
Part XI. 2.751 CLASS NOTES 113

XI. Diagrams and the Coding of System Structure

A. Signs

We are here concerned.with a problem of communication -- specific-

ally, the transndttal of the description of a reticulated system from

one human mind.to another. We seek a form of description which is complete

yet sufficiently succinct, and of such a nature as to permit a verbal trans-

ndttal, over the telephone for example. Thus, an encoding of the schematic

description is indicated.

To provide a background for this discussion we consider briefly

the general theory of signs or semiotics. Charles Sanders PEIRCE states:

"A Sign, or Representamen, is a First which stands in such a genuine triadic

relation to a Second, called its Object, as to be capable of determining a

Third, called its Interpretant, to assume the same triadic relation to its

Object in which it stands itself to the same Object."

All sorts of human communication is accomplished by way of a sign-

activity. That is, an individual.A employs a sign S to communicate an

idea of an object O to a second individual B in whose mind an interpre-

tation I (also a sign) is evolved as a result of perceiving S. The

situation is not uncommon in engineering analysis wherein the individuals

A and B are the same person, and S is a sketch or diagram drawn as an aid

in problemesolving -- a form of self-comunication.

Peirce is to be credited with the trichotomy of signs into the

classes: (i) Icons; (ii) Indices; (iii) Symbols. Quoting directly from

Peirce:

"A sign is either an icon, an index, or a symbol. An icon

is a sign which would possess the character which renders it

significant, even though its object had no existence; such as a

lead-pencil streak as representing a geometrical line. An index

is a sign which would, at once, lose the character which makes it

a sign if its object were removed, but would not lose that char-

acter if there were no interpretant. Such, for instance, is a

piece of mould.with a bullet hole in it as a sign of a shot; for

without the shot there would have been no hole; but there is a

hole there, whether anybody has the sense to attribute it to a

shot or not. A symbol is a sign which would lose the character

which renders it a sign if there were no interpretant. Such is

any utterance of speech which signifies what it does only by

virtue of its being understood to have that signification."
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Thus, an is a characterizing sign which exhibits in and by

icon

itself the properties which an object must possess to be denoted by it.

Examples of icons are photographs, models, star charts, and chemical

diagrams.

An is a directing sign which refers to its object by a

index

dynamical or spatial connection and otherwise bears no resemblance to the

object. Sub- and superscripts, index marks, clocks and meters, and any-

thing which focuses attention or startles may be considered an index.

A symbol is a characterizing sign which always involves a rule

or convention to establish the connection with the implied object. The

utility relies utterly upon the mind of the interpreter to conjure up its

meaning and significance. For example, names of people, things, stars,

and elements, as well as code marks and mathematical notations, are all

symbols.

A sign -- a schematic diagram, for example -- which refers to a

physical system.as its object, embodies all three classes of sign-action.

The bare skeleton of the diagram is iconal, exhibiting directly certain

properties of the system. This skeleton, however, is endowed.with various

labels, arrows, etc. which involve indicial and symbolic sign-action.

For example, in a block diagram.a component might be labeled""Tr:fQ

which directs the reader's attention, or perhaps memory, to the previously

made definition of this functional -- as distinguished from the definitions

of â€˜Â§?'2,'\Â¥â€™3, etc. -- and thus involves both indicial and symbolic sign

activity.

B. Communication of a Computing Structure

Schemata of various sorts -- block diagrams, signal flow graphs,

etc. -- are invaluable aids to the description of systems and to the

communication of their structure. we are specifically concerned with the

problem of describing and communicating the nature of a computing structure,

i.e., a network of computing functionalsjï¬‚ï¬•i. We desire a method which is

sufficiently flexible to describe the most general types of nonlinear

networks and which will lend itself to encoding for the purpose of verbal
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1 x2 ye A 5 2 A

transmdttal.

Two essential dichotomies may be discerned in the realm of

schematic representations of system structure. The first is now

familiar to us: the causal (bilateral signal flow) vs. the non-causal

(energy bond) representations. The second dichotomy subdivides the

large and variegated class of "branch-node" schemata into, on the one

vhand, those representations which identify the functional operators with

the nodes and.the signal variables with the branches (block diagrams);

and, on the other hand, those representations which identify the variables

with the nodes and the operators with the branches (Mason-Tustin signal

flow graph ).

B___._..c_._ f-B___a_e 6

y4 Y6 f4 s

(Causal Bilateral Signal Flow Non-Causal Energy Bond

Diagram. Diagram

F33

Functional Block Diagram Signal Flow Graph

Operators: Nodes Variables; Nodes

Variables: Branches OPeratÂ°rS: Branches
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The non-causal representation, a generalized circuit diagram,

uncluttered.and simple, enables the experienced analyst to visualize

quickly the behavior of a system, while the causal description is es-

sential for a detailed quantitative understanding of its performance.

The block diagram.is especially suited.to determining the transfer char-

acteristic of a structure of interconnected.elements, provided the bound-

aries of the elements have been correctly chosen. In the case of a com-

puting structure, which is our present concern, these boundaries are gen-

erally self evident. The block diagram.has the distinct advantage of be-

ing applicable to the case of nonlinear as well as linear systems. The

signal flow graph, on the other hand, may be used precisely only to de-

scribe linear networks since a summary action is implied.at each of the

nodes; that is, for example

X=:FX-I-IFIX

1 o1 o 21 2

For all these cases, however, we seek a representation which is

capable of being encoded, and for this purpose the following branch-node

structure suggests itself:

ID
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this structure my be easily encoded by way of the following tabu-

iationt

Y IIâ€˜ X

l T1 1,2,3

2 11", 2,3,1

3 IFâ€˜, 3,1,2

{Corresponding to each node there is a single output y, that results from

operation of the associated functional F upon the input signals,

which in this case are simply the outputs of all three nodes. Thus, for

SÃ©emmple, the first row of the table might be read, "the signal y, re-

tsï¬‚ts from the operation of T1 upon y] , y2, and y3" . In actuality, of

Lfcourse, the entries in the F --column would indicate the nature of the

ifunctionals, say by way of a numerical coding: 1 for an upper selector,

for a lower selector, 3 for an integrator, etc. It is thus possible

Ã©to communicate succinctly a complex structure in the form of a table or

jsequence of numbers only. The task of transforming this number sequence

iiinto a readable diagram and vice versa is almost trivial.

What we have done here is to treat a specific application of the

v>

ibroader theory of which in turn stems from the mathematical

discipline of topology. This general study deals with the

{ways in which the structural connexity of a space my be described and

communicated; we recognize this as precisely the problem with which we

been concerned, wherein "the space" happens to include a computing

Â§Â§system and the connectedness of interest to us embraces the functional re-

Ã©latiomhips between the several computing components. In combinatorial

giiopology connexity is communicated by way of â€˜incidence mtfriiciea, a

*5

gcondensed form of which are the coded tables here suggested for use in

4?

gcommmicating system structure.

Combinatorial Topology - Incidence Matrix

A. W. TUCKER states: "Topology deals with the rudimentary

ggeometrical properties which depend on continuity rather than on size

land shape." The domin of discourse is a sï¬•ce in which the topologist

attempts to establish theorems related to connexity and structure.
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I

Henri POINCARE is generally cited as the originator of this branch of

mathematics, which he named analysis situs.

Connexity is depicted by way of linear graphs or, alternative-

ly, by incidence matrices, A linear graph is constituted from nodes and

branches. A digraph (directed graph) is a linear graph in which the

branches have been endowed.with a directional sense. An example of an

ordinary linear graph is given below:

1+

8

In this graph there are nine branches and six nodes. The associated

incidence matrix may be easily written:

1

2

3

A

5

6

1 b c

:51

:10

1 O

O 1

00

00

f g 1 h p i J

V Owwrï¬• O O 2 O82"

O O O O

1 1 O O

O O 1 O

1 O 1 1

O 1 O 1

In this matrix an entry of "1" indicates

an entry of "O" indicates no impingement

labelled incidence numbers.

simplexes or

a branch-node impingement,"whfR

The elements are therefore

A topological space is a complex constituted from.a number of

cells; these are labelled, according to convention, as
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follows:

Hence, the incidenc

structure, is calle

defined the numbers

an

8.

O

aw

â€˜*2

The rank of the inc

O-cells : nodes

1-cells : branches

2-cells : loops

e

d

matrix discussed above, which depicted a node-branch

the "O1" incidence matrix, or simply 1:01. Poincareâ€™

= number of k-cells in a complex

= number of O-cells

= number of 1-cells

Q-0

1-Â»

number of 2-cells

idence matrix H:kâ€™k+1 is denoted rk. Since no signific-

ance has been attributed to Ilk k+1 for ks-1 it is necessary to restrict

J

this definition to hold only for k = O,1,2,... . Hence, we say that

we also define the k order

rk = rank of I[k_1â€™k (for k = O,1,2,...) ; r_1 E O

th

Betti number

bh=*â€™1<'rh'rh-1

so that, in particular, the zeroeth and first Betti numbers are given by

b = a - r 3 b = a - r - r

which requires that

define

Q Q 0 1 1 1 O

some significance be attached to bo. Accordingly, we

b E number of separate connected parts in a complex.

O

with this it is now convenient to define the rank R of the linear graph as

which yields an alt

=5, -â€˜b

O O 0

DU

III

H

ernative definition of the first Betti nunmer for linear

graphs, since r1 E O, namely

b = a - a + b = a - R

1 1 o 0 1
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It is also propitious to observe that soe authors refer to the first

Betti number as the nullity, N.

The Euler characteristic is defined in terms of either the bk or the ak

as follows:

as

111

wtâ€˜/1

C!"

K <-11*â€˜ -Â£5128, <-11*â€˜

The Euler characteristic for a connected linear graph of V nodes

and B branches is simply

K = b - b = a - a

o 1 0 1

or K = 1 - N = V - B

Since R = V - 1 we thus obtain the fundamental invariant relation for all

linear graphs

B = R + N

which is identical to the previous result b1 = a1 - R.

By way of illustration of the significance of some of the above character-

istic numbers three theorems are stated.

Theorem . If we start with the O-cells of a linear graph and

1

add the 1-cells one by one, the number of 1-cells added joining nodes not

previously connected is ro and the number of 1-cells added joining vertices

already connected is b1.

In connection with this theorem it is well to point out that a

complex which contains no loops -- i.e., no closed paths within the structure

but which would contain a loop with the addition of a single branch, is called

a tree. A forest is a complex consisting of a number of disconnected trees.

Theorem 2. The first Betti number of a forest is zero.

Theorem 3. If the first Betti number of a graph is b1, we can

remove b1 1-cells from it, but no fewer, which will reduce it to a forest.

These theorems are stated without proof for the purpose of illus-

tration only. From them we observe the importance of the rank R and nullity

N in the topological characterization of a space.
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ecleeiomi Reeaiiee - S1 B

(1)

(2)

(3)

(A)

(5)

(6)

Sn

PEIRCE, C. S. Phiglogsophicalf (edited by J . Buchler ), Logic

as Semiotic: Theory of Signs.

Peirce presents his form of the theory of signs--the logic of semiotic,

Much of the point of view adopted in this course originates with Peirce,

although this subject has been taken up and colored by more recent

thinkers in this field (and occasiomlly presented in more readable

fashion).

GAI1-IE, W- B- Beircqe. and P1'.aS_1IB.-.t,1$Â£1!

Gallie presents a compact sumnary of Peirce's semiosis and theory of

signs.

YOUNG, J. W. Lectures, on _Fundamen,tal, Concepts of Algebra and Geometry,

S2216--12139, (Growth of Algebraic) *Symb' W'oli'sm,1 byâ€œ A '

U. G. Mitchell)

The history of the use of symbols in algebra and arithmetic is traced.

MORRIS, C. W. Theory ,o,f,,Si,g_ns

Morris presents (without adequate citation) 1IIlJ.Ch of Peirce's thought

on this subject.

<=H11RRY. Â¢- 911 .Â¢Â°!'4Â¥'I*11.R1.Â°Â§â€™Â°.i.Â°.P4 Â¢bBP- 3, P1Â» 219426-

This is a modern text in which signs are discussed as a part of the

broader subject of communication. Much of Peirce's thought is a@.in

represented.

TRUXAL. -1- 6- A111=.<>;sÂ¢.1s=. Fee.Â®e9k. 9s>_IÂ¢,1's>.1. .S>aPÂ¢m. ?>1ï¬‚Fh@Bia> Â°heP- 2-

A discussion is given of the disadvantages of block diagrams and

the lhson signal flow graph is presented as a useful tool in systems

analysis.
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.Bssl<e".@.v-ml Bass-iss. ~ TPl?.<.2}.Â°Â§;Y

(1)

(2)

(3)

(it)

SYNGE, J - 1- Ts-==. F1eÂ§as@sPsl.111s1>aea sf. E,lÂ¢9â€™si1Â¢s.1 lleivorlisi Qw-1*"-â€˜fly

of.Applied.Math., July 1951, p. 113.

In his development of the theorems and concepts leading up to the

"fundamental theorem" the author employs a very readable intuitive

approach. Much of this development is purely a discussion of

topology and digraphs which is direct support of the material on

this subject presented herein.

TUCKER, A. W. The Tgppioggieai Concept Â§>f_Space_. (A lecture given

at the salioied Elnetitnted of Mathemtics ).

Tucker discusses many of the essential concepts of topology without

resorting to formal mathematical proofs. Thus, his approach lends

itself to a deepening insight into this subject, beyond the super-

ficial statements made in these notes.

SINGER. James Qssa+.P11nansi.<2asl.emlyÂ§1s.$live- (A lecture siren at

the Galois Institute of Mathematics). (1935)

This reference contains much.of the material used in these notes.

The theorems merely stated.herein are stated and proved by Singer, as

are several additional theorems which concern the structure and

connexity of linear graphs.

SINGER, James. Two-IumensionalÂ¥Analysis,Situs. (A lecture given at

the Galois Institutewofv mthenatiee). (1936;

Many of the statements made by Tucker are discussed more thoroughly

in this reference which extends, along intuitive lines, into the

topology of two-dimensional spaces (surfaces).
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s. Coded Representation of Graphs and Digraphs

The original branch-node incidence matrix of the previous

section may be encoded in a simple array merely by condensing or col-

lapsing either rows or columns in the following alternative fashions:

ROW CODE COLUMN cons

1 a c a 1 2

b 23

2 a b d e C 1 h

Bbfg @211

M c e 2 5

an f 35

56-Â£111 g36

111.15

6511 156

It is readily apparent that an encoding by rows gains rapidly in

efficiency and simplicity as the connexity of the structure increases if

the specific node and branch tags are both to be transmitted. Nevertheless.

we shall have frequent occasion to use both forms of coding as required.

Essen} (l3.%"8.~.11Â¢.P.:IÂ£9B) Zs2.21:1Â§.1_"-.<>.e Metals

I In addition to the first (node-branch) incidence matrix, the

ï¬•etrix indicating the cyclic or closed-loop character of the system structure

is also of fundamental topological interest. This circuital or branch-loop

incidence may'be<hÂ£ermined for any reticulate system by indicating the

incidence of all branches upon N + 1 independent loops where N is the nullity

(i.e. the number of branches-out-of-tree) of the structure.

L O O P S

I II III IV V

r To was s ,, V 1 s s B a 1 1 . . .

RM â€˜ b 1 I I 1 Q

A: 1 C 1 1 0 0 0

11% I <1 . 1 1 . .

â€˜ e 0 0 1 1 0

H f . . . 1 1 â€˜

E g 1 1 . . . 1 I

S â€˜Â§ h 1 0 1 0 0

1 1 1 0 0 0 1

\â€˜.__ _ _ _
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PPÂ§.l. QEQPPE

For the graph previously depicted and discussed, the rank

R = 5 and the nullity N = 1+. Therefore, for the dual graph, the rank

12* = 1+ and the nullity N-* = 5. This dual graph may be constructed directly

from the transpose of the second incidence matrix, merely using the topo-

logical dual isomorphism:

(N +1) Loops 4--> (R* +1) Dual Nodes

(B) Brancheï¬•" <â€”â€”> Dual Branches

Thus the

first

transpose of the second incidence matrix of the original graph This gives

in coded form:

corresponding to the graphical form'

I

I

I

III

I

nâ€”n

-â€”-

__

V

V

ll

5

O

ai

al

dl

â€˜bi

f!

1â€”â€”w~

-1

-_

the original figure-

-e

-

9

5

1+

~â€”_i

DUAL: R*

N*

13%

by contrast to

R

ORIGINAL:

N

B

A well-known theorem of topology due to Hassler WHITNEY states Uni

a dual graph can exist only for a planar graph (i e. a linear graph wnich NW

9

â€˜bi

Ci

e!

ei

gl

incidence matrix of the dual graph is merely the

cc

as

ha

fa

is

s'h

be homeomorphically mapped onto a plane or a sphere)
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E. Coding the Energetic Structure of Multiport Systenm

The previous incidence matrices and equivalent codes may be

used for the topological structuring of multiport systems, provided that

the system is closed, and the following correspondence is employed:

MULTIPORT ELEMENTS <â€”â€”> NODES

POWER BONDS <+â€”1> BRANCHES

First, it is possible to close all otherwise open multiport

systems by a simple artifice. Since an n-ported system S must necessar-

ily be bonded to an n-ported environment E , we can always annex the en-

vironment to the system itself to form a necessarily closed system, in

the fashion:

./T1\.

\//

To emphasize the complementary aspect of the environment in this circum-

stance we may denote the environment of S by the underscored symbol, S.

Thus the closed system becomes ,,-ix

Â§. E S

\__,/

The duality between S and. S is complete since

S 2 S

which means in words that the environment of the environment of a system

is the system itself.

Thus if the system S is coded as:

S a b c ... n

then we may designate the environment S of S as

S a b c ... n

and the two subsystems as a single closed system becomes in coded form:

S a b c ... n

S a b c ... n

If the system is closed to begin with no complementary element, S ,

is required for closure.
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In the nontrivial case the internal energetic reticulation is

also given. For example the structure:

B e

iA~Â¢i

f

_Â§ a b

A a c f

B c d e

C b d e f

might be encoded as

From the code itself we may infer the following facts, among others:

1) The overall system is a 2-port

2) It has been reticulated into 3 multiports, namely

a) two 3-ports

b) one h-port

The assignment of CAUSALITY may be accomplished using the code

alone as follows:

I ... EFFORT inputs are unmarked;

II ... FLOW inputs are underscored.

Thus a typical causality would be as follows:

deb

A a_E f

B c_d_Â§

C b d e f

This means that S itself is of the form

S a b

m

0â€˜

M

tn

since S â€˜a b is its complement.

â€”-n pm

ï¬‚~
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Tiles !.'I:=.Â¢}1_a2.i..Â¢Â§. 9?. Â§xs_*=_esIsEeI;Â¢211eeÂ¢Â§i2I1

Consider that we were assembling the original system from the

subsystems A, B, C, whose ports have been assigned consistent causality.

In this case we would have started with

A

in

0â€˜

0

-â€”

; B ag P-| 2| , C EH CH -qt!

The primes would not generally appear in the separate listings and are

here indicated only to prevent confusion.

The initial step requires the unique labelling or, better,

numbering of all ordered ports, for example as follows:

A 1.5.3. B 11.;

EÂ»

This array corresponds to the

1

2

4

5

6

._-

01.

CD

â‚¬<>

ls

(element-bond) incidence matrix

7 8.

9 10

A I1

B .

C .

l

1

I

l

1.

1111'

The particular interconnections given previously may now be

expressed'by

UUOâ€œ\\J11\D

1|

11

1|

'-â€˜\O@

O 43"

These column identifications result in column additions in the

system matrix and reduce the matrix to:

A

B

C

S

11,1089

++++

12356

11_1..

.1._1_1_

..111

_1_..â€œ..

ddab1'1c*fd*â€˜eâ€•
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where the environmental Â§ row may be added such that the column sum

vanishes identically for every column.

The corresponding coded system may now be written:

Ã©af

A a h_c

Bbie

C c d e f

To render this in a coded form identical to that of the original,

only simple permutation of letters is required in the form:

b c

c f

This yields the equivalent code

C1 U1 11> U1

he o m m

nÂ»ln-lo d

m lm w

0â€™

-uni

which is merely a permutation of the first system and is therefore topo-

logically or structurally identical.

,3l1Â°}â€˜Â§1iÂ°e11E@_3Â¢@d4P5 7'_'_* cG_Iâ€˜c%I1hFcÂ»c P153l@,'2h5a_.Â°l1l<i NÂ°it?fÂ°?".kÂ§

(1) CAYLEY, A. oh the Analytical Forms called Trees, with Application to

the Theory of Chemical Combinations, Beport_oÂ§_the_British

Association for the Advancement of science, pp. 257-305 (187?

(2) KEMTE, A. B. A.Memoir on the Theory-of Mathematical Form, Philosophical

Transactions, pp. 1-70 (1886).

A little known and truly remarkable anticipation of combinatorial topolww

whose origin is usually credited to the papers of POINCARE.

(3) KOENIG, D. Theorie der Endlichen und Qnendlichen,Graphen, Chelsea

Publishing Co., New'York (1950).

This relatively recent book has now become a classic in this field.
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Ighckground Reading -- Graphs, Digraphs, and Networks (continued)

-pr"

(h) WHITNEY, H. Non-separable and Planar Graphs, Transactions of the American

Mathematical Society, Vol. 311, pp. 339-362 (1932).

The author here proves for the first time that duals exist only for planar

graphs and therefore for planar logical and electrical networks.

QQ HOHN, F. E., S. SESHU, and D. D. AUFENKAM. The Theory of Nets, Trans-

O\

(

actiÂ§ns of the IRE, Vol. EC-6, No. 3, pp. 15h-161 (September,

1957 -

The authors generalize the concept of a digraph into a net to include

certain higher order structural information. Many theorems and properties

of universal value may then be adduced.

SHIMBEL, A. Structure in Communication Nets, Proceedings of the Symposium

Von Information Networks, Polytechnic Institute of Brooklyn,*d

Brovklyn, pp- 199-203 (1955)-

This paper propounds concepts and methods which enable the determination

of the minimum paths and resultant trees in any communication digraph.

(U HARARY, F. Structural Duality, Behavioral Science, Vol. 2, No. h,

pp. 255-265 (October, 1957).' ('11)

A very readable treatment of various duality transformations applied

to graphs and digraphs.

(8) GRAYBEAL, T. D. Block Diagram Network Transformation, Electrical Engineer-

(9)

125, pp. 985-990 (November. 1951). 0 ~ 0 ~0 it "

STOUT, T. M. A Block-Diagram.Approach to Network Analysis, AIEE Trans-

actions, pp. 255-260 (November, 1952).

Q0) MASON, S. J., Feedback Theory--Some Properties of Signal Flow Graphs,

,Proc. Inst. Radio Engrs. A1, 11th-1156 (September, 1953).

$1) .......... Feedback Theory--Further Properties of Signal Flow Graphs,

Proc. Inst. Radio Engrs. 111+, 920-926 (July, 1956).

The four papers above deal with transformations and equivalencies of flow

graphs.

SESHU, S. and REED, M. B. Linear,Graphsand,Electrical_Networks .

This excellent text has a sumary of much of the above and an excellent

bibliography.
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