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XI. Diagrams and the Coding of System Structure

A. Signs

We are here concerned with a problem of communication ~~ specific-
ally, the transmittal of the description of a reticulated system from
one human mind to another., We seek a form of description which is complete
yet sufficlently succinct, and of such a nature as to permit a verbal trans-
mittal, over the telephone for example. Thus, an encoding of the schematic
description 1s indicated,

To provide a background for this discussion we consider briefly
the general theory of slgns or semiotics., Charles Sanders PEIRCE states:

"A Sign, or Representamen, is a First which stands in such a genuine triadic
relation to & Second, called its Object, as to be capable of determining a
Third, called its Interpretant, to assume the same triadic relation to its
Object in which it stands itself to the same Object."

A1l sorts of human commmication is accomplished by way of a sign-
activity. That is, an individual A employs a sign S to communicate an
idee of an object 0 to a second individusl B in whose mind an interpre-
tation I (also & sign) is evolved as & result of perceiving S. The
situvation 1s not uncommon in engineering analysis wherein the individusls
A and B are the same person, and S is a sketch or diagram drawn as an aid
in problem~solving ~~ & form of self-communicstion,

Pelrce 1s to be credited with the trichotomy of signs into the
classes: (1) Icons; (1i) Indices; (1ii) Symbols. Quoting directly from
Peirce:

"A sign is either an icon, an index, or a symbol. An icon
is a sign which would possess the character which renders it
slgnificant, even though its obJect had no existence; such as a
lead-pencil streak as representing a geometrical line. An index
is a gign which would, at once, lose the character which mekes it
a sign 1f its object were removed, but would not lose that char-
acter if there were no Interpretant. Such, for instance, is a
piece of mould with & bullet hole in it as a sign of & shot; for
without the shot there would have been no hole; but there is a
hole there, whether anybody has the sense to sttribute it to a
shot or not. A symbol 1s a sign which would lose the character
which renders it a sign if there were no interpretant. Such is
eny utterance of gpeech which signifies what it does only by
virtue of its being understood to have that signification."
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Thus, an icon 1s a characterlzing sign which exhibits in and by
itself the properties which an object must possess to be denoted by it.
Examples of icons are photographs, models, star charts, and chemical
diagrams.

An index is a directing sign which refers to its obJect by a
dynamical or spatial connection and otherwise bears no resemblance to the

object., Sub~ and superscripts, index marks, clocks and meters, and any-
thing which focuses attention or startles may be considered an index.

A gymbol is a characterizing sign which always involves a rule
or conventlion to establish the connectlon with the implied obJject. The
utility relies utterly upon the mind of the interpreter to conjure up its
meaning and significance, For example, names of people, things, stars,
and elements, as well as code marks and mathematical notations, are all
symbols.

A slgn -- a schematic diagram, for example ~~ which refers to s
physical system as its obJect, embodies all three classes of sign-action.
The bare skeleton of the dlagram is iconal, exhibiting directly certain
properties of the system., This skeleton, however, i1s endowed with various
labels, arrows, etc. which involve indicial and symbolic sign-action.

For example, in a block diagram a component might be labeled "w;f l"’
which directs the reader's attention, or perhaps memory, to the previously
made definition of this functional ~-- &g distinguished from the definitions
of ‘Q7 > \}r3, etc, -~ and thus involves both indicial and symbolic sign
sctivity.

B. Communication of a Computing Structure

Schemata of various sorts -~ block diagrams, signal flow graphs,
etc, ~- are Invaluable aids to the description of systems and to the
commnication of thelr structure., We are specifically concerned with the
problem of describlng and communicating the nature of a computing structure,
i.e., a network of computing functionals:H‘i. We desire a method which 1s
sufficiently flexible to describe the most general types of nonlinear

networks and which will lend 1tself to encoding for the purpose of verbal



part XI. 2.751 CIASS NOTES 115

transmittal.

Two essentiml dichotomies may be discerned in the realm of
schematic representations of system structure. The first is now
familiar to us: the causal (bilateral signal flow) vs. the non-causal
(energy bond) representations. The second dichotomy subdivides the
large and variegated class of "branch-node" schemata into, on the one
hand, those representations which identify the functionsl operators with
the nodes and the slgnal variables with the branches (block diagrams);
énd, on the other hand, those representations which identify the wvariables
with the nodes and the operators with the branches (Mason-Tustin signal
£low graph ).
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The non~causal representation, a generalized circuit diagram,
uncluttered and simple, enmables the experienced analyst to visualize
quickly the behavior of a system, while the causal description 1is es.
sential for a detalled quantitative understanding of its performance.

The block disgram is especially suited to determining the transfer char-
acteristic of a structure of interconnected elements, provided the bound~-
aries of the elements have been correctly chosen. In the case of a com~
puting structure, which is our present concern, these boundaries are gen~
erally self evident. The block diagram has the distinct advantage of be~
ing applicable to the case of nonlinear as well as linear systems. The
slgnal flow graph, on the other hand, mey be used precisely only to de-
scribe linear networks since a summary action is implied at each of the
nodes; that is, for example

X = Fo1 *o * IF'21 X2

For all these cases, however, we seek a representation which is
capable of being encoded, and for this purpose the following branch-node
structure suggests 1tself:
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But this structure may be easily encoded by way of the following tabu-
Jation:

Y I X

1 I, 1,2,3
2 I, 2,3,1
3 I, 3,1,2

Corresponding to each node there is a single output y, that results from
?;:he operation of the associated functional I upon the input signals,
j;rhich in this case are simply the outputs of all three nodes. Thus, for
fémmple, the first row of the table might be read, "the signal Y4 Te-
sults from the operation of ]1-‘1 upon Yqs y2, and y3".
course, the entries in the T" ~colum would indicate the nature of the

In actuality, of

%j’i‘unctionals, say by way of a numerical coding: 1 for an upper selector,
2 for a lower selector, 3 for an integrator, etc. It is thus possible

‘to commmunicate succinctly a complex structure in the form of a ‘table or
};sequence of numbers only. The task of transforming this number sequence
léinto a readable diagram and vice versa is almost trivial.

T What we have done here is to treat a specific application of the
broader theory of graphs, which in turn stems from the mathematical
idiscipline of comblnatorial topology. This general study deals with the
'}lays in which the structural connexity of a space may be described and

§c0municated; we recognize this as precisely the problem with which we
haVe been concerned, wherein "the space" happens to include & computing
%System and the connectedness of interest to us embraces the functional re-
fjationships between the several computing components. In combinatorial
;L'topology connexity is communicated by way of incidence matrices, a

géondensed form of which are the coded tables here suggested for use in
commnicating system structure.

C. Combinatorial Topology - Tncidence Matrix

A. W. TUCKER states: "Topology deals with the rudimentary
‘geometrical properties which depend on continuity rather than on size
‘and shape," The domain of discourse is & space in which the topologlst
attempts to establish theorems related to connexity and structure.
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/
Henri POINCARE is generally cited as the originator of this branch of

mathematics, which he named analysis situs,

Connexlty is deplcted by way of linear graphs or, alternative-

ly, by incidence matrices. A linear graph 1is constituted from nodes and

branches. A digraph (directed graph) is & linear graph in which the
branches have been endowed with a directional sense. An example of an

ordinary linear graph is given below:

In this graph there are nine branches and six nodes., The associated

incidence matrix may be easily written:

a b c d e f g h 1
1 1 0 1 0 0 0 0 0 0
2 1 1 0 1 1 0 0 0 0]
3 0] 1 0 0 0 1 1 0 0
L 0 0 1 1 0 0 0 1 0
5 0 0] 0 0 1 1 0] 1 1
6 o] 0 0 0 0 0 1 0 1

In this matrix an entry of "1" indicates a branch-node impingement, while
an entry of "O" indicates no impingement, The elements are therefore
labelled incidence numbers,

A topologlcal space is a complex constituted from a number of

simplexes or cells; these are labelled, according to convention, as
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follows:

O~cells : nodes
1-cells : TDbranches

2-cells : loops

Hence, the incidence matrix discussed above, which depicted a node-brench
structure, is called the "O1" incidence matrlx, or simply ﬂjo1’ Poincare
defined the numbers

ak = number of k-cells in a complex

8, = number of O-cells

a1 = number of 1-cells

&, = number of 2-cells
The rank of the incidence matrix I[k k41 is denoted Ty Since no signific-

2 ,
ance has been attributed to ]Ik k1 for k=-1 it is necessary to restrict
3
thig definition to hold only for k = 0,1,2,... . Hence, we say that
r, = Tank of I[ky1,k (for k¥ = 0,1,2,...) 3 r,=0

We also define the kth order Betti number

Py = By 7 T T Tk
so that, in particular, the zerceth and first Bettl numbers are given by

bo = ao - ro 3 b1 = a1 - r1 - r°

which requires that some significance be attached to bo' Accordingly, we
define

bo = number of separate connected parts in a complex.

With this 1t is now convenient to define the rank R of the linear graph as

R=r =a_ =>b
o} ° o

which yields an alternative definition of the first Betti number for linear

graphs, since r, = 0, namely

1

b1=31 -ao+b°=a1 - R
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It 1s also propitious to observe that some authors refer to the first
Betti number as the nullity, N.
The Euler characteristic 1s defined in terms of elther the ’bk or the &

a8 follows:

i}

K = zbk (-1)k 2 a8 ("1)k

k k

The Euler characteristlc for a connected linear graph of V nodes
and B branches 1s simply

or K=1 ~N =V -B

Since R = V - 1 we thus obtain the fundamental invariant relation for all
linear graphs

B = R + N

which 1g identical to the previous result b1 = a1 - R,
By way of i1llustration of the significance of some of the above character-

istic numbers three theorems are stated.

Theorem 1. If we start with the O-cells of a linear graph and
add the 1-cells one by one, the number of 1-cells added jolning nodes not
previously connected 1s ro and the number of 1-cells added jolning vertices
already connected 1s b1.

In connection with this theorem it is well to point out that a
complex which contains no loops -- l.e., no closed paths within the structure-
but which would contain a loop with the addition of & single branch, is called

a tree. A forest is a complex consisting of a number of disconnected trees.

Theorem 2. The first Betti number of s forest 1s zero.

Theorem 3. If the first Bettl number of a graph is b1, we can

remove b1 1-cells from it, but no fewer, which willl reduce it to a forest.

These theorems are stated without proof for the purpose of 1llus-
tration only. From them we observe the ilmportance of the rank R end nullity
N in the topological characterization of & space.
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packground Reading - Signs

(1)

(2)

(5)

(6)

PEIRCE, C. S. Philosophical Writings, (edited by J. Buchler), Logic
as Semiotic: Theory of Signs.

Peirce presents his form of the theory of signs~~the logic of semiotic.
Much of the point of view adopted in this course originates with Peirce,
although this subject has been taken up and colored by more recent
thinkers in this field (and occasionally presented in more readable
fashion).

GALLTE, W. B. Peirce and Pragmatism

Gallie presents a compact summary of Peirce's semiosis and theory of
signs.

YOUNG, J. W. Iectures on Fundamental Concepts of Algebra and Geometry,
pp. 226~239, (Growth of Algebraic Symbolism, by
U. G. Mitchell)

The history of the use of symbols in algebra and arithmetic is traced.

MORRIS, C. W. Foundations of the Theory of Signs

Morris presents (without adequate citation) much of Peirce's thought
on this subJject.

CHERRY, C. On Humen Commmication, Chap. 3, pp. 219~226.

This is a modern text in which signs are discussed as a part of the
broader subject of communication, Much of Peirce!s thought is agrin
repregented.

TRUXAL, J. G. Automatic Feedback Control System Synthesis, Chap. 2.

A discussion is given of the disadwvantages of block diagrams and
the Mason signal flow graph is presented as & useful tool in systems
analysis.
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Background Reading ~ Topology

(1)

(2)

(3)

(1)

SYNGE, J. L. The Fundamental Theorem of Electrical Networks, Quarterly
of Applied Math., July 1951, p. 113.

In his development of the theorems and concepts leading up tu the
"fundamental theorem" the author employs a very readable intuitive
spproach. Much of this development i1s purely a discussion of
topology and digraphs which is direct support of the material on
this subJject presented herein.

TUCKER, A. W, The Topological Concept of Space. (A lecture given
at the Galols Institute of Mathemmtics).

Tucker discusses many of the essentlal concepte of topology without
resorting to formal mathematical proofs, Thus, his approach lends
1tself to a deepening insight into this subject, beyond the super-
ficial statements made in these notes.

SINGER, James, One-Dimensional Analysis Situs. (A lecture given at
the Galols Institute of Mathematics). (1935)

Thls reference contalns much of the material used in these notes,

The theorems merely stated herein are stated and proved by Singer, as
are several additional theorems which concern the structure and
connexity of linear graphs,

SINGER, Jemes, Two-Dimensional Analysis Situs. (A lecture given at
the Galois Institute of Mathematics). (1936)

Many of the statements made by Tucker are discussed more thoroughly
in this reference which extends, along intuitive lines, into the
topology of two~-dimensional spaces (surfaces).
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p. Coded Representation of Graphs and Digraphs
The original branch-node incidence matrix of the previous
gection may be encoded in a simple array merely by condensing or col-

lapsing either rows or columns in the following salternative fashions:

ROW CODE COLUMN CODE
1 ac a 12
b 23
2 abde c 1k
3 bfg a 24
4L cdhn e 25
f 35
5 ef hi g 36
h L4s
6 g i 156

It is readily apparent that an encoding by rows gains rapidly in
efficiency and simplicity as the connexity of the structure increases if
the specific node and branch tags are both to be transmitted. Nevertheless.

we shall have frequent occasion to use both forms of coding as required.

- —— - - = —— 2 o -

In addition to the first (node-branch) incidence matrix, the
matrix indicating the cyclic or closed-loop character of the system structure
is also of fundamental topological interest. This circuital or branch-loop
incidence may be determined for any reticulate system by indicating the
Incidence of all branches upon N + 1 independent loops where N is the nullity

(i.e. the number of branches-out-of-tree) of the structure.

LOOPS
'd A Y
I IT III Iv v
B ( a 1 1 . . .
R b 1 . . 1 .
A 1 1 . . .

=
A

0 =H 4O a
H 5 ®R H 0 2 0




124 2.751 CLASS NOTES

Dual Graphs

—— o ats aag e Al

For the graph previously depicted and discussed, the rank
R = 5 and the nullity N = 4., Therefore, for the dual graph, the rank
R* = I and the nullity ¥ = 5., This dual graph may be constructed directly
from the transpose of the second incidence matrix, merely using the topo-
logical dual isomorphism;

(N + 1) Loops «—» (R* + 1) Dual Nodes
(B) Branches <« (B*) Dual Branches i

Thus the first incidence matrix of the dual graph is merely the
transpose of the second incldence matrix of the original graph. This gives,

in coded form:
I a' b' c! g' ht it
II at ct 4!
ITIT 4! e! h!
IV bt ef f!?
vV fr gt it
corresponding to the graphical form:

I 4* IIT e' IV £t V
Vaa <)

DUAL¢

R* = L
¥ al

B¥ = 9

by contrast to the original figure:

ORIGINAL: & = °
N =4
B = 9

A well-known theorem of topology due to Hassler WHITNEY states thaf_v
a dual graph can exist only for a planar graph (i.e. a linear graph which c&

be homeomorphically mapped onto a plane or a sphere).
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E. Coding the Energetic Structure of Multiport Systems

The previous incidence matrices and equivalent codes may be
used for the topological structuring of multiport systems, provided that

the system is closed, and the following correspondence is employed:

MULTIPORT ELEMENTS <#—# NODES
POWER BONDS «— BRANCHES

First, it is possible to close all otherwise open multiport
systems by a simple artifice. Since an n-ported system S must necessar-
ily be bonded to an n-ported environment E , we can always annex the en-
vironment to the system itself to form a necessarily closed system, in

the fashion:

To emphasize the complementary aspect of the environment in this circum-

stance we may denote the environment of S by the underscored symbol, S.

Thus the closed system becomes —

The duality between S and S is complete since

1l
wn

8

which means in words that the environment of the enviromment of a system
is the system itself.
Thus if the system S is coded as:

S abe¢c...n

then we may designate the environment S of S5 as
S abc...n
and the two subsystems as a single closed system becomes in coded form:

S abec...n

S abc...n

If the system is closed to begin with no complementary element, S ,

is required for closure.
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In the nontrivial case the internal energetic reticulation is

also given. For example the structure:

TS

b
might be encoded as
S ab
A acft
B cde
C bdef

From the code itself we may infer the following facts, among others:

1) The overall system is a 2-port

2) It has been reticulated into 3 multiports, namely
a) two 3-ports
b) one 4-port

The assignment of CAUSALITY may be accomplished using the code
alone as follows:

I ... EFFORT inputs are unmarked;
IT ... FIOW inputs are underscored.

Thus a typical causality would be as follows:

Q W > |

o o @

Al o o
o =

e f
This means that S itself is of the form
S ab

since 8 ab =S ab is its complem=nt.
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The Mechanics of System-Interconnection

- —— - N —— o -

Consider that we were assembling the original system from the
subsystems A, B, C, whose ports have been assigned consistent causality.
In this case we would have started with

A abec 3 B a'b'c! ; C a" c" d"

The primes would not generally appear in the separate llistings and are
here indicated only to prevent confusion.
The initial step requires the unique labelling or, better,

numbering of all ordered ports, for example as follows:
A1.2.3. B 4.5.6. ¢ 7.8.9.10

This array corresponds to the (element-bond) incidence matrix

1 2 3 4 5 6 7 8 9 10

The particular interconnections given previously may now be

expressed by

Wnonn

=\0 0 &

0

w O\ o

These columa identifications result in column additions in the

system matrix snd reduce the matrix to:

N+
w + =
Ul +
N+ 0

- =
-
.
.

Il Q w »

l_n
.
.
.
.
o~
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where the environmental S row may be added such that the column sum
vanishes identically for every column.
The corresponding coded system may now be written:

Q W > |0
o o |p
0

o
=TI TN [ g S
o |lo

1+

To render this in a coded form identical to that of the original,
only simple permutation of letters is required in the form:

¢f'bc
b ¢ £

This yields the equivalent code

o Jo
o

W > |,

Ca
% o
a1 o

o lo H
o

which is merely a permutstion of the flrst system and 1ls therefore topo-

loglcally or structurelly identical.

Background Reading -- Graphs, Digraphs, and Networks

(1) CAYIEY, A. On the Analytical Forms called Trees, with Application to
the Theory of Chemical Combinations, Report of the British
Association for the Advancement of Science, pp. 257-305 (1875)

(2) XEMPE, A. B. A Memoir on the Theory of Mathematical Form, Philosophical
Transactions, pp. 1-70 (1886).

A little known and truly remerkaeble anticipation of combinatorial topologf
whose origin is usually credited to the papers of POINCARE,

(3) KOENIG, D. Theorle der Endlichen und Unendlichen Graphen, Chelsea
Publishing Co., New York (1950).

This relatively recent book has now become a classic in this fleld.
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‘Beckground Reading -- Graphs, Digraphs, and Networks (continued)

(&)

02)

WHITNEY, H. Non-separable and Planar Graphs, Transactlons of the American
Mathematical Society, Vol. 34, pp. 339-362 (1932).

The author here proves for the first time that duals exist only for planar
graphs and therefore for planar logical and electrical networks.

HOHN, F. E., S. SESHU, and D. D. AUFENKAMP. The Theory of Nets, Trans-
actions of the IRE, Vol. EC-6, No. 3, pp. 154~161 (September,

1957).

The authors generalize the concept of a digraph into a net to include
certain higher order structural information., Many theorems and properties
of universal value may then be adduced.

SHIMBEL, A. Structure in Communicatlion Nets, Proceedings of the Symposium
on Information Networks, Polytechnic Institute of Brooklyn,

Brooklyn, pp. 199-203 (1954).

This paper propounds concepts and methods which enable the determination
of the minimum paths and resultent trees in any communication digreph.

HARARY, F. Structural Duality, Behavioral Science, Vol. 2, No. k4,
PP. 255-265 (October, 1957).

A very readable treatment of various duality transformations applied
to graphs and digraphs.

GRAYBEAL, T. D. Block Diagram Network Transformation, Electrical Engineer-
ing, pp. 985-990 (November, 1951).

STOUT, T. M. A Block-Diagram Approach to Network Analysis, ATEE Trans-
actions, pp. 255-260 (November, 1952).

MASON, S. J., Feedback Theory--Some Properties of Signal Flow Grephs,
Proc. Inst. Radio Engrs. 41, 1144-1156 (September, 1953).

sesessesss. Feedback Theory--Further Propertles of Signal Flow Graphs,
Proc. Inst. Radio Engrs. Ul, 920-926 (July, 1956).

The four papers above deal with transformations and equivalencies of flow
graphs.

SESHU, S. and REED, M. B. Linear Graphs and Electrical Networks .

This excellent text has a summary of much of the above and an excellent
bibliography.



