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"Superconducting" Causal Nets 

D a v i d  F i n k e l s t e i n  I 

Received January 15, 1988 

The world is described as a relativistic quantum neural net with a quantum 
condensation akin to superconductivity. The sole dynamical variable is an 
operator representing immediate causal connection. The net enjoys a quantum 
principle of equivalence implying local Lorentz SL(2, C) invariance and causal- 
ity. The past-future asymmetry of its cell is similar to that of the neutrino. A 
net phase transition is expected at temperatures on the order of the W mass 
rather than the Planck mass, and near gravitational singularities. 

1. I N T R O D U C T I O N  

Physical t ime space is the space of events provided with temporal  
structure. This structure has been  var iously described by a chronometr ic  
tensor  g = ( g m , ( x ) ) ,  or a spin form cr = (o'ABm(X)), or a causal  relation x C y  

("x  is causal  to y" )  which tells when  x is causal ly prior  to y. Here, fol lowing 

up a suggest ion of Sorkin 1987, it is described by a causal  net, a set of  
events provided with a re la t ion x c y  ("x  is connec ted  to y")  which means  
that  x is an immedia te  causal  an tecedent  to y. 

The idea that  local Lorentz invar iance  is a macroscopic  q u a n t u m  
p h e n o m e n o n  has been  aired, more or less seriously, at meetings on  q u a n t u m  
time space structure for a decade and  more. We can be more specific now: 

The world seems to be a q u a n t u m  condensa t ion  of  bosonl ike  event-pairs  
in a causal  net  of  fe rmionic  events. The spin form o- is a macroscopic  
~b-vector of such pairs. 

Net theory is a response to the singulari t ies and  infinities of field 
theories,  inc lud ing  the Schwarzschild solut ion to Einste in 's  gravi tat ional  
equat ions.  That  so lu t ion  has two singularit ies,  an outer  one at r = 2 m  and  
an inner  one at r = 0. The outer  s ingulari ty is merely the theory 's  way of 
tell ing us that  we have laid on inappropr ia te  coordinates ,  and  in more 
appropr ia te  coordinates  it becomes a one-way membrane ,  permit t ing either 
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inward or outward flow but not both. The inner singularity, however, is the 
theory's way of telling us that it is out of its depth. A deeper theory is 
needed to describe time space right at particles or singularities. 

It was at first hoped that the one-way membrane, either of the point 
particle or of a gravitational topological charge, would be useful, not only 
in astrophysics, but, because it breaks past-future symmetry T, also in 
particle physics, for the T-breaking weak interactions (Finkelstein, 1958). 
Astrophysical applications galore have materialized since the pioneering 
works of Penrose (1965) and Ruffini and Wheeler (1970), but not particle 
ones. In the first place, the one-way membrane is spherical, certainly an 
inappropriate starting point for a model of a spin-�89 lepton. In the second 
place, Kruskal (1960) provides a T-symmetric universe of two sheets, 
combining an inward membrane with its primordial T-image, an outward 
one. Finally, Bekenstein (1973) and Hawking (1975) make it clear that small 
one-way membranes that are still large enough for semiclassical radiation 
theory are disastrously unstable. Only a quantum theory of gravity can tell 
whether there are smaller, yet more stable quantum versions of the classically 
unstable one-way membrane, as there are of classically unstable atoms. 

This question, while still unanswered, is less compelling now, for 
according to the  deeper net theory that is our response to the inner singular- 
ity, there is a more fundamental T asymmetry present at every event, and 
more relevant to particle physics; not the one-way membrane, which is 
contingent and global, but one-way connections, which are necessary and 
local, and constitute the world itself. Even in quantum nets whose cells 
have exact Lorentz SL2 invariance, the elementary cell inevitably lacks T 
symmetry, being in fact described by a chiral spinor, and for the theory to 
survive, the T symmetry exhibited by the net at ordinary temperatures must 
arise from a coherent quantum condensation, as must the manifold 
topology, including dimensionality, and the unitary metric of the Hilbert 
space of the usual quantum theory. 

The hypothecated "superconducting" phase of the net recalls most the 
transparent crystalline medium of enormous stiffness called ether by Isaac 
Newton; but Newton's ether, composed of tachyons, defines a rest frame, 
while this is a relativistic quantum ether and does not. 

The primordial hot, disordered, "normal" net phase that condenses 
into ether thus recalls both Chaos the father of Time and the tohu v ~ bohu 
(void and formless?) of the second verse of Genesis. Chaos being already 
a much used term, we may call the uncondensed phase tohu. 

If we identify the T violation of the causal cell with that of the weak 
interactions, then the,net  would be expected to make a transition from 
"superconducting" to "normal,"  that is, from ether to tohu, at a temperature 
that may be as low as 100 GeV (~10 is K). 
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This makes ether a high-temperature "superconductor"  by some stan- 
dards, but not those of  particle physics. Presumably, the continuum approxi- 
mation seems to work down to the Planck length even though the causal 
cell is much larger, because the quantum condensation enormously sup- 
presses incoherent net effects, as in superconductivity. 

The dimensionality n of a cell in the quantum net, which is also the 
number of inputs to the cell, is a quantum number with nonnegative integer 
spectrum. We expect ether to have a definite dimensionality, restricted to 
some of the eigenvalues 

n = N 2=0,  1, 4, 9, 16 . . . .  

Tohu lacks such long-range order, but still has causal structure. 
In order to maintain a correspondence of meanings between our various 

descriptions of the world, we move from manifolds to quantum time net 
in 6 steps, maintaining causality, locality, and local Lorentz invariance as 
we go. In succession we (1) causalize, (2) atomize, (3) algebrize, (4) quantize, 
(5) bosonize, and finally (6) condense, the structure of the world. The first 
four have been part of this program since 1965; the last two enter the 
program here for the first time. 

1.1. Step 1: Causalize 

That is, take the causal structure of the world as the unifying variable. 
Einstein, following Riemann, does not causalize~ but metrizes. The 

causal reformulation of Einstein's theory occurs in or is strongly suggested 
by the work of Robb (1936), Alexandroff (1956), Zeeman (1964), 
Kronheimer and Penrose (1965), Pimenov (1968), Finkelstein (1969), Latzer 
(1972), and Bombelli et al. (1987), among others. Bombelli et al. (1987) 
propose that time space is a causalset:  "a locally finite set of points endowed 
with a partial order corresponding to the macroscopic relation that defines 
past and future." This partial order x C y  is the causal relation C. 

Causal structure was first proposed to describe gravity alone. Kaluza, 
however, suggested that electromagnetism arises from a higher-dimensional 
Riemannian manifold or hyperspace enveloping our four-dimensional time 
space, a theory extended to quanta by Klein, topologized by Einstein and 
Bergmann, generalized to all gauge forces by deWitt (1964), and currently 
revived in string theory. Thus, it may be possible to express all forces, not 
only gravitational, in terms of causal structure. 

My own previous attempts at a quantum theory of time start from the 
four-dimensional Minkowsian time space manifold M 4. But M 4 alone does 
not point clearly enough to the underlying quantum theory. Now, supported 
by the Kaluza hypothesis, we make a theory of variable dimensionality n, 
regarding n as a physical order parameter for time space, somewhat as it 
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is for water, which may exist in volumes, bubbles, threads, or droplets. This 
offers hope of dealing with all forces at once, widens the question, and 
narrows the range of answers. 

There are three conspicuous impediments to this first step. 
First, the causal relation x C y  is not local, but may hold for events as 

far apart as the birth and death of  the universe. Since we have committed 
ourselves to local variables, we abandon C for a local causal relation e at 
the second step. 

Second, the proper de~scription of time space and gravity seems to be 
not a symmetric quadratic form Ilvll  = gr..VmV" in a time-space tangent 
vector field v, but a linear form [[vii = tr,,v m, the spin form; and the spin 
form of  a manifold is not ordinarily expressed in terms of causal structure. 
Rather, the converse is standard since the work of Bergmann (1957). We 
first find causal roots for the spin form at the sixth step. 

Third, the most successful theory of causal structure that we have, 
Einstein's, is globally acausal in that it admits chronometrics withtimelike 
loops, such as G6del's and Kerr's. Similar time loops occur in some net 
after the second step; we shed them after the third. 

1.2. Step 2: Atomize 

That is, construct the causal continuum from discrete physical finite 
elements or cells. 

The project of a cellular time space has been undertaken in modern 
times by R. P. Feynman (see his Nobel address), R. Penrose, 2 Finkelstein 
(1969), Misner et al. (1973), t 'Hooft  (1979), Bombelli et al. (1987), Chew 
& Stapp (1987), and Zenczykowski (1987), among others; not to mention 
the well-known lattice theories that do not necessarily assume that the lattice 
physically exists, nor the fascinating medieval developments of discrete 
time, space, and matter in the Kalam. It occurs also in a report of the 
National Research Council (1985a,b): 

It may well be that the marriage of gravitation and quantum mechanics requires 
a few more drastic revisions of our ideas. For example, our description of 
space-time as a continuum may have to be replaced by a discrete granular 
structure at extremely short distance. (Elementary Particle Physics, page 97). 

It may be that local Lagrangian field theory is not the correct approach to 
quantum gravity. Perhaps, as some believe, the basic quantum quantities are not 
the variables describing a space-time continuum but a more discrete structure. 
(Gravitation, Cosmology, and Cosmic Ray Physics, p. 74). 

ePrivate communication from R. Penrose on the theory of mops (1960). This is a precursor 
to Penrose's (1971) theory of spin networks, both of which influence the present work. 
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Such fundamental  cellular theories are to be distinguished from those 
that assume a continuum of  events within each cell, which may nevertheless 
be useful for some computations.  

We localize the causal relation by taking as basic dynamical variable 
a relation xey expressing immediate causal priority. We call c the (causal) 
connection relation, understanding that this connection is one-way (xey 
does not necessarily imply yex) and immediate (xcy and ycz do not 
necessarily imply xez). Events in a continuum theory have no immediate 
causal relations, but only mediated ones. 

A point set with a c relation, interpreted as events with a causal 
connection, is called a causal net e. Every causal set C may also be regarded 
as a causal net e, with the connection xcy defined to hold if and only if 
xey and no event z exists with xCzCy and x ~ z ~ y; but networks are more 
general than causal sets. (Proof: The causal network of ' two events x, y with 

xeyex 

is not a causal set.) 
An event a in a net, taken with all events {8} such that 8ca, defines a 

cell in the net c, and is said to have inputs {8} and output a (Figure 1). A 
contracell, dually, is an event 8 with all the events {a} such that 8c~;  tts 

�9 

Fig. 1. Cells. Causality runs from left to right in all the figures. A dyadic cell 2 is shown on 
the left, its dual or *-image, a dyadic contracell 2', on the right. In the prequantum theory, 
the N inputs of  a cell are permuted by a symmetric group SN; in the quantum theory, by a 
linear group SLN. The events 8 and t~' thus correspond to I' (spin up) and ,], (spin down). A 
second SL: acts upon the outputs of the contracell. Thus, SL 2 transformations are unicellular, 
while time reversal T, which maps 2-~ 2', is bicellular. 
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outputs are {a}, its input 8. The cell is the net analog of the past light cone 
in the tangent space of the continuum theory; the contracell, the future 
light cone. An n-adic cell has n inputs; an n-adic contracell, n outputs. An 
n-adic net is one whose cells are n-adic. In the present theory the number  
of  inputs to the cell, termed its grade, defines the dimensionality of  the 
causal space. 

Just as the classical principle of  equivalence is expressed by Lorentz 
SL2 invariance i n t h e  tangent space to the classical time space manifold, 
the quantum principle of  equivalence asserts SLN invariance of the quantum 
cell. We understand this group as mixing the inputs to the cell, its prequan- 
tum correspondent  being SN, the symmetric group on the N inputs to each 
N-adic  cell. The quantum principle of  equivalence asserts the equivalence 
of all the inputs to each cell. From the experimental  spin-statistics connection 
we infer these equivalent entities obey odd (Fermi-Dirac) statistics. 

The cell suggests a fundamental  atom of time or chronon, which we 
designate by/~. Here/~ will not be interpreted formally, like a regularization 
procedure or like Planck's earliest conception of his quantum of action h, 
but physically. We expect/~ to manifest itself in all sufficiently short-time 
physics. The limit/~ ~ 0 ~ is no more physical than h-~ 0 or c ~ oo. 

The cell and the net recall the outmoded Pit ts-McCulloch theory of  a 
neuron and a nervous system. The cell is a neuron; the output event, an 
axon; the input events, dendrons; the link 8ca  from an input 8 to its output 
a, a fiber. Even the inhibitory dendron of the biological neuron has 
an analog, the input destruction operator  or contra-input that arises 
as a necessary consequence of  special relativity and quantum theory in 
Section 3.3. 

The inputs of  one cell may themselves be outputs of  another; there 
seems to be no synaptic gap between event cells. Nor  are there events 
between the output and the inputs in one event cell. While the quantum 
theory will admit quantum superpositions such as 3a  + 48, which could be 
said to be "between"  a and 8, this betweenness holds not in the topological 
sense, but only in a quantum sense. 

The neural analogy reminds us that there are connections from several 
inputs to one output within the cell, and that there are no connections 
between the inputs, but should not make us forget that the elements of  the 
cell are events, momentary  existences, not permanent  bodies, which must 
be synthesized from events. We provide for SLN invariance of the quantum 
theory by making the classical net theory invariant under SN, the symmetric 
group on the N inputs to each N-adic  cell. This leads to a local Lorentz 
invariance, part  of  what is meant by a relativistic net. 

Actual computers and nervous systems also support  nets, consisting of 
causally connected computat ional  or neural events, and these nets abstract 
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important  features of  the system. It is not inconceivable that the net algebra 
introduced below for the ultimately fine world nets will also have practical 
application to coarser nets. 

Since we have taken a connection relation as fundamental  dynamical 
variable, we may be said to be topologizing physics by these first two steps. 
The topology we use, however, is a novel kind of combinatory topology, a 
discrete version of the Alexandrott  topology, based on asymmetric causal 
connections, not on the symmetric spatial connections of  Euclidean topology 
(Section 5.3). 

1.3. Step 3: Algebrize 

Express the fundamental  relations as algebraic relations. 
This preliminary to algebraic quantization stems from Heisenberg. It 

is applied to causal structure in Finkelstein (1969). Here it calls for an 
algebraic theory of the causal connection, a causal algebra (Section 2.7). 
This seems nontrivial. At any rate, this step is still unfinished, in that here 
we still must decide among several plausible causal algebras. 

Since the language of nets is set theory, we express the causal algebras 
in terms of a set algebra SET [Section 3.1 and D. Finkelstein (1987)], defined 
by the operator  ~x = {x} (Peano's  1888 iota operator) and the disjoint union 
x v y (C. S. Peirce's 1867 "ari thmetic addit ion" x +y,  Grassman 's  "Progres- 
sive Multiplication").  The fundamental  variable describing the net is now an 
element of  SET. The simplest of  these nets, called dyadic, are made with 
only the one nonassociative dyadic operation z = [x, y~ = ~x v by giving the 
output z from two distinct inputs x and y in an elementary OR gate. The 
algebra of  symmetric dyadic nets, where each event has two outputs as well 
as two inputs, stands out for initial study. 

1.4. Step 4: Quantize 

In the present formulation, to quantize is to adjoin quantum superposi- 
tion + to the causal algebra (so that it becomes a ring). It is also convenient 
to adjoint the complex numbers C as well, so that the causal algebra becomes 
a linear algebra, interpreted as the Heisenberg algebra of  the net, for the 
continuum of probabili ty amplitudes never causes an infinity in the way 
that the continuum of a causal manifold does. In the quantum theory ~ is 
a linear operator  on ~ vectors and may be thought of as a quantum arrow 
of time, stripped of its associations with great statistical complexity and 
reduced to a microscopic elementary entity. 

At the same time the spin form Iv]] = or. v is interpreted as a Hilbert 
space metric for the local quantum theory of an experimenter on spins with 
local time axis v. This quantum interpretation of the spin form and hence 
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of the gravitational field, though crucial for the quantum theory of causal 
structure is not fully reconciled with the causal interpretation of the 
chronometric until the sixth stage. 

This step makes all basic variables discrete, quantum, and topological 
in nature. In a quantum cosmogony it is unphysical to impose unitarity, 
which would express the eternal duration of the system under study. 

We may then interpret spinors within the quantum net. In the affine 
(nonmetric) quantum theory (Section 3) of the N-adic net, there is a local 
linear group S L  N 1= SL(N, C) interchanging the inputs to each cell. The 
inputs of each N-adic cell thus constitute a spinor whose components 
correspond to slightly different time space points, like the lattice fermion 
spinors of Susskin (1977). For N = 2  this is the origin of local Lorentz 
invariance, but does not yet account for Poincar6 invariance or T symmetry. 
In the classical net theory we have only a precursor of this SLN invariance, 
the symmetric group SN on the N inputs or outputs. 

We thus rebuild the world out of 2-spinors (two-component spinors), 
as do von Weizs~icker (1955), Bergmann (1957), Penrose (see footnote 2), 
and Finkelstein (1969) in various senses; not classical spinors representing 
continuous classical observables such as Euler angles, but quantum ones 
representing probability amplitudes for two discrete alternatives, such as 1' 
("spin up") and $ ("spin down"). 

To parallel Bergmann's (1957) 2-spinor theory of gravity in a Kaluza 
hyperspace, we use a theory of higher dimensional gravity, or hypergravity, 
with structure group SLN (the group that now arises as a symmetry of 
discrete quantum alternatives) instead of GL(n, •) or SO(n, R) (which do 
not). The N-component spinor on which SLN acts is a ~-vector for an 
N-fold alternative that we continue to call spin (or hyperspin) even when 
N > 2. The generalization of the Bergmann (1957) 2-spinor time space to 
such N-spinors is called a Bergmann manifold BN (Section 2.2). 

Weinberg (1984) also asks whether hyperspace might have other than 
an orthogonal group. Since Weinberg postulates that all internal coordinates 
are Lorentz scalars, he answers no. This postulate may be unduly restrictive; 
for example, the Susskind (1977) lattice fermions even have a spinor part 
in their external coordinates, and spinorial internal coordinates are studied 
in Finkelstein (1955). More importantly, the distinction this postulate makes 
between scalar and spinor coordinates, while sound in the continuum of 
Weinberg's study, is too simple for nets. Each event in the world net has 
not one, but two mutually dual Lorentz groups, one on the inputs and one 
on the outputs, which commute with each other and which only merge in 
the continuum limit (Section 2.8.4). Much as with the two commuting space 
and body groups of Finkelstein (1955), what appears as spinor structure to 
one of these groups appears as scalar structure to the other. Accordingly, 
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we proceed without Weinberg's postulate here, and with other than 
orthogonal structure groups. 

1.5. Step 5: Bosonize 

Choose the dynamics and the temperature to favor the dynamical 
formation of  correlated bosonlike event pairs. 

We do not work out an example of this step, but need it for the next. 

1.6. Step 6: Condense 

Specialize the dynamics and the temperature still further to permit 
quantum condensation of bosonlike event pairs. 

We infer that ordinary Minkowski space is a macroscopic quantum 
condensation of the net from several features of experience that are other- 
wise incomprehensible within net theory: 

1. Minkowski vectors. Macroscopic variables such as the components 
of tangent vectors v m may then arise from microscopic ~p-vectors tPA con- 
sistent with the present symmetry groups and quantum superposition. We 
interpret a typical small tangent vector v m of the classical differential 
manifold as a many-input ~-vector vAo describing a macroscopic number 
of coherent input pairs. 

2. Reality of Minkowski space. The previously mysterious formal 
reduction of complex ambispinors to real sesquispinors (prefixes defined 
in Section 3.2) practiced since Cartan may now be understood as a spon- 
taneous breaking of gauge invariance. 

3. Field variables. This condensation relates anticommuting micro- 
scopic ~-vectors to classical commuting macroscopic Minkowski vector 
components. The spin form or, the only field variable in hypergravity, may 
be interpreted as the common wave function of an assembly of bosonlike 
input pairs. There is no or in tohu. 

4. Real gauge fields. Since the net theory has structure group SLN, 
which would ordinarily lead to complex gauge vector fields, real gauge 
fields appear as a spontaneous breaking of gauge invariance. 

5. Law of Inertia. We presumably will not see the net breaking transla- 
tional invariance and absorbing momentum through Umklapp processes 
and scattering until we reach much higher total excitation energies than 
1/13, for much the reason a superconducting lattice does not absorb momen- 
tum from its electron current: because of the quantum condensation of the 
elementary fermions. Propagation of excitations in tohu will be dissipative, 
through causal. 

The idea that a vector is a great many coherent bosonlike fermion pairs 
hearkens back to de Broglie's idea that the photon is a pair of neutrinos 
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and Feynman's that the graviton is a quartet of neutrinos, both of which 
have natural counterparts in this theory. Here, to be sure, the fermions and 
their bosonlike compounds are not particles, but events, microscopic quan- 
tum elements of  the world net, and they undergo a bosonlike quantum 
condensation. 

The proposed theory of  classical n-dimensional causal space as a 
quantum condensation of a relativistic quantum net has an exact local SLN 
invariance, reducing to Lorentz invariance for N = 2  (Section 3.1). The 
fundamental spin form or of Infeld and van der Waerden, Bergmann, and 
Penrose describing the gravitational field arises as the macroscopic quantum 
~O-vector of  a quantum condensation of bosonlike fermion pairs analogous 
to superconductivity (Section 4.3). We offer two relativistic topological 
candidates for the quantum action principle of the net, the causal Euler 
characteristic and the spin class (Section 5.1). There is likely a phase 
transition of the net from the ordinary vacuum to a chaotic or gaslike phase, 
at an energy or temperature closer to the W mass than the Planck mass 
(Section 4.3). 

2. FROM CLASSICAL CAUSAL S P A C E . . .  

We begin the six-step journey outlined above with a brief critique of 
a preceding theory (Section 2.1) and a summary of our new classical starting 
point (Section 2.2). 

2.1. Post Mortem of a Clifford-Algebraic Theory 

This is to help a hypothetical reader of Finkelstein and Rodriguez 
(1986) with the transition to the present theory, and is not required for the 
present paper itself. 

In the 1986 theory we still entertain a Riemannian theory of  causal 
space and regard this as a smoothed aggregated description of  a quantum 
net. To define the concept of a quantum net, we construct a quantum set 
theory that associates a quantum net with a real Clifford algebra generated 
by its vertices. Vertices of a quantum tetrahedron support the identity 
representation of its Clifford group, which is the Lorentz group SO+(1, 3, ~). 
Simplices of arbitrarily high dimensions also occur, and also have 
orthogonal structural groups. 

The 1986 theory is indeed quantum combinatoric and topological, and 
it indeed accounts for the Lorentz group; but it has no elementary spin-�89 
entities [supporting the D( 1, 0) representation of the Lorentz group]; spin-�89 
can enter only as a collective topological effect, like the spin-�89 of  skyrmions. 
In addition, its higher dimensional plexi have higher dimensional orthogonal 
groups SO(n+ , n_, ~) with more than one timelike dimension, and causality 
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fails beyond four dimensions. These aspects of  the theory make it hard to 
relate to physics. 

Now we replace the classical Riemannian causal manifold with its 
structure group GL(n, R) by a Bergmann manifold with structure group 
SLN, where n = N 2, sketched in Section 2.2. This results in the recent 
generalization of gravity called hypergravity, which is both starting point 
and guide for the present work. Then in Section 3.1, having discarded the 
Clifford-algebraic quantum set theory, we construct a Grassmann-algebraic  
one with SLN symmetry. We are then in a better position to construct a 
Lorentz-invariant, spinor-based quantum net theory of the world. 

2.2. The Chronometric Is the Determinant of the Metric 

A BN has first, like any manifold, an algebra of  real coordinates defining 
its topology. 

It does not have the usual quadratic chronometric form g,n~(t) assigning 
a norm 

I[ ll = gm vmV ~ = 2 

to each vector v = (v r~) at each world point t = (tin). 
Instead, it has a linear spin form cr = (o'ABm(t)) assigning a Hermitian 

N x N spin form 

to each such v. The structure group for four-dimensional causal space is 
no longer SO(l,  3, R), but its covering group SL2, and fl~r higher dimensions 
it is SLN. It is possible to set N = 2 throughout this paper  and thus specialize 
to the familiar four-dimensional world for a first reading; we then retrieve 
the theory of  gravity of  Bergmann (1957). The generalization of gravity for 
N > 2 is called hypergravity. 

The value of the spin form ~v~ = or. v is a metric (that is, is Hermitian 
positive-definite) exactly for future-timelike vectors. We do not give a fixed 
metric to the linear space of spinors associated with each point of  a BN, 
for that space is to be finite-dimensional and support  a representation of 
SLN, which has no finite-dimensional unitary representations. Each 
experimenter  brings her own metric. We interpret ~v]] as the Hilbert space 
probabil i ty metric proper  to any local quantum spin experimenter whose 
instantaneous time axis is v. Therefore [v~ is called the (first quantized spin) 
metric of  the future vector v. The spin metric for N = 2 is the sole dynamical 
variable of  the Bergmann (1957) theory of  gravity. 

This reinterpretation of  the gravitational field as quantum metric is not 
a total departure from the Riemannian theory, although it is not standard 
there. In a Riemannian theory of causal space, the first-quantization metric 
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for scalar quanta moving in the space employs the chronometric volume 
element p = ~/(-det  gm~), which is also a dynamical variable; and the first- 
quantization metric for vector fields employs the rest of the chronometric 
tensor, when we take all local experimenters into account. Thus, in the 
Riesrnannian theory, too, the first-quantization local Hilbert space metric 
(f~Jr integer spins at a point) may be considered to be the sole dynamical 
~r iab le .  

This quantum reinterpretation of the Riemannian variables gmn and 
the spin form o" is crucial in our project of  founding all time space concepts 
upon quantum ones. 

Evidently, [[ v~ and o- distinguish past v from future, while II v II and gmn 
do not, in the sense that time reflection changes the signs of [Iv] and o-, but 
not the signs of  [[vii and gin,. This is significant to the interpretation that 
follows (though in hypergravity 1[ vii and g . . .  are odd in odd-dimensional 
spaces). 

The usual chronometric norm Ilvll of v is proportional to the deter- 
minant of live. This is a polynomial of the Nth  degree. Its importance is 
entirely due to the fact that it is the only SLN invariant that can be made 
from v. The spin form cr of  a Bergmann time space is thus a kind of Nth  
root of  the chronometric tensor, not a square root as in Riemannian time 
space. Moreover, o- is the proper  description of the hypergravitational field, 
not the chronometric tensor, which is subject to many algebraic Constraints 
for N > 2 .  

Since the metric [[v]] is dimensionless (a probability) and the norm II vii 
has dimensions of (time) N, the relation between metric and chronometric 
involves a fundamental time ~: 

[Ivl[ det~v~ = ~.N. 

We tentatively suppose that /~ is closer in order of  magnitude to the W 
range than to the Planck length (Section 5.2), and use units with i~= 1, 
called net units. 

The space BN has dimension N 2, causal structure (one timelike 
dimension), a chronometric tensor g ..... p with N indices (not 2), an invariant 
Laplacian differential operator of differential order N (not 2), but geodesic 
equations still of  differential order 2 (not N).  

A BN has a unique or-preserving, torsion-free connection (Holm 1986, 
1987), from which a curvature can be computed as usual. S. R. Finkelstein 
(1987) gives an action density R for a BN, suitably reducing to the Einstein- 
Hilbert R for N =2.  In the case of higher dimensional causal spaces, 
following Kaluza, we expect four coordinates to serve as physical macro- 
scopic coordinates, called external. The remaining coordinates, called inter- 
nal, are available to describe "internal" structure, like electric charge in 
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Kaluza's  theory and the most general gauge charges in the generalization 
of deWitt (1964). 

2.3. Net 

Now we atomize the Bergmann manifold. We first abstract from it the 
causal relation x C y  ( "x  is causally prior to y"  or "x  before y" ) ,  which 
holds when there is a curve directed from event x to y whose tangent is 
everywhere in the closure of  the future cone. This relation is usually assumed 
to be a partial order. (In a BN there are N sheets to a light cone. The 
positive-definite spin forms constitute the future cone. The boundary of this 
cone is the "futuremost"  of  the N sheets.) 

We next rework the concept of  causal structure into a form more 
suitable to a quantum theory. We use the causal partial order to define a 
connection relation xey; and we use that to define a causal operator  ~, which 
is the concept  that we take with us into the quantum theory. 

A partial order is a relation R that is transitive: 

(xRy n yRz)  c xRz  

and asymmetric: 

(xRy  c~ yRx)  =- (x = y)  

hence reflexive: 

xRx 

There are serious problems with the relation of equality x = y  and hence 
with asymmetry,  reflexivity, and partial order in quantum theory 
(Finkelstein, 1969); the lattice operations u and c~ are inappropriate for 
a coherent quantum theory (D. Finkelstein, 1987a); and the relation C is 
nonlocal. As a preliminary to quantization, we eliminate these concepts 
from the foundations of  the theory. 

A property of spaces is local if it may be verified for a space by verifying 
it for a neighborhood of  each point in the space. A relation is local if it 
holds only for points that are near each other. We assume that the kinematics 
and the dynamics must be local; and also symmetric with respect to permuta- 
tions of  the N inputs to each cell, so that in the quantum theory we have 
SLN invariance. 

It is an involuted question whether the property of  being a causal order 
itself. But certainly the causal order x C y  is itself nonlocal, relating each 
event to all the past events in history back to cosmogenesis, and cannot be 
the basic variable of  the world. However, each causal order on a finite space 
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Fig. 2. A polyadic causal net. It has ten cells: one cenadic (no inputs), three monadic, four 
dyadic, and two triadic. 

has wi thin  itself a germ that  is local, a connection relation xcy defined next, 

the discrete ana logue  of  the local light cone. The connec t ion  re la t ion is 
what  we describe by giving the cells of  the network.  Going  from the global  
causal  re la t ion xCy  to the local connec t ion  relat ion xey is like going from 
integral  to differential  quanti t ies .  

If  xcy we say that  x (causally) connects to y, and  also that  x is an inpu t  
to y, and  that  y is an ou tpu t  f rom x. Unt i l  fur ther  notice,  c is our  basic  

variable,  not  C. A set provided with a c, in terpre ted as the immedia te  causal  

connec t ion ,  we call a (causal) net (Figures 1-3). To construct  C given c, 

we use not  the lattice opera t ions  u and  n ,  bu t  the G r a s s m a n n  ones v 

(the dis joint  u n i o n  or disjoin) and  ^ (the exhaust ive con junc t ion  or conjoin) 
obeying 

x A x = x v x = O  

c (  �84 

Fig. 3. Checkerboard. A segment of the infinite symmetric dyadic network 722, giving the 
moves of a man in the game of checkers. Each pair of inputs to a cell supports a local SL2 
group identified with the Lorentz group. This is the network that appears in the Feynman and 
Hibbs (1965) model for the two-dimensional Dirac equation. 
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for all events x. The C induced by a given e is given by 

co 

C = c * : =  V e n 
n = l  

xe"y := V (xczl) ^" �9 �9 ̂ (z, ey) 
{z} 

The e relation we assume to be locally finite: each input has but a finite 
number  of  outputs, and each output only a finite number  of  inputs. 

2.4. Spin Net 

We are interested in the net primarily as a conceptual precursor to the 
Bergmann manifold, which arises from the quantum net in a classical limit. 
But we may also form from a BN an approximating n.adic causal net W n 
whose events are closely and approximately uniformly spaced events of  the 
manifold, and whose connection xey is derived from the causal relation C 
of the manifold. The identity we impose here between the number  of  inputs 
to the cell and the dimensionality of  the manifold first becomes clear in the 
quantum theory. For now it suffices to note that this cell is an abstract 
n-dimensional simplex. 

The simplicial cells of  an approximating causal net W n generally do 
not form a manifold. About half is left out in the case of  the checkerboard 
network 2v2 of  Figure 3, which is used as an approximation to the Minkowski 
plane M 2 by Feynman and Hibbs (1965). 

To approximately represent the spin structure of  a BN in a causal net, 
we may then assign to each link 6ca of the net W ~ the positive-definite 
Hermitian matrix or = (cra~) associated with the tangent vector at the mid- 
point of  the geodesic from ~ to a. We interpret this o- as the spinor Hilbert 
space metric to be used by a local macroscopic experimenter whose time 
axis is that tangent vector, doing spin experiments at that cell. 

We do not take a spin net as the classical point of  departure for quantum 
time space. A spin net appears  only as a numerical approximation to a 
Bergmann manifold, which in turn is a large-quantum-number limit of  a 
quantum net, which carries only the connection operator. 

2.5. Relation to the Regge Cell 

A simplicial manifold is a simplicial complex that results from a sim- 
plicial decomposit ion of a manifold. I f  each simplex in a simplicial manifold 
is assigned to a linear simplex in a Minkowski space M n up to Poincar6 
transformations,  and the assignments of  any two simplices agree up to 
Poincar6 transformations on their common faces, the simplicial manifold 
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becomes a Regge complex. Then each edge has a chronometric norm con- 
sistent with a Minkowski geometry within each simplex, and these norms 
determine the Regge complex. This is the simplicial specialization of  Regge's 
(1961) cellular theory. 

It may be helpful to note a relation between the spin cell and the Regge 
cell. On its face, a spin cell differs from a Regge cell in carrying a spin 
metric on its timelike edges only, rather than chronometric norms on all its 
edges, and in not explicitly providing a Minkowskian geometry within its 
simplices. But the spin metric l[v]] may be extended from the timelike to the 
spacelike edges of  the spin cell by linearity, every spacelike edge being the 
difference of  two timelike ones: 

~v~ = ~ v , -  v2~ = ~ v d - ~ v 2 ~  

Then each edge v has a chronometric norm det~vll, and each spin cell 
defines a Regge cell. This indicates only one way in which Regge's theory 
may be extended from Riemannian to Bergmann manifolds. 

2.6. Classical Net 

To make a physical theory of nets we must: 
1. give the domain of  possible c relations and 
2. define the action on that domain. These two steps give the network 

kinematics and dynamics, respectively. 
We may describe them extrinsically, as by imbedding the net in some 

standard reference net, or intrinsically, without leaving the net itself. 
The intrinsic and extrinsic approaches are perhaps coextensive in 

principle, but in practice they draw our attention to different theories and 
different problems. Since an extrinsic description dispenses with field vari- 
ables, let us formulate an extrinsic net kinematics. We first construct a 
universal net. 

Let us use Peano's operator ~ for set formation: 

~x = { x }  

and Peirce's v for the disjoint union, defined only for disjoint sets and 
given the symbolic value 0 when it is undefined: 

X V X = 0  

Classically we may represent an N-adic  cell by the set of its N (distinct) 
inputs 6 ~ , . . . ,  6N alone, writing the output as 

Here the same set a describes both the output and the inputs of  the cell, 
and thus the entire cell. In this cell the output a contains its inputs within 
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itself, and the connection relation 6ca is expressed by 6 6 a, "8  is an element 
of  a ."  This a is invariant under  the symmetric group SN of  the inputs. In 
the quantum theory it will be invariant under  the group SLN of the inputs. 

2.7.  T h e  ~ C o n n e c t i o n  

Any set represents a net in a similar way. The events of the net are the 
elements of  the set, their elements, and so forth. The connection relation 
is again 6 ~ a. The net will be finite if all its events are finite; we call such 
a set finitistic. This means that the set, its elements, their elements, and so 
forth adfinem, are all finite. We designate the network W associated with 
a set S in this way by W = ~*(S). 

The first natural choice for the space of  possible nets W with a given 
set of  inputs I N =  { 6 , . . . ,  8'} is then the infinite set of  all finitistic sets 
constructed from IN, which we designate by S~T[IN], taken with the 
connection. A second kinematics that seems potentially useful would restrict 
W to the N-ad ic  nets that can be imbedded in SET(IN). One might finally 
specialize the kinematics to N = 2. 

The main difference between the present kinematics and that of  
Finkelstein (1969) is that now we connect sets by c and there we order sets 
by c .  

For example,  the net W = SET[IN] with connection ~ lacks T symmetry. 
It has the inputs IN, but no output, since every set is an element of  some 
larger set. The kinematics also lacks T invariance at this stage, for we may 
imbed the net 

6Ca, 6'Ca 

in SET[{6, 8'}] as the set {6, 6'}, while its T-image 

6Ca, 6Ca' 

cannot be imbedded in SET[IN] for any IN, since a set is uniquely determined 
by its elements, implying a = a ' .  We may restore T symmetry to any of the 
kinematics mentioned so far by fiat if we wish; for example, by postulating 
that each event is uniquely determined by its outputs as well as by its inputs, 
or by describing W by an atlas rather than by one net. 

Imbeddabil i ty in SET[IN] implies the existence of a global causal order 
C, represented by the iterated relation c*. 

I f  x ~*y, we say that x is an iterated element of  x. 
The ~* order of a set S is the order x ~* y defined on the event set of  

~*(S). 
Then Rank(x) ,  the set-theoretic rank of x, giving the number  of  nested 

ds in x, appears  as a timelike coordinate for the c* order, in the sense that 
if w ~* x, then Rank(w) - Rank(x).  
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2 . 8 .  C l a s s i c a l  C a u s a l  A l g e b r a  

Now we algebraize the connection relation, for the sake of subsequent 
quantization, as required in Section 1.3. The world is no longer to be 
expressed as a net of  connection relations, but as a system of  connection 
equations. In addition, these are to be local in their content rather than 
global. The resulting algebra we call the connection algebra of  the world. 

Let us follow the model of  set theory. What is basic in quantum set 
theory is not the relation 6 E a, but the algebraic equation 

a = L61 v .  �9 �9 v ~6N 

which implies 61E a , . . . ,  6N E o~. We therefore take this as the basic equation 
of  classical set theory as well. The algebraic environment for such equations 
is the algebra generated by 

0 and 1 nonentity and nullset 
the monadic  operator  ~ unit set formation 
the dyadic operator  v disjoint union 
a set of  inputs IN = { 6 , . . . ,  6'} proper  entities 

subject to the equalities 

~0=0 

a v 0 = 0 ,  c~v l = a ,  a v a = 0  

av(/~vT)=(~vfl)v~ 

,~v,8=/3v~ 

We now let SET(IN) designate this algebra of  sets. 
Similarly, instead of discussing the short-range net relation 6ca, we 

take as basic the still more informative short-range equation 

" a  is the output from inputs 6 1 , . . . ,  6N" 

We write this not in the relational language of classical logics, but in the 
equational language of set algebra: 

t~ =~61v.  �9 �9 v ~6N 

This is the algebraic expression for the cell of  Figure 1, with output a and 
inputs 6 1 , . . . ,  6N. Here L serves as the elementary causal operator; it 
represents the passage of one fundamental  time transforming one input 6 
with one output a = ~& 

We single out a kinematic theory of nets for first study by the following 
process of  successive specialization, leading to the concept of  symmetric 
dyadic net (Section 2.8.4). 
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2.8.1. Polyadic Nets 

In this kinematics each cell has any number  of  inputs, possibly varying 
from cell to cell. To simplify the notation, we may combine the two 
operations ~ and v into a bracket operator defined on any number  of 
operands 61 . . . .  ,6N: 

0/  = [ 8 1 ,  . . . , 8 N ]  : =  L81  V "  " " V [ ,8  N 

This bracket vanishes when an operand repeats: 

[8,8]=0 

while Cantor 's  brace { 8 1 , . . . ,  8N} ignores repeated operands, obeying the 
absorptive law 

{8, 8} = {8} 

In the absence of such repetitions the two operations [. �9 �9 ] and {. �9 �9 } agree. 
The entire net is thus described by one expression giving the set of  its 

final outputs in terms of  its initial inputs. Such an expression, interpreted 
as a description of a net, is called a product plexor; more general plexors 
appear  later. For example,  the cell of  Figure 1 and the net of Figure 2 are 
identified with the monadic  and triadic plexors 

[[8, 8']] 

[[[8, [8, 8', 8"]], [[8, 8', 8"]]], [[[8, 8', 8"~], 8"]] 
(1) 

respectively, while the contracell of  Figure 1 is the plexor 

[[6], [813=0 

the undefined. 

2.8.2. N-adic Nets 

This is the special class of  the polyadic net in which each cell has N 
inputs, with N fixed once and for all. The bracket operation [. �9 �9 ] of  an 
N-ad ic  net is N-adic;  that is, operates on N operands exclusively. 

2.8.3. Dyadic Nets 

This is a still more special kinematic algebra, the N-adic  net with 
N - - 2 .  Its bracket operation [8, 6'] is dyadic, and may be regarded as the 
simplest possible universal cell. 
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C. S. Pierce (ca. 1866) pointed out that nets of  any dimensionality may 
be made from three-terminal cells, like those of Figure 1 for N =2.  He 
associated such a cell with a general triadic relation; we specialize here to 
the triadic relation that is given by the dyadic operation 

=[8, 8'] 

Since polyadic nets can be simulated by dyadic ones and conversely, we 
cannot distinguish between these possibilities without more detailed calcula- 
tion and further reference to experience. Simply to decide which branch to 
explore first, we appeal once more to the general philosophical principle 
that the operations that occur in nature are the most concrete and specific, 
the least genera ! . 

This decision conflicts slightly with our generalized Kaluza hypothesis, 
in giving a special role to N = 2 and thus to four-dimensional causal space; 
but this can hardly be said to conflict with experience yet, and we have 
already made sure that higher dimensional networks may be synthesized 
out of  dyadic ones. 

2.8.4. Symmetric Dyadic Nets 

Each of  the above kinematics has a subkinematics with duality sym- 
metry, where the number of outputs from each contracell is subject to the 
same restriction, if any, as the number of inputs to each cell. We call these 
symmetric kinematics. The symmetric dyadic kinematics, for brevity called 
the X kinematics, deals with nets made out of X-shaped pentads, as is the 
net 7/2 of which Figure 3 is a segment. [In Finkelstein and Rodriguez (1985), 
where the causal structure is omitted, these pentads appear simply as 
4-simplices, pentatopes, or "pentacles."] Since there is no evidence for the 
kind of  microscopic irreversibility that would permit cells to have exactly 
two inputs but any number of outputs, we tentatively accept the X kinematics 
as the first to study. This also will simplify numerical computations. 

It is rather scary that two events 8, 8' initially on opposite sides of the 
galactic network can be just two edges apart after the connection operation 
[8, 8'] of the X kinematics. Will this not conflict with locality and causality? 
But the ~ part of  the operation [8, 8'] guarantees that we never make time 
loops, and thus preserves causality; and [8, 8'] is at least local after the 
fact: whatever events we multiply by that very act then belong to the same 
neighborhood in the net. The worst that this process can create is great 
curvature, pathological topology, and exponential computation time for 
computer experiments. 

It is possible to avoid even these by some further kinematic postulate. 
For example, we might stipulate that only two events having a common 
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input can have a common output. But this leads to a fixed checkerboard 
net with no significant dynamical behavior. 

A softening of this postulate, permitting events with common inputs 
some fixed number of generations ago (say) to have common outputs, would 
permit dynamics and still speed up computer experiments enormously. But 
this seems artificial. 

We therefore leave it to the action principle to suppress these long-range 
connections sufficiently for the world to exist, and retain the X kinematics. 
Two events may have a common output in the immediate future even though 
they are arbitrarily far apart in the immediate past, and dually. 

We may think of the algebraic operations ~ and v as representing two 
morphogenetic processes, replication and union. Each event can replicate, 
its replica being one I~ later; that process is represented by the operator ~. 
Then the replicas of N events can unite to form one offspring event; that 
process is represented by the product v. The process then iterates. Evidently 
N is something like the number of sexes at the microphysical level. This 
makes the dyadic net and binary Bergmann manifold an appealing 
hypothesis, but it does not prove that that is how the microphysical world 
actually works. 

In the X kinematics there are two local symmetry groups at each event, 
one $2 permuting the inputs to the event and a second the outputs from it. 
The two commute, since they act on different events. We call them the input 
and output groups. In the quantum theory they give rise to two commuting 
SL 2 groups, 

2.9. Proper Time in Nets 

The expression (1) of Section 2.8.1 for the net of Figure 2 is quartic 
in the inputs ;5 and ;5" and cubic in the input ;5'. These degrees may be 
considered as measures of  the future "cones"  of these inputs in the net. 

Theorem. The degree of an output a of a net in one of its inputs ;5 is 
the number of paths from ;5 to a in the net. 

Proof. By induction. �9 

Let us designate the degree of a in ;5 by deg(;5, ~). It is evident that 
deg(;5, a )  is supermultiplicative in the sense that 

deg(;5, ;5") -> deg(8, 3') deg(;5', ;5") 

Its logarithm is then superadditive in the obvious sense: It obeys the 
antitriangle inequality. This logarithm is thus a net correspondent to the 
manifold concept of proper  time ~'(3, c~) from ;5 to a, which is similarly 
superadditive: 

deg(;5, ;5')~ exp[-r(;5,  3')/I3] 
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There are surely others, since the limiting transition l~ ~ 0 blurs fine distinc- 
tions. 

According to this measure,  the proper  time from an input to its output 
in a cell, or in any net where there are no other (causal) paths joining them, 
is exactly 

~-=ln 1 = 0  

In this sense, the causal connections is a null or lightlike one. 
We have not yet defined time coordinates, as opposed to a proper  time. 

One can go a certain way using transformation laws. We expect the four 
causal space coordinates to form a 4-vector near the origin. In the quantum 
cell of  an X kinematics, the only $L2 vector one can make is the usual Pauli 
spin form o-, whose time component  is unity; to make a time, we multiply 
by/~. This suggests that any experimenter will find the difference in time 
coordinate between input and output to be/~. It would be doubly paradoxical  
if  relativity and quantum theory thus conspire to provide an absolute time 
in the cell when there is none in the macrocosm. 

3 . . . .  TO Q U A N T U M  CAUSAL S P A C E . . .  

We now proceed to the algebraic quantum theory of the net. The next 
section summarizes some essential algebra. We take for granted the parts 
of  quantum theory that do not involve a metric and probablity; these 
constitute affine quantum theory. In affine quantum theory we still represent 
input channels by 0-vector (0]  - (0  M) and output channels by contravectors 
(contragredient vectors) [~( = (~M), in such a way that the transition 0 --> 
is forbidden just when the transition amplitude 

A = [ ~ ( O ]  = ~MO M 

vanishes. Experimental variables are still represented by linear operators,  
and the eigenvalue principle still determines their possible values. We may 
still form tensor products and Fock spaces as in unitary quantum theory, 
and may form occupation number  operators N = O0~ relative to any basis. 
All these processes are invariant under the special linear group SLN of the 
space of O-vectors. 

3.1. Quantum Principle of Equivalence 

Since a classical net is a classical set, let us assume that the quantum 
net underlying time space is a quantum set; that is, that the causal net is 
maximally described by a 0-vector in the algebra SET of quantum sets 
constructed for that purpose (D. Finkelstein, 1987a) and summarized here. 
These 0-vectors, interpreted as maximal descriptions of  a quantum net, are 
called plexors. 
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The group SLN, in contrast to the orthogonal groups, is a symmetry 
group of  a complex Grassmann algebra; we suppose therefore that a 
quantum cell is the Grassmann product of its inputs. The commutativity 
a v/3 =/3 v a postulated for the classical product v is replaced by anticom- 
mutativity 

~v#=- /3v~  

making redundant the nilpotence postulate a v a = 0. The inputs of  a cell 
thus transform as spinors (the identity representation) of SLN, leaving the 
output invariant. For N = 2 we require that this correspond to the usual 
double-valued action of  the Lorentz group on Weyl spinors as SL2, and 
for N > 2 it is required to include that physical SL2 as a subgroup. This is 
the quantum root of the classical principle of equivalence. It constitutes 
the local Lorentz invariance of the theory, 

The basic elements of  structure of SET with their physical interpretation 
a r e  

0 The scalar zero, representing nothing 
1 The zero-grade unit, representing the null set 
v Grassmann product, disjoint union 

Set formation; ~a = {a}; interpretation varies with use 
C Complex numbers; quantum amplitudes 
+ Addition; quantum superposition 

The symbols 1, v, and ~ are common to the classical and quantum 
theory; the complex numbers and the symbol + are adjoined in the quantum 
theory, and their adjunction is the quantization process. Thus, the most 
general plexor is a linear combination of plexi with complex probability 
amplitudes as coefficients. The usual symbol { a , / 3 , . . . ,  a} for a finite set is 
replaced in this language by 

[ a , / 3 , . . . , o ~ ] : = ~ a  v ~ 3 v .  �9 .v~3,  

which vanishes if any of its operands coincide. 
The product v, the quantum disjoin, is the product that Grassmann 

calls progressive and designates by v, recognizing it as a kind of union, 
and it is usually and inappropriately designated by v, as though it were a 
kind of intersection, following Cartan; see Barnabei et aL (1985) (and D. 
Finkelstein, 1987a) for this significant reinterpretation of the Grassmann 
product. In work that deals with the Correspondence between classical and 
quantum concepts, the usual notation would be unacceptable. We reserve 
the sign A for Grassmann's regressive product, a kind of  intersection, which 
we call the coproduct when it exists; this is the quantum conjoin. 
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We retain the continuum C of complex coefficients only to simplify 
the exposition. A plausible descent from C to 7/ (integer quantum theory) 
is sketched in D. Finkelstein (1987b). Here we work with complex 
coefficients, and adjoin to the operations v, +, ~ of  SET the operator 
C: (p ~--) CO = 0 of complex conjugation. 

We do not give plexors an inner product, because the spinors of a 
Bergmann manifold have none. This is a fundamentally affine (metric-free, 
nonunitary, noncoriservative) quantum theory. The conserved inner product 
arises from the condensation. 

We allow for primitive input events 8 . . . .  , 8 '  by forming a linear algebra 
SEX(IN) generated from inputs 

IN:= { 8 , . . . ,  8'} 

using the operations of SET. Evidently SET = SET({1}). 

3.2. Quantum Causal Algebra 

We use SET as universal quantum connection algebra. A maximal 
description of  a quantum net is a plexor ~ ,  an element of SET(IN). The 
most general such plexor is a linear combination of  plexi. If �9 is a plexus, 
its factors, stripped of their outermost braces or ~'s, represent the outputs, 
the final events of  the net. Their factors in turn, again stripped, represent 
cells one cell earlier; and so forth, ad finem. Ultimately, every event is 
expressed in terms of  some input events IN as a plexor in the algebra SET(IN). 

We may encapsulate the kinematics of  the present theory of the world 
without being more specific than is presently justified: 

P1. The world is a quantum causal net and ~ is its connection operator. 

Until now, ~ served in quantum set theory only to generate a Grassmann 
algebra of  high dimension from the number 1; it had no simple physical 
interpretation. One attraction of P1 is that it gives ~ a physical interpretation 
as the connection operator. 

As we have already seen (Section 2.8.4), it is plausible, a priori, that 
the world is a quantum net of  X's. In ordinary dynamical problems, the 
quantum network has input and output surfaces with huge numbers of 
terminal events. For more speculative cosmogony, it is attractive to imagine 
that there are no primitive uncaused events a, a ' , . . ,  at all, and that the 
world is created from the null set 1 alone. This rather strictly limits the 
early stages of  creation, however, and leaves no place for the experimenter. 

One essential consequence of  P1 is that an event with N inputs and 
M outputs supports the pinor representation of SLN upon its inputs and 
the group SLM on its outputs. In the binary continuum analog these 
correspond to two Lorentz S L  2 groups acting upon the past and future 
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cones, and are identified by the postulate of differentiability at the origin. 
In the discrete theory we deal with finite event sequences, whose past and 
future directions vary independently, rather than smooth curves. We must 
therefore expect a doubling of quantum numbers associated with the Lorentz 
group. 

3.3. Discrete Symmetries 

We must also consider the discrete symmetries. A theory of space (that 
is, a class K of spaces) has some symmetry X if  the X image ~ x  of every 
theoretically possible space �9 is also theoretically possible: K x - K .  A 
space ~ has X symmetry if �9 is isomorphic to its own X image: ~ -  ~x .  

In affine quantum theory, which lacks unitary structure, any physical 
entity e that is maximally described by a complex ~b-vector with index 
structure ~b ~, where ~ is any index, composite or simple, is part of a quartet 
of entities with the following ~b-vector symbols, quantum amplitudes, and 
interpretations: 

(a]  tp ~ the entity e itself 
[a(  ~ the contraentity, e* 
(6] qS ~ the antientity or complex conjugate Ce = @ 
[6( ~ the anticontraentity gt 

The eontraentity has the inputs and outputs of the entity interchanged, 
and is described by a contragredient or dual ~0-vector. We retain separate 
terms for the physical concept of contraentity and the mathematical one of 
the dual entity only because this ubiquitous duality also occurs in many 
mathematical contexts where no interchange of physical inputs and outputs 
is involved. 

The antientity is a C image of the entity. While the "contra" process 
transforms inputs into outputs, the "anti" process maps inputs into C-imaged 
inputs. 

The operations C and * generate the four-group 

1, C , ' , t c  

In a unitary theory, with a conserved metric 6AB, this becomes the two-group 
1, t" 

e t =  Ce, C(e  ~) = e 

and then two symbols (like Dirac's bra and ket) suffice for the four concepts. 
In general the invariant value of contravector [/3( on vector (a]  is written 
[/3(a] and is interpreted as the complex transition amplitude, vanishing if 
and only if the quantum jump from initial channel a to final channel/3 is 
forbidden. A destructor of an entity with creator qJ is algebraically represen- 
ted by a derivation 0~ (defined only in a given basis). 
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When 0 A is a spinor, supporting the identity representation of  SLN, 
the tensor ~/,a~ is called an ambispinor,  and the Hermitian ambispinors are 
called sesquispinors; these, too, are representations of  SLN, complex and 
real, respectively, of  dimension N 2. I f  spinor ~b A describes a quantum entity 
e, then we say that the ambispinor~describes an e pair, and a sesquispinor 
a real e pair. 

P1 has C (set-antiset) symmetry, in that complex conjugation respects 
~. Most networks in SET obviously lack C symmetry. 

A problem connected with spin and statistics arises in Section 6.3. 
P1 allows T symmetry of  the theory, but not of  any cell. To see this 

most simply, consider the linear net of  two links 

xcycz 

whose plexor is 

~1 v ~1 v L~I = ~1 v ~21 v ~31 

Its T image is presumably the isomorphic net 

zcycx 

The T image of the link xcy relative to the origin y must then be the link 
ycz on the other side of  the origin, in order to go over well into the usual 
concept of  T in the one-dimensional Minkowski space. (In an n-adic net 
that has a suitable order, T forms a new cell using n outputs from n 
neighboring cells as inputs, and taking as output one input common to 
these n cells.) This makes it clear that T is not defined on a cell xcy by 
itself, nor  in most nets, and when it is defined, it maps the output of  every 
cell to that of  another. This difference between the unicellular SLN transfor- 
mations and the multicellular T is inherent in the net concept. 

In general, therefore, even if the net is T-symmetric as in the above 
example,  T and SLN do not commute,  and the noncommutativi ty is 
proport ional  to the step size 1~. We cannot yet treat the question of  T 
conservation, the noncommutat ivi ty of  T, and time translation or energy, 
since we do not yet have the net correspondent  of  the continuum concept 
of  energy, but it is plausible that it will fail. 

In the quantum theory of the dyadic cell, the fact that T is not defined 
on the cell is expressed by the fact that T is not represented on 2-spinors. 
Since such spinors describe the neutrino, it is natural to consider whether 
the observed T asymmetry of the neutrino and the weak interactions is due 
to this T asymmetry in time space structure. On dimensional grounds, 
should then be about the characteristic time of the weak interactions, the 
reciprocal of  the W mass Mw, the W time Tw. Yet it appears that the 
continuum is a good approximation down to the Planck time Tp. From the 
start, the Planck time and the W time contend over which shall be closer 
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to the chronon 1~. But the conclusion that I~ ~- Tp is drawn from the continuum 
theory itself. It is based on scattering cross sections, which involve expecta- 
tion values, not eigenvalues, of time space parameters. To test this conclusion 
significantly, we must develop the quantum theory of nets- -or  any contend- 
ing theory- - to  the point where it can do physics, and show that the net 
breaks T (and C and P)  invariance at much lower energies than it does 
translational invariance. In general, the larger we set the value of n, the 
more vulnerable the theory. 

4 . . . .  AND BACK 

The problem now is to find our way home, from the algebra SEX of 
quantum networks to ordinary classical causal space and quantum field 
theory. We must account for the emergence of continuous time space 
coordinates and the spin form o- from the algebra of plexors. 

4.1. Four-Dimensional Checkers 

We must not only cope with nets of variable dimensionality, but also 
reconcile two different dimensionalities at the same time in each, the 
complex and the real: 

1. The structure group SL2 is that of a quantum dyad; it must therefore 
act on the two inputs of a dyadic cell, which is a triangle. In the main, the 
cells of the world have the symmetry of dyadic cells from the macroscopic 
point of view, though there may be higher dimensional pyramids sitting on 
these triangular bases supporting the unitary particle groups. In the case 
of a BN, the cell group is SLN on the inputs of an N-adic cell. The outputs, 
inputs, cells, and net supporting the identity (complex, spinor) representa- 
tion of SLN are called the complex ones. 

2. Yet the world has a four-dimensional topology, at least on a certain 
scale of sizes; on a smaller scale, its dimensionality may be even higher, as 
Katuza pointed out. In general it should be made of n-adic cells with 
n ----- N 2, supporting the sesquispinor (real, "vector")  representation of SLN. 
I call these cells real 

We must reconcile these two contradictory-seeming requirements by 
forming the real n-adic cells as subnets composed of more fundamental 
complex N-adic  ones. Since vectors of real dimension n are made from 
spinors of complex dimension N, it is formally simple to make a real cell 
of real dimension n = N 2 from a complex one of complex dimension N. 
Indeed, the n pairs formed from the inputs of a complex N-adic cell-anticell 
pair (Figure 4) support the ambispinor representation of SLN, and the real 
pairs (those invariant under complex conjugation) support the sesquispinor 
or real vector representation. The output of the real cell is the "absolute 
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1" 1" % 

Fig. 4. 2 x 2 = 4. Cornplex dyadic cell x dyadic anticell = real tetradic cell. Cell inputs (spinors) 
in white, anticell inputs (antispinors) in black, outputs (scalars) in gray, ambispinors in black 
and white. This product is not a dyadic net. 

squa re"  q7 v ~O o f  the ou tpu t  ~b o f  the complex  one. The cell whose  inputs  
are  these n real  pa i rs  and  whose  ou tpu t  is the  real  ou tpu t  is a real  cell. 

But this k ind  o f  t ensor  p r o d u c t  o f  d y a d i c  cells is not  a d y a d i c  net. We  
can a p p r o a c h  such a p r o d u c t  wi th in  the  X k inemat ics  as a k ind  o f  p r o d u c t  
V:= 212], where  in genera l  the  p roduc t  W[ V] o f  nets is def ined by  ident i fy-  
ing each  pr imi t ive  inpu t  6 o f  the  net  V with the ou tpu t  o f  a rep l i ca  o f  the 
net  W. I f  W and  V are  d y a d i c  nets,  then  so is W[ V]. 

In  pa r t i cu la r ,  212] is the  four - inpu t  d y a d i c  net  o f  F igure  5. Its four  
inputs  t r ans fo rm acco rd ing  to the "vec to r "  ( sesqu isp inor )  r ep resen ta t ion  
o f  SL  2 p r o v i d e d  we t r ans fo rm all three  d y a d i c  cells in V by  the same SL2, 

~ J , N ,  

Fig. 5. 212] = 4. A dyadic cell times a dyadic anticell equals a four-input dyadic net that 
transforms as a sesquispinor only if the groups of the two cells on the left are identified. 
Shading as in Figure 4. This is the unit cell of the net Z 4. 
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suspending the gauge invariance that permits us to transform them separ- 
ately. We say that these cells must have coupled spins. 

The two-dimensional checkerboard 77 2 of Feynman (Figure 3) is made 
up of pairs of integers {p, q}, with {p,q} connected to { ( p + l ) ,  q} and 
{p, ( q+  1)}: 

c{p, q} = {{(p + 1, q}} v {{p, (q + 1)}} 

We make a four-dimensional causal net 774 out of purely dyadic cells 
using the cell of Figure 5. Instead of 772 we use 77 4, the integer tetrads 
{p, q, r, s}. We suppose arbitrarily that the origin 0 is an event, not an 
antievent. We connect any event to two antievents obtained by stepping up 
either of the first two components p, q. We connect any antievent to an 
event obtained by stepping up either of the last two components r, s. That 
is, an event {p, q, r, s} is connected to the two antievents {p+  1, q, r, s} and 
{p, ( q+  1)q, r, s}. An antievent {p, q, r, s} is connected to the two events 
{p, q, ( r +  1), s} and {p, q, r, ( s+  1)}. 

It follows that the odd tetrads { p, q, r, s} (those with p + q + r + s odd) 
are antievents and the even are events proper. The cell is dyadic, and the 
net is clearly four-dimensional. 

How do cells come to connect with anticells in this way? How do such 
pairs then connect to form a world like ours? These are dynamical questions, 
and we return to them in Section 4.3. 

4.2. Breaking Superposition 

We now know how to carry each of the following entities from the 
complex realm of N-spinors to the real one of n-vectors with n = N 2" 

An individual N-spinor t) becomes an n-vector v = q7 v ~b. 
The complex linear space of spinors becomes the real linear space of 

real vectors. 
The N inputs of a complex cell become the n inputs of a real one. 
The ray containing any product (or "simple") element of grade N in 

the Grassmann algebra of quantum sets becomes the ray containing a 
product element of grade n in the real Grassmann algebra over the real sets. 

But there is no way to carry the general N-grade element, a sum or 
superposition of such products, or the general superposition of cells. 

This seems to violate the principle of quantum superposition, an impor- 
tant clue to the further development. 

4.3. The World As "Superconductor" 

Let us now seek the quantum topological origin of the principle dynami- 
cal variable, the spin form o-: v~--->~v], giving the chronometric and gravita- 
tional structure of the world. 
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The transformation law of [Iv] is that of  a ~b amplitude for a real input 
pair  in the sense of  Section 3.1. [[v~ itself is a dynamical var iab le - -an  
observable, however, not a quantum ~0-vector; a crucial difference. The only 
way open to make such a variable from a 0-vector is from a large set of  
quanta. There seem to be two routes, the incoherent and the coherent. We 
must choose whether the sesquispinor v,iB is: 

1. An incoherent statistical description of  a set of  inputs, like a statistical 
operator  RAB or the Thomas-Fermi  statistical density 

p = 6~'  

constructed from the 0 functions of  the electrons in a large atom. Then 
vector addition is incoherent superposition or mixing of ensembles. Or: 

2. A coherent description of a set o f  real input pairs, like the 
macroscopial ly observable wave function 0 giving the 0-vectors of  the 
helium atoms in a superfluid, or the electrons in a superconductor.  Then 
vector addition is coherent superposition of  quantum 0-vectors for an 
underlying quantum entity corresponding to a helium atom or electron pair. 

A large set of  inputs may "material ize" a 0-vector for one of them 
into a macroscopic dynamical  variable 0. I f  the set is of  input pairs, the 
emergent variable ~0 may be coherent; if  it is made up of single inputs, qJ 
must be incoherent. 

The crudest w a y - - a n d  we are hardly equipped for anything refined, 
groping so far beyond our reach- - to  associate such a set of  quanta with an 
edge is to let the edge be the set. Since a real edge transforms as a pair of  
complex inputs; this points to the coherent route, which likewise deals with 
pairs. 

Moreover,  there probably  is no incoherent route at all. Even in affine 
quantum theories, variables X are still represented by linear operators X A 
and a statistical operator  must still have the index structure ~0 A, so that it 

OBXA for any variables X. In an may yield the expectation value (X)~ = A B 
affine theory an operator  0 A is altogether different from a form ~ a s .  Nor  
is it permissible to use the experimenter 's  time axis vA~ to relate the two; 
such an explicit dependence on the experimenter is just what is meant  by 
a violation of symmetry. 

The coherent route offers much less resistance. It directly relates the 
Hermitian tensor VAB to the set of  pairs that makes up v. 

In affine quantum theory there is no invariant way to go from the 
general plexor ~nm~a.. for a quantum set of  pairs, which has 2p lower 
indices, to such a one-pair  tensor vnz ,  which has only 2 lower indices, just 
as the general many-pair  electron ~0-vector does not determine a one-pair 
0-vector. So we do not have a system of t ime-space coordinates defined 
for all events in all nets. 
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But we should not expect such coordinates since only the quantum 
condensation of the network exhibits a manifold topology. It is sufficient 
to go the other way, from vaB to a many-pair plexor; schematically 

=II (vaBEa"e B'') 
n 

where n ~ ec labels a sequence of nearly isomorphic replicas of the N a pairs 
eAe B. Many-pair plexors ~ast'~... that do not come from such a one-pair 
v simply do not represent vectors in a classical causal space, but some less 
ordered time space, though one that is still causal. The emergence of 
continuous coordinates on a net depends on the existence of a certain kind 
of long-range order in the net. 

Again, the seeming violation of superposition is the counterpart of 
what happens in superconductivity when a microscopic ~p function becomes 
a "macroscopic 0 function." The emergence of the metric from the con- 
densation is further discussed in Section 4.3.4. 

We infer that the familiar causal space is a low-temperature (high- 
coherence) crystalline phenomenon akin to superconductivity; we call it 
ether. This is our second physical principle: 

P2. Each world vector v statistically represents a large coherent 
ensemble of  real pairs of complex events described by one sesquispinor 
VAB, which may be interpreted as the local spin metric. J 

Either the existence of such coherent structures will follow from 
dynamics, or it will be inconsistent with dynamics. In either case, P2 must 
disappear from the theory as a separate postulate, surviving only as a rule 
of interpretation, telling how this theory accounts for ordinary world vectors, 
their spin metrics, and the spin form cr that gives rise to gravity. In the 
meantime P2 has many favorable implications for further development: 

4.3.1. Real Coordinates 

We can at last hope to understand the mysterious reduction of complex 
ambispinors to real sesquispinors that one routinely performs at the very 
outset of spinor algebra ever since the spinorial studies of Cartan and of 
Infeld and van der Waerden. If Minkowski vectors are wave functions of 
a complex quantum theory, they should be complex. Now this break in 
gauge invariance signals spontaneous symmetry breaking and something 
like a superconducting transition. 

4.3.2. Real Gauge Fields 

The groups of these relativistic quantum models are all linear groups 
SLN, while the particle groups are unitary SUN. If one applies the usual 
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Lie-algebraic symmetry considerations, the gauge fields of  the theory should 
all be complex bosons. We see the real parts daily in the laboratory; where 
are the imaginary parts ? 

This second break in gauge invariance also signals something like 
superconductivity at once. Like the reality of  Minkowski space, the reality 
of  the gauge fields is a spontaneously broken symmetry. 

Nor  is it any use looking for the imaginary parts of  the gauge fields in 
tohu. That  would be like looking for the Burgers vector of  a crystal after 
the crystal has been gasified. The gauge fields describing transports of  
~b-vectors from cell to cell are born of the long-range order of  ether and 
disappear with it. 

4.3.3. The Law of Inertia 

The notable absence of any scattering by the net at available energies, 
leading us to believe that the cell size is much smaller than it actually is, 
is presumably also a result of  this condensation. 

This quantum condensation of bosonlike pairs somewhat  resembles 
superconductivity, although an electron of a superconductor  is paired with 
an electron with reversed momentum and spin some distance away, while 
an event input is paired with its C-transform (complex conjugate) in the 
same cell. Like a superconductor,  ether defines no local rest frame for its 
excitations. '~ 

Presumably ether undergoes a phase transition at a temperature on the 
order of  1/1~ to a differently ordered phase, and ultimately, if not at first, 
to the most disordered phase, tohu. 

The analogy to superconductivity may be fertile. For example,  it tells 
us to look for a Meissner effect. The Meissner effect gives a mass and range 
to the photon,  and its analogue would give some quantum its mass, too, 
though which we cannot yet say. 

Nevertheless, the phenomenon,  of  course, is not superconductivity, a 
persistent electrical flow in a material lattice, but a persistent material flow 
in the event net, or inertia. It is the law of inertia that fails in tohu; bodies 
do not follow geodesics there because bodies and geodesics cease to exist. 

4.3.4. The Quantum Metric 

We indicate qualitatively here how a quantum condensation of event-  
antievent pairs may give rise to an effective quantum metric and a unitary 
quantum theory. We consider a tangent vector v = ( v  m) as defining an 
excitation or defect described by a quantum condensation of pairs with a 
macroscopic q,-vector/~ = (/xAs). The spin form relates the ~b-vector /x to 
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the tangent vector: / z= o - .  v=[[v]l. I f  a quantum pair ( = q u a n t u m +  
antiquantum) crea t ion/z  AB is followed by a quantum destruction ~0B, the 
resultant is the creation of  an antiquantum described by the 0-vector 

0 A =/xABq~ B 

The pair 0-vector ~z AB itself has the structure of  a contrametric, mapping 
a contravector into an antivector. We suppose this mapping is a positive 
(definite) Hermitian tensor, so that it has a positive inverse/z ~a, which has 
the properties of  a metric. 

It remains to show that /x actually functions as a probability metric. 
By the quantum law of large numbers, we can express the general probabili ty 
in terms of transitions of  probabili ty 1. Thus, it suffices to show that in a 
net of  condensed pairs described by a macroscopic O-vector /z a~, the 
transition 0 ~ ~o, representing an experiment with input 0 and output q), is 
compulsory (has probabili ty 1) when 

~A =/zABp B 

or simply 

oA = A 

where we use tx to lower, iz -1 to raise, and C to conjugate indices as needed. 
Now it takes more experimental repertory to verify that a transition 

has probabili ty 1 than 0. It is necessary to have not only a quantum channel 
from input to output, but also a counting channel or its equivalent. The 
difference corresponds to that between an uncalibrated galvanometer,  used 
for null detection, and a calibrated ammeter,  used for intensity measure- 
ments. The concept of  compulsory transition cannot be expressed in terms 
of affine (nonmetric) concepts without reference to the calibration process; 
an additional correspondence must be made between the mathematics and 
the physics to specialize from the affine to the unitary quantum theory. 

We suppose here that the condensed medium plays the role of  the 
extra channel. We stipulate that to verify that a transition has probabili ty 
1 means to perform the transition many times and verify that the network 
remains statistically unchanged. From this constancy we infer that all input 
quanta must be collected at the output, and that each transition therefore 
has probabili ty 1. 

This seems to mean that the input vector 0 and the outPUt contravector 
in a compulsory transition must be a pair that is correlated by the 

condensation, so that the removal of  any number  of  such pairs leaves the 
net tz unchanged. Further development of  this proposal that the quantum 
metric is a macroscopic 0-vector for pairs must wait upon a fuller description 
of the condensation. 
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5. T O P O L O G I C A L  DYNAMICS 

The postulate P1 is kinematical, and P2 is statistical. We come now to 
dynamics. 

5.1. Action Principle 

The problem that faces us now is a traditional inverse problem. The 
action density R for classical hypergravity is to be regarded as a phenomeno-  
logical action for the ether, an infinitesimal and untypical sample of  the 
entire phase space. We must infer a quantum action from this sample; we 
must, as it were, see through the transition to the microscopic action S[to] 
valid for all nets. We have the form of R for all values of  N = 1, 2 , . . .  to 
guide us; it is quasilinear of  differential order N in the spin form tr. This 
suggests that the quantum action couples N + 1 events, which presumably 
are those of  an N-cell. Therefore, the quantum action may likely be 
expressed as a sum over cells. The volume element with which R is integrated 
is formed from the determinant of  the spin form (S. R. Finkelstein, 1987). 

There has been no progress with this inverse problem to report here. 
Let us turn to the direct problem, proposing a quantum action and deducing 
a phenomenological  one from it. 

What  general form shall the dynamical law for a quantum net take? 
Since the fundamental  variables, representing the outputs of the net are 
odd (Grassmann,  Fermi), it is convenient to suppose that the creation and 
destruction operators for at least some odd quanta, whether quarks, leptons, 
or still more fundamental  ones we cannot say, are linear combinations of  
ou tpu t - - and  more generally, s implex--creators  and destructors. That is, 
creating a certain quantum, say a neutrino, means adding an event to the 
world net. 

The most powerful dynamical principle we have for a field to of  odd 
quanta is the functional one: The vacuum-to-vacuum transition amplitude 
[vac, +oo( U[J](vac,  -co]  in the presence of external odd sources J = (J(x)) 
is a Weyl-Fourier  t ransform of the classical action S = S[to, tot]: 

[vac,+~(U[J](vac,-oo]=ff [dto]expi[S+f (dx)toJ] (2) 

with J=-iO~. Here 0~,, the Grassmann derivative with respect to to, is 
defined (like any partial derivative) not relative to the individual variable 
tO, but only with respect to an entire first-grade basis. As q~ ranges over a 
first-grade basis for a Grassmann algebra, 0+ ranges over the dual basis for 
the dual algebra. The dualvar iable  to* is cogredient with 0~ but is  a first-grade 
element of  the same Grassmann algebra as to. 
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Let us adapt this dynamical principle to the present theory. We have 
already incorporated nonunitarity, replacing the usual Dirac bras and kets 
by a vacuum vector and covector. 

What net corresponds to the vacuum in the action principle? The 
vacuum 0-vector is Poincar6-invariant; this is appropriate to an infinite-time 
continuum, which we have already atomized, and which is bounded in 
cosmogony. There is a conspicuous net to take its place: the null set. In 
the Grassmann algebra SET the null set is represented by the zero-grade 
plexor 1 (the c-number unit). Let us replace both initial and final vacuum 
0-vectors by 1 in (1). 

This means that at the beginning of an experiment a maximal 
experimenter creates the causal space in the experimental region event by 
event, and at the end of the experiment counts (or "destroys") these events 
one by one. 

5.2. Action 

Any candidate for the plexic action X must account for the usual 
classical causal space. The action must account for bosonization and con- 
densation. 

To infer an action, let us consider the present theory as a "topological 
relativity" that relates to general relativity somewhat as general relativity 
relates to special, in the following sense. 

The infinitesimal variations of general relativity vary the Minkowski 
chronometric of special relativity, and therefore demand chronometric 
variables, but respect the world topology. Similarly, those of a topological 
relativity vary the topology of the time space and therefore demand topologi- 
cal variables. 

Now the action density R of gravity theory is sterile (leads to no 
equations of motion) in special relativity, where we fix the chronometry, 
but fertile in gravity theory, where we vary the chronometry. By analogy 
let us therefore seek an action S[4r] for quantum topology that is sterile in 
gravity theory, which fixes the topology during dynamical variations &r of 
the spin form, but fertile in quantum topology, which varies the topology. 
That is,just as the integral of R is a differential invariant in special relativity, 
S[~O] must be a topological invariant in general relativity. To make sense 
of this, we define this topological invariant first for the differential manifold, 
where it is required to be a functional of the curvature form, and then 
translate it into quantum net language. 

Finally, in gravity theory we discover that what seems nongravitational, 
like the electromagnetic field, may simply be a gravitational variable restric- 
ted to a manifold of special form, Kaluza's. Analogously, we suppose that 
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all the seemingly nontopological variables in the world are actually restric- 
tions of topological ones. Connections are everything. 

5.3. Causal Homology 

It is therefore crucial to make use of the proper physical topology. The 
usual combinatory topology is founded on a symmetric concept of connec- 
tion derived from experience with Riemannian and ultimately Euclidean 
geometry. It assumes the existence of spatial connections and puts  them 
on the same footing as timelike ones, when (in the absence of any signs of  
tachyons) it is quite doubtful that either exist at all. A relativistic topology 
should deal with causal connections among events, not spatial connections 
among objects. 

At the continuum level, the Alexandroff topology is already suitably 
relativistic. It is thus only necessary to construct a relativistic discrete 
topology and homology theory on the basis of the causal connection c. 

The simplest way to make a relativistic homology is to restrict the 
concept of topological cell to what is supposed to exist: the causal cell. 
Henceforth, when we say edge, triangle, or simplex in general, we mean a 
causal edge, triangle, or simplex, with exactly one output vertex. The 
contracell is dually defined, with one input vertex. We call the resulting 
topology the causal topology. It is obvious now what definitions must be 
framed for the concepts of  causal chain (linear combination of causal 
simplices), causal boundary (the part of the usual boundary composed of 
causal simplices), causal cycle (causal chain without causal boundary),  and 
causal homology (causal cycles modulo causal boundaries) of  a net. 

Consider, for example, the simplest topological invariant that may be 
expressed in terms of the curvature fo~m, the Euler (characteristic) class 
XE[~b]. It involves numbers of events, edges, triangles, and so forth. In the 
quantum theory these numbers are expressed as products of creators and 
destructors like N = ~00+. In the action principle, the destructor 0~, is replaced 
by a surrogate variable ~0 t which anticommutes with ~ (unlike 0+, whicti 
obeys the canonical anticommutation relation with ~b). Similar surrogates 
are introduced for the higher rank elements of SET, representing the destruc- 
tion of higher dimensional cel~.s. The "classical" action XE that might appear 
in the quantum action principle is then the alternating sum 

xE = E (q,q,*) - Y ({ q,~ } {~0~} ~) + Y ({~0~x} { q,~x}* . . . .  

over all faces {q,. �9 .~} of the net. 
This is a promising start. In the quantum theory the Euler class appears 

as a free or bilinear action (the first sum), a direct Fermi interaction (the 
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second sum), a direct sextic interaction (the third term), and so forth. From 
a distance the first two terms even resemble model actions for superconduc- 
tivity. 

But XE is tOO different in detail from the action principles for gravity 
and electrodynamics to survive. The electromagnetic action SEM, for 
example,  is the sum of  a positive-definite term, the kinetic action ~ E 2 of 
the electric field E, and a negative-definite one, the potential action - ~  B 2 
of the magnetic field B. In it timelike and spacelike simplices appear  with 
opposite sign, the kinetic term arising from timelike triangles and the 
potential from spacelike. The same opposition of kinetic and potential 
actions appears  in gravity theory between the electrogravitic field and the 
magnetogravitic field. 

The Euler class ignores this basic difference between time and space. 
The first sum in XE is over all vertices; the second over ,all edges, although 
each N-s implex N has only N timelike ones and N ( N - 1 ) / 2  spacelike; 
and so forth. 

In many  Riemannian theories this distinction between time and space 
is temporari ly eliminated by analytic continuation t-~, it, which turns a 
Minkowskian geometry into a Euclidean one. This device is limited to the 
Riemannian theory of  causal space and fails in Bergmann manifolds BN 
with N > 2, and so will not be used here. Our action princ:iple must recognize 
how becoming differs from being, and time from space, and thus how the 
group SLN acts upon net elements. 

When the sums in the Euler characteristic are restricted to causal cells, 
we call the resulting class Xc the causal Euler characteristic. The causal Euler 
characteristic is the relativistic concept; the usual Euler characteristic is the 
prerelativistic one. 

This change in the concept of a cell has no effect ,on the first sum in 
XE; but greatly curtails the second, omitting all but N of the N ( N +  1)/2 
classical edges; and still more the following sums. 

Example. The toroidal net Npo obtained by identifying the left-hand 
edge of  the p x q checkerboard net with the right-hand one, and connecting 
the futuremost edge to the pastmost  edge, has causal Euler characteristic 
Xc = 0 for all p, q = 0, 1, 2 , . . . .  

It seems that the causal Euler characteristic of  a net e is invariant under 
refinement in much the way that the nonrelativistic Euler characteristic is. 
Inserting an event in an edge increases the number  of' events and edges 
both by 1, leaving Xc invariant. Connecting an input event to the output 
of  a triangle to produce a tetrahedron increases both the number  of  edges 
and tetrahedra by one, but the number  of  triangles by two; and so forth. 
Evidently the Euler characteristic of a network may be: decomposed into 
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two terms, the causal Euler characteristic and what is left over, arising from 
spatial simplices, which we may call the spatial Euler characteristic. 

A second possibility for the action is the spin class Xs, the topological 
class that is associated with the present structure group SLN and its curvature 
form, in much the way that the Chern and Pontrjagin classes Xc and Xp, 
for example, are associated with their respective structure groups GL(n, C) 
and GL(n, •) and their curvature forms. [For the latter classes see Eguchi 
et al. (1980).] One expects a relation of the form 

Xs:= det[1 +2@,/P 1 

to hold, where P is the spin curvature form, and the products implied by 
the symbol det are simultaneously Grassmann products v for the time space 
indices and contractions for the spinor operator indices, as usual. (We 
provisionally copy the factor of 2~ri from the known classes.) The relation 
of the spin class Xs to the causal Euler characteristic Xc or to the causal 
homology of the net is still unknown. It will ultimately be easier to express 
Xs and Xc in terms of yes-or-no net connections than, say, the Regge action. 

More generally, any invariant polynomial in the curvature form gives 
rise to a topological invariant upon integration. A somewhat simpler action 
than Xs is the determinant of the spin curvature P (capital rho) itself, 

S = det P 

In any case, a proposed action principle for the world net has the form: 

P3. [ I ( U [ J ] ( I ]  = I I  [dtblexpi{/3X[qJ]+~ ~JJ} 

where X is a causal topological invariant of the Bergmann manifold 
expressed in terms of net variables, such as the causal Euler characteristic 
or spin class. Here/3 is a pure numerical constant. 

We must return home to the dynamical principle [Section 5.1] of physics 
in Minkowski space when we replace the null set in P3 by the plexor 
representing the ether. It is clear how the interval dr  and the geodesic 
principle must arise from the net dynamics. In a net that approximates a 
BN, the action for a net defect that is concentrated upon and defined by a 
world line, by SLN invariance, will be proportional to some integral 
~Sefrdr of an invariant scalar effective action Seff(dx/dr). The matrix 
v=(dXMN/d~') can be transformed by SLN to the diagonal form 
d i a g ( + l , . . . ,  +1, - 1 , . . . ,  -1 )  and so no continuous invariant scalar can be 
made from dx/dr except a trivial constant scalar - M ,  which appears as 
the effective negative mass of the defect; this is a generalization of Eyl's 
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deduction of the geodesic principle for singularities in general relativity 
from the field equations for gravity. 

Actually, Minkowski space requires an infinite of finite cells, which is 
somewhat against the spirit of this theory, and may even make some infrared 
properties blow up. Sometimes a compact universe is a safer place for 
particle experiments. The compact unitary group space UN is an N-adic 
Bergmann manifold, an n-dimensional causal space, that is the most sym- 
metric possible compact substitute for the noncompact Minkowskian space. 
It and its neutrino spectrum have been explored by Holm (1987) with 
interesting results. 

5.4. Fundamental  Time 

Since ors is an integer, the constant/3 in P3 is defined only modulo 27r. 
It is tempting to set/3 = ~r to eliminate the explicit appearances of i in P3, 
including the one in J. Then 

exp{i/3Xs[tO]} = ( - l f f  s 

Let us leave /3 undetermined for now, noting, however, that /3 may be 
assumed to be of order unity. 

The scale of the fundamental time 13 then depends on which of the 
couplings or masses is also of  order unity in net units, where h = c = 13 = 1. 
Since the cr field leads so directly to the chronometric tensor field g ..... p, 
it is at first natural to expect that it is the gravitational coupling constant 
that is of order unity in natural units, of all the coupling constants we know. 
Then the fundamental time 13 would be on the order of 1 planck. The other 
possibility suggested by the development so far is that the n is the scale on 
which T conservation breaks down, which is closer to 1 fermi than 1 planck. 
The absence of scattering from the net between 1 fermi and 1 planck is 
then to be explained as a result of the same quantum condensation that 
gives rise to the causal continuum. Presumably electrons in a superconductor 
hardly see their lattice, too. This decision rests ultimately on the action 
principle and its propagators, to which we now return. 

6. PARTICLE SYMMETRIES 

6.1. Inner versus Outer 

It is natural in this scheme to ask: Do the internal unitary groups U~, 
SU2, and SU3 of the standard model act on inner variables or on deeper 
variables? 
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The "inner"  nonspatial symmetries are those inherent in the concept 
of the Bergmann manifold and in the Kahiza approach to unification 
(Section 2.2). 

The "deeper"  ones come from the decomposition of the inputs of the 
time-space net into their elements (Section 3.1). This possibility does not 
exist in the manifold theory, but arises in any combinatorial theory. 

In the present theory, for example, SLN groups indeed exist at levels 
below (in the sense of  rank or elementhood) the causal space itself. If  we 
expand an input event 6 of  a cell in the time-space net, we generally find 
that it is also an output of other cells: 

= a ' = ~ 6 ~ v .  �9 .v~a#,  

with some N '  "deeper"  inputs 6 ~ , . . . ,  6~,. The deeper group SLN, acting 
on and mixing these deeper vertices leaves 6 invariant. 

Surely it is one charm of  postulate P2 that it avoids this complication. 
For P2 tells us that deeper vertices are simply past events and deeper 
variables are past variables, and they split into internal and external ones 
just as the present ones do. The deeper variables that a nonspatial unitary 
group might act upon are merely the internal variables of the immediate past. 

6.2. Unicel lular  versus Mult ice l lular  Transformations 

Since rotations and boosts are represented within one cell while time 
translation and reflection are multicellular, it is natural to ask whether the 
unitary particle groups act within one cell or across many. 

If the cell is binary, we have exhausted its resources with the Lorentz 
group. There is no room in the binary cell for another nontrivial unitary 
group commuting with SL2. If the unitary group is monocellular, the cell 
is not binary. 

Our first supposition, in accord with the idea o f  Kaluza, is that the cell 
has extra inputs which the unitary particle groups permute. This provides 
a monocellular representation. 

To be sure, as the theory develops one becomes increasingly aware of  
multicellular entities such as defects and dislocations on which the unitary 
particle groups might act. The simplest such possibility is the contracell of  
Figure 1, composed of an event and its outputs, which generally belong to 
two other cells. Even in an X network, there is an entire SL2 acting on 
these outputs, and an SL3 permuting them with the event itself. This group 
tempts us to identify the two outputs with up and down flavors, and the 
event itself with a strange flavor. Unfortunately this hypothesis then requires 
us to explain the observed electromagnetic asymmetry between up and 
down flavors in the contracell, which, though slight at high energies, is 
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much greater than the spatial asymmetry between up and down spins in 
the cell; and it leaves no equally natural place for the other flavors. This 
identification appears too simplistic. 

6.3. Spectra 

The propagators for the particles of physics must arise as matrix 
elements of the generating function of P3 in the Lorentz invariant ether 
(vac] for external sources J of the particles. We shall take into account the 
inferred pairing only slightly in this first exploration, by confining ourselves 
to removing one, two, three, or four of  the real inputs in a real cell, or 
equivalently, one or two each of the complex inputs and anti-inputs in the 
two complex cells that constitute the real cell. We shall grossly neglect the 
all-important pairing correlations within ether by casually adding and 
deleting events one at a time, leaving a more careful theory for the next 
time around. 

To explore the need for inner or Kaluza inputs, let us first suppose all 
cells are dyadic. 

The two complex inputs on each complex output we conventionally 
call spin up and spin down. The operation of destroying an input is, we 
recall, a contra-input. In a binary net, removing an input necessarily has 
the effect of removing an entire chain of events. 

One complex contra-input is thus described relative to its ceil by a 
chiral spinor or antispinor; the Lorentz-invariant propagators resemble 
those of a spin-�89 chiral particle and its antiparticle. 

Two complex contraevents in a single real cell may either be in the 
same complex cell, in which case the compound has-spin zero, since one 
has input spin up and the other spin down, and the symmetric compound 
is excluded by the Fermi statistics; or they may be in separate cells, in 
which case they form an ambispinor, a complex vector, with both spin-0 
and spin-1 parts. 

The compound of three complex contraevents in a single real cell is 
defined by the fourth event and has the same transformation properties 
under the local Lorentz group. It is unlikely that single and triple excitations 
have the same mass spectrum. 

A four-contraevent excitation in one real cell transforms with spin 0. 
Four contraevent excitations in two neighboring real cells, however, 

create a spin-2 excitation if the four complex contra-inputs belong to four 
different complex cells. 

It is natural to project that the single contra-input excitations are 
forerunners of a chiral lepton family, the double contrapinput compounds 
of a photon or vector boson family, the triple of a chiral quark family, with 
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its three colors and flavors, and the quadruple of a graviton family. But 
clearly crucial degrees of freedom are missing, as anticipated. 

We consider next the results of inserting rather than deleting inputs. 
This seems necessary here even without considering Kaluza dimensions, 
merely to support the symmetry between events and contraevents, and 
between spinors and contraspinors in spin -1 quanta like the electron. 

Adding an input to a dyadic net creates an entire chain of events, 
beginning with a mating of the new input with one of the old ones. There 
is thus a pronounced asymmetry between input and contrainput within ether. 

6.4. Spin-Statistics Problem 

This asymmetry is aggravated in polyadic nets. If we add an input to 
(say) a dyadic cell, the original two inputs transform under SL2 as a spinor, 
while the new one seems to be a scalar. The triad thus forms a mixed 
multiplet: one that combines representations of integer and fractional spin. 
(We do not speak of supermultiplets because all our events anticommute.) 
The N +  1 events of an N-adic  cell also form a mixed multiplet in this 
sense, since the output supports the scalar representation of SLN and the 
N inputs the identity of hyperspinor representation. Moreover, the N inputs 
themselves are mixed from the point of view of SL2, consisting of  N - 2  
scalars and two spinor components. Several mixed multiplets appear in the 
standard model. Under weak SU2, a lepton decomposes into a scalar 
dextrolepton (like the dextroelectron) and a spinor levolepton (like the 
levoneutrino and the levoelectron), all of  Fermi statistics. Since that SU2 
has nothing to do with spin, the Fermi statistics raises no problems there 
as it does in the plexic model. 

We must therefore doubt the Fermi statistics of all these components, 
which would violate the spin-statistics connection enough to kill the theory, 
now that these effects are associated with W masses rather than Planck 
masses. 

One way to reestablish the spin-statistics connection is topological. 
For topological solitons in tensor (nonspinor) fields, the spin-statistics 
connection follows directly from topological arguments based only on 
continuity. For this fact to be directly applicable to our predicament, all 
laboratory particles would have to be topological solitons in the net. 

This possibility is not yet readily excludable. All the spins �89 in the 
world might in principle be global topological effects, like the spin-�89 of  
some rigid point structures (Finkelstein, 1955), of skyrmions (Skyrme, 1961), 
or of topological charges [the "M-geons"  of Finkelstein and Misner (1959)]; 
I had hoped so myself until 1965. But that would eliminate the deep origin 
provided by Bergmann (1957) for gravity and causal structure, and might 
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mire us forever in the infinities of  topological field theories. In any case, 
this possibility reminds us that the relation between the commutat ion 
relations of  the variables' and the statistics of  the quantum is not always 
simple. It is further complicated here by the presence of two commuting 
Lorentz groups, on inputs and outputs, at each event. This makes it necessary 
to reexamine all the connections between spin, statistics, and algebraic 
commutat ion relations. 

I f  we adhere to X networks, we avoid these vexed questions, but have 
to find a new substitute for Kaluza's internal coordinates. This is a critical 
point for further study. 

7. D I S C U S S I O N  

We have set up an algebraic model of a relativistic quantum neural 
net and applied it to time space; not a solar plexus, but a cosmic one. 
Elsewhere (D. Finkelstein, 1987b) the net model of  the world is compared 
to a relativistic quantum computer.  I f  the Newtonian universe is likened to 
a cosmic clock, the net universe may be compared to a cosmic brain. Now 
we see that it must be a superconducting brain. For tangent vectors and 
spinors of  classical differential geometry to arise from microscopic ~b-vectors 
that are cogredient but have a quantum interpretation, ordinary Minkowski 
space must be a quantum condensation, and one that is akin to superconduc- 
tivity in pairing fermionic entities to form bosonlike ones, which then 
condense. 

We propose a microscopic theory of the spin form and hence of  gravity: 
the spin form cr gives the macroscopic pair ~b-vector associated with a 
~angent vector. The classical tensors derive their linearity, reality, and 
cogredience from being coherent macroscopic wave functions. 

. We have given a general form of action principle and some candidate 
actions for the net; one of  these is a topological class associated with the 
structure group SLN. When topology is a physical variable, it is important 
to choose the right one. We base the physical topology for a relativistic 
network on the directed causal connection, not on Euclidean symmetric or 
spacelike or timelike connections, which do not physically exist. This 
distinction is another reason to prefer the name causal space over the 
common term "space-t ime."  

But the very form of this action principle is suspect in cosmogony, 
where different experimenters must inevitably work with different systems 
and yet must relate to each other. This seems to call for an extension of 
relativity (D. Finkelstein, 1987b), omitted from the theory presented here, 
for example the third relativity considered in Finkelstein 1987b. 
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Nevertheless it is possible that the present considerations, conservative 
as they may be, are a step towards such a further relativization. Extensions 
of relativity typically evoke new physical degrees of  f reedom--as  a relativis- 
tic theory of the electric field calls in the magnetic field, and a relativistic 
theory of  the electron brings out its spin. Since third relativity involves 
tearing systems apart, the new degrees of freedom it evokes may well be 
topological. 

In any case, it seems apriori improbable that any of the action principles 
given here is right; they are simply the first we have been able to construct 
with plausible physical content and symmetry properties. They at least 
replace the daunting inverse problem by more amenable direct ones. I f  one 
of them turns out to work, this must be regarded as strong upport  for the 
network theory; less so, if some linear combination with adjustable 
coefficients is required. 

The quantum network is another quantization of gravity, an alternative 
to the continuum-based canonical quantization. Even if the net theory of 
gravity is right, it is still meaningful to quantize canonically the gravitational 
spin form o-, or even the chronometric tensor gmn, if it can be done. It would 
be like quantizing hydrodynamics, which tells us about phonons, if not 
much about water molecules. When canonical quantizations of gravity yield 
finite results, they inform us about small gravitational disturbances of ether, 
if not of tohu, with periods much longer than n. But just as we need the 
quantum molecule for the physical constants and phase transitions of water, 
we need the quantum net for the physical constants and phase transitions 
of the time space net, including the particle masses and couplings. 

Earlier discussions of vacuum phase transitions, as in inflationary 
cosmology, have generally been phenomenological,  postulating an order- 
parameter field, but not the structure that is ordered. The present theory is 
fundamental rather than phenomenological,  in that it gives the microscopic 
structure of the medium that is being ordered; the order parameters remain 
to be determined. 

We have consolidated most of  our theoretical debts with one promissory 
note, the quantum condensation. Now we must work to pay off the note. 
How do we return to the manifold description when it is valid? What are 
the possible phases of the net? What is the excitation spectrum of ether 
and to what particles do they correspond? Why is time space so stiff (or, 
as it is usually put, gravity so weak), with Planck time Tp<< n? 

We are somewhat in the position of  electrons in a superconducting 
crystal trying to perceive the elementary cell. Above the transition tem- 
perature we would know our crystal first-hand because it would scatter us; 
below it we must proceed by rather indirect inference. It will be easier to 
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find the excitation spectrum of tohu, where long-range correlations may at 
first be neglected. 

The T asymmetry of the polyadic network may be merely a matter of 
mathematical inertia and lack of imagination; the asymmetric operator ~ is 
simply the first one at hand. Bennet (1973) and Fredkin and Toffoli (1982) 
have defined T-symmetric computers, and we have here offered a relativistic 
T-symmetric dyadic ( "X")  quantum net kinematics. 

The cell remains T-asymmetric. If the T violation of the weak interac- 
tions comes from the T asymmetry of the cell o f  this net, then the cell 
lifetime and size are the characteristic time and length for the weak interac- 
tions, not the Planck length and time, and the transition temperature is the 
characteristic temperature of the weak interactions, of order 100 GeV or 
10 ~5 K. A phase transition to ether of another dimensionality is conceivable. 
The tohu phase of the net is still a causal space, but might just as well have 
a continuous spectrum of fractal dimensions, depending on temperature 
and scale, as some definite manifold dimension. Phase transitions also 
prevent the singularities predicted by the Einstein equations from ever 
forming. 

By ordinary standards ether has a reassuringly high transition tem- 
perature. Ordinary macroscopic mechanics is well tested in planetary 
mechanics at an ambient temperature of  several degrees kelvin, which is 
about 10 -14 o n  the weak scale. Even those ether properties that are not 
exactly zero but temperature dependent may be so small in interplanetary 
space that they could be present and yet be overlooked in experiments so 
far. It will be interesting to look for them, theoretically and experimentally. 

By particle physics standards, however, 100 GeV is a chilly transition 
temperature indeed. It suggests that network phase transitions are going on 
in many experiments today, producing small, short-lived balls o f tohu  within 
the ambient ether. 
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