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Large-scale quantum information processors must be able 
to transport and maintain quantum information, and 
repeatedly perform logical operations. Here we 
demonstrate a combination of all the fundamental 
elements required to perform scalable quantum 
computing using qubits stored in the internal states of 
trapped atomic ions. We quantify the repeatability of a 
multi-qubit operation, observing no loss of performance 
despite qubit transport over macroscopic distances. Key 
to these results is the use of different pairs of 9Be+ 
hyperfine states for robust qubit storage, readout and 
gates, and simultaneous trapping of 24Mg+ "re-cooling" 
ions along with the qubit ions. 

The long term goal for experimental quantum information 
processing is to realize a device involving large numbers of 
qubits and even larger numbers of logical operations (1, 2). 
These resource requirements are defined both by the 
algorithms themselves, and the need for quantum error-
correction, which makes use of many physical systems to 
store each qubit (1, 3). The required components for building 
such a device are robust qubit storage, single and two-qubit 
logic gates, state initialization, readout, and the ability to 
transfer quantum information between spatially separated 
locations in the processor (2, 4, 5). All of these components 
must be able to be performed repeatedly in order to realize a 
large scale device. 

One experimental implementation of quantum information 
processing uses qubits stored in the internal states of trapped 
atomic ions. A universal set of quantum logic gates has been 
demonstrated using laser addressing (6–8), leading to a 
number of small-scale demonstrations of quantum 
information protocols including teleportation, dense-coding, 
and a single round of quantum error-correction (6). A major 
challenge for this implementation is now to integrate scalable 
techniques required for large-scale processing. 

A possible architecture for a large-scale trapped-ion device 
involves moving quantum information around the processor 
by moving the ions themselves, where the transport is 
controlled by time varying potentials applied to electrodes in 
a multiple-zone trap array (5, 9, 10). The processor would 
consist of a large number of processing regions working in 
parallel, with other regions dedicated to qubit storage 

(memory). A general prescription for the required operations 
in a single processing region is the following (illustrated in 
Fig. 1), which includes all of the elements necessary for 
universal quantum computation (11). (i) Two qubit ions are 
held in separate zones, allowing individual addressing for 
single qubit gates, state readout, or state initialization. (ii) The 
ions are then combined in a single zone, and a two-qubit gate 
is performed. (iii) The ions are separated, and one is moved to 
another region of the trap array. (iv) A third ion is brought 
into this processing region from another part of the device. In 
this work we implement in a repeated fashion all of the steps 
which must be performed in a single processing region in 
order to realize this architecture. 

Some elements of this architecture have been 
demonstrated in previous experiments (6, 12), which involved 
transport of ions in a multi-zone trap. However, these 
experiments did not involve the use of techniques required for 
building a large scale device, limiting the size of algorithms 
which could be performed. Primary limiting factors for these 
experiments were the loss of qubit coherence, caused by 
interaction with the fluctuating magnetic field environment, 
and motional excitation, which degrades the fidelity of 
subsequent two-qubit gates because of the finite wavelength 
of the gate control fields (13). Motional excitation occurs as a 
result of imperfect control during transport and noisy electric 
fields emanating from the electrode surfaces (6). In this work, 
we store qubits robustly using a pair of energy eigenstates in 
the 9Be+ 2s 2S1/2 hyperfine manifold (shown in Fig. 2) whose 
energy separation does not depend on the magnetic field to 
first order. For the 9Be+ "qubit" ions used here, this condition 
is met at a magnetic field of 0.011964 T for the "memory" 
qubit states |1〉 ≡ |F = 1, MF = 0〉 and |0〉 ≡ |F = 2, MF = 1〉 
(The states are labeled using the total angular momentum 
quantum numbers F and MF). The insensitivity to magnetic 
field changes is crucial for preserving coherence in the 
presence of ambient temporal field fluctuations (14), and also 
greatly suppresses phase shifts caused by spatial variations in 
the average field experienced by an ion as it is transported 
throughout the multi-zone trap array. We remove motional 
excitation prior to each two-qubit gate by recooling 
"refrigerant" 24Mg+ ions that are trapped along with the qubit 
ions. Laser cooling this second species sympathetically cools 
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the first through the strong Coulomb interaction between the 
ions (15–18). 

A benchmark for scalability in this implementation is the 
repeated performance of a complete set of one and two-qubit 
logic gates combined with quantum information transport. 
We demonstrate repeatability of a unitary transformation Û 
which involves four single qubit gates, a two-qubit gate, and 
transport over 960 μm (the sequence for Û is shown in Fig. 
3a). Ideally, Û implements the operation 
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in the |11〉, |10〉, |01〉, |00〉 basis. We directly compare 
experimental implementation of Û and Û 2 using quantum 
process tomography (19). Process tomography requires the 
process under investigation to be applied to sixteen input 
states, followed by measurement in nine orthogonal bases 
(20). The input states are prepared using a combination of 
optical pumping and single-qubit operations, with the latter 
performed on each qubit individually. The analysis also 
requires individual single-qubit rotations, followed by 
individual state measurement of the qubits. The experiment 
therefore realizes all of the basic components illustrated in 
Fig. 1. We directly compare Û and Û 2 by running the 
experimental sequence for a given input/output combination 
on Û and Û 2 sequentially (shown in Fig. 3b), making the 
comparison of the two robust against long term drifts in 
experimental parameters. For each input/analysis 
combination, we repeat this sequence 350 times. 

The experiment utilizes two 9Be+ and two 24Mg+ ions, 
trapped in a six-zone linear Paul trap (12). Each 9Be+ ion is 
used to store one qubit, and is accompanied at all times by a 
24Mg+ refrigerant ion, which is used for sympathetic cooling. 
The ion order is initialized to 9Be+ -24Mg+ -24Mg+ -9Be+ at the 
start of the experimental sequence, and remains in this order 
throughout (21). 

Coherent manipulations of the internal and motional states 
of the ions are performed using laser-induced stimulated 
Raman transitions (9). Single qubit gates are implemented in 
the basis |1〉, |0〉 by resonant Rabi flopping, applying the 
rotation 
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where θ is proportional to the Raman pulse duration and φ is 
chosen by adjusting the relative phase of the Raman light 
fields at the ion. We individually address the two qubit ions 

by holding them in two trap zones 240 μm apart, and 
switching the laser beams between zones. 

To implement two-qubit gates, we first combine all of the 
ions into a single zone. The four-ion linear chain exhibits four 
axial vibrational normal modes caused by the Coulomb 
coupling between ions (21). After recombination, these 
modes contain significant excess energy, mainly caused by 
imperfect control of the potentials used during separation and 
recombination. Therefore, prior to each two-qubit gate, we 
cool each mode to near the quantum ground state (〈n〉 ~ 0.06) 
using a combination of Doppler cooling and resolved 
sideband cooling on the 24Mg+ ions (15, 22). Importantly, the 
cooling light only interacts with 24Mg+, leaving the qubits 
stored in 9Be+ intact (15). 

The composite two-qubit gate makes use of a geometric 
phase gate (7) to implement Ĝ = D[(1, i, i, 1)], where D[v] is 
a diagonal matrix with the vector v on the diagonal. The 
phase acquired by the |10〉 and |01〉 states is obtained by 
transient simultaneous excitation of the two highest-
frequency normal modes by use of a state-dependent optical 
dipole force (22). The state dependence of this force is 
derived from a differential light shift between the two qubit 
states, which is highly suppressed for field-independent 
transitions (14, 23). We thus use a hybrid scheme for qubit 
storage, mapping the qubits into a different state manifold for 
the two-qubit gate (22, 24, 25). Prior to applying the optical 
dipole force, we transfer each qubit into a pair of states with a 
sizeable differential light shift - the "gate" manifold |1G〉 ≡ 
|1,1〉, |0G〉 ≡ |2,2〉 (Fig. 2). After applying the state-dependent 
force, we reverse this transfer and the ions are again separated 
(22). The gate manifold is sensitive to magnetic field 
fluctuations, which can lead to qubit dephasing. We suppress 
these effects using spin-echo techniques (21). 

We employ quantum process tomography to characterize 
our implementation of the unitary operation Û, including any 
experimental imperfections (19, 20). The evolution of the 
qubit system (including that caused by undesired interactions 
with the environment) is described by a completely positive 
linear map ρout = EÛ

 (ρin) (19) on the input density matrix ρin 
= ∑i,j ci,j |i〉 〈j|, where the ci,j are complex numbers and i, j are 
labels that each run over the eigenstates |11〉, |10〉, |01〉, |00〉 . 
Following (26), we represent the map by a 16 × 16 matrix 

ˆ ˆ ( )U U
i j

E i j E i j
,

= ⊗∑  (3) 

In order to extract this process matrix, we experimentally 
apply the process to 16 input states made up of tensor 

products of the states |1〉, |0〉, (|0〉 − |1〉)/ 2  and (|0〉 + 

i|1〉)/ 2 . For each output density matrix, we apply nine sets 
of rotations, which allow us to measure the expectation values 
of the operators σs⊗σt, where the σs,t run over the Pauli 
matrices I, σx, σy, σz. Our state readout performs a projective 
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measurement in the Z basis on each ion independently. We 
first transfer population from |0〉 to |2,2〉, and from |1〉 to 
|1,−1〉, and subsequently drive the cycling transition 2s 2S1/2 
|2,2〉 ↔ 2p 2P3/2 |3,3〉 for 200 μs, where |2,2〉 strongly 
fluoresces and |1,−1〉 does not (22). We collect a small 
fraction of the emitted photons on a photomultiplier tube. We 
run the sequence shown in Fig. 3b 350 times for each of the 
16 input states and nine measurement rotations. The process 
matrix is obtained directly from the recorded photon counts 
and measurement/preparation settings using a maximum-
likelihood method that ensures that the reconstructed process 
matrix is physical (26). 

Experimentally obtained process matrices for one and two 
applications of Û are shown in Fig. 4. From the 
reconstructions, we can calculate various measures of the 
fidelity with which the processes were implemented. A direct 
comparison between experimental results and the ideal case is 
given by the entanglement fidelity F ≡ Tr(Eideal E)/16 (27). 
We find FÛ = 0.922(4) for a single application of Û, and FÛ

 2 
= 0.853(5) for two applications (error estimates are the 
standard error on the mean obtained from parametric 
bootstrap resampling (22)). As an additional measure of 
operation fidelity, we take the mean f  of the fidelity 

( ) 2

ideal ideal ideal( , ) TrE Ef ρ ρ ρ ρ ρ⎡ ⎤≡ ⎢ ⎥⎣ ⎦
 (28) 

between the output density matrices obtained from the ideal 
and experimental processes for an unbiased set of 36 input 
states (formed from the eigenstates of σs⊗σt, where σs,t run 
over σx,σy, σz). We obtain a mean state fidelity of f Û = 

0.940(4) for EÛ and f Û
2 = 0.890(4) for EÛ

2. We can compare 
these values to the entanglement fidelities using the relation 
f  = (4 F + 1)/5 (27), and see that they are consistent. 

To compare the performance of a second application of Û 
relative to the first, we can compare its experimental 
repetition EÛ

2(ρin) to a numeric repetition of the experimental 
map EÛ (ρin), i.e., to EÛÛ(ρin) ≡ EÛ(EÛ(ρin)). Evaluating the 
fidelities for each against the ideal case yields FÛ

2/FÛÛ = 
1.003(13) and f Û

2/ f ÛÛ = 1.004(10), indicating that the 
operation fidelity is the same for each application of Û. We 
can also make a direct comparison between the processes 
performed by our implementation of Û and Û 2 by taking the 
mean fidelity between ρÛÛ = EÛ( Û(ρin)) and ρÛ

2 = EÛ
2(ρin) for 

the 36 input states. We find f  (ρÛÛ, ρÛ
2) = 0.987(3). 

Although this number is not unity, as might be expected, the 
deviation can be ascribed to bias in the maximum-likelihood 
reconstruction method for finite sample size (22). Our results 
are thus consistent with the same operation being performed 
by the experiment for each application of Û. 

Sources of error in our system arise primarily from 
spontaneous photon scattering (~ 1.5% per Û) (29) and 

intensity fluctuations of the Raman light fields at the percent 
level. In order to characterize the loss of fidelity caused by 
single-qubit rotations, we apply process tomography to the 
experimental sequence, but without the state-dependent force 
pulses. In this case the ions are always in a product state and 
the process matrix for each can be obtained independently. 
The resulting process matrices have mean state fidelity 
relative to the ideal case of 0.97 for a single run of the 
sequence (which uses eight rotations per ion including qubit 
manifold transfer and spin-echo pulses). During the two-qubit 
gate, the spin states are entangled with the motion. From 
separate measurements of motional coherence, we estimate 
the infidelity from this source to be less than 1 × 10−3. 

Many challenges remain before large-scale ion trap 
quantum information processing becomes a reality, including 
increasing fidelities to those required for fault-tolerant 
quantum error correction (3, 1), and meeting the considerable 
technical challenge of controlling ions in large multi-
dimensional trap arrays (10). Both of these challenges could 
potentially contain problems which have not been considered 
here, and which may require combining our approach with 
alternative methods, for instance entanglement distribution 
using photonic networks (30). Nevertheless, the combination 
of techniques demonstrated here includes all of the basic 
building blocks required in this architecture, and opens up 
new possibilities for quantum information processing as well 
as state and process engineering. 
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Fig. 1. Schematic of the sequence of operations implemented 
in a single processing region for building up a computation in 
the architecture of (9, 5). A large-scale device would involve 
many of these processing regions performing operations in 
parallel, along with additional regions for memory. 
Generalized operations would use this block structure 
repeatedly, with perhaps some of the steps omitted. 

Fig. 2. Hybrid qubit storage in the 9Be+ 2s 2S1/2 hyperfine 
levels. The states are labeled using the total angular 
momentum quantum numbers F and MF. |1〉, |0〉 are the qubit 
states used for single qubit gates and transport, and |1G〉, |0G〉 
are used for two-qubit gates. For detection, the |1,−1〉 and 
|2,2〉 states are used. At the applied magnetic field (B ≅ 

0.011964 T), the frequencies for transitions between pairs of 
states with the same F are well resolved. 

Fig. 3. (A) Schematic of the qubit ion trajectories (solid red 
and dotted blue lines) and gate operations used to implement 
Û. The single qubit rotations are "π/2" ≡ R(π/2, 0) (Eq. 2). 
The two-qubit gate implements Ĝ = D[(1,i,i,1)]. (B) Full 
sequence used to perform process tomography on Û and Û 2. 
This sequence is repeated 350 times for each setting of 
preparation/analysis. 

Fig. 4. Reconstructed process matrix for (A) Û and (B) two 
repetitions of Û. The map E(|i〉 〈j|) produces a matrix Ek,l for 
each element |i〉 〈j|. Hence elements of the matrix E are 
labeled by m = 4 (i − 1) + k, n = 4 (j − 1) + l, where the factor 
4 results from the size of the two-qubit state space. For 
example, the |11〉 〈00| (i = 1, j = 4) element of an input 
density matrix is mapped to E(|11〉 〈00|), a 4×4 block of E 
given by m ∈ [1, 4] and n ∈ [13, 16]. The position of each 
peak is in agreement with the theoretical prediction. 
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