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A quantum state can be understood in a loose sense as a map that assigns a value to every observable.
Formalizing this characterization of states in terms of generalized probability distributions on the set of
effects, we obtain a simple proof of the result, analogous to Gleason’s theorem, that any quantum state is
given by a density operator. As a corollary we obtain a von Neumann–type argument against
noncontextual hidden variables. It follows that on an individual interpretation of quantum mechanics
the values of effects are appropriately understood as propensities.
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In this Letter we characterize a notion of quantum
states that takes into account the general representation of
observables as positive operator valued measurements
(POVMs). The idea of a state as an expectation value
assignment will be extended to that of a generalized
probability measure on the set E�H � of all effects, that
is, the positive operators which can occur in the range of a
POVM [1]. All such generalized probability measures are
found to be of the standard form, i.e., determined by a
density operator. This result constitutes a simplified proof
and, at the same time, a more comprehensive variant of
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Gleason’s theorem [2]. The Letter concludes with an
application of this result to the question of hidden vari-
ables [3].

In the traditional formulation of quantum mechan-
ics in Hilbert space, states are described as density op-
erators and observables are represented as Hermitian
operators. Alternatively, and equivalently, experi-
mental events and propositions are represented as or-
thogonal projection operators, and states are defined
as generalized probability measures on the set P �H �
of projections, i.e., as functions E � v�E� with the
properties
�P1� 0 � v�E� � 1 for all E;

�P2� v�I� � 1;

�P3� v�E� F� . . .� � v�E� � v�F� � . . . for any sequence E;F; . . . with E� F� . . . � I:
According to Gleason’s theorem [2], all states are given by
density operators so that v�E� � v��E� � tr��E�, pro-
vided that the dimension of the complex Hilbert space
is at least 3. The duality of states and observables is thus
characterized through the trace expression tr��E�, which
in the minimal interpretation gives the probability of an
outcome associated with E, of a measurement performed
on a system in state �.

In quantum physics there are many experimental pro-
cedures leading to measurements whose outcome proba-
bilities are expectations not of projections but rather of
effects. It is therefore natural to define a quantum state
as a generalized probability measure not just on P �H �
but on the full set of effects, E�H �, in such a way that
the conditions (P1)–(P3) hold for all E;F; . . . 2 E�H �.
Note that while for sets of projections the condition E�
F� . . . 2 P �H � is equivalent to E;F; . . . being mutually
orthogonal and thus commuting, the commutativity is no
longer necessary for E� F� . . . � I to hold if E;F; . . .
are effects. The following analog of Gleason’s theorem
then holds.
Theorem. Any generalized probability measure E �
v�E� on E�H � with the properties (P1)–(P3) is of the
form v�E� � tr��E� for all E, for some density operator �.

Proof. It is trivial to see that v�E� � nv�1n E� for all
positive integers. Then it follows immediately that
v�pE� � pv�E� for any rational p 2 �0; 1�. Observe also
the additivity and the positivity entail that any general-
ized probability measure is order preserving, E � F )
v�E� � v�F�. Let 
 be any real number, 0 � 
 � 1. Let
p� be an increasing sequence of rational numbers in �0; 1�
which approaches 
 from below and q a decreasing se-
quence of rational numbers in �0; 1� which approaches 

from above. It follows that v�p�E� � p�v�E� � v�
E� �
v�qE� � qv�E�, and therefore, in the limit we have

v�E� � v�
E� � 
v�E�. Hence, v�
E� � 
v�E�.

Let A be any positive bounded operator not in E�H �.
We can always write A � 
E, with E 2 E�H � and suit-
able 
 
 1. [In fact, as A is bounded, there is a positive
number 
 such that h’jA’i � 
 for all unit vectors ’.
This means that the operator E :� �1=
�A is an effect.]
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Let E1; E2 2 E�H � be such that A � 
1E1 � 
2E2.
Assume without loss of generality that 1 � 
1 <
2.
Then v�E2� �


1


2
v�E1�, and so 
1v�E1� � 
2v�E2�.

Thus we can uniquely define v�A� � 
1v�E1�.
Let A;B be positive bounded operators. Take �> 1 such

that 1
� �A� B� 2 E�H �. Then we can write v�A� B� as

�v�1� �A�B�� � �v�
1
�A���v�

1
�B� � v�A��v�B�.

Finally, let C be an arbitrary bounded Hermitian
operator. Assume we have two different decomposi-
tions C � A� B � A0 � B0 into a difference of positive
operators. We have v�A� � v�B0� � v�B� � v�A0� and so
v�A� � v�B� � v�A0� � v�B0�. Thus we can uniquely de-
fine: v�C� :� v�A� � v�B�. It is now straightforward to
verify the linearity of the map v thus extended to the
vector space of all bounded linear Hermitian operators.
We have found that any generalized probability measure
on effects extends to a unique positive linear functional
on this vector space. If the Hilbert space H is finite
dimensional, it is a straightforward application of ele-
mentary linear algebra to show that any such functional is
obtained from a density operator via the trace formula. If
the Hilbert space is infinite dimensional, it still holds true
that these linear functionals are bounded [already as a
consequence of (P1)–(P3) with additivity over finite col-
lections of effects] and even normal (using the additivity
over countable sets of effects). In fact, since C � D
implies v�C� � v�D�, we have that jv�C�j � kCk (using
D � kCkI). This is the boundedness of v. (The symbol
kCk denotes the norm of the bounded Hermitian operator
C, defined as the smallest number � 
 0 for which
kC’k � �k’k for all ’ 2 H .) To show that v is normal
one has to verify that for any norm bounded increasing
sequence of Hermitian operators Cn with limit C, it
follows that v�Cn� approaches v�C�. To see this one uses
the following construction to utilize the countable addi-
tivity property P3. Take 
 > 0 large enough such that all
Cn � 
I 
 O and C� 
I 
 O. Take � > 0 such that
F � ��C� 
I� � I. Then the operators Fn �
��Cn � 
I� and F are effects and we have that the
increasing sequence of effects Fn approaches F. Write
E1 � F1, E2 � F2 � F1; . . . ; En � Fn � Fn�1. These op-
erators En are also effects. They satisfy E1 � E2 � . . .�
En � Fn, so that E1 � E2 � . . .� En � . . . � F.
Therefore F � limn!1Fn � E1 � E2 � . . .� En � . . . ,
and by (P3) we obtain v�F� �

P
v�En� � limn!1v�Fn�.

This translates into v�Cn� ! v�C�. Finally, we note that
it is well-known that any positive normal linear func-
tional is obtained from a density operator (e.g., [4],
Lemma 1.6.1, or see the direct elementary proof due to
von Neumann [5,6]). �

The conclusion of our theorem is the same as that of
Gleason’s theorem. The extreme simplicity of the proof
in comparison to Gleason’s proof is due to the fact that
the domain of generalized probability measures is sub-
stantially enlarged, from the set of projections to that of
all effects.
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The statement of the present theorem also extends to
the case of two-dimensional Hilbert spaces where
Gleason’s theorem fails. It is worth noting that the
dispersion-free generalized probability measures con-
structed on the set of projections of a two-dimensional
Hilbert space (see, e.g., [7,8]), simply do not extend to any
generalized probability measures on the full set of effects.
The reason must be seen in the fact that the additivity
requirement for v on sets of pairwise orthogonal projec-
tions is too weak to enforce the linearity of v, considering
that such sets of projections are mutually commutative.

Here is a simple intuitive argument demonstrating that
there are no linear extensions of any dispersion-free
generalized probability measure on the projections of a
two-dimensional Hilbert space. We use the Poincaré
sphere representation of positive operators of trace 1, A �
1=2�I � a � ��, where � � ��x; �y; �z�, a � �ax; ay; az�,
with kak2 � a2x � a

2
y � a

2
z � 1. All projections are then

either I or O or P � 1=2�I � n � ��, with knk � 1. Let v
be a dispersion-free generalized probability measure on
the projections. Any pair of mutually orthogonal projec-
tions P;P0 � I � P will have values 1 and 0 such that
their sum is 1. Hence there are nonorthogonal pairs P �
1=2�I � n � ��, Q � 1=2�I �m � �� such that both have
value 0. If v had a linear extension, then all the effects
corresponding to the line segment joining n and m, E �
!P� �1� !�Q, with 0 � ! � 1, would have values
v�E� � !v�P� � �1� !�v�Q� � 0. On the other hand,
we can write E in its spectral decomposition E � �R�
�1���R0, where 0<�< 1 if 0< !< 1. Assume that
v�R� � 1, v�R0� � 0, then v�E� � � � 0, which contra-
dicts the previous conclusion that v�E� � 0. Hence there
is no consistent linear extension of v.

Up to this point we have restricted ourselves to the
minimal interpretation of quantum states and observ-
ables, according to which these entities are tools for
calculating experimental probabilities. We have shown
that, given the set of effects as a representation of all
experimental yes-no questions, any quantum state, under-
stood as a generalized probability measure on the set of
effects, is given in the familiar way by a density operator.

This result entails a formalization of the well-known
fact that quantum mechanics is an irreducibly probabil-
istic theory: in contrast to classical probability theory,
quantum probabilities cannot be decomposed into convex
combinations of dispersion-free (that is, f0; 1g-valued)
generalized probability measures.

We conclude with a brief outline of an application of
the above result to interpretations of quantum mechanics
that go beyond the scope of the minimal interpreta-
tion. Such an interpretation will consider observables as
representations of properties of a system and effects as
yes-no propositions about the possible values of the ob-
servables. The role of states will be to assign values to
observables and effects. In a deterministic world, one
would expect a complete state description to assign one
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of the values 1 or 0 to each effect of a complete collection
Ei (with

P
Ei � I), in such a way that 1 occurs exactly

once. Thus the sum of the values for all Ei is 1.
This consideration leads to the idea of defining states

as effect valuations, that is, as functions v:E � v�E�
of effects with the properties v�E� 
 0, and v�E� �
v�F� � . . . � 1 if E� F� . . . � I.

It is easy to see that every effect valuation has the
properties (P1)–(P3) of generalized probability measures,
and conversely. Hence the above theorem entails that any
effect valuation is of the form v�E� � tr��E� for all E 2
E�H � and some density operator �.

An interpretation of valuations as truth value assign-
ments would require the numbers v�E� to be either 1 or 0,
indicating the occurrence or nonoccurrence of an out-
come associated with E. Valuations with this property
are referred to as dispersion-free. The above theorem
entails immediately that dispersion-free effect valuations
which are defined everywhere on E�H � do not exist. It
follows that noncontextual hidden variables, understood
as dispersion-free, globally defined, valuations, are ex-
cluded in quantum mechanics.

The argument against noncontextual hidden variables
thus obtained resembles formally that of von Neumann
[5]. However, von Neumann’s problematical assumption,
that of additivity of a valuation over arbitrary (countable)
sets of (commuting or noncommuting) Hermitian op-
erators [9], is here replaced by the requirement of
additivity over (countable) sets of effects that add up to
I. Such collections of effects constitute a POVM and
are thus jointly measurable in a single experiment. It
thus makes sense to consider hypothetical simultaneous
(hidden, dispersion-free) values of such sets of effects,
and hence also the values of sums of effects provided
these sums are bounded by I.

In the case of a pure state � � j’ih’j, the occurrence of
values v��E� strictly between 0 and 1 indicates a situation
where the property associated with E is objectively in-
determinate; that is, its presence or absence is not just
subjectively unknown. This interpretation is in accord
with the propensity interpretation of probabilities, ac-
cording to which the number v��E� gives a measure of
the system’s objective tendency to trigger an outcome
represented by effect E if the state is given by � and a
measurement is made of a POVM containing E [10].

As an example, E1 andE2 � I � E1 could represent the
propositions that a quantum particle is in the upper and
lower path of an interferometer, respectively. If a pure
state � is a superposition of states �1, �2 in which E1 and
E2 are real, respectively [i.e., v�1�E1� � v�2�E2� � 1],
then there is no convex decomposition of that state in
terms of valuations which are dispersion-free, even only
with respect to E1; E2. The fact that 0< v��Ei�< 1 is
then an expression of the indeterminateness of the proper-
ties E1; E2 in the state �. The most appropriate way of
accounting for this situation seems to be to say that the
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localization of the quantum particle is extended over the
space occupied by the two paths of the interferometer.
The quantum particle is present, to a degree quantified by
the number v��Ei�, in each of the two paths represented
by Ei. If forced by a measurement to decide whether to
show up in the upper or lower path, it will do so with a
propensity quantified by those numbers.

A related interpretation of valuations for unsharp mea-
surements as approximate truth values has recently been
advocated by Breuer [11], who applied Gleason’s theorem
to obtain a Kochen-Specker theorem [8] for unsharp spin
observables.

The nonexistence of dispersion-free effect valuations
raises the interesting question whether there are subsets in
the set of effects, with meaningful structures, on which
such dispersion-free valuations can be defined. Interesting
constructions demonstrating a positive answer to this
question are presented for subsets of projections in [12],
or also for effects in [13]. Intuitively, it appears that the
valuations of Bub [12] are defined on relatively sparse sets
of projections, but these sets do possess some structures
that can be argued to be necessary for a consistent set of
definite properties; by contrast, the valuations of Kent
[13] are defined on ‘‘dense’’ sets of POVMs where it is
not obvious that these are equipped with such ‘‘logical’’
structures. The important task remains to explore how
far one can go in defining noncontextual dispersion-free
valuations on subsets of effects with appropriate struc-
tures, without running into conflict with the modified
Gleason theorem proven here.

Note added.—An insightful analysis contributing to
this aim has recently been made by Appleby [14].
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