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At higher energies the present complex quantum theory with its unitary group
might expand into a real quantum theory with an orthogonal group, broken by an
approximatei operator at lower energies. Implementing this possibility requires a
real quantum double-valued statistics. A Clifford statistics, representing a swap~12!
by a differenceg12g2 of Clifford units, is uniquely appropriate. Unlike the
Maxwell–Boltzmann, Fermi–Dirac, Bose–Einstein, and para-statistics, which are
tensorial and single-valued, and unlike anyons, which are confined to two dimen-
sions, Clifford statistics are multivalued and work for any dimensionality. Nayak
and Wilczek such Clifford statistics for the fractional quantum Hall effect. We
apply them to toy quanta here. A complex-Clifford example has the energy spec-
trum of a system of spin-1/2 particles in an external magnetic field. This supports
the proposal that the double-valued rotations—spin—seen at current energies might
arise from double-valued permutations—swap—to be seen at higher energies. An-
other toy with real Clifford statistics illustrates how an effective imaginary uniti
can arise naturally within a real quantum theory. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1379314#

I. INTRODUCTION: QUANTIFICATION PROCEDURES

Nayak and Wilczek1 have proposed a startling new statistics for fractional quantum Hall e
carriers. It has great potential for even more fundamental applications to sub-particle structu2 To
learn its properties we apply it here to some toy models.

The common statistics—Fermi–Dirac~FD!, Bose-Einstein~BE!, and Maxwell–Boltzmann
~MB!—may be regarded as differing prescriptions for constructing the algebra of an ensem
many individuals from the vector space of one individual. These procedures take qual
yes-or-no questions about an individual into quantitative how-many questions about an ens
of similar individuals. Such procedures were termedquantification. Now they are sometimes
called ‘‘second quantization,’’ somewhat misleadingly.

We use a well-known operational formulation of quantum theory. The main point of qua
theory is that mathematical objects may be completely describable, since we make them
physical quanta are not. An electron, a physical entity, is not a spinor wave function, a
operator, or any other mathematical object. But it seems that mathematical objects can u
represent what we do to an electron. Kets represent input modes~preparation!, bras represen
outtake modes~registration!, operators represent intermediate operations on quantum.3

Each of the usual statistics is defined by an associated linear mappingQ† that maps any
one-body initial modec into a many-body creation operator:

Q†:VI→AS , c°Q†c5..ĉ. ~1!

HereVI is the initial-mode vector space of the individualI andAS5End VS is the operator~or
endomorphism! algebra of the quantified systemS. The † inQ† reminds us thatQ† is contragre-
dient to the initial modesc. We write the mappingQ† to the left of its argumentc to respect the
conventional Dirac order of cogredient and contragredient vectors in a contraction.

a!Electronic mail: gt1570a@prism.gatech.edu
32990022-2488/2001/42(8)/3299/16/$18.00 © 2001 American Institute of Physics
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Dually, the final modesc† of the dual spaceVI
† are mapped to annihilators inAS by the linear

operatorQ

Q:VI
†→AS , c†°c†Q5..ĉ†. ~2!

We call the transformationQ the quantifier for the statistics.Q andQ† are tensors of the type

Q5~QaB
C!, Q†5~Q†

a
C

B!, ~3!

wherea indexes a basis in the one-body spaceVI andB,C index a basis in the many-body spa
VS .

The basic creators and annihilators associated with an arbitrary basis$eaua51, . . . ,N%,VI

and its reciprocal basis$eau a51, . . . ,N%,VI
† are then

Q†eaªêa5..Q†
a ~4!

and

eaQªêa5..Qa. ~5!

The creator and annihilator for a general initial modec are

Q†~eaca!5Q†
aca,

~6!
~f†

aea!Q5f†
aQa,

respectively.
We require that quantification respects the adjpoint †. This relates the two tensorsQ andQ†

c†Q5~Q†c!†. ~7!

The rightmost † is the adjoint operation for the quantified system. Therefore,

êa
†5Mabê

b, ~8!

with Mab being the metric, the matrix of the adjoint operation, for the individual system.
We now generalize from the common statistics. Alinear statisticsshall be defined by a linea

correspondenceQ† called the quantifier

Q†:VI→AS , c°Q†c5..ĉ, ~9!

@compare~1!# from one-body modes to many-body operators, †-algebraically generating the
bra ASªEnd VS of the many-body theory. We further require that the quantifierQ† induce an
isomorphism from the one-body unitary groupUI into the many-body unitary groupUS , as
described in Sec. IV. This is therepresentation principlefor quantifiers.

The representation principle implies bilinear algebraic commutation relations discussed
In generalQ† does not produce a creator andQ does not produce an annihilator, as they do

the common statistics.
We construct the quantified algebraAS from the individual spaceVI in three easy steps:

~1! We form the quantum algebraA(VI), defined as the free † algebra generated by~the vectors
of! VI . Its elements are all possible iterated sums and products and †-adjoints of the v
of VI . We require that the operations~1,3,†! of A(VI) agree with those ofVI where both are
meaningful;

~2! we construct the idealR,A of all elements ofA(VI) that vanish in virtue of the statistics. I
is convenient and customary to defineR by a set of expressionsR, such that the commutation
Downloaded 06 Mar 2013 to 128.196.132.173. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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3301J. Math. Phys., Vol. 42, No. 8, August 2001 Cliffordons
relations between elements ofA(VI)’ have the formr 50 with r PR. ThenR consists of all
elements ofA(VI) that vanish in virtue of the commutation relations and the postulates
†-algebra.

Let R be closed under †. LetR0 be the set of all evaluations of all the expressions inR
when the variable vectorsc in these expressions assume any valuescPVI . Then R
5A(VI)R0 A(VI);

~3! we form the quotient algebra~actually, a residue algebra!

AS5A~VI !/R, ~10!

by identifying elements ofA(VI) whose differences belong toR.
ThenQ† maps each vectorcPVI into its residue classc1R.
Historically, physicists carried out one special quantification first. Since classically one

tiplies phase spaces when quantifying, they assumed that quantally one multiplies Hilbert s
forming the tensor product

VS5 ^
p50

N

VI5VI
N ~11!

of N individual spacesVI . Then in order to improve agreement with experiment they remo
degrees of freedom in the tensor product connected with permutations, reducingVI

N to a subspace
PVI

N invariant under all permutations of individuals. HereP is a projection operator characterizin
the statistics. The many-body algebra was then taken to be the algebra of linear operators
reduced space:AS5End PVI

N .
We call a statistics built in that way on a subspace of the tensor algebra over the one

initial mode space, atensorial statistics. Tensorial statistics represents permutations in a sin
valued way. The common statistics are tensorial.

Linear statistics is more general than tensorial statistics, in that the quotient algebraAS5A
2R defining a linear statistics need not be the operator algebra of any subspace of the
space TenVI and need not be single-valued. Commutation relations permit more general sta
than projection operators do. For example, anyon statistics is linear but not tensorial.

For another example,AS may be the endomorphism algebra of a spinor space constru
from the quadratic spaceVI . Such a statistics we call aspinorial statistics. Clifford statistics, the
main topic of this paper, is a spinorial statistics. Linear statistics includes both spinoria
tensorial statistics.

The FD, BE, and MB statistics are readily presented as tensorial statistics. We give
quantifiers next.3 We then generalize to spinorial, nontensorial, statistics.

II. STANDARD STATISTICS

A. Maxwell–Boltzmann statistics

Classical an MB aggregate is a sequence~up to isomorphism! and Q5Seq, thesequence-
forming quantifier. The quantum individualI has a Hilbert spaceV5VI over the fieldC. The
vector space for theq sequence is the~contravariant! tensor algebraVS5TenVI , whose product
is the tensor product̂

VS5TenVI , ~12!

with the natural induced †. The kinematic algebraAS of the sequence is the †-algebra of end
morphisms of TenVI , and is generated bycPVI subject to the generating relations

ĉ†f̂5c†f. ~13!
Downloaded 06 Mar 2013 to 128.196.132.173. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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The left-hand side is an operator product, and the right-hand side is the contraction of th
vectorc† with the vectorf, with an implicit unit element 1PAS as a factor.

B. Fermi–Dirac statistics

Here Q5Set, theset-forming quantifier. The kinematic algebra for the quantum set
defining relations

ĉf̂1f̂ĉ50,
~14!

ĉ†f̂1f̂ĉ†5c†f.

for all c,fPVI .

C. Bose–Einstein statistics

HereQ5Sib, thesib-forming quantifier. The sib-generating relations are

ĉf̂2f̂ĉ50,
~15!

ĉ†f̂2f̂ĉ†5c†f,

for all c,fPVI .
The individuals in each of the discussed quantifications, by construction, have the

~isomorphic! initial spaces. We call such individualsisomorphic.

III. RELATION TO THE PERMUTATION GROUP

A statistics isabelian if it represents the permutation groupSN on its N individuals by an
abelian group of operators in theN-body mode space.

The FD or BE representations are not only abelian but scalar. They represent each perm
by a number, a projective representation of the identity operator. One calls entities with
statisticsindistinguishable. Bosons and fermions are indistinguishable.

Non-abelian statistics describe distinguishable entities.
Nayak and Wilczek1,4 give a spinorial statistics based on the work on nonabelions of Read

Moore.5,6 Read and Moore use a subspace corresponding to the degenerate ground mode
realistic Hamiltonian as the representation space for a nonabelian representation of the pe
tion groupS2n acting on the composite of 2n quasiholes in the fractional quantum Hall effect. Th
statistics, Wilczek showed, represents the permutation group on a spinor space, and perm
by noncommuting spin operators. The quasiholes of Read and Moore and of Wilczek and
are distinguishable, but their permutations leave the ground subspace invariant.

Our own interest in the statistics of distinguishable entitities arises from a study of qua
space–time structure.2 The dynamical process of any system is composite, it is generally belie
composed of isomorphic elementary actions going on all over, all the time. The first questio
has to be answered in setting up an algebraic quantum theory of this composite process is
statistics do the elementary actions have?

The elementary processes have ordinarily, though implicitly, been assumed to be distin
able, being addressed by space–time coordinates, and to obey Maxwell–Boltzmann statistic
repeats the history of particle statistics on the greater field of process statistics.

The Clifford statistics studied below is proposed primarily for the elementary process
nature. We apply it here to toy models of particles in ordinary space–time to familiarize ours
with its properties. In our construction, the representation space of the permutation group
whole~spinor! space of the composite. The permutation group is not assumed to be a symm
the Hamiltonian or of its ground subspace any longer. It is used as a dynamical group,
symmetry group.
Downloaded 06 Mar 2013 to 128.196.132.173. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



ay to
on an

ed by

d out
out
only

ing to
al one.

a

al

-

3303J. Math. Phys., Vol. 42, No. 8, August 2001 Cliffordons
IV. NO QUANTIFICATION WITHOUT REPRESENTATION

If we have defined how, for example, one translates individuals, this should define a w
translate the ensemble. We shall require of a quantification that any unitary transformation
individual quantum entity induces a unitary transformation on the quantified system, defin
the quantifier.

This does not imply that, for example, the actual time-translation of an ensemble is carrie
by translating the individuals. This would imply that the Hamiltonians combine additively, with
interaction. There is still room for arbitrary interaction. The representation principle means
that there is a well-defined time-translation without interaction. This gives a physical mean
interaction: it is the difference between the induced time translation generator and the actu

Thus we posit that an arbitrary~†-!unitary transformationU:VI→VI ,c°Uc of the indi-
vidual ket-spaceVI , also act naturally on the quantified mode spaceVS through an operator
Û:VS→VS , defining a representation of the individual unitary group. This is therepresentation
principle.

ThenU also acts on the algebraAS according to

Û:AS→AS , ĉ°Uĉ5ÛĉÛ21. ~16!

Every unitary transformationU:VI→VI infinitesimally different from the identity is defined by
generator G

U511Gdu, ~17!

whereG52G†:VI→VI is anti-Hermitian anddu is an infinitesimal parameter. The infinitesim
anti-Hermitian generatorsG make up the Lie algebradUI of the unitary groupUI of the one-body
theory.

By the representation principle, each individual generatorG induces aquantified generator

ĜPAS of the quantified system, defined~up to an added constant! by its adjoint action onAS

Ĝ:ĉ°Gĉ5@Ĝ,ĉ#, ~18!

and ~18! and ~20! define a representation~Lie homomorphism! RQ :dUI→dUS of the individual
Lie algebradUI in the quantified Lie algebradUS .

Since

G5(
a,b

eaGa
beb, ~19!

holds by the completeness of the basisea and the reciprocal basisea, we can express the quan
tified generatorĜ by

ĜªQ†GQ5(
a,b

Q†
aGa

bQb[(
a,b

êaGa
bêb. ~20!

The representation principle holds for the usual statistics~MB, FD, BE! and for the Clifford
statistics discussed below.

Proposition: If Q is a quantifier for a linear statistics then

@Ĝ,Q†c#5GQ†c, ~21!

hold for all anti-Hermitian generatorsG.
Proof: We have
Downloaded 06 Mar 2013 to 128.196.132.173. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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@Ĝ,Q†c#5Ga
b ~ êa êb Q†c2Q†c êa êb!

5Ga
b ~ êa ~ebc1~21!k Q†c êb!2Q†c êa êb!

5Ga
b êa ebc5Ga

b êa cb5G Q†c. ~22!

Herek51 for Fermi statistics and 0 for Bose.
If A is any algebra, by thecommutator algebraDA of A we mean the Lie algebra on th

elements ofA whose product is the commutator@a,b#5ab2ba in A. By the commutator algebra
of a quantum systemI we mean that of its operator algebraAI .

In the usual cases of Bose and Fermi statistics, and not in the cases of complex an
Clifford statistics discussed below, the quantification rule~20! defines a Lie isomorphism,DAI

→DAS , from the commutator algebra of the individual to that of the quantified system. Nam
if H andP are two~arbitrary! operators acting on the one-body ket-space, then

@H, P̂#5@Ĥ, P̂#. ~23!

Explicitly

@Ĥ, P̂#5Ĥ P̂2 P̂Ĥ

5êrH
r
sê

sêtP
t
uêu2êtP

t
uêuêrH

r
sê

s

5Hr
sP

t
u~ êr ê

sêtê
u2êtê

uêr ê
s!

5Hr
sP

t
u~ êr~d t

s6êtê
s!êu2êtê

uêr ê
s!

5Hr
sP

t
u~ êrd t

sêu6êr êtê
sêu2êtê

uêr ê
s!

5Hr
sP

t
u~ êrd t

sêu6êtêr ê
uês2êtê

uêr ê
s!

5Hr
sP

t
u~ êrd t

sêu6êt~7d r
u6êuêr !ê

s2êtê
uêr ê

s!

5Hr
sP

t
u~ êrd t

sêu2êtd r
uês!

5êr~Hr
tP

t
u2Pr

tH
t
u!êu

5@H, P̂#. ~24!

This implies that for BE and FD statistics, the quantification rule~20! can be extended from
the unitary operators and their anti-Hermitian generators to the whole operator algebra
quantified system.

V. CLIFFORD QUANTIFICATION

Now let the one-body mode spaceVI5RN1 ,N25N1R% N2R be a real quadratic space o
dimensionN5N11N2 and signatureN12N2 . Denote the symmetric metric form ofVI by g
5(gab)ª(ea

†eb). We do not assume thatg is positive-definite.
We defineClifford quantification~9! by:

~1! the Clifford-like generating relations

ĉf̂1f̂ĉ5
z

2
c†f, ~25!

for all f,cPVI , wherez is a 6 sign that can have either value;
~2! the Hermiticity condition~7!

êa
†5gabê

b, ~26!

~3! a rule for raising and lowering indices
êaªz8 gabê

b, ~27!

wherez8 is another6 sign, and
~4! the definition~20! to quantify one-body generators.
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Herez561 covers the two different conventions used in the literature. In Sec. VI we will
that z5z8, and thatz5z8511 and z5z8521 are both allowed physically at the prese
theoretical stage of development. They lead to two different real quantifications, with e
Hermitian or anti-Hermitian Clifford units.

For the quantified basis elements ofVI ~25! leads to

êaêb1êbêa5
z

2
gab . ~28!

The c’s, which are assigned grade 1 and taken to be either Hermitian or anti-Herm
generate a graded †-algebra that we call thefree Clifford †-algebraassociated withRN1 ,N2 and
write as Cliff(N1 ,N2)[Cliff( N6). Cliff( N6) contains a double-valued~or projective! represen-
tation of the permutation groupSN .

We call quanta obeying Clifford statisticscliffordons. Clifford statistics assembles cliffordon
individually described by vectors into a composite described by spinors, which we call asquad-
ron. We intend the -on suffix to remind us that unlike the common statistics the Clifford stat
has no classical correspondent.

A cliffordon is a hypothetical quantum-physical entity, like an electron, not to be confu
with a mathematical object like a spinor or an operator. We cannot describe a cliffordon
pletely, but we represent our actions on a squadron of cliffordons adequately by operato
Clifford algebra of operators. One encounters cliffordons only in permuting them, never in c
ing or annihilating them as individuals.

In assuming a real vector space of quantum modes instead of a complex one, we g
i -invariance but retain quantum superpositionac1bf with real coefficients. Our theory is non
linear from the complex point of view. Others considered nonlinear quantum theories, but ga
real superposition as well asi -invariance.7,8 We are notthat nonlinear.

VI. QUANTIFYING OBSERVABLES

In the usual statistics, the quantifierQ can be usefully extended from the Lie algebra of t
individual to the commutator algebra of the individual; that is, from anti-Hermitian operators
operators. This is not the case for Clifford quantification. There the quantification of any sym
ric operator is a scalar, in virtue of Clifford’s law, and so the commutator of any two operato
just the commutator of their antisymmetric parts. A straightforward calculation shows that

@Ĥ, P̂#5Ĥ P̂2 P̂Ĥ5z z8~ 1
2@H, P̂#1 1

4 ~@P, Ĥ†#1@P†, Ĥ# !!. ~29!

The three simplest cases are:

~1! H5H†, H85H8†⇒@Ĥ,Ĥ8#50;
~2! H5H†, G152G1

†⇒@Ĥ, Ĝ1#50;

~3! G52G†, G852G8†⇒@Ĝ, Ĝ8#5z z8 @G, Ĝ8#.

Thus Clifford quantification respects the commutation relations for anti-Hermitian gener
if and only if z5z8511 or z5z8521; but not for Hermitian observables, contrary to the Bo
and Fermi quantifications, which respect both.

VII. NAYAK–WILCZEK STATISTICS

Thecomplexgraded algebra generated by thec’s with the relations~25! is called thecomplex
Clifford algebra Cliff C(N) over RN1 ,N2. It is isomorphic to the full complex matrix algebr
C(2n) ^ C(2n) for evenN52n, and to the direct sumC(2n) ^ C(2n) % C(2n) ^ C(2n) for odd N
52n11. We regard CliffC(N) as the kinematic algebra of the complex Clifford composite. A
vector space, it has dimension 2N.
Downloaded 06 Mar 2013 to 128.196.132.173. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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Schur9 used complex spinors and complex Clifford algebra to represent permutations
years before Cartan used them to represent rotations. There is a fairly widespread view that
may be more fundamental than vectors, since vectors may be expressed as bilinear comb
of spinors. One of us took this direction in much of his work. Clifford statistics support
opposite view. There a vector describes an individual, a spinor an aggregate. Wilczek and10

seem to have been the first to recognize that spinors represent composites in a physical
although this is implicit in the Chevalley construction of spinors within a Grassmann algeb

For dimensionN53 spinors have as many parameters as vectors, but for higherN the number
of components of the spinors associated with Cliff(N6) grows exponentially withN. The physical
relevance of this irreducible double-valued~or projective! representation of the permutation grou
SN was recognized by Nayak and Wilczek1,4 in a theory of the fractional quantum Hall effect. W
call the complex statistics based on CliffC(N) the Nayak–Wilczekor NW statistics.

Clifford statistics, unlike the more familiar particle statistics,11–13 provides no creators o
annihilators. With each individual modeea of the quantified system they associate a Clifford u
ga52Q†

a .
We may represent any swap~transposition of two cliffordons, say 1 and 2! by the difference

of the corresponding Clifford units

t12ª
1

&
~g12g2!, ~30!

and represent an arbitrary permutation, which is a product of elementary swaps, by the pro
their representations. That is, as direct computation shows, this defines a projective hom
phism fromSN into the Clifford algebra generated by thegk .

By definition, the numberN of cliffordons in a squadron is the dimensionality of the ind
vidual initial mode spaceVI . N is conserved rather trivially, commuting with every Cliffor
element. We can change this number only by varying the dimensionality of the one-body spa
one use of the theory, we can do this, for example, by changing the space–time four-volume
corresponding experimental region. Because our theory does not use creation and anni
operators, an initial action on the squadron represented by a spinorj should be viewed as som
kind of spontaneous transition condensation into a coherent mode, analogous to the transitio
the superconducting to the many-vertex mode in a type-II superconductor. The initial mod
set or sib of~FD or BE! quanta can be regarded as a result of possibly entangled cre
operations. That of a squadron of cliffordons cannot.

As with ~22!, let us verify that definition~20! is consistent in the Clifford case:

@Ĝ, Q†c#5Ga
b ~ êa êb Q†c2Q†c êa êb!5 1

2 Ga
b ~ êacb1caêb!5G Q†c. ~31!

This shows thatQ†c transforms correctly under the infinitesimal unitary transformation
RN1 ,N2 ~cf. Ref. 14!.

VIII. BREAKING i INVARIANCE

Thus we cannot construct useful Hermitian variables of a squadron by applying the qua
to the Hermitian variables of the individual cliffordon.

This is closely related to fact that the real initial mode spaceRN6 of a cliffordon has no specia
operator to replace the imaginary uniti of the standard complex quantum theory. The fundame
task of the imaginary elementi in the algebra of complex quantum physics is precisely to re
conserved Hermitian observablesH and anti-Hermitian generatorsG by

H52 i\G. ~32!

To perform this function exactly, the operatori must commute exactly with all observables.
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The central operatorsx andp of classical mechanics are contractions of noncentral opera
x̆ and p̆52 i\]/] x̆.2 In the limit of large numbers of individuals organized coherently in
suitable condensate modes, the expanded operators of the quantum theory contract into the
operators of the classical theory. Condensations produce nearly commutative variables.

Likewise we expect the central operatori to be a contraction of a noncentral operatorı̆
similarly resulting from a condensation in a limit of large numbers. In the simpler expa
theory, ı̆ , the correspondent ofi , is not central.

One clue to the nature ofı̆ and the locus of its condensation is how the operatori behaves
when we combine separate systems. Since infinitesimal generatorsG,G8, . . . combine by addi-
tion, the imaginariesi ,i 8, . . . of different individuals must combine by identification

i 5 i 85¯ , ~33!

for ~32! to hold exactly, and nearly so for~32! to hold nearly. The only other variables in prese
physics that combine by identification in this way are the timet of clasical mechanics and th
space–time coordinatesxm of field theories. All systems in an ensemble must have about the s
i , just as all particles have about the samet in the usual instant-based formulation, and all fie
have about the same space–time variablesxm in field theory. We identify the variablest andxm for
different systems because they are set by the experimenter, not the system. This suggests
experimenter, or more generally the environment of the system, mainly defines the operatori . The
central operatorsx,p characterize a small system that results from the condensation of m
particles. The central operatori must result from a condensation in the environment; we take
to be the same condensation that forms the vacuum and the spatiotemporal structure repr
by the variablesxm of the standard model.

The existence of this contractedi ensures that at least approximately, every Lie commuta
relation between dimensionless anti-Hermitian generatorsA,B,C of the standard complex quan
tum theory

@A, B#5C, ~34!

corresponds to a commutation relation between Hermitian variables2 i\A, 2 i\B, 2 i\C

@2 i\A,2 i\B#52 i\~2 i\C!. ~35!

It also tells us that this correspondence is not exact in nature.
Stückelberg15 reformulated complex quantum mechanics in the real Hilbert spaceR2N of

twice as many dimensions by assuming a special real antisymmetric operatorJ:R2N→R2N com-
muting with all of the variables of the system.

A real † or Hilbert space has no such operator. For example, inR2 the operator

EªF«1 0

0 «2
G , ~36!

is a symmetric operator with an obvious spectral decomposition representing, according
usual interpretation, two selection operations performed on the system, and cannot be wr
the formG52(J/\)E relating it to some antisymmetric generatorG for any real antisymmetric
J commuting withE.

On the other hand, if we restrict ourselves to observable operators of the form

E8ªF« 0

0 «
G , ~37!

we can use the operatorJ
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JªF 0 1

21 0G , ~38!

to restore the usual connection between symmetry transformations and corresponding obse
This restriction can be generalized to any even number of dimensions.15

IX. BREAKDOWN OF THE EXPECTATION VALUE FORMULA

For a system described in terms of a general real Hilbert space there is no simple rela
the formG5 ( i /\) H between the symmetry generators and the observables: the usual noti
Hamiltonian and momentum are meaningless in that case. This amplifies our earlier obse
that Clifford quantificationA→Â respects the Lie commutation relations among anti-Hermi
generators, not Hermitian observables.

Operationally, this means that selective acts of individual and quantified cliffordons us
sentially different sets of filters. This is not the case for complex quantum mechanics and the
statistics. There some important filters for the composite are simply assemblies of filters f
individuals.

Again, in the complex case the expectation value formula for an assembly

AvX5c†Xc/c†c, ~39!

is a consequence of the eigenvalue principle for individuals, rather than an indepe
assumption.3,16 The argument presented in Refs. 3 and 16 assumes that the individuals over
the average is taken combine with Maxwell–Boltzmann statistics. For highly excited system
is a good approximation even if the individuals have FD or BE or other tensorial statistics. It
necessarily a good approximation for cliffordons, which have spinorial, not tensorial, statis

X. SPIN-1Õ2 COMPLEX CLIFFORD MODEL

In this section we present a simplest possible model of a complex Clifford composite
resulting many-body energy spectrum is isomorphic to that of a sequence of spin-1/2 parti
an external magnetic field.

Recall that in the usual complex quantum theory the Hamiltonian is related to the infinite
time-translation generatorG52G† by G5 iH . QuantifyingH gives the many-body Hamiltonian
In the framework of spinorial statistics, as discussed above, this does not work, and quantifi
in principle applies to the anti-Hermitian time-translation generatorG, not to the Hermitian
operatorH. Our task now is to choose a particular generator and to study its quantified prop

We assume an even-dimensional real initial-mode spaceVI5R2n for the quantum individual,
and consider the dynamics with the simplest non-trivial time-translation generator

Gª«F 0n 1n

21n 0n
G , ~40!

where« is a constant energy coefficient.
The quantified time-translation generatorĜ then has the form

Ĝª(
l , j

N

êlG
l
j ê

j52«(
k51

n

~ êk1nêk2êkê
k1n!

51«(
k51

n

~ êk1nêk2êkêk1n!

52«(
k51

n

êk1nêk

[
1

2
«(

k51

n

gk1ngk . ~41!
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By Stone’s theorem, the generatorĜ of time translation in the spinor space of the compl
Clifford composite ofN52n individuals can be factored into a HermitianH (N) and an imaginary
unit i that commutes strongly withH (N)

Ĝ5 iH (N). ~42!

We suppose thatH (N) corresponds to the Hamiltonian and seek its spectrum.
We note that by~41!, Ĝ is a sum ofn commuting anti-Hermitian algebraically independe

operatorsgk1ngk ,k51,2,. . . ,n, (gk1ngk)
†52gk1ngk , (gk1ngk)

2521(N).
We use the well-known 2n32n complex matrix representation of theg-matrices of the com-

plex universal Clifford algebra associated with the real quadratic spaceR2n ~Brauer and Weyl17!:

g2 j 215s3^¯^ s3^ s1^ 1^¯^ 1,

g2 j5s3^¯^ s3^ s2^ 1^¯^ 1, ~43!

j 51, 2, 3, . . . ,n,

wheres1 , s2 occur in thej th position, the product involvesn factors, ands1 , s2 , s3 are the
Pauli matrices. The representation of the corresponding permutation groupS2n is reducible. We
can simultaneously diagonalize the 2n32n matrices representing the commuting operat
gk1ngk , and use their eigenvalues,6 i , to find the spectruml of Ĝ, and consequently ofH (N).

A simple calculation shows that the spectrum ofĜ consists of the eigenvalues

lk5 1
2 «~n22k!i , k50, 1, 2, . . . ,n, ~44!

with multiplicity

mk5Ck
n
ª

n!

k! ~n2k!!
. ~45!

The spectrum of eigenvalues of the HamiltonianH (N) then consists ofn11 energy levels

Ek5 1
2 ~n22k!«, ~46!

with degeneracymk . ThusEk ranges over the interval

2 1
4 N«,E, 1

4 N«, ~47!

in steps of«, with the given degeneracies.
Thus the spectrum of the structurelessN-body complex Clifford composite is the same as th

of a system ofN spin-1/2 Maxwell–Boltzmann particles of magnetic momentm in a magnetic
field H, with the identification

1
4 «5mH. ~48!

Even though we started with such a simple one-body time-translation generator as~40!, the
spectrum of the resulting many-body Hamiltonian possesses some complexity, reflecting t
that the units in the composite are distinguishable, and their swaps generate the dynamic
ables of the system.

This spin-1/2 model does not tell us how to swap two Clifford units experimentally. Like
phonon model of the harmonic oscillator, the statistics of the individual quanta enters the p
only through the commutation relations among the fundamental operators of the theory.
Downloaded 06 Mar 2013 to 128.196.132.173. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



l
plex

e

-

in the

these
utation

ciated
by
now a

special

e into
ividual
body
tation
ciple
ing

3310 J. Math. Phys., Vol. 42, No. 8, August 2001 D. R. Finkelstein and A. A. Galiautdinov
XI. REAL CLIFFORD STATISTICS

Real Clifford quantification establishes a morphism~20! from the Lie algebra of the individua
into that of the composite. The proof for real Clifford statistics parallels that for the com
Clifford case closely.

According to the Periodic Table of the Spinors,18,19–21the free~or universal! Clifford algebra
Cliff R(N1 ,N2) is algebra-isomorphic to the endomorphism algebra of a moduleS(N1 ,N2) over
a ring R(N1 ,N2). We give the table to simplify reference to it~herez521!:

It shows that the ring of coefficientsR(N1 ,N2) varies periodically with period 8 in each of th
dimensionalitiesN1 and N2 of VI , and is a function of signatureN12N2 alone. In the first
cycle, N12N250,1,. . . ,7, andR5R,C,H,H% H,H,C,R,R% R, respectively. Then the cycle re
peats ad infinitum.

In our application the moduleS(N1 ,N2), the spinor space supporting CliffR(N1 ,N2),
serves as the initial mode space of a squadron ofN real cliffordons.R(N6) we call thespinor
coefficient ringfor Cliff R(N1 ,N2).

XII. PERMUTATIONS

In the standard statistics there is a natural way to represent permutations of individuals
N-body composite. EachN-body ket is constructed by successive action ofN creation operators
on the special vacuum mode. Any permutation of individuals can be achieved by permuting
creation operators in the product. The identity and alternative representations of the perm
groupSN in the BE and FD cases then follow from the defining relations of Sec. II.

In the case of Clifford statistics, some things are different. There is still an operator asso
with each cliffordon; now it is a Clifford unit. Permutations of cliffordons are still represented
operators on a many-body † space. But the mode space on which these operators act is
spinor space, and its basis vectors are not constructed by creation operators acting on a
‘‘vacuum’’ ket.

The Clifford representation of the permutation group that we have employed is reducibl
two irreducible Schur representations. It is a bit easier to write than Schur’s because our ind
operatorsg i anticommute exactly, corresponding to exactly orthogonal directions in the one-
mode space, like the generators of Dirac’s Clifford algebra. In Schur’s irreducible represen
~slightly simplified! these operators are replaced by their projections normal to the prin
diagonal directionnª(g i /AN, which is invariant under all permutations. The correspond
angles are those subtended by the edges of a regular simplex ofN vertices inN21 dimensions as
seen from the center. These angles are all determined by
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cos2 u5
1

N21
. ~50!

They differ fromp/2 by an angle that vanishes for largeN like 1/N.

XIII. EMERGENCE OF A QUANTUM i

The Periodic Table of the Spinors~Sec. XI! suggests another origin for the complexi of
quantum theory, and one that is not approximately central but exactly central. Some C
algebras CliffR(N1 ,N2) have the spinor coefficient ringC, containing an elementi . Multiplica-
tion by thisi then represents an operator in the center of the Clifford algebra, which we des
also byi . We may usei -multiplication to represent the top elementg↑ wheneverg↑ is central and
has square21. This i PCliff R(N6) corresponds to thei of complex quantum theory.

Cliff R(1,0) contains such ani but is commutative. According to the Periodic Table~with the
choice ofz521), the smallest noncommmutative Clifford algebras of Euclidean signature
complex spinor coefficients are CliffR(0,3) with negative Euclidean signature, and CliffR(5,0)
with positive Euclidean signature. Triads or pentads of such cliffordons could underlie the ph
‘‘elementary’’ particles, giving rise to complex quantum mechanics within the real. We con
these two cases in turn.

Cliff R(0,3)5C(2) has the familiar Pauli representationg1ª i s1 , g2ª i s2 , g3ª i s3 with
z521. We choose a particular one-cliffordon dynamics of the form

GªF 0 V 0

2V 0 «

0 2« 0
G . ~51!

Quantification~20! of G gives

Ĝ5 iH (23) ~52!

with the Hamiltonian

H (23)5
1

2 FV «

« 2VG . ~53!

This is also the Hamiltonian for a generic two-level quantum-mechanical system~with the energy
separation«! in an external potential fieldV, like the ammonia molecule in a static electric fie
discussed in Ref. 22.

Cliff R(5,0)5C(4) has the matrix representationg1ª i s1^ 1, g2ª i s2^ 1, g3ª i s3^ s1 ,
g4ª i s3^ s2 , g5ª i s3^ s3 , again with z521. Its top Clifford unit is g↑

ª )kgk5g↑†

5g↑21 with eigenvalues61. We choose a specimen dynamics~for the individual cliffordon! in
the form

GªF 0 V 0 0 0

2V 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

G . ~54!

Quantification~20! of G gives

Ĝ5 iH (5), ~55!
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with the Hamiltonian

H (5)5
1

2
VF 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

G . ~56!

The two examples considered above show how a squadron of several real cliffordons ca
a truly complex quantum theory.

XIV. FERMI AND CLIFFORD STATISTICS

The FD algebra of creators and annihilators is a special case of a Clifford algebra o
quadratic space with neutral quadratic form, called the quantum algebra by Saller23 and the mother
algebra by Doranet al.24 Is FD statistics ever a special case of Clifford statistics? Specifically,
their †-algebras ever isomorphic?

From theN annihilatorsak of the complex FD statistics we can form a sequence of antic
muting hermitian square roots of unity

i k5ak1ak
† , i k1N5

ak2ak
†

i
. ~57!

Moreover, the complex †-algebra that these generate is a Clifford †-algebra Cliff(2N,0). The
transformation from the FD generators to the Clifford is invertible. Therefore complex FD s
tics and complex Clifford statistics have isomorphic †-algebras.

The graded †-algebras are obviously not isomorphic. The two grade operators do no
commute.

The question is more complicated for the real Fermi and Clifford quantifications. We fo
Doranet al.,24 among others.

In the real FD formulation we begin with a real one-fermionn-dimensional spaceF>nR with
no metric or adjoint. The FD quantified algebraA has the bilinear associative product defined
the FD relations

f i f j1 f j f i50,
~58!

f i f
j1 f j f i5d i

j ,

and the adjoint defined by

f i
†
ª f i . ~59!

The f i are creation andf j are annihilation operators.
To presentA as a Clifford algebra we form the direct sum

W5F % F†. ~60!

In a basis$ f i , f i% i 51
n adapted to this direct sum, we define the following GL(V)-invariant metric

for W

g;F 0 1/2

1/2 0 G , ~61!

corresponding to
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f i• f j50, f i
• f j50, f i

• f j5
1
2 d j

i . ~62!

SinceF supports a quantum theory it too has a quadratic form* :F ^ F→R, which we assume to
be Euclidean. We did not use* in the construction ofA andg.

We quantify this fermion by a mappingQ†:W→A into the †-algebra of the composite. Fo
brevity we write f i for Q†f i as is also customary.

The quantificationQ has the representation property. In the FD case this means thQ
represents the orthogonal group SO(F,* ) in A; in fact it represents the larger group GL(F), for *
has not entered into the definition ofQ.

The basis$g i , g̃ i% i 51
n defined by

g iª f i1 f i , g̃ iª f i2 f i , ~63!

gives the metricg of W the diagonal form

g;F1 0

0 21G , ~64!

corresponding to

g i•g j51, g̃ i•g̃ j521, g̃ i•g j50. ~65!

That is, W5E% Ẽ is a neutral quadratic space, with Eucidean subspaceE and anti-Euclidean
subspaceẼ.

The g’s obey

g ig j1g jg i512d i j ,

g̃ i g̃ j1g̃ j g̃ i522d i j , ~66!

g̃ ig j1g j g̃ i50.

Therefore the FD algebra~58! is isomorphic to a real Clifford algebra Cliff(W,†)5Cliff( E

% Ẽ).
Are the Clifford and FD †-algebras also isomorphic?
With respect to the Fermi adjoint †, half of the Clifford generators~theg i! are Hermitian and

the other half~the g̃ i! are anti-Hermitian. In a Clifford † algebra, however, all the generators
anti-Hermitian or Hermitian together. Therefore the Clifford-algebra generators$g i , g̃ i% i 51

n are not
Clifford †-algebra generators.

In some cases we construct suitable generators using the top elementg̃↑ of Ẽ:
If the dimensionn of E ~andF) is a multiple of 4, thenḡ iªg̃↑g̃ i anticommutes with theg j ,

and is Hermitian like theg j . Then the elements$g i , ḡ i% i 51
n generate a Clifford †-algebra with@cf.

~66!#

g ig j1g jg i512d i j ,

ḡ i ḡ j1ḡ j ḡ i512d i j , ~67!

ḡ ig j1g j ḡ i50,

which is isomorphic to the FD algebra ofF. Then the Clifford-quantified †-algebra~the casez
5z8511! is isomorphic to a Fermi-quantified one whenn54m, and the adjoint of the one
cliffordon space is positive definite. The two quantified theories then predict the same tran
amplitudes and spectra.
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Analogously, whenz5z8521 and all the Clifford generators are anti-Hermitian, andn
54m, the FD and Clifford statistics again give isomrphic † algebras.

They still differ in their grades. The FD quantified system has a gradeGF with spectrum
2N, . . . ,0, . . . ,N, corresponding to the creation and annihilation fermions. The Clifford qua
fied system has a positive grade operatorGC with spectrum 0,1,. . . 2N. The operatorsGC andGF

do not even commute. The FD and Clifford graded-algebras are not isomorphic.
This is merely a difference in language. The operators that are said to create and ann

things in FD statistics are said to permute things in Clifford statistics. In Clifford statistics no
is created or destroyed.
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