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The concept of  energy, the premier concept o f  physics and indeed of  all science, is here 
investigated from the standpoint o f  its early historical origin and the philosophical im- 
plications thereof. The fundamental assumption is made that the root o f  the concept is 
the notion of  invarianee or constancy in the midst o f  change. Salient points in the develop- 
ment o f  this idea are presented fi"om ancient times up to the publication of  Lagrange's 
M6canique Analytique (1788). 

2. INTRODUCTION 

Of all the concepts or constructs of physics, energy, by its unifying capacity, has proved 
by all odds to be the most significant and successful. Its domain of  application has 
indeed by now far transcended physics and covers all branches of science. Not  only 
has it played a major role in the logical development of physics itself, but by common 
consent it is the physical construct which has proved to contain the greatest meaning 
for all aspects of  human life. Under the misnomer "power,"  it is the stock in trade of 
the engineer and that which makes the wheels of the world go round. More and more, 
it is recognized by economists as the real wealth of nations. The interpretation of 
phenomena in terms of the transfer of energy from one place to another and the 
transformation of energy from one form to another is the most powerful single tool 
in human understanding of experience. 

The impact of  the concept of energy on society has been enormous in the past and 
will be even greater in the future. What is the nature of  this impact ? It has both ideo- 
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logical and technological aspects. The ideological influence consists largely in the fact 
that the concept serves as a unifying element in all scientific descriptions of experience, 
enabling all scientists to think more effectively about their various problems and thus 
promoting the fundamental unity of science. As knowledge of nature becomes more 
specialized, this role of energy becomes of increasing significance. 

The technological aspect of the impact of the concept of energy on society 
scarcely needs emphasis. It is necessary only to remind ourselves of the stupendous 
increase in the average number of energy "slaves" per head of population on the earth 
in the last quarter century. This has correspondingly increased the well-being and 
comfort of many millions. At the same time, progress along this line has not been 
devoid of serious sociological problems. The energy supply available for transforma- 
tion has not been well distributed, and many segments of the earth's population are 
going without their fair share. Moreover, even in those nations in which the energy 
supply available for human needs has vastly increased, this has been accompanied by 
unpleasant by-products like water and air pollution. To solve these problems will, of 
course, involve further skillful application of the energy idea, so that of its impact 
there appears to be veritably no end. 

A concept like energy obviously has had a history. One cannot hope really to 
understand its present state or its future implications without some appreciation of 
this history. Closely associated with the historical development there is, moreover, the 
evaluation of what may be called the philosophical significance of the concept. The 
two aspects are strictly speaking inseparable. 

It is the aim of the present essay to take a look at the origins and early develop- 
ment of the energy idea. This examination will be undertaken in the light of certain 
assumptions which are of essentially philosophical nature, namely, that the basis of the 
concept of energy as we use it today is the idea of invariance, which here means 
constancy in the midst of change. We think in this connection of what we now call 
the mechanical energy of a system of mass particles subject only to their mutual 
interactions: this quantity is a function of the velocities and positions of the particles 
(in some inertial reference frame) that stays constant in time, no matter what the 
motions of the particles may be. 

Definitely implied in our procedure is the conviction that unless we can find in 
earlier notions a connection with the way we look upon the concept of energy today 
our search will be illusory. Of course, we must face the fact that not all scientists may 
agree that the notion of invariance in the midst of change is the key idea in energy. An 
example of an opponent of the idea is Ernst Mach, m who vigorously expressed the 
opinion that the actual root of the energy concept is to be found in the principle of the 
impossibility of perpetual motion. Mach was a searching critic of the philosophy and 
history of science and his views are entitled to great respect. Leaving aside the fact, 
however, that in any case the principle of the impossibility of perpetual motion is 
closely associated logically with the idea of invariance, we may note that Mach's 
extreme view, if followed, would have prevented the generalization of the idea of 
energy to all physical phenomena. For example, Mach would not accept the mechani- 
cal theory of heat. His polemic against it almost rivals in intensity his attack on the 
atomic theory. It seems clear that his positivistic leanings prevented him from seeing 
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any advantage in imaginative scientific theorizing. He could hardly have become a 
successful theoretical physicist in the sense of Maxwell, Boltzmann, Gibbs, and their 
twentieth century successors. 

2. ROOTS OF THE CONCEPT OF ENERGY IN ANTIQUITY. 
THE PHILOSOPHERS 

Most scientific concepts are not easy to trace historically. Energy provides no 
exception. One plausible source of the idea is connected with the invention of 
machines, an important technological development in the life of early man. People 
early learned the social significance of the fact that human life is impossible without 
somebody's labor, but rather naturally sought to reduce the terrific burden of this 
labor. Eventually, some clever and imaginative folk discovered the possibility of taking 
the sting out of human labor by the use of such devices as the lever, the inclined plane, 
and various forms of pulley systems. These gadgets, which we now call simple machi- 
nes, must have seemed to the ancients to be endowed with almost magical powers, they 
made it so much easier to raise heavy weights, for example, or to give an arrow greater 
speed, as by the use of the bow. 

The discoverers and users of such machines must have observed very early, 
however, that the mechanical advantage provided by them is always accompanied by a 
compensating disadvantage: nature is not inclined to give something for nothing. 
It was found, for example, that to raise a given weight by applying to a pulley system 
a force much less than the weight, the speed with which the pulley rope is pulled must 
be much greater than the speed with which the weight is raised. Alternatively, if one 
wishes to pull with low speed, the time needed for raising the weight is correspondingly 
increased. With the gain in ease of exertion in the performance of a given bit of labor 
provided by the machine there goes an inevitable loss of something represented in 
general by an increase in the time required to do the job. This fact was recognized 
explicitly in the writings on mechanics of Hero of Alexandria, (2) who flourished 
around 60 A.D. This peculiar principle of compensation, in which a certain gain in a 
vital effect is always balanced by a corresponding loss in an associated phenomenon, 
contained within itself the root of the concept of energy. The compensatory factor so 
evident in the behavior of machines implies that something stays constant in the midst 
of the obvious changes that take place in the operation of the machine. It is 
this constant "something" which later became quantified as energy. 

At this point, we are tempted to look into Greek philosophy to see whether we can 
locate any reference to the general idea of constancy in the midst of change. As a matter 
of fact, it is there, though whether any Greek before Aristotle ever associated it with 
the behavior of machines is problematical. We can find what we are looking for in the 
alleged views of the two pre-Socratic philosophers Parmenides of Elea and Heraclitus 
of Ephesus (both of approximately the 6th century B.C.). Heraclitus is supposed to 
have taught that "all things flow" (panta rhei), or all is change. He was clearly 
impressed by the ever-changing flux of sensation characterizing our experience. Much 
of modern science is consistent with this point of view, as is shown in our concern 
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for the changing behavior of physical systems with the passage of time. But acceptance 
of Heraclitus' idea in its extreme form would make all science a hopeless discipline, 
since we could never get a mental grip on anything before it became something else. 
As a matter of fact, some commentators on Heraclitus hold the view that in spite of his 
emphasis on the primacy of change, he also held that there is something invariant in the 
universe as a whole. This something he apparently took forfire, though he obviously 
did not mean fire in a modern sense, nor even in the ancient Greek practical sense. It 
was some ethereal essence which could be transformed into the common objects of 
our experience without net loss. 

Parmenides comes definitely closer to the idea of constancy in the midst of change. 
Impressed (or possibly depressed) by the apparently chaotic sequence of events in 
human experience, he decided to treat change as merely an illusion. He felt that this is 
what men try to do when they invent names for things and so identify them continually 
throughout the flux of sensation. There is a strong human urge to extract from experi- 
ence something that "'stays put" long enough for effective observation and study; and 
this Parmenides emphasized. To be sure, his writings are fragmentary, and there is the 
obvious danger of reading too much into them. Nevertheless, the notion of invariance 
in the midst of change is there. If we seek an ancient patron saint of the concept of 
energy, it will surely be Parmenides. 

Let us now return to machines and see what relevance to the concept of energy 
we can extract from the Greek attempts to explain their action. 

It was Aristotle (384-322 B.C.) who wrote the first treatise on physics in the 
Western tradition. But this famous treatise Physica, ~ though it pays extensive 
attention to motion, says nothing about machines. However, there does exist a 
treatise attributed by some authorities to Aristotle, though others, including Marshall 
Clagett,(4) the well-known historian of mechanics, believe that the treatise was written 
by one of Aristotle's immediate successors. In the Latin version variously styled 
Mechanica, Problemata Mechanica, or Quaestiones Mechanicae, it may well be the first 
extant treatise on mechanics. At any rate, it contains probably the first attempt in 
Western science to explain how machines work. From the standpoint of the problem of 
the origin of the concept of energy, the importance of this treatise is that its treatment is 
based on a dynamical approach, in sharp contrast to the static method favored later by 
Euclid and Archimedes. 

According to Pierre Duhem, (5) the author of Mechanica used the basic axiom 
taken from Aristotle's Physica: The ""force" (puissance in French) exterted by the 
mover who moves a body is measured by the weight of the body and the velocity of the 
impressed motion. On this view, when the same "force" acts, the impressed velocity 
will be inversely proportional to the weight. If  we represent velocity by V and weight 
by W, and '"force" by F, Duhem expresses the content of the above axiom in the 
modern form: 

F = k V W  (1) 

where k is some constant. We may note in passing that the Greeks would not have used 
this form of expression, since they preferred always to use pure numbers in expressing 
mathematical relationships. 
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They would have expressed the content of the axiom in the form 

Vii V~ = rye~ Wl (2) 

In any case, in modern physical terminology, if F is taken as the equivalent of what 
we now call force, Eq. (1) makes no sense. However, it could agree with modern 
physics i fF  is interpreted as power or the time rate of doing work, k being set equal 
to unity. 

In the application of Eq. (t) to the behavior of a lever with weights W1 and W2 
suspended from the ends of the weightless lever bar at distances/1 and l~ respectively 
from the fulcrum C, the further assumption is made in Mechaniea that when the same 
"force" acts, the point of the lever further from the fulcrum C moves with greater 
velocity. The author convinced himself of this from the geometrical properties of the 
circle. But this is equivalent to the relations 

vl  = kt~, v~ = kt~ (3) 

If these are combined with (1) or (2), the result is 

l, w~ = l~w, (4) 

which is the law of the lever. With V W  treated as power rather than "force," the 
above "proof" is equivalent to that based on the modern principle of virtual velocities 
or virtual work. Of course, this amounts to reading into the Aristotelian treatment 
more than is actually there. This, however, is a fairly common procedure among 
historians of science. That the author of Mechanica preferred the dynamical method of 
establishing the law of the lever is significant. He evidently was impressed by the fact 
that something stays the same at both ends of the lever, in spite of the different weights. 

These considerations gain in significance with respect to the origin of the concept 
of energy when we reflect that the explanation of the law of the lever by Archimedes, 
the greatest physicist in antiquity, proceeded on quite different lines. Archimedes 
shunned motion in his theoretical investigations and provided a "proof" based entirely 
on static equilibrium considerations. His method therefore sheds no light on the idea 
of energy. 

3. THE MIDDLES AGES 

Modern scholarship has shown that during the Middle Ages in Western Europe 
there was a great deal of interest in the attempt to explain the behavior of machines. 
Most of this was in the Aristotelian tradition. We shall not discuss it here, but merely 
call attention to the detailed studies by Hiebert/6~ Clagett, (4) and Moody and Clagett.(7~ 

3.1. Stevinus and Galileo 

In looking for vestiges of the concept of constancy in the midst of change during 
the late 16th and early 17th centuries, we are confronted by two men, both of whom 
devoted much attention to the behavior of machines and endeavored to understand 
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them from different points of view. The first was the famous Flemish engineer Simon 
Stevin (1548-1620), better known as Stevinus, and the second his contemporary, the 
even greater physicist, Galileo Galilei (1564-1642). 

Stevinus was definitely a disciple of Archimedes rather than Aristotle. In his two 
great works, De Beghinselen der Weeghconst (Leiden, 1586) and Hypomnemata 
Mathematica (1608), C8) he showed complete disagreement with the Aristotelian method 
of understanding the behavior of a machine. He says, "The reason for the equilibrium 
of a lever does not reside at all in the arcs of the circle which its extremities describe." 
We have just seen that this motion was precisely the basis of the treatment 
in Mechanica. Disagreement could not have been more complete. 

It is Stevinus' handling of the inclined plane that provides his chief claim to fame 
in the field of the operation of machines. His method here has a definite connection 
with the energy concept, since it makes use of the assumption of the impossibility 
of perpetual motion starting from rest. His famous scheme, of which he was so proud, 
imagines 14 equal bails fastened together in a single loop with inextensible strings of 
negligible mass and length and draped over two inclined planes of the same height 
placed back to back. One of the planes accommodates four of the balls on its surface 
and the other, of half the length, permits two balls to rest on it. The other eight balls 
hang symmetrically below the planes. Stevinus employs the logical principle of the 
excluded middle class to assume that the balls either start to move or do not move. 
But if they move at all, they must move indefinitely and this would be perpetual 
motion, which Stevinus discards as impossible. Hence, he concludes (after cutting 
off the eight balls hanging below the planes on the ground that they contribute nothing 
to the problem because of symmetry) that the balls on the plane must be in equilibrium. 
Therefore, the weight that can be supported on any plane is directly proportional to 
the length of the plane. This is essentially the law of the inclined plane as a machine. 
Stevinus was undoubtedly lucky in his specific set up. We are more concerned here, 
however, with his strong adherence to the idea of the impossibility of perpetual 
motion. He was probably familiar with the earlier views on this subject of Leonardo da 
Vinci (9) (1452-1519) and Girolamo Cardano (1°1 (1501-1576). There is no doubt these 
earlier scientists were convinced that it is not possible in terrestrial phenomena to get 
something for nothing, which would be what would happen if motion were to start by 
itself and persist indefinitely. This is indeed tied in with the modern energy concept 
and might well serve as an epigrammatic version of the general principle of conserva- 
tion of energy or the first law of thermodynamics. 

It seems clear from an examination of the writings of Galileo that he fully grasped 
the significance of the compensatory factor in the operation of machines, which we 
now interpret in the light of the invariance involved in the concept of energy. By the 
time Galileo turned his attention to machines, the laws governing their behavior were 
rather well known. There is, curiously enough, no record that Galileo was familiar with 
the work of Stevinus, at any rate at the time when Galileo prepared his university 
lectures which led to the book On Mechanics Ill) (first published in Italian in 1649, 
after the death of the author). 

In the book just referred to, Galileo shows himself even more aware than his 
Aristotelian predecessor of  the element of compensation involved in the action of a 



The Concept of Energy and Its Early Historical Development 389 

machine.  In  the very beginning,  he comments  on how so m a n y  mechanic ians  are  
deceived into th inking  their  machines  can accompl ish  opera t ions  which are impossible .  
Quo t ing  direct ly  f rom the English t rans la t ion  o f  the book :  

"These deceptions appear to me to have their principal cause in the belief these 
craftsmen have and continue to hold of being able to raise very great weights with a 
small force, as if with their machines they could cheat nature whose instinct--nay, 
whose most firm constitution--is that no resistance may be overcome by a force that 
is not more powerful than it. How false such a belief is I hope to make most evident 
with true and rigorous demonstrations that we shall have as we go along." 

This is no t  a comple te ly  clear  and  unequivocal  s ta tement ,  bu t  t aken  in conjunc t ion  
with wha t  follows i t  seems to emphasize  Gal i leo ' s  grasp  o f  the fundamenta l  fact  tha t  
in machines  one canno t  get someth ing  for  nothing.  A litt le la ter  in the sect ion f rom 
which the above  quo ta t ion  has been taken,  he elucidates  more  extensively: 

"Now assigning any determined resistance [he means here the force to be exerted 
or the weight to be raised by the machine] and delimiting any force [he means here 
the applied force] there is no doubt that the given weight will be conducted by the 
given force to the given distance; for even though the [applied] force may be very 
small, by dividing the weight into many particles of which each shall not remain superior 
to the [applied] force and transferring them one at a time, the whole weight will finally 
be conducted to the appointed place; nor may it reasonably be said at the end of the 
operation that the great weight has been moved and translated by a force lesser than 
itself but rather by a force which has many times repeated that motion and space 
which will have been traversed only once by the whole weight. From which it appears 
that the speed of the force has been greater than the resistance of the weight [here the 
translator has followed Galileo in an illogical statement, for a speed cannot logically 
be compared with a resistance; what Gafileo must have meant was the speed of the 
resistance of the weight] by as many times as that weight is greater than the force, 
since in the time in which the moving force has repeatedly traversed the interval between 
the endpoints of the motion, the thing moved has passed over this by a single time." 

One is ent i t led to  assume f rom this phraseo logy  tha t  Gal i leo  grasped the essence 
o f  the pr incip le  o f  vi r tual  velocities o r  v i r tual  work.  He  felt so s t rongly  the val idi ty  o f  
this po in t  o f  view tha t  he repea ted  essential ly the same s ta tements  on  the next page  
o f  his treatise. He  cont inual ly  emphas ized  tha t  t hough  a machine  does possess a 
decided mechanica l  advantage ,  i t  is only  at  the expense o f  the t ime requi red  for  i t  to 
car ry  out  its funct ion.  

W e  pass over  Gal i l eo ' s  a t tempts  to expla in  the behav ior  o f  the lever and  the 
incl ined plane.  In  m a n y  ways he comes closest to  an invar iance  concept  in his f amous  
p e n d u l u m  experiment ,  devised in o rde r  to p rov ide  an exper imenta l  basis for  his funda-  
menta l  a s sumpt ion  tha t  when a bal l  falls f rom rest  a t  a given height  f rom the ground ,  
the veloci ty on arr iving at  the g round  depends  only on the height  and  is independen t  
o f  the pa th  o f  fall. I t  is no t  necessary to repea t  the details  here, as they are clearly set 
for th  in Gal i l eo ' s  Dialogues Concerning Two New Sciences. cm The i m p o r t a n t  th ing to 
note  is Gal i leo ' s  grasp o f  the fact  tha t  in spite o f  the different pa ths  there is someth ing  
which remains  constant .  I t  mus t  have impressed  the au thor  of  the ingenious experi-  
ment.  T o d a y  we in terpre t  i t  in terms o f  the invar ian t  m a x i m u m  poten t ia l  energy 
associa ted with fall  f rom a given height  independent ly  o f  pa th  and  t ime o f  descent.  

82s/~/4-7 
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Galileo's interest in pendulum experiments, as exemplified in the case just 
discussed, was undoubtedly stimulated by his very early discovery, as a young man, 
in the Cathedral of Pisa, of the isochronism of the small oscillations of a pendulum. 

4. CONSERVATION IDEAS IN THE 17TH AND 18TH CENTURIES. 
DESCARTES, LEIBNIZ, AND LAGRANGE'S M~CANIQUE 
ANAL YTIQ UE 

After the death of Galileo and as the 17th century wore on, emphasis on the idea 
of conservation in physics became more marked. Ren6 Descartes (1596-1650) in 
France made much of it, particularly in connection with the laws of impact of bodies. 
His studies of these phenomena led him to what we now call the principle of the 
conservation of momentum or what he called conservation of quantity of motion. 
Descartes (la) was so impressed with this principle that he was led to the general 
assertion that the total momentum of the Universe is constant. He finally concluded 
that the proper measure of force as the entity responsible for the production of motion 
is the change in momentum per unit time. This view may well have had an influence 
on Newton when he came to systematize mechanics in his Pr#Tcipia. 

Gottfried Wilhelm Leibniz (1646-1716) disagreed with the point of view of 
Descartes. In the year 1686, he published in the Acta Eruditorum (Leipzig) a brief 
paper 114) in which he termed the theory of Descartes a "perversion" of mechanics. He 
convinced himself that the " t rue"  measure of the efficacy of a force is the product of the 
mass and the square of the velocity, which he termed the "vis viva" or "living" force, 
as contrasted to the "vis mortua" or "dead" force of statics. His argument, put in 
simple terms, is as follows. He imagines two masses m and 4m. The first is assumed to 
be dropped from rest at the height 4h and the second a height h from the ground. 
Leibniz assumes that each mass in falling will acquire what he calls the "force" 
necessary to enable it to rise again to the same height. That is, the "force" involved 
in the fall of  mass rn through 4h will be sufficient to carry this mass up again to where 
it started and leave it there at rest, neglecting any friction or other resistance. But 
Leibniz also assumes that the same "force" is necessary to lift the mass m through the 
height 4h as to lift the mass 4m through the height h. We see that this is essentially 
treating the word "force" here as equivalent to "work" in the modern physical sense. 
Now, this clearly entails the result that the same "force" is involved in the fall of  m 
through 4h as is involved in the fall of  4m through h. But the quantities of motion, 
in the Cartesian sense, acquired in these two falls are not the same; from the law of 
falling bodies, rn in falling through 4h acquires a velocity twice as great as that which 
4m acquires in falling through h. If  we call the latter velocity v, the quantity of motion 
or momentum acquired by m in its fall is m(2v), while that acquired by 4m is 4rn(v), or 
twice as much. So, says Leibniz, there is no conservation of quantity of motion in this 
case and hence in general we should not speak of this kind of conservation. The 
problem remains, "What, if anything, is conserved here ?" To Leibniz this is simple: 
It is the product of the mass times the square of the velocity acquired. For  then, in the 
example under consideration m(2v) ~ = 4my ~. This quantity Leibniz felt deserved a 
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special name, and he called it the vis viva. It is, of  course, related to what later became 
known in the 19th century as the kinetic energy, being twice the latter. 

This difference in the views of  Descartes and Leibniz gave rise to a celebrated 
controversy, which raged in scientific circles for some half a century. D'Alembert  
(1717-1783) felt he had finally solved it when he published his famous Traitd de 

Dynamique aS~ in 1743. Here, he emphasized that the apparently conflicting viewpoints 
are due essentially to a confusion in terminology, and that they can be readily 
reconciled by appropriate definitions. Descartes' concept of force involves assuming 
that the efficacy of a force is measured by its effect over time, or, as we should now 
express it, by the time integral of the force. But this is just the change in the momentum 
of the particle acted on by the force; to illustrate for a particle of mass m, 
from Newton's law of motion, 

F = d(mv)/dt (5) 

and 

F dt -= (rnv)l --  (mv)o (6) 
t o  

where the right-hand side in (6) is the difference between the momentum values at the 
instants t o and q between which the force is assumed to act. 

On the other hand, as D'Alembert pointed out, it is perfectly possible to measure 
the effÉcacy of a force by its effect over space, and this is essentially what Leibniz had 
in mind. In modern notation (for the special case of the motion of a single particle 
along the x axis) we arrive at 

og 2 t~ 

[ F dx = (½my2)1 - -  (½mv2)o (7) 
, )  

og l 

or, in words, the cumulative effect of force over distance (the left side, which we now 
term the work done by the force), is equal to the change in the quantity ½my 2 between 
the two positions xl and x0, brought about by the action of the force. We now call 
½my 2 the kinetic energy of the particle and the equation (7) is known as the work- 
kinetic energy theorem. 

It is of interest to note that there is now some doubt whether D'Alembert should 
be considered to have definitely settled the momentum vs. vis viva controversy. A 
recent historian of physics, Laudan, ~16) has pointed out that historical evidence shows 
that arguments over the " t rue" measure of force continued long after 1743, and that 
many well-known writers on the subject made no mention of D'Alembert in their 
discussions. It seems that the 19th century writers who credited D'Alembert with the 
solution of the controversy did so because they were more familiar with his numerous 
accomplishments in mathematics and mechanics as well as his treatise on dynamics 
than with the works of  his contemporaries and successors. The fact remains that 
D'Alembert did set forth the general argument that modern physics has found 
satisfactory. 

A claim has been made in behalf of  Christian Huygens (1629-1695) that he 
introduced the idea of  vis viva before Leibniz. It is true that in his famous work 



392 R.B. Lindsay 

Horologium Oscillatorium cm (1673), he discussed the compound pendulum and in his 
treatment he used effectively the product of mass times the square of the velocity for 
the various parts making up the pendulum. But nowhere did he single out this quantity 
for special attention or speak of it as a possible measure of the efficacy of a force, much 
less baptize it with a name to emphasize its significance in terms of invariance and 
conservation. It was later commentators who read the vis viva interpretation into 
Huygens' proof  of the law of the compound pendulum. 

D'Alembert was obviously impressed with the importance of the vis viva concept 
and devoted to it the final chapter of his Trait~ de Dynamique. ~15) He entitled this 
chapter, "On the principle of the conservation of living force." He first states this for 
the perfectly elastic collisions of particles, in which it has the following form: When a 
number of particles collide elastically, the sum of the products of each mass times the 
square of its velocity remains constant. This is a true conservation law. D'Alembert 
does not deduce it. The modern deduction depends on the treatment of collisions by 
means of Newton's coefficient of restitution and the equating of this coefficient to 
unity to correspond to perfect elasticity. D'Alembert generalizes the principle to apply 
to a collection of particles held together by rigid connections, i.e., forming effectively 
a rigid body. If such a collection moves in such a way that no "accelerating force" 
(as he calls it) acts on any particle, the total vis viva remains constant, irrespective of 
the motions of the individual particles. Again, he does not demonstrate this, though he 
illustrates it with a number of special cases, based on the use of his well-known 
principle governing the motion of systems of particles subject to constraints. It corre- 
sponds of course to highly idealized and not very practical situations. 

D'Alembert does indeed also discuss the case in which the masses of a system 
are acted on by accelerating forces and shows that then the total vis viva does not 
remain constant, but that the change in it is equal to the "effect" of the forces, which 
in modern terminology is the same as the work done by the forces. This result is 
equivalent to the work-kinetic energy theorem in modern mechanics. From the 
standpoint of our present concern, however, it is significant that nowhere deos 
D'Alembert interpret his result in terms of the conservation of a quantity made up of 
the sum of the vis viva and another quantity depending on the relative positions of the 
particles of the system. The value of introducing the notion of potential energy and 
hence the concept of the total mechanical energy was not at that time appre- 
ciated, though the germ of the idea was certainly there. 

A closer approach to the energy construct as we employ it today is found in the 
famous treatise by Lagrange, Mdcanique Analytique, C1~) first published in 1788. One 
of the greatest landmarks in the history of physics, this constituted a systematic 
presentation of the science of mechanics from a mathematical point of view. In it, the 
author presented his celebrated method of generalized coordinates and derived the 
equations which still bear his name, In a chapter devoted to vis viva (or force rive 
in French), he finally showed in explicit fashion that in certain cases it is possible to 
set up a function of the coordinates of a system of particles which, when added to the 
vis viva of the system, yields a quantity constant in time. Of course, he does not call 
this the mechanical energy of the system, nor does he use the term energy anywhere in 
his treatise. Actually, he refers to the result as an example of the conservation of vis 
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viva, for  reasons which are not  clear, since in the case he discusses the vis viva will 
certainly change in general as time passes. A t  any rate, the equat ion he writes corre- 
sponds to what  we now call the energy equat ion for  a dynamical  system. In  fact, 
Lagrange later recognizes this sort o f  equat ion as a first integral o f  the equations o f  
motion.  This certainly marks an epoch in the realization o f  the existence and availabil- 
ity o f  a unifying concept  in the study of  dynamical  systems, though  the time was not  
yet ripe for  its complete exploitation. One reason for  this may  well have been the 
realization that  the setting up of  a first integral o f  the equations o f  mot ion  was not  
always or  even in general practical for  terrestial dynamical  systems. 

F r o m  this point,  the story o f  the evolution o f  the energy concept  moves in the 
direction o f  other physical phenomena,  notably heat. 

REFERENCES 

1. Ernst Mach, History and Root of the Principle of the Conservation of Energy (Transl. by P. E. P. 
Jourdain) (Open Court Publishing Company, Chicago, 1911), p. 39. 

2. M. R. Cohen and I. E. Drabkin, A Source Book of Greek Science (McGraw-Hill, New York, 
1948). See particularly the reference on p. 230 to the work of Hero of Alexandria, Mechanics 
II, 21-26. 

3. Richard McKeon, The Basic Works of Aristotle (Random House, New York, 1941), p. 353. 
4. Marshall Clagett, The Science of Mechanics in the Middle Ages (University of Wisconsin Press, 

Madison, 1959), p. 477. 
5. P. Duhem, Les Origines de la Statique (Paris, 1905), Vol. 1, p. 177. 
6. Erwin N. Hiebert, Historical Roots of the Principle of Conservation of Energy (University of 

Wisconsin Press, Madison, 1962). 
7. E. A. Moody and M. Clagett, The Medieval Science of Weights (University of Wisconsin Press, 

Madison, 1952). 
8. Simon Stevin, De Beghinselen der Weeghconst (Leiden, 1586). Hypomnomata Mathematica 

(Leiden, 1608). The latter is a Latin translation of Stevin's writings on mechanics. 
9. Edward MacCurdy, The Notebooks of  Leonardo da Vinci (Garden City Publishing Company, 

New York, 1941). See p. 802 for reference to impossibility of perpetual motion. 
10. Girolamo Cardano, De Subtilitate (Milan, 1551). 
11. Galileo Galilei, On Mechanics (ca. 1590) (Transl. by Stillman Drake) (University of Wisconsin 

Press, Madison, 1960). See in particular pages 138ff on the principle of virtual velocities. 
12. Galileo Galilei, Dialogues Concerning Two New Sciences (Transl. by Henry Crew and Alfonso 

De Salvia) (Northwestern University Press, Evanston, Illinois, 1939). See p. 170. 
13. Ren6 Dugas, A History of  Mechanics (Transl. by J. R. Maddox) (Editions du Griffon, Neuch~tel, 

Switzerland and Central Book Company, New York, 1953). See p. 169. 
14. Gottfried Wilhelm Leibniz, in Acta Eruditorum (Leipzig) (1686). 
15. D'Alembert, Traitd de Dynamique (Paris, 1743). The relevant reference to the vis viva contro- 

versy will be found on p. XXIII of "Discours prrliminaire" in the Traitd (2nd Ed., Paris, i758). 
16. L. L. Laudan, The vis viva controversy in a post mortem, 1sis 59, 131 (1968). 
17. Christian Huygens, Horologium Oscillatorium (Paris, 1673). 
18. Joseph L. Lagrange, Mdcanique Analytique (Paris, 1788). 

825/#4-7" 




