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Focus waves modes in homogeneous Maxwell's equations: Transverse 
electric mode 

James Neill Brittingham 
Lawrence Livermore National Laboratory, University of California, Livermore, California 94550 

(Received 11 December 1981; accepted for publication 22 October 1982) 

This paper presents mathematical formulations for new, three-dimensional, packet-like solutions 
to the free-space homogeneous Maxwell's equations. These solutions are real, nonsingular, 
continuous functions which propagate in a straight line at light velocity. They remain focused for 
all time. The asymptotic behavior of the fields away from the moving pulse center has a magnitude 
which decreases as the inverse of the distance from the pulse centers. 

PACS numbers: 03.50.De, 41.10.Hv 

I. INTRODUCTION 

This paper presents the first mathematical representa­
tion of a family of three-dimensional, nondispersive, source­
free, free-space, classical electromagnetic pulses which prop­
agate in a straight line in free space at light velocity. The term 
"three-dimensional" means that the functional values fall off 
in all directions from the moving pulse centers; therefore, the 
pulse functions' magnitudes decrease in front of, behind, and 
transverse to the axis of propagation. The term "nondispre­
sive" means that the pulse functions' envelope shapes remain 
fixed as they propagate; therefore, these functions do not 
spread as they propagate. In this case there is a ripple asso­
ciated with the main pulse functions which causes the func­
tional values to vary between consecutive points in the direc­
tion of propagation. However, the moving pulses have 
unique characteristics in that their functional values repeat 
identically at periodic points along the axis of propagation. 
Nondispersive pulse solutions have been observed both ex­
perimentally and mathematically in the soliton area. 1.2 

These soliton solutions are plane waves in nature-not 
three-dimensional-because their functions are fixed-value 
transverse to the axis of propagation. It should be noted here 
that the soliton solutions satisfy nonlinear differential equa­
tions while the formulations presented in this paper are solu­
tions to linear equations. The mathematical formulations 
presented below were found after a very extensive heuristical 
fit of various differential equation solutions. The author pre­
sents this paper hoping to initiate the mathematical study of 
three-dimensional, nondispersive pulses in known scientific 
areas which might extend present knowledge in these areas. 

To convince the scientific community that these solu­
tions are unique electromagnetic pulses, the mathematical 
formulations must (1) satisfy the homogeneous Maxwell's 
equations, (2) be continuous and nonsingular, (3) have a 
three-dimensional pulse structure, (4) be nondispersive for 
all time, (5) move at light velocity in straight lines, and (6) 
carry finite electromagnetic energy. 

The first condition is due to the fact that source-free, 
classical electromagnetics are described by the homogen­
eous Maxwell's equations. Since the discontinuities and sin­
gularities in mathematical solutions represent charges in 
classical electromagnetics, the continuity and nonsingular­
ity requirements are synonymous with source-free solutions. 

The three-dimensional and nondispersive conditions which 
were defined in the above paragraph make these solutions 
unique in the literature. An important physical quantity in 
all scientific areas is the energy associated with the phenom­
ena. The amount of electromagnetic energy in the functions 
is an important classical electromagnetic quantity because it 
demonstrates the solution's worth when applied to the real 
world. The finite electromagnetic energy requirement sug­
gests practical applicable wave functions. The paper begins 
by presenting pulse solutions which satisfy the above first 
five conditions and then modifies these solutions to satisfy all 
conditions. 

The original mathematical formulations which are pre­
sented here depict pulses propagating along the z axis. Since 
there are two electric field components which are transverse 
to the z axis and three magnetic field components, they rep­
resent a transverse electric mode (TE). The pulse functions 
decrease in front of, behind, and transverse to the axis of 
propagation. Since they remain focused for all time as they 
propagate along the z axis we term them Focus Wave Modes 
(FWM). The functions are composed of a three-term pro­
duct; the first parts are three-dimensional pulses moving at 
light velocity, and the second are sinusoidal plane waves 
moving at a velocity less than light velocity along the same 
line of propagation. The third parts are sinusoidal functions 
in the angular variable around the axis of propagation. When 
viewed from a moving reference at light velocity, the first 
functions appear to be frozen in time while the second func­
tions appear to be moving energy from the pulses' front to 
the rear. Because of the third function's angular nature 
around the axis of propagation, they do not effect the pulse 
shapes as the pulse moves through space. It is the three­
dimensional, first pulse functions which dictate the asymp­
totic behavior of the total pulse functions which decrease as 
the inverse of the distance from the pulse centers. This far­
field behavior is similar to that of a stationary dipole radiator 
in free space.3 Like the stationary dipole radiator the original 
FWM mathematics has an infinite electromagnetic energy 
associated with the fields in the surrounding space. The term 
original notes in this paper the first solution which was found 
the by the author as compared to later modification of these 
solutions. 

Since the original FWM formulations satisfy all the 
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items listed above except the finite energy requirement, it is 
desirable to construct modified solutions which satisfy all six 
listed items; one modified solution is presented in this paper. 
This modified solution will be called the three-region exten­
sion to the original FWM formulations. The three-region 
extension consists of mathematically turning the wave off in 
front and behind by moving at light velocity two planes of 
discontinuities along and perpendicular to the z axis. The 
fields are zero before the first plane, the FWM values 
between and zero beind the last plane. The three-region ex­
tensions are the combination of the original FWM pulses 
and the two planes of discontinuity all moving in unison. 
Will these composite pulses, once launched, change shapes 
as they propagate? The only way that these composite pulses 
could change shapes would be if the two planes of discontin­
uity distorted as they propagate. Therefore, the planes' sta­
bility needs to be demonstrated. The stability of the discon­
tinuity planes is guaranteed by the work of Kline and Kay4 
who have studied the propagation of discontinuities in Max­
well's equations. These three-region extensions represent 
stable propagating pulses which satify all of the six items 
above. 

This paper is presented in six sections with the first be­
ing this Introduction. The Maxwell's equations vector for­
mulation, which must be satisfied, and the FWM mathemat­
ical formulations are presented in Sec. II. Section III 
discusses the mathematical behavior common to all the 
FWM formulations, such as lack of singularities and discon­
tinuities, asymptotics, and pulse-like behavior. Section IV 
presents detailed discussions showing how the original 
FWM formulations satisfy Maxwell's equations in a cylin­
drical coordinate system along with the three-region exten­
sions to the original FWM formulations. Section V presents 
the conclusions, while the last section contains the acknowl­
edgments. 

II. MATHEMATICAL FORMULATIONS 

In this section the homogeneous Maxwell's equations 
vector formulation is presented along with a few additional 
equations needed later. Then the original FWM mathemat­
ical expressions are presented in the cylindrical coordinate 
system. 

A. Defining equations 

The homogeneous Maxwell's equations in vector form 
as outlined in Stratton5 are shown below: 

VXE= _ aB 
at' 

(1) 

aD 
VxH= -, (2) 

at 
A·D=O, (3) 

A·B=O, (4) 

where E, D, H, Band t are the electric field, electric flux 
density, magnetic field, magnetic flux density, and time vari­
able, respectively. In free space the electric quantities and 
magnetic quantities can be related by the equations5 
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D=EoE, 

B =,uoH, 

(5) 

(6) 

where Eo and,uo are the free-space permittivity and perme­
ability, respectively. The permittivity and permeability are 
related to the light velocity, c, by the equation5 

1 
Eo,uo = 2' (7) 

c 

Another important physical concept associated with classi­
cal electromagnetics is the pulse's total electrical energy. If 
the total electromagnetic energy in a single pulse is if then it 
can be expressed as3 

if = J.- f (EoE·E + ,uoHoH)dv, 
2 Jv 

where v is a volume integral over all space. 

B. Formulation 

(8) 

The mathematical expressions of the original FWM 
formulations will be presented in a cylindrical coordinate 
system, [p,(,6,(z - ct )], which is shown in Fig. 1 along with a 
rectangular coordinate system [x, y,(z - ct )]. The p and (,6 
variables measure the radial distance in the x-y plane from 
the origin to a point in this transverse plane and the angle 
from the x axis to p variable in this plane, respectively. The 
third space variable z, and the time variable, t, are placed 
together with light velocity, c, to write the retarded variable, 
(z - ct ). The retarded variable is used here instead of just the 
z variable because it assists in demonstrating that the follow­
ing functions remain unaltered as they move along thez axis. 
Because these solutions represent packets in free space, the 
variables will have the following ranges: 04>0;;: 00, 00;;:(,60;;:21T, 
and - 00 < (z - ct) < 00. 

The various vector components of the FWM, TE-mode 
mathematical formulations can be written as 

y 

Dp (p,(,6,z,t) = 1/11 + 1/11, 
D",(p,(,6,z,t) = 1/12 + I/I!, 
Hp (p,(,6,z,t) = 1/13 + I/It, 

x 

(9) 

(to) 

(11) 

FIG. 1. Retarded coordinate system used to formulate three-dimensional 
packets. 
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H~(p,¢>,z,t) = '/14 + '/I:, 

Hz (p,¢>,z,t ) = '/Is + '/I r, 
(12) 

(13) 

where '/Iq are complex functions and '/I: notes the complex 
conjugate. The functions are written as the sum of complex 
functions and their conjugates to guarantee that the fields 
are real. The subscripts on the field terms in Eqs. (9H13) 
denote the various vector components; note no z component 
of the electric field appears because these are the TE-mode 
solutions. The parenthesis after the field terms define the 
various functional dependencies. 

The '/I q functions are written as 

'/Iq = Aq [p,(z - ct )]G1 [p,(z - ct )]G2 [(z - ct)] 

XG3[(Z-C 1t)]cP'(¢» (14) 

when q = 1 and 4, and 

'/Iq = Aq [p,(z - ct )]G1 [p,(z - ct )]G2 [(z - ct)] 

XG3[(Z-c1t)]cP(¢», (15) 

when q = 2,3,5. The constant c1 is a velocity which is not 
equal to light velocity. The brackets and parenthesis above 
note the various functional dependencies of each function 
defining the '/Iq functions. To avoid making the notation too 
clumsy, the remainder of this paper will neglect the func­
tional dependencies unless needed to stress a point. The A 
functions are 

cgp"+ 1 

4F"+3 

(3n + 4)cgp" + 1 

4F"+3 

'V TE [ p"+2 (n + 1io"] 
As = - J 4F" + 3 - F" + 2 ' 

where D TE is a real constant and 

F = [jg{z - ct ) + S ] . 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

The termj, used above to define A and F, is the square root of 
- 1 while g and S are positive real constants. 

The three G functions used in '/Iq are 
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G1 = exp - (~~). 
G2 = exp[ - jkl(z - ct I], 

G3 = expUk2(z - Cit n, 

(22) 

(23) 

(24) 

where k 1 and k2 are two different real propagation constants. 
The cP functions in Eqs. (14) and (15) are 

cP (tfJ ) = {sin(ntfJ )}, (25) 
cos{ntfJ ) 

cP '(tfJ) = { n co~(n¢» }, (26) 
- n sm(n¢» 

where the brace terms are here to depict two isolated cases in 
one single notation. When the first sinusoidal term in Eq. 
(25) is used with the first term in Eq. (26) a solution to the 
Maxwell's equations is found; the same is true for the second 
pair of terms. The cP functions are the only case in this paper 
where the brace notation varies from the norm. The n terms 
used in defining theAq functions come from the cP functions. 
Since the cP functions contain sinusoids in free space then n 
must be a positive integer. 

There is a set of two supplemental conditions which 
must be satisfied by the constants that help define the '/Iq 

functions. They are 

2gk2d 1 = 1, (27) 

where 

d l =(l-:I). 
d2 = (1- :n. 

(28) 

(29) 

(30) 

Note there are four constantsg, k 1, k2, andc1 used in defining 
the '/Iq functions; these constants must satisfy the two sup­
plemental conditions (27) and (28). By assuming that g, kl 
and k2 are all positive, then from the two supplemental equa­
tions it is obvious that O<CI <c. Therefore,g, k 1, k 2, and C 1 

can be any positive real number as long as they satisfy Eqs. 
(27) and (28) and C1 is less than c. The fact that there are four 
constants and only two supplemental equations allows a 
large range of constants which can be used. The multiplica­
tion constant, D TE , can by nonzero, real value. The n values 
must be 0,1,2, ... ; these are dictated by the fact that in the 
physical world our functions must be single valued in the 
angle ¢>. The S will be any positive real constant. 

III. DISCUSSION OF THE ORIGINAL FWM SOLUTION 
STRUCTURE 

Since the original FWM mathematical formulation pre­
sented in the last section might represent electromagnetic 
problems, certain characteristics common to each packet 
must be discussed. This section discusses the lack of singu­
larities and discontinuities, asymptotic beahvior. and the 
packet-like shape of the solutions. 
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A. Singularities and discontinuities 

Since the IJIq functions are to represent source-free solu­
tions, they must be shown to contain no singularities and to 
be continuous. These properties of IJI will be discussed next. 
Looking back at Eqs. (9)-(26) it is observed that each IJIq 

function is a sum of several terms each having the form 

~ exp - (L) exp[ - jk.{z - ct)]exp[jk2{z - c.t)]4>q{tP) , 
Fq' 4F 

(31) 

wherep and q' are positive integers and 4>q are the appropri­
ate 4> functions of Eqs, (25) and (26), which relates to Eqs. 
(14) and (15). It is this general function which must be dem­
onstrated to contain no singularities and to be continuous. 
Since the complex exponential containing k. and k2 give rise 
to sinusoidal terms which do not affect the function's singu­
larities and continuities, the part ofEq. (31) that needs inves­
tigation is 

pP, exp - (L) 4>q{tP), 
PI 4F 

(32) 

The singular behavior ofEq. (32) will be studied first. The 1/ 
F term is the one function in this expression which might 
cause singularities. If F had a zero then 1/ F would have a 
singularity; but since g, t, and (z - ct) are real there is no 
singularity. Therefore, the IJIq functions are nonsingular. 

The complete continuity ofEq. (32) can be demonstrat­
ed by studying the continuity of each isolated component. 
The 4> q functions which are sines and cosines of tP might give 
rise to discontinuities in the packet if the wrong function 
parameters are chosen. To demonstrate this, Fig. 2 shows a 
plane transverse to the axis of propagation. Note that 

sin(ntP) = - sin [n{tP + 0)], (33) 

if nO = 1T. From Eq. (33) and Fig. 2 it is obvious that for the 
same p value there are more than one function values in Eq. 
(32). Therefore, if p is allowed to approach zero from several 
different fixed tP values, the function in Eq. (32) could have 
different values atp equal to zero. To avoid this problem the 
p-varying function in Eq. (32) must be zero at p = 0 which 
can be accomplished by making sure that p> O. Since the 

v 

p 

p 

__________ ~ ____ ~____________ x 

FIG, 2. x-y plane demonstrating how a discontinuity might occur at p = o. 
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lowest p in Eq. (31) is n - 1 it is necessary to make n> 1. 
The functions shown in Eq. (32) where n> 1 have just 

been shown to be continuous near p = 0 because the func­
tions are equal to zero here. There is another case, n = 1, 
which can be shown to be continuous at p = 0 by a different 
method. If one transforms the p- and tP-vector components 
for the magnetic and electric fields into x- and y-vector com­
ponents then one can show that when n = 1 these fields are 
continuous at the origin. The reason why this transform 
method works for n = 1 is because the field functions tP vari­
ation around the z axis matches the transform tP variation. 
For the other cases, these two functional variations do not 
match; therefore, these fields functions would be discontin­
uous at p = 0 if not for the function's at this point. The 
unique nature of these fields functions near the origin make 
it necessary to use two separate proofs to demonstrate the 
continuity of all the useful cases here. The case where n = 0 
will work because the coefficients multiplying the term 
(n - 1) are zero causing the p function to have no singulari­
ties at p = O. Therefore, the cases where the functions shown 
in Eq. (36) will be continuous at p = 0 are denoted by 

n = 0,1,2,3_ ... (34) 

This row leaves the following equation: 

L exp - (L) 
Fq' 4F 

(35) 

from Eq. (32) that must be shown to be continuous in the 
p - (z - ct ) plane which is presented in Fig. 3. It is a trivial 
exercise to show that the (I/F)q function is continuous in 
(z - ct ); therefore, the last function which needs its contin­
uity demonstrated is 

pP { p2 [t - jg(z - ct )] } 
Fq' exp - 4 [g2(z _ ct)2 + t2] . (36) 

The change in the exponential between Eqs. (35) and (36) is 
formed by multiplying and dividing it by F·_The complex 
exponential above can be separated into two parts; when the 
real part ofthe exponential in Eq. (36) is retained, it gives 

pP exp { p
2t } 

Fq' - 4[g2(z - ct)2 + t2] 

{ 
g(z - ct )P2 } 

X cos 4[g2(z _ ctf + t2] . (37) 

Since each function in Eq. (37) is continuous at each fixed 

p 

(z-ct) 

FIG. 3. P - (z - ct) plane. 
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point in the p - (z - ct) plane, then the product of these 
functions is continuous at each point. But, there are two 
reasons why the above equation is a well-behaved continous 
function in the entire p - (z - ct ) plane. The first is the expo­
nential being negative for all values of p and (z - ct); the 
second is that q' and p are positive integers where q' is greater 
than p. The first condition guarantees that the exponential 
makes the pi' and cosine approach zero as p approaches in­
finity for fixed (z - ct ). The second condition guarantees that 
the complex product approaches zero as bothp and (z - ct) 
approach infinity and that the same function approaches 
zero asp is fixed and (z - ct) approaches infinity. The imagi­
nary part ofEq. (36) is identical to Eq. (37) except it has a sine 
term instead of cosine function; therefore, its continuity can 
be demonstrated by a similar method. This proves that the 
I/Iq functions are continuous. 

The 1/1* functions can be shown to be continuous and q 

free of singularities by an identical process as used for I/Iq. 

B. Asymptotlcs 

Thus far, the FWM field functions presented above 
have been shown to have no singularities and to be contin­
uous. To demonstrate that they are three-dimensional, pack­
et-like solutions moving along the z axis, the asymptotic na­
ture of the functions must be investigated. Since the field 
functions in Eqs. (9)-(12) are composed of I/Iq and 1/1: these 
functions' asymptotic behavior needs to be discussed. 

From Eqs. (9)-(26) it was observed that 

I/Iq =lq [p,(z-ct)]exp[jk2(z-c)t))]cPq, (38) 

where 

lq = Aq [p,(z - ct )]G) [p,(z - ct )]G2 [(z - ct)]. (39) 

Looking at Eq. (38) it is obvious that I/Iq is the product of 
three functions. The first function is lq which varies with 
respect to p and (z - ct ) and represents a fixed pulse shape 
that moves along the z axis at light velocity. Since no other 
function in I/Iq contains the p variation, it will be the lq 
function which contains the asymptotic behavior for large p. 
The second function in I/Iq is complex exponential that 
moves along the z axis at a velocity less than light velocity. 
Since the complex exponential are actually sinusoids, these 
functions represent sine and cosine plane waves that will be 
superimposed on lq and moving at a velocity less than lq's 
velocity in the z direction. The second function's sinusoidal 
nature causes this function to vary from - 1 to 1; therefore, 
it does not affect the asymptotic behavior of I/Iq. The third 
function in Eq. (38) is the cP function which describes the 
polar angle variation in a plane transverse to the axis of mo­
tion; therefore, it also does not influence the asymptotic be­
havior of I/Iq. 

Since the Iq functions govern the asymptotic behavior 
of the I/Iq functions, they will be studied here. From Eq. (39) 
it is observed that the last complex exponential function in 
the equations gives sinusoidal variations which move with 
the other functions at light velocity. Since these sinusoidal 
functions vary from - 1 to + 1, it will be the Aq and G) 
functions which will control the asymptotic behavior of the 
I/Iq functions. Note from Eqs. (9)-(26) that the product of Aq 
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times G) gives mUltiple term sums. One of the most slowly 
varying asymptotic functions occurs when the power of p is 
only one integer less than the power of F. An example of one 
such term from theA q times G) product is 

a pn + ) { _ 5p2 } 
~n+2 exp 4[g2(z _ ctf + 52] 

{ 
jg(z - ct102 

} 

Xexp 4[g2(z _ ctf + 52] , (40) 

where a) is a real constant. In the above equation, the expo­
nential of G) has been written as in Eq. (36). Since all the 
terms in the above real exponential are positive, its exponent 
will have a negative value for allp and (z - ct) values due to 
the negative sign. This negative character of the real expo­
nential will guarantee that Eq. (40) decreases exponentially 
for fixed (z - ct) and large p values. For large (z - ct) and 
fixed p the 1/ F n + 2 functions will account for the decreasing 
behavior in front and behind the pulse. The slowest func­
tional decrease in Eq. (40) occurs when bothp and (z - ct ) are 
allowed to simultaneously approach infinity. Along such a 
radial line from the pulses' center in the p - (z - ct) plane it 
is observed that Eq. (40) decreases as 

1 
(41) ]i' 

where R = [p2 + (z - ct fJI/2. The asymptotic behavior for 
the other terms in Eq. (39) can be found by an identical pro­
cedure as used above. 

The 1/1* functions can be shown to have the same q 

asymptotic behavior as I/Iq by using an identical procedure. 

C. Packet-like solutions 

As has been stated, the original FWM mathematical 
formulations present the first three-dimensional, nondisper­
sive pulse functions which satisfy Maxwell's homogeneous 
equations in free space. The general pulse shapes are dis­
cussed below. The pulse shapes can be best observed by look­
ing at Eqs. (38) and (39). By following a similar argument 
given after these equations, one notes that the solutions are 
the product of three sets of functions; the first being three­
dimensional functions, l q , which move at light velocity 
along the z axis. The second functions are sinusoidal plane 
waves moving at a velocity less than light velocity along the z 
axis. The third functions are the angular variations around 
the axis of propagation. The first two functions truly govern 
the pulse functions shapes as they move in free space. The lq 
functions are the three-dimensional functions which de­
scribe the far-field behavior, while the second functions' sin­
usoidal plane wave terms propagate through the lq func­
tions. Since the sinusoidal plane wave functions vary from 
- 1 to 1, the lq function's asymptotic behavior is not affect-

ed by the plane waves propagating through them. If the 
fields are viewed in the stationary (x,y,z) coordinates, then 
the lq functions are moving at light velocity along the z axis 
while the other sinusoidal plane waves are moving energy 
from the pulses' front to the rear. 

The original FWM mathematical formulations pre­
sented in this paper are three-dimensional, nondispersive 
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packet-like solutions. The three-dimensional term means 
that as the solutions move through space at light velocity, the 
functions' values decrease in front, behind, and transversely 
to the pulse centers. Since the Iq functions govern the pulses' 
asymptotic behavior then Eq. (41) guarantees that the pulses 
are three-dimensional. The nondispersive term means that 
the pulses do not spread as they propagate through free 
space. The Iq functions are also the reason why the pulses do 
not spread. As has been discussed in the preceding para­
graph, the Iq functions represent fixed-shaped pulses mov­
ing along the z axis at light velocity. Since the I q functions do 
not change with time then the pulse's functions will not 
spread. Since these are the first nondispersive, electromag­
netic pulses appearing in the literature, it is natural to ask 
how much classical electromagnetic energy is associated 
with each pulse. This is the integral given in Eq. (8). Because 
of the asymptotic variation given in Eq. (41) the energy inte­
gral will be infinite. Even though these are the first pulse 
solutions to the homogeneous Maxwell's equations which 
have a peak value near the pulses' centers and decreases in all 
directions, the fields decrease too slowly to have a finite ener­
gy integral. A finite electromagnetic energy would require 
an asymptotic variation as l/R 2. The asymptotic values of 
the moving pulses, given in Eq. (41), have the same magni­
tude as the asymptotic values for a stationary dipole in free 
space. 3 

Eqs. (1 H 4), it is observed that the TE modes in a cylindrical 
coordinate system must satisfy the following: 

IV. PROOFS 

aEf _ aBp 
az - at' 

.!. a(pEf ) _.!. aEp = aBz 

p ap p a(J - ar' 
1 aHz aHf _ aDp 
pa(J-az-at' 

aHp _ aHz = aDf , 

az ap at 
.!. a( pHt/J) _ .!. aHp = 0, 
pap pa(J 

.!. a( pEp) + .!. aEf = 0, 
pap pa(J 

.!. a(pHp) +.!. aHf + aHz = o. 
pap pa(J az 

1. Curl electric field 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

In this section, the original FWM formulations present­
ed in Sec. II B will be shown to satisfy the homogeneous 
Maxwell's equations. Then the three-region extensions to 
the original FWM formulations will be presented and dis­
cussed. 

A. Maxwell's equations satisfied 

By using the table in Plonsey and Collin3 on the vector 
form of the homogeneous Maxwell's equations presented in 

I 

The curl of the electric fields equation requires that Eqs. 
(42H44) be satisfied. Before this is done, an additional nota­
tion needs presenting. Since each field is composed of the 
sum of a complex function and its conjugate, the superscripts 
1 and 2 will now be used to note the complex function and its 
conjugate, respectively. When the appropriate 'i'q functions 
defined in Eqs. (9H26) are placed in Eqs. (42H44), the de­
rivatives of the fields yield 

jD TE [ n(n2 + 3n + 2)cgZpn - 1 (4n 2 + 14n + 12)cgZpn + 1 

- EoC2 - F n+3 + 4F n+4 

n(n + 1)( - 2k1c + k2c + k2c1)gpn - 1 (~n + 12)cgZpn + 3 

+ F n+2 - 16F n+S 

(3n + 4)(2k1c - k2c - k2c1)gpn + 1 2cgZpn + S 
+ 4F n + 3 + 64F n + 6 

2( - 2k1c + k2c + k2c1)gpn + 3 n(k1c - k2c1){ - k) + k2"P" - 1 

+ 16F n+4 + Fn+ 1 

2(k)c - k2c))( - kl + k2)pn + 1 ] G)G
2
G

3
<P, 

4F,,+2 
(50) 

• TE [ n(n2 + 3n + 2)cgZpn - 1 (4n 2 + 14n + 12)cgZp" + 1 

- JlloD - F" + 3 + 4F n + 4 

n(n + 1)( - 2k1c + k2c + k2c1)gp" -) (Sn + 12)cgZp" + 3 

+ F n+2 - 16F"+S 

+ (3n + 4)(2k)c - k2c - k2c))gpn + 1 + 2cgZpn + S 
4F n + 3 64F n + 6 

2( - 2k)c + k2c + k2c1)gpn + 3 n(k)c - k2c))( - kl + k2)pn - I 

+ 16F n+4 + Fn+ 1 

2(klc - k2cl)( - kl + k2)p" + I ] GIG G <P, 
4F,,+2 2 3 

(51) 

1184 J. App/. Phys., Vo/. 54, No.3, March 1983 James Neill Brittingham 1184 

Downloaded 07 Mar 2013 to 128.196.132.173. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



aE! = jD TE [_ (n2 + 3n + 2)cg2pn - 1 + (2n + 4)cg2pn + 1 

aZ Err F n+3 4F n+4 

(n + 1)(2klc - k2c1 - k2c)gpn - 1 cg2pn + 3 

Fn+2 - 16F n+S 

+ (2k1c - k2c1 - k2c)gpn + 1 + (k1c - k2ctl( - kl + k210n -I ] 

4Fn+3 F n+ 1 

XG1G2G3(/J', (52) 

aB ~ __ . oD TE [_ (n2 + 3n + 2)cg2pn - 1 + (2n + 4)c.fpn + 1 

at - 11" F n + 3 4F n + 4 

(n + 1 )(2k1c - k2c 1 - k2C)gpn - 1 _ cg2pn + 3 

F n+2 16Fn+S 

(2k1c - k2CI - k2c)gpn + 1 (k1c - k2cl)( - kl + k210n - 1 ] 

+ 4F n + 3 + F n + 1 

XG 1G2G3tP', (53) 

1 a(pE~) 

p ap 

(54) 

(n 2 + 3n + 2)cgpn cgpn + 4 

F,,+3 16F"+S 

(n + 1)(k1c - k2c11o" ] G G G tP. 
Fn+2 1 2 3 

(55) 

As noted above, the superscript 1 accounts for the 'f/q func­
tions. By comparing alternate expressions in Eqs. (50H55) it 
can be shown that the first half of the field functions satisfy 
Eqs. (42H44). When the conjugation of the 'f/q functions 
defined in Eqs. (9H26) are placed in Eqs. (42H44), a set of 
equations similar to Eqs. (50H55) are obtained except it is 
the conjugate of these equations. When this conjugate set of 
equations are compared it is observed that the 'f/: functions 
also satisfy Eqs. (42H44). Since both 'f/q functions and 'f/: 
functions portions of the fields satisfy Eqs. (42H44), then 
their sum also satisfies the same equations because the Max­
well's equations are linear equations. 

2. Curl magnetic field 

Next the formulation presented in Sec. II B will be 
shown to satify the curl of magnetic fields equation present­
ed in Eqs. (45H47). Before giving this proof it is convenient 
to present two modified forms of the two supplemental con­
ditions given in Eqs. (27) and (28). The first equation is given 
below: 

(56) 
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The above equation can be shown to be true by rearranging 
Eq. (27) then adding kl to both sides. 

The second expression can be derived by a two-line 
proof. The first equation is 

(57) 

it came from using Eq. (27) to eliminate the g term from Eq. 
(28). Next, when Eq. (57) is rearranged, the following is ob­
tained: 

(58) 

This now gives two altered identities of the two supplemental 
conditions which are needed in showing that the curl of the 
magnetic fields is satisfied. 

When the appropriate derivatives of the fields shown in 
Eq. (45H47) are performed on the 'f/q functions defined in 
Eqs. (9H26), the following expressions are found: 
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(59) 

(60) 

(61) 

aD ~ = _ jD TE [n(n2 + 3n + 2)c2Efpn - 1 (4n2 + 14n + 12)c2Efpn + 1 

at c2 pn+3 4pn+4 
+ 2n(n + 1)(k1c - k2c1)Cgpn-l + (5n + 12)c2Efpn + 3 

p,,+2 16pn+5 
2(3n + 4)(k

1
c - k2c1

)cgpn + 1 2c2Efpn + 5 

4pn+3 64pn+6 
4(k1c - k2c1

)cgpn + 3 n(k
1
c-k2c1

fpn - 1 

+ 16pn+4 + pn+ 1 

2(k1c - k2Cd2pn + 1 ] G G G (/J 
4pn+2 1 2 3 , (62) 

~ a(pH~) 
p ap 

= _ D TE [_ n(n + 1 19pn - 2 + (3n + 4)gpn 
pn+2 4pn+3 

n( - kl + k2)pn - 2 2gpn + 2 2( - kl + k2)pn ] 
+ pn+l - 16pn+4 - 4pn+2 

XG1G2G3(/J', (63) 

~aH! = _D TE [_n(n+llgpn-2 + (3n+4lgpn 
p at/J Fn+2 4Fn+3 

n( - kl + k2)pn-2 2gpn+2 2( - kl + k2)pn] 
+ P"+ 1 - 16pn+4 - 4pn+2 

XG1G2G3(/J'· (64) 
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With the help ofthe identities given in Eqs. (56) and (58), by 
comparing alternate equations in the above set it can be 
shown that I/Iq portions of the fields satisfy Eqs. (45H47). 
When the 1/1: portion of the fields are placed into the curl of 
the magnetic fields equations, a conjugate set of Eqs. (59)­
(64) is found, which in turn shows that the 1/1: portion of the 
fields satisfy Eqs. (45H47). Since both portions ofthe fields 
satisfy Eqs. (45H47), then their sum also satisfies the same 
equations because the Maxwell's equations are linear. 

3. Divergence electric field 

To show that the divergence of the electric fields is satis­
fied, Eq. (48) must be shown to be true. When the I/Iq func­
tions of Eqs. (9H26) are placed into the derivatives of Eq. 
(48), it is found 

~ a(pE~) 
p ap 

(65) 

I aE I 

---~ = 
p at/J 

_ DTE [n(n + l)cgp,,-2 
EoC2 F" + 2 

(3n + 4)cgp" + n(k\c - k2c11o" - 2 

4F,,+3 F"+ 1 

+ 2cgp" + 2 2(k1c - k2c1)P" ] G G G <P'. 
16F,,+4 4F,,+2 1 2 3 

(66) 

By comparing Eqs. (65) and (66) it can be shown that the I/Iq 

portions of the electric fields satisfy Eq. (48). The 1/1: por­
tions of electric fields given a set of equations which are Eqs. 
(65) and (66) conjugated. From this set it can be shown that 
1/1: portions of electric fields satisfy Eq. (48). Since the diver­
gence is a linear operator. the sum of the I/Iq portions and 1/1: 
portions wiIl also satisfy Eq. (48). 

4. Divergence magnetic field 

To show that the magnetic fields satisfy the divergence 
equation then Eq. (49) must be shown to be true. With the 
appropriate derivatives of the I/Iq functions in Eqs. (9H26), 
the following are found: 

_ D TE [_ n2(n + 1)gp" - 2 (5n 2 + 12n + 8)gp" 
F"+2 + 4F,,+3 

1 pH~ 
---= 
P ap 

+ n2{-kl+k2lo"-2 (n+2)gp"+2 (n+I)(-kl+k2lo" 
F"+ 1 2F"+4 F,,+2 

4gp" + 4 + 4( - k I + k2lo" + 2 ] G G G <P 
+ 64F"+S 16F,,+3 1 2 3 , 

(67) 

2- aH~ =n2DTE [_ (n+I)gp,,-2 + ~ + (-k\+k2)P"-2]GGG<P 
p at/J F" + 2 4F" + 3 F" + 1 \ 2 3 , 

(68) 

aH; = D TE [_ (2n + 4)gp" + 2 + (n 2 + 3n + 2)gp" + gp" + 4 

aZ 4F" + 4 F" + 3 16F" + S 

+ (- k 1 + k2lo" + 2 (n + 1)( - k \ + k2lo" ] G G G <P. 
4F" + 3 F" + 2 1 2 3 

(69) 

When these above three equations are added together, then 
the 1/1 q portions of the magnetic fields can be shown to satisfy 
Eq. (49). The 1/1: portions of the magnetic fields gives a con­
jugated set ofEqs. (67H 69); therefore, this portion also satis­
fies Eq. (49). Since the divergence operator is a linear opera­
tor, the sum of the I/Iq portions and 1/1: portions will also 
satisfy Eq. (49). 

B. Three-region extensions to original FWM 
formulations 

Since the original FWM energy integrals are infinite, a 
method is needed to formulate the solutions into fixed-shape 
pulses with finite energy integrals. One method to do this is 
by writing the original FWM formulations as a three-region 
problem. This is accomplished by allowing two infinitely ex­
tended surfaces of discontinuities to propagate at light veloc­
ity along the z axis. The two surfaces of discontinuities are 
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I 
perpendicular to the z axis. The three-region extensions' 
fields will be zero in front of the first moving surface, the 
original FWM formulations between the two moving sur­
faces. and zero behind the second moving surfaces. Since the 
surfaces of discontinuities are moving with the same velocity 
as the original FWM formulations, these three-region exten­
sions will have fixed pulse shapes as they propagate. The 
three-region extensions represent three-dimensional, non­
dispersive, finite energy pulses which satisfy Maxwell's ho­
mogeneous equations. This section will discuss the three­
region extensions' energy integrals along with the stability 
for the surfaces of discontinuities. 

The energy integrals, Eq. (8), for the three-region exten­
sions will now be shown to be finite. These integrations will 
be demonstrated on the Hz fields; other terms require similar 
integrations. The integral which must be shown to be finite is 

f: 00 Loo 

f1T (Hz )2pdt/Jdpd (z - ct ), (70) 
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where the integration is over the space shown in Fig. 1. From 
Eqs. (13), (15), and (20) the Hz functions can be written as 

Hz = (K + K "') {sin(ntP I}, 
cos(ntP ) (71) 

where 

(72) 

where hI and h2 are complex constants. The square of Hz 
gives 

H; = (K 2 + 2KK'" + K "'2) {Sin
2

(ntP )}. 
cos2(ntP ) 

(73) 

The various combinations of K terms and K '" terms needed 
in the above equations can be found by squaring Eq. (72) and 
its conjugate and multiplying it by its conjugate. Since each 
of the terms in Eq. (73) is shown to have finite energy by 
similar methods, then only one term needs to be present 
here. The second term in Eq. (73) is 

KK*= [ 
Ih112p2n+4 bl b;p2n+2 

F n+3(F"'t+ 3 + F n+3(F"'t+ 2 

+ 12 2 GG-
h -h p2n + 2 I h 2 I p2n ] 

(F*r+3Fn+2 + Fn+2(F*)n+2 1 I' 

(74) 

Looking at the above equation, note that the function is a 
summation of four terms each having a similar structure. 
Since the terms in the series have a similarity, only one term 
of the KK '" term need to be integrated. 

For the sake of demonstration, the first term in Eq. (74) 
will be used to show that it has finite energy. When the first 
term in Eq. (74) is substituted into the integral in Eq. (70) it 
gives 

fb foo f2lT \b] \2p2n + 4 ex _ [p2 (F + F*)) 
-bJO Jo Fn+3(F*)n+3 p 4 FF'" 

{ 
sin2(ntP )} 

X cos2(ntP) pdtPdpd (z - ct ). (75) 

The term, h, used in the above limits of integration accounts 
for the fact that the present study is for the three-region 
extensions which are set to zero at some point in front and 
behind the pulse. From Eqs. (187) and (202) in Burington,6 it 
is observed that the tP integrals can be integrated in closed 
form to give: 

fb (00 p(2n+41+] [ 2 (F F*)] 
1Tlh 11

2 
-bJo Fn+3(F"')n+3 exp-: ~'" 

X dpd (z - ct ). (76) 

In comparing Eqs. (76) to (75), note that brace term, which is 
part of the <P-function definition, is no longer needed here 
because it has been integrated. This is another way of saying 
that the equality between Eqs. (75) and (76) is the same for 
both sinusoids in <P functions. 

To perform thep integration, Burington6 must again be 
consulted. By using a change of variable on Eq. (380) in Bur­
ington6 it is found 
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(A. )2p'+ le-aA'dA. = ~. L"" 'f 

o aP + I 
(77) 

When Eq. (77) is used in Eq. (76) it is observed that Eq. (76) is 
equal to 

1Tlhd2(4)n + 3 (n + 2)! fb ( 1 )n + 3 d (z - ct). (78) 
-b F+F* 

When the definition ofF in Eq. (21) is used it is observed that 
F plus its conjugate is a constant; therefore, the above inte­
gral is finite. By using a similar method each term in Eq. (73) 
(73) can be shown to have a finite integral for the three region 
extensions to the FWM. A similar method can also be used 
to show that the energy integrals for all fields are finite for 
the three-region extensions to the FWM formulations. 

The surfaces of discontinuities are important to guaran­
tee that the total pulse shapes in the three-region extensions 
propagates unaltered. The stability for the surfaces of dis­
continuities in Maxwell's equations used here is assured by 
the work of Kline and Kay.4 Their work investigates how 
hypersurfaces of discontinuities propagate in Maxwell's 
equations. In this work they found that discontinuities 
across the hypersurface, defined by4 

L ( x,y,z,t ) = 0, (79) 

must satisfy the four reSUlting differential equations: 

VL XH d - .b... D d =0, (80) 
c 

VL XEd + .b... B d =0, (81) 
c 

VL- (4~ D~) = 0, (82) 

VL-(B d)= 0, (83) 

on the hypersurface defined in Eq. (79). The above form 
equations are the source-free representations ofEq. (1.60) in 
this book.4 The superscript, d, on the various fields compon­
ents represents their functions' discontinuities across the hy­
persurface while the subscript, t, denotes the time derivative 
of those particular functions. In order to demonstrate the 
stability of the three-region extensions to the FWM, one 
needs a presentation of a moving function which satisfies Eq. 
(79) along two moving surfaces which are perpendicular to 
the z axis. This function also must satisfy Eqs. (80)-(83) on 
the hypersurfaces. For our purpose, the function 

[ 
- 1 ) L -ex 

- p (z - ct )2 _ h 2 
(84) 

will work. Note that it is zero along the two planes 
(z - ct ) = hand (z - ct ) = - h, and the gradient and time 
derivatives are zero along the same two planes. Therefore, 
the function satisfies Eqs. (79)-(83) along these two planes 
which move at light velocity along the z axis. These unique 
features of Eq. (84) allow the two surfaces of discontinuities 
to move in stable unison with the original FWM formula­
tions. 

These three-region extensions to the FWM formula­
tions gives three-dimensional, finite energy, nondispersive 
pulses which propagate at light velocity. The fields are zero 
in front of the first moving surface, and the original FWM 
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formulations between the two surfaces, and zero behind the 
second moving surface. The fields are continuous every­
where except along the two moving surfaces of discontinui­
ties. To get the energy integrals finite, these modifications 
had to accept two surfaces of discontinuities. The severity of 
these limitations will only be known from future applica­
tions of these functions. 

V. CONCLUSIONS 

The original FWM formulations presented in Sec. II B 
have been shown to be real valued, three-dimensional, TE 
mode pulse solutions to the free-space, homogeneous Max­
well's equations when the parameters g, k l , k 2, S, and C1 are 
positive real constants, 0 < C I < c, and satisfy two supple­
mental equations. These functions are continuous and free of 
singularities when n = 0,1,2,3,4, .... They also move in a 
straight line at light velocity and do not disperse as they 
propagate. This means that the packet functions remain fo­
cused for all time. The pulses are composed of three parts: 
one part is a three-dimensional pulse moving at light veloc­
ity, the second part is a sinusoidal plane wave moving at a 
velocity less than light velocity, and the third is a sinusoidal 
function in the angular variable around the propagation axis. 
The original FWM far fields away from the moving pulse 
centers are similar in magnitude to the far fields of a station­
ary current dipole; therefore, it has infinite energy associated 
with the pulses. The original FWM formulations have been 
shown to satisfy the first five items listed in the introduction 
which describe unique electromagnetic pulses. 

To obtain a formulation which satisfies all six items 
listed in the introduction, the original FWM formulations' 
leading and trailing edges were turned off by using two 
planes of discontinuity with the pulses. These are called 
three-region extensions to the original FWM formulations. 
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They represent three-dimensional, nondispersive electro­
magnetic pulses with finite energy. Even though the planes 
of discontinuity are not presently propagatable from state­
of-the-art antenna systems, they are unique, focused, classi­
cal electromagnetic pulses. 
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