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At higher energies the present complex quantum theory with its unitary group
might expand into a real quantum theory with an orthogonal group, broken by an
approximatel operator at lower energies. Implementing this possibility requires a
real quantum double-valued statistics. A Clifford statistics, representing a(&&ap

by a differencey;— vy, of Clifford units, is uniquely appropriate. Unlike the
Maxwell-Boltzmann, Fermi—Dirac, Bose—Einstein, and para-statistics, which are
tensorial and single-valued, and unlike anyons, which are confined to two dimen-
sions, Clifford statistics are multivalued and work for any dimensionality. Nayak
and Wilczek such Clifford statistics for the fractional quantum Hall effect. We
apply them to toy quanta here. A complex-Clifford example has the energy spec-
trum of a system of spin-1/2 particles in an external magnetic field. This supports
the proposal that the double-valued rotations—spin—seen at current energies might
arise from double-valued permutations—swap—to be seen at higher energies. An-
other toy with real Clifford statistics illustrates how an effective imaginary unit
can arise naturally within a real quantum theory. 2001 American Institute of
Physics. [DOI: 10.1063/1.1379314

I. INTRODUCTION: QUANTIFICATION PROCEDURES

Nayak and Wilczekhave proposed a startling new statistics for fractional quantum Hall effect
carriers. It has great potential for even more fundamental applications to sub-particle striicture.
learn its properties we apply it here to some toy models.

The common statistics—Fermi—Dird€D), Bose-Einstein(BE), and Maxwell-Boltzmann
(MB)—may be regarded as differing prescriptions for constructing the algebra of an ensemble of
many individuals from the vector space of one individual. These procedures take qualitative
yes-or-no questions about an individual into quantitative how-many questions about an ensemble
of similar individuals. Such procedures were ternmpehntification Now they are sometimes
called “second quantization,” somewhat misleadingly.

We use a well-known operational formulation of quantum theory. The main point of quantum
theory is that mathematical objects may be completely describable, since we make them up, but
physical quanta are not. An electron, a physical entity, is not a spinor wave function, a linear
operator, or any other mathematical object. But it seems that mathematical objects can usefully
represent what we do to an electron. Kets represent input mgdeparatiol bras represent
outtake modesregistration, operators represent intermediate operations on quahtum.

Each of the usual statistics is defined by an associated linear ma@girtgat maps any
one-body initial moday into a many-body creation operator:

QhVi—Us, ¢¥—>Qly=y. (1)

HereV, is the initial-mode vector space of the individdahnd . As=End Vg is the operatofor
endomorphismalgebra of the quantified systef The 1 inQ' reminds us tha@Q' is contragre-
dient to the initial modess. We write the mappin®" to the left of its argumen# to respect the
conventional Dirac order of cogredient and contragredient vectors in a contraction.

¥Electronic mail: gt1570a@prism.gatech.edu
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Dually, the final modeg/" of the dual spac&erqT are mapped to annihilators g by the linear
operatorQ

Q:Vi—ds, yYly'Q=yl. 2
We call the transformatio the quantifierfor the statisticsQ andQ' are tensors of the type
Q=(Q*%), Q'=(Q'%w), 3

wherea indexes a basis in the one-body sp&tendB,C index a basis in the many-body space
Vs.

The basic creators and annihilators associated with an arbitrary {eafis=1,... N}CV,
and its reciprocal basige? a=1,... N}CV/ are then

Q'e,=2,=Q", 4
and

e?Q:=e?=Q?. (5
The creator and annihilator for a general initial maflare

QT(eawa) = QTa‘//aa

T a2 t na (6)
(¢'€")Q=¢',Q%
respectively.
We require that quantification respects the adjpoint 1. This relates the two t€sorg Q'
¥'Q=(Q'y)". (7)
The rightmost 1 is the adjoint operation for the quantified system. Therefore,
&l=Mape”, ®)

with M, being the metric, the matrix of the adjoint operation, for the individual system.
We now generalize from the common statisticdin®ar statisticsshall be defined by a linear
correspondenc®’ called the quantifier

QhVi—UAs, ¥—>Qly=y, (9)

[compare(1)] from one-body modes to many-body operators, tT-algebraically generating the alge-
bra Ag:=End Vg of the many-body theory. We further require that the quant®érinduce an
isomorphism from the one-body unitary grollj into the many-body unitary grouplg, as
described in Sec. IV. This is thepresentation principldor quantifiers.

The representation principle implies bilinear algebraic commutation relations discussed below.

In generalQ" does not produce a creator a@ddoes not produce an annihilator, as they do in
the common statistics.

We construct the quantified algehr from the individual spac#, in three easy steps:

(1) We form the quantum algebtd(V,), defined as the free T algebra generatedtbg vectors
of) V,. Its elements are all possible iterated sums and products and t-adjoints of the vectors
of V,. We require that the operatios,x,T) of A(V,) agree with those 0¥, where both are
meaningful;

(2) we construct the idedRC A of all elements ofA(V,) that vanish in virtue of the statistics. It
is convenient and customary to defiReby a set of expressior®, such that the commutation
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relations between elements d{V,)’ have the formr =0 with r e R. ThenR consists of all
elements ofA(V,) that vanish in virtue of the commutation relations and the postulates of a
t-algebra.

Let R be closed under t. LeR, be the set of all evaluations of all the expression®in
when the variable vectorgs in these expressions assume any valgesV,. Then R
=A(V)Ro AV));

(3) we form the quotient algebr@ctually, a residue algebra
As=A(V))IR, (20

by identifying elements ofA(V,) whose differences belong .

ThenQ' maps each vectap e V, into its residue clasg+ R.

Historically, physicists carried out one special quantification first. Since classically one mul-
tiplies phase spaces when quantifying, they assumed that quantally one multiplies Hilbert spaces,
forming the tensor product

N
Vs=Q V,=VN (12)
p=0

of N individual spaced/,. Then in order to improve agreement with experiment they removed
degrees of freedom in the tensor product connected with permutations, reM,lthnga subspace

PVlN invariant under all permutations of individuals. Hétes a projection operator characterizing

the statistics. The many-body algebra was then taken to be the algebra of linear operators on the
reduced spaceds=End PV}'.

We call a statistics built in that way on a subspace of the tensor algebra over the one-body
initial mode space, &nsorial statistics. Tensorial statistics represents permutations in a single-
valued way. The common statistics are tensorial.

Linear statistics is more general than tensorial statistics, in that the quotient aldgebrd
—R defining a linear statistics need not be the operator algebra of any subspace of the tensor
space TeW, and need not be single-valued. Commutation relations permit more general statistics
than projection operators do. For example, anyon statistics is linear but not tensorial.

For another exampleds may be the endomorphism algebra of a spinor space constructed
from the quadratic spacé, . Such a statistics we callspinorial statistics Clifford statistics, the
main topic of this paper, is a spinorial statistics. Linear statistics includes both spinorial and
tensorial statistics.

The FD, BE, and MB statistics are readily presented as tensorial statistics. We give their
quantifiers next.We then generalize to spinorial, nontensorial, statistics.

II. STANDARD STATISTICS

A. Maxwell-Boltzmann statistics

Classical an MB aggregate is a sequeige to isomorphisthand Q= Seq, thesequence
forming quantifier. The quantum individual has a Hilbert spac® =V, over the fieldC. The
vector space for thg sequence is thé&contravarianttensor algebrd/s=TenV,, whose product
is the tensor produc®

VS: TenV| y (12)

with the natural induced T. The kinematic algebta of the sequence is the t-algebra of endo-
morphisms of TeWV,, and is generated by e V, subject to the generating relations

W=y’ (13)
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The left-hand side is an operator product, and the right-hand side is the contraction of the dual
vector ¢ with the vectoreg, with an implicit unit element & Ag as a factor.

B. Fermi—Dirac statistics

Here Q=Set, thesetforming quantifier. The kinematic algebra for the quantum set has
defining relations

b+ =0,
o (14
Vo+dp'=y'e.
for all y,peV,.
C. Bose—Einstein statistics
Here Q= Sib, thesib-forming quantifier. The sib-generating relations are
y—diy=0,
N (15
V'o—ou'=y'e,

for all y,peV,.
The individuals in each of the discussed quantifications, by construction, have the same
(isomorphig initial spaces. We call such individualsomorphic

lll. RELATION TO THE PERMUTATION GROUP

A statistics isabelianif it represents the permutation gro on its N individuals by an
abelian group of operators in thid-body mode space.

The FD or BE representations are not only abelian but scalar. They represent each permutation
by a number, a projective representation of the identity operator. One calls entities with scalar
statisticsindistinguishable Bosons and fermions are indistinguishable.

Non-abelian statistics describe distinguishable entities.

Nayak and Wilczek* give a spinorial statistics based on the work on nonabelions of Read and
Moore>® Read and Moore use a subspace corresponding to the degenerate ground mode of some
realistic Hamiltonian as the representation space for a nonabelian representation of the permuta-
tion groupS,,, acting on the composite ofrf2quasiholes in the fractional quantum Hall effect. This
statistics, Wilczek showed, represents the permutation group on a spinor space, and permutations
by noncommuting spin operators. The quasiholes of Read and Moore and of Wilczek and Nayak
are distinguishable, but their permutations leave the ground subspace invariant.

Our own interest in the statistics of distinguishable entitities arises from a study of quantum
space—time structurfeThe dynamical process of any system is composite, it is generally believed,
composed of isomorphic elementary actions going on all over, all the time. The first question that
has to be answered in setting up an algebraic quantum theory of this composite process is: What
statistics do the elementary actions have?

The elementary processes have ordinarily, though implicitly, been assumed to be distinguish-
able, being addressed by space—time coordinates, and to obey Maxwell-Boltzmann statistics. This
repeats the history of particle statistics on the greater field of process statistics.

The Clifford statistics studied below is proposed primarily for the elementary processes of
nature. We apply it here to toy models of particles in ordinary space—time to familiarize ourselves
with its properties. In our construction, the representation space of the permutation group is the
whole (spinol space of the composite. The permutation group is not assumed to be a symmetry of
the Hamiltonian or of its ground subspace any longer. It is used as a dynamical group, not a
symmetry group.
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IV. NO QUANTIFICATION WITHOUT REPRESENTATION

If we have defined how, for example, one translates individuals, this should define a way to
translate the ensemble. We shall require of a quantification that any unitary transformation on an
individual quantum entity induces a unitary transformation on the quantified system, defined by
the quantifier.

This does not imply that, for example, the actual time-translation of an ensemble is carried out
by translating the individuals. This would imply that the Hamiltonians combine additively, without
interaction. There is still room for arbitrary interaction. The representation principle means only
that there is a well-defined time-translation without interaction. This gives a physical meaning to
interaction: it is the difference between the induced time translation generator and the actual one.

Thus we posit that an arbitrarf-)unitary transformatiorlJ:V,—V,,+—Uy of the indi-
vidual ket-spaceV,, also act naturally on the quantified mode spatethrough an operator

U:Vs— Vs, defining a representation of the individual unitary group. This isrépeesentation
principle.
ThenU also acts on the algebrdg according to

U:AS_)AS! &H@:0&071 (16)

Every unitary transformatiob):V,—V, infinitesimally different from the identity is defined by a
generator G

U=1+Gd6, (17)
whereG=—G":V,—V, is anti-Hermitian and¢ is an infinitesimal parameter. The infinitesimal
anti-Hermitian generatoiS make up the Lie algebrdU, of the unitary groupJ, of the one-body
theory.

By the representation principle, each individual gener&adnduces aguantified generator
G e Ag of the quantified system, definédp to an added constartty its adjoint action ondg

Gip—>Gy=[G, ], (18)
and(18) and (20) define a representatigibie homomorphismRg:dU,—dUs of the individual

Lie algebradU, in the quantified Lie algebrdUsg.
Since

G=> e,G%e, (19)
a,b

holds by the completeness of the basjsand the reciprocal bas&®, we can express the quan-
tified generatoiG by

G==QTGQ=Eb QTaGabeEEb 2,G%8". (20

The representation principle holds for the usual statigtitB, FD, BE) and for the Clifford
statistics discussed below.
Proposition: If Q is a quantifier for a linear statistics then

[G,Q"y]1=GQy, (21)

hold for all anti-Hermitian generatoss.
Proof: We have
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[G.QTY]=G%(2.2"Q"y—QTy 2"
=G% (& (e%+(—1)"Q'ye") —Qlye,e")
=G 8, €"Y=G% 8, =G Q. (22)
Here «=1 for Fermi statistics and O for Bose.

If A is any algebra, by theommutator algebra\.4 of .4 we mean the Lie algebra on the
elements of4 whose product is the commutafa,b]=ab—bain A. By the commutator algebra
of a quantum systerh we mean that of its operator algeh#q.

In the usual cases of Bose and Fermi statistics, and not in the cases of complex and real
Clifford statistics discussed below, the quantification r{#6) defines a Lie isomorphism A,
—AAg, from the commutator algebra of the individual to that of the quantified system. Namely,
if H andP are two(arbitrary operators acting on the one-body ket-space, then

[H, P1=[A, P]. (23
Explicitly
[, P1=AP-PH
=@ H' 2% P! eu—g P 2'g H 8’
=H' P! (& &% 2" & e'eed

=H'P (& (5 8e%)e"—ee"e )

=H'P (& 58"~ e e'e°— 28 @)

=H' P (& 58" =2 (F o]+ &8 )"~ g e'e &)

=H'GPY(& 578"~ €,5/8")

=& (H" P\ —P"H' 8"

=[H, P]. (24)

This implies that for BE and FD statistics, the quantification (@@ can be extended from
the unitary operators and their anti-Hermitian generators to the whole operator algebra of the
guantified system.
V. CLIFFORD QUANTIFICATION

Now let the one-body mode spatg=RN+N-=N,Re&N_R be a real quadratic space of
dimensionN=N_, +N_ and signaturéN, —N_. Denote the symmetric metric form &f by g
=(dap) ::(e;eb). We do not assume thatis positive-definite.

We defineClifford quantification(9) by:

(1) the Clifford-like generating relations
an s {
Yot pu=5 0", (25)
for all ¢, €V,, wherel is a = sign that can have either value;
(2) the Hermiticity condition(7)
&l=0af’, (26)
(3) a rule for raising and lowering indices
&= gabéb- (27)

where(’ is another= sign, and
(4) the definition(20) to quantify one-body generators.
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Here= *1 covers the two different conventions used in the literature. In Sec. VI we will see
that {=¢', and that{={"=+1 and{={'=—1 are both allowed physically at the present
theoretical stage of development. They lead to two different real quantifications, with either
Hermitian or anti-Hermitian Clifford units.

For the quantified basis elements\¢f (25) leads to

Y S
€t epea= E Gab- (28

The /s, which are assigned grade 1 and taken to be either Hermitian or anti-Hermitian,
generate a graded t-algebra that we callfthe Clifford t-algebraassociated wittRN+ N~ and
write as CIiff(N,. ,N_)=CIiff( N..). CIliff( N..) contains a double-valug@r projective represen-
tation of the permutation grougy.

We call quanta obeying Clifford statistictiffordons Clifford statistics assembles cliffordons
individually described by vectors into a composite described by spinors, which we sgllaal-
ron. We intend the -on suffix to remind us that unlike the common statistics the Clifford statistics
has no classical correspondent.

A cliffordon is a hypothetical quantum-physical entity, like an electron, not to be confused
with a mathematical object like a spinor or an operator. We cannot describe a cliffordon com-
pletely, but we represent our actions on a squadron of cliffordons adequately by operators in a
Clifford algebra of operators. One encounters cliffordons only in permuting them, never in creat-
ing or annihilating them as individuals.

In assuming a real vector space of quantum modes instead of a complex one, we give up
i-invariance but retain quantum superpositafi+ b ¢ with real coefficients. Our theory is non-
linear from the complex point of view. Others considered nonlinear quantum theories, but gave up
real superposition as well asnvariance’® We are nothat nonlinear.

VI. QUANTIFYING OBSERVABLES

In the usual statistics, the quantifi@r can be usefully extended from the Lie algebra of the
individual to the commutator algebra of the individual; that is, from anti-Hermitian operators to all
operators. This is not the case for Clifford quantification. There the quantification of any symmet-
ric operator is a scalar, in virtue of Clifford’s law, and so the commutator of any two operators is
just the commutator of their antisymmetric parts. A straightforward calculation shows that

[A, P1=AP—PA= ¢/ (3H, P1+3([P, HTI+[PT, H]). (29
The three simplest cases are:
(1) H=HT, H'=H'T=[A,A']=0;
(2) H=H', G;=—-G]=[H, G;]=0; -
3) G=-G', G'=-G'"'=[G,G']=¢{ [G,G'].
Thus Clifford quantification respects the commutation relations for anti-Hermitian generators

if and only if {=¢"=+1 or {=¢"=—1; but not for Hermitian observables, contrary to the Bose
and Fermi quantifications, which respect both.

VII. NAYAK-WILCZEK STATISTICS

The complexgraded algebra generated by s with the relationg25) is called thecomplex
Clifford algebra Cliff ((N) over RN+ N~ It is isomorphic to the full complex matrix algebra
C(2M®C(2") for evenN=2n, and to the direct suni(2") @ C(2") @ C(2") @ C(2") for odd N
=2n+1. We regard CIiff(N) as the kinematic algebra of the complex Clifford composite. As a
vector space, it has dimensiof.2
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SchuP used complex spinors and complex Clifford algebra to represent permutations some
years before Cartan used them to represent rotations. There is a fairly widespread view that spinors
may be more fundamental than vectors, since vectors may be expressed as bilinear combinations
of spinors. One of us took this direction in much of his work. Clifford statistics support the
opposite view. There a vector describes an individual, a spinor an aggregate. Wilczek dhd Zee
seem to have been the first to recognize that spinors represent composites in a physical context,
although this is implicit in the Chevalley construction of spinors within a Grassmann algebra.

For dimensiorN =3 spinors have as many parameters as vectors, but for Higtiex number
of components of the spinors associated with QNff() grows exponentially wittN. The physical
relevance of this irreducible double-valu@ projective representation of the permutation group
Sy was recognized by Nayak and WilcZékin a theory of the fractional quantum Hall effect. We
call the complex statistics based on G{ffl) the Nayak-Wilczekor NW statistics.

Clifford statistics, unlike the more familiar particle statisti¢s!® provides no creators or
annihilators. With each individual modg, of the quantified system they associate a Clifford unit
Ya= ZQTa .

We may represent any swéansposition of two cliffordons, say 1 and By the difference
of the corresponding Clifford units

1
to=— (71— v2), 30
12 ‘/2(7’1 Y2) (30

and represent an arbitrary permutation, which is a product of elementary swaps, by the product of
their representations. That is, as direct computation shows, this defines a projective homomor-
phism fromSy into the Clifford algebra generated by the.

By definition, the numbeN of cliffordons in a squadron is the dimensionality of the indi-
vidual initial mode space/,. N is conserved rather trivially, commuting with every Clifford
element. We can change this number only by varying the dimensionality of the one-body space. In
one use of the theory, we can do this, for example, by changing the space—time four-volume of the
corresponding experimental region. Because our theory does not use creation and annihilation
operators, an initial action on the squadron represented by a spstwuld be viewed as some
kind of spontaneous transition condensation into a coherent mode, analogous to the transition from
the superconducting to the many-vertex mode in a type-Il superconductor. The initial mode of a
set or sib of(FD or BE) quanta can be regarded as a result of possibly entangled creation
operations. That of a squadron of cliffordons cannot.

As with (22), let us verify that definition(20) is consistent in the Clifford case:

[G, QTy]=G% (8,2° QTy—QTy&,8") = G¥ (8¢ + y,2") =G Q'y. (31)

This shows thatQ'y transforms correctly under the infinitesimal unitary transformation of
RN+ N- (cf. Ref. 14.

VIII. BREAKING i INVARIANCE

Thus we cannot construct useful Hermitian variables of a squadron by applying the quantifier
to the Hermitian variables of the individual cliffordon.

This is closely related to fact that the real initial mode spaite of a cliffordon has no special
operator to replace the imaginary unibf the standard complex quantum theory. The fundamental
task of the imaginary elemeitin the algebra of complex quantum physics is precisely to relate
conserved Hermitian observablesand anti-Hermitian generatofs by

H=—i#G. (32

To perform this function exactly, the operaiomust commute exactly with all observables.
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The central operators andp of classical mechanics are contractions of noncentral operators
% and p=—i#%dlx.2 In the limit of large numbers of individuals organized coherently into
suitable condensate modes, the expanded operators of the quantum theory contract into the central
operators of the classical theory. Condensations produce nearly commutative variables.

Likewise we expect the central operatioto be a contraction of a noncentral operafor
similarly resulting from a condensation in a limit of large numbers. In the simpler expanded

theory,T, the correspondent af is not central.

One clue to the nature afand the locus of its condensation is how the operatoehaves
when we combine separate systems. Since infinitesimal gene@iGs . .. combine by addi-
tion, the imaginaries,i’, . .. of different individuals must combine by identification

i=i'=---, (33)

for (32) to hold exactly, and nearly so f§82) to hold nearly. The only other variables in present
physics that combine by identification in this way are the tim# clasical mechanics and the
space—time coordinate$ of field theories. All systems in an ensemble must have about the same
i, just as all particles have about the saie the usual instant-based formulation, and all fields
have about the same space—time variaktem field theory. We identify the variablésandx* for
different systems because they are set by the experimenter, not the system. This suggests that the
experimenter, or more generally the environment of the system, mainly defines the opefator
central operatorx,p characterize a small system that results from the condensation of many
particles. The central operatomust result from a condensation in the environment; we take this
to be the same condensation that forms the vacuum and the spatiotemporal structure represented
by the variablex* of the standard model.

The existence of this contractédnsures that at least approximately, every Lie commutation
relation between dimensionless anti-Hermitian generadoBs C of the standard complex quan-
tum theory

[A, B]=C, (34
corresponds to a commutation relation between Hermitian variablé®\, —i#B, —iAC
[—ihA,—ihB]=—ik(—ihC). (35

It also tells us that this correspondence is not exact in nature.

Stickelberd® reformulated complex quantum mechanics in the real Hilbert spgteof
twice as many dimensions by assuming a special real antisymmetric op&ratd— R?N com-
muting with all of the variables of the system.

Areal t or Hilbert space has no such operator. For exampl&? ithe operator

, (36)

is a symmetric operator with an obvious spectral decomposition representing, according to the
usual interpretation, two selection operations performed on the system, and cannot be written in
the formG= — (J/A)E relating it to some antisymmetric genera®rfor any real antisymmetric
J commuting withE.

On the other hand, if we restrict ourselves to observable operators of the form

: (37

we can use the operatdr
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0 1
J:z[_l o}’ (39

to restore the usual connection between symmetry transformations and corresponding observables.
This restriction can be generalized to any even number of dimenSions.

IX. BREAKDOWN OF THE EXPECTATION VALUE FORMULA

For a system described in terms of a general real Hilbert space there is no simple relation of
the formG= (i/h) H between the symmetry generators and the observables: the usual notions of
Hamiltonian and momentum are meaningless in that case. This amplifies our earlier observation
that Clifford quantificationA—>A respects the Lie commutation relations among anti-Hermitian
generators, not Hermitian observables.

Operationally, this means that selective acts of individual and quantified cliffordons use es-
sentially different sets of filters. This is not the case for complex quantum mechanics and the usual
statistics. There some important filters for the composite are simply assemblies of filters for the
individuals.

Again, in the complex case the expectation value formula for an assembly

AvX=y Xyl iy, (39

is a consequence of the eigenvalue principle for individuals, rather than an independent
assumptior’:*® The argument presented in Refs. 3 and 16 assumes that the individuals over which
the average is taken combine with Maxwell-Boltzmann statistics. For highly excited systems this
is a good approximation even if the individuals have FD or BE or other tensorial statistics. It is not

necessarily a good approximation for cliffordons, which have spinorial, not tensorial, statistics.

X. SPIN-1/2 COMPLEX CLIFFORD MODEL

In this section we present a simplest possible model of a complex Clifford composite. The
resulting many-body energy spectrum is isomorphic to that of a sequence of spin-1/2 particles in
an external magnetic field.

Recall that in the usual complex quantum theory the Hamiltonian is related to the infinitesimal
time-translation generat@= —G" by G=iH. QuantifyingH gives the many-body Hamiltonian.

In the framework of spinorial statistics, as discussed above, this does not work, and quantification
in principle applies to the anti-Hermitian time-translation gener&@ornot to the Hermitian
operatorH. Our task now is to choose a particular generator and to study its quantified properties.

We assume an even-dimensional real initial-mode spaeeR?" for the quantum individual,
and consider the dynamics with the simplest non-trivial time-translation generator

Gime| T 40
=& _ln On 1 ( )
whereeg is a constant energy coefficient.
The quantified time-translation generat®rthen has the form
N n
G=2, &G j@=—e> (& 8 — &™)
Ij k=1
n
=+ 8;::1 (&k+nk—&®+n)
n
=26 >, &by
k=1
1 n
5582 Yi+nVk - (41)
k=1
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By Stone’s theorem, the genera@rof time translation in the spinor space of the complex
Clifford composite ofN=2n individuals can be factored into a Hermitiai\) and an imaginary
uniti that commutes strongly withl(Y)

E=iHM), 42)

We suppose thatl) corresponds to the Hamiltonian and seek its spectrum.
We note that by41), G is a sum ofn commuting anti-Hermitian algebraically independent
operatorsyy n i, k=1.2,. .. N, (een ) "= = Yien s (Venvi)?=—10.

We use the well-known 2< 2" complex matrix representation of thematrices of the com-
plex universal Clifford algebra associated with the real quadratic spatéBrauer and Wey):
Y2j-1=03® " Q030 0®10 - ®1,
Y2j=03®  ®03® 0,018 ®1, (43
i=1,2,3,...n,
whereo,, o, occur in thejth position, the product involves factors, ando,, o5, o3 are the

Pauli matrices. The representation of the corresponding permutation §sguip reducible. We
can simultaneously diagonalize the'»22" matrices representing the commuting operators

Yk+nYk, and use their eigenvalues,i, to find the spectrum of G, and consequently dfi ™).
A simple calculation shows that the spectrum@®fonsists of the eigenvalues

M=3e(n—2k)i, k=0,1,2,...n, (44
with multiplicity

n!
MKZCE:m. (45)

The spectrum of eigenvalues of the Hamiltontdfl") then consists oh+ 1 energy levels
Ex=3(n—2k)e, (46)
with degeneracyy, . ThuskE, ranges over the interval
— #Ne<E<ZNe, (47)
in steps ofe, with the given degeneracies.
Thus the spectrum of the structureléssody complex Clifford composite is the same as that

of a system ofN spin-1/2 Maxwell-Boltzmann particles of magnetic momganin a magnetic
field H, with the identification

Bl

e=puH. (48)

Even though we started with such a simple one-body time-translation generatdf)ashe
spectrum of the resulting many-body Hamiltonian possesses some complexity, reflecting the fact
that the units in the composite are distinguishable, and their swaps generate the dynamical vari-
ables of the system.

This spin-1/2 model does not tell us how to swap two Clifford units experimentally. Like the
phonon model of the harmonic oscillator, the statistics of the individual quanta enters the picture
only through the commutation relations among the fundamental operators of the theory.

Downloaded 06 Mar 2013 to 128.196.132.173. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



3310 J. Math. Phys., Vol. 42, No. 8, August 2001 D. R. Finkelstein and A. A. Galiautdinov

XIl. REAL CLIFFORD STATISTICS

Real Clifford quantification establishes a morphigf) from the Lie algebra of the individual
into that of the composite. The proof for real Clifford statistics parallels that for the complex
Clifford case closely.

According to the Periodic Table of the Spindfs®~2!the free(or universal Clifford algebra
Cliff 3(N, ,N_) is algebra-isomorphic to the endomorphism algebra of a maxi(ie, ,N_) over
aring R(N, ,N_). We give the table to simplify reference to(ltere{=—1):

N 0O 1 2 3 4 5 6 7

N,

0 R R, 2R 2C 2H 2H, 4H 8C

1 C 2R 2R, 4R 4C 4H 4H, 8H

2 H €, 4R 4R, 8R 8C 8H 8H,

3 H, 2H 4C B8R B8R, 16R 16C 16H (49)
4 2H 2H, 4H 8C 16R 16R, 32R 32C

5 4C 4H 4H, 8H 16C 32R 32R, &4R

6 S8R 8C 8H 8H, 16H 32C 64R 64R,

7 8R, 16R 16C 16H 16H, 32H 64C 128R

It shows that the ring of coefficien®®(N, ,N_) varies periodically with period 8 in each of the
dimensionalitiesN, and N_ of V,, and is a function of signaturld, —N_ alone. In the first
cycle, N, —N_=0,1,...,7, andR=R,C,H,H®e H,H,C,R,R® R, respectively. Then the cycle re-
peats ad infinitum.

In our application the modul& (N, ,N_), the spinor space supporting CHfN. ,N_),
serves as the initial mode space of a squadroN oéal cliffordons.R(N.) we call thespinor
coefficient ringfor Cliff 3(N, ,N_).

Xll. PERMUTATIONS

In the standard statistics there is a natural way to represent permutations of individuals in the
N-body composite. EacN-body ket is constructed by successive actioiNofreation operators
on the special vacuum mode. Any permutation of individuals can be achieved by permuting these
creation operators in the product. The identity and alternative representations of the permutation
group Sy in the BE and FD cases then follow from the defining relations of Sec. Il.

In the case of Clifford statistics, some things are different. There is still an operator associated
with each cliffordon; now it is a Clifford unit. Permutations of cliffordons are still represented by
operators on a many-body T space. But the mode space on which these operators act is now a
spinor space, and its basis vectors are not constructed by creation operators acting on a special
“vacuum” ket.

The Clifford representation of the permutation group that we have employed is reducible into
two irreducible Schur representations. It is a bit easier to write than Schur’s because our individual
operatorsy; anticommute exactly, corresponding to exactly orthogonal directions in the one-body
mode space, like the generators of Dirac’s Clifford algebra. In Schur’s irreducible representation
(slightly simplified these operators are replaced by their projections normal to the principle
diagonal directionn:=X yi/\/ﬁ, which is invariant under all permutations. The corresponding
angles are those subtended by the edges of a regular simpiexatices inN—1 dimensions as
seen from the center. These angles are all determined by
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cog 0= % (50)

They differ from 7/2 by an angle that vanishes for larbjelike 1/N.

Xlll. EMERGENCE OF A QUANTUM

The Periodic Table of the SpinofSec. X) suggests another origin for the complexf
quantum theory, and one that is not approximately central but exactly central. Some Clifford
algebras CIifi(N, ,N_) have the spinor coefficient ring, containing an elemert Multiplica-
tion by thisi then represents an operator in the center of the Clifford algebra, which we designate
also byi. We may usé-multiplication to represent the top elemepntwhenevery' is central and
has square-1. Thisi e Cliff 3(N-) corresponds to the of complex quantum theory.

Cliff 3(1,0) contains such ainbut is commutative. According to the Periodic Tablgth the
choice of{=—1), the smallest noncommmutative Clifford algebras of Euclidean signature with
complex spinor coefficients are Cliff0,3) with negative Euclidean signature, and G[if,0)
with positive Euclidean signature. Triads or pentads of such cliffordons could underlie the physical
“elementary” particles, giving rise to complex quantum mechanics within the real. We consider
these two cases in turn.

Cliff 3(0,3)=C(2) has the familiar Pauli representation:=i o, y,:=i 05, y3:=i o3 with
{=—1. We choose a patrticular one-cliffordon dynamics of the form

0 vV 0
G = - V O & . (51)
0 —-¢ O
Quantification(20) of G gives
G=iH(3 (52)
with the Hamiltonian
11V e
(=3)=_
H 5| & —V} (53

This is also the Hamiltonian for a generic two-level quantum-mechanical systgmthe energy
separatiore) in an external potential fielt¥, like the ammonia molecule in a static electric field
discussed in Ref. 22.

Cliff 3(5,0)=C(4) has the matrix representation:=i o1®1, y,:=i 0,®1, yz:=i 03® 0,
Yai=i 03@0,, vsi=i 03®@03, again with {=—1. Its top Clifford unit is y':= I,y =y'"
=+!~1 with eigenvalues+ 1. We choose a specimen dynamitsr the individual cliffordon in
the form

0 V 0 0 0
-V 0 0 0 O
G:= 0 0 0 Of. (54
0 0 0 O
i 0 0 0 0
Quantification(20) of G gives
G=iH®), (55)
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with the Hamiltonian

10 0 0
1101 o
5_1
H=2V10 0 -1 o (56)
00 0 -1

The two examples considered above show how a squadron of several real cliffordons can obey
a truly complex quantum theory.

XIV. FERMI AND CLIFFORD STATISTICS

The FD algebra of creators and annihilators is a special case of a Clifford algebra over a
quadratic space with neutral quadratic form, called the quantum algebra by Sati¢the mother
algebra by Doramet al?* Is FD statistics ever a special case of Clifford statistics? Specifically, are
their t-algebras ever isomorphic?

From theN annihilatorsa, of the complex FD statistics we can form a sequence of anticom-
muting hermitian square roots of unity

. t . ak_al
|k:ak+ak, |k+N:i—.

(57)
Moreover, the complex t-algebra that these generate is a Clifford t-algebra RI|id)2The
transformation from the FD generators to the Clifford is invertible. Therefore complex FD statis-
tics and complex Clifford statistics have isomorphic t-algebras.

The graded t-algebras are obviously not isomorphic. The two grade operators do not even
commute.

The question is more complicated for the real Fermi and Clifford quantifications. We follow
Doranet al,?* among others.

In the real FD formulation we begin with a real one-fermimdimensional spacé=nR with
no metric or adjoint. The FD quantified algebdahas the bilinear associative product defined by
the FD relations

flf]+f]fI:0!
o . (59
fifJ+fin:5{ y
and the adjoint defined by
fl=fl, (59)
The f; are creation and’ are annihilation operators.
To presentA as a Clifford algebra we form the direct sum
W=FaF". (60)
In a basis{f;, f'}!"_, adapted to this direct sum, we define the following 8){nvariant metric
for W
0 1/2
912 o) €1

corresponding to
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fi-f;=0, f.fi=0, f.f;=3s. (62

SinceF supports a quantum theory it too has a quadratic ferf® F— R, which we assume to
be Euclidean. We did not usein the construction of4 andg.

We quantify this fermion by a mappin@":W— A into the t-algebra of the composite. For
brevity we writef; for Q'f; as is also customary.

The quantificationQ has the representation property. In the FD case this meanQthat
represents the orthogonal group $X) in A; in fact it represents the larger group GL) for *
has not entered into the definition Q.

The basig y;, ¥}{, defined by

yir=fi+ =t — 1 (63

gives the metrigg of W the diagonal form

1 0
S (64
corresponding to
Yi-vi=l %%=-1 %-%=0 (65)

That is, W=E®E is a neutral quadratic space, with Eucidean subsfa@nd anti-Euclidean

subspacé.
The v's obey

Yivityivi= 126,
ViVt Y Yi= — 26, (66)

Yivitvvi=0.

Therefore the FD algebr&8) is isomorphic to a real Clifford algebra Cliff{, )= Cliff( E
oE).

Are the Clifford and FD t-algebras also isomorphic?

With respect to the Fermi adjoint T, half of the Clifford generaithe y;) are Hermitian and
the other halfithe ;) are anti-Hermitian. In a Clifford T algebra, however, all the generators are
anti-Hermitian or Hermitian together. Therefore the Clifford-algebra generggorg;}_ ; are not
Clifford t-algebra generators.

In some cases we construct suitable generators using the top e@mehE:

If the dimensiom of E (andF) is a multiple of 4, thery;:=%!%, anticommutes with the;,
and is Hermitian like they; . Then the elementsy; , 7;}/_, generate a Clifford t-algebra wifif.
(66)]

Yivityivi= 126,
YiYitvvi=+28;, (67)
Yivit+7v7=0,
which is isomorphic to the FD algebra &f Then the Clifford-quantified t-algebkghe casel
={'=+1) is isomorphic to a Fermi-quantified one whar4m, and the adjoint of the one-

cliffordon space is positive definite. The two quantified theories then predict the same transition
amplitudes and spectra.
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Analogously, when{=¢'=-1 and all the Clifford generators are anti-Hermitian, and
=4m, the FD and Clifford statistics again give isomrphic 1 algebras.

They still differ in their grades. The FD quantified system has a gfagewith spectrum
—N,...,0,...N, corresponding to the creation and annihilation fermions. The Clifford quanti-
fied system has a positive grade oper&@erwith spectrum 0,1,. . 2N. The operator&: andGg
do not even commute. The FD and Clifford graded-algebras are not isomorphic.

This is merely a difference in language. The operators that are said to create and annihilate
things in FD statistics are said to permute things in Clifford statistics. In Clifford statistics nothing
is created or destroyed.
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