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The unification of quantum mechanics and general relativity remains the primary goal of
theoretical physics, with string theory appearing as the only plausible unifying scheme.
In the present work, in a search of the conceptual foundations of string theory, we
analyze the relational logic developed by C. S. Peirce in the late 19th century. The
Peircean logic has the mathematical structure of a category with the relation Rij among
two individual terms Si and Sj , serving as an arrow (or morphism). We introduce a
realization of the corresponding categorical algebra of compositions, which naturally
gives rise to the fundamental quantum laws, thus indicating category theory as the
foundation of quantum mechanics. The same relational algebra generates a number
of group structures, among them W∞. The group W∞ is embodied and realized by
the matrix models, themselves closely linked with string theory. It is suggested that
relational logic and in general category theory may provide a new paradigm, within
which to develop modern physical theories.
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The raison d’ être of physics is to understand the wonderful variety of nature
in a unified way. A glance at the history of physics is revealing: the unification of
terrestrial and celestial mechanics by Newton in the 17th century; of optics with the
theories of electricity and magnetism by Maxwell in the 19th century; of space–time
geometry and the theory of gravitation by Einstein in the years 1905 to 1916; and of
thermodynamics and atomic physics through the advent of quantum mechanics in
the 1920’s.1 The next leap in this on-going process is the unification of the two pillars
of modern physics: quantum mechanics and general relativity. String theory, in this
respect, appears as the most promising example of a candidate unified theory.2

Strings emerged in the study of strong interactions, modeling the flux tubes
between quark–antiquark pairs in hadronic collisions, in the Regge limit, nicely
described by the Veneziano amplitude,3 which can be reproduced from a relativistic
string theory.4 In a similar vein, the hadronic structure functions in the small
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x Bjorken limit are most conveniently described via colored dipoles.5 A precise
and profound analysis of a string dual of QCD has been provided by ’t Hooft.6

’t Hooft considered a generalization of QCD by replacing the gauge group SU(3)
by SU(N). The limit N → ∞ with λ ≡ g2

YMN kept fixed, leads to a topological
expansion. The leading order (in 1/N) Feynmann diagrams can be drawn on a
planar surface and higher-order diagrams on surfaces of higher genus. In a most
interesting development an holographic analogy7,8 has been established between
matter or open strings on a D-brane and gravity or closed strings in the bulk.9 We
realize that string theory is a tantalizing rich theory, since on one hand is connected
to the dynamics of the space–time continuum, and on the other hand the discrete
modes of string vibrations represent the totality of elementary particles.

Every single physical theory is corroborated or disproved by experiment. The
early hope of making direct contact between experiment and string theory has
long since dissipated, and there is as yet no experimental program for finding even
indirect manifestations of underlying string degrees of freedom in nature.10 Par-
ticle/string theorists under these conditions focused their attention in searching
for the internal coherence and the physical principles governing string theory. This
search is of paramount importance. While in developing general relativity Einstein
was guided by the principle of equivalence, we are lacking a foundational principle
for either string theory or quantum mechanics.1,11 In the present work we suggest
that a form of logic, relational logic developed by C. S. Peirce in the second half
of the 19th century, may serve as the conceptual foundation of quantum mechanics
and string theory.

Peirce, a most original mind, made important contributions in science, phi-
losophy, semiotics and notably in logic, where he invented and elaborated novel
system of logical syntax and fundamental logical concepts. The starting point is the
binary relation SiRSj between the two “individual terms” (subjects) Sj and Si. In a
short hand notation we represent this relation by Rij . Relations may be composed:
whenever we have relations of the form Rij , Rjl, a third transitive relation Ril

emerges following the rule:12,13

RijRkl = δjkRil . (1)

In ordinary logic the individual subject is the starting point and it is defined as
a member of a set. Peirce, in an original move, considered the individual as the
aggregate of all its relations

Si =
∑

j

Rij . (2)

It is easy to verify that the individual Si thus defined is an eigenstate of the Rii

relation

RiiSi = Si . (3)

The relations Rii are idempotent

R2
ii = Rii (4)
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and they span the identity ∑
i

Rii = 1 . (5)

The Peircean logical structure bears great resemblance to category theory, a remark-
ably rich branch of mathematics developed by Eilenberg and Maclane in 1945.14

In categories the concept of transformation (transition, map, morphism or arrow)
enjoys an autonomous, primary and irreducible role. A category15 consists of objects
A, B, C, . . . and arrows (morphisms) f , g, h, . . . . Each arrow f is assigned an object
A as domain and an object B as codomain, indicated by writing f : A → B. If g

is an arrow g : B → C with domain B, the codomain of f , then f and g can be
“composed” to give an arrow gof : A → C. The composition obeys the associative
law ho(gof) = (hog)of . For each object A there is an arrow 1A : A → A called the
identity arrow of A. The analogy with the relational logic of Peirce is evident, Rij

stands as an arrow, the composition rule is manifested in Eq. (1) and the identity
arrow for A ≡ Si is Rii. There is an important literature on possible ways the
category notions can be applied to physics; specifically to quantizing space–time,16

attaching a formal language to a physical system,17 studying topological quantum
field theories.18,19

Rij may receive multiple interpretations: as a transition from the j state to the
i state, as a measurement process that rejects all impinging systems except those in
the state j and permits only systems in the state i to emerge from the apparatus, as
a transformation replacing the j state by the i state. We proceed to a representation
of Rij

Rij = |ri〉〈rj | , (6)

where state 〈ri| is the dual of the state |ri〉 and they obey the orthonormal condition

〈ri|rj〉 = δij . (7)

It is immediately seen that our representation satisfies the composition rule Eq. (1).
The completeness, Eq. (5), takes the form

∑
n

|ri〉〈ri| = 1 . (8)

All relations remain satisfied if we replace the state |ri〉 by |�i〉, where

|�i〉 =
1√
N

∑
n

|ri〉〈rn| (9)

with N the number of states. Thus we verify Peirce’s suggestion, Eq. (2), and the
state |ri〉 is derived as the sum of all its interactions with the other states. Rij acts
as a projection, transferring from one r state to another r state

Rij |rk〉 = δjk|ri〉 . (10)
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We may think also of another property characterizing our states and define a cor-
responding operator

Qij = |qi〉〈qj | (11)

with

Qij |qk〉 = δjk|qi〉 (12)

and ∑
n

|qi〉〈qi| = 1 . (13)

Successive measurements of the q-ness and r-ness of the states is provided by the
operator

RijQkl = |ri〉〈rj |qk〉〈ql| = 〈rj |qk〉Sil (14)

with

Sil = |ri〉〈ql| . (15)

Considering the matrix elements of an operator A as Anm = 〈rn|A|rm〉, we find for
the trace

Tr(Sil) =
∑

n

〈rn|Sil|rn〉 = 〈ql|ri〉 . (16)

From the above relation we deduce

Tr(Rij) = δij . (17)

Any operator can be expressed as a linear superposition of the Rij

A =
∑
i,j

AijRij (18)

with

Aij = Tr(ARji) . (19)

The individual states can be redefined

|ri〉 → eiϕi |ri〉 , (20)

|qi〉 → eiθi |qi〉 (21)

without affecting the corresponding composition laws. However, the overlap number
〈ri|qj〉 changes and therefore we need an invariant formulation for the transition
|ri〉 → |qj〉. This is provided by the trace of the closed operation RiiQjjRii

Tr(RiiQjjRii) ≡ p(qj , ri) = |〈ri|qj〉|2 . (22)



March 9, 2009 12:5 WSPC/139-IJMPA 04307

Categorical Foundation of Quantum Mechanics and String Theory 1179

The completeness relation, Eq. (13), guarantees that p(qj , ri) may assume the role
of a probability since ∑

j

p(qj , ri) = 1 . (23)

We discover that starting from the relational logic of Peirce we obtain all the essen-
tial laws of quantum mechanics. Our derivation underlines the outmost relational
nature of quantum mechanics and goes in parallel with the analysis of the quantum
algebra of microscopic measurement presented by Schwinger.20

Further insights are obtained if we consider the simplified case of only two states
(i = 1, 2). We define

Rz =
1
2
(R11 − R22) (24)

and

R+ = R12 , R− = R21 . (25)

These operators satisfy the SU(2) commutation relations

[Rz , R±] = ±R± , [R+, R−] = 2Rz (26)

and the quadratic Casimir operator

R2 = R2
z +

1
2
(R+R− + R−R+) (27)

can be written as

R2 =
1
2

(
1
2

+ 1
)
1 . (28)

The underlying dynamics is analogous to an “angular momentum 1/2 particle” and
the SU(2) algebra is realized in a way reminiscent of the Schwinger scheme.21,22 A
matrix representation of Rij , for the two-states case, is provided by

R11 =
(

1 0
0 0

)
, R22 =

(
0 0
0 1

)
, (29)

R12 =
(

0 1
0 0

)
, R21 =

(
0 0
1 0

)
. (30)

The matrices

exp(sR12) =
(

1 s

0 1

)
, (31)

exp(tR21) =
(

1 0
t 1

)
(32)

perform shear transformations in a two-dimensional space,23 while the matrix

exp[η(R11 − R22)] =
(

eη 0
0 e−η

)
(33)

generates squeeze transformations.
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R12

Fig. 1. The relation R12. Solid (dashed) line stands for the state 1 (2). A downward (upward)
arrow is attached to an impinging (emerging) state.

R

11

2112

R

R

Fig. 2. Pictorial representation of the composition rule R12R21 = R11.

For the general case of N available states the Rij satisfy the W∞ algebra

[Rij , Rkl] = δjkRil − δliRkj . (34)

The W∞ algebras are bosonic extensions of the Virasoro algebra, containing genera-
ting currents of higher conformal-spin, in addition to the spin-2 stress tensor of
Virasoro (for a review see Ref. 24). They are linked to the area-preserving diffeo-
morphisms of two-dimensional surfaces.25,26 W∞ symmetries are exhibited by a
number of systems, among them, QCD2,

27,28 gravity in two-dimensions,29 bosonic
string in four-dimensional Minkowski space.30 We may proceed to a pictorial rep-
resentation of the operation Rij . Each distinct state i is represented by a specific
line (solid, dashed, . . .), with a downward (upward) arrow attached to the annihi-
lated (created) state. In this sense we picture R12 by a double line, Fig. 1, while
the composition rule, for example R12R21 = R11, is represented by the diagram
of Fig. 2. The similarity with string theory, string joining and string splitting, is
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Fig. 3. Random partition of a surface. Each triangle (dashed lines) is dual to a cubic vertex.

obvious. The “cubic-string” interaction may be repeated an indefinite number of
times, with vertices connected together and giving rise to different forms of poly-
gons (see Fig. 3). These types of structures can be generated by a random matrix
model10

Z =
∫

[dM ] exp
{
−N tr

(
1
2
M2 + gM3

)}
, (35)

where M are N × N random matrices. A perturbative expansion of this integral
leads to ’t Hooft-type Feynman diagrams with cubic vertices. Each such diagram
specifies a unique surface topology, with faces arbitrary n-gons. The corresponding
dual lattice has n lines meeting at a point but the faces are triangles. The result is
a triangulated Riemann surface (Fig. 3). An expansion of Z in inverse powers of N

is equivalent to a topological expansion, selecting diagrams of specific genus h

Z =
∞∑

h=0

Zh(g)N2−2h . (36)

As g is increased successive contributions Zh diverge at the same critical value
g = gc. The partition function can be reorganized into

Z =
∑

h

Fhg2h−2
s , (37)

where the “renormalized” string coupling gs is given by

gs =
1

N(g − gs)
2−γ

2

(38)

with γ the critical exponent. The continuum two-dimensional string theory is
obtained in the double scaling limit N → ∞, g → gc with gs kept fixed.31–33

Modern physics is marked by two impressive theoretical constructions: quan-
tum mechanics and string theory. Each of them is an elaborate and detailed theory
providing understanding or insights to a host of different problems. Yet, we are



March 9, 2009 12:5 WSPC/139-IJMPA 04307

1182 A. Nicolaidis

lacking a conceptual foundation for these theories. In the present work we have in-
dicated that a form of logic, relational logic developed by C. S. Peirce, may serve as
the foundation of both quantum mechanics and string theory. The starting point is
that the concept of relation is an irreducible basic datum. All other terms or objects
are defined in terms of relations, transformations, morphisms, arrows, structures.
Usually, we adhere to mathematical considerations derived within set theory. A set
is deprived of any structure, being a plurality of structureless individuals, qualified
only by membership (or nonmembership). Accordingly a set-theoretic enterprise
is analytic, atomistic, arithmetic. On the other hand, a relational or categorical
formulation is bound to be synthetic, holistic, geometric. It appears that quantum
theory, string theory and eventually the physical theories to come, are better con-
ceived, analyzed and comprehended within a new paradigm inspired by relational
and categorical principles.
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