R3) in terms of |Ψ(x)|2 immediately follows if one
ignores all observables on L2(R3) except the position operator.75

Despite the appeal of this entire picture, it is not at all clear that it actually
applies! There is no a priori guarantee whatsoever that one may indeed describe
a quantum system “as if it were classical”. Bohr and Heisenberg apparently took
the existence of the classical world of mountains and creeks they loved so much for
granted, the former probably on empirical grounds, the latter on the basis of his

73These points were not clearly separated by Heisenberg [1927] in his paper on the uncertainty
relations, but were later clarified by Bohr. See [Scheibe, 1973].

74But see [Earman, 1986; 2005].
75Technically, one restricts Ψ — seen as a state on the C∗-algebra B(L2(R3)) — to the C∗-

algebra C0(R3) given by all multiplication operators on L2(R3) defined by continuous functions
of x ∈ R3 that vanish at infinity. This restriction yields a probability measure on R3, which is
precisely the usual one originally proposed by Pauli.
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own uncertainty relations — both almost blind to the extremely delicate mathe-
matical and conceptual problems involved. In our opinion, the main difficulty in
making sense of the Copenhagen interpretation therefore lies in the justification
of the classical description in question. This difficulty is the main topic of this
paper, of which Section 6 is of particular relevance in the present context.

3.3 Complementarity

The notion of a Heisenberg cut is subject to a certain arbitrariness even apart
from the precise location of the cut within a given chain, for one might in principle
construct the chain in various different and incompatible ways. This arbitrariness
was analyzed by Bohr in terms of what he called complementarity.76

Bohr never gave a precise definition of complementarity,77 but restricted him-
self to the analysis of a number of examples.78 A prominent such example is the
complementarity between a “causal”79 description of a quantum system in which
conservation laws hold, and a space-time description that is necessarily statisti-
cal in character. Here Bohr’s idea seems to have been that a stationary state
(i.e. an energy eigenstate) of an atom is incompatible with an electron moving
in its orbit in space and time — see Subsection 5.4 for a discussion of this is-
sue. Heisenberg [1958], however, took this example of complementarity to mean
that a system on which no measurement is performed evolves deterministically ac-
cording to the Schrödinger equation, whereas a rapid succession of measurements
produces a space-time path whose precise form quantum theory is only able to
predict statistically [Camilleri, 2005]. In other words, this example reproduces
precisely the picture through which Heisenberg [1927] believed he had established
the connection between classical and quantum mechanics; cf. Subsection 2.3.

Bohr’s other key example was the complementarity between particles and waves.
Here his principal aim was to make sense of Young’s double-slit experiment. The
well-known difficulty with a classical visualization of this experiment is that a
particle description appears impossible because a particle has to go through a single
slit, ruining the interference pattern gradually built up on the detection screen,
whereas a wave description seems incompatible with the point-like localization on
the screen once the wave hits it. Thus Bohr suggested that whilst each of these
classical descriptions is incomplete, the union of them is necessary for a complete

76Unfortunately and typically, Bohr once again presented complementarity as a necessity of
thought rather than as the truly amazing possible mode of description it really is.

77Perhaps he preferred this approach because he felt a definition could only reveal part of what
was supposed to be defined: one of his favourite examples of complementarity was that between
definition and observation.

78We refrain from discussing the complementarity between truth and clarity, science and reli-
gion, thoughts and feelings, and objectivity and introspection here, despite the fact that on this
basis Bohr’s biographer Pais [1997] came to regard his subject as the greatest philosopher since
Kant.

79 Bohr’s use the word “causal” is quite confusing in view of the fact that in the British
empiricist tradition causality is often interpreted in the sense of a space-time description. But
Bohr’s “causal” is meant to be complementary to a space-time description!
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description of the experiment.
The deeper epistemological point appears to be that although the completeness

of the quantum-mechanical description of the microworld systems seems to be
endangered by the doctrine of classical concepts, it is actually restored by the
inclusion of two “complementary” descriptions (i.e. of a given quantum system
plus a measuring device that is necessarily described classicaly, ‘if it is to serve
its purpose’). Unfortunately, despite this attractive general idea it is unclear to
what precise definition of complementarity Bohr’s examples should lead. In the
first, the complementary notions of determinism and a space-time description are
in mutual harmony as far as classical physics is concerned, but are apparently in
conflict with each other in quantum mechanics. In the second, however, the wave
description of some entity contradicts a particle description of the same entity
precisely in classical physics, whereas in quantum mechanics these descriptions
somehow coexist.80

Scheibe [1973, 32] notes a ‘clear convergence [in the writings of Bohr] towards a
preferred expression of a complementarity between phenomena’, where a Bohrian
phenomenon is an indivisible union (or “whole”) of a quantum system and a classi-
cally described experimental arrangement used to study it; see item 2 below. Some
of Bohr’s early examples of complementarity can be brought under this heading,
others cannot [Held, 1994]. For many students of Bohr (including the present
author), the fog has yet to clear up.81 Nonetheless, the following mathematical
interpretations might assign some meaning to the idea of complementarity in the
framework of von Neumann’s formalism of quantum mechanics.82

1. Heisenberg [1958] identified complementary pictures of a quantum-mechanical
system with equivalent mathematical representations thereof. For example,
he thought of the complementarity of x and p as the existence of what we
now call the Schrödinger representations of the canonical commutation re-
lations (CCR) on L2(Rn) and its Fourier transform to momentum space.
Furthermore, he felt that in quantum field theory particles and waves gave
two equivalent modes of description of quantum theory because of second
quantization. Thus for Heisenberg complementary pictures are classical be-
cause there is an underlying classical variable, with no apparatus in sight,
and such pictures are not mutually contradictory but (unitarily) equivalent.

80On top of this, Bohr mixed these examples in conflicting ways. In discussing bound states
of electrons in an atom he jointly made determinism and particles one half of a complementary
pair, waves and space-time being the other. In his description of electron-photon scattering he
did it the other way round: this time determinism and waves formed one side, particles and
space-time the other (cf. [Beller, 1999]).

81Even Einstein [1949, 674] conceded that throughout his debate with Bohr he had never
understood the notion of complementarity, ‘the sharp formulation of which, moreover, I have
been unable to achieve despite much effort which I have expended on it.’ See [Landsman, 2006b]
for the author’s view on the Bohr–Einstein debate.

82This exercise is quite against the spirit of Bohr, who is on record as saying that ‘von Neu-
mann’s approach (. . . ) did not solve problems but created imaginary difficulties ([Scheibe, 1973,
11], quoting Feyerabend; italics in original).
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See also [Camilleri, 2005, 88], according to whom ‘Heisenberg never accepted
Bohr’s complementarity arguments’.

2. Pauli [1933] simply stated that two observables are complementary when
the corresponding operators fail to commute.83 Consequently, it then follows
from Heisenberg’s uncertainty relations that complementary observables can-
not be measured simultaneously with arbitrary precision. This suggests (but
by no means proves) that they should be measured independently, using mu-
tually exclusive experimental arrangements. The latter feature of comple-
mentarity was emphasized by Bohr in his later writings.84 This approach
makes the notion of complementarity unambiguous and mathematically pre-
cise, and perhaps for this reason the few physicists who actually use the idea
of complementarity in their work tend to follow Pauli and the later Bohr.85

3. The present author proposes that observables and pure states are comple-
mentary. For in the Schrödinger representation of elementary quantum me-
chanics, the former are, roughly speaking, generated by the position and

83More precisely, one should probably require that the two operators in question generate
the ambient algebra of observables, so that complementarity in Pauli’s sense is really defined
between two commutative subalgebras of a given algebra of observables (again, provided they
jointly generate the latter).

84Bohr’s earlier writings do not quite conform to Pauli’s approach [Scheibe, 1973; Held, 1994].
In Bohr’s discussions of the double-slit experiment particle and wave form a complementary pair,
whereas Pauli’s complementary observables are position and momentum, which refer to a single
side of Bohr’s pair. For a precise analysis of the relationship between mutually exclusive experi-
mental arrangements, non-commuting observables, and the Heisenberg uncertainty relations see
[Busch et al., 1998] and [De Muynck, 2002].

85Adopting this point of view, it is tempting to capture the complementarity between position
and momentum by means of the following conjecture: Any normal pure state ω on B(L2(Rn))
(that is, any wave function seen as a state in the sense of C∗-algebras) is determined by the pair
{ω|L∞(Rn), ω|FL∞(Rn)F−1} (in other words, by its restrictions to position and momentum).
Here L∞(Rn) is the von Neumann algebra of multiplication operators on L2(Rn), i.e. the von
Neumann algebra generated by the position operator, whereas FL∞(Rn)F−1 is its Fourier trans-
form, i.e. the von Neumann algebra generated by the momentum operator. The idea is that each
of its restrictions ω|L∞(Rn) and ω|FL∞(Rn)F−1 gives a classical picture of ω. These restric-
tions are a measure on Rn interpreted as position space, and another measure on Rn interpreted
as momentum space. Unfortunately, this conjecture is false. The following counterexample was
provided by D. Buchholz (private communication): take ω as the state defined by the wave
function Ψ(x) ∼ exp(−ax2/2) with Re (a) > 0, Im (a) �= 0, and |a|2 = 1. Then ω depends on
Im (a), whereas neither ω|L∞(Rn) nor ω|FL∞(Rn)F−1 does. There is even a counterexample
to the analogous conjecture for the C∗-algebra of 2 × 2 matrices, found by H. Halvorson: if A
is the commutative C∗-algebra generated by σx, and B the one generated by σy , then the two
different eigenstates of σz coincide on A and on B. One way to improve our conjecture might
be to hope that if, in the Schrödinger picture, two states coincide on the two given commutative
von Neumann algebras for all times, then they must be equal. But this can only be true for
certain “realistic” time-evolutions, for the trivial Hamiltonian H = 0 yields the above counterex-
ample. We leave this as a problem for future research. At the time of writing, Halvorson [2004]
contains the only sound mathematical interpretation of the complementarity between position
and momentum, by relating it to the representation theory of the CCR. He shows that in any
representation where the position operator has eigenstates, there is no momentum operator, and
vice versa.
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momentum operators, whereas the latter are given by wave functions. Some
of Bohr’s other examples of complementarity also square with this inter-
pretation (at least if one overlooks the collapse of the wavefunction upon a
measurement). Here one captures the idea that both ingredients of a com-
plementary pair are necessary for a complete description, though the alleged
mutual contradiction between observables and states is vague. Also, this
reading of complementarity relies on a specific representation of the canon-
ical commutation relations. It is not quite clear what one gains with this
ideology, but perhaps it deserves to be developed in some more detail. For
example, in quantum field theory it is once more the observables that carry
the space-time description, especially in the algebraic description of Haag
[1992].

3.4 Epilogue: entanglement to the rescue?

Bohr’s “quantum postulate” being obscure and obsolete, it is interesting to con-
sider Howard’s [1994] ‘reconstruction’ of Bohr’s philosophy of physics on the basis
of entanglement.86 His case can perhaps be strengthened by an appeal to the
analysis Primas [1983] has given of the need for classical concepts in quantum
physics.87 Primas proposes to define a “quantum object” as a physical system S
that is free from what he calls “epr-correlations” with its environment. Here the
“environment” is meant to include apparatus, observer, the rest of the universe if
necessary, and what not. In elementary quantum mechanics, quantum objects in
this sense exist only in very special states: if HS is the Hilbert space of the system
S, and HE that of the environment E, any pure state of the form

∑
i ciΨi ⊗ Φi

(with more than one term) by definition correlates S with E; the only uncorre-
lated pure states are those of the form Ψ ⊗ Φ for unit vectors Ψ ∈ HS , Φ ∈ HE .
The restriction of a pure epr-correlated state on S + E to S is mixed, so that the
(would-be) quantum object ‘does not have its own pure state’; in other words, the
restriction of an epr-correlated state ω to S together with its restriction to E do
not jointly determine ω. More generally, if the state of S + E is epr-correlated,
a complete characterization of the state of S requires E (and vice versa). But
(against Bohr!) mathematics defeats words: the sharpest characterization of the
notion of epr-correlations can be given in terms of operator algebras, as follows.
In the spirit of the remainder of the paper we proceed in a rather general and
abstract way.88 For what follows see especially [Werner, 1989].

86We find little evidence that Bohr himself ever thought along those lines. With approval we
quote Zeh, who, following a statement of the quantum postulate by Bohr similar to the one
in Subsection 3.2 above, writes: ‘The later revision of these early interpretations of quantum
theory (required by the important role of entangled quantum states for much larger systems)
seems to have gone unnoticed by many physicists.’ [Joos et al., 2003, 23] See also [Howard, 1990]
for an interesting historical perspective on entanglement, and cf. [Raimond et al., 2001] for the
experimental situation.

87See also [Amann and Primas, 1997] and [Primas, 1997].
88Summers and Werner [1987] give even more general results, where the tensor product A⊗̂B

below is replaced by an arbitrary C∗-algebra C containing A and B as C∗-subalgebras.
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LetA and B be C∗-algebras,89 with tensor productA⊗̂B.90 Less abstractly, just
think of two Hilbert spaces HS and HE as above, with tensor product HS ⊗HE ,
and assume that A = B(HS) while B is either B(HE) itself or some (norm-closed
and involutive) commutative subalgebra thereof. The tensor product A⊗̂B is
then a (norm-closed and involutive) subalgebra of B(HS ⊗HE), the algebra of all
bounded operators on HS ⊗HE .

A product state on A⊗̂B is a state of the form ω = ρ⊗ σ, where the states ρ on
A and σ on B may be either pure or mixed.91 We say that a state ω on A⊗̂B is
decomposable when it is a mixture of product states, i.e. when ω =

∑
i piρi ⊗ σi,

where the coefficients pi > 0 satisfy
∑
i pi = 1.92 A decomposable state ω is pure

precisely when it is a product of pure states. This has the important consequence
that both its restrictions ω|A and ω|B to A and B, respectively, are pure as well.93

On the other hand, a state on A⊗̂B may be said to be epr-correlated [Primas,
1983] when it is not decomposable. An epr-correlated pure state has the property
that its restriction to A or B is mixed.

Raggio [1981] proved that the following two conditions are equivalent:

89 Recall that a C∗-algebra is a complex algebra A that is complete in a norm ‖·‖ that satisfies
‖AB‖ ≤ ‖A‖ ‖B‖ for all A,B ∈ A, and has an involution A→ A∗ such that ‖A∗A‖ = ‖A‖2. A
basic examples is A = B(H), the algebra of all bounded operators on a Hilbert space H, equipped
with the usual operator norm and adjoint. By the Gelfand–Naimark theorem, any C∗-algebra is
isomorphic to a norm-closed self-adjoint subalgebra of B(H), for some Hilbert space H. Another
key example is A = C0(X), the space of all continuous complex-valued functions on a (locally
compact Hausdorff) space X that vanish at infinity (in the sense that for every ε > 0 there is
a compact subset K ⊂ X such that |f(x)| < ε for all x /∈ K), equipped with the supremum
norm ‖f‖∞ := supx∈X |f(x)|, and involution given by (pointwise) complex conjugation. By the
Gelfand–Naimark lemma, any commutative C∗-algebra is isomorphic to C0(X) for some locally
compact Hausdorff space X.

90 The tensor product of two (or more) C∗-algebras is not unique, and we here need the so-
called projective tensor product A⊗̂B, defined as the completion of the algebraic tensor product
A ⊗ B in the maximal C∗-cross-norm. The choice of the projective tensor product guarantees
that each state on A ⊗ B extends to a state on A⊗̂B by continuity; conversely, since A ⊗ B is
dense in A⊗̂B, each state on the latter is uniquely determined by its values on the former. See
[Wegge-Olsen, 1993, Appendix T], or [Takesaki, 2003, Vol. i, Ch. iv]. In particular, product
states ρ⊗σ and mixtures ω =

P
i piρi⊗σi thereof as considered below are well defined on A⊗̂B.

If A ⊂ B(HS) and B ⊂ B(HE) are von Neumann algebras, as in the analysis of Raggio [1981;
1988], it is easier (and sufficient) to work with the spatial tensor product A⊗B, defined as the
double commutant (or weak completion) of A ⊗ B in B(HS ⊗ HE). For any normal state on
A⊗ B extends to a normal state on A⊗B by continuity.

91We use the notion of a state that is usual in the algebraic framework. Hence a state on a C∗-
algebra A is a linear functional ρ : A → C that is positive in that ρ(A∗A) ≥ 0 for all A ∈ A and
normalized in that ρ(1) = 1, where 1 is the unit element of A. If A is a von Neumann algebra, one
has the notion of a normal state, which satisfies an additional continuity condition. If A = B(H),
then a fundamental theorem of von Neumann states that each normal state ρ on A is given by
a density matrix ρ̂ on H, so that ρ(A) = Tr (ρ̂A) for each A ∈ A. In particular, a normal pure
state on B(H) (seen as a von Neumann algebra) is necessarily of the form ψ(A) = (Ψ, AΨ) for
some unit vector Ψ ∈ H.

92Infinite sums are allowed here. More precisely, ω is decomposable if it is in the w∗-closure
of the convex hull of the product states on A⊗̂B.

93The restriction ω|A of a state ω on A⊗̂B to, say, A is given by ω|A(A) = ω(A⊗ 1), where 1
is the unit element of B, etc.
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• Each state on A⊗̂B is decomposable;

• A or B is commutative.

In other words, epr-correlated states exist precisely when A and B are both non-
commutative.94 As one might expect, this result is closely related to the Bell
inequalities. Namely, consider the inequality

| sup{ω(A1(B1 + B2) + A2(B1 −B2))}| ≤ 2,(1)

where ω is a fixed state on A⊗̂B and the supremum is taken over all self-adjoint
operators A1, A2 ∈ A, B1, B2 ∈ B, each of norm ≤ 1. Eq. (1) holds if and only
if ω is decomposable [Baez, 1987; Raggio, 1988]. Consequently, the inequality
(1) can only be violated in some state ω when the algebras A and B are both
noncommutative. If, on the other hand, (1) is satisfied, then one knows that there
exists a classical probability space and probability measure (and hence a “hidden
variables” theory) reproducing the given correlations [Pitowsky, 1989]. As stressed
by Bacciagaluppi [1993], such a description does not require the entire setting to be
classical; as we have seen, only one of the algebras A and B has to be commutative
for the Bell inequalities to hold.

Where does this leave us with respect to Bohr? If we follow Primas [1983]
in describing a (quantum) object as a system free from epr-correlations with
its environment, then the mathematical results just reviewed leave us with two
possibilities. Firstly, we may pay lip-service to Bohr in taking the algebra B
(interpreted as the algebra of observables of the environment in the widest possible
sense, as above) to be commutative as a matter of description. In that case,
our object is really an “object” in any of its states. But clarly this is not the
only possibility. For even in the case of elementary quantum mechanics — where
A = B(HS) and B = B(HE) — the system is still an “object” in the sense of
Primas as long as the total state ω of S + E is decomposable. In general, for pure
states this just means that ω = ψ⊗φ, i.e. that the total state is a product of pure
states. To accomplish this, one has to define the Heisenberg cut in an appropriate
way, and subsequently hope that the given product state remains so under time-
evolution (see [Amann and Primas, 1997] and [Atmanspacher et al., 1999], and
references therein). This selects certain states on A as “robust” or “stable”, in
much the same way as in the decoherence approach. We therefore continue this
discussion in Section 7 (see especially point 6 in Subsection 7.1).

4 QUANTIZATION

Heisenberg’s [1925] idea of Umdeutung (reinterpretation) suggests that it is possible
to construct a quantum-mechanical description of a physical system whose classical
description is known. As we have seen, this possibility was realized by Schrödinger

94Raggio [1981] proved this for von Neumann algebras and normal states. His proof was
adapted to C∗-algebras by Bacciagaluppi [1993].
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[1925c], who found the simplest example (2) and (3) of Umdeutung in the context
of atomic physics. This early example was phenomenally successful, as almost all
of atomic and molecular physics is still based on it.

Quantization theory is an attempt to understand this example, make it math-
ematically precise, and generalize it to more complicated systems. It has to be
stated from the outset that, like the entire classical-quantum interface, the nature
of quantization is not yet well understood. This fact is reflected by the existence
of a fair number of competing quantization procedures, the most transparent of
which we will review below.95 Among the first mathematically serious discussions
of quantization are [Mackey, 1968] and [Souriau, 1969]; more recent and compre-
hensive treatments are, for example, [Woodhouse, 1992; Landsman, 1998], and
[Ali and Englis, 2004].

4.1 Canonical quantization and systems of imprimitivity

The approach based on (2) is often called canonical quantization. Even apart from
the issue of mathematical rigour, one can only side with Mackey [1992, 283], who
wrote: ‘Simple and elegant as this model is, it appears at first sight to be quite
arbitrary and ad hoc. It is difficult to understand how anyone could have guessed
it and by no means obvious how to modify it to fit a model for space different from
Rr.’

One veil of the mystery of quantization was lifted by von Neumann [1931],
who (following earlier heuristic proposals by Heisenberg, Schrödinger, Dirac, and
Pauli) recognized that (2) does not merely provide a representation of the canonical
commutation relations

[Q�(pj),Q�(qk)] = −i�δkj ,(1)

but (subject to a regularity condition)96 is the only such representation that is
irreducible (up to unitary equivalence). In particular, the seemingly different for-
mulations of quantum theory by Heisenberg and Schrödinger (amended by the
inclusion of states and of observables, respectively — cf. Section 2) simply in-
volved superficially different but unitarily equivalent representations of (1): the
difference between matrices and waves was just one between coordinate systems in
Hilbert space, so to speak. Moreover, any other conceivable formulation of quan-

95The path integral approach to quantization is still under development and so far has had no
impact on foundational debates, so we will not discuss it here. See [Albeverio and Høegh-Krohn,
1976] and [Glimm and Jaffe, 1987].

96It is required that the unbounded operators Q�(pj) and Q�(qk) integrate to a unitary repre-
sentation of the 2n+ 1-dimensional Heisenberg group Hn, i.e. the unique connected and simply
connected Lie group with 2n+1-dimensional Lie algebra with generators Xi, Yi, Z (i = 1, . . . , n)
subject to the Lie brackets [Xi, Xj ] = [Yi, Yj ] = 0, [Xi, Yj ] = δijZ, [Xi, Z] = [Yi, Z] = 0. Thus
von Neumann’s uniqueness theorem for representations of the canonical commutation relations
is (as he indeed recognized himself) really a uniqueness theorem for unitary representations of
Hn for which the central element Z is mapped to −i�−11, where � �= 0 is a fixed constant. See,
for example, [Corwin and Greenleaf, 1989] or [Landsman, 1998].
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tum mechanics — now simply defined as a (regular) Hilbert space representation
of (1) — has to be equivalent to the one of Heisenberg and Schrödinger.97

This, then, transfers the quantization problem of a particle moving on Rn to
the canonical commutation relations (1). Although a mathematically rigorous the-
ory of these commutation relations (as they stand) exists [Jørgensen and Moore,
1984; Schmüdgen, 1990], they are problematic nonetheless. Firstly, technically
speaking the operators involved are unbounded, and in order to represent phys-
ical observables they have to be self-adjoint; yet on their respective domains of
self-adjointness the commutator on the left-hand side is undefined. Secondly, and
more importantly, (1) relies on the possibility of choosing global coordinates on
Rn, which precludes a naive generalization to arbitrary configuration spaces. And
thirdly, even if one has managed to quantize p and q by finding a representa-
tion of (1), the problem of quantizing other observables remains — think of the
Hamiltonian and the Schrödinger equation.

About 50 years ago, Mackey set himself the task of making good sense of canon-
ical quantization; see [Mackey, 1968; 1978; 1992] and the brief exposition below
for the result. Although the author now regards Mackey’s reformulation of quan-
tization in terms of induced representations and systems of imprimitivity merely
as a stepping stone towards our current understanding based on deformation the-
ory and groupoids (cf. Subsection 4.3 below), Mackey’s approach is (quite rightly)
often used in the foundations of physics, and one is well advised to be familiar
with it. In any case, Mackey [1992, 283] — continuing the previous quotation)
claims with some justification that his approach to quantization ‘removes much of
the mystery.’

Like most approaches to quantization, Mackey assigns momentum and position
a quite different role in quantum mechanics, despite the fact that in classical
mechanics p and q can be interchanged by a canonical transformation:98

1. The position operatorsQ�(qj) are collectively replaced by a single projection-
valued measure P on Rn,99 which on L2(Rn) is given by P (E) = χE as a
multiplication operator. Given this P , any multiplication operator defined
by a (measurable) function f : Rn → R can be represented as

∫
Rn dP (x) f(x),

which is defined and self-adjoint on a suitable domain.100 In particular, the
position operators Q�(qj) can be reconstructed from P by choosing f(x) =

97This is unrelated to the issue of the Heisenberg picture versus the Schrödinger picture, which
is about the time-evolution of observables versus that of states.

98Up to a minus sign, that is. This is true globally on Rn and locally on any symplectic
manifold, where local Darboux coordinates do not distinguish between position and momentum.

99 A projection-valued measure P on a space Ω with Borel structure (i.e. equipped with a
σ-algebra of measurable sets defined by the topology) with values in a Hilbert space H is a map
E �→ P (E) from the Borel subsets E ⊂ Ω to the projections on H that satisfies P (∅) = 0,
P (Ω) = 1, P (E)P (F ) = P (F )P (E) = P (E ∩ F ) for all measurable E,F ⊂ Ω, and P (∪∞i=1Ei) =P∞

i=1 P (Ei) for all countable collections of mutually disjoint Ei ⊂ Ω.
100 This domain consists of all Ψ ∈ H for which

R
Rn d(Ψ, P (x)Ψ) |f(x)|2 <∞.
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xj , i.e.

Q�(qj) =
∫

Rn

dP (x)xj .(2)

2. The momentum operatorsQ�(pj) are collectively replaced by a single unitary
group representation U(Rn), defined on L2(Rn) by

U(y)Ψ(x) := Ψ(x− y).

Each Q�(pj) can be reconstructed from U by means of

Q�(pj)Ψ := i� lim
tj→0

t−1
j (U(tj)− 1)Ψ,(3)

where U(tj) is U at xj = tj and xk = 0 for k �= j.101

Consequently, it entails no loss of generality to work with the pair (P,U) instead
of the pair (Q�(qk),Q�(pj)). The commutation relations (1) are now replaced by

U(x)P (E)U(x)−1 = P (xE),(4)

where E is a (Borel) subset of Rn and xE = {xω | ω ∈ E}. On the basis of this
reformulation, Mackey proposed the following sweeping generalization of the the
canonical commutation relations:102

A system of imprimitivity (H, U, P ) for a given action of a group G on
a space Q consists of a Hilbert space H, a unitary representation U of
G on H, and a projection-valued measure E �→ P (E) on Q with values
in H, such that (4) holds for all x ∈ G and all Borel sets E ⊂ Q.

In physics such a system describes the quantum mechanics of a particle moving
on a configuration space Q on which G acts by symmetry transformations; see
Subsection 4.3 for a more detailed discussion. When everything is smooth,103 each
element X of the Lie algebra g of G defines a generalized momentum operator

Q�(X) = i�dU(X)(5)

on H.104 These operators satisfy the generalized canonical commutation rela-
tions105

[Q�(X),Q�(Y )] = i�Q�([X,Y ]).(6)
101By Stone’s theorem (cf. Reed and Simon, 1972), this operator is defined and self-adjoint on

the set of all Ψ ∈ H for which the limit exists.
102All groups and spaces are supposed to be locally compact, and actions and representations

are assumed continuous.
103I.e. G is a Lie group, Q is a manifold, and the G-action is smooth.
104This operator is defined and self-adjoint on the domain of vectors Ψ ∈ H for which
dU(X)Ψ := limt→0 t−1(U(exp(tX))− 1)Ψ exists.
105As noted before in the context of (1), the commutation relations (6), (8) and (9) do not hold

on the domain of self-adjointness of the operators involved, but on a smaller common core.
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Furthermore, in terms of the operators106

Q�(f) =
∫
Q

dP (x) f(x),(7)

where f is a smooth function on Q and X ∈ g, one in addition has

[Q�(X),Q�(f)] = i�Q�(ξQXf),(8)

where ξQX is the canonical vector field on Q defined by the G-action,107 and

[Q�(f1),Q�(f2)] = 0.(9)

Elementary quantum mechanics on Rn corresponds to the special case Q = Rn

and G = Rn with the usual additive group structure. To see this, we denote the
standard basis of R3 (in its guise as the Lie algebra of R3) by the name (pj),
and furthermore take f1(q) = qj , f2(q) = f(q) = qk. Eq. (6) for X = pj and
Y = pk then reads [Q�(pj),Q�(pk)] = 0, eq. (8) yields the canonical commuta-
tion relations (1), and (9) states the commutativity of the position operators, i.e.
[Q�(qj),Q�(qk)] = 0.

In order to incorporate spin, one picks G = E(3) = SO(3) � R3 (i.e. the Eu-
clidean motion group), acting on Q = R3 in the obvious (defining) way. The Lie
algebra of E(3) is R6 = R3×R3 as a vector space; we extend the basis (pj) of the
second copy of R3 (i.e. the Lie algebra of R3) by a basis (Ji) of the first copy of
R3 (in its guise as the Lie algebra of SO(3)) , and find that the Q�(Ji) are just
the usual angular momentum operators.108

Mackey’s generalization of von Neumann’s [1931] uniqueness theorem for the
irreducible representations of the canonical commutation relations (1) is his im-
primitivity theorem. This theorem applies to the special case where Q = G/H for
some (closed) subgroup H ⊂ G, and states that (up to unitary equivalence) there
is a bijective correspondence between:

1. Systems of imprimitivity (H, U, P ) for the left-translation of G on G/H;

2. Unitary representations Uχ of H.

This correspondence preserves irreducibility.109

106For the domain of Q�(f) see footnote 100.
107I.e. ξQ

Xf(y) = d/dt|t=0[f(exp(−tX)y)].
108The commutation relations in the previous paragraph are now extended by the fa-

miliar relations [Q�(Ji),Q�(Jj)] = i�εijkQ�(Jk), [Q�(Ji),Q�(pj)] = i�εijkQ�(pk), and

[Q�(Ji),Q�(qj)] = i�εijkQ�(qk).
109Specifically, given Uχ the triple (Hχ, Uχ, Pχ) is a system of imprimitivity, where Hχ =
L2(G/H) ⊗ Hχ carries the representation Uχ(G) induced by Uχ(H), and the Pχ act like mul-
tiplication operators. Conversely, if (H, U, P ) is a system of imprimitivity, then there exists
a unitary representation Uχ(H) such that the triple (H, U, P ) is unitarily equivalent to the
triple (Hχ, Uχ, Pχ) just described. For example, for G = E(3) and H = SO(3) one has
χ = j = 0, 1, 2, . . . and Hj = L2(R3) ⊗ Hj (where Hj = C2j+1 carries the given representa-
tion Uj(SO(3))).
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For example, von Neumann’s theorem is recovered as a special case of Mackey’s
by making the choice G = R3 and H = {e} (so that Q = R3, as above): the
uniqueness of the (regular) irreducible representation of the canonical commuta-
tion relations here follows from the uniqueness of the irreducible representation
of the trivial group. A more illustrative example is G = E(3) and H = SO(3)
(so that Q = R3), in which case the irreducible representations of the associated
system of imprimitivity are classified by spin j = 0, 1, . . .. Mackey saw this as an
explanation for the emergence of spin as a purely quantum-mechanical degree of
freedom.110 Although the opinion that spin has no classical analogue was widely
shared also among the pioneers of quantum theory,111 it is now obsolete (see Sub-
section 4.3 below). Despite this unfortunate misinterpretation, Mackey’s approach
to canonical quantization is hard to surpass in power and clarity, and has many
interesting applications.112

We mention one of specific interest to the philosophy of physics, namely the
Newton–Wigner position operator (as analyzed by Wightman [1962]).113 Here the
general question is whether a given unitary representation U of G = E(3) on some
Hilbert space H may be extended to a system of imprimitivity with respect to
H = SO(3) (and hence Q = R3, as above); in that case, U (or rather the associ-
ated quantum system) is said to be localizable in R3. Following Wigner’s (1939)
suggestion that a relativistic particle is described by an irreducible representation
U of the Poincaré group P , one obtains a representation U(E(3)) by restricting
U(P ) to the subgroup E(3) ⊂ P .114 It then follows from the previous analysis
that the particle described by U(P ) is localizable if and only if U(E(3)) is induced
by some representation of SO(3). This can, of course, be settled, with the result
that massive particles of arbitrary spin can be localized in R3 (the corresponding
position operator being precisely the one of Newton and Wigner), whereas mass-
less particles may be localized in R3 if and only if their helicity is less than one. In
particular, the photon (and the graviton) cannot be localized in R3 in the stated
110By the usual arguments (Wigner’s theorem), one may replace SO(3) by SU(2), so as to

obtain j = 0, 1/2, . . ..
111This opinion goes back to Pauli [1925], who talked about a ‘klassisch nicht beschreibbare

Zweideutigkeit in den quantentheoretischen Eigenschaften des Elektrons,’ (i.e. an ‘ambivalence
in the quantum theoretical properties of the electron that has no classical description’) which was
later identified as spin by Goudsmit and Uhlenbeck. Probably the first person to draw attention
to the classical counterpart of spin was Souriau [1969]. Another misunderstanding about spin is
that its ultimate explanation must be found in relativistic quantum mechanics.
112This begs the question about the ‘best’ possible proof of Mackey’s imprimitivity theorem.

Mackey’s own proof was rather measure-theoretic in flavour, and did not shed much light on
the origin of his result. Probably the shortest proof has been given by [Ørsted, 1979], but
the insight brevity gives is still rather limited. Quite to the contrary, truly transparent proofs
reduce a mathematical claim to a tautology. Such proofs, however, tend to require a formidable
machinery to make this reduction work; see [Echterhoff et al., 2002] and [Landsman, 2006a] for
two different approaches to the imprimitivity theorem in this style.
113Fleming and Butterfield [2000] give an up-to-date introduction to particle localization in

relativistic quantum theory. See also [De Bièvre, 2003].
114Strictly speaking, this hinges on the choice of an inertial frame in Minkowski space, with

associated adapted co-ordinates such that the configuration space R3 in question is given by
x0 = 0.
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sense.115

To appreciate our later material on both phase space quantization and defor-
mation quantization, it is helpful to give a C∗-algebraic reformulation of Mackey’s
approach. Firstly, by the spectral theorem [Reed and Simon, 1972; Pedersen,
1989], a projection-valued measure E �→ P (E) on a space Q taking values in a
Hilbert space H is equivalent to a nondegenerate representation π of the commu-
tative C∗-algebra C0(Q) on H through the correspondence (7).116 Secondly, if H
in addition carries a unitary representation U of G, the defining condition (4) of
a system of imprimitivity (given a G-action on Q) is equivalent to the covariance
condition

U(x)Q�(f)U(x)−1 = Q�(Lxf)(10)

for all x ∈ G and f ∈ C0(Q), where Lxf(m) = f(x−1m). Thus a system of
imprimitivity for a given G-action on Q is “the same” as a covariant nondegenerate
representation of C0(Q). Thirdly, from a G-action on Q one can construct a certain
C∗-algebra C∗(G,Q), the so-called transformation group C∗-algebra defined by the
action, which has the property that its nondegenerate representations correspond
bijectively (and “naturally”) to covariant nondegenerate representations of C0(Q),
and therefore to systems of imprimitivity for the given G-action [Effros and Hahn,
1967; Pedersen, 1979; Landsman, 1998]. In the C∗-algebraic approach to quantum
physics, C∗(G,Q) is the algebra of observables of a particle moving on Q subject to
the symmetries defined by the G-action; its inequivalent irreducible representations
correspond to the possible superselection sectors of the system [Doebner and Tolar,
1975; Majid, 1988; 1990; Landsman, 1990a; 1990b; 1992].117

4.2 Phase space quantization and coherent states

In Mackey’s approach to quantization, Q is the configuration space of the sys-
tem; the associated position coordinates commute (cf. (9)). This is reflected by
the correspondence just discussed between projection-valued measures on Q and
representations of the commutative C∗-algebra C0(Q). The noncommutativity of
observables (and the associated uncertainty relations) typical of quantum mechan-
ics is incorporated by adding the symmetry group G to the picture and imposing

115Seeing photons as quantized light waves with two possible polarizations transverse to the
direction of propagation, this last result is physically perfectly reasonable.
116A representation of a C∗-algebra A on a Hilbert space H is a linear map π : A → B(H) such

that π(AB) = π(A)π(B) and π(A∗) = π(A)∗ for all A,B ∈ A. Such a representation is called
nondegenerate when π(A)Ψ = 0 for all A ∈ A implies Ψ = 0.
117Another reformulation of Mackey’s approach, or rather an extension of it, has been given by

Isham [1984]. In an attempt to reduce the whole theory to a problem in group representations,
he proposed that the possible quantizations of a particle with configuration space G/H are given
by the inequivalent irreducible representations of a “canonical group” Gc = G � V , where V is
the lowest-dimensional vector space that carries a representation of G under which G/H is an
orbit in the dual vector space V ∗. All pertinent systems of imprimitivity then indeed correspond
to unitary representations of Gc, but this group has many other representations whose physical
interpretation is obscure. See also footnote 157.
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the relations (4) (or, equivalently, (8) or (10)). As we have pointed out, this
procedure upsets the symmetry between the phase space variables position and
momentum in classical mechanics.

This somewhat unsatisfactory feature of Mackey’s approach may be avoided by
replacing Q by the phase space of the system, henceforth called M .118 In this
approach, noncommutativity is incorporated by a treacherously tiny modification
to Mackey’s setup. Namely, the projection-valued measure E �→ P (M) on M with
which he starts is now replaced by a positive-operator-valued measure or POVM
on M , still taking values in some Hilbert space K. This is a map E �→ A(E)
from the (Borel) subsets E of M to the collection of positive bounded operators
on K,119 satisfying A(∅) = 0, A(M) = 1, and A(∪iEi) =

∑
i A(Ei) for any

countable collection of disjoint Borel sets Ei.120 A POVM that satisfies A(E∩F ) =
A(E)A(F ) for all (Borel) E,F ⊂ M is precisely a projection-valued measure, so
that a POVM is a generalization of the latter.121 The point, then, is that a
given POVM defines a quantization procedure by the stipulation that a classical
observable f (i.e. a measurable function on the phase space M , for simplicity
assumed bounded) is quantized by the operator122

Q(f) =
∫
M

dA(x)f(x).(11)

Thus the seemingly slight move from projection-valued measures on configuration
space to positive-operator valued measures on phase space gives a wholly new
perspective on quantization, actually reducing this task to the problem of finding
such POVM’s.123

118Here the reader may think of the simplest case M = R6, the space of p’s and q’s of a particle
moving on R3. More generally, if Q is the configuration space, the associated phase space is
the cotangent bundle M = T ∗Q. Even more general phase spaces, namely arbitrary symplectic
manifolds, may be included in the theory as well. References for what follows include [Busch et
al., 1998; Schroeck, 1996], and [Landsman, 1998; 1999a].
119A bounded operator A on K is called positive when (Ψ, AΨ) ≥ 0 for all Ψ ∈ K. Consequently,

it is self-adjoint with spectrum contained in R+.
120Here the infinite sum is taken in the weak operator topology. Note that the above conditions

force 0 ≤ A(E) ≤ 1, in the sense that 0 ≤ (Ψ, A(E)Ψ) ≤ (Ψ,Ψ) for all Ψ ∈ K.
121This has given rise to the so-called operational approach to quantum theory, in which ob-

servables are not represented by self-adjoint operators (or, equivalently, by their associated
projection-valued measures), but by POVM’s. The space M on which the POVM is defined
is the space of outcomes of the measuring instrument; the POVM is determined by both A and
a calibration procedure for this instrument. The probability that in a state ρ the outcome of the
experiment lies in E ⊂ M is taken to be Tr (ρA(E)). See [Davies, 1976; Holevo, 1982; Ludwig,
1985; Schroeck, 1996; Busch et al., 1998], and [De Muynck, 2002].
122The easiest way to define the right-hand side of (11) is to fix Ψ ∈ K and define a probability

measure pΨ on M by means of pΨ(E) = (Ψ, A(E)Ψ). One then defines Q(f) as an operator
through its expectation values (Ψ,Q(f)Ψ) =

R
M dpΨ(x) f(x). The expression (11) generalizes

(7), and also generalizes the spectral resolution of the operator f(A) =
R

R
dP (λ)f(λ), where P

is the projection-valued measure defined by a self-adjoint operator A.
123An important feature of Q is that it is positive in the sense that if f(x) ≥ 0 for all x ∈ M ,

then (Ψ,Q(f)Ψ) ≥ 0 for all Ψ ∈ K. In other words, Q is positive as a map from the C∗-algebra
C0(M) to the C∗-algebra B(H).



454 N.P. Landsman

The solution to this problem is greatly facilitated by Naimark’s dilation theo-
rem.124 This states that, given a POVM E �→ A(E) on M in a Hilbert space K,
there exists a Hilbert space H carrying a projection-valued measure P on M and
an isometric injection K ↪→ H, such that

A(E) = [K]P (E)[K](12)

for all E ⊂M (where [K] is the orthogonal projection from H onto K). Combining
this with Mackey’s imprimitivity theorem yields a powerful generalization of the
latter [Poulsen, 1970; Neumann, 1972; Scutaru, 1977; Cattaneo, 1979; Castrigiano
and Henrichs, 1980]. First, define a generalized system of imprimitivity (K, U,A)
for a given action of a group G on a space M as a POVM A on M taking values
in a Hilbert space K, along with a unitary representation V of G on K such that

V (x)A(E)V (x)−1 = A(xE)(13)

for all x ∈ G and E ⊂ M ; cf. (4). Now assume M = G/H (and the associated
canonical left-action on M). The generalized imprimitivity theorem states that a
generalized system of imprimitivity (K, V, A) for this action is necessarily (unitar-
ily equivalent to) a reduction of a system of imprimitivity (H, U, P ) for the same
action. In other words, the Hilbert space H in Naimark’s theorem carries a unitary
representation U(G) that commutes with the projection [K], and the representa-
tion V (G) is simply the restriction of U to K. Furthermore, the POVM A has
the form (12). The structure of (H, U, P ) is fully described by Mackey’s imprimi-
tivity theorem, so that one has a complete classification of generalized systems of
imprimitivity.125 One has

K = pH; H = L2(M)⊗Hχ,(14)

where L2 is defined with respect to a suitable measure on M = G/H,126 the
Hilbert space Hχ carries a unitary representation of H, and p is a projection in the
commutant of the representation Uχ(G) induced by Uχ(G).127 The quantization
(11) is given by

Q(f) = pfp,(15)

where f acts on L2(M)⊗Hχ as a multiplication operator, i.e. (fΨ)(x) = f(x)Ψ(x).
In particular, one has P (E) = χE (as a multiplication operator) for a region
E ⊂ M of phase space, so that Q(χE) = A(E). Consequently, the probability

124See, for example, [Riesz and Sz.-Nagy, 1990]. It is better, however, to see Naimark’s theorem
as a special case of Stinesprings’s, as explained e.g. in [Landsman, 1998], and below.
125Continuing footnote 109: V (G) is necessarily a subrepresentation of some representation
Uχ(G) induced by Uχ(H).
126In the physically relevant case that G/H is symplectic (so that it typically is a coadjoint

orbit for G) one should take a multiple of the Liouville measure.
127The explicit form of Uχ(g), g ∈ G, depends on the choice of a cross-section σ : G/H → G

of the projection π : G → G/H (i.e. π ◦ σ = id). If the measure on G/H defining L2(G/H) is
G-invariant, the explicit formula is Uχ(g)Ψ(x) = Uχ(s(x)−1gs(g−1x))Ψ(g−1x).
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that in a state ρ (i.e. a density matrix on K) the system is localized in E is given
by Tr (ρA(E)).

In a more natural way than in Mackey’s approach, the covariant POVM quanti-
zation method allows one to incorporate space-time symmetries ab initio by taking
G to be the Galilei group or the Poincaré group, and choosing H such that G/H is
a physical phase space (on which G, then, canonically acts). See [Ali et al., 1995]
and [Schroeck, 1996].

Another powerful method of constructing POVM’s on phase space (which in the
presence of symmetries overlaps with the preceding one)128 is based on coherent
states.129 The minimal definition of coherent states in a Hilbert spaceH for a phase
space M is that (for some fixed value of Planck’s constant �, for the moment) one
has an injection130 M ↪→ H, z �→ Ψ�

z , such that

‖Ψ�

z‖ = 1(16)

for all z ∈M , and

c�

∫
M

dµL(z) |(Ψ�

z ,Φ)|2 = 1,(17)

for each Φ ∈ H of unit norm (here µL is the Liouville measure on M and c� > 0
is a suitable constant).131 Condition (17) guarantees that we may define a POVM
on M in K by132

A(E) = c�

∫
E

dµL(z) [Ψ�

z ].(18)

Eq. (11) then simply reads (inserting the �-dependence of Q and a suffix B for
later use)

QB� (f) = c�

∫
M

dµL(z) f(z)[Ψ�

z ].(19)

The time-honoured example, due to Schrödinger [1926b], is M = R2n, H =
L2(Rn), and

Ψ�

(p,q)(x) = (π�)−n/4e−ipq/2�eipx/�e−(x−q)2/2�.(20)

128Suppose there is a vector Ω ∈ K such that
R

G/H dµ(x)|(Ω, V (σ(x))Ω)|2 <∞ with respect to

some cross-section σ : G/H → G and a G-invariant measure µ, as well as V (h)Ω = Uχ(h)Ω for
all h ∈ H, where Uχ : H → C is one-dimensional. Then (taking � = 1) the vectors V (σ(x))Ω
(suitably normalized) form a family of coherent states on G/H [Ali et al., 1995; Schroeck, 1996;
Ali, Antoine, and Gazeau, 2000]. For example, the coherent states (20) are of this form for the
Heisenberg group.
129 See [Klauder and Skagerstam, 1985; Perelomov, 1986; Odzijewicz, 1992; Paul and Uribe,

1995; 1996; Ali et al., 1995], and [Ali et al., 2000], for general discussions of coherent states.
130This injection must be continuous as a map from M to PH, the projective Hilbert space of
H.
131Other measures might occur here; see, for example, [Bonechi and De Bièvre, 2000].
132Recall that [Ψ] is the orthogonal projection onto a unit vector Ψ.
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Eq. (17) then holds with dµL(p, q) = (2π)−ndnpdnq and c� = �−n. One may verify
that QB

�
(pj) and QB

�
(qj) coincide with Schrödinger’s operators (2). This example

illustrates that coherent states need not be mutually orthogonal; in fact, in terms
of z = p + iq one has for the states in (20)

|(Ψ�

z ,Ψ
�

w)|2 = e−|z−w|2/2�;(21)

the significance of this result will emerge later on.
In the general case, it is an easy matter to verify Naimark’s dilation theorem

for the POVM (18): changing notation so that the vectors Ψ�
z now lie in K, one

finds

H = L2(M, c�µL),(22)

the embedding W : K ↪→ H being given by (WΦ)(z) = (Ψ�
z ,Φ). The projection-

valued measure P on H is just P (E) = χE (as a multiplication operator), and the
projection p onto WK is given by

pΨ(z) = c�

∫
M

dµL(w)(Ψ�

z ,Ψ
�

w)Ψ(w).(23)

Consequently, (19) is unitarily equivalent to (15), where f acts on L2(M) as a
multiplication operator.133

Thus (15) and (22) (or its possible extension (14)) form the essence
of phase space quantization.134

We close this subsection in the same fashion as the previous one, namely by
pointing out the C∗-algebraic significance of POVM’s. This is extremely easy:
whereas a projection-valued measure on M in H is the same as a nondegenerate
representation of C0(M) in H, a POVM on M in a Hilbert space K is nothing but
a nondegenerate completely positive map ϕ : C0(M) → B(K).135 Consequently,
Naimark’s dilation theorem becomes a special case of Stinespring’s [1955] theorem:
if Q : A → B(K) is a completely positive map, there exists a Hilbert space H
carrying a representation π of C0(M) and an isometric injection K ↪→ H, such
that Q(f) = [K]π(f)[K] for all f ∈ C0(M). In terms of Q(C0(M)), the covariance
condition (13) becomes U(x)Q(f)U(x)−1 = Q(Lxf), just like (10).

133This leads to a close relationship between coherent states and Hilbert spaces with a repro-
ducing kernel; see [Landsman, 1998] or [Ali et al., 2000].
134See also footnote 172 below.
135A map ϕ : A → B between C∗-algebras is called positive when ϕ(A) ≥ 0 whenever A ≥ 0;

such a map is called completely positive if for all n ∈ N the map ϕn : A⊗Mn(C)→ B⊗Mn(C),
defined by linear extension of ϕ ⊗ id on elementary tensors, is positive (here Mn(C) is the C∗-
algebra of n × n complex matrices). When A is commutative a nondegenerate positive map
A → B is automatically completely positive for any B.
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4.3 Deformation quantization

So far, we have used the word ‘quantization’ in a heuristic way, basing our account
on historical continuity rather than on axiomatic foundations. In this subsection
and the next we set the record straight by introducing two alternative ways of
looking at quantization in an axiomatic way. We start with the approach that his-
torically came last, but which conceptually is closer to the material just discussed.
This is deformation quantization, originating in the work of Berezin [1974; 1975a;
1975b], Vey [1975], and Bayen et al. [1977]. We here follow the C∗-algebraic
approach to deformation quantization proposed by Rieffel [1989a; 1994], since it
is not only mathematically transparent and rigorous, but also reasonably close
to physical practice.136 Due to the mathematical language used, this method of
course naturally fits into the general C∗-algebraic approach to quantum physics.

The key idea of deformation quantization is that quantization should be defined
through the property of having the correct classical limit. Consequently, Planck’s
“constant” � is treated as a variable, so that for each of its values one should have
a quantum theory. The key requirement is that this family of quantum theories
converges to the underlying classical theory as � → 0.137 The mathematical
implementation of this idea is quite beautiful, in that the classical algebra of
observables is “glued” to the family of quantum algebras of observables in such a
way that the classical theory literally forms the boundary of the space containing
the pertinent quantum theories (one for each value of � > 0). Technically, this is
done through the concept of a continuous field of C∗-algebras.138 What follows
may sound unnecessarily technical, but the last 15 years have indicated that this
yields exactly the right definition of quantization.

Let I ⊂ R be the set in which � takes values; one usually has I = [0, 1], but
when the phase space is compact, � often takes values in a countable subset of
(0, 1].139 The same situation occurs in the theory of infinite systems; see Section
6. In any case, I should contain zero as an accumulation point. A continuous field
of C∗-algebras over I, then, consists of a C∗-algebra A, a collection of C∗-algebras
{A�}�∈I , and a surjective morphism ϕ� : A → A� for each � ∈ I , such that:

1. The function � �→ ‖ϕ�(A)‖� is in C0(I) for all A ∈ A;140

2. The norm of any A ∈ A is ‖A‖ = sup�∈I ‖ϕ�(A)‖;
136See also [Landsman, 1998] for an extensive discussion of the C∗-algebraic approach to de-

formation quantization. In other approaches to deformation quantization, such as the theory of
star products, � is a formal parameter rather than a real number. In particular, the meaning of
the limit �→ 0 is obscure.
137Cf. the preamble to Section 5 for further comments on this limit.
138See [Dixmier, 1977; Fell and Doran, 1988], and [Kirchberg and Wassermann, 1995] for three

different approaches to the same concept. Our definition follows the latter; replacing I by an
arbitrary locally compact Hausdorff space one finds the general definition.
139Cf. [Landsman, 1998] and footnote 204, but in contrast see [Rieffel, 1989a] for the example

of the noncommutative torus, where one quantizes a compact phase space for each � ∈ (0, 1].
Further examples of this sort are discussed by Natsume and Nest [1999], Natsume, Nest and Ingo
[2003], and Hawkins [2005].
140Here ‖ · ‖� is the norm in the C∗-algebra A� .
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3. For any f ∈ C0(I) and A ∈ A there is an element fA ∈ A for which
ϕ�(fA) = f(�)ϕ�(A) for all � ∈ I.

The idea is that the family (A�)�∈I of C∗-algebras is glued together by specify-
ing a topology on the bundle

∐
�∈[0,1]A� (disjoint union). However, this topology

is in fact defined rather indirectly, via the specification of the space of continuous
sections of the bundle.141 Namely, a continuous section of the field is by definition
an element {A�}�∈I of

∏
�∈I A� (equivalently, a map � �→ A� where A� ∈ A�) for

which there is an A ∈ A such that A� = ϕ�(A) for all � ∈ I. It follows that the
C∗-algebra A may actually be identified with the space of continuous sections of
the field: if we do so, the morphism ϕ� is just the evaluation map at �.142

Physically, A0 is the commutative algebra of observables of the underlying clas-
sical system, and for each � > 0 the noncommutative C∗-algebra A� is supposed
to be the algebra of observables of the corresponding quantum system at value �

of Planck’s constant. The algebra A0, then, is of the form C0(M), where M is the
phase space defining the classical theory. A phase space has more structure than
an arbitrary topological space; it is a manifold on which a Poisson bracket { , }
can be defined. For example, on M = R2n one has the familiar expression

{f, g} =
∑
j

∂f

∂pj

∂g

∂qj
− ∂f

∂qj
∂g

∂pj
.(24)

Technically, M is taken to be a Poisson manifold. This is a manifold equipped
with a Lie bracket { , } on C∞(M) with the property that for each f ∈ C∞(M)
the map g �→ {f, g} defines a derivation of the commutative algebra structure of
C∞(M) given by pointwise multiplication. Hence this map is given by a vector field
ξf , called the Hamiltonian vector field of f (i.e. one has ξfg = {f, g}). Symplectic
manifolds are special instances of Poisson manifolds, characterized by the property
that the Hamiltonian vector fields exhaust the tangent bundle. A Poisson manifold
is foliated by its symplectic leaves: a given symplectic leaf L is characterized by
the property that at each x ∈ L the tangent space TxL ⊂ TxM is spanned by
the collection of all Hamiltonian vector fields at x. Consequently, the flow of any
Hamiltonian vector field on M through a given point lies in its entirety within the
symplectic leaf containing that point. The simplest example of a Poisson manifold
is M = R2n with Poisson bracket (24); this manifold is even symplectic.143

141This is reminiscent of the Gelfand–Naimark theorem for commutative C∗-algebras, which
specifies the topology on a locally compact Hausdorff space X via the C∗-algebra C0(X). Sim-
ilarly, in the theory of (locally trivial) vector bundles the Serre–Swan theorem allows one to

reconstruct the topology on a vector bundle E
π→ X from the space Γ0(E) of continuous sections

of E, seen as a (finitely generated projective) C0(X)-module. See, for example, [Gracia-Bond́ıa
et al., 2001]. The third condition in our definition of a continuous field of C∗-algebras makes A
a C0(I)-module in the precise sense that there exits a nondegenerate morphism from C0(I) to
the center of the multiplier of A. This property may also replace our condition 3.
142The structure of A as a C∗-algebra corresponds to the operations of pointwise scalar multi-

plication, addition, adjointing, and operator multiplication on sections.
143See [Marsden and Ratiu, 1994] for a mechanics-oriented introduction to Poisson manifolds;

also cf. [Landsman, 1998] or [Butterfield, 2005] for the basic facts. A classical mathematical
paper on Poisson manifolds is [Weinstein, 1983].
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After this preparation, our basic definition is this:144

A deformation quantization of a phase space M consists of a continuous
field of C∗-algebras (A�)�∈[0,1] (with A0 = C0(M)), along with a family
of self-adjoint145 linear maps Q� : C∞

c (M)→ A�, � ∈ (0, 1], such that:

1. For each f ∈ C∞
c (M) the map defined by 0 �→ f and � �→ Q�(f) (� �= 0) is

a continuous section of the given continuous field;146

2. For all f, g ∈ C∞
c (M) one has

lim
�→0

∥∥∥∥ i

�
[Q�(f),Q�(g)]−Q�({f, g})

∥∥∥∥
�

= 0.(25)

Obvious continuity properties one might like to impose, such as

lim
�→0
‖Q�(f)Q�(g)−Q�(fg)‖ = 0,(26)

or

lim
�→0
‖Q�(f)‖ = ‖f‖∞,(27)

turn out to be an automatic consequence of this definition.147 Condition (25),
however, transcends the C∗-algebraic setting, and is the key ingredient in prov-
ing (among other things) that the quantum dynamics converges to the classical
dynamics;148 see Section 5. The map Q� is the quantization map at value �

of Planck’s constant; we feel it is the most precise formulation of Heisenberg’s
original Umdeutung of classical observables known to date. It has the same in-
terpretation as the heuristic symbol Q� used so far: the operator Q�(f) is the
quantum-mechanical observable whose classical counterpart is f .

This has turned out to be an fruitful definition of quantization, firstly because
most well-understood examples of quantization fit into it [Rieffel, 1994; Landsman,
1998], and secondly because it has suggested various fascinating new ones [Rieffel,

144Here C∞
c (M) stands for the space of smooth functions on M with compact support; this is

a norm-dense subalgebra of A0 = C0(M). The question whether the maps Q� can be extended
from C∞

c (M) to C0(M) has to be answered on a case by case basis. Upon such an extension, if
it exists, condition (25) will lose its meaning, since the Poisson bracket {f, g} is not defined for
all f, g ∈ C0(M).
145I.e. Q�(f) = Q�(f)∗.
146Equivalently, one could extend the family (Q�)�∈(0,1] to � = 0 by Q0 = id, and state that

� �→ Q�(f) is a continuous section. Also, one could replace this family of maps by a single section
Q : C∞

c (M)→ A of ϕ0 and define Q� = ϕ� ◦ Q : C∞
c (M)→ A� .

147That they are automatic should not distract from the fact that especially (27) is a beautiful
connection between classical and quantum mechanics. See footnote 89 for the meaning of ‖f‖∞.
148This insight is often attributed to Dirac [1930], who was the first to recognize the analogy

between the commutator in quantum mechanics and the Poisson bracket in classical mechanics.
In fact, the Poisson structure on M is uniquely determined by the continuous field structure
together with condition (25). Thus the choice of the Q� is secondary.
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1989a; Natsume and Nest, 1999; Natsume et al., 2003; Hawkins, 2005]. Restricting
ourselves to the former, we note, for example, that (19) with (20) defines a defor-
mation quantization of the phase space R2n (with standard Poisson bracket) if one
takes A� to be the C∗-algebra of compact operators on the Hilbert space L2(Rn).
This is called the Berezin quantization of R2n (as a phase space);149 explicitly, for
Φ ∈ L2(Rn) one has

QB� (f)Φ(x) =
∫

R2n

dnpdnqdny

(2π�)n
f(p, q)Ψ�

(p,q)(y)Φ(y)Ψ�

(p,q)(x).(28)

This quantization has the distinguishing feature of positivity,150 a property not
shared by its more famous sister called Weyl quantization.151 The latter is a
deformation quantization of R2n as well, having the same continuous field of C∗-
algebras, but differing from Berezin quantization in its quantization map

QW� (f)Φ(x) =
∫

R2n

dnpdnq

(2π�)n
eip(x−q)/�f

(
p, 1

2
(x + q)

)
Φ(q).(29)

Although it lacks good positivity and hence continuity properties,152 Weyl quan-
tization enjoys better symmetry properties than Berezin quantization.153 Despite
these differences, which illustrate the lack of uniqueness of concrete quantization
procedures, Weyl and Berezin quantization both reproduce Schrödinger’s position
and momentum operators (2).154 Furthermore, if f ∈ L1(R2n), then QB

�
(f) and

QW
�

(f) are trace class, with

TrQB� (f) = TrQW� (f) =
∫

R2n

dnpdnq

(2π�)n
f(p, q).(30)

Weyl and Berezin quantization are related by

QB� (f) = QW� (e
�

4 ∆2nf),(31)

149In the literature, Berezin quantization on R2n is often called anti-Wick quantization (or
ordering), whereas on compact complex manifolds it is sometimes called Toeplitz or Berezin–
Toeplitz quantization. Coherent states based on other phase spaces often define deformation
quantizations as well; see [Landsman, 1998].
150Cf. footnote 123. As a consequence, (28) is valid not only for f ∈ C∞

c (R2n), but even for all
f ∈ L∞(R2n), and the extension of QB

�
from C∞

c (R2n) to L∞(R2n) is continuous.
151The original reference is Weyl [1931]. See, for example, [Dubin et al., 2000] and [Esposito et

al., 2004] for a modern physics-oriented yet mathematically rigorous treatment. See also [Rieffel,
1994] and [Landsman, 1998] for a discussion from the perspective of deformation quantization,
as well as [Binz et al., 2004] for infinite-dimensional examples.
152Nonetheless, Weyl quantization may be extended from C∞

c (R2n) to much larger function
spaces using techniques from the theory of distributions (leaving the Hilbert space setting typical
of quantum mechanics). The classical treatment is in Hörmander [1979; 1985a].
153 Weyl quantization is covariant under the affine symplectic group Sp(n,R) � R2n, whereas

Berezin quantization is merely covariant under its subgroup O(2n) � R2n.
154This requires a formal extension of the maps QW

�
and QB

�
to unbounded functions on M

like pj and qj .



Between Classical and Quantum 461

where ∆2n =
∑n
j=1(∂

2/∂p2
j + ∂2/∂(qj)2), from which it may be shown that Weyl

and Berezin quantization are asymptotically equal in the sense that for any f ∈
C∞
c (R2n) one has

lim
�→0
‖QB� (f)−QW� (f)‖ = 0.(32)

Mackey’s approach to quantization also finds its natural home in the setting of
deformation quantization. Let a Lie group G act on a manifold Q, interpreted as
a configuration space, as in Subsection 4.1. It turns out that the corresponding
classical phase space is the manifold g∗ × Q, equipped with the so-called semidi-
rect product Poisson structure [Marsden et al., 1984; Krishnaprasad and Marsden,
1987]. Relative to a basis (Ta) of the Lie algebra g of G with structure constants
Cc
ab (i.e. [Ta, Tb] =

∑
c Cc

abTc), the Poisson bracket in question is given by

{f, g} =
∑
a

(
ξMa f

∂g

∂θa
− ∂f

∂θa
ξMa g

)
−
∑
a,b,c

Cc
abθc

∂f

∂θa

∂g

∂θb
,(33)

where ξMa = ξMTa
. To illustrate the meaning of this lengthy expression, we consider

a few special cases. First, take f = X ∈ g and g = Y ∈ g (seen as linear functions
on the dual g∗). This yields

{X,Y } = −[X,Y ].(34)

Subsequently, assume that g depends on position q alone. This leads to

{X, g} = −ξMX g.(35)

Finally, assume that f = f1 and g = f2 depend on q only; this clearly gives

{f1, f2} = 0.(36)

The two simplest physically relevant examples, already considered at the quan-
tum level in Subsection 4.1, are as follows. First, take G = Rn (as a Lie group) and
Q = Rn (as a manifold), with G acting on Q by translation. Eqs. (34) - (36) then
yield the Poisson brackets {pj , pk} = 0, {pj , qk} = δkj , and {qj , qk} = 0, showing
that in this case M = g∗ × Q = R2n is the standard phase space of a particle
moving in Rn; cf. (24). Second, the case G = E(3) and Q = R3 yields a phase
space M = R3×R6, where R6 is the phase space of a spinless particle just consid-
ered, and R3 is an additional internal space containing spin as a classical degree
of freedom. Indeed, beyond the Poisson brackets on R6 just described, (34) - (36)
give rise to the additional Poisson brackets {Ji, Jj} = εijkJk, {Ji, pj} = εijkpk,
and {Ji, qj} = εijkq

k.155

The analogy between (34), (35), (36) on the one hand, and (6), (8), (9), re-
spectively, on the other, is no accident: the Poisson brackets in question are the

155These are the classical counterparts of the commutation relations for angular momentum
written down in footnote 108.
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classical counterpart of the commutation relations just referred to. This obser-
vation is made precise by the fundamental theorem relating Mackey’s systems of
imprimitivity to deformation quantization [Landsman, 1993; 1998]: one can equip
the family of C∗-algebras

A0 = C0(g∗ ×Q);
A� = C∗(G,Q),(37)

where C∗(G,Q) is the transformation grouo C∗-algebra defined by the given G-
action on Q (cf. the end of Subsection 4.1), with the structure of a continuous
field, and one can define quantization maps Q� : C∞

c (g∗×Q)→ C∗(G,Q) so as to
obtain a deformation quantization of the phase space g∗×Q. It turns out that for
special functions of the type X,Y ∈ g, and f = f(q) just considered, the equality

i

�
[Q�(f),Q�(g)]−Q�({f, g}) = 0(38)

holds exactly (and not merely asymptotically for �→ 0, as required in the funda-
mental axiom (25) for deformation quantization).

This result clarifies the status of Mackey’s quantization by systems of imprim-
itivity. The classical theory underlying the relations (4) is not the usual phase
space T ∗Q of a structureless particle moving on Q, but M = g∗ × Q. For sim-
plicity we restrict ourselves to the transitive case Q = G/H (with canonical left
G-action). Then M coincides with T ∗Q only when H = {e} and hence Q = G;156

in general, the phase space g∗× (G/H) is locally of the form T ∗(G/H)×h∗ (where
h∗ is the dual of the Lie algebra of H). The internal degree of freedom described
by h∗ is a generalization of classical spin, which, as we have seen, emerges in the
case G = E(3) and H = SO(3). All this is merely a special case of a vast class
of deformation quantizations described by Lie groupoids; see [Landsman, 1998;
1999b; 2006a] and [Landsman and Ramazan, 2001].157

4.4 Geometric quantization

Because of its use of abstract C∗-algebras, deformation quantization is a fairly so-
phisticated and recent technique. Historically, it was preceded by a more concrete
and traditional approach called geometric quantization.158 Here the goal is to
156For a Lie group G one has T ∗G ∼= g∗ ×G.
157A similar analysis can be applied to Isham’s [1984] quantization scheme mentioned in foot-

note 117. The unitary irreducible representations of the canonical group Gc stand in bijective
correspondence with the nondegenerate representations of the group C∗-algebra C∗(Gc) [Peder-
sen, 1979], which is a deformation quantization of the Poisson manifold g∗c (i.e. the dual of the
Lie algebra of Gc). This Poisson manifold contains the coadjoint orbits of Gc as “irreducible”
classical phase spaces, of which only one is the cotangent bundle T ∗(G/H) one initially thought
one was quantizing (see [Landsman, 1998] for the classification of the coadjoint orbits of semidi-
rect products). All other orbits are mere lumber that one should avoid. See also [Robson, 1996].
If one is ready for groupoids, there is no need for the canonical group approach.
158 Geometric quantization was independently introduced by Kostant [1970] and Souriau [1969].

Major later treatments on the basis of the original formalism are [Guillemin and Sternberg, 1977;
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firstly “quantize” a phase space M by a concretely given Hilbert space H(M), and
secondly to map the classical observables (i.e. the real-valued smooth functions
on M) into self-adjoint operators on H (which after all play the role of observ-
ables in von Neumann’s formalism of quantum mechanics).159 In principle, this
program should align geometric quantization much better with the fundamental
role unbounded self-adjoint operators play in quantum mechanics than deforma-
tion quantization, but in practice geometric quantization continues to be plagued
by problems.160 However, it would be wrong to see deformation quantization and
geometric quantization as competitors; as we shall see in the next subsection, they
are natural allies, forming “complementary” parts of a conjectural quantization
functor.

In fact, in our opinion geometric quantization is best compared and contrasted
with phase space quantization in its concrete formulation of Subsection 4.2 (i.e.
before its C∗-algebraic abstraction and subsequent absorption into deformation
quantization as indicated in Subsection 4.3).161 For geometric quantization equally
well starts with the Hilbert space L2(M),162 and subsequently attempts to con-
struct H(M) from it, though typically in a different way from (14).

Before doing so, however, the geometric quantization procedure first tries to
define a linear map Qpre

�
from C∞(M) to the class of (generally unbounded)

operators on L2(M) that formally satisfies

i

�
[Qpre

�
(f),Qpre

�
(g)]−Qpre

�
({f, g}) = 0,(39)

i.e. (38) with Q = Qpre
�

, as well as the nondegeneracy property

Qpre
�

(χM ) = 1,(40)

where χM is the function on M that is identically equal to 1, and the 1 on the right-
hand side is the unit operator on L2(M). Such a map is called a prequantization

Śniatycki, 1980; Kirillov, 1990; Woodhouse, 1992; Puta, 1993; Chernoff, 1995; Kirillov, 2004], and
[Ali and Englis, 2004]. The modern era (based on the use of Dirac operators and K-theory) was
initiated by unpublished remarks by Bott in the early 1990s; see [Vergne, 1994] and [Guillemin
et al., 2002]. The postmodern (i.e. functorial) epoch was launched in [Landsman, 2005].
159In geometric quantization phase spaces are always seen as symplectic manifolds (with the

sole exception of [Vaisman, 1991]; the reason why it is unnatural to start with the more general
class of Poisson manifolds will become clear in the next subsection.
160 Apart from rather technical issues concerning the domains and self-adjointness properties of

the operators defined by geometric quantization, the main point is that the various mathematical
choices one has to make in the geometric quantization procedure cannot all be justified by physical
arguments, although the physical properties of the theory depend on these choices. (The notion
of a polarization is the principal case in point; see also footnote 173 below.) Furthermore, as we
shall see, one cannot quantize sufficiently many functions in standard geometric quantization.
Our functorial approach to geometric quantization in Subsection 4.5 was partly invented to
alleviate these problems.
161See also [Tuynman, 1987].
162Defined with respect to the Liouville measure times a suitable factor c� , as in (17) etc.; in

geometric quantization this factor is not very important, as it is unusual to study the limit �→ 0.
For M = R2n the measure on M with respect to which L2(M) is defined is dnpdnq/(2π�)n.
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of M .163 For M = R2n (equipped with its standard Poisson bracket (24)), a
prequantization map is given (on Φ ∈ L2(M)) by

Qpre
�

(f)Φ = −i�{f,Φ}+

f −
∑
j

pj
∂f

∂pj

Φ.(41)

This expression is initially defined for Φ ∈ C∞
c (M) ⊂ L2(M), on which domain

Qpre
�

(f) is symmetric when f is real-valued;164 note that the operator in question
is unbounded even when f is bounded.165 This looks complicated; the simpler
expression Q�(f)Φ = −i�{f,Φ}, however, would satisfy (38) but not (40), and the
goal of the second term in (41) is to satisfy the latter condition while preserving
the former.166 For example, one has

Qpre
�

(qk) = qk + i�
∂

∂pk
;

Qpre
�

(pj) = −i�
∂

∂qj
.(42)

For general phase spaces M one may construct a map Qpre
�

that satisfies (39)
and (40) when M is “prequantizable”; a full explanation of this notion requires
some differential geometry.167 Assuming this to be the case, then for one thing
prequantization is a very effective tool in constructing unitary group representa-
tions of the kind that are interesting for physics. Namely, suppose a Lie group G
acts on the phase space M in “canonical” fashion. This means that there exists
a map µ : M → g∗, called the momentum map, such that ξµX

= ξMX for each

163The idea of prequantization predates geometric quantization; see [van Hove, 1951] and [Segal,
1960].
164An operator A defined on a dense subspace D ⊂ H of a Hilbert space H is called symmetric

when (AΨ,Φ) = (Ψ, AΦ) for all Ψ,Φ ∈ D.
165As mentioned, self-adjointness is a problem in geometric quantization; we will not address

this issue here. Berezin quantization is much better behaved than geometric quantization in this
respect, since it maps bounded functions into bounded operators.
166One may criticize the geometric quantization procedure for emphasizing (39) against its

equally natural counterpart Q(fg) = Q(f)Q(g), which fails to be satisified by Qpre
�

(and indeed
by any known quantization procedure, except the silly Q(f) = f (as a multiplication operator
on L2(M)).
167A symplectic manifold (M,ω) is called prequantizable at some fixed value of � when it admits

a complex line bundle L → M (called the prequantization line bundle) with connection ∇ such
that F = −iω/� (where F is the curvature of the connection, defined by F (X,Y ) = [∇X ,∇Y ]−
∇[X,Y ]). This is the case iff [ω]/2π� ∈ H2(M,Z), where [ω] is the de Rham cohomology class

of the symplectic form. If so, prequantization is defined by the formula Qpre
�

(f) = −i�∇ξf
+ f ,

where ξf is the Hamiltonian vector field of f (see Subsection 4.3). This expression is defined and
symmetric on the space C∞

c (M,L) ⊂ L2(M) of compactly supported smooth sections of L, and
is easily checked to satisfy (39) and (40). To obtain (41) as a special case, note that for M = R2n

with the canonical symplectic form ω =
P

k dpk ∧ dqk one has [ω] = 0, so that L is the trivial

bundle L = R2n × C. The connection ∇ = d + A with A = − i
�

P
k pkdq

k satisfies F = −iω/�,
and this eventually yields (41).
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X ∈ g,168 and in addition {µX , µY } = µ[X,Y ]. See [Abraham and Marsden, 1985;
Marsden and Ratiu, 1994; Landsman, 1998; Belot, 2005; Butterfield, 2005], etc.
On then obtains a representation π of the Lie algebra g of G by skew-symmetric
unbounded operators on L2(M) through

π(X) = −i�Qpre
�

(µX),(43)

which often exponentiates to a unitary representation of G.169

As the name suggests, prequantization is not yet quantization. For example, the
prequantization of M = R2n does not reproduce Schrödinger’s wave mechanics:
the operators (42) are not unitarily equivalent to (2). In fact, as a carrier of the
representation (42) of the canonical commutation relations (1), the Hilbert space
L2(R2n) contains L2(Rn) (carrying the representation (2)) with infinite multiplic-
ity [Ali and Emch, 1986]. This situation is often expressed by the statement that
“prequantization is reducible” or that the prequantization Hilbert space L2(M) is
‘too large’, but both claims are misleading: L2(M) is actually irreducible under
the action of Qpre

�
(C∞(M)) [Tuynman, 1998], and saying that for example L2(Rn)

is “larger” than L2(Rn) is unmathematical in view of the unitary isomorphism of
these Hilbert spaces. What is really meant here is that in typical examples L2(M)
is generically reducible under the action of some Lie algebra where one would like
it to be irreducible. This applies, for example, to (2), which defines a representa-
tion of the Lie algebra of the Heisenberg group. More generally, in the case where
a phase space M carries a transitive action of a Lie group G, so that one would
expect the quantization of this G-action by unitary operators on a Hilbert space to
be irreducible, L2(M) is typically highly reducible under the representation (43)
of g.170

Phase space quantization encounters this problem as well. Instead of the com-
plicated expression (41), through (11) it simply “phase space prequantizes” f ∈
C∞(M) on L2(M) by f as a multiplication operator.171 Under this action of
C∞(M) the Hilbert space L2(M) is of course highly reducible.172 The identifica-

168Here µX ∈ C∞(M) is defined by µX(x) = 〈µ(x), X〉, and ξM
X is the vector field on M

defined by the G-action (cf. footnote 107). Hence this condition means that {µX , f}(y) =
d/dt|t=0[f(exp(−tX)y)] for all f ∈ C∞(M) and all y ∈M .
169An operator A defined on a dense subspace D ⊂ H of a Hilbert space H is called skew-

symmetric when (AΨ,Φ) = −(Ψ, AΦ) for all Ψ,Φ ∈ D. If one has a unitary representation U
of a Lie group G on H, then the derived representation dU of the Lie algebra g (see footnote
104) consists of skew-symmetric operators, making one hopeful that a given representation of g
by skew-symmetric operators can be integrated (or exponentiated) to a unitary representation
of G. See [Barut and Raçka, 1977] or [Jørgensen and Moore, 1984] and references therein.
170This can be made precise in the context of the so-called orbit method, cf. the books cited in

footnote 158.
171For unbounded f this operator is defined on the set of all Φ ∈ L2(M) for which fΦ ∈ L2(M).
172 Namely, each (measurable) subset E ⊂M defines a projection χE , and χEL

2(M) is stable
under all multiplication operators f . One could actually decide not to be bothered by this
problem and stop here, but then one is simply doing classical mechanics in a Hilbert space
setting [Koopman, 1931]. This formalism even turns out to be quite useful for ergodic theory
[Reed and Simon, 1972].
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tion of an appropriate subspace

H(M) = pL2(M)(44)

of L2(M) (where p is a projection) as the Hilbert space carrying the “quantization”
of M (or rather of C∞(M)) may be seen as a solution to this reducibility problem,
for if the procedure is successful, the projection p is chosen such that pL2(M) is
irreducible under pC∞(M)p. Moreover, in this way practically any function on
M can be quantized, albeit at the expense of (38) (which, as we have seen, gets
replaced by its asymptotic version (25)). See Subsection 6.3 for a discussion of
reducibility versus irreducibility of representations of algebras of observables in
classical and quantum theory.

We restrict our treatment of geometric quantization to situations where it adopts
the same strategy as above, in assuming that the final Hilbert space has the form
(44) as well.173 But it crucially differs from phase space quantization in that its
first step is (41) (or its generalization to more general phase spaces) rather than
just having fΦ on the right-hand side.174 Moreover, in geometric quantization one
merely quantizes a subspace of the set C∞(M) of classical observables, consisting
of those functions that satisfy

[Qpre
�

(f), p] = 0.(45)

If a function f ∈ C∞(M) satisfies this condition, then one defines the “geometric
quantization” of f as

QG� (f) = Qpre
�

(f) � H(M).(46)

This is well defined, since because of (45) the operator Qpre
�

(f) now maps pL2(M)
onto itself. Hence (38) holds for Q� = QG

�
because of (39); in geometric quantiza-

tion one simply refuses to quantize functions for which (38) is not valid.
Despite some impressive initial triumphs,175 there is no general method that

accomplishes the goals of geometric quantization with guaranteed success. There-
fore, geometric quantization has remained something like a hacker’s tool, whose
applicability largely depends on the creativity of the user.

In any case, our familiar example M = R2n is well understood, and we illustrate
the general spirit of the method in its setting, simplifying further by taking n = 1.
It is convenient to replace the canonical coordinates (p, q) on M by z = p+ iq and
z = p− iq, and the mathematical toolkit of geometric quantization makes it very

173 Geometric quantization has traditionally been based on the notion of a polarization (cf. the
references in footnote 158). This device produces a final Hilbert space H(M) which may not be
a subspace of L2(M), except in the so-called (anti-) holomorphic case.
174It also differs from phase space quantization in the ideology that the projection p ought to

be constructed solely from the geometry of M : hence the name ‘geometric quantization’.
175Such as the orbit method for nilpotent groups and the newly understood Borel–Weil method

for compact groups, cf. [Kirillov, 2004] and most other books cited in footnote 158.
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natural to look at the space of solutions within L2(R2) of the equations176(
∂

∂z
+

z

4�

)
Φ(z, z) = 0.(47)

The general solution of these equations that lies in L2(R2) = L2(C) is

Φ(z, z) = e−|z|2/4�f(z),(48)

where f is a holomorphic function such that∫
C

dzdz

2π�i
e−|z|2/2�|f(z)|2 <∞.(49)

The projection p, then, is the projection onto the closed subspace of L2(C) con-
sisting of these solutions.177 The Hilbert space pL2(C) is unitarily equivalent to
L2(R) in a natural way (i.e. without the choice of a basis). The condition (45)
boils down to ∂2f(z, z)/∂zi∂zj = 0; in particular, the coordinate functions q and
p are quantizable. Transforming to L2(R), one finds that the operators QG

�
(q)

and QG
�

(p) coincide with Schrödinger’s expressions (2). In particular, the Heisen-
berg group H1, which acts with infinite multiplicity on L2(C), acts irreducibly on
pL2(C).

4.5 Epilogue: functoriality of quantization

A very important aspect of quantization is its interplay with symmetries and con-
straints. Indeed, the fundamental theories describing Nature (viz. electrodynam-
ics, Yang–Mills theory, general relativity, and possibly also string theory) are a
priori formulated as constrained systems. The classical side of constraints and re-
duction is well understood,178 a large class of important examples being codified by
the procedure of symplectic reduction. A special case of this is Marsden–Weinstein
reduction: if a Lie group G acts on a phase space M in canonical fashion with mo-
mentum map µ : M → g∗ (cf. Subsection 4.4), one may form another phase space
M//G = µ−1(0)/G.179 Physically, in the case where G is a gauge group and M
is the unconstrained phase space, µ−1(0) is the constraint hypersurface (i.e. the

176Using the formalism explained in footnote 167, we replace the 1-form A = − i
�

P
k pkdq

k

defining the connection∇ = d+A by the gauge-equivalent form A = i
2�

(
P

k q
kdpk−

P
k pkdq

k) =

− i
�

P
k pkdq

k + i
2�
d(

P
k pkq

k), which has the same curvature. In terms of this new A, which in
complex coordinates reads A =

P
k(zkdzk − zkdzk)/4�, eq. (47) is just ∇∂/∂zΦ = 0. This is an

example of the so-called holomorphic polarization in the formalism of geometric quantization.
177 The collection of all holomorphic functions on C satisfying (49) is a Hilbert space with respect

to the inner product (f, g) = (2π�i)−1
R

C
dzdz exp(−|z|2/2�)f(z)g(z), called the Bargmann–Fock

space HBF . This space may be embedded in L2(C) by f(z) �→ exp(−|z|2/2�)f(z), and the image
of this embedding is of course just pL2(C).
178See [Gotay et al., 1978; Binz et al., 1988; Marsden, 1992; Marsden and Ratiu, 1994; Lands-

man, 1998; Butterfield, 2005], and [Belot, 2005].
179Technically, M has to be a symplectic manifold, and if G acts properly and freely on µ−1(0),

then M//G is again a symplectic manifold.
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subspace of M on which the constraints defined by the gauge symmetry hold), and
M//G is the true phase space of the system that only contains physical degrees of
freedom.

Unfortunately, the correct way of dealing with constrained quantum systems
remains a source of speculation and controversy:180 practically all rigorous results
on quantization (like the ones discussed in the preceding subsections) concern
unconstrained systems. Accordingly, one would like to quantize a constrained
system by reducing the problem to the unconstrained case. This could be done
provided the following scenario applies. One first quantizes the unconstrained
phase space M (supposedly the easiest part of the problem), and subsequently
imposes a quantum version of symplectic reduction. Finally, one proves by abstract
means that the quantum theory thus constructed is equal to the theory defined by
first reducing at the classical level and then quantizing the constrained classical
phase space (usually an impossible task to perform in practice).

Tragically, sufficiently powerful theorems stating that “quantization commutes
with reduction” in this sense remain elusive.181 So far, this has blocked, for exam-
ple, a rigorous quantization of Yang–Mills theory in dimension 4; this is one of the
Millenium Problems of the Clay Mathematical Institute, rewarded with 1 Million
dollars.182

On a more spiritual note, the mathematician E. Nelson famously said that ‘First
quantization is a mystery, but second quantization is a functor.’ The functoriality
of ‘second’ quantization (a construction involving Fock spaces, see [Reed and Si-
mon, 1975] being an almost trivial matter, the deep mathematical and conceptual
problem lies in the possible functoriality of ‘first’ quantization, which simply means
quantization in the sense we have been discussing so far. This was initially taken to
mean that canonical transformations α of the phase space M should be ‘quantized’
by unitary operators U(α) on H(M), in such a way U(α)Q�(f)U(α)−1 = Q(Lαf)
(cf. (10)). This is possible only in special circumstances, e.g., when M = R2n and
α is a linear symplectic map, and more generally when M = G/H is homogeneous
and α ∈ G (see the end of Subsection 4.2).183 Consequently, the functoriality of
quantization is widely taken to be a dead end.184

However, all no-go theorems establishing this conclusion start from wrong and

180Cf. [Dirac, 1964; Sundermeyer, 1982; Gotay, 1986; Duval et al., 1991; Govaerts, 1991; Hen-
neaux and Teitelboim, 1992], and [Landsman, 1998] for various perspectives on the quantization
of constrained systems.
181 The so-called Guillemin–Sternberg conjecture [Guillemin and Sternberg, 1982] — now a

theorem [Meinrenken, 1998; Meinrenken and Sjamaar, 1999] — merely deals with the case of
Marsden–Weinstein reduction where G and M are compact. Mathematically impressive as the
“quantization commutes with reduction” theorem already is here, it is a far call from gauge
theories, where the groups and spaces are not only noncompact but even infinite-dimensional.
182See http://www.claymath.org/millennium/
183Canonical transformations can be quantized in approximate sense that becomes precise as

� → 0 by means of so-called Fourier integral operators; see [Hörmander, 1971; 1985b] and
[Duistermaat, 1996].
184See [Groenewold, 1946; van Hove, 1951; Gotay et al., 1996], and [Gotay, 1999].
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naive categories, both on the classical and on the quantum side.185 It appears
very likely that one may indeed make quantization functorial by a more sophisti-
cated choice of categories, with the additional bonus that deformation quantization
and geometric quantization become unified: the former is the object part of the
quantization functor, whereas the latter (suitably reinterpreted) is the arrow part.
Amazingly, on this formulation the statement that ‘quantization commutes with
reduction’ becomes a special case of the functoriality of quantization [Landsman,
2002; 2005].

To explain the main idea, we return to the geometric quantization of M = R2 ∼=
C explained in the preceding subsection. The identification of pL2(C)186 as the
correct Hilbert space of the problem may be understood in a completely different
way, which paves the way for the powerful reformulation of the geometric quan-
tization program that will eventually define the quantization functor. Namely, C

supports a certain linear first-order differential operator D/ that is entirely defined
by its geometry as a phase space, called the Dirac operator.187 This operator is
given by188

D/ = 2
(

0 − ∂
∂z + z

4�
∂
∂z + z

4�
0

)
,(50)

acting on L2(C)⊗ C2 (as a suitably defined unbounded operator). This operator
has the generic form

D/ =
(

0 D/ −
D/ + 0

)
.

The index of such an operator is given by

index(D/ ) = [ker(D/ +)]− [ker(D/ −)],(51)

where [ker(D/ ±)] stand for the (unitary) isomorphism class of ker(D/ ±) seen as a
representation space of a suitable algebra of operators.189 In the case at hand,

185Typically, one takes the classical category to consist of symplectic manifolds as objects and
symplectomorphisms as arrows, and the quantum category to have C∗-algebras as objects and
automorphisms as arrows.
186Or the Bargmann–Fock space HBF , see footnote 177.
187 Specifically, this is the so-called Spinc Dirac operator defined by the complex structure of

C, coupled to the prequantization line bundle. See [Guillemin et al., 2002].

188Relative to the Dirac matrices γ1 =

„
0 i
i 0

«

and γ2 =

„
0 −1
1 0

«

.

189 The left-hand side of (51) should really be written as index(D/ +), since coker(D/ +) = ker(D/ ∗
+)

and D/ ∗
+ = D/ −, but since the index is naturally associated to D/ as a whole, we abuse notation

in writing index(D/ ) for index(D/ +). The usual index of a linear map L : V → W between
finite-dimensional vector spaces is defined as index(L) = dim(ker(L)) − dim(coker(L)), where
coker(L) = W/ran(L). Elementary linear algebra yields index(L) = dim(V ) − dim(W ). This is
surprising because it is independent of L, whereas dim(ker(L)) and dim(coker(L)) quite sensi-
tively depend on it. For, example, take V = W and L = ε · 1. If ε �= 0 then dim(ker(ε · 1)) =
dim(coker(ε · 1)) = 0, whereas for ε = 0 one has dim(ker(0)) = dim(coker(0)) = dim(V )! Simi-
larly, the usual definiton of geometric quantization through (47) etc. is unstable against perturba-
tions of the underlying symplectic structure, whereas the refined definition through (51) is not. To
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one has ker(D/ +) = pL2(C) (cf. (47) etc.) and ker(D/ −) = 0, 190 where we regard
ker(D/ +) as a representation space of the Heisenberg group H1. Consequently, the
geometric quantization of the phase space C is given modulo unitary equivalence
by index(D/ ), seen as a “formal difference” of representation spaces of H1.

This procedure may be generalized to arbitrary phase spaces M , where D/ is
a certain operator naturally defined by the phase space geometry of M and the
demands of quantization.191 This has turned out to be the most promising for-
mulation of geometric quantization — at some cost.192 For the original goal of
quantizing a phase space by a Hilbert space has now been replaced by a much
more abstract procedure, in which the result of quantization is a formal difference
of certain isomorphism classes of representation spaces of the quantum algebra of
observables. To illustrate the degree of abstraction involved here, suppose we ig-
nore the action of the observables (such as position and momentum in the example
just considered). In that case the isomorphism class [H] of a Hilbert space H is
entirely characterized by its dimension dim(H), so that (in case that ker(D/ −) �= 0)
quantization (in the guise of index(D/ )) can even be a negative number! Have we
gone mad?

Not quite. The above picture of geometric quantization is indeed quite irrelevant
to physics, unless it is supplemented by deformation quantization. It is convenient
to work at some fixed value of � in this context, so that deformation quantization
merely associates some C∗-algebra A(P ) to a given phase space P .193 Looking
for a categorical interpretation of quantization, it is therefore natural to assume
that the objects of the classical category C are phase spaces P ,194 whereas the

pass to the latter from the above notion of an index, we first write index(L) = [ker(L)]−[coker(L)],
where [X] is the isomorphism class of a linear space X as a C-module. This expression is an
element of K0(C), and we recover the earlier index through the realization that the class [X]
is entirely determined by dim(X), along with and the corresponding isomorphism K0(C) ∼= Z.
When a more complicated finite-dimensional C∗-algebra A acts on V and W with the property
that ker(L) and coker(L) are stable under the A-action, one may define [ker(L)] − [coker(L)]
and hence index(L) as an element of the so-called C∗-algebraic K-theory group K0(A). Under
certain technical conditions, this notion of an index may be generalized to infinite-dimensional
Hilbert spaces and C∗-algebras; see [Baum et al., 1994] and [Blackadar, 1998]. The K-theoretic
index is best understood when A = C∗(G) is the group C∗-algebra of some locally compact
group G. In the example M = R2 one might take G to be the Heisenberg group H1, so that
index(D/ ) ∈ K0(C∗(H1)). See [Elliott et al., 1993] for a description of this K0-group.
190Since (− ∂

∂z
+ z

4�
)Φ = 0 implies Φ(z, z) = exp(|z2|/4�)f(z), which lies in L2(C) iff f = 0.

191Any symplectic manifold carries an almost complex structure compatible with the symplectic
form, leading to a Spinc Dirac operator as described in footnote 187. See, again, [Guillemin et
al., 2002]. If M = G/H, or, more generally, if M carries a canonical action of a Lie group G with
compact quotient M/G, then index(D/ ) defines an element of K0(C∗(G)). See footnote 189. In
complete generality, index(D/ ) ought to be an element of K0(A), where A is the C∗-algebra of
observables of the quantum system.
192On the benefit side, the invariance of the index under continuous deformations of D/ seems to

obviate the ambiguity of traditional quantization procedures with respect to different ‘operator
orderings’ not prescribed by the classical theory.
193Here P is not necessarily symplectic; it may be a Poisson manifold, and to keep Poisson and

symplectic manifolds apart we denote the former by P from now on, preserving the notation M
for the latter.
194Strictly speaking, to be an object in this category a Poisson manifold P must be integrable;
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objects of the quantum category Q are C∗-algebras.195 The object part of the
hypothetical quantization functor is to be deformation quantization, symbolically
written as P �→ Q(P ).

Everything then fits together if geometric quantization is reinterpreted as the
arrow part of the conjectural quantization functor. To accomplish this, the arrows
in the classical category C should not be taken to be maps between phase spaces,
but symplectic bimodules P1 ← M → P2.196 More precisely, the arrows in C
are suitable isomorphism classes of such bimodules.197 Similarly, the arrows in
the quantum category Q are not morphisms of C∗-algebras, as might naively be
expected, but certain isomorphism classes of bimodules for C∗-algebras, equipped
with the additional structure of a generalized Dirac operator.198

Having already defined the object part of the quantization map Q : C → Q
as deformation quantization, we now propose that the arrow part is geometric
quantization, in the sense of a suitable generalization of (51); see [Landsman,
2005] for details. We then conjecture that Q is a functor; in the cases where this
can and has been checked, the functoriality of Q is precisely the statement that
quantization commutes with reduction.199

Thus Heisenberg’s idea of Umdeutung finds it ultimate realization in the quan-
tization functor.

5 THE LIMIT �→ 0

It was recognized at an early stage that the limit �→ 0 of Planck’s constant going
to zero should play a role in the explanation of the classical world from quantum
theory. Strictly speaking, � is a dimensionful constant, but in practice one studies
the semiclassical regime of a given quantum theory by forming a dimensionless
combination of � and other parameters; this combination then re-enters the theory
as if it were a dimensionless version of � that can indeed be varied. The oldest
example is Planck’s radiation formula (1), with temperature T as the pertinent

see [Landsman, 2001].
195For technical reasons involving K-theory these have to be separable.
196Here M is a symplectic manifold and P1 and P2 are integrable Poisson manifolds; the map
M → P2 is anti-Poisson, whereas the map P1 ← M is Poisson. Such bimodules (often called
dual pairs) were introduced by Karasev [1989] and Weinstein [1983]. In order to occur as arrows
in C, symplectic bimodules have to satisfy a number of regularity conditions [Landsman, 2001].
197This is necessary in order to make arrow composition associative; this is given by a general-

ization of the symplectic reduction procedure.
198The category Q is nothing but the category KK introduced by Kasparov, whose objects

are separable C∗-algebras, and whose arrows are the so-called Kasparov group KK(A,B), com-
posed with Kasparov’s product KK(A,B) × KK(B,C) → KK(A,C). See [Higson, 1990] and
[Blackadar, 1998].
199A canonical G-action on a symplectic manifold M with momentum map µ : M → g∗ gives

rise to a dual pair pt ← M → g∗, which in C is interpreted as an arrow from the space pt with
one point to g∗. The composition of this arrow with the arrow g∗ ←↩ 0 → pt from g∗ to pt is
pt←M//G→ pt. If G is connected, functoriality of quantization on these two pairs is equivalent
to the Guillemin–Sternberg conjecture (cf. footnote 181); see [Landsman, 2005].
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variable. Indeed, the observation of Einstein [1905] and Planck [1906] that in
the limit �ν/kT → 0 this formula converges to the classical equipartition law
Eν/Nν = kT may well be the first use of the �→ 0 limit of quantum theory.200

Another example is the Schrödinger equation (3) with Hamiltonian H = − �
2

2m∆x+
V (x), where m is the mass of the pertinent particle. Here one may pass to di-
mensionless parameters by introducing an energy scale ε typical of H, like ε =
supx |V (x)|, as well as a typical length scale λ, such as λ = ε/ supx |∇V (x)| (if these
quantities are finite). In terms of the dimensionless variable x̃ = x/λ, the rescaled
Hamiltonian H̃ = H/ε is then dimensionless and equal to H̃ = −�̃2∆x̃ + Ṽ (x̃),
where �̃ = �/λ

√
2mε and Ṽ (x̃) = V (λx̃)/ε. Here �̃ is dimensionless, and one might

study the regime where it is small [Gustafson and Sigal, 2003]. Our last example
will occur in the theory of large quantum systems, treated in the next Section. In
what follows, whenever it is considered variable � will denote such a dimensionless
version of Planck’s constant.

Although, as we will argue, the limit �→ 0 cannot by itself explain the classical
world, it does give rise to a number of truly pleasing mathematical results. These,
in turn, render almost inescapable the conclusion that the limit in question is
indeed a relevant one for the recovery of classical physics from quantum theory.
Thus the present section is meant to be a catalogue of those pleasantries that
might be of direct interest to researchers in the foundations of quantum theory.

There is another, more technical use of the � → 0 limit, which is to perform
computations in quantum mechanics by approximating the time-evolution of states
and observables in terms of associated classical objects. This endeavour is known
as semiclassical analysis. Mathematically, this use of the � → 0 limit is closely
related to the goal of recovering classical mechanics from quantum mechanics, but
conceptually the matter is quite different. We will attempt to bring the pertinent
differences out in what follows.

5.1 Coherent states revisited

As Schrödinger [1926b] foresaw, coherent states play an important role in the
limit �→ 0. We recall from Subsection 4.2 that for some fixed value � of Planck’s
constant coherent states in a Hilbert space H for a phase space M are defined by
an injection M ↪→ H, z �→ Ψ�

z , such that (16) and (17) hold. In what follows, we
shall say that Ψ�

z is centered at z ∈M , a terminology justified by the key example
(20).

To be relevant to the classical limit, coherent states must satisfy an additional
property concerning their dependence on �, which also largely clarifies their nature
[Landsman, 1998]. Namely, we require that for each f ∈ Cc(M) and each z ∈ M
the following function from the set I in which � takes values (i.e. usually I = [0, 1],

200Here Einstein [1905] put �ν/kT → 0 by letting ν → 0 at fixed T and �, whereas Planck
[1906] took T →∞ at fixed ν and �.
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but in any case containing zero as an accumulation point) to C is continuous:

� �→ c�

∫
M

dµL(w) |(Ψ�

w,Ψ�

z)|2f(w) (� > 0);(1)

0 �→ f(z).(2)

In view of (19), the right-hand side of (2) is the same as (Ψ�
z ,QB� (f)Ψ�

z). In
particular, this continuity condition implies

lim
�→0

(Ψ�

z ,QB� (f)Ψ�

z) = f(z).(3)

This means that the classical limit of the quantum-mechanical expectation value
of the phase space quantization (19) of the classical observable f in a coherent
state centered at z ∈ M is precisely the classical expectation value of f in the
state z. This interpretation rests on the identification of classical states with
probability measures on phase space M , under which points of M in the guise
of Dirac measures (i.e. delta functions) are pure states. Furthermore, it can be
shown (cf. [Landsman, 1998]) that the continuity of all functions (1) - (2) implies
the property

lim
�→0
|(Ψ�

w,Ψ�

z)|2 = δwz,(4)

where δwz is the ordinary Kronecker delta (i.e. δwz = 0 whenever w �= z and
δzz = 1 for all z ∈ M). This has a natural physical interpretation as well: the
classical limit of the quantum-mechanical transition probability between two co-
herent states centered at w, z ∈M is equal to the classical (and trivial) transition
probability between w and z. In other words, when � becomes small, coher-
ent states at different values of w and z become increasingly orthogonal to each
other.201 This has the interesting consequence that

lim
�→0

(Ψ�

w,QB� (f)Ψ�

z) = 0 (w �= z).(5)

for all f ∈ Cc(M). In particular, the following phenomenon of the Schrödinger
cat type occurs in the classical limit: if w �= z and one has continuous functions
� �→ c�

w ∈ C and � �→ c�
z ∈ C on � ∈ [0, 1] such that

Ψ�

w,z = c�

wΨ�

w + c�

zΨ
�

z(6)

is a unit vector for � ≥ 0 and also |c0
w|2 + |c0

z|2 = 1, then

lim
�→0

(
Ψ�

w,z,QB� (f)Ψ�

w,z

)
= |c0

w|2f(w) + |c0
z|2f(z).(7)

Hence the family of (typically) pure states ψ�
w,z (on the C∗-algebras A� in which

the map QB
�

takes values)202 defined by the vectors Ψ�
w,z in some sense converges

201See [Mielnik, 1968; Cantoni, 1975; Beltrametti and Cassinelli, 1984; Landsman, 1998], and
Subsection 6.3 below for the general meaning of the concept of a transition probability.
202For example, for M = R2n each A� is equal to the C∗-algebra of compact operators on
L2(Rn), on which each vector state is certainly pure.
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to the mixed state on C0(M) defined by the right-hand side of (7). This is made
precise at the end of this subsection.

It goes without saying that Schrödinger’s coherent states (20) satisfy our axioms;
one may also verify (4) immediately from (21). Consequently, by (32) one has the
same property (3) for Weyl quantization (as long as f ∈ S(R2n)),203 that is,

lim
�→0

(Ψ�

z ,QW� (f),Ψ�

z) = f(z).(8)

Similarly, (5) holds for QW
�

as well.
In addition, many constructions referred to as coherent states in the literature

(cf. the references in footnote 129) satisfy (16), (17), and (4); see [Landsman,
1998].204 The general picture that emerges is that a coherent state centered at
z ∈ M is the Umdeutung of z (seen as a classical pure state, as explained above)
as a quantum-mechanical pure state.205

Despite their wide applicability (and some would say beauty), one has to look
beyond coherent states for a complete picture of the � → 0 limit of quantum
mechanics. The appropriate generalization is the concept of a continuous field of
states.206 This is defined relative to a given deformation quantization of a phase
space M ; cf. Subsection 4.3. If one now has a state ω� on A� for each � ∈ [0, 1]
(or, more generally, for a discrete subset of [0, 1] containing 0 as an accumulation
point), one may call the ensuing family of states a continuous field whenever the
function � �→ ω�(Q�(f)) is continuous on [0, 1] for each f ∈ C∞

c (M); this notion is
actually intrinsically defined by the continuous field of C∗-algebras, and is therefore
independent of the quantization maps Q�. In particular, one has

lim
�→0

ω�(Q�(f)) = ω0(f).(9)

Eq. (3) (or (8)) shows that coherent states are indeed examples of continuous
fields of states, with the additional property that each ω� is pure. As an example
where all states ω� are mixed, we mention the convergence of quantum-mechanical

203Here S(R2n) is the usual Schwartz space of smooth test functions with rapid decay at infinity.
204For example, coherent states of the type introduced by Perelomov [1986] fit into our setting

as follows [Simon, 1980]. Let G be a compact connected Lie group, and Oλ an integral coadjoint
orbit, corresponding to a highest weight λ. (One may think here of G = SU(2) and λ =
0, 1/2, 1, . . ..) Note that Oλ

∼= G/T , where T is the maximal torus in G with respect to which
weights are defined. Let Hhw

λ be the carrier space of the irreducible representation Uλ(G) with

highest weight λ, containing the highest weight vector Ωλ. (ForG = SU(2) one hasHhw
j = C2j+1,

the well-known Hilbert space of spin j, in which Ωj is the vector with spin j in the z-direction.)
For � = 1/k, k ∈ N, define H� := Hhw

λ/�
. Choosing a section σ : Oλ → G of the projection

G → G/T , one then obtains coherent states x �→ Uλ/�(σ(x))Ωλ/� with respect to the Liouville

measure on Oλ and c� = dim(Hhw
λ/�

). These states are obviously not defined for all values of �

in (0, 1], but only for the discrete set 1/N.
205This idea is also confirmed by the fact that at least Schrödinger’s coherent states are states

of minimal uncertainty; cf. the references in footnote 129.
206The use of this concept in various mathematical approaches to quantization is basically

folklore. For the C∗-algebraic setting see [Emch, 1984; Rieffel, 1989b; Werner, 1995; Blanchard,
1996; Landsman, 1998], and [Nagy, 2000].
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partition functions to their classical counterparts in statistical mechanics along
these lines; see [Lieb, 1973; Simon, 1980; Duffield, 1990], and [Nourrigat and
Royer, 2004]. Finally, one encounters the phenomenon that pure quantum states
may coverge to mixed classical ones. The first example of this has just been
exhibited in (7); other cases in point are energy eigenstates and WKB states (see
Subsections 5.4, 5.5, and 5.6 below).

5.2 Convergence of quantum dynamics to classical motion

Nonrelativistic quantum mechanics is based on the Schrödinger equation (3), which
more generally reads

HΨ(t) = i�
∂Ψ
∂t

.(10)

The formal solution with initial value Ψ(0) = Ψ is

Ψ(t) = e−
it
�
HΨ.(11)

Here we have assumed that H is a given self-adjoint operator on the Hilbert
space H of the system, so that this solution indeed exists and evolves unitarily
by Stone’s theorem; cf. [Reed and Simon, 1972] and [Simon, 1976]. Equivalently,
one may transfer the time-evolution from states (Schrödinger picture) to operators
(Heisenberg picture) by putting

A(t) = e
it
�
HAe−

it
�
H .(12)

We here restrict ourselves to particle motion in Rn, so that H = L2(Rn).207 In
that case, H is typically given by a formal expression like (3) (on some specific
domain).208 Now, the first thing that comes to mind is Ehrenfest’s Theorem [1927],
which states that for any (unit) vector Ψ ∈ L2(Rn) in the domain of Q�(qj) = xj

and ∂V (x)/∂xj one has

m
d2

dt2
〈xj〉(t) = −

〈
∂V (x)
∂xj

〉
(t),(13)

with the notation

〈xj〉(t) = (Ψ(t), xjΨ(t));〈
∂V (x)
∂xj

〉
(t) =

(
Ψ(t),

∂V (x)
∂xj

Ψ(t)
)

.(14)

This looks like Newton’s second law for the expectation value of x in the state
ψ, with the tiny but crucial difference that Newton would have liked to see
(∂V/∂xj)(〈x〉(t)) on the right-hand side of (13). Furthermore, even apart from
207See [Hunziker and Sigal, 2000] for a recent survey of N -body Schrödinger operators.
208One then has to prove self-adjointness (or the lack of it) on a larger domain on which the

operator is closed; see the literature cited in footnote 42.
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this point Ehrenfest’s Theorem by no means suffices to have classical behaviour,
since it gives no guarantee whatsoever that 〈x〉(t) behaves like a point particle.
Much of what follows can be seen as an attempt to sharpen Ehrenfest’s Theorem
to the effect that it does indeed yield appropriate classical equations of motion for
the expectation values of suitable operators.

We assume that the quantum Hamiltonian has the more general form

H = h(Q�(pj),Q�(qj)),(15)

where h is the classical Hamiltonian (i.e. a function defined on classical phase
space R2n) and Q�(pj) and Q�(qj) are the operators given in (2). Whenever
this expression is ambiguous (as in cases like h(p, q) = pq), one has to assume a
specific quantization prescription such as Weyl quantization QW

�
(cf. (29)), so that

formally one has

H = QW� (h).(16)

In fact, in the literature to be cited an even larger class of quantum Hamiltonians
is treated by the methods explained here. The quantum Hamiltonian H carries an
explicit (and rather singular) �-dependence, and for �→ 0 one then expects (11)
or (12) to be related in one way or another to the flow of the classical Hamiltonian
h. This relationship was already foreseen by Schrödinger (1926a), and was formal-
ized almost immediately after the birth of quantum mechanics by the well-known
WKB approximation (cf. [Landau and Lifshitz, 1977] and Subsection 5.5 below).
A mathematically rigorous understanding of this and analogous approximation
methods only emerged much later, when a technique called microlocal analysis
was adapted from its original setting of partial differential equations [Hörmander,
1965; Kohn and Nirenberg, 1965; Duistermaat, 1974; 1996; Guillemin and Stern-
berg, 1977; Howe, 1980; Hörmander, 1979; 1985a; 1985b; Grigis and Sjöstrand,
1994] to the study of the �→ 0 limit of quantum mechanics. This adaptation (of-
ten called semiclassical analysis) and its results have now been explained in various
reviews written by the main players, notably [Robert, 1987; 1998; Helffer, 1988;
Paul and Uribe, 1995; Colin de Verdière, 1998; Ivrii, 1998; Dimassi and Sjöstrand,
1999], and [Martinez, 2002] (see also the papers in [Robert, 1992]). More specific
references will be given below.209

As mentioned before, the relationship between H and h provided by semiclas-
sical analysis is double-edged. On the one hand, one obtains approximate solu-
tions of (11) or (12), or approximate energy eigenvalues and energy eigenfunctions
(sometimes called quasi-modes) for small values of � in terms of classical data.
This is how the results are usually presented; one computes specific properties of
quantum theory in a certain regime in terms of an underlying classical theory.
On the other hand, however, with some effort the very same results can often be
reinterpreted as a partial explanation of the emergence of classical dynamics from

209For the heuristic theory of semiclassical asymptotics [Landau and Lifshitz, 1977] is a gold-
mine.
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quantum mechanics. It is the latter aspect of semiclassical analysis, somewhat
understated in the literature, that is of interest to us. In this and the next three
subsections we restrict ourselves to the simplest type of results, which nonetheless
provide a good flavour of what can be achieved and understood by these means.
By the same token, we just work with the usual flat phase space M = R2n as
before.

The simplest of all results relating classical and quantum dynamics is this:210

If the classical Hamiltonian h(p, q) is at most quadratic in p and q, and
the Hamiltonian in (12) is given by (16), then

QW� (f)(t) = QW� (ft).(17)

Here ft is the solution of the classical equation of motion dft/dt = {h, ft}; equiv-
alently, one may write

ft(p, q) = f(p(t), q(t)),(18)

where t �→ (p(t), q(t)) is the classical Hamiltonian flow of h with initial condition
(p(0), q(0)) = (p, q). This holds for all decent f , e.g., f ∈ S(R2n).

This result explains quantum in terms of classical, but the converse may be
achieved by combining (17) with (9). This yields

lim
�→0

ω�(Q�(f)(t)) = ω0(ft)(19)

for any continuous field of states (ω�). In particular, for Schrödinger’s coherent
states (20) one obtains

lim
�→0

(
Ψ�

(p,q),Q�(f)(t)Ψ�

(p,q)

)
= ft(p, q).(20)

Now, whereas (17) merely reflects the good symmetry properties of Weyl quantiza-
tion,211 (and is false for QB

�
), eq. (20) is actually valid for a large class of realistic

Hamiltonians and for any deformation quantization map Q� that is asymptotically
equal to QW

�
(cf. (32)). A result of this type was first established by Hepp [1974];

further work in this direction includes [Yajima, 1979; Hogreve et al., 1983; Wang,
1986; Robinson, 1988a; 1988b; Combescure, 1992; Arai, 1995; Combescure and
Robert, 1997; Robert, 1998], and [Landsman, 1998].

Impressive results are available also in the Schrödinger picture. The counterpart
of (17) is that for any suitably smooth classical Hamiltonian h (even a time-
dependent one) that is at most quadratic in the canonical coordinates p and q on

210More generally, Egorov’s Theorem states that for a large class of Hamiltonians one has
QW

�
(f)(t) = QW

�
(ft) + O(�). See, e.g., [Robert, 1987; Dimassi and Sjöstrand, 1999], and [Mar-

tinez, 2002].
211Eq. (17) is equivalent to the covariance of Weyl quantization under the affine symplectic

group; cf. footnote 153.
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phase space R2n one may construct generalized coherent states Ψ�

(p,q,C), labeled
by a set C of classical parameters dictated by the form of h, such that

e−
it
�
QW

�
(h)Ψ�

(p,q,C) = eiS(t)/�Ψ�

(p(t),q(t),C(t)).(21)

Here S(t) is the action associated with the classical trajectory (p(t), q(t)) deter-
mined by h, and C(t) is a solution of a certain system of differential equations
that has a classical interpretation as well [Hagedorn, 1998]. Schrödinger’s coher-
ent states (20) are a special case for the standard harmonic oscillator Hamiltonian.
For more general Hamiltonians one then has an asymptotic result [Hagedorn and
Joye, 1999; 2000]212

lim
�→0

∥∥∥e− it
�
QW

�
(h)Ψ�

(p,q,C) − eiS(t)/�Ψ�

(p(t),q(t),C(t))

∥∥∥ = 0.(22)

Once again, at first sight such results merely contribute to the understanding
of quantum dynamics in terms of classical motion. As mentioned, they may be
converted into statements on the emergence of classical motion from quantum
mechanics by taking expectation values of suitable �-dependent obervables of the
type QW

�
(f).

For finite �, the second term in (22) is a good approximation to the first - the
error even being as small as O(exp(−γ/�)) for some γ > 0 as �→ 0 - whenever t
is smaller than the so-called Ehrenfest time

TE = λ
−1

log(�−1),(23)

where λ is a typlical inverse time scale of the Hamiltonian (e.g., for chaotic sys-
tems it is the largest Lyapunov exponent).213 This is the typical time scale on
which semiclassical approximations to wave packet solutions of the time-dependent
Schrödinger equation with a general Hamiltonian tend to be valid [Ehrenfest, 1927;
Berry et al., 1979; Zaslavsky, 1981; Combescure and Robert, 1997; Bambusi et al.,
1999; Hagedorn and Joye, 2000].214 For example, Ehrenfest [1927] himself esti-
mated that for a mass of 1 gram a wave packet would double its width only in
212See also [Paul and Uribe, 1995; 1996] as well as the references listed after (20) for analogous

statements.
213Recall that throughout this section we assume that � has been made dimensionless through

an appropriate rescaling.
214One should distinguish here between two distinct approximation methods to the time-

dependent Schrödinger equation. Firstly, one has the semiclassical propagation of a quantum-
mechanical wave packet, i.e. its propagation as computed from the time-dependence of the pa-
rameters on which it depends according to the underlying classical equations of motion. It is
shown in the references just cited that this approximates the full quantum-mechanical prop-
agation of the wave packet well until t ∼ TE . Secondly, one has the time-dependent WKB
approximation (for integrable systems) and its generalization to chaotic systems (which typically
involve tens of thousands of terms instead of a single one). This second approximation is valid
on a much longer time scale, typically t ∼ �−1/2 [O’Connor, Tomsovic, and Heller, 1992; Heller
and Tomsovic, 1993; Tomsovic and Heller, 1993; 2002; Vanicek and Heller, 2003]. Adding to
the confusion, Ballentine has claimed over the years that even the semiclassical propagation of a
wave packet approximates its quantum-mechanical propagation for times much longer than the
Ehrenfest time, typically t ∼ �−1/2 [Ballentine et al., 1994; Ballentine, 2002; 2003]. This claim
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about 1013 years under free motion. However, Zurek and Paz [1995] have estimated
the Ehrenfest time for Saturn’s moon Hyperion to be of the order of 20 years! This
obviously poses a serious problem for the program of deriving (the appearance of)
classical behaviour from quantum mechanics, which affects all interpretations of
this theory.

Finally, we have not discussed the important problem of combining the limit
t → ∞ with the limit � → 0; this should be done in such a way that TE is kept
fixed. This double limit is of particular importance for quantum chaos; see Robert
[1998] and most of the literature cited in Subsection 5.6.

5.3 Wigner functions

The � → 0 limit of quantum mechanics is often discussed in terms of the so-
called Wigner function, introduced by Wigner [1932].215 Each unit vector (i.e.
wave function) Ψ ∈ L2(Rn) defines such a function W �

Ψ on classical phase space
M = R2n by demanding that for each f ∈ S(R2n) one has(

Ψ,QW� (f)Ψ
)

=
∫

R2n

dnpdnq

(2π)n
W �

Ψ(p, q)f(p, q).(24)

The existence of such a function may be proved by writing it down explicitly as

W �

Ψ(p, q) =
∫

Rn

dnv eipvΨ(q + 1
2
�v)Ψ(q − 1

2
�v).(25)

In other words, the quantum-mechanical expectation value of the Weyl quantiza-
tion of the classical observable f in a quantum state Ψ formally equals the classical
expectation value of f with respect to the distribution WΨ. However, the latter
may not be regarded as a probability distribution because it is not necessarily
positive definite.216 Despite this drawback, the Wigner function possesses some
attractive properties. For example, one has

QW� (W �

Ψ) = �−n[Ψ].(26)

This somewhat perverse result means that if the Wigner function defined by Ψ is
seen as a classical observable (despite its manifest �-dependence!), then its Weyl

is based on the criterion that the quantum and classical (i.e. Liouville) probabilities are approx-
imately equal on such time scales, but the validity of this criterion hinges on the “statistical”
or “ensemble” interpretation of quantum mechanics. According to this interpretation, a pure
state provides a description of certain statistical properties of an ensemble of similarly prepared
systems, but need not provide a complete description of an individual system. See [Ballentine,
1970; 1986]. Though once defended by von Neumann, Einstein and Popper, this interpretation
has now completely fallen out of fashion.
215The original context was quantum statistical mechanics; one may write down (24) for mixed

states as well. See [Hillery et al., 1984] for a survey.
216Indeed, it may not even be in L1(R2n), so that its total mass is not necessarily defined, let

alone equal to 1. Conditions for the positivity of Wigner functions defined by pure states are
given by Hudson [1974]; see [Bröcker and Werner, 1995] for the case of mixed states.
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quantization is precisely (�−n times) the projection operator onto Ψ.217 Further-
more, one may derive the following formula for the transition probability:218

|(Φ,Ψ)|2 = �n
∫

R2n

dnpdnq

(2π)n
W �

Ψ(p, q)W �

Φ(p, q).(27)

This expression has immediate intuitive appeal, since the integrand on the right-
hand side is supported by the area in phase space where the two Wigner functions
overlap, which is well in tune with the idea of a transition probability.

The potential lack of positivity of a Wigner function may be remedied by not-
ing that Berezin’s deformation quantization scheme (see (28)) analogously defines
functions B�

Ψ on phase space by means of

(
Ψ,QB� (f)Ψ

)
=
∫

R2n

dnpdnq

(2π)n
B�

Ψ(p, q)f(p, q).(28)

Formally, (28) and (28) immediately yield

B�

Ψ(p, q) = �−n|(Ψ�

(p,q),Ψ)|2(29)

in terms of Schrödinger’s coherent states (20). This expression is manifestly pos-
itive definite. The existence of B�

Ψ may be proved rigorously by recalling that
the Berezin quantization map f �→ QB

�
(f) is positive from C0(R2n) to B(L2(Rn)).

This implies that for each (unit) vector Ψ ∈ L2(Rn) the map f �→ (Ψ,QB
�

(f)Ψ) is
positive from Cc(R2n) to C, so that (by the Riesz theorem of measure theory) there
must be a measure µΨ on R2n such that (Ψ,QB

�
(f)Ψ) =

∫
dµΨ f . This measure,

then, is precisely given by dµΨ(p, q) = (2π)−ndnpdnq B�

Ψ(p, q). If (Ψ,Ψ) = 1, then
µΨ is a probability measure. Accordingly, despite its �-dependence, B�

Ψ defines a
bona fide classical probability distribution on phase space, in terms of which one
might attempt to visualize quantum mechanics to some extent.

For finite values of �, the Wigner and Berezin distribution functions are differ-
ent, because the quantization maps QW

�
and QB

�
are. The connection between B�

Ψ

and W �

Ψ is easily computed to be

B�

Ψ = W �

Ψ ∗ g�,(30)

where g� is the Gaussian function

g�(p, q) = (2/�)n exp(−(p2 + q2)/�).(31)

This is how physicists look at the Berezin function,219 viz. as a Wigner function
smeared with a Gaussian so as to become positive. But since g� converges to a

217In other words, WΨ is the Weyl symbol of the projection operator [Ψ].
218This formula is well defined since Ψ ∈ L2(Rn) implies W �

Ψ ∈ L2(R2n).
219The ‘Berezin’ functions B�

Ψ were introduced by Husimi [1940] from a different point of view,
and are therefore actually called Husimi functions by physicists.
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Dirac delta function as � → 0 (with respect to the measure (2π)−ndnpdnq in the
sense of distributions), it is clear from (30) that as distributions one has220

lim
�→0

(
B�

Ψ −W �

Ψ

)
= 0.(32)

See also (32). Hence in the study of the limit �→ 0 there is little advantage in the
use of Wigner functions; quite to the contrary, in limiting procedures their generic
lack of positivity makes them more difficult to handle than Berezin functions.221

For example, one would like to write the asymptotic behaviour (8) of coherent
states in the form lim�→0 W �

Ψ�
z

= δz. Although this is indeed true in the sense of
distributions, the corresponding limit

lim
�→0

B�

Ψ�
z

= δz,(33)

exists in the sense of (probability) measures, and is therefore defined on a much
larges class of test functions.222 Here and in what follows, we abuse notation: if
µ0 is some probability measure on R2n and (Ψ�) is a sequence of unit vectors in
L2(Rn) indexed by � (and perhaps other labels), then B�

Ψ� → µ0 for � → 0 by
definition means that for any f ∈ C∞

c (R2n) one has223

lim
�→0

(
Ψ�,QB� (f)Ψ�

)
=
∫

R2n

dµ0 f.(34)

5.4 The classical limit of energy eigenstates

Having dealt with coherent states Ψ�
z in (33), in this subsection we discuss the

much more difficult problem of computing the limit measure µ0 for eigenstates
Ψ�

n of the quantum Hamiltonian H. Thus we assume that H has eigenvalues E�
n

labeled by n ∈ N (defined with or without 0 according to convenience), and also
depending on � because of the explicit dependence of H on this parameter. The
associated eigenstates Ψ�

n then by definition satisfy

HΨ�

n = E�

nΨ�

n .(35)

Here we incorporate the possibility that the eigenvalue E�
n is degenerate, so that

the label n extends n. For example, for the one-dimensional harmonic oscillator
one has E�

n = �ω(n+ 1
2
) (n = 0, 1, 2, . . .) without multiplicity, but for the hydrogen

220 Eq. (32) should be interpreted as a limit of the distribution on D(R2n) or S(R2n) defined
by B�

Ψ−W �

Ψ. Both functions are continuous for �> 0, but lose this property in the limit �→ 0,
generally converging to distributions.
221See, however, [Robinett, 1993] and [Arai, 1995]. It should be mentioned that (32) expresses

the asymptotic equivalence of Wigner and Berezin functions as distributions on �-independent
test functions. Even in the limit �→ 0 one is sometimes interested in studying O(�) phenomena,
in which case one should make a choice.
222Namely those in C0(R2n) rather than in D(R2n) or S(R2n).
223Since QB

�
may be extended from C∞

c (R2n) to L∞(R2n), one may omit the stipulation that
µ0 be a probability measure in this definition if one requires convergence for all f ∈ L∞(R2n), or
just for all f in the unitization of the C∗-algebra C0(R2n).
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atom the Bohrian eigenvalues E�
n = −mee

4/2�2n2 (where me is the mass of the
electron and e is its charge) are degenerate, with the well-known eigenfunctions
Ψ�

(n,l,m) [Landau and Lifshitz, 1977]. Hence in this case one has n = (n, l,m) with
n = 1, 2, 3, . . ., subject to l = 0, 1, . . . , n− 1, and m = −l, . . . , l.

In any case, it makes sense to let n → ∞; this certainly means n → ∞, and
may in addition involve sending the other labels in n to infinity (subject to the ap-
propriate restrictions on n→∞, as above). One then expects classical behaviour
à la Bohr if one simultaneously lets � → 0 whilst E�

n → E0 converges to some
‘classical’ value E0. Depending on how one lets the possible other labels behave in
this limit, this may also involve similar asymptotic conditions on the eigenvalues
of operators commuting with H — see below for details in the integrable case. We
denote the collection of such eigenvalues (including E�

n) by E�
n . (Hence in the case

where the energy levels E�
n are nondegenerate, the label E is just E.) In general,

we denote the collective limit of the eigenvalues E�
n as �→ 0 and n→∞ by E0.

For example, for the hydrogen atom one has the additional operators J2 of
total angular momentum as well as the operator J3 of angular momentum in the
z-direction. The eigenfunction Ψ�

(n,l,m) of H with eigenvalue E�
n is in addition

an eigenfunction of J2 with eigenvalue j2
�

= �2l(l + 1) and of J3 with eigenvalue
j�
3 = �m. Along with n→∞ and �→ 0, one may then send l→∞ and m→ ±∞

in such a way that j2
�

and j�
3 approach specific constants.

The object of interest, then, is the measure on phase space obtained as the limit
of the Berezin functions (29), i.e.

µ0
E = lim

�→0,n→∞
B�

Ψ�
n
.(36)

Although the pioneers of quantum mechanics were undoubtedly interested in quan-
tities like this, it was only in the 1970s that rigorous results were obtained. Two
cases are well understood: in this subsection we discuss the integrable case, leaving
chaotic and more generally ergodic motion to Subsection 5.6.

In the physics literature, it was argued that for an integrable system the lim-
iting measure µ0

E is concentrated (in the form of a δ-function) on the invariant
torus associated to E0 [Berry, 1977a].224 Independently, mathematicians began to
study a quantity very similar to µ0

E, defined by limiting sequences of eigenfunc-
tions of the Laplacian on a Riemannian manifold M . Here the underlying classical
flow is Hamiltonian as well, the corresponding trajectories being the geodesics of
the given metric (see, for example, [Klingenberg, 1982; Abraham and Marsden,
1985; Katok and Hasselblatt, 1995], or [Landsman, 1998]).225 The ensuing picture
largely confirms the folklore of the physicists:

In the integrable case the limit measure µ0
E is concentrated on invariant

tori.
224This conclusion was, in fact, reached from the Wigner function formalism. See [Ozorio de

Almeida, 1988] for a review of work of Berry and his collaborators on this subject.
225The simplest examples of integrable geodesic motion are n-tori, where the geodesics are

projections of lines, and the sphere, where the geodesics are great circles [Katok and Hasselblatt,
1995].



Between Classical and Quantum 483

See [Charbonnel, 1986; 1988; Zelditch, 1990, 1996a; Toth, 1996; 1999; Nadirashvili
et al., 2001], and [Toth and Zelditch, 2002; 2003a; 2003b].226 Finally, as part of
the transformation of microlocal analysis to semiclassical analysis (cf. Subsection
5.2), these results were adapted to quantum mechanics [Paul and Uribe, 1995;
1996].

Let us now give some details for integrable systems (of Liouville type); these
include the hydrogen atom as a special case. Integrable systems are defined
by the property that on a 2p-dimensional phase space M one has p indepen-
dent227 classical observables (f1 = h, f2, . . . , fp) whose mutual Poisson brack-
ets all vanish [Arnold, 1989]. One then hopes that an appropriate quantization
scheme Q� exists under which the corresponding quantum observables (Q�(f1) =
H,Q�(f2), . . . ,Q�(fp)) are all self-adjoint and mutually commute (on a common
core).228 This is indeed the case for the hydrogen atom, where (f1, f2, f3) may
be taken to be (h, j2, j3) (where j2 is the total angular momentum and j3 is its
z-component),229 H is given by (16), J2 = QW

�
(j2), and J3 = QW

�
(j3). In gen-

eral, the energy eigenfunctions Ψ�
n will be joint eigenfunctions of the operators

(Q�(f1), . . . ,Q�(fp)), so that E�
n = (E�

n1
, . . . , E�

np
), with Q�(fk)Ψ�

n = E�
nk

Ψ�
n . We

assume that the submanifolds ∩pk=1f
−1
k (xk) are compact and connected for each

x ∈ Rp, so that they are tori by the Liouville–Arnold Theorem [Abraham and
Marsden, 1985; Arnold, 1989].

Letting �→ 0 and n→∞ so that E�
nk
→ E0

k for some point E0 = (E0
1 , . . . , E0

p) ∈
Rp, it follows that the limiting measure µ0

E as defined in (36) is concentrated on
the invariant torus ∩pk=1f

−1
k (E0

k). This torus is generically p-dimensional, but for
singular points E0 it may be of lower dimension. In particular, in the exceptional
circumstance where the invariant torus is one-dimensional, µ0

E is concentrated on a
classical orbit. Of course, for p = 1 (where any Hamiltonian system is integrable)
this singular case is generic. Just think of the foliation of R2 by the ellipses that
form the closed orbits of the harmonic oscillator motion.230

226These papers consider the limit n → ∞ without �→ 0; in fact, a physicist would say that
they put � = 1. In that case En → ∞; in this procedure the physicists’ microscopic E ∼ O(�)
and macroscopic E ∼ O(1) regimes correspond to E ∼ O(1) and E →∞, respectively.
227I.e. df1 ∧ · · · ∧ dfp �= 0 everywhere. At this point we write 2p instead of 2n for the dimension

of phase space in order to avoid notational confusion.
228There is no general theory of quantum integrable systems. Olshanetsky and Perelomov [1981;

1983] form a good starting point.
229In fact, if µ is the momentum map for the standard SO(3)-action on R3, then j2 =

P3
k=1 µ

2
k

and j3 = µ3.
230 It may be enlightening to consider geodesic motion on the sphere; this example may be seen

as the hydrogen atom without the radial degree of freedom (so that the degeneracy in question
occurs in the hydrogen atom as well). If one sends l→∞ and m→∞ in the spherical harmonics
Y m

l (which are eigenfunctions of the Laplacian on the sphere) in such a way that limm/l = cosϕ,
then the invariant tori are generically two-dimensional, and occur when cosϕ �= ±1; an invariant
torus labeled by such a value of ϕ �= 0, π comprises all great circles (regarded as part of phase
space by adding to each point of the geodesic a velocity of unit length and direction tangent to
the geodesic) whose angle with the z-axis is ϕ (more precisely, the angle in question is the one
between the normal of the plane through the given great circle and the z-axis). For cosϕ = ±1
(i.e. m = ±l), however, there is only one great circle with ϕ = 0 namely the equator (the case
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What remains, then, of Bohr’s picture of the hydrogen atom in this light?231

Quite a lot, in fact, confirming his remarkable physical intuition. The energy
levels Bohr calculated are those given by the Schrödinger equation, and hence re-
main correct in mature quantum mechanics. His orbits make literal sense only in
the “correspondence principle” limit � → 0, n → ∞, where, however, the situa-
tion is even better than one might expect for integrable systems: because of the
high degree of symmetry of the Kepler problem [Guillemin and Sternberg, 1990],
one may construct energy eigenfunctions whose limit measure µ0 concentrates on
any desired classical orbit [Nauenberg, 1989].232 In order to recover a travelling
wave packet, one has to form wave packets from a very large number of energy
eigenstates with very high quantum numbers, as explained in Subsection 2.4. For
finite n and � Bohr’s orbits seem to have no meaning, as already recognized by
Heisenberg [1969] in his pathfinder days!233

5.5 The WKB approximation

One might have expected a section on the � → 0 limit of quantum mechanics
to be centered around the WKB approximation, as practically all textbooks base
their discussion of the classical limit on this notion. Although the scope of this
method is actually rather limited, it is indeed worth saying a few words about
it. For simplicity we restrict ourselves to the time-independent case.234 In its
original formulation, the time-independent WKB method involves an attempt to
approximate solutions of the time-independent Schrödinger equation HΨ = EΨ
by wave functions of the type

Ψ(x) = a�(x)e
i
�
S(x),(37)

where a� admits an expansion in � as a power series. Assuming the Hamiltonian
H is of the form (15), plugging the Ansatz (37) into the Schrödinger equation, and
expanding in �, yields in lowest order the classical (time-independent) Hamilton–
Jacobi equation

h

(
∂S

∂x
, x

)
= E,(38)

ϕ = π corresponds to the same equator traversed in the opposite direction). Hence in this
case the invariant torus is one-dimensional. The reader may be surprised that the invariant tori
explicitly depend on the choice of variables, but this feature is typical of so-called degenerate
systems; see Arnold (1989), §51.
231We ignore coupling to the electromagnetic field here; see footnote 26.
232Continuing footnote 230, for a given principal quantum number n one forms the eigenfunction

Ψ�

(n,n−1,n−1)
by multiplying the spherical harmonic Y n−1

n−1 with the appropriate radial wave

function. The limiting measure (36) as n → ∞ and � → 0 is then concentrated on an orbit
(rather than on an invariant torus). Now, beyond what it possible for general integrable systems,
one may use the SO(4) symmetry of the Kepler problem and the construction in footnote 204 for
the group-theoretic coherent states of Perelomov [1986] to find the desired eigenfunctions. See
also [De Bièvre, 1992] and [De Bièvre et al., 1993].
233The later Bohr also conceded this through his idea that causal descriptions are complemen-

tary to space-time pictures; see Subsection 3.3.
234Cf. [Robert, 1998] and references therein for the time-dependent case.
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supplemented by the so-called (homogeneous) transport equation235(
1
2
∆S +

∑
k

∂S

∂xk
∂

∂xk

)
a0 = 0.(39)

In particular, E should be a classically allowed value of the energy. Even when it
applies (see below), in most cases of interest the Ansatz (37) is only valid locally
(in x), leading to problems with caustics. These problems turn out to be an
artefact of the use of the coordinate representation that lies behind the choice
of the Hilbert space H = L2(Rn), and can be avoided [Maslov and Fedoriuk,
1981]: the WKB method really comes to its own in a geometric reformulation in
terms of symplectic geometry. See [Arnold, 1989; Bates and Weinstein, 1995], and
[Dimassi and Sjöstrand, 1999] for (nicely complementary) introductory treatments,
and [Guillemin and Sternberg, 1977; Hörmander, 1985a; 1985b], and [Duistermaat,
1974; 1996] for advanced accounts.

The basic observation leading to this reformulation is that in the rare cases that
S is defined globally as a smooth function on the configuration space Rn, it defines
a submanifold L of the phase space M = R2n by L = {(p = dS(x), q = x), x ∈ Rn}.
This submanifold is Lagrangian in having two defining properties: firstly, L is n-
dimensional, and secondly, the restriction of the symplectic form (i.e.

∑
k dpk ∧

dqk) to L vanishes. The Hamilton–Jacobi equation (38) then guarantees that
the Lagrangian submanifold L ⊂ M is contained in the surface ΣE = h−1(E) of
constant energy E in M . Consequently, any solution of the Hamiltonian equations
of motion that starts in L remains in L.

In general, then, the starting point of the WKB approximation is a Lagrangian
submanifold L ⊂ ΣE ⊂ M , rather than some function S that defines it locally.
By a certain adaptation of the geometric quantization procedure, one may, under
suitable conditions, associate a unit vector ΨL in a suitable Hilbert space to L,
which for small � happens to be a good approximation to an eigenfunction of
H at eigenvalue E. This strategy is successful in the integrable case, where the
nondegenerate tori (i.e. those of maximal dimension n) provide such Lagrangian
submanifolds of M ; the associated unit vector ΨL then turns out to be well defined
precisely when L satisfies (generalized) Bohr–Sommerfeld quantization conditions.
In fact, this is how the measures µ0

E in (36) are generally computed in the integrable
case.

If the underlying classical system is not integrable, it may still be close enough
to integrability for invariant tori to be defined. Such systems are called quasi-
integrable or perturbations of integrable systems, and are described by the Kol-
mogorov–Arnold–Moser (KAM) theory; see [Gallavotti, 1983; Abraham and Mars-
den, 1985; Ozorio de Almeida, 1988; Arnold, 1989; Lazutkin, 1993; Gallavotti et
al., 2004], and many other books. In such systems the WKB method continues to

235Only stated here for a classical Hamiltonian h(p, q) = p2/2m + V (q). Higher-order terms
in � yield further, inhomogeneous transport equations for the expansion coefficients aj(x) in
a� =

P
j aj�j . These can be solved in a recursive way, starting with (39).
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provide approximations to the energy eigenstates relevant to the surviving invari-
ant tori [Colin de Verdière, 1977; Lazutkin, 1993; Popov, 2000], but already loses
some of its appeal.

In general systems, notably chaotic ones, the WKB method is almost useless.
Indeed, the following theorem of Werner [1995] shows that the measure µ0

E defined
by a WKB function (37) is concentrated on the Lagrangian submanifold L defined
by S:

Let a� be in L2(Rn) for each � > 0 with pointwise limit a0 = lim�→0 a�

also in L2(Rn),236 and suppose that S is almost everywhere differen-
tiable. Then for each f ∈ C∞

c (R2n):

lim
�→0

(
a�e

i
�
S ,QB� (f)a�e

i
�
S
)

=
∫

Rn

dnx |a0(x)|2f
(

∂S

∂x
, x

)
.(40)

As we shall see shortly, this behaviour is impossible for ergodic systems, and this
is enough to seal the fate of WKB for chaotic systems in general (except perhaps
as a hacker’s tool).

Note, however, that for a given energy level E the discussion so far has been
concerned with properties of the classical trajectories on ΣE (where they are con-
strained to remain by conservation of energy). Now, it belongs to the essence of
quantum mechanics that other parts of phase space than ΣE might be relevant
to the spectral properties of H as well. For example, for a classical Hamiltonian
of the simple form h(p, q) = p2/2m + V (q), this concerns the so-called classically
forbidden area {q ∈ Rn | V (q) > E} (and any value of p). Here the classical
motion can have no properties like integrability or ergodicity, because it does not
exist. Nonetheless, and perhaps counterintuitively, it is precisely here that a slight
adaptation of the WKB method tends to be most effective. For q = x in the
classically forbidden area, the Ansatz (37) should be replaced by

Ψ(x) = a�(x)e−
S(x)

� ,(41)

where this time S obeys the Hamilton–Jacobi equation ‘for imaginary time’, 237

i.e.

h

(
i
∂S

∂x
, x

)
= E,(42)

and the transport equation (39) is unchanged. For example, it follows that in one
dimension (with a Hamiltonian of the type (3)) the WKB function (41) assumes
the form

Ψ(x) ∼ e−
√

2m
�

R |x| dy
√
V (y)−E(43)

236This assumption is not made in Werner (1995), who directly assumes that Ψ = a0 exp(iS/�)
in (37).
237This terminology comes from the Lagrangian formalism, where the classical action S =R
dtL(t) is replaced by iS through the substitution t = −iτ with τ ∈ R.
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in the forbidden region, which explains both the tunnel effect in quantum mechan-
ics (i.e. the propagation of the wave function into the forbidden region) and the
fact that this effect disappears in the limit � → 0. However, even here the use of
WKB methods has now largely been superseded by techniques developed by Ag-
mon [1982]; see, for example, [Hislop and Sigal, 1996] and [Dimassi and Sjöstrand,
1999] for reviews.

5.6 Epilogue: quantum chaos

Chaos in classical mechanics was probably known to Newton and was famously
highlighted by Poincaré (1892–1899),238 but its relevance for (and potential threat
to) quantum theory was apparently first recognized by Einstein [1917] in a paper
that was ‘completely ignored for 40 years’ [Gutzwiller, 1992].239 Currently, the
study of quantum chaos is one of the most thriving businesses in all of physics,
as exemplified by innumerable conference proceedings and monographs on the
subject, ranging from the classic by Gutzwiller [1990] to the online opus magnum
by Cvitanovic et al. [2005].240 Nonetheless, the subject is still not completely
understood, and provides a fascinating testing ground for the interplay between
classical and quantum mechanics.

One should distinguish between various different goals in the field of quantum
chaos. The majority of papers and books on quantum chaos is concerned with the
semiclassical analysis of some concretely given quantum system having a chaotic
system as its classical limit. This means that one tries to approximate (for small
�) a suitable quantum-mechanical expression in terms of data associated with the
underlying classical motion. Michael Berry even described this goal as the “Holy
Grail” of quantum chaos. The methods described in Subsection 5.2 contribute
to this goal, but are largely independent of the nature of the dynamics. In this
subsection we therefore concentrate on techniques and results specific to chaotic
motion.

Historically, the first new tool in semiclassical approximation theory that specif-
ically applied to chaotic systems was the so-called Gutzwiller trace formula.241

Roughly speaking, this formula approximates the eigenvalues of the quantum
Hamiltonian in terms of the periodic (i.e. closed) orbits of the underlying clas-

238See also [Diacu and Holmes, 1996] and [Barrow-Green, 1997] for historical background.
239It was the study of the very same Helium atom that led Heisenberg to believe that a fun-

damentally new ‘quantum’ mechanics was needed to replace the inadequate old quantum theory
of Bohr and Sommerfeld. See [Mehra and Rechenberg, 1982b] and [Cassidy, 1992]. Another
microscopic example of a chaotic system is the hydrogen atom in an external magnetic field.
240Other respectable books include, for example, [Guhr et al., 1998, [Haake, 2001] and [Reichl,

2004].
241This attribution is based on Gutzwiller [1971]. A similar result was independently derived

by Balian and Bloch [1972; 1974]. See also [Gutzwiller, 1990] and [Brack and Bhaduri, 2003]
for mathematically heuristic but otherwise excellent accounts of semiclassical physics based on
the trace formula. Mathematically rigorous discussions and proofs may be found in [Colin de
Verdière, 1973; Duistermaat and Guillemin, 1975; Guillemin and Uribe, 1989; Paul and Uribe,
1995], and [Combescure et al., 1999].
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sical Hamiltonian.242 The Gutzwiller trace formula does not start from the wave
function (as the WKB approximation does), but from the propagator K(x, y, t).
Physicists write this as K(x, y, t) = 〈x| exp(−itH/�)|y〉, whereas mathematicians
see it as the Green’s function in the formula

e−
it
�
HΨ(x) =

∫
dny K(x, y, t)Ψ(y),(44)

where Ψ ∈ L2(Rn). Its (distributional) Laplace transform

G(x, y,E) =
1
i�

∫ ∞

0

dt K(x, y, t)e
itE

�(45)

contains information about both the spectrum and the eigenfunctions; for if the
former is discrete, one has

G(x, y,E) =
∑
j

Ψj(x)Ψj(y)
E − Ej

.(46)

It is possible to approximate K or G itself by an expression of the type

K(x, y, t) ∼ (2πi�)−n/2
∑
P

√
|det VP |e i

�
SP (x,y,t)− 1

2
iπµP ,(47)

where the sum is over all classical paths P from y to x in time t (i.e. paths that
solve the classical equations of motion). Such a path has an associated action
SP , Maslov index µP , and Van Vleck [1928] determinant detVP [Arnold, 1989].
For chaotic systems one typically has to include tens of thousands of paths in
the sum, but if one does so the ensuing approximation turns out to be remarkably
successful [Heller and Tomsovic, 1993; Tomsovic and Heller, 1993]. The Gutzwiller
trace formula is a semiclassical approximation to

g(E) =
∫

dnxG(x, x,E) =
∑
j

1
E − Ej

,(48)

for a quantum Hamiltonian with discrete spectrum and underlying classical Hamil-
tonian having chaotic motion. It has the form

g(E) ∼ g0(E) +
1
i�

∑
P

∞∑
k=1

TP
2 sinh(kχP /2)

e
ik
�
SP (E)− 1

2
iπµP ,(49)

where g0 is a smooth function giving the mean density of states. This time, the
sum is over all (prime) periodic paths P of the classical Hamiltonian at energy E
with associated action SP (E) =

∮
pdq (where the momentum p is determined by

P , given E), period TP , and stability exponent χP (this is a measure of how rapidly
neighbouring trajectories drift away from P ). Since the frustration expressed by
242Such orbits are dense but of Liouville measure zero in chaotic classical systems. Their crucial

role was first recognized by Poincaré (1892–1899).
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Einstein [1917], this was the first indication that semiclassical approximations had
some bearing on chaotic systems.

Another important development concerning energy levels was the formulation
of two key conjectures:243

• If the classical dynamics defined by the classical Hamiltonian h is integrable,
then the spectrum of H is “uncorrelated” or “random” [Berry and Tabor,
1977].

• If the classical dynamics defined by h is chaotic, then the spectrum of H is
“correlated” or “regular” [Bohigas, Giannoni, and Schmit, 1984].

The notions of correlation and randomness used here can be made precise using
notions like the distribution of level spacings and the pair correlation function
of eigenvalues; see [Zelditch, 1996a] and [De Bièvre, 2001] for introductory treat-
ments, and most of the literature cited in this subsection for further details.244

We now consider energy eigenfunctions instead of eigenvalues, and return to the
limit measure (36). In the non (quasi-) integrable case, the key result is that

for ergodic classical motion,245 the limit measure µ0
E coincides with the

(normalized) Liouville measure induced on the constant energy surface
ΣE ≡ h−1(E).246

This result was first suggested in the mathematical literature for ergodic geodetic
motion on compact hyperbolic Riemannian manifolds [Snirelman, 1974], where
it was subsequently proved with increasing generality [Colin de Verdière, 1985;
Zelditch, 1987].247 For certain other ergodic systems this property was proved by
Zelditch [1991], Gérard and Leichtnam [1993], Zelditch and Zworski [1996], and

243Strictly speaking, both conjectures are wrong; for example, the harmonic oscillator yields a
counterexamples to the first one. See [Zelditch, 1996a] for further information. Nonetheless, the
conjectures are believed to be true in a deeper sense.
244This aspect of quantum chaos has applications to number theory and might even lead to

a proof of the Riemann hypothesis; see, for example, [Sarnak, 1999; Berry and Keating, 1999],
and many other recent papers. Another relevant connection, related to the one just mentioned,
is between energy levels and random matrices; see especially [Guhr et al., 1998]. For the plain
relevance of all this to practical physics see [Mirlin, 2000].
245Ergodicity is the weakest property that any chaotic dynamical system possesses. See [Katok

and Hasselblatt, 1995; Emch and Liu, 2002; Gallavotti et al., 2004], and countless other books.
246The unnormalized Liouville measure µu

E on ΣE is defined by µu
E(B) =R

B dSE(x) (‖dh(x)‖)−1, where dSE is the surface element on ΣE and B ⊂ ΣE is a
Borel set. If ΣE is compact, the normalized Liouville measure µE on ΣE is given by
µE(B) = µu

E(B)/µu
E(ΣE). It is a probability measure on ΣE , reflecting the fact that the

eigenvectors Ψ�
n are normalized to unit length so as to define quantum-mechanical states.

247In the Riemannian case with � = 1 the cosphere bundle S∗Q (i.e. the subbundle of the
cotangent bundle T ∗Q consisting of one-forms of unit length) plays the role of ΣE . Low-
dimensional examples of ergodic geodesic motion are provided by compact hyperbolic spaces.
Also cf. [Zelditch, 1992a] for the physically important case of a particle moving in an external
gauge field. See also the appendix to Lazutkin [1993] by A.I. Shnirelman, and [Nadirashvili et
al., 2001] for reviews.
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others; to the best of our knowledge a completely general proof remains to be
given.

An analogous version for Schrödinger operators on Rn was independently stated
in the physics literature [Berry, 1977b; Voros, 1979], and was eventually proved
under certain assumptions on the potential by Helffer, Martinez and Robert [1987],
Charbonnel [1992], and Paul and Uribe [1995]. Under suitable assumptions one
therefore has

lim
�→0,n→∞

(
Ψ�

n ,QB� (f)Ψ�

n

)
=
∫

ΣE

dµE f(50)

for any f ∈ C∞
c (R2n), where again µE is the (normalized) Liouville measure on

ΣE ⊂ R2n (assuming this space to be compact). In particular, in the ergodic case
µ0

E only depends on E0 and is the same for (almost) every sequence of energy eigen-
functions (Ψ�

n) as long as E�
n → E0.248 Thus the support of the limiting measure

is uniformly spread out over the largest part of phase space that is dynamically
possible.

The result that for ergodic classical motion µ0
E is the Liouville measure on ΣE

under the stated condition leaves room for the phenomenon of ‘scars’, according
to which in chaotic systems the limiting measure is sometimes concentrated on
periodic classical orbits. This terminology is used in two somewhat different ways
in the literature. ‘Strong’ scars survive in the limit �→ 0 and concentrate on stable
closed orbits;249 they may come from ‘exceptional’ sequences of eigenfunctions.250

These are mainly considered in the mathematical literature; cf. [Nadirashvili et
al., 2001] and references therein.

In the physics literature, on the other hand, the notion of a scar usually refers
to an anomalous concentration of the functions B�

Ψ�
n

(cf. (29)) near unstable closed
orbits for finite values of �; see [Heller and Tomsovic, 1993; Tomsovic and Heller,
1993; Kaplan and Heller, 1998a; 1998b], and [Kaplan, 1999] for surveys. Such
scars turn out to be crucial in attempts to explain the energy spectrum of the
associated quantum system. The reason why such scars do not survive the (double)
limit in (36) is that this limit is defined with respect to �-independent smooth
test functions. Physically, this means that one averages over more and more De
Broglie wavelengths as � → 0, eventually losing information about the single
wavelength scale [Kaplan, 1999]. Hence to pick them up in a mathematically
sound way, one should redefine (36) as a pointwise limit [Duclos and Hogreve,
1993; Paul and Uribe, 1996; 1998]. In any case, there is no contradiction between
the mathematical results cited and what physicists have found.

Another goal of quantum chaos is the identification of chaotic phenomena within
a given quantum-mechanical model. Here the slight complication arises that one
248 The result is not necessarily valid for all sequences (Ψ�

n ) with the given limiting behaviour,
but only for ‘almost all’ such sequences (technically, for a class of sequences of density 1). See,
for example, [De Bièvre, 2001] for a simple explanation of this.
249An orbit γ ⊂M is called stable when for each neighbourhood U of γ there is neighbourhood
V ⊂ U of γ such that z(t) ∈ U for all z ∈ V and all t.
250Cf. footnote 248.
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cannot simply copy the classical definition of chaos in terms of diverging trajecto-
ries in phase space, since (by unitarity of time-evolution) in quantum mechanics
‖Ψ(t) − Φ(t)‖ is constant in time t for solutions of the Schrödinger equation.
However, this just indicates that should intrinsic quantum chaos exist, it has to
be defined differently from classical chaos.251 This has now been largely accom-
plished in the algebraic formulation of quantum theory [Benatti, 1993; Emch et
al., 1994; Zelditch, 1996b; 1996c; Belot and Earman, 1997; Alicki and Fannes,
2001; Narnhofer, 2001]. The most significant recent development in this direction
in the “heuristic” literature has been the study of the quantity

M(t) = |(e− it
�

(H+Σ)Ψ, e−
it
�
HΨ)|2,(51)

where Ψ is a coherent state (or Gaussian wave packet), and Σ is some perturbation
of the Hamiltonian H [Peres, 1984]. In what is generally regarded as a break-
through in the field, Jalabert and Pastawski [2001] discovered that in a certain
regime M(t) is independent of the detailed form of Σ and decays as ∼ exp(−λt),
where λ is the (largest) Lyapunov exponent of the underlying classical system. See
[Cucchietti, 2004] for a detailed account and further development.

In any case, the possibility that classical chaos appears in the � → 0 limit
of quantum mechanics is by no means predicated on the existence of intrinsic
quantum chaos in the above sense.252 For even in the unlikely case that quan-
tum dynamics would turn out to be intrinsically non-chaotic, its classical limit is
sufficiently singular to admit kinds of classical motion without a qualitative coun-
terpart in quantum theory. This possibility is not only confirmed by most of the
literature on quantum chaos (little of which makes any use of notions of intrinsic
quantum chaotic motion), but even more so by the possibility of incomplete mo-
tion. This is a type of dynamics in which the flow of the Hamiltonian vector field is
only defined until a certain time tf <∞ (or from an initial time ti > −∞), which
means that the equations of motion have no solution for t > tf (or t < ti).253 The
251As pointed out by Belot and Earman [1997], the Koopman formulation of classical mechanics

(cf. footnote 172) excludes classical chaos if this is formulated in terms of trajectories in Hilbert
space. The transition from classical to quantum notions of chaos can be smoothened by first
reformulating the classical definition of chaos (normally put in terms of properties of trajectories
in phase space).
252Arguments by [Ford, 1988] and others to the effect that quantum mechanics is wrong because

it cannot give rise to chaos in its classical limit have to be discarded for the reasons given
here. See also [Belot and Earman, 1997]. In fact, using the same argument, such authors could
simultaneously have ‘proved’ the opposite statement that any classical dynamics that arises as
the classical limit of a quantum theory with non-degenerate spectrum must be ergodic. For the
naive definition of quantum ergodic flow clearly is that quantum time-evolution sweeps out all
states at some energy E; but for non-degenerate spectra this is a tautology by definition of an
eigenfunction!
253 The simplest examples are incomplete Riemannian manifolds Q with geodesic flow; within

this class, the case Q = (0, 1) with flat metric is hard to match in simplicity. Clearly, the particle
reaches one of the two boundary points in finite time, and does not know what to do (or even
whether its exists) afterwards. Other examples come from potentials V on Q = Rn with the
property that the classical dynamics is incomplete; see [Reed and Simon, 1975] and [Gallavotti,
1983]. On a somewhat different note, the Universe itself has incomplete dynamics because of the
Big Bang and possible Big Crunch.
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point, then, is that unitary quantum dynamics, though intrinsically complete, may
very well have incomplete motion as its classical limit.254

6 THE LIMIT N →∞

In this section we show to what extent classical physics may approximately emerge
from quantum theory when the size of a system becomes large. Strictly classical
behaviour would be an idealization reserved for the limit where this size is infinite,
which we symbolically denote by “lim N → ∞”. As we shall see, mathematically
speaking this limit is a special case of the limit � → 0 discussed in the previous
chapter. What is more, we shall show that formally the limit N → ∞ even falls
under the heading of continuous fields of C∗-algebras and deformation quantization
(see Subsection 4.3.) Thus the ‘philosophical’ nature of the idealization involved in
assuming that a system is infinite is much the same as that of assuming �→ 0 in
a quantum system of given (finite) size; in particular, the introductory comments
in Section 1 apply here as well.

An analogous discussion pertains to the derivation of thermodynamics from
statistical mechanics [Emch and Liu, 2002; Batterman, 2005]. For example, in
theory phase transitions only occur in infinite systems, but in practice one sees
them every day. Thus it appears to be valid to approximate a pot of 1023 boiling
water molecules by an infinite number of such molecules. The basic point is that
the distinction between microscopic and macroscopic regimes is unsharp unless
one admits infinite systems as an idealization, so that one can simply say that

254 The quantization of the Universe is unknown at present, but geodesic motion on Rieman-

nian manifolds, complete or not, is quantized by H = − �
2

2m
∆ (perhaps with an additonal term

proportional to the Ricci scalar R, see [Landsman, 1998]), where ∆ is the Laplacian, and quanti-
zation on Q = Rn is given by the Schrödinger equation (3), whether or not the classical dynamics
is complete. In these two cases, and probably more generally, the incompleteness of the clas-
sical motion is often (but not always) reflected by the lack of essential self-adjointness of the
quantum Hamiltonian on its natural initial domain C∞

c (Q). For example, if Q is complete as a
Riemannian manifold, then ∆ is essentially self-adjoint on C∞

c (Q) [Chernoff, 1973; Strichartz,
1983], and if Q is incomplete then the Laplacian usually fails to be essentially self-adjoint on this
domain (but see [Horowitz and Marolf, 1995] for counterexamples). One may refer to the latter
property as quantum-mechanical incompleteness [Reed and Simon, 1975], although a Hamilto-
nian that fails to be essentially self-adjoint on C∞

c (Q) can often be extended (necessarily in
a non-unique way) to a self-adjoint operator by a choice of boundary conditions (possibly at
infinity). By Stone’s theorem, the quantum dynamics defined by each self-adjoint extension is
unitary (and therefore defined for all times). Similarly, although no general statement can be
made relating (in)complete classical motion in a potential to (lack of) essential selfadjointness
of the corresponding Schrödinger operator, it is usually the case that completeness implies es-
sential selfadjointness, and vice versa. See [Reed and Simon, 1975], Appendix to §X.1, where
the reader may also find examples of classically incomplete but quantum-mechanically complete
motion, and vice versa. Now, here is the central point for the present discussion: as probably
first noted by Hepp [1974], different self-adjoint extensions have the same classical limit (in the
sense of (20) or similar criteria), namely the given incomplete classical dynamics. This proves
that complete quantum dynamics can have incomplete motion as its classical limit. However,
much remains to be understood in this area. See also [Earman, 2005; 2006].
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microscopic systems are finite, whereas macroscopic systems are infinite. This
procedure is eventually justified by the results it produces.

Similarly, in the context of quantum theory classical behaviour is simply not
found in finite systems (when � > 0 is fixed), whereas, as we shall see, it is found
in infinite ones. Given the observed classical nature of the macroscopic world,255

at the end of the day one concludes that the idealization in question is apparently
a valid one. One should not be confused by the fact that the error in the number
of particles this approximation involves (viz.∞−1023 =∞) is considerably larger
than the number of particles in the actual system. If all of the 1023 particles in
question were individually tracked down, the approximation is indeed a worthless
ones, but the point is rather that the limit N → ∞ is valid whenever averaging
over N = 1023 particles is well approximated by averaging over an arbitrarily
larger number N (which, then, one might as well let go to infinity). Below we
shall give a precise version of this argument.

Despite our opening comments above, the quantum theory of infinite systems
has features of its own that deserve a separate section. Our treatment is comple-
mentary to texts such as Thirring [1983], Strocchi [1985], Bratteli and Robinson
[1987], Haag [1992], Araki [1999], and Sewell [1986; 2002], which should be con-
sulted for further information on infinite quantum systems. The theory in Subsec-
tions 6.1 and 6.5 is a reformulation in terms of continuous field of C∗-algebras and
deformation quantization of the more elementary parts of a remarkable series of pa-
pers on so-called quantum mean-field systems by Raggio and Werner [1989; 1991],
Duffield and Werner [1992a,b,c], and Duffield, Roos, and Werner [1992]. These
models have their origin in the treatment of the BCS theory of superconductivity
due to Bogoliubov [1958] and Haag [1962], with important further contributions
by Thirring and Wehrl [1967], Thirring [1968], Hepp [1972], Hepp and Lieb [1973],
Rieckers [1984], Morchio and Strocchi [1987], Duffner and Rieckers [1988], Bona
[1988; 1989; 2000], Unnerstall [1990a; 1990b], Bagarello and Morchio [1992], Sewell
[2002], and others.

6.1 Macroscopic observables

The large quantum systems we are going to study consist of N copies of a sin-
gle quantum system with unital algebra of observables A1. Almost all features
already emerge in the simplest example A1 = M2(C) (i.e. the complex 2× 2 ma-
trices), so there is nothing wrong with having this case in mind as abstraction
increases.256 The aim of what follows is to describe in what precise sense macro-
scopic observables (i.e. those obtained by averaging over an infinite number of
sites) are “classical”.

255With the well-known mesoscopic exceptions [Leggett, 2002; Brezger et al., 2002; Chiorescu
et al., 2003; Marshall et al., 2003; Devoret et al., 2004].
256In the opposite direction of greater generality, it is worth noting that the setting below

actually incorporates quantum systems defined on general lattices in Rn (such as Zn). For one
could relabel things so as to make A1/N below the algebra of observables of all lattice points Λ
contained in, say, a sphere of radius N . The limit N →∞ then corresponds to the limit Λ→ Zn.
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From the single C∗-algebra A1, we construct a continuous field of C∗-algebras
A(c) over

I = 0 ∪ 1/N = {0, . . . , 1/N, . . . , 1
3
, 1

2
, 1} ⊂ [0, 1],(1)

as follows. We put

A(c)
0 = C(S(A1));

A(c)
1/N = AN1 ,(2)

where S(A1) is the state space of A1 (equipped with the weak∗-topology)257 and
AN1 = ⊗̂NA1 is the (spatial) tensor product of N copies of A1.258 This explains
the suffix c in A(c): it refers to the fact that the limit algebra A(c)

0 is classical or
commutative.

For example, take A1 = M2(C). Each state is given by a density matrix, which
is of the form

ρ(x, y, z) = 1
2

(
1 + z x− iy
x + iy 1− z

)
,(3)

for some (x, y, z) ∈ R3 satisfying x2 + y2 + z2 ≤ 1. Hence S(M2(C)) is isomorphic
(as a compact convex set) to the three-ball B3 in R3. The pure states are precisely
the points on the boundary,259 i.e. the density matrices for which x2 + y2 + z2 = 1
(for these and these alone define one-dimensional projections).260

In order to define the continuous sections of the field, we introduce the sym-
metrization maps jNM : AM1 → AN1 , defined by

jNM (AM ) = SN (AM ⊗ 1⊗ · · · ⊗ 1),(4)

where one has N −M copies of the unit 1 ∈ A1 so as to obtain an element of AN1 .
The symmetrization operator SN : AN1 → AN1 is given by (linear and continuous)

257In this topology one has ωλ → ω when ωλ(A)→ ω(A) for each A ∈ A1.
258When A1 is finite-dimensional the tensor product is unique. In general, one needs the

projective tensor product at this point. See footnote 90. The point is the same here: any tensor
product state ω1 ⊗ · · · ⊗ ωN on ⊗NA1 — defined on elementary tensors by ω1 ⊗ · · · ⊗ ωN (A1 ⊗
· · · ⊗AN ) = ω1(A1) · · ·ωN (AN ) — extends to a state on ⊗̂NA1 by continuity.
259 The extreme boundary ∂eK of a convex setK consists of all ω ∈ K for which ω = pρ+(1−p)σ

for some p ∈ (0, 1) and ρ, σ ∈ K implies ρ = σ = ω. IfK = S(A) is the state space of a C∗-algebra
A, the extreme boundary consists of the pure states on A (the remainder of S(A) consisting of
mixed states). If K is embedded in a vector space, the extreme boundary ∂eK may or may not
coincide with the geometric boundary ∂K of K. In the case K = B3 ⊂ R3 it does, but for an
equilateral triangle in R2 it does not, since ∂eK merely consists of the corners of the triangle
whereas the geometric boundary includes the sides as well.
260Eq. (3) has the form ρ(x, y, z) = 1

2
(xσx + yσy + zσz), where the σi are the Pauli matrices.

This yields an isomorphism between R3 and the Lie algebra of SO(3) in its spin- 1
2

representation

D1/2 on C2. This isomorphism intertwines the defining action of SO(3) on R3 with its adjoint

action on M2(C). I.e., for any rotation R one has ρ(Rx) = D1/2(R)ρ(x)D1/2(R)−1. This will
be used later on (see Subsection 6.5).
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extension of

SN (B1 ⊗ · · · ⊗BN ) =
1

N !

∑
σ∈SN

Bσ(1) ⊗ · · · ⊗Bσ(N),(5)

where SN is the permutation group (i.e. symmetric group) on N elements and
Bi ∈ A1 for all i = 1, . . . , N . For example, jN1 : A1 → AN1 is given by

jN1(B) = B
(N)

=
1
N

N∑
k=1

1⊗ · · · ⊗B(k) ⊗ 1 · · · ⊗ 1,(6)

where B(k) is B seen as an element of the k’th copy of A1 in AN1 . As our notation

B
(N)

indicates, this is just the ‘average’ of B over all copies of A1. More generally,
in forming jNM (AM ) an operator AM ∈ AM1 that involves M sites is averaged over
N ≥M sites. When N →∞ this means that one forms a macroscopic average of
an M -particle operator.

We say that a sequence A = (A1, A2, · · · ) with AN ∈ AN1 is symmetric when

AN = jNM (AM )(7)

for some fixed M and all N ≥M . In other words, the tail of a symmetric sequence
entirely consists of ‘averaged’ or ‘intensive’ observables, which become macroscopic
in the limit N → ∞. Such sequences have the important property that they
commute in this limit; more precisely, if A and A′ are symmetric sequences, then

lim
N→∞

‖ANA′
N −A′

NAN‖ = 0.(8)

As an enlightening special case we take AN = jN1(B) and A′
N = jN1(C) with

B,C ∈ A1. One immediately obtains from the relation [B(k), C(l)] = 0 for k �= l
that [

B
(N)

, C
(N)
]

=
1
N

[B,C]
(N)

.(9)

For example, if A1 = M2(C) and if for B and C one takes the spin- 1
2

operators
Sj = �

2σj for j = 1, 2, 3 (where σj are the Pauli matrices), then[
S

(N)

j , S
(N)

k

]
= i

�

N
εjklS

(N)

l .(10)

This shows that averaging one-particle operators leads to commutation relations
formally like those of the one-particle operators in question, but with Planck’s
constant � replaced by a variable �/N . For constant � = 1 this leads to the
interval (1) over which our continuous field of C∗-algebras is defined; for any other
constant value of � the field would be defined over I = 0 ∪ �/N, which of course
merely changes the labeling of the C∗-algebras in question.

We return to the general case, and denote a section of the field with fibers (2)
by a sequence A = (A0, A1, A2, · · · ), with A0 ∈ A(c)

0 and AN ∈ AN1 as before
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(i.e. the corresponding section is 0 �→ A0 and 1/N �→ AN ). We then complete
the definition of our continuous field by declaring that a sequence A defines a
continuous section iff:

• (A1, A2, · · · ) is approximately symmetric, in the sense that for any ε > 0
there is an Nε and a symmetric sequence A′ such that ‖AN − A′

N‖ < ε for
all N ≥ Nε;261

• A0(ω) = limN→∞ ωN (AN ), where ω ∈ S(A1) and ωN ∈ S(AN1 ) is the tensor
product of N copies of ω, defined by (linear and continuous) extension of

ωN (B1 ⊗ · · · ⊗BN ) = ω(B1) · · ·ω(BN ).(11)

This limit exists by definition of an approximately symmetric sequence.262

It is not difficult to prove that this choice of continuous sections indeed defines a
continuous field of C∗-algebras over I = 0 ∪ 1/N with fibers (2). The main point
is that

lim
N→∞

‖AN‖ = ‖A0‖(12)

whenever (A0, A1, A2, · · · ) satisfies the two conditions above.263 This is easy to
show for symmetric sequences,264 and follows from this for approximately sym-
metric ones.

Consistent with (8), we conclude that in the limit N →∞ the macroscopic ob-
servables organize themselves in a commutative C∗-algebra isomorphic to C(S(A1)).

6.2 Quasilocal observables

In the C∗-algebraic approach to quantum theory, infinite systems are usually de-
scribed by means of inductive limit C∗-algebras and the associated quasilocal
261A symmetric sequence is evidently approximately symmetric.
262If (A1, A2, · · · ) is symmetric with (7), one has ωN (AN ) = ωM (AM ) for N > M , so that the

tail of the sequence (ωN (AN )) is even independent of N . In the approximately symmetric case
one easily proves that (ωN (AN )) is a Cauchy sequence.
263Given (12), the claim follows from Prop. II.1.2.3 in Landsman [1998] and the fact that the

set of functions A0 on S(A1) arising in the said way are dense in C(S(A1)) (equipped with the
supremum-norm). This follows from the Stone–Weierstrass theorem, from which one infers that
the functions in question even exhaust S(A1).
264Assume (7), so that ‖AN‖ = ‖jNN (AN )‖ for N ≥ M . By the C∗-axiom ‖A∗A‖ = ‖A2‖

it suffices to prove (12) for A∗
0 = A0, which implies A∗

M = AM and hence A∗
N = AN for all

N ≥ M . One then has ‖AN‖ = sup{|ρ(AN )|, ρ ∈ S(AN
1 )}. Because of the special form of

AN one may replace the supremum over the set S(AN
1 ) of all states on AN

1 by the supremum
over the set Sp(AN

1 ) of all permutation invariant states, which in turn may be replaced by
the supremum over the extreme boundary ∂Sp(AN

1 ) of Sp(AN
1 ). It is well known ([Størmer,

1969]; see also Subsection 6.2) that the latter consists of all states of the form ρ = ωN , so
that ‖AN‖ = sup{|ωN (AN )|, ω ∈ S(A1)}. This is actually equal to ‖AM‖ = sup{|ωM (AM )|}.
Now the norm in A(c)

0 is ‖A0‖ = sup{|A0(ω)|, ω ∈ S(A1)}, and by definition of A0 one has
A0(ω) = ωM (AM ). Hence (12) follows.
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observables [Thirring, 1983; Strocchi, 1985; Bratteli and Robinson, 1981; 1987;
Haag, 1992; Araki, 1999; Sewell, 1986; 2002]. To arrive at these notions in the
case at hand, we proceed as follows [Duffield and Werner, 1992c].

A sequence A = (A1, A2, · · · ) (where AN ∈ AN1 , as before) is called local when
for some fixed M and all N ≥M one has AN = AM ⊗ 1⊗ · · · ⊗ 1 (where one has
N −M copies of the unit 1 ∈ A1); cf. (4). A sequence is said to be quasilocal when
for any ε > 0 there is an Nε and a local sequence A′ such that ‖AN − A′

N‖ < ε
for all N ≥ Nε. On this basis, we define the inductive limit C∗-algebra

∪N∈NAN1(13)

of the family of C∗-algebras (AN1 ) with respect to the inclusion maps AN1 ↪→
AN+1

1 given by AN �→ AN ⊗ 1. As a set, (13) consists of all equivalence classes
[A] ≡ A0 of quasilocal sequences A under the equivalence relation A ∼ B when
limN→∞ ‖AN −BN‖ = 0. The norm on ∪N∈NAN1 is

‖A0‖ = lim
N→∞

‖AN‖,(14)

and the rest of the C∗-algebraic structure is inherited from the quasilocal sequences
in the obvious way (e.g., A∗

0 = [A∗] with A∗ = (A∗
1, A

∗
2, · · · ), etc.). As the notation

suggests, eachAN1 is contained in ∪N∈NAN1 as a C∗-subalgebra by identifying AN ∈
AN1 with the local (and hence quasilocal) sequence A = (0, · · · , 0, AN⊗1, AN⊗1⊗
1, · · · ), and forming its equivalence class A0 in ∪N∈NAN1 as just explained.265 The
assumption underlying the common idea that (13) is “the” algebra of observables of
the infinite system under study is that by locality or some other human limitation
the infinite tail of the system is not accessible, so that the observables must be
arbitrarily close (i.e. in norm) to operators of the form AN ⊗ 1 ⊗ 1, · · · for some
finite N .

This leads us to a second continuous field of C∗-algebras A(q) over 0∪1/N, with
fibers

A(q)
0 = ∪N∈NAN1 ;

A(q)
1/N = AN1 .(15)

Thus the suffix q reminds one of that fact that the limit algebra A(q)
0 consists

of quasilocal or quantum-mechanical observables. We equip the collection of C∗-
algebras (15) with the structure of a continuous field of C∗-algebras A(q) over
0∪ 1/N by declaring that the continuous sections are of the form (A0, A1, A2, · · · )
where (A1, A2, · · · ) is quasilocal and A0 is defined by this quasilocal sequence as
just explained.266 For N <∞ this field has the same fibers

A(q)
1/N = A(c)

1/N = AN1(16)

265Of course, the entries A1, · · ·AN−1, which have been put to zero, are arbitrary.
266The fact that this defines a continuous field follows from (14) and Prop. II.1.2.3 in [Landsman,

1998]; cf. footnote 263.
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as the continuous fieldA of the previous subsection, but the fiberA(q)
0 is completely

different from A(c)
0 . In particular, if A1 is noncommutative then so is A(q)

0 , for it
contains all AN1 .

The relationship between the continuous fields of C∗-algebras A(q) and A(c) may
be studied in two different (but related) ways. First, we may construct concrete
representations of all C∗-algebras AN1 , N < ∞, as well as of A(c)

0 and A(q)
0 on a

single Hilbert space; this approach leads to superselections rules in the traditional
sense. This method will be taken up in the next subsection. Second, we may look
at those families of states (ω1, ω1/2, · · · , ω1/N , · · · ) (where ω1/N is a state on AN1 )
that admit limit states ω

(c)
0 and ω

(q)
0 on A(c)

0 and A(q)
0 , respectively, such that the

ensuing families of states (ω(c)
0 , ω1, ω1/2, · · · ) and (ω(q)

0 , ω1, ω1/2, · · · ) are continuous
fields of states on A(c) and on A(q), respectively (cf. the end of Subsection 5.1).

Now, any state ω
(q)
0 on A(q)

0 defines a state ω
(q)
0|1/N on AN1 by restriction, and the

ensuing field of states on A(q) is clearly continuous. Conversely, any continuous
field (ω(q)

0 , ω1, ω1/2, . . . , ω1/N , . . .) of states on A(q) becomes arbitrarily close to a
field of the above type for N large.267 However, the restrictions ω

(q)
0|1/N of a given

state ω
(q)
0 on A(q)

0 to AN1 may not converge to a state ω
(c)
0 on A(c)

0 for N →∞.268.
States ω

(q)
0 on ∪N∈NAN1 that do have this property will here be called classical.

In other words, ω
(q)
0|1/N is classical when there exists a probability measure µ0 on

S(A1) such that

lim
N→∞

∫
S(A1)

dµ0(ρ) (ρN (AN )− ω
(q)
0|1/N (AN )) = 0(17)

for each (approximately) symmetric sequence (A1, A2, . . .). To analyze this notion
we need a brief intermezzo on general C∗-algebras and their representations.

• A folium in the state space S(B) of a C∗-algebra B is a convex, norm-closed
subspace F of S(B) with the property that if ω ∈ F and B ∈ B such that
ω(B∗B) > 0, then the “reduced” state ωB : A �→ ω(B∗AB)/ω(B∗B) must
be in F [Haag et al., 1970].269 For example, if π is a representation of B
on a Hilbert space H, then the set of all density matrices on H (i.e. the
π-normal states on B)270 comprises a folium Fπ. In particular, each state ω
on B defines a folium Fω ≡ Fπω

through its GNS-representation πω.

• Two representations π and π′ are called disjoint, written π⊥π′, if no sub-
representation of π is (unitarily) equivalent to a subrepresentation of π′ and

267For any fixed quasilocal sequence (A1, A2, · · · ) and ε > 0, there is an Nε such that

|ω1/N (AN )− ω(q)
0|1/N

(AN )| < ε for all N > Nε.
268See footnote 288 below for an example
269See also [Haag, 1992]. The name ‘folium’ is very badly chosen, since S(B) is by no means

foliated by its folia; for example, a folium may contain subfolia.
270A state ω on B is called π-normal when it is of the form ω(B) = Tr ρπ(B) for some density

matrix ρ. Hence the π-normal states are the normal states on the von Neumann algebra π(B)′′.
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vice versa. They are said to be quasi-equivalent, written π ∼ π′, when π has
no subrepresentation disjoint from π′, and vice versa.271 Quasi-equivalence
is an equivalence relation ∼ on the set of representations. See [Kadison and
Ringrose, 1986, Ch. 10].

• Similarly, two states ρ, σ are called either quasi-equivalent (ρ ∼ σ) or disjoint
(ρ⊥σ) when the corresponding GNS-representations have these properties.

• A state ω is called primary when the corresponding von Neumann algebra
πω(B)′′ is a factor.272 Equivalently, ω is primary iff each subrepresentation
of πω(B) is quasi-equivalent to πω(B), which is the case iff πω(B) admits no
(nontrivial) decomposition as the direct sum of two disjoint subrepresenta-
tions.

Now, there is a bijective correspondence between folia in S(B) and quasi-
equivalence classes of representations of B, in that Fπ = Fπ′ iff π ∼ π′. Fur-
thermore (as one sees from the GNS-construction), any folium F ⊂ S(B) is of
the form F = Fπ for some representation π(B). Note that if π is injective (i.e.
faithful), then the corresponding folium is dense in S(B) in the weak∗-topology by
Fell’s Theorem. So in case that B is simple,273 any folium is weak∗-dense in the
state space.

Two states need not be either disjoint or quasi-equivalent. This dichotomy
does apply, however, within the class of primary states. Hence two primary states
are either disjoint or quasi-equivalent. If ω is primary, then each state in the
folium of πω is primary as well, and is quasi-equivalent to ω. If, on the other
hand, ρ and σ are primary and disjoint, then Fρ ∩ Fσ = ∅. Pure states are, of
course, primary.274 Furthermore, in thermodynamics pure phases are described
by primary KMS states [Emch and Knops, 1970; Bratteli and Robinson, 1981;
Haag, 1992; Sewell, 2002]. This apparent relationship between primary states and
“purity” of some sort is confirmed by our description of macroscopic observables:275

• If ω
(q)
0 is a classical primary state on A(q)

0 = ∪N∈NAN1 , then the correspond-
ing limit state ω

(c)
0 on A(c)

0 = C(S(A1)) is pure (and hence given by a point
in S(A1)).

271Equivalently, two representations π and π′ are disjoint iff no π-normal state is π′-normal and
vice versa, and quasi-equivalent iff each π-normal state is π′-normal and vice versa.
272A von Neumann algebra M acting on a Hilbert space is called a factor when its center
M∩M′ is trivial, i.e. consists of multiples of the identity.
273In the sense that it has no closed two-sided ideals. For example, the matrix algebra Mn(C) is

simple for any n, as is its infinite-dimensional analogue, the C∗-algebra of all compact operators
on a Hilbert space. The C∗-algebra of quasilocal observables of an infinite quantum systems is
typically simple as well.
274Since the corresponding GNS-representation πω is irreducible, πω(B)′′ = B(Hω) is a factor.
275These claims easily follow from Sewell [2002], §2.6.5, which in turn relies on Hepp [1972].
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• If ρ
(q)
0 and σ

(q)
0 are classical primary states on A(q)

0 , then

ρ
(c)
0 = σ

(c)
0 ⇔ ρ

(q)
0 ∼ σ

(q)
0 ;(18)

ρ
(c)
0 �= σ

(c)
0 ⇔ ρ

(q)
0 ⊥σ

(q)
0 .(19)

As in (17), a general classical state ω
(q)
0 with limit state ω

(c)
0 on C(S(A1)) defines

a probability measure µ0 on S(A1) by

ω
(c)
0 (f) =

∫
S(A1)

dµ0 f,(20)

which describes the probability distribution of the macroscopic observables in that
state. As we have seen, this distribution is a delta function for primary states. In
any case, it is insensitive to the microscopic details of ω

(q)
0 in the sense that local

modifications of ω
(q)
0 do not affect the limit state ω

(c)
0 [Sewell, 2002]. Namely, it

easily follows from (8) and the fact that the GNS-representation is cyclic that one
can strengthen the second claim above:

Each state in the folium F
ω

(q)
0

of a classical state ω
(q)
0 is automatically

classical and has the same limit state on A(c)
0 as ω

(q)
0 .

To make this discussion a bit more concrete, we now identify an important
class of classical states on ∪N∈NAN1 . We say that a state ω on this C∗-algebra is
permutation-invariant when each of its restrictions to AN1 is invariant under the
natural action of the symmetric group SN onAN1 (i.e. σ ∈ SN maps an elementary
tensor AN = B1 ⊗ · · · ⊗BN ∈ AN1 to Bσ(1) ⊗ · · · ⊗Bσ(N), cf. (5)). The structure
of the set SS of all permutation-invariant states in S(A(q)

0 ) has been analyzed by
Størmer [1969]. Like any compact convex set, it is the (weak∗-closed) convex hull
of its extreme boundary ∂eSS. The latter consists of all infinite product states
ω = ρ∞, where ρ ∈ S(A1). I.e. if A0 ∈ A(q)

0 is an equivalence class [A1, A2, · · · ],
then

ρ∞(A0) = lim
N→∞

ρN (AN );(21)

cf. (11). Equivalently, the restriction of ω to any AN1 ⊂ A(q)
0 is given by ⊗Nρ.

Hence ∂eSS is isomorphic (as a compact convex set) to S(A1) in the obvious way,
and the primary states in SS are precisely the elements of ∂eSS.
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A general state ω
(q)
0 in SS has a unique decomposition276

ω
(q)
0 (A0) =

∫
S(A1)

dµ(ρ) ρ∞(A0),(22)

where µ is a probability measure on S(A1) and A0 ∈ A(q)
0 .277 The following

beautiful illustration of the abstract theory [Unnerstall, 1990a,b] is then clear
from (17) and (22):

If ω
(q)
0 is permutation-invariant, then it is classical. The associated

limit state ω
(c)
0 on A(c)

0 is characterized by the fact that the measure µ0

in (20) coincides with the measure µ in (22).278

6.3 Superselection rules

Infinite quantum systems are often associated with the notion of a superselection
rule (or sector), which was originally introduced by Wick, Wightman and Wigner
[1952] in the setting of standard quantum mechanics on a Hilbert space H. The
basic idea may be illustrated in the example of the boson/fermion (or “univalence”)
superselection rule.279 Here one has a projective unitary representation D of the
rotation group SO(3) on H, for which D(R2π) = ±1 for any rotation R2π of
2π around some axis. Specifically, on bosonic states ΨB one has D(R2π)ΨB =
ΨB , whereas on fermionic states ΨF the rule is D(R2π)ΨF = −ΨF . Now the
argument is that a rotation of 2π accomplishes nothing, so that it cannot change
the physical state of the system. This requirement evidently holds on the subspace
HB ⊂ H of bosonic states in H, but it is equally well satisfied on the subspace
HF ⊂ H of fermionic states, since Ψ and zΨ with |z| = 1 describe the same
physical state. However, if Ψ = cBΨB + cFΨF (with |cB |2 + |cF |2 = 1), then
D(R2π)Ψ = cBΨB−cFΨF , which is not proportional to Ψ and apparently describes
a genuinely different physical state from Ψ.

The way out is to deny this conclusion by declaring that D(R2π)Ψ and Ψ do
describe the same physical state, and this is achieved by postulating that no phys-

276This follows because SS is a so-called Bauer simplex [Alfsen, 1970]. This is a compact convex
set K whose extreme boundary ∂eK is closed and for which every ω ∈ K has a unique decompo-
sition as a probability measure supported by ∂eK, in the sense that a(ω) =

R
∂eK dµ(ρ) a(ρ) for

any continuous affine function a on K. For a unital C∗-algebra A the continuous affine functions
on the state space K = S(A) are precisely the elements A of A, reinterpreted as functions Â on

S(A) by Â(ω) = ω(A). For example, the state space S(A) of a commutative unital C∗-algebra
A is a Bauer simplex, which consists of all (regular Borel) probability measures on the pre state
space P(A).
277This is a quantum analogue of De Finetti’s representation theorem in classical probability

theory [Heath and Sudderth, 1976; van Fraassen, 1991]; see also [Hudson and Moody, 1975/76]
and [Caves et al., 2002].
278In fact, each state in the folium FS in S(A(q)

0 ) corresponding to the (quasi-equivalence class
of) the representation ⊕[ω∈SS]πω is classical.
279See also [Giulini, 2003] for a modern mathematical treatment.
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ical observables A (in their usual mathematical guise as operators on H) exist for
which (ΨB , AΨF ) �= 0. For in that case one has

(cBΨB ± cFΨF , A(cBΨB ± cFΨF )) = |cB |2(ΨB , AΨB) + |cF |2(ΨF , AΨF )(23)

for any observable A, so that (D(R2π)Ψ, AD(R2π)Ψ) = (Ψ, AΨ) for any Ψ ∈ H.
Since any quantum-mechanical prediction ultimately rests on expectation values
(Ψ, AΨ) for physical observables A, the conclusion is that a rotation of 2π indeed
does nothing to the system. This is codified by saying that superpositions of the
type cBΨB+cFΨF are incoherent (whereas superpositions c1Ψ1+c2Ψ2 with Ψ1,Ψ2

both in either HB or in HF are coherent). Each of the subspaces HB and HF of
H is said to be a superselection sector, and the statement that (ΨB , AΨF ) = 0 for
any observbale A and ΨB ∈ HB and ΨF ∈ HF is called a superselection rule.280

The price one pays for this solution is that states of the form cBΨB + cFΨF

with cB �= 0 and cF �= 0 are mixed, as one sees from (23). More generally, if
H = ⊕λ∈ΛHλ with (Ψ, AΦ) = 0 whenever A is an observable, Ψ ∈ Hλ, Φ ∈ Hλ′ ,
and λ �= λ′, and if in addition for each λ and each pair Ψ,Φ ∈ Hλ there exists an
observable A for which (Ψ, AΦ) �= 0, then the subspaces Hλ are called superse-
lection sectors in H. Again a key consequence of the occurrence of superselection
sectors is that unit vectors of the type Ψ =

∑
λ cλΨλ with Ψ ∈ Hλ (and cλ �= 0

for at least two λ’s) define mixed states

ψ(A) = (Ψ, AΨ) =
∑
λ

|cλ|2(Ψλ, AΨλ) =
∑
λ

|cλ|2ψλ(A).

This procedure is rather ad hoc. A much deeper approach to superselection the-
ory was developed by Haag and collaborators; see [Roberts and Roepstorff, 1969]
for an introduction. Here the starting point is the abstract C∗-algebra of observ-
ables A of a given quantum system, and superselection sectors are reinterpreted as
equivalence classes (under unitary isomorphism) of irreducible representations ofA
(satisfying a certain selection criterion — see below). The connection between the
concrete Hilbert space approach to superselection sectors discussed above and the
abstract C∗-algebraic approach is given by the following lemma [Hepp, 1972]:281

Two pure states ρ, σ on a C∗-algebra A define different sectors iff for
each representation π(A) on a Hilbert space H containing unit vectors
Ψρ,Ψσ such that ρ(A) = (Ψρ, π(A)Ψρ) and σ(A) = (Ψσ, π(A)Ψσ) for
all A ∈ A, one has (Ψρ, π(A)Ψσ) = 0 for all A ∈ A.

In practice, however, most irreducible representations of a typical C∗-algebra A
used in physics are physically irrelevant mathematical artefacts. Such representa-
tions may be excluded from consideration by some selection criterion. What this
280In an ordinary selection rule between Ψ and Φ one merely has (Ψ, HΦ) = 0 for the Hamil-

tonian H.
281Hepp proved a more general version of this lemma, in which ‘Two pure states ρ, σ on a
C∗-algebra B define different sectors iff. . . ’ is replaced by ‘Two states ρ, σ on a C∗-algebra B are
disjoint iff. . . ’



Between Classical and Quantum 503

means depends on the context. For example, in quantum field theory this notion
is made precise in the so-called DHR theory (reviewed by Roberts [1990], Haag
[1992], Araki [1999], and Halvorson [2005]). In the class of theories discussed in
the preceding two subsections, we take the algebra of observables A to be A(q)

0

— essentially for reasons of human limitation — and for pedagogical reasons de-
fine (equivalence classes of) irreducible representations of A(q)

0 as superselection
sectors, henceforth often just called sectors, only when they are equivalent to the
GNS-representation given by a permutation-invariant pure state on A(q)

0 . In par-
ticular, such a state is classical. On this selection criterion, the results in the
preceding subsection trivially imply that there is a bijective correspondence be-
tween pure states on A1 and sectors of A(q)

0 . The sectors of the commutative
C∗-algebra A(c)

0 are just the points of S(A1); note that a mixed state on A1 de-
fines a pure state on A(c)

0 ! The role of the sectors of A1 in connection with those
of A(c)

0 will be clarified in Subsection 6.5.
Whatever the model or the selection criterion, it is enlightening (and to some

extent even in accordance with experimental practice) to consider superselection
sectors entirely from the perspective of the pure states on the algebra of observables
A, removing A itself and its representations from the scene. To do so, we equip
the space P(A) of pure states on A with the structure of a transition probability
space [von Neumann, 1981; Mielnik, 1968].282 A transition probability on a set P
is a function

p : P × P → [0, 1](24)

that satisfies

p(ρ, σ) = 1 ⇐⇒ ρ = σ(25)

and

p(ρ, σ) = 0 ⇐⇒ p(σ, ρ) = 0.(26)

A set with such a transition probability is called a transition probability space.
Now, the pure state space P(A) of a C∗-algebra A carries precisely this structure
if we define283

p(ρ, σ) := inf{ρ(A) | A ∈ A, 0 ≤ A ≤ 1, σ(A) = 1}.(27)

To give a more palatable formula, note that since pure states are primary, two
pure states ρ, σ are either disjoint (ρ⊥σ) or else (quasi, hence unitarily) equivalent
(ρ ∼ σ). In the first case, (27) yields

p(ρ, σ) = 0 (ρ⊥σ).(28)
282See also [Beltrametti and Cassinelli, 1984] or [Landsman, 1998] for concise reviews.
283This definition applies to the case that A is unital; see [Landsman, 1998] for the general case.

An analogous formula defines a transition probability on the extreme boundary of any compact
convex set.
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In the second case it follows from Kadison’s transitivity theorem (cf. Thm. 10.2.6 in
[Kadison and Ringrose, 1986]) that the Hilbert spaceHρ from the GNS-representation
πρ(A) defined by ρ contains a unit vector Ωσ (unique up to a phase) such that

σ(A) = (Ωσ, πρ(A)Ωσ).(29)

Eq. (27) then leads to the well-known expression

p(ρ, σ) = |(Ωρ,Ωσ)|2 (ρ ∼ σ).(30)

In particular, if A is commutative, then

p(ρ, σ) = δρσ.(31)

For A = M2(C) one obtains

p(ρ, σ) = 1
2
(1 + cos θρσ),(32)

where θρσ is the angular distance between ρ and σ (seen as points on the two-sphere
S2 = ∂eB

3, cf. (3) etc.), measured along a great circle.
Superselection sectors may now be defined for any transition probability spaces

P. A family of subsets of P is called orthogonal if p(ρ, σ) = 0 whenever ρ and σ do
not lie in the same subset. The space P is called reducible if it is the union of two
(nonempty) orthogonal subsets; if not, it is said to be irreducible. A component
of P is a subset C ⊂ P such that C and P\C are orthogonal. An irreducible com-
ponent of P is called a (superselection) sector. Thus P is the disjoint union of its
sectors. For P = P(A) this reproduces the algebraic definition of a superselection
sector (modulo the selection criterion) via the correspondence between states and
representations given by the GNS-constructions. For example, in the commutative
case A ∼= C(X) each point in X ∼= P(A) is its own little sector.

6.4 A simple example: the infinite spin chain

Let us illustrate the occurrence of superselection sectors in a simple example,
where the algebra of observables is A(q)

0 with A1 = M2(C). Let H1 = C2, so
that HN1 = ⊗NC2 is the tensor product of N copies of C2. It is clear that AN1
acts on HN1 in a natural way (i.e. componentwise). This defines an irreducible
representation πN of AN1 , which is indeed its unique irreducible representation
(up to unitary equivalence). In particular, for N <∞ the quantum system whose
algebra of observables is AN1 (such as a chain with N two-level systems) has no
superselection rules. We define the N →∞ limit “(M2(C))∞” of the C∗-algebras
(M2(C))N as the inductive limit A(q)

0 for A1 = M2(C), as introduced in Subsection
6.2; see (13). The definition of “⊗∞C2” is slightly more involved, as follows [von
Neumann, 1938].

For any Hilbert space H1, let Ψ be a sequence (Ψ1,Ψ2, . . .) with Ψn ∈ H1. The
space H1 of such sequences is a vector space in the obvious way. Now let Ψ and Φ be
two such sequences, and write (Ψn,Φn) = exp(iαn)|(Ψn,Φn)|. If

∑
n |αn| = ∞,
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we define the (pre-) inner product (Ψ,Φ) to be zero. If
∑
n |αn| < ∞, we put

(Ψ,Φ) =
∏
n(Ψn,Φn) (which, of course, may still be zero!). The (vector space)

quotient of H1 by the space of sequences Ψ for which (Ψ,Ψ) = 0 can be completed
to a Hilbert space H∞

1 in the induced inner product, called the complete infinite
tensor product of the Hilbert space H1 (over the index set N).284 We apply this
construction with H1 = C2. If (ei) is some basis of C2, an orthonormal basis of
H∞

1 then consists of all different infinite strings ei1 ⊗ · · · ein ⊗ · · · , where ein is ei
regarded as a vector in C2.285 We denote the multi-index (i1, . . . , in, . . .) simply
by I, and the corresponding basis vector by eI .

This Hilbert space H∞
1 carries a natural faithful representation π of A(q)

0 : if
A0 ∈ A(q)

0 is an equivalence class [A1, A2, · · · ], then π(A0)eI = limN→∞ ANei,
where AN acts on the first N components of eI and leaves the remainder un-
changed.286 Now the point is that although each AN1 acts irreducibly on HN1 , the
representation π(A(q)

0 ) on H∞
1 thus constructed is highly reducible. The reason

for this is that by definition (quasi-) local elements of A(q)
0 leave the infinite tail

of a vector in H∞
1 (almost) unaffected, so that vectors with different tails lie in

different superselection sectors. Without the quasi-locality condition on the ele-
ments of A(q)

0 , no superselection rules would arise. For example, in terms of the
usual basis{

↑=
(

1
0

)
, ↓=

(
0
1

)}
(33)

of C2, the vectors Ψ↑ =↑ ⊗ ↑ · · · ↑ · · · (i.e. an infinite product of ‘up’ vectors)
and Ψ↓ =↓ ⊗ ↓ · · · ↓ · · · (i.e. an infinite product of ‘down’ vectors) lie in different
sectors. The reason why the inner product (Ψ↑, π(A)Ψ↓) vanishes for any A ∈ A(q)

0

is that for local observables A one has π(A) = AM ⊗ 1⊗ · · · 1 · · · for some AM ∈
B(HM ); the inner product in question therefore involves infinitely many factors
(↑, 1 ↓) = (↑, ↓) = 0. For quasilocal A the operator π(A) might have a small
nontrivial tail, but the inner product vanishes nonetheless by an approximation
argument.

More generally, elementary analysis shows that (Ψu, π(A)Ψv) = 0 whenever
Ψu = ⊗∞u and Ψv = ⊗∞v for unit vectors u, v ∈ C2 with u �= v. The corre-
sponding vector states ψu and ψv on A(q)

0 (i.e. ψu(A) = (Ψu, π(A)Ψu) etc.) are
obviously permutation-invariant and hence classical. Identifying S(M2(C)) with
B3, as in (3), the corresponding limit state (ψu)0 on A(c)

0 defined by ψu is given
by (evaluation at) the point ũ = (x, y, z) of ∂eB

3 = S2 (i.e. the two-sphere) for
which the corresponding density matrix ρ(ũ) is the projection operator onto u. It
284Each fixed Ψ ∈ H1 defines an incomplete tensor product H∞

Ψ , defined as the closed subspace
of H∞

1 consisting of all Φ for which
P

n |(Ψn,Φn)− 1| <∞. If H1 is separable, then so is H∞
Ψ

(in contrast to H∞
1 , which is an uncountable direct sum of the H∞

Ψ ).
285The cardinality of the set of all such strings equals that of R, so that H∞

1 is non-separable,
as claimed.
286Indeed, this yields an alternative way of defining ∪N∈NAN

1 as the norm closure of the union
of all AN

1 acting on H∞
1 in the stated way.
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follows that ψu and ψv are disjoint; cf. (19). We conclude that each unit vector
u ∈ C2 determines a superselection sector πu, namely the GNS-representation of
the corresponding state ψu, and that each such sector is realized as a subspace Hu
of H∞

1 (viz. Hu = π(A(q)
0 )Ψu). Moreover, since a permutation-invariant state on

A(q)
0 is pure iff it is of the form ψu, we have found all superselection sectors of our

system. Thus in what follows we may concentrate our attention on the subspace
(of H∞

1 ) and subrepresentation (of π)

HS = ⊕ũ∈S2Hu;
πS(A(q)

0 ) = ⊕ũ∈S2πu(A(q)
0 ),(34)

where πu is simply the restriction of π to Hu ⊂ H∞
1 .

In the presence of superselection sectors one may construct operators that dis-
tinguish different sectors whilst being a multiple of the unit in each sector. In
quantum field theory these are typically global charges, and in our example the
macroscopic observables play this role. To see this, we return to Subsection 6.1. It
is not difficult to show that for any approximately symmetric sequence (A1, A2, · · · )
the limit

A = lim
N→∞

πS(AN )(35)

exists in the strong operator topology on B(HS) [Bona, 1988]. Moreover, if A0 ∈
A(c)

0 = C(S(A1)) is the function defined by the given sequence,287 then the map
A0 �→ A defines a faithful representation of A(c)

0 on HS, which we call πS as well
(by abuse of notation). An easy calculation in fact shows that πS(A0)Ψ = A0(ũ)Ψ
for Ψ ∈ Hu, or, in other words,

πS(A0) = ⊕ũ∈S2A0(ũ)1Hu
.(36)

Thus the πS(A0) indeed serve as the operators in question.
To illustrate how delicate all this is, it may be interesting to note that even for

symmetric sequences the limit limN→∞ π(AN ) does not exist on H∞
1 , not even in

the strong topology.288 On the positive side, it can be shown that limN→∞ π(AN )Ψ
exists as an element of the von Neumann algebra π(A(q)

0 )′′ whenever the vector
state ψ defined by Ψ lies in the folium FS generated by all permutation-invariant
states [Bona, 1988; Unnerstall, 1990a].

This observation is part of a general theory of macroscopic observables in the set-
ting of von Neumann algebras [Primas, 1983; Rieckers, 1984; Amann, 1986; 1987;
Morchio and Strocchi, 1987; Bona, 1988; 1989; Unnerstall, 1990a; 1990b; Breuer,

287Recall that A0(ω) = limN→∞ ωN (AN ).
288 For example, let us take the sequence AN = jN1(diag(1,−1)) and the vector

Ψ =↑↓↓↑↑↑↑↓↓↓↓↓↓↓↓↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ · · · , where a sequence of 2N factors of ↑ is followed
by 2N+1 factors of ↓, etc. Then the sequence {π(AN )Ψ}N∈N in H∞

1 diverges: the subsequence

where N runs over all numbers 2n with n odd converges to 1
3
Ψ, whereas the subsequence where

N runs over all 2n with n even converges to − 1
3
Ψ.
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1994; Atmanspacher et al., 1999], which complements the purely C∗-algebraic
approach of Raggio and Werner [1989; 1991], Duffield and Werner [1992a,b,c],
and Duffield et al. [1992] explained above.289 In our opinion, the latter has the
advantage that conceptually the passage to the limit N →∞ (and thereby the ide-
alization of a large system as an infinite one) is very satisfactory, especially in our
reformulation in terms of continuous fields of C∗-algebras. Here the commutative
C∗-algebra A(c)

0 of macroscopic observables of the infinite system is glued to the
noncommutative algebras AN1 of the corresponding finite systems in a continuous
way, and the continuous sections of the ensuing continuous field of C∗-algebras
A(c) exactly describe how macroscopic quantum observables of the finite systems
converge to classical ones. Microscopic quantum observables of the pertinent fi-
nite systems, on the other hand, converge to quantum observables of the infinite
quantum system, and this convergence is described by the continuous sections of
the continuous field of C∗-algebras A(q). This entirely avoids the language of su-
perselection rules, which rather displays a shocking discontinuity between finite
and infinite systems: for superselection rules do not exist in finite systems!290

6.5 Poisson structure and dynamics

We now pass to the discussion of time-evolution in infinite systems of the type
considered so far. We start with the observation that the state space S(B) of a
finite-dimensional C∗-algebra B (for simplicity assumed unital in what follows) is a
Poisson manifold (cf. Subsection 4.3) in a natural way. A similar statement holds
in the infinite-dimensional case, and we carry the reader through the necessary
adaptations of the main argument by means of footnotes.291 We write K = S(B).

289Realistic models have been studied in the context of both the C∗-algebraic and the von
Neumann algebraic approach by Rieckers and his associates. See, for example, [Honegger and
Rieckers, 1994; Gerisch et al., 1999; Gerisch, et al. 2003], and many other papers. For altogether
different approaches to macroscopic observables see [van Kampen, 1954; 1988; 1993; Wan and
Fountain, 1998; Harrison and Wan, 1997; Wan et al., 1998; Fröhlich et al., 2002], and [Poulin,
2004].
290We here refer to superselection rules in the traditional sense of inequivalent irreducible repre-

sentations of simple C∗-algebras. For topological reasons certain finite-dimensional systems are
described by (non-simple) C∗-algebras that do admit inequivalent irreducible representations
[Landsman, 1990a,b].
291Of which this is the first. When B is infinite-dimensional, the state space S(B) is no longer

a manifold, let alone a Poisson manifold, but a Poisson space [Landsman, 1997; 1998]. This is a
generalization of a Poisson manifold, which turns a crucial property of the latter into a definition.
This property is the foliation of a Poisson manifold by its symplectic leaves [Weinstein, 1983],
and the corresponding definition is as follows: A Poisson space P is a Hausdorff space of the
form P = ∪αSα (disjoint union), where each Sα is a symplectic manifold (possibly infinite-
dimensional) and each injection ια : Sα ↪→ P is continuous. Furthermore, one has a linear
subspace F ⊂ C(P,R) that separates points and has the property that the restriction of each
f ∈ F to each Sα is smooth. Finally, if f, g ∈ F then {f, g} ∈ F , where the Poisson bracket
is defined by {f, g}(ια(σ)) = {ι∗αf, ι∗αg}α(σ). Clearly, a Poisson manifold M defines a Poisson
space if one takes P = M , F = C∞(M), and the Sα to be the symplectic leaves defined by
the given Poisson bracket. Thus we refer to the manifolds Sα in the above definition as the
symplectic leaves of P as well.



508 N.P. Landsman

Firstly, an element A ∈ B defines a linear function Â on B∗ and hence on K
(namely by restriction) through Â(ω) = ω(A). For such functions we define the
Poisson bracket by

{Â, B̂} = i[̂A,B].(37)

Here the factor i has been inserted in order to make the Poisson bracket of two
real-valed functions real-valued again; for Â is real-valued on K precisely when A
is self-adjoint, and if A∗ = A and B∗ = B, then i[A,B] is self-adjoint (whereras
[A,B] is skew-adjoint). In general, for f, g ∈ C∞(K) we put

{f, g}(ω) = iω([dfω, dgω]),(38)

interpreted as follows.292 Let BR be the self-adjoint part of B, and interpret K
as a subspace of B∗

R
; since a state ω satisfies ω(A∗) = ω(A) for all A ∈ B, it is

determined by its values on self-adjoint elements. Subsequently, we identify the
tangent space at ω with

TωK = {ρ ∈ B∗R | ρ(1) = 0} ⊂ B∗R(39)

and the cotangent space at ω with the quotient (of real Banach spaces)

T ∗
ωK = B∗∗R /R1,(40)

where the unit 1 ∈ B is regarded as an element of B∗∗ through the canonical
embedding B ⊂ B∗∗. Consequently, the differential forms df and dg at ω ∈ K
define elements of B∗∗

R
/R1. The commutator in (38) is then defined as follows: one

lifts dfω ∈ B∗∗R
/R1 to B∗∗

R
, and uses the natural isomorphism B∗∗ ∼= B typical of

finite-dimensional vector spaces.293 The arbitrariness in this lift is a multiple of 1,
which drops out of the commutator. Hence i[dfω, dgω] is an element of B∗∗

R
∼= BR,

on which the value of the functional ω is defined.294 This completes the definition
of the Poisson bracket; one easily recovers (37) as a special case of (38).

The symplectic leaves of the given Poisson structure on K have been determined
by Duffield and Werner [1992a].295 Namely:

Two states ρ and σ lie in the same symplectic leaf of S(B) iff ρ(A) =
σ(UAU∗) for some unitary U ∈ B.

292In the infinite-dimensional case C∞(K) is defined as the intersection of the smooth functions
on K with respect to its Banach manifold structure and the space C(K) of weak∗-continuous
functions on K. The differential forms df and dg in (38) also require an appropriate definition; see
[Duffield and Werner, 1992a; Bona, 2000], and [Odzijewicz and Ratiu, 2003] for the technicalities.
293In the infinite-dimensional case one uses the canonical identification between B∗∗ and the

enveloping von Neumann algebra of B to define the commutator.
294If B is infinite-dimensional, one here regards B∗ as the predual of the von Neumann algebra
B∗∗.
295See also [Bona, 2000] for the infinite-dimensional special case where B is the C∗-algebra of

compact operators.
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When ρ and σ are pure, this is the case iff the corresponding GNS-representations
πρ(B) and πσ(B) are unitarily equivalent,296 but in general the implication holds
only in one direction: if ρ and σ lie in the same leaf, then they have unitarily
equivalent GNS-representations.297

It follows from this characterization of the symplectic leaves of K = S(B) that
the pure state space ∂eK = P(B) inherits the Poisson bracket from K, and thereby
becomes a Poisson manifold in its own right.298 This leads to an important con-
nection between the superselection sectors of B and the Poisson structure on P(B)
[Landsman, 1997; 1998]:

The sectors of the pure state space P(B) of a C∗-algebra B as a tran-
sition probability space coincide with its symplectic leaves as a Poisson
manifold.

For example, when B ∼= C(X) is commutative, the space S(C(X)) of all (regular
Borel) probability measures on X acquires a Poisson bracket that is identically
zero, as does its extreme boundary X. It follows from (31) that the sectors in X
are its points, and so are its symplectic leaves (in view of their definition and the
vanishing Poisson bracket). The simplest noncommutative case is B = M2(C), for
which the symplectic leaves of the state space K = S(M2(C)) ∼= B3 (cf. (3)) are
the spheres with constant radius.299 The sphere with radius 1 consists of points
in B3 that correspond to pure states on M2(C), all interior symplectic leaves of K
coming from mixed states on M2(C).

The coincidence of sectors and symplectic leaves of P(B) is a compatibility
condition between the transition probability structure and the Poisson structure.
It is typical of the specific choices (27) and (38), respectively, and hence of quantum
theory. In classical mechanics one has the freedom of equipping a manifold M with
an arbitrary Poisson structure, and yet use C0(M) as the commutative C∗-algebra
of observables. The transition probability (31) (which follows from (27) in the
commutative case) are clearly the correct ones in classical physics, but since the

296Cf. Thm. 10.2.6 in [Kadison and Ringrose, 1986].
297An important step of the proof is the observation that the Hamiltonian vector field ξf (ω) ∈
TωK ⊂ A∗

R
of f ∈ C∞(K) is given by 〈ξf (ω), B〉 = i[dfω , B], where B ∈ BR ⊂ B∗∗R

and

dfω ∈ B∗∗R
/R1. (For example, this gives ξÂB̂ = i[̂A,B] = {Â, B̂} by (37), as it should be.) If

ϕh
t denotes the Hamiltonian flow of h at time t, it follows (cf. [Duffield et al., 1992, Prop. 6.1]

or [Duffield and Werner, 1992a, Prop. 3.1] that 〈ϕt
h(ω), B〉 = 〈ω,Uh

t B(Uh
t )∗〉 for some unitary

Uh
t ∈ B. For example, if h = Â then Uh

t = exp(itA).
298More generally, a Poisson space. The structure of P(B) as a Poisson space was introduced

by Landsman [1997; 1998] without recourse to the full state space or the work of Duffield and
Werner [1992a].
299Equipped with a multiple of the so-called Fubini–Study symplectic structure; see [Landsman,

1998] or any decent book on differential geometry for this notion. This claim is immediate from
footnote 260. More generally, the pure state space of Mn(C) is the projective space PCn, which
again becomes equipped with the Fubini–Study symplectic structure. This is even true for n =∞
if one defines M∞(C) as the C∗-algebra of compact operators on a separable Hilbert space H: in
that case one has P(M∞(C)) ∼= PH. Cf. [Cantoni, 1977; Cirelli et al., 1983; Cirelli et al., 1990;
Landsman, 1998; Ashtekar and Schilling, 1999; Marmo et al., 2005], etc.
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symplectic leaves of M can be almost anything, the coincidence in question does
not hold.

However, there exists a compatibility condition between the transition probabil-
ity structure and the Poisson structure, which is shared by classical and quantum
theory. This is the property of unitarity of a Hamiltonian flow, which in the
present setting we formulate as follows.300 First, in quantum theory with algebra
of observables B we define time-evolution (in the sense of an automorphic action
of the abelian group R on B, i.e. a one-parameter group α of automorphisms
on B) to be Hamiltonian when A(t) = αt(A) satisfies the Heisenberg equation
i�dA/dt = [A,H] for some self-adjoint element H ∈ B. The corresponding flow
on P(B) — i.e. ωt(A) = ω(A(t)) — is equally well said to be Hamiltonian in that
case. In classical mechanics with Poisson manifold M we similarly say that a flow
on M is Hamiltonian when it is the flow of a Hamiltonian vector field ξh for some
h ∈ C∞(M). (Equivalently, the time-evolution of the observables f ∈ C∞(M) is
given by df/dt = {h, f}; cf. (18) etc.) The point is that in either case the flow is
unitary in the sense that

p(ρ(t), σ(t)) = p(ρ, σ)(41)

for all t and all ρ, σ ∈ P with P = P(B) (equipped with the transition probabil-
ities (27) and the Poisson bracket (38)) or P = M (equipped with the transition
probabilities (31) and any Poisson bracket).301

In both cases P = P(B) and P = M , a Hamiltonian flow has the property
(which is immediate from the definition of a symplectic leaf) that for all (finite)
times t a point ω(t) lies in the same symplectic leaf of P as ω = ω(0). In particular,
in quantum theory ω(t) and ω must lie in the same sector. In the quantum
theory of infinite systems an automorphic time-evolution is rarely Hamiltonian,
but one reaches a similar conclusion under a weaker assumption. Namely, if a
given one-parameter group of automorphisms α on B is implemented in the GNS-
representation πω(B) for some ω ∈ P(B),302 then ω(t) and ω lie in the same sector
and hence in the same symplectic leaf of P(B).

To illustrate these concepts, let us return to our continuous field of C∗-algebras
A(c); cf. (2). It may not come as a great surprise that the canonical C∗-algebraic
transition probabilities (27) on the pure state space of each fiber algebra A(c)

1/N

for N <∞ converge to the classical transition probabilities (31) on the commuta-
tive limit algebra A(c)

0 . Similarly, the C∗-algebraic Poisson structure (38) on each
P(A(c)

1/N ) converges to zero. However, we know from the limit � → 0 of quantum
mechanics that in generating classical behaviour on the limit algebra of a contin-
uous field of C∗-algebras one should rescale the commutators; see Subsection 4.3
300All this can be boosted into an axiomatic structure into which both classical and quantum

theory fit; see [Landsman, 1997; 1998].
301In quantum theory the flow is defined for any t. In classical dynamics, (41) holds for all t

for which ρ(t) and σ(t) are defined, cf. footnote 253.
302This assumption means that there exists a unitary representation t �→ Ut of R on Hω such

that πω(αt(A)) = Utπω(A)U∗
t for all A ∈ B and all t ∈ R.
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and Section 5. Thus we replace the Poisson bracket (38) for A(c)
1/N by

{f, g}(ω) = iNω([dfω, dgω]).(42)

Thus rescaled, the Poisson brackets on the spaces P(A(c)
1/N ) turn out to converge to

the canonical Poisson bracket (38) on P(A(c)
0 ) = S(A1), instead of the zero bracket

expected from the commutative nature of the limit algebra A(c)
0 . Consequently,

the symplectic leaves of the full state space S(A1) of the fiber algebra A(c)
1 become

the symplectic leaves of the pure state space S(A1) of the fiber algebra A(c)
0 . This

is undoubtedly indicative of the origin of classical phase spaces and their Poisson
structures in quantum theory.

More precisely, we have the following result [Duffield and Werner, 1992a]:

If A = (A0, A1, A2, · · · ) and A′ = (A′
0, A

′
1, A

′
2, · · · ) are continuous sec-

tions of A(c) defined by symmetric sequences,303 then the sequence

({A0, A
′
0}, i[A1, A

′
1], . . . , iN [AN , A′

N ], · · · )(43)

defines a continuous section of A(c).

This follows from an easy computation. In other words, although the sequence of
commutators [AN , A′

N ] converges to zero, the rescaled commutators iN [AN , A′
N ] ∈

AN converge to the macroscopic observable {A0, A
′
0} ∈ A(c)

0 = C(S(A1)). Al-
though it might seem perverse to reinterpret this result on the classical limit of
a large quantum system in terms of quantization (which is the opposite of taking
the classical limit), it is formally possible to do so (cf. Section 4.3) if we put

� =
1
N

.(44)

Using the axiom of choice if necessary, we devise a procedure that assigns a con-
tinuous section A = (A0, A1, A2, · · · ) of our field to a given function A0 ∈ A(c)

0 .
We write this as AN = Q 1

N
(A0), and similarly A′

N = Q 1
N

(A′
0). This choice need

not be such that the sequence (43) is assigned to {A0, A
′
0}, but since the latter is

the unique limit of (43), it must be that

lim
N→∞

∥∥∥iN [
Q 1

N
(A0),Q 1

N
(A′

0)
]
−Q 1

N
({A0, A

′
0})
∥∥∥ = 0.(45)

Also note that (27) is just (12). Consequently (cf. (25) and surrounding text):
303The result does not hold for all continuous sections (i.e. for all approximately symmetric

sequences), since, for example, the limiting functions A0 and A′
0 may not be differentiable, so

that their Poisson bracket does not exist. This problem occurs in all examples of deforma-
tion quantization. However, the class of sequences for which the claim is valid is larger than
the symmetric ones alone. A sufficient condition on A and B for (43) to make sense is that

AN =
P

M≤N jNM (A
(N)
M ) (with A

(N)
M ∈ AM

1 ), such that limN→∞ A
(N)
M exists (in norm) and

P∞
M=1M supN≥M{‖A(N)

M ‖} <∞. See [Duffield and Werner, 1992a].
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The continuous field of C∗-algebras A(c) defined by (2) and approxi-
mately symmetric sequences (and their limits) as continuous sections
yields a deformation quantization of the phase space S(A1) (equipped
with the Poisson bracket (38)) for any quantization map Q.

For the dynamics this implies:

Let H = (H0,H1,H2, · · · ) be a continuous section of A(c) defined by
a symmetric sequence,304 and let A = (A0, A1, A2, · · · ) be an arbitrary
continuous section of A(c) (i.e. an approximately symmetric sequence).
Then the sequence(

A0(t), eiH1tA1e
−iH1t, · · · eiNHN tANe−iNHN t, · · · ) ,(46)

where A0(t) is the solution of the equations of motion with classical
Hamiltonian H0,305 defines a continuous section of A(c).

In other words, for bounded symmetric sequences of Hamiltonians HN the quan-
tum dynamics restricted to macroscopic observables converges to the classical dy-
namics with Hamiltonian H0. Compare the positions of � and N in (12) and (46),
respectively, and rejoice in the reconfirmation of (44).

In contrast, the quasilocal observables are not well behaved as far as the N →∞
limit of the dynamics defined by such Hamiltonians is concerned. Namely, if
(A0, A1, · · · ) is a section of the continuous field A(q), and (H1,H2, · · · ) is any
bounded symmetric sequence of Hamiltonians, then the sequence(

eiH1tA1e
−iH1t, · · · eiNHN tANe−iNHN t, · · · )

has no limit for N → ∞, in that it cannot be extended by some A0(t) to a
continuous section of A(q). Indeed, this was the very reason why macroscopic
observables were originally introduced in this context [Rieckers, 1984; Morchio and
Strocchi, 1987; Bona, 1988; Unnerstall, 1990a; Raggio and Werner, 1989; Duffield
and Werner, 1992a]. Instead, the natural finite-N Hamiltonians for which the limit
N → ∞ of the time-evolution on AN1 exists as a one-parameter automorphism
group on A(q) satisfy an appropriate locality condition, which excludes the global
averages defining symmetric sequences.

6.6 Epilogue: Macroscopic observables and the measurement problem

In a renowned paper, Hepp [1972] suggested that macroscopic observables and su-
perselection rules should play a role in the solution of the measurement problem of

304Once again, the result in fact holds for a larger class of Hamiltonians, namely the ones
satisfying the conditions specified in footnote 303 [Duffield and Werner, 1992a]. The assumption
that each Hamiltonian HN lies in AN

1 and hence is bounded is natural in lattice models, but is
undesirable in general.
305See (18) and surrounding text.
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quantum mechanics. He assumed that a macroscopic apparatus may be idealized
as an infinite quantum system, whose algebra of observables AA has disjoint pure
states. Referring to our discussion in Subsection 2.5 for context and notation,
Hepp’s basic idea (for which he claimed no originality) was that as a consequence
of the measurement process the initial state vector ΩI =

∑
n cnΨn ⊗ I of system

plus apparatus evolves into a final state vector ΩF =
∑
n cnΨn ⊗ Φn, in which

each Φn lies in a different superselection sector of the Hilbert space of the appa-
ratus (in other words, the corresponding states ϕn on AA are mutually disjoint).
Consequently, although the initial state ωI is pure, the final state ωF is mixed.
Moreover, because of the disjointness of the ωn the final state ωF has a unique de-
composition ωF =

∑
n |cn|2ψn ⊗ϕn into pure states, and therefore admits a bona

fide ignorance interpretation. Hepp therefore claimed with some justification that
the measurement “reduces the wave packet”, as desired in quantum measurement
theory.

Even apart from the usual conceptual problem of passing from the collective of
all terms in the final mixture to one actual measurement outcome, Hepp himself
indicated a serious mathematical problem with this program. Namely, if the initial
state is pure it must lie in a certain superselection sector (or equivalence class of
states); but then the final state must lie in the very same sector if the time-
evolution is Hamiltonian, or, more generally, automorphic (as we have seen in the
preceding subsection). Alternatively, it follows from a more general lemma Hepp
[1972] himself proved:

If two states ρ, σ on a C∗-algebra B are disjoint and α : B → B is an
automorphism of B, then ρ ◦ α and σ ◦ α are disjoint, too.

To reach the negative conclusion above, one takes B to be the algebra of observables
of system and apparatus jointly, and computes back in time by choosing α =
α−1
tF −tI , where αt is the one-parameter automorphism group on B describing the

joint time-evolution of system and apparatus (and tI and tF are the initial and
final times of the measurement, respectively). However, Hepp pointed out that this
conclusion may be circumvented if one admits the possibility that a measurement
takes infinitely long to complete. For the limit A �→ limt→∞ αt(A) (provided it
exists in a suitable sense, e.g., weakly) does not necessarily yield an automorphism
of B. Hence a state — evolving in the Schrödinger picture by ωt(A) ≡ ω(αt(A)) —
may leave its sector in infinite time, a possibility Hepp actually demonstrated in a
range of models; see also [Frigerio, 1974; Whitten-Wolfe and Emch, 1976; Araki,
1980; Bona, 1980; Hannabuss, 1984; Bub, 1988; Landsman, 1991; Frasca, 2003;
2004], and many other papers.

Despite the criticism that has been raised against the conclusion that a quantum-
mechanical measurement requires an infinite apparatus and must take infinite time
[Bell, 1975; Robinson, 1994; Landsman, 1995], and despite the fact that this pro-
cedure is quite against the spirit of von Neumann [1932], in whose widely accepted
description measurements are practically instantaneous, this conclusion resonates
well with the modern idea that quantum theory is universally valid and the classical
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world has no absolute existence; cf. the Introduction. Furthermore, a quantum-
mechanical measurement is nothing but a specific interaction, comparable with a
scattering process; and it is quite uncontroversial that such a process takes infi-
nite time to complete. Indeed, what would it mean for scattering to be over after
some finite time? Which time? As we shall see in the next section, the theory of
decoherence requires the limit t→∞ as well, and largely for the same mathemat-
ical reasons. There as well as in Hepp’s approach, the limiting behaviour actually
tends to be approached very quickly (on the pertinent time scale), and one needs
to let t → ∞ merely to make terms ∼ exp−γt (with γ > 0) zero rather than
just very small. See also [Primas, 1997] for a less pragmatic point of view on the
significance of this limit.

A more serious problem with Hepp’s approach lies in his assumption that the
time-evolution on the quasilocal algebra of observables of the infinite measurement
apparatus (which in our class of examples would be A(q)

0 ) is automorphic. This,
however, is by no means always the case; cf. the references listed near the end
of Subsection 6.5. As we have seen, for certain natural Hamiltonian (and hence
automorphic) time-evolutions at finite N the dynamics has no limit N → ∞ on
the algebra of quasilocal observables — let alone an automorphic one.

Nonetheless, Hepp’s conclusion remains valid if we use the algebraA(c)
0 of macro-

scopic observables, on which (under suitable assumptions — see Subsection 6.5)
Hamiltonian time-evolution on AN1 does have a limit as N → ∞. For, as pointed
out in Subsection 6.3, each superselection sector of A(q)

0 defines and is defined by
a pure state on A1, which in turn defines a sector of A(c)

0 . Now the latter sector is
simply a point in the pure state space S(A1) of the commutative C∗-algebra A(c)

0 ,
so that Hepp’s lemma quoted above boils down to the claim that if ρ �= σ, then
ρ ◦α �= σ ◦α for any automorphism α. This, of course, is a trivial property of any
Hamiltonian time-evolution, and it follows once again that a transition from a pure
pre-measurement state to a mixed post-measurement state on A(c)

0 is impossible
in finite time. To avoid this conclusion, one should simply avoid the limt N →∞,
which is the root of the t→∞ limit; see [Janssens, 2005].

What, then, does all this formalism mean for Schrödinger’s cat? In our opinion,
it confirms the impression that the appearance of a paradox rests upon an equiv-
ocation. Indeed, the problem arises because one oscillates between two mutually
exclusive interpretations.306

Either one is a bohemian theorist who, in vacant or in pensive mood, puts
off his or her glasses and merely contemplates whether the cat is dead or alive.
Such a person studies the cat exclusively from the point of view of its macroscopic
observables, so that he or she has to use a post-measurement state ω

(c)
F on the

algebra A(c)
0 . If ω

(c)
F is pure, it lies in P(A1) (unless the pre-measurement state

was mixed). Such a state corresponds to a single superselection sector [ω(q)
F ] of

A(q)
0 , so that the cat is dead or alive. If, on the other hand, ω

(c)
F is mixed (which

306Does complementarity re-enter through the back door?
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is what occurs if Schrödinger has his way), there is no problem in the first place:
at the level of macroscopic observables one merely has a statistical description of
the cat.

Or one is a hard-working experimental physicist of formidable power, who in-
vestigates the detailed microscopic constitution of the cat. For him or her the cat
is always in a pure state on AN1 for some large N . This time the issue of life and
death is not a matter of lazy observation and conclusion, but one of sheer endless
experimentation and computation. From the point of view of such an observer,
nothing is wrong with the cat being in a coherent superposition of two states that
are actually quite close to each other microscopically — at least for the time being.

Either way, the riddle does not exist (Wittgenstein, TLP, §6.5).

7 WHY CLASSICAL STATES AND OBSERVABLES?

‘We have found a strange footprint on the shores of the unknown. We
have devised profound theories, one after another, to account for its
origins. At last, we have succeeded in reconstructing the creature that
made the footprint. And lo! It is our own.’ [Eddington, 1920, 200–201]

The conclusion of Sections 5 and 6 is that quantum theory may give rise to
classical behaviour in certain states and with respect to certain observables. For
example, we have seen that in the limit � → 0 coherent states and operators
of the form Q�(f), respectively, are appropriate, whereas in the limit N → ∞
one should use classical states (nomen est omen!) as defined in Subsection 6.2
and macroscopic observables. If, instead, one uses superpositions of such states,
or observables with the wrong limiting behaviour, no classical physics emerges.
Thus the question remains why the world at large should happen to be in such
states, and why we turn out to study this world with respect to the observables in
question. This question found its original incarnation in the measurement problem
(cf. Subsection 2.5), but this problem is really a figure-head for a much wider
difficulty.

Over the last 25 years,307 two profound and original answers to this question
have been proposed.

7.1 Decoherence

The first goes under the name of decoherence. Pioneering papers include [van
Kampen, 1954; Zeh, 1970; Zurek, 1981; 1982],308 and [Joos and Zeh, 1985], and
some recent reviews are [Bub, 1999; Auletta, 2001; Joos et al., 2003; Zurek, 2003;
Blanchard and Olkiewicz, 2003; Bacciagaluppi, 2004] and [Schlosshauer, 2004].309

307Though some say the basic idea of decoherence goes back to Heisenberg and Ludwig.
308See also [Zurek, 1991] and the subsequent debate in Physics Today [Zurek, 1993], which drew

wide attention to decoherence.
309The website http://almaak.usc.edu/∼tbrun/Data/decoherence−list.html contains an ex-

tensive list of references on decoherence.
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More references will be given in due course. The existence (and excellence) of
these reviews obviates the need for a detailed treatment of decoherence in this
article, all the more so since at the time of writing this approach appears to be
in a transitional stage, conceptually as well as mathematically (as will be evident
from what follows). Thus we depart from the layout of our earlier chapters and
restrict ourselves to a few personal comments.

1. Mathematically, decoherence boils down to the idea of adding one more
link to the von Neumann chain (see Subsection 2.5) beyond S + A (i.e.
the system and the apparatus). Conceptually, however, there is a major
difference between decoherence and older approaches that took such a step:
whereas previously (e.g., in the hands of von Neumann, London and Bauer,
Wigner, etc.)310 the chain converged towards the observer, in decoherence
it diverges away from the observer. Namely, the third and final link is now
taken to be the environment (taken in a fairly literal sense in agreement with
the intuitive meaning of the word). In particular, in realistic models the
environment is treated as an infinite system (necessitating the limit N →
∞), which has the consequence that (in simple models where the pointer
has discrete spectrum) the post-measurement state

∑
n cnΨn ⊗Φn ⊗ χn (in

which the χn are mutually orthogonal) is only reached in the limit t → ∞.
However, as already mentioned in Subsection 6.6, infinite time is only needed
mathematically in order to make terms of the type ∼ exp−γt (with γ > 0)
zero rather than just very small: in many models the inner products (χn, χm)
are actually negligible for n �= m within surprisingly short time scales.311

If only in view of the need for limits of the type N → ∞ (for the envi-
ronment) and t → ∞, in our opinion decoherence is best linked to stance
1 of the Introduction: its goal is to explain the approximate appearance of
the classical world from quantum mechanics seen as a universally valid the-
ory. However, decoherence has been claimed to support almost any opinion
on the foundations of quantum mechanics; cf. [Bacciagaluppi, 2004] and
[Schlosshauer, 2004] for a critical overview and also see Point 3 below.

2. Originally, decoherence entered the scene as a proposed solution to the mea-
surement problem (in the precise form stated at the end of Subsection 2.5).
For the restriction of the state

∑
n cnΨn ⊗ Φn ⊗ χn to S + A (i.e. its trace

over the degrees of freedom of the environment) is mixed in the limit t→∞,
which means that the quantum-mechanical interference between the states
Ψn⊗Φn for different values of n has become ‘delocalized’ to the environment,
and accordingly is irrelevant if the latter is not observed (i.e. omitted from
the description). Unfortunately, the application of the ignorance interpreta-
tion of the mixed post-measurement state of S + A is illegal even from the
point of view of stance 1 of the Introduction. The ignorance interpretation

310See [Wheeler and Zurek, 1983].
311Cf. Tables 3.1 and 3.2 on pp. 66–67 of [Joos et al., 2003].
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is only valid if the environment is kept within the description and is classical
(in having a commutative C∗-algebra of observables). The latter assumption
[Primas, 1983], however, makes the decoherence solution to the measurement
problem circular.312

In fact, as quite rightly pointed out by Bacciagaluppi [2004], decoherence ac-
tually aggravates the measurement problem. Where previously this problem
was believed to be man-made and relevant only to rather unusual labora-
tory situations (important as these might be for the foundations of physics),
it has now become clear that “measurement” of a quantum system by the
environment (instead of by an experimental physicist) happens everywhere
and all the time: hence it remains even more miraculous than before that
there is a single outcome after each such measurement. Thus decoherence
as such does not provide a solution to the measurement problem [Leggett,
2002];313 Adler, 2003; Joos and Zeh, 2003], but is in actual fact parasitic on
such a solution.

3. There have been various responses to this insight. The dominant one has
been to combine decoherence with some interpretation of quantum mechan-
ics: decoherence then finds a home, while conversely the interpretation in
question is usually enhanced by decoherence. In this context, the most pop-
ular of these has been the many-worlds interpretation, which, after decades
of obscurity and derision, suddenly started to be greeted with a flourish of
trumpets in the wake of the popularity of decoherence. See, for example,
[Saunders, 1993; 1995; Joos et al., 2003] and [Zurek, 2003]. In quantum
cosmology circles, the consistent histories approach has been a popular part-
ner to decoherence, often in combination with many worlds; see below. The
importance of decoherence in the modal interpretation has been emphasized
by Dieks [1989b] and Bene and Dieks [2002], and practically all authors on
decoherence find the opportunity to pay some lip-service to Bohr in one way
or another. See [Bacciagaluppi, 2004] and [Schlosshauer, 2004] for a critical
assessment of all these combinations.

In our opinion, none of the established interpretations of quantum mechan-
ics will do the job, leaving room for genuinely new ideas. One such idea is
the return of the environment: instead of “tracing it out”, as in the original
setting of decoherence theory, the environment should not be ignored! The

312On the other hand, treating the environment as if it were classical might be an improvement
on the Copenhagen ideology of treating the measurement apparatus as if it were classical (cf.
Section 3).
313In fact, Leggett’s argument only applies to strawman 3 of the Introduction and loses its force

against stance 1. For his argument is that decoherence just removes the evidence for a given
state (of Schrödinger’s cat type) to be a superposition, and accuses those claiming that this
solves the measurement problem of committing the logical fallacy that removal of the evidence
for a crime would undo the crime. But according to stance 1 the crime is only defined relative to
the evidence! Leggett is quite right, however, in insisting on the ‘from “ and” to “or” problem’
mentioned at the end of the Introduction.
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essence of measurement has now been recognized to be the redundancy of
the outcome (or “record”) of the measurement in the environment. It is this
very redundancy of information about the underlying quantum object that
“objectifies” it, in that the information becomes accessible to a large number
of observers without necessarily disturbing the object314 [Zurek, 2003; Ol-
livier et al. 2004; Blume-Kohout and Zurek, 2004; 2005]. This insight (called
“Quantum Darwinism”) has given rise to the “existential” interpretation of
quantum mechanics due to Zurek [2003].

4. Another response to the failure of decoherence (and indeed all other ap-
proaches) to solve the measurement problem (in the sense of failing to win
a general consensus) has been of a somewhat more pessimistic (or, some
would say, pragmatic) kind: all attempts to explain the quantum world are
given up, yielding to the point of view that ‘the appropriate aim of physics
at the fundamental level then becomes the representation and manipula-
tion of information’ [Bub, 2004]. Here ‘measuring instruments ultimately
remain black boxes at some level’, and one concludes that all efforts to un-
derstand measurement (or, for that matter, epr-correlations) are futile and
pointless.315

5. Night thoughts of a quantum physicist, then?316 Not quite. Turning vice
into virtue: rather than solving the measurement problem, the true signif-
icance of the decoherence program is that it gives conditions under which
there is no measurement problem! Namely, foregoing an explanation of the
transition from the state

∑
n cnΨn ⊗ Φn ⊗ χn of S + A + E to a single one

of the states Ψn ⊗ Φn of S + A, at the heart of decoherence is the claim
that each of the latter states is robust against coupling to the environment
(provided the Hamiltonian is such that Ψn ⊗ Φn tensored with some initial
state IE of the environment indeed evolves into Ψn ⊗ Φn ⊗ χn, as assumed
so far). This implies that each state Ψn⊗Φn remains pure after coupling to
the environment and subsequent restriction to the original system plus ap-
paratus, so that at the end of the day the environment has had no influence
on it. In other words, the real point of decoherence is the phenomenon of
einselection (for environment-induced superselection), where a state is ‘einse-
lected’ precisely when (given some interaction Hamiltonian) it possesses the
stability property just mentioned. The claim, then, is that einselected states
are often classical, or at least that classical states (in the sense mentioned at
the beginning of this section) are classical precisely because they are robust
against coupling to the environment. Provided this scenario indeed gives

314Such objectification is claimed to yield an ‘operational definition of existence’ [Zurek, 2003,
749].
315It is indeed in describing the transformation of quantum information (or entropy) to classical

information during measurement that decoherence comes to its own and exhibits some of its
greatest strength. Perhaps for this reason such thinking pervades also Zurek [2003].
316[Kent, 2000]. Pun on the title of McCormmach [1982].
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rise to the classical world (which remains to be shown in detail), it gives a
dynamical explanation of it. But even short of having achieved this goal,
the importance of the notion of einselection cannot be overstated; in our
opinion, it is the most important and powerful idea in quantum theory since
entanglement (which einselection, of course, attempts to undo!).

6. The measurement problem, and the associated distinction between system
and apparatus on the one hand and environment on the other, can now be
omitted from decoherence theory. Continuing the discussion in Subsection
3.4, the goal of decoherence should simply be to find the robust or eins-
elected states of a object O coupled to an environment E , as well as the
induced dynamics thereof (given the time-evolution of O + E). This search,
however, must include the correct identification of the object O within the
total S + E , namely as a subsystem that actually has such robust states.
Thus the Copenhagen idea that the Heisenberg cut between object and ap-
paratus be movable (cf. Subsection 3.2) will not, in general, extend to the
“Primas–Zurek” cut between object and environment. In traditional physics
terminology, the problem is to find the right “dressing” of a quantum system
so as to make at least some of its states robust against coupling to its envi-
ronment [Amann and Primas, 1997; Brun and Hartle, 1999; Omnès, 2002].
In other words: What is a system? To mark this change in perspective, we
now change notation from O (for “object”) to S (for “system”). Various
tools for the solution of this problem within the decoherence program have
now been developed — with increasing refinement and also increasing re-
liance on concepts from information theory [Zurek, 2003] — but the right
setting for it seems the formalism of consistent histories, see below.

7. Various dynamical regimes haven been unearthed, each of which leads to a
different class of robust states [Joos et al., 2003; Zurek, 2003; Schlosshauer,
2004]. Here HS is the system Hamiltonian, HI is the interaction Hamiltonian
between system and environment, and HE is the environment Hamiltonian.
As stated, no reference to measurement, object or apparatus need be made
here.

• In the regime HS << HI , for suitable Hamiltonians the robust states
are the traditional pointer states of quantum measurement theory. This
regime conforms to von Neumann’s [1932] idea that quantum measure-
ments be almost instantaneous. If, moreover, HE << HI as well —
with or without a measurement context — then the decoherence mech-
anism turns out to be universal in being independent of the details of
E and HE [Strunz et al., 2003).

• If HS ≈ HI , then (at least in models of quantum Brownian motion) the
robust states are coherent states (either of the traditional Schrödinger
type, or of a more general nature as defined in Subsection 5.1); see
[Zurek et al., 1993] and [Zurek, 2003]. This case is, of course, of supreme



520 N.P. Landsman

importance for the physical relevance of the results quoted in our Sec-
tion 5 above, and — if only for this reason — decoherence theory would
benefit from more interaction with mathematically rigorous results on
quantum stochastic analysis.317

• Finally, if HS >> HI , then the robust states turn out to be eigenstates
of the system Hamiltonian HS [Paz and Zurek, 1999; Ollivier et al.,
2004]. In view of our discussion of such states in Subsections 5.5 and
5.6, this shows that robust states are not necessarily classical. It should
be mentioned that in this context decoherence theory largely coincides
with standard atomic physics, in which the atom is taken to be the
system S and the radiation field plays the role of the environment E ; see
[Gustafson and Sigal, 2003] for a mathematically minded introductory
treatment and [Bach et al., 1998; 1999] for a full (mathematical) meal.

8. Further to the above clarification of the role of energy eigenstates, decoher-
ence also has had important things to say about quantum chaos [Zurek, 2003;
Joos et al., 2003]. Referring to our discussion of wave packet revival in Sub-
section 2.4, we have seen that in atomic physics wave packets do not behave
classically on long time scales. Perhaps surprisingly, this is even true for cer-
tain chaotic macroscopic systems: cf. the case of Hyperion mentioned in the
Introduction and at the end of Subsection 5.2. Decoherence now replaces
the underlying superposition by a classical probability distribution, which
reflects the chaotic nature of the limiting classical dynamics. Once again,
the transition from the pertinent pure state of system plus environment to a
single observed system state remains clouded in mystery. But granted this
transition, decoherence sheds new light on classical chaos and circumvents
at least the most flagrant clashes with observation.318

9. Robustness and einselection form the state side or Schrödinger picture of de-
coherence. Of course, there should also be a corresponding observable side
or Heisenberg picture of decoherence. But the transition between the two
pictures is more subtle than in the quantum mechanics of closed systems.
In the Schrödinger picture, the whole point of einselection is that most pure
states simply disappear from the scene. This may be beautifully visualized
on the example of a two-level system with Hilbert space HS = C2 [Zurek,
2003]. If ↑ and ↓ (cf. (33)) happen to be the robust vector states of the
system after coupling to an appropriate environment, and if we identify the
corresponding density matrices with the north-pole (0, 0, 1) ∈ B3 and the
south-pole (0, 0,−1) ∈ B3, respectively (cf. (3)), then following decoherence
all other states move towards the axis connecting the north- and south poles

317Cf. [Davies, 1976; Accardi et al., 1990; Parthasarathy, 1992; Streater, 2000; Kümmerer,
2002; Maassen, 2003], etc.
318It should be mentioned, though, that any successful mechanism explaining the transition

from quantum to classical should have this feature, so that at the end of the day decoherence
might turn out to be a red herring here.



Between Classical and Quantum 521

(i.e. the intersection of the z-axis with B3) as t → ∞. In the Heisenberg
picture, this disappearance of all pure states except two corresponds to the
reduction of the full algebra of observables M2(C) of the system to its diag-
onal (and hence commutative) subalgebra C⊕C in the same limit. For it is
only the latter algebra that contains enough elements to distinguish ↑ and
↓ without containing observables detecting interference terms between these
pure states.

10. To understand this in a more abstract and general way, we recall the mathe-
matical relationship between pure states and observables [Landsman, 1998].
The passage from a C∗-algebra A of observables of a given system to its
pure states is well known: as a set, the pure state space P(A) is the extreme
boundary of the total state space S(A) (cf. footnote 259). In order to re-
construct A from P(A), the latter needs to be equipped with the structure
of a transition probability space (see Subsection 6.3) through (27). Each
element A ∈ A defines a function Â on P(A) by Â(ω) = ω(A). Now, in the
simple case that A is finite-dimensional (and hence a direct sum of matrix
algebras), one can show that each function Â is a finite linear combination
of the form Â =

∑
i pωi

, where ωi ∈ P(A) and the elementary functions pρ
on P(A) are defined by pρ(σ) = p(ρ, σ). Conversely, each such linear combi-
nation defines a function Â for some A ∈ A. Thus the elements of A (seen as
functions on the pure state space P(A)) are just the transition probabilities
and linear combinations thereof. The algebraic structure of A may then be
reconstructed from the structure of P(A) as a Poisson space with a transi-
tion probability (cf. Subsection 6.5). In this sense P(A) uniquely determines
the algebra of observables of which it is the pure state space. For example,
the space consisting of two points with classical transition probabilities (31)
leads to the commutative algebra A = C ⊕ C, whereas the unit two-sphere
in R3 with transition probabilities (32) yields A = M2(C).

This reconstruction procedure may be generalized to arbitrary C∗-algebras
[Landsman, 1998], and defines the precise connection between the Schrödinger
picture and the Heisenberg picture that is relevant to decoherence. These
pictures are equivalent, but in practice the reconstruction procedure may be
difficult to carry through.

11. For this reason it is of interest to have a direct description of decoherence
in the Heisenberg picture. Such a description has been developed by Blan-
chard and Olkiewicz [2003], partly on the basis of earlier results by Olkiewicz
[1999a,b; 2000]. Mathematically, their approach is more powerful than the
Schrödinger picture on which most of the literature on decoherence is based.
Let AS = B(HS) and AE = B(HE), and assume one has a total Hamiltonian
H acting on HS⊗HE as well as a fixed state of the environment, represented
by a density matrix ρE (often taken to be a thermal equilibrium state). If ρS
is a density matrix on HS (so that the total state is ρS⊗ρE), the Schrödinger
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picture approach to decoherence (and more generally to the quantum theory
of open systems) is based on the time-evolution

ρS(t) = TrHE
(
e−

it
�
HρS ⊗ ρEe

it
�
H
)

.(1)

The Heisenberg picture, on the other hand, is based on the associated oper-
ator time-evolution for A ∈ B(HS) given by

A(t) = TrHE
(
ρEe

it
�
HA⊗ 1 e−

it
�
H
)

,(2)

since this yields the equivalence of the Schrödinger and Heisenberg pictures
expressed by

TrHS (ρS(t)A) = TrHS (ρSA(t)) .(3)

More generally, let AS and AE be unital C∗-algebras with spatial tensor
product AS⊗AE , equipped with a time-evolution αt and a fixed state ωE on
AE . This defines a conditional expectation PE : AS⊗AE → AS by linear and
continuous extension of PE(A ⊗ B) = AωE(B), and consequently a reduced
time-evolution A �→ A(t) on AS via

A(t) = PE(αt(A⊗ 1)).(4)

See, for example, Alicki and Lendi [1987]; in our context, this generality is
crucial for the potential emergence of continuous classical phase spaces; see
below.319 Now the key point is that decoherence is described by a decompo-
sition AS = A(1)

S ⊕A(2)
S as a vector space (not as a C∗-algebra), where A(1)

S
is a C∗-algebra, with the property that limt→∞ A(t) = 0 (weakly) for all
A ∈ A(2)

S , whereas A �→ A(t) is an automorphism on A(1)
S for each finite t .

Consequently, A(1)
S is the effective algebra of observables after decoherence,

and it is precisely the pure states on A(1)
S that are robust or einselected in

the sense discussed before.

12. For example, if AS = M2(C) and the states ↑ and ↓ are robust under de-
coherence, then A(1)

S = C ⊕ C and A(2)
S consists of all 2 × 2 matrices with

zeros on the diagonal. In this example A(1)
S is commutative hence classi-

cal, but this may not be the case in general. But if it is, the automorphic
time-evolution on A(1)

S induces a classical flow on its structure space, which
should be shown to be Hamiltonian using the techniques of Section 6.320

319For technical reasons Blanchard and Olkiewicz [2003] assume AS to be a von Neumann
algebra with trivial center.
320Since on the assumption in the preceding footnote A(1)

S is a commutative von Neumann
algebra one should define the structure space in an indirect way; see [Blanchard and Olkiewicz,
2003].
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In any case, there will be some sort of classical behaviour of the decohered
system whenever A(1)

S has a nontrivial center.321 If this center is discrete,
then the induced time-evolution on it is necessarily trivial, and one has the
typical measurement situation where the center in question is generated by
the projections on the eigenstates of a pointer observable with discrete spec-
trum. This is generic for the case where AS is a type i factor. However, type
ii and iii factors may give rise to continuous classical systems with nontriv-
ial time-evolution; see [Lugiewicz and Olkiewicz, 2002; 2003]. We cannot do
justice here to the full technical details and complications involved here. But
we would like to emphasize that further to quantum field theory and the the-
ory of the thermodynamic limit, the present context of decoherence should
provide important motivation for specialists in the foundations of quantum
theory to learn the theory of operator algebras.322

7.2 Consistent histories

Whilst doing so, one is well advised to work even harder and simultaneously fa-
miliarize oneself with consistent histories. This approach to quantum theory was
pioneered by Griffiths [1984] and was subsequently taken up by Omnès [1992] and
others. Independently, Gell-Mann and Hartle [1990; 1993] proposed analogous
ideas. Like decoherence, the consistent histories method has been the subject of
lengthy reviews [Hartle, 1995] and even books [Omnès, 1994; 1999; Griffiths, 2002]
by the founders. See also the reviews by Kiefer [2003] and Halliwell [2004], the cri-
tiques by Dowker and Kent [1996], Kent [1998], Bub [1999], and Bassi and Ghirardi
[2000], as well as the various mathematical reformulations and reinterpretations
of the consistent histories program [Isham, 1994; 1997; Isham and Linden, 1994;
1995; Isham et al., 1994; Isham and Butterfield, 2000; Rudolph, 1996a; 1996b;
2000; Rudolph and Wright, 1999].

The relationship between consistent histories and decoherence is somewhat pe-
culiar: on the one hand, decoherence is a natural mechanism through which ap-
propriate sets of histories become (approximately) consistent, but on the other
hand these approaches appear to have quite different points of departure. Namely,
where decoherence starts from the idea that (quantum) systems are naturally cou-
pled to their environments and therefore have to be treated as open systems, the
aim of consistent histories is to deal with closed quantum systems such as the Uni-
verse, without a priori talking about measurements or observers. However, this
distinction is merely historical: as we have seen in item 6 in the previous subsec-
tion, the dividing line between a system and its environment should be seen as a
dynamical entity to be drawn according to certain stability criteria, so that even
in decoherence theory one should really study the system plus its environment as
a whole from the outset.323 And this is precisely what consistent historians do.

321This is possible even when AS is a factor!
322See the references in footnote 7.
323This renders the distinction between “open” and “closed” systems a bit of a red herring, as
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As in the preceding subsection, and for exactly the same reasons, we format our
treatment of consistent histories as a list of items open to discussion.

1. The starting point of the consistent histories formulation of quantum the-
ory is conventional: one has a Hilbert space H, a state ρ, taken to be the
initial state of the total system under consideration (realized as a density
matrix on H) and a Hamiltonian H (defined as a self-adjoint operator on
H). What is unconventional is that this total system may well be the entire
Universe. Each property α of the total system is mathematically represented
by a projection Pα on H; for example, if α is the property that the energy
takes some value ε, then the operator Pα is the projection onto the associ-
ated eigenspace (assuming ε belongs to the discrete spectrum of H). In the
Heisenberg picture, Pα evolves in time as Pα(t) according to (12); note that
Pα(t) is once again a projection.

A history HA is a chain of properties (or propositions) (α1(t1), . . . , αn(tn))
indexed by n different times t1 < . . . < tn; here A is a multi-label incorpo-
rating both the properties (α1, . . . , αn) and the times (t1, . . . , tn). Such a
history indicates that each property αi holds at time ti, i = 1, . . . , n. Such
a history may be taken to be a collection {α(t)}t∈R defined for all times,
but for simplicity one usually assumes that α(t) �= 1 (where 1 is the trivial
property that always holds) only for a finite set of times t; this set is precisely
{t1, . . . , tn}. An example suggested by Heisenberg (1927) is to take αi to be
the property that a particle moving through a Wilson cloud chamber may be
found in a cell ∆i ⊂ R6 of its phase space; the history (α1(t1), . . . , αn(tn))
then denotes the state of affairs in which the particle is in cell ∆1 at time t1,
subsequently is in cell ∆2 at time t2, etcetera. Nothing is stated about the
particle’s behaviour at intermediate times. Another example of a history is
provided by the double slit experiment, where α1 is the particle’s launch at
the source at t1 (which is usually omitted from the description), α2 is the
particle passing through (e.g.) the upper slit at t2, and α3 is the detection
of the particle at some location L at the screen at t3. As we all know, there
is a potential problem with this history, which will be clarified below in the
present framework.

The fundamental claim of the consistent historians seems to be that quantum
theory should do no more (or less) than making predictions about the proba-
bilities that histories occur. What these probabilities actually mean remains
obscure (except perhaps when they are close to zero or one, or when refer-
ence is made to some measurement context; see [Hartle, 2005]), but let us
first see when and how one can define them. The only potentially meaningful
mathematical expression (within quantum mechanics) for the probability of

even in decoherence theory the totality of the system plus its environment is treated as a closed
system.
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a history HA with respect to a state ρ is [Groenewold, 1952; Wigner, 1963]

p(HA) = Tr (CAρC∗
A),(5)

where

CA = Pαn
(tn) · · ·Pα1(t1).(6)

Note that CA is generally not a projection (and hence a property) itself
(unless all Pαi

mutually commute). In particular, when ρ = [Ψ] is a pure
state (defined by some unit vector Ψ ∈ H), one simply has

p(HA) = ‖CAΨ‖2 = ‖Pαn
(tn) · · ·Pα1(t1)Ψ‖2.(7)

When n = 1 this just yields the Born rule. Conversely, see Isham (1994) for
a derivation of (5) from the Born rule.324

2. Whatever one might think about the metaphysics of quantum mechanics,
a probability makes no sense whatsoever when it is only attributed to a
single history (except when it is exactly zero or one). The least one should
have is something like a sample space (or event space) of histories, each
(measurable) subset of which is assigned some probability such that the
usual (Kolmogorov) rules are satisfied. This is a (well-known) problem even
for a single time t and a single projection Pα (i.e. n = 1). In that case,
the problem is solved by finding a self-adjoint operator A of which Pα is a
spectral projection, so that the sample space is taken to be the spectrum
σ(A) of A, with α ⊂ σ(A). Given Pα, the choice of A is by no means
unique, of course; different choices may lead to different and incompatible
sample spaces. In practice, one usually starts from A and derives the Pα
as its spectral projections Pα =

∫
α

dP (λ), given that the spectral resolution
of A is A =

∫
R

dP (λ)λ. Subsequently, one may then either coarse-grain
or fine-grain this sample space. The former is done by finding a partition
σ(A) =

∐
i αi (disjoint union), and only admitting elements of the σ-algebra

generated by the αi as events (along with the associated spectral projection
Pαi

), instead of all (measurable) subsets of σ(A). To perform fine-graining,
one supplements A by operators that commute with A as well as with each
other, so that the new sample space is the joint spectrum of the ensuing
family of mutually commuting operators.

In any case, in what follows it turns out to be convenient to work with
the projections Pα instead of the subsets α of the sample space; the above
discussion then amounts to extending the given projection on H to some

324See also [Zurek, 2005] for a novel derivation of the Born rule, as well as the ensuing discussion
in [Schlosshauer, 2004].
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Boolean sublattice of the lattice P(H) of all projections on H.325 Any state
ρ then defines a probability measure on this sublattice in the usual way
[Beltrametti and Cassinelli, 1984].

3. Generalizing this to the multi-time case is not a trivial task, somewhat facil-
itated by the following device (Isham, 1994). Put HN = ⊗NH, where N is
the cardinality of the set of all times ti relevant to the histories in the given
collection,326 and, for a given history HA, define

CA = Pαn
(tn)⊗ · · · ⊗ Pα1(t1).(8)

Here Pαi
(ti) acts on the copy of H in the tensor product HN labeled by

ti, so to speak. Note that CA is a projection on HN (whereas CA in (6)
is generally not a projection on H). Furthermore, given a density matrix ρ
on H as above, define the decoherence functional d as a map from pairs of
histories into C by

d(HA, HB) = Tr (CAρC∗
B).(9)

The main point of the consistent histories approach may now be summarized
as follows: a collection {HA}A∈A of histories can be regarded as a sample
space on which a state ρ defines a probability measure via (5), which of
course amounts to

p(HA) = d(HA, HA),(10)

provided that:

(a) The operators {CA}A∈A form a Boolean sublattice of the lattice P(HN )
of all projections on HN ;

(b) The real part of d(HA, HB) vanishes whenever HA is disjoint from
HB .327

In that case, the set {HA}A∈A is called consistent. It is important to realize
that the possible consistency of a given set of histories depends (trivially)
not only on this set, but in addition on the dynamics and on the initial state.

Consistent sets of histories generalize families of commuting projections at
a single time. There is no great loss in replacing the second condition by
the vanishing of d(HA, HB) itself, in which case the histories HA and HB are

325This sublattice is supposed to the unit of P(H), i.e. the unit operator on H, as well as the
zero projection. This comment also applies to the Boolean sublattice of P(HN ) discussed below.
326See the mathematical references above for the case N =∞.
327This means that CACB = 0; equivalently, Pαi (ti)Pβi

(ti) = 0 for at least one time ti. This
condition guarantees that the probability (10) is additive on disjoint histories.



Between Classical and Quantum 527

said to decohere.328 For example, in the double slit experiment the pair of
histories {HA, HB} where α1 = β1 is the particle’s launch at the source at
t1, α2 (β2) is the particle passing through the upper (lower) slit at t2, and
α3 = β3 is the detection of the particle at some location L at the screen, is
not consistent. It becomes consistent, however, when the particle’s passage
through either one of the slits is recorded (or measured) without the recording
device being included in the histories (if it is, nothing would be gained). This
is reminiscent of the von Neumann chain in quantum measurement theory,
which indeed provides an abstract setting for decoherence (cf. item 1 in
the preceding subsection). Alternatively, the set can be made consistent by
omitting α2 and β2. See [Griffiths, 2002] for a more extensive discussion of
the double slit experiment in the language of consistent histories.

More generally, coarse-graining by simply leaving out certain properties is
often a promising attempt to make a given inconsistent set consistent; if the
original history was already consistent, it can never become inconsistent by
doing so. Fine-graining (by embedding into a larger set), on the other hand,
is a dangerous act in that it may render a consistent set inconsistent.

4. What does it all mean? Each choice of a consistent set defines a “universe
of discourse” within which one can apply classical probability theory and
classical logic [Omnès, 1992]. In this sense the consistent historians are quite
faithful to the Copenhagen spirit (as most of them acknowledge): in order
to understand it, the quantum world has to be looked at through classical
glasses. In our opinion, no convincing case has ever been made for the
absolute necessity of this Bohrian stance (cf. Subsection 3.1), but accepting
it, the consistent histories approach is superior to Copenhagen in not relying
on measurement as an a priori ingredient in the interpretation of quantum
mechanics.329 It is also more powerful than the decoherence approach in
turning the notion of a system into a dynamical variable: different consistent
sets describe different systems (and hence different environments, defined as
the rest of the Universe); cf. item 6 in the previous subsection.330 In other
words, the choice of a consistent set boils down to a choice of “relevant
variables” against “irrelevant” ones omitted from the description. As indeed

328Consistent historians use this terminology in a different way from decoherence theorists. By
definition, any two histories involving only a single time are consistent (or, indeed, “decohere”)
iff condition (a) above holds; condition (b) is trivially satisfied in that case, and becomes relevant
only when more than one time is considered. However, in decoherence theory the reduced density
matrix at some given time does not trivially “decohere” at all; the whole point of the (original)
decoherence program was to provide models in which this happens (if only approximately) be-
cause of the coupling of the system with its environment. Having said this, within the context
of models there are close links between consistency (or decoherence) of multi-time histories and
decoherence of reduced density matrices, as the former is often (approximately) achieved by the
same kind of dynamical mechanisms that lead to the latter.
329See [Hartle, 2005] for an analysis of the connection between consistent histories and the

Copenhagen interpretation and others.
330Technically, as the commutant of the projections occurring in a given history.
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stressed in the literature, the act of identification of a certain consistent set as
a universe of discourse is itself nothing but a coarse-graining of the Universe
as a whole.

5. But these conceptual successes come with a price tag. Firstly, consistent sets
turn out not to exist in realistic models (at least if the histories in the set carry
more than one time variable). This has been recognized from the beginning
of the program, the response being that one has to deal with approximately
consistent sets for which (the real part of) d(HA, HB) is merely very small.
Furthermore, even the definition of a history often cannot be given in terms
of projections. For example, in Heisenberg’s cloud chamber example (see
item 1 above), because of his very own uncertainty principle it is impossible
to write down the corresponding projections Pαi

. A natural candidate would
be Pα = QB

�
(χ∆), cf. (19) and (28), but in view of (21) this operator fails to

satisfy P 2
α = Pα, so that it is not a projection (although it does satisfy the

second defining property of a projection P ∗
α = Pα). This merely reflects the

usual property Q(f)2 �= Q(f2) of any quantization method, and necessitates
the use of approximate projections [Omnès, 1997]. Indeed, this point calls
for a reformulation of the entire consistent histories approach in terms of
positive operators instead of projections [Rudolph, 1996a,b].

These are probably not serious problems; indeed, the recognition that classi-
cality emerges from quantum theory only in an approximate sense (conceptu-
ally as well as mathematically) is a profound one (see the Introduction), and
it rather should be counted among its blessings that the consistent histories
program has so far confirmed it.

6. What is potentially more troubling is that consistency by no means implies
classicality beyond the ability (within a given consistent set) to assign clas-
sical probabilities and to use classical logic. Quite to the contrary, neither
Schrödinger cat states nor histories that look classical at each time but fol-
low utterly unclassical trajectories in time are forbidden by the consistency
conditions alone [Dowker and Kent, 1996]. But is this a genuine problem,
except to those who still believe that the earth is at the centre of the Uni-
verse and/or that humans are privileged observers? It just seems to be the
case that — at least according to the consistent historians — the ontological
landscape laid out by quantum theory is far more “inhuman” (or some would
say “obscure”) than the one we inherited from Bohr, in the sense that most
consistent sets bear no obvious relationship to the world that we observe. In
attempting to make sense of these, no appeal to “complementarity” will do
now: for one, the complementary pictures of the quantum world called for
by Bohr were classical in a much stronger sense than generic consistent sets
are, and on top of that Bohr asked us to only think about two such pictures,
as opposed to the innumerable consistent sets offered to us. Our conclusion
is that, much as decoherence does not solve the measurement problem but
rather aggravates it (see item 2 in the preceding subsection), also consistent
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histories actually make the problem of interpreting quantum mechanics more
difficult than it was thought to be before. In any case, it is beyond doubt
that the consistent historians have significantly deepened our understanding
of quantum theory — at the very least by providing a good bookkeeping
device!

7. Considerable progress has been made in the task of identifying at least
some (approximately) consistent sets that display (approximate) classical
behaviour in the full sense of the word [Gell-Mann and Hartle, 1993; Omnès,
1992; 1997; Halliwell, 1998; 2000; 2004; Brun and Hartle, 1999; Bosse and
Hartle, 2005]. Indeed, in our opinion studies of this type form the main
concrete outcome of the consistent histories program. The idea is to find a
consistent set {HA}A∈A with three decisive properties:

(a) Its elements (i.e. histories) are strings of propositions with a classical
interpretation;

(b) Any history in the set that delineates a classical trajectory (i.e. a solu-
tion of appropriate classical equations of motion) has probability (10)
close to unity, and any history following a classically impossible trajec-
tory has probability close to zero;

(c) The description is sufficiently coarse-grained to achieve consistency, but
is sufficiently fine-grained to turn the deterministic equations of motion
following from (b) into a closed system.

When these goals are met, it is in this sense (no more, no less) that the
consistent histories program can claim with some justification that it has
indicated (or even explained) ‘How the quantum Universe becomes classical’
[Halliwell, 2005].

Examples of propositions with a classical interpretation are quantized clas-
sical observables with a recognizable interpretation (such as the operators
QB

�
(χ∆) mentioned in item 5), macroscopic observables of the kind studied

in Subsection 6.1, and hydrodynamic variables (i.e. spatial integrals over con-
served currents). These represent three different levels of classicality, which
in principle are connected through mutual fine- or coarse-grainings.331 The
first are sufficiently coarse-grained to achieve consistency only in the limit
� → 0 (cf. Section 5), whereas the latter two are already coarse-grained by
their very nature. Even so, also the initial state will have to be “classical”
in some sense in order te achieve the three targets (a) - (c).

All this is quite impressive, but we would like to state our opinion that neither
decoherence nor consistent histories can stand on their own in explaining the
appearance of the classical world. Promising as these approaches are, they have to
331The study of these connections is relevant to the program laid out in this paper, but really

belongs to classical physics per se; think of the derivation of the Navier–Stokes equations from
Newton’s equations.
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be combined at least with limiting techniques of the type described in Sections 5
and 6 — not to speak of the need for a new metaphysics! For even if it is granted
that decoherence yields the disappearance of superpositions of Schrödinger cat
type, or that consistent historians give us consistent sets none of whose elements
contain such superpositions among their properties, this by no means suffices to
explain the emergence of classical phase spaces and flows thereon determined by
classical equations of motion. Since so far the approaches cited in Sections 5 and
6 have hardly been combined with the decoherence and/or the consistent histories
program, a full explanation of the classical world from quantum theory is still in
its infancy. This is not merely true at the technical level, but also conceptually;
what has been done so far only represents a modest beginning. On the positive
side, here lies an attractive challenge for mathematically minded researchers in the
foundations of physics!

8 EPILOGUE

As a sobering closing note, one should not forget that whatever one’s achievements
in identifying a “classical realm” in quantum mechanics, the theory continues to
incorporate another realm, the pure quantum world, that the young Heisenberg
first gained access to, if not through his mathematics, then perhaps through the
music of his favourite composer, Beethoven. This world beyond ken has never been
better described than by Hoffmann [1810] in his essay on Beethoven’s instrumental
music, and we find it appropriate to end this paper by quoting at some length from
it:332

Should one, whenever music is discussed as an independent art, not
always be referred to instrumental music which, refusing the help of
any other art (of poetry), expresses the unique essence of art that can
only be recognized in it? It is the most romantic of all arts, one would
almost want to say, the only truly romantic one, for only the infinite
is its source. Orpheus’ lyre opened the gates of the underworld. Music
opens to man an unknown realm, a world that has nothing in common
with the outer sensual world that surrounds him, a realm in which he
leaves behind all of his feelings of certainty, in order to abandon himself
to an unspeakable longing. (. . . )

Beethoven’s instrumental music opens to us the realm of the gigantic
and unfathomable. Glowing rays of light shoot through the dark night
of this realm, and we see gigantic shadows swaying back and forth,
encircling us closer and closer, destroying us (. . . ) Beethoven’s music
moves the levers of fear, of shudder, of horror, of pain and thus awakens
that infinite longing that is the essence of romanticism. Therefore, he
is a purely romantic composer, and may it not be because of it, that

332Translation copyright: Ingrid Schwaegermann [2001].
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to him, vocal music that does not allow for the character of infinite
longing — but, through words, achieves certain effects, as they are not
present in the realm of the infinite — is harder?(. . . )

What instrumental work of Beethoven confirms this to a higher degree
than his magnificent and profound Symphony in c-Minor. Irresistibly,
this wonderful composition leads its listeners in an increasing climax
towards the realm of the spirits and the infinite.(. . . ) Only that com-
poser truly penetrates into the secrets of harmony who is able to have
an effect on human emotions through them; to him, relationships of
numbers, which, to the Grammarian, must remain dead and stiff math-
ematical examples without genius, are magic potions from which he lets
a miraculous world emerge. (. . . )

Instrumental music, wherever it wants to only work through itself and
not perhaps for a certain dramatic purpose, has to avoid all unimpor-
tant punning, all dallying. It seeks out the deep mind for premonitions
of joy that, more beautiful and wonderful than those of this limited
world, have come to us from an unknown country, and spark an inner,
wonderful flame in our chests, a higher expression than mere words —
that are only of this earth — can spark.
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périodiques. I, II. Compositio Mathematica, 27: 83–106, 159–184, 1973.

[Colin de Verdière, 1977] Y. Colin de Verdière. Quasi-modes sur les variétés Riemanniennes.
Inventiones Mathematicae 43, 15–52, 1977.

[Colin de Verdière, 1985] Y. Colin de Verdière. Ergodicité et fonctions propres du Laplacien.
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2004. arXiv:quant-ph/0410121

[Cushing, 1994] J. T. Cushing. Quantum Mechanics: Historical Contingency and the Copen-
hagen Hegemony. Chicago: University of Chicago Press, 1994.



Between Classical and Quantum 537

[Cvitanovic et al., 2005] P. Cvitanovic et al.. Classical and Quantum Chaos, 2005.
http://ChaosBook.org.

[Cycon et al., 1987] H. L.Cycon, R. G. Froese, W. Kirsch, and B. Simon. Schrödinger Operators
with Application to Quantum Mechanics and Global Geometry. Berlin: Springer-Verlag, 1987.

[Darrigol, 1992] O. Darrigol. From c-Numbers to q-Numbers. Berkeley: University of California
Press, 1992.

[Darrigol, 2001] O. Darrigol. The Historians’ Disagreements over the Meaning of Planck’s Quan-
tum. Centaurus, 43: 219–239, 2001.

[Davidson, 2001] D. Davidson. Subjective, Intersubjective, Objective. Oxford: Clarendon Press,
2001.

[Davies, 1976] E. B. Davies. Quantum Theory of Open Systems. London: Academic Press, 1976.
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[Mirlin, 2000] A. D. Mirlin. Statistics of energy levels and eigenfunctions in disordered systems.
Physics Reports, 326: 259–382, 2000.

[Mittelstaedt, 2004] P. Mittelstaedt. The Interpretation of Quantum Mechanics and the Mea-
surement Process. Cambridge: Cambridge University Press, 2004.

[Moore, 1939] G. E. Moore. Proof of an external world. Proceedings of the British Academy, 25:
273–300, 1939. Reprinted in Philosophical Papers (George, Allen and Unwin, London, 1959)
and in Selected Writings (Routledge, London, 1993).

[Moore, 1989] W. Moore. Schrödinger: Life and Thought. Cambridge: Cambridge University
Press, 1989.

[Morchio and Strocchi, 1987] G. Morchio and F. Strocchi. Mathematical structures for long-
range dynamics and symmetry breaking. Journal of Mathematical Physics, 28: 622–635,
1987.

[Muller, 1997] F. A. Muller. The equivalence myth of quantum mechanics I, II. Studies in His-
tory and Philosophy of Modern Physics, 28: 35–61, 219–247, 1997.

[Murdoch, 1987] D. Murdoch. Niels Bohrs Philosophy of Physics. Cambridge: Cambridge Uni-
versity Press, 1987.

[Nadirashvili et al., 2001] N. Nadirashvili, J. Toth, and D. Yakobson. Geometric properties of
eigenfunctions. Russian Mathematical Surveys, 56: 1085–1105, 2001.

[Nagy, 2000] G.Nagy. A deformation quantization procedure for C∗-algebras. Journal of Oper-
ator Theory, 44: 369–411, 2000.

[Narnhofer, 2001] H. Narnhofer. Quantum K-systems and their abelian models. Foundations of
Probability and Physics, pages 274–302. River Edge, NJ: World Scientific, 2001.



Between Classical and Quantum 547

[Natsume and Nest, 1999] T.Natsume and R. Nest. Topological approach to quantum surfaces.
Communications in Mathematical Physics, 202: 65–87, 1999.

[Natsume et al., 2003] T.Natsume, R. Nest, and P. Ingo. Strict quantizations of symplectic man-
ifolds. Letters in Mathematical Physics, 66: 73–89, 2003.

[Nauenberg, 1989] M. Nauenberg. Quantum wave packets on Kepler elliptic orbits. Physical
Review, A40: 1133–1136, 1989.

[Nauenberg et al., 1994] M. Nauenberg, C. Stroud, and J. Yeazell. The classical limit of an
atom. Scientific American, June, 24–29, 1994.

[Neumann von, 1931] J. von Neumann. Die Eindeutigkeit der Schrödingerschen Operatoren.
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[Rédei, 1998] M. Rédei. Quantum logic in algebraic approach. Dordrecht: Kluwer Academic
Publishers, 1998.
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[Woodhouse, 1992] N. M. J. Woodhouse. Geometric Quantization. Second edition. Oxford: The

Clarendon Press, 1992.
[Yajima, 1979] K. Yajima. The quasi-classical limit of quantum scattering theory. Communica-

tions in Mathematical Physics, 69: 101–129, 1979.
[Zaslavsky, 1981] G. M. Zaslavsky. Stochasticity in quantum systems. Physics Reports, 80: 157–

250, 1981.
[Zeh, 1970] H. D. Zeh. On the interpretation of measurement in quantum theory. Foundations

of Physics, 1: 69–76, 1970.
[Zelditch, 1987] S. Zelditch. Uniform distribution of eigenfunctions on compact hyperbolic sur-

faces. Duke Mathematical J., 55: 919–941, 1987.
[Zelditch, 1990] S. Zelditch. Quantum transition amplitudes for ergodic and for completely in-

tegrable systems. Journal of Functional Analysis, 94: 415–436, 1990.
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