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SECTION OF PHYSICAL SCIENCES

THE LOGIC OF QUANTUM PHYSICS *
David Finkelstein

Belfer Graduate School of Science,
Yeshiva University, New York, N.Y.

The logical structure of quantum mechanics is so different from
that of earlier physical theories that there are to this day phys-
jcists who believe the present day quantum mechanics cannot be
cortect, on the grounds that it creates an artifical division between
the microcosm, wherte new forms of laws are required, and the
macrocosm, where classical logical forms are known to be satis-
factory. It is bad enough to have to speak of electron diffraction,
to be compelled to speak of the diffraction of elephants seems
unbearable; yet quantum mechanics in its present form leads to the
use of wave-functions even for elephants, and it is easy to devise
a simple experiment that splits the wave-function of an elephant
into two packets separated by any number of miles. (One lures the
elephant into a freight train controlled by a device which responds
to the result of a one-electron diffraction experiment. The exact
arrangement of photomultipliers, peanuts, etc. is left to the reader.)
Yet we only believe in that packet which moves with the elephant,
whichever indeterminate way the creature is finally transported.
Since Schroedinget’s equation (or its like) will never cause the
ghostly second elephant-packet to disappear, there must be some-
thing besides Schroedinger’s equation active in nature, the argu-
ment goes; for example, nonlinear corrections that are impotrtant
for elephants but not for electrons. This is called the problem of
the collapsing wave-function.

Since I think the difficulties of this problem have already been
well worked out, this paper is expository — putting the main points
of the argument out for all to see again - and formal — setting up
a useful and suggestive mathematical scheme for the quantum logic.

The Class Calculus

It seems that we understand the actual by contrast with the

* This paper was presented at a meeting of the Section on March 20, 1963.
Work supported by the National Science Foundation and the Young Men’s Phil-

enthropic L eague.

The Division o‘t"l"l,P"sychology held a meeting on March 18, 1963, at which
Richard S. Barrett (New York University, and The Re search Center for Industrial
Behavior, New York, N.Y.) presented a paper, ‘““Problems of Agreerent.’’” This
paper will not be published by the Academy.
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virtual or possible. By the time we come to asking the properties
of an actual, individual, system, we have set up a glossary of the
properties that it might have, on the basis of our total experience
with the world. Thus in classical mechanics we do not consider
one system by itself, we imbed it as a point in a phase space of
‘“‘all possible’’ states of the system, even though perhaps only one
of these points is ultimately to be regarded as actual. It is an
expression of the Laplacian world picture that all questions about
properties of the world — whether a rose is red, or a violet is blue,
sugar is sweet or so are you — correspond to subsets or classes
A, B, C, D,... in such a space. We suppose that each class we
consider corresponds to a possible experimental test, which would
pass only specimens belonging to that class. This test can also
be used to prepare members of the class. Diagrammatically we can
represent the test associated with class A by a flow diagram:

A? yes

o—
%

FIGURE 1,

showing an input stream of subjects, some failing and some pass-
ing. This is our provisional substitute for Venn diagrams, which
depict a class as a region of a plane:

FIGURE 2.

Venn diagrams take too much for granted, flow diagrams too little.
A better scheme will be used later. We are now going to consider
relations among such classes, setting up a calculus of classes.

We are in a delicate position, using logic to study the need for
changing logic. We suppose at first that for macroscopic systems
the classical laws are valid, and work as much as possible with
such systems. '

Thus, we take as our basic telation among classes, inclusion,

E
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’;(A C B), a relation which is understood to be testable by the

ollowing macroscopic scheme:

>
o

B
o—

L »

ACB
FIGURE 3.
Here X is any source of subjects, all of whose output is verified

to pass A; then A is replaced by B. If for all such X, B also

passes the entire output, we say A C B. . - .

We suppose a kind of physical induction to be valid: once ;(
has been found that a large sample of the output of the sourcte t
passes the test A, we expect yet untested members of the outpu

to pass A. We have
A C A. (1)
We verify that
if AC Band B C Athen A=B (2)

is a consistent identification, and that

if AC Band B C Cthen A C C. (3)

We designate the trivial test by It
I
® L
FIGURE 4.

and the impossible test by O:

o)
o —>Q

FIGURE 5.

That is, we suppose the existence of classes O, I such that for all

classes A, we have
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0OC AC, @)

We. can now use the inclusion relation C to set up two binary
o.perafzons on classes, also having observational meaning. We de-
fine first the meet of A and B:

A N B=C means a.CC A, CCB

b.ifDCAandDCBthenDCC.

Thus,. part a. of the definition of the relation A N B = C is checked
experimentally by two schemes like the following:

X C

a. CCA,ccB
FIGURE 6.
We leave the construction for part b. as an exercise. Notice that
we do not give an experimental test for A 1 B itself. We do not
for example, show how to test A | B when test A and B are known,
This is because in some cases the two obvious schemes '

Hii\

—

FIGURE 7.

are not tests at all (do not have the property of reproducibility) and
moreover are different in their outputs. We do not guarantee the

P X
¢ * - o8
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xistence of a C = A N B yet. But we have given an experimental
jeaning to the relation A N B = C. Moreover if C exists it is

vidently unique.
The same ideas are involved in the join A U B, for which we

efine:

A U B means a.Ac CandB c C
b. A c Dand B ¢ D then C < D.

Briefly A N B is the g.1.b., A U B the l.u.b. of A and B.

We now can state another law of nature accepted in classical

- and quantum physics alike:

A U B, AN Balways exist. (5)

It is evident that AU A=A NA=A,andthat ANBCACAUB.
For technical reasons we will limit ourselves to classes of a

finite nature expressed by the assumption that:
There exists an integer |A| associated with each class A,

called the measure of A, such that if A C B and A # B then |A[ <|B],
and always
|Al + |B| =AU B} + 1A N B|. (6)

Without loss of generality, we may take 0 and 1 as the least and
next-least values of this measure. In classical physics |A| would
designate the number of elements of the class A.

Classical and quantum physics agree also in supporting the
existence of an operation of taking the complement A of a class A,
with the following properties:

IfA=B,thenB=A,ANB=0,andAUB=1.
If A C B then B < A. (&)

The complement must be regarded as an additional element of
structure, for the complement operation is not uniquely defined by
the above properties. It corresponds to the following diagram:

A

I

A
8.

FIGURE
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Now let us indicate some of the possibilities admitted by prin-
ciples (1-7). In the following diagrams, each point represents a
class. The relation A c B exists when there is an ascending path
from A to B. The complement operation in each case is effected
by reflecting the diagram in the central point X. Under each di-
agram we give |I| and on the vertical scale the value of the measure
|A| for each class A.

;—»

3
2 ./I\. ° a
. s < >
0 X * ¥ " ¥ v
m= 0 1 2 3 .. 21 22
FIGURE 9.

The diagrams labelled |I| = 0, 1, 2, 3 are respectively just the
2" subclasses of a universe (or phase space) of n=0, 1, 2, 3
points respectively. (Their diagrams are just perspectives of the
n-dimensional cell, we notice: the line, square, and cube are
represented.) These correspond to ‘‘Boolean Algebra,”’ the class-
ical calculus of classes. What do we make of 2!? The difference
between 2 and 2! is the difference between the classical and
quantum calculus of classes. In the classical cases the following
distributive law is obeyed:

ANBUC=(ANBYU(ANOC), (8)

but in the case of the lattice 2! there is no such law. Instead in
2! any pair A, B of the four classes of measure unity are com-
plementary, meaning that

A<£(ANB)U (ANB).

This is sometimes confused with a breakdown of the fertium
non datur, AU A = I, of (7).

The concept of complementarity is so crucial that we shall go
into it at greater length before proceeding further.

The Meaning of the Wave Function

In each of the diagrams in the preceeding figure is embodied a
calculus of classes. It is now useful to consider relations between
these diagrams, setting up, at least in rudimentary form, a calculus
of calculi — or diagram calculus. Inspection shows that each
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of the diagrams (0, 1, 2, 3, 4,...) is a rendering on the plane of a
cell of n-dimensions: point, line, square, cube, tesseract, etc.
Each cell in this sequence can be built up systematically from the
preceeding one by duplicating and connecting; this is an example
of the basic operation of our diagram calculus, which would be
written

crtl=ct+Cn.

In general one defines the sum of two of our diagrams L,, L, as a

new diagram
L=L +L,

whose classes A, are all the ordered pairs (A,, A,), of classes A,
from L,, A, from L,; whose inclusion

A C B means A1 C A2 and Bl c BZ’

so that N and U, 0 and 1 are defined for L; and whose complement
is
A= (A1' A)=(A, L) ndg,, ay.

The sum L =L, + L, is the class calculus of an individual with
two exclusive alternatives: to belong to the universe of discourse
of L, or to belong to the universe of discourse of L,. This diagram
addition is a commutative process that can be used to make com-
plicated class calculuses out of simpler ones.

It is evidently a great simplification to consider only coherent
diagrams, those which are not expressible as sums except by
L =L +O. For example this cuts off the infinite sequence of
Boolean diagrams 0, 1, 2, etc., at the second term. But the diagram
marked 2! in our diagram is coherent, and survives. A simple way
to check coherence is as follows: for every class A and B of meas-
ure 1 there exists a class C of measure 1 such that

AUB=BUC=CUA.

This is a necessaty and sufficient condition for coherence, and
inspection shows it to be satisfied for the diagrams labeled 0, 1,
2t. But in every case but 0, 1 this condition is in strong conflict
with classical intuition. If A ¢ B then A U B has measure 2 — it
should contain only two individuals. Whence C? C is of the kind
known in quantum mechanics as a (coherent) superposition of A
and B: present in A U B yet distinct from A and from B.
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This relation among A, B, C provides the simplest instance of
complementary classes. Let B be chosen to belong to A (excluding
thereby the too little diagrams 0, 1). Then we have

cna=o,
and CNA=o0,
but CNMUA=C#(CNAU(CNA,

verifying the condition we have called complementarity between A
and C.

The specimen 2! is too puny for quantum mechanics, even as a
term in a large sum. The physical world never has the alternative,
“it seems reasonable to suppose, of existing in a universe of dis-
course of measure 2. A remarkable thing happens when we move to
coherent diagrams with |I| > 2, however. The classes in such a
class calculus are realizable exactly as the totality of subspaces
of a vector space uniquely determined by the class calculus or
diagram. The vector space is constructed by choosing a number
system (numbers a, B,... with a sum « + B, a product af3, an
inverse a! and a conjugation @), which we will take to be the
complex numbers, and by taking sequences q = (ay;- .., a,)to be vec-
tors of the space. For discussing the process of complement A we
need the ‘‘scalar product’ a*h = % Eibi, for A is defined to be the
totality of vectors b that are perpendicular to A in the sense that
a*b = 0 for all a in A. The dimension is n = |I

Thus, we are very close to quantum mechanics in the usual
formulation. The wave-functions or state vectors of quantum me-
chanics correspond to subspaces of dimension equal to 1 in this
vector space, and to classes of measure 1 in the calculus of
classes represented by the vector space.

We can recognize complementary classes A, B as subspaces
A, B that are not ‘‘square” to each other, in that the projection
upon one subspace B of some vector a in the other subspace 4 is
neither a nor 0.

The process of projecting a vector upon a subspace 4 is so
useful in discussing the subspace that we designate it by the
same letter: Ax represents the projection of the vector x onA. Ax
defines a linear operator A, which can be used to represent the
class A just as well as the subspace A4, the correspondences
between classes, subspaces, and projection operators being one-
to-one.

Now we are deprived of the graphic representation of our cal-
culus of classes that was used in FicurE 9. There are nonde-
numerably infinite classes of measure 1 even in the example of a

LI INIXVWY XURND AUALILIVL L UL DULLING L) Vo

universe of discourse measure of two, because there are so m?ny
different vectors (a, @) in two dimensions. But we have something
petter to take its place: the vector diagram. Thu_s- a quantu.m sys'tem
with just two mutually exclusive unit states A, A can be visualized
in a vector diagram of the following kind:
A —
BCAUA
BNA=BNA=0
A

FIGURE 10.

The trivial class I is the whole plane; the impossible class 0 is
the origin; and most of the unit classe‘s, like B, are complementary
to A, being superpositions of A and A. It would be more accurate
if we drew two complex dimensions instead of two real one§; but
the main features of quantum logic are already represented in the
simpler diagram. L

It is possible to say that this quantum class calculus is me‘re—
1y”’ a calculus of tests, not really of classes; and that t'h~ere exist
classes not yet associated with tests but obeying fam11¥a.r laws.
This position is akin to the position that general relativity, for
example, is ‘“‘merely’’ a theory of lightrays, etc., nf)t really of
straight lines; and that there exist in space straight lines not ye-t
accessible to measurement but obeying classical law s.- Such p.OSI-
tions are in principle not disprovable, it seems; which is a serious
short-coming in a supposedly physical hypothesis.-Moreover they
appear quite arbitrary and prejudiced in their selection of the laws

that the unobserved elements are to obey.

Probability

There has been no mention of probability. We concerned our-
selves with yes-or-no judgments entirely. This seems necessary.
A statement of probability of the usual kind for a single system

P =y
presumably implies a statement of virtual certainty. about the
number of occurances in an ensemble of very many replicas of the
individual, according to the frequency interpretation. But a state-
ment of virtual certainty had better agree with one o.f tl'.le yesf—or-no
propositions we have formulated, according to a ptinciple of con-

tinuity.
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In other words, the ““expectation value formula’® js very neatrly
a consequence of the ‘“eigenvalue principle”, rather than an in-
dependent assumption as often presented, Leaving the logical
sequence of development for a moment, we can express this as an
elem entary theorem,

For an individual system S, let x be a self-adjoint observable,
Y any nomalized state-vector in its domain. Then consider an
ensemble of replicas § seeey Syoall in the corresponding states
Yoo, Y, so that

Y=y x.. Xy
is the state of the ensemble. Let
X = (xl oo 4%, ) /N

be the observable representing the mean value of x. Then there
exists a unique number & such that

Nlim XY - 0] = tim A = 0
namely &= y*xy.
That is, even if the individual ¥ is far from an eigenstate of
the individual x, the ensemble ¥ is nearly an eigenstate of the

mean X, as measured by the error A,
The proof is a straighforward calculation:

A= ew 2= Bty - 82 Lyvery - gy,

Since the first bracket must vanish if A=y, ¢ must have the
asserted value; and then the second bracket gives

A~ Ax/\/IV,

which approaches 0.)

mechanics jg incorrect for Systems that have no known replicas
but are unique, e.g. cosmological theories. In the absence of en-
sembles it is difficult to understand what js meant by probabilities
other than 0 or 1. Therefore it is pleasing that it is possible to
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found quantum mechanics exclusively with yes-or-no, 0 or 1 prob-
ability, principles, and derive the intermediate probabilitjes at
least as well as in classical statistical mechanics,

But of course we cannot maintain the appearance of empiricism
— as when we formulated our class calculus of testg _ in speaking
of intrinsically unique systems, e.g. the whole universe, The
relations between classes were empirically defined in terms of reayt
ensembles provided by various kinds of sources, generators,
populations. In going to unique systems we give this up and dea]
with virtual ensembles, theoretical constructs. But thijg is evident-
ly a common feature of the logic of classical ang quantum physicg
and will not be discussed further here.

The Propositional Calcy lus

Now we wish to set up a model quantum mechanical Proposi-
tional calculus of the most elementary kind: no quantifiers, just 5
sufficiently long but finite list of individuals a,b,c, etc. These
individuals are the stuff on which the “‘tests’ of pay I were
carried out — they are instances of observations, of either one
system or an actual ensemble. The calculus must cope with pro-
positions that express a result of observation on the individuals,
such as acA, and propositions that €Xpress a relation between the
classes, A,B,C,... such as A C B; and we must make from these
new propositions that can be confronted with experience. Since the
propositional calculus is to formalize the actual way that quantum
physicists proceed, and quantum physicists believe they use the
classical laws of thought (when they consider the matter at all) jt
seems that the propositional calculus wil] not have the paradoxical
structure that the class calculus has. On the other hand, quantum
physicists have learned that there are some seemingly well-posed
questions that theory cannot answer, but only observation. The
simplest case is one in which we observe aeA, know that AN B = o,
and inquire whether a¢B. Classically, AN B = 0 would imply that
A C B, and we would infer ~(aeB). Quantum clasg calculus permits
AN B =0 without A © B when A and B are complementary, and
the quantum physicist in that case does not seek a yes-or-no the-
oretical prediction about aeB. So we could expect the non-distribut-
ivity of the calculus of classes to become an incompleteness of
the calculus of propositions.

If P,OQ,R,... are propositions, we write, as usual,

P~0,PAQ,PVYQ

for compound propositions P implies Q*’, ““P and 0, “P or Q%
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1

and

~P
I~

for the negation of P.

We suppose given the ‘‘table’’ of the relations A C B and the
operation ~ A, and a list of the individuals a,b, etc. Every true
relation A < B among classes leads to a variety of true proposi-

THE NEW YORK ACADEMY OF SCIENCES
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tions, namely we suppose

A c B —[(asA —»aeB) A
(beA —=beB) AL . .].

Similarly

A =B—[ (aeA —[ (acA—~ acB) A etc.]

wh ere — stands for mutual implication: P—Q means P -Q A Q —P.

We suppose
(aceA N A C B) - (aeB)
The main question is about propositions like the following:

acA N acB «—ae AN B?
acA V aeB+——ac A U B?

Before deciding, let us consider a simple example, a system of
spin 1/2. Here, we briefly take for granted the way to describe
composite systems by multiplying wave vectors and the theory of
the evolution of systems in time exptessed by a unitary trans-
formation obeying Schroedinger’s equation. Let the classes (sub-
spaces, projections) belonging to 0z = *+ 1 be designated by |T| and
|1| respectively; similarly for ox = * 1 and ||, |~|. We can intro-
duce corresponding state vectors |1>, etc. so that

Jtl=1I><t], i =...
and also, because the spin is 1/2,
V2 s> = >+ i,

These vectors are shown in this figure:

e >

FIGURE 11,
First let 0z be measured (Stern-Gerlach) and found to be + 1/2:

ae |1].

Now let a measuring apparatus, initially in the class 1A0| = ]A0> <A0{,
be coupled to the spin so as to measure oy. This requires a Hamil-
tonian that would cause the evolution of state vectors
[A> 1 => = |A> >

[Ag> [=> ~]A> >,

where |A1> is the measuring apparatus recording the result o= *+1,
to take place during the measurement. Therefore the second meas-

urement produces the evolution

[a,> 1> = [A> (|»> + |=>) A2
> (A P>+ JAS =) V2= | 1>

Suppose the actual result of the second measurement to be that
associated with |A,> |»> = |2>. Then we have simultaneously

ae {1]
as a result of the first measurement and
ac |2]
from the second measurement. But it is well known that in this case
10|21 =0,

expressing only the fact that the vectors |1> and |2> cannot be
exactly parallel. If we keep the above questioned rules then we
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would infer ~(xe[1] A xe|2]). If we keep the classical rules of the
propositional calculus this would in turn imply xe|1] » ~xe|2],
which seems to flatly contradict experience. There are several
choices. We shall not suppose that the outcome |2] of the measure-
ment is indeed compatable with ~xe2 — this would be to destroy
the bridge between the theory and reality. I think the usual practice
amounts to keeping the classical propositional calculus, in which
~P ANQ) » (P>~ 0Q)and dropping the questioned correspondence
between the class calculus and the propositional calculus. One
declares that the disjunction

x€A V xeA

(e.g. the election spin is up or it is down) is actually meaningless
unless an observation is made on the election spin; then it is true.
I call this the minimal form of the quantum propositional calculus:
It dispenses with the above form of the law of the excluded middle,
. and thereby avoids violations of the distributive law, whose var-
ious terms are often regarded as meaningless instead. With the
remaining rules of the propositional calculus it does not seem that
contradictions with practice or nature will arise. But one is de-
ptived of the means to deduce many reasonable and harmless
assertions about the system being considered, such as

acA V ack; ~ (acA N ach).

Neither these nor their negations seem accessible with the enu-
merated rules. This seems to be one way in which those anomalous
situations in the quantum class calculus where AN B =0 without
A C ~ B, influence the calculus of propositions,

Instead we shall accept the questioned rules, so that the pro-
positional calculus faithfully follows the class calculus. But we
insist that the interpretation — the comparison with reality — be
made exclusively through the scheme

P
P>0
0
where the first two lines represent data, either from an observation
or from theory — based on general experience — and Q represents

a prediction of the theory. From this interpretive scheme we can
indeed develop others such as
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p PAQ
PVO P

but not the forbidden ones

P P P
~(PAQ) ~PVOQ 0
~0 0 PAG

in cases where the nondistributivity is important. Thus, our form
of quantum logic, which we call maximal in contrast, consists of
the quantum class calculus outlined already; a quantum proposi-
tional calculus that parallels it faithfully, with the usual strict
correspondence between the two; additional laws to express the
validity of the classical distributive propositional calculus for
macroscopic propositions like A C B, as opposed to microscopic
ones like aeA; and the familiar rule of deduction: Modus ponens,

the scheme

FP& P> Q= |-C

(if the propositions P and P » Q are deduced, then deduce O).
Many other deduction schemes, such as

FP& Q0= |PAQ

are legitimizable from these. But the distinction between these
rules for deducing general propositions, and the preceding schemes
for interpreting them, must be retained: As observed instance of
xA and also of xeB is simply not an instance of xeA » B, in
general. This is alteady implicit in the earlier flow diagram dis-
cussion.

Non-Disturbing Observations

Know thyself, the maxim says; and I think some physical sys-
tems obey the maxim. This creates some embarrassment for the
minimal form of the quantum propositional calculus. The notion
that there ate two distinct modes of evolution of a physical system
— one dynamical given by Schroedinger’s equation, the other sta-
tistical given by the outcomes of measurements — is tolerable
when used for open systems. For such systems the act of measure-
ment is an extemal disturbance, a breaking of the internal law.
But when we come to self-knowing systems — I am one, I think you
are another — this is not so. When I take note of my surroundings
I only obey the dynamical laws apptopriate to the admittedly com-
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plicated system of surroundings and myself. The attempt to excuse
a supposed breakdown of the dynamical laws in the case of such
self-knowing systems leads some to assume a rather unphysical
infinite regression of observers within observers: I watch my
surroundings, my nervous system watches my retina, my brain
watches my optic nerve,.... It is supposed that this sequence can
be indefinitely extended, to smaller and smaller volumes of the
brain, but never stopped. ‘‘That this boundary can be pushed
atbitrarily deeply into the interior of the body of the actual ob-
server is the content of the principle of the psycho-physical pat-
allelism — but this does not change the fact that in each method
of description the boundary must be put somewhere, if the method
is not to proceed vacuously, i.e., if a comparison with experiment
is to be possible. Indeed experience only makes statements of this
type: an observer has made a certain (subjective) observation; and
never any like this: A physical quantity has a certain value.”
(von Neumann, p. 420) This seems at least unnecessary. It is much
more natural to me to suppose that my knowledge is not something
gleaned from obsetrvations of (= interactions with) my brain but is
actually identified with a state of my brain as a physical system.
For example in an electron diffraction experiment that ‘‘splits my
wave -function into two packets’, I am not violating but obeying
the dynamical laws that ordinarily govern me, my apparatus, and
the electron; and yet our wave-function is ‘‘reduced’’, i.e. I can
use the observed outcome of the experiment to eleminate one of our
two wave-packets in computing our future. Therefore, it seems
preferable not to regard the state-vector or wave-function as a
physical attribute of an individual system. Indeed in the inter-
pretation put forward here, it is as unphysical to suppose an
individual system ‘‘has’ a wave-function, that undergoes various
evolutions and catastrophes, as to suppose in classical mechanics
that an individual system is accompanied in phase space by a
class (set) that mysteriously waxes and waves without information
about the system. The glossary of admissible physical questions
about an individual system may permit one to ask for the energy,
momentum, and perhaps even for the position; never for the wave
function, which merely expresses the outcomes of other, admissible,
questions.

Thus, it is preferable, though I cannot assert that it is nec-
essary, to suppose that the truth of such propositions as the law
of the excluded middle, in the form xeA V xeA here, does not wait
on an observation of the system but is independent of circum-
stances. This however is only possible with a nonclassical quantum
logic, for example the one we have described here.

and von Neumann
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