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Abstract. Density fluctuations of a cosmological quantum real
scalar field in a coherent state are interpreted as Bogoliubov
compressional excitations of a condensed Bose-Einstein gas. The
Jeans instability mechanism is generalized in this fully quantum
context. The evolution of the Jeans mass in a FRW Universe that
emerges from an inflationary stage is then studied in the non-
relativistic and ultrarelativistic phases. The behavior of the Jeans
mass is found to be qualitatively similar, although quantitatively
different, to that of a fermion matter field. The introduction of the
gauge-invariant formalism is necessary to find the time evolution
of the perturbations in the radiation dominated stage.
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1. Introduction

The potential role that scalar fields might play in cosmology has
recently attracted a great deal of interest from a purely theoretical
point of view and may have some consequences for observations
(see e.g. Linde, 1982; Albrecht and Steinhardt, 1982; Albrecht et
al., 1982). Recent speculations in particle physics and cosmology
have proposed various kinds of exotic scalar fields as candidates
for a solution of the problem of dark matter in the Universe and
particularly in galactic halos (e.g. Preskill et al, 1983; Turner,
1986). Quite apart from these cosmological considerations, at-
tention has also been given to self-gravitating systems of bosons
(Ruffini and Bonazzola, 1969). Further results in this field have
followed from the introduction of nonlinear analysis (see e.g.
Colpi et al., 1986 and Lee, 1987). The aim of the present paper is to
analyze the possibility advanced by Baldeschi et al. (1983) that
self-gravitating systems of bosons might play a fundamental role
in astrophysics. Here we study the possibility of using an instabil-
ity Jeans mechanism to form self-gravitating configurations from
a scalar field in a coherent state. Classical real scalar field
coherently oscillating have been studied in the literature in several
contexts (see e.g. Turner, 1983; Piran and Williams, 1985). It is
known that in the latest phases of the evolution of the Universe,
this field behaves as conventional dust with vanishing temper-
ature and pressure so that in many works (see e.g. Ipser and
Sikivie, 1983) its Jeans mass is assumed to be zero. In our opinion,
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a complete physical understanding of this kind of system can be
reached only in a fully quantum description.

In this view, we study a coherent state, as defined by Glauber
(1963), of a quantum real scalar field gravitationally self-inter-
acting at temperature 7=0. A macroscopical set of scalar par-
ticles in this state coincide with a weakly nonideal condensed
Bose-Einstein gas (see e.g. Umezawa et al., 1982). We interpret
density perturbations of the quantum scalar field as excitations of
this Bose-Einstein condensate. The hydrodynamical behavior of a
quantum Bose-Einstein condensate leads us to interpret these
excitations as small amplitude density waves (see E.P. Gross,
1966).

In Sect. 2, we show that the dispersion relation of the
perturbations of a classical real scalar field obtained by Khlopov
et al. (1985) coincides with the Bogoliubov’s (1974) energy spec-
trum of the excitations of boson ground-state. In Sect. 3, we
calculate the expectation values of the energy-tensor components
on the coherent state of a set of scalar particles delimited in half
wavelength of a density fluctuation in a FRW Universe. In this
sense we generalize the Jeans theory to a scalar field. The physical
mechanism that contributes to a novanishing Jeans mass has the
same nature as that which accounts for the equilibrium of the
boson stars as studied by Ruffini and Bonazzola (1969). In Sect. 4,
we study the behavior of the Jeans mass in an ultrarelativistic
limit using a gauge invariant perturbation model. Finally, in Sect.
5, we compare our results to the case of equilibrium of self-
gravitating configurations. Section 6 contains our conclusions.

2. Density fluctuations as Bogoliubov excitations

The concept of Bose-Einstein condensation in quantum field
theory is strictly connected with that of coherence. The concept of
coherence was first introduced in quantum mechanics by
E. Schrédinger (1962) to describe the particular state of an
oscillator which minimizes the quantum indetermination. It was
further developed by R. Glauber (1963) for electromagnetic
radiation. The definition of coherent state, given by Glauber, as
the state which yields factorization of the correlation functions,
coincides with the one given by C.N. Yang (1962), for condensa-
tion of an ideal boson gas. The extension to nonideal boson gas
(superfluid) was obtained by W. Cumming and J.K. Johnston
(1966). In this article we analyze a linear density perturbation of a
cosmological quantum coherent scalar field in its ground-state
corresponding to a compressional excitation of a weakly nonideal
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Bose-Einstein condensate. We note that the ground-state that we
consider is completely equivalent to an axion field ground-state,
as studied by Turner et al. (1983). The coherent oscillation of this
field at temperature 7=0 correspond in fact to a large assembly
of particles in the same single-particle state with momentum
k=0, ie. to a Bose-Einstein condensate.

The energy spectrum of the excitations of a weakly nonideal
Bose-Einstein condensate at zero temperature, was first obtained
by N.N. Bogoliubov (1974) in Hartee’s perturbative scheme. The
excitations frequency Q; is

A AN
Qk=(—+ > ) Y]

4m? m

where n, is the number density of particles in the ground-state, m
the mass of the bosons, k the wave number of the excitation and
V, the Fourier transform of the pair potential energy (in this
paper we set i=c=1). It is easy to verify that in the long-
wavelength limit, this expression leads to a linear (phonon-like)
dispersion relation (see e.g. Fetter and Walecka, 1971). The
Fourier transform of the Newtonian gravitational potential has,
in a distributional sense the expression
®sin kr'

J 4nGm?
Vi=—4nGm? | ——dr'=— ———
o k k?
where G is the gravitational constant. The term associated with
k=0 has to be subtracted in Hartee’s procedure to calculate the
energy of the excitations because it corresponds to the interaction
of a uniform distribution of mass. Since ¥, is negative there is a
direct consequence on the stability of the system: from Eq. (1) it
follows that Q, can acquire imaginary values for sufficiently small
values of k. Consequently, the group velocity of sound, defined by
v, = 0Q, / 0k, becomes imaginary for values of k approaching zero.
It is sometimes claimed that this fact leads to a breakdown of the
theory, which is considered applicable only for repulsive inter-
actions (see e.g. Fetter and Walecka, 1971). In our opinion the
appearance of imaginary values of Q, corresponds to a well
defined physical instability of the system and the perturbation
treatment introduced fails to describe only the development of
such instability. Something similar happens for the ground-state
of electrons in semiconductors: the introduction of the attractive
electron-phonon interaction make the ground-state unstable and
lead to the formation of bound states i.e. Copper pairs (see De
Gennes, 1966). It is conceivable that a complete description of the
development of instability in self-gravitating structures is possible
only by taking into account nonlinear effects.

We show how this physical instability is of the same nature as
the one studied by M. Yu Khlopov et al. (1985) for a classical real
scalar field coherently oscillating in a static flat Universe. Al-
though this field has not a quantum nature the comparison of the
results obtained by Khlopov et al. with those that we obtain for a
fully quantum coherent scalar field is meaningful in view of the
classical behavior of a coherent field. The expected value of
physical quantities on a coherent state fulfills, in fact, classical
equations (see e.g. Schrédinger, 1962 and Glauber, 1963). In the
limit of a weak gravitational field, expressed by the condition
G p <m?, they found for a real field

@

Q2 = —2m/m? + k> +4nGp + (k* +2m?) &)

where p is the energy density of the field. It is easy to verify that
such a condition coincides with the applicability condition of the

perturbative method used by Bogoliubov. Expanding Eq. (3) for
Gp/m* <1 we obtain
k* k?

QO ~—— + 21Gp— —4nGp )
4 m?

m2

and using Eq. (2) we can write
k*  V,pk? k? >
= +—\1-— 5
m? 2m? )

T om?

Since we are interested in macroscopic fluctuations, we re-
quire that the wavelength of the density fluctuations be larger
than the Compton wavelength of the scalar field, namely k2 < m?.
In this limit the last term on the right of Eq. (5) can be neglected
and the Khlopov dispersion relation (given by Eq. 3) becomes
equivalent to the excitation spectrum of Bogoliubov (given by
Eq. 1) (note that n,m=p). We conclude that the Khlopov and
Bogoliubov excitations have the same nature. The critical value of
the wave number found by Khlopov et al.

ky = 2m./nGp)" ©)

coincides with the one obtained for propagation of compressional
excitations.

To clarify the physical meaning of how the Jeans instability
occurs in a coherent scalar field we use a simple quantum
mechanics analogue. We consider a single particle in a potential
well created by a density fluctuation. The width of the well is 4,
where A=2n/k. The depth, that we approximate to be constant, is

GNm?
1 )]

o

¢~ =

From elementary principles of quantum mechanics we deduce
that in order to have negative energy levels, i.e. bound states, the
depth of the potential well needs to be larger than

7t2

Derit = m

®
This corresponds to the zero-point energy of the particle in the
hole. If we identify ¢ =g, we obtain, for m and N fixed, the
minimal wavelength above which the gravitational field of the
fluctuation is able to create bound states, that is

1
A= }'cri - 9
J t Gm3N ( )
and clearly coincides with Eq. (6). In fact, if we assume ¥, ~ 13 we
then have

1
" Gom o
so that
2n 12
ky ==~ (m/Gp) (11
J

Thus we can think that zero-point pressure plays the same role
which, in the traditional Jeans treatment, is played by the pressure
of a thermal gas in equilibrium against gravitational attraction.

In the next section we generalize these considerations to the
case of a coherent scalar field in a Friedmann Universe, using the
standard theory of linearized perturbations in general relativity.
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3. Jeans mass for H<m
The Lagrangian density of a gravitationally interacting scalar
field of mass m is

L=(= g)”2 5079 wb—m*¢?) (12)

The components of the energy-momentum tensor given by
T =0"¢p0"¢p —g"' L (13)

where L=(—g)~"/?> %, can be written as

1 1
T =g"g"¢ .5~ Ey‘”g“” batbp+ 59‘”m2¢2 (14)

We use a Friedmann metric corresponding to zero spatial
curvature.

ds? =dt* — R*(t);;dx" dx’. (15)
With this choice Eq. (14) can be written ‘as

1 . .
=—(¢2 - g”‘bai‘b,j + m2¢2)

(16a)
Tj= ——5 (P +gM b —m*d?) + "0 (16b)
Ti=g"¢ ¢ (16¢c)
The equation of motion of the field is
. R,
¢+3E¢—A¢+m2¢=0 17
The field is quantized as
b(x)= Jd3k(akwkwk(z)+a;¢;(x)w: () (18)
In order to have (18) as a solution of (17) we need that

1 i f ‘

v(t)= W € wdt (19a)
Yi(x) =€~ (19b)

where w? = (m? + k?/R?), discarding terms of the order of H/m,
and k2/R? is the kinetic term.

Considering a fluctuation of wave number k; of the back-
ground, i.e. on the homogeneous distribution of scalar particles in
the same coherent state with momentum k=0, we study the
equilibrium of the region delimited by half wavelength of the
fluctuation in analogy to the classical Jeans theory. If the
perturbation is adiabatic and temperature is vanishing then all
the N, particles contained in this region are in the same state,
defined by

¥, > = j dQy (@}, )*10) (20

1
4n,/N,!
where |0) is the vacuum state. The integration is performed for all
the directions of k,. Note that [¥, > must be not confused with
the background ground-state that has k=0. However a linear
adiabatic fluctuation cannot destroy the coherence so |'¥, ) is
also a coherent state as we shall demonstrate in Sect. 5.

We calculate the expected values of the components of
the energy-momentum tensor on I‘Pk‘>. The application of the
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classical Jeans theory is then conditioned by the vanishing of the
expected values of the nondiagonal components of the energy-
momentum tensor. From Eq. (16) we observe that the com-
putation of the expectation value of the components of the stress
tensor reduce to that of mixed products of the spatial and
temporal derivates of ¢. We find

1
(p*) = Wjjdgkagko z [Capa, DU b Y2 (©)

+Laa Ui W OF +<afay DU vl
G YR VEPE )] @y

where {...>=¥, [ ¥y > The second term in the integ-
rand of (21) leads to a dlvergence The nature of such divergence is
well known: it is associated with the presence of zero-point energy
terms in any mode of the field. It is also known that infinities are
removed, introducing a normal ordering of the 4 and 4" operators
(Birrel and Davies, 1982). We note that our result should be
substantially modified in a real expanding Universe by effects of
creation of particles (see e.g. Parker, 1977). However these effects
can be discarded if the expansion rate is considerably smaller than
the oscillation frequency of the field i.e. H < m. In this way the
second term becomes the same as the third term in the integral
in (21).
Using the commutation rules for the 4 and 4" operators

la, a}d =0, [a,a,1=0 [a},a}]=0 (22)

and the Bogoliubov’s prescription, that, in virtue of the macro-
scopical occupation of |'¥, >, transform a, and a}‘ into two

c-numbers equal to \/ N, we obtain

e
(¢ >'_R3w (23a)
In the same way we obtain
~ Niw
B =—s (23b)
.65 = | da, NGk g =ts ML 0y
< ,i¢,j —?‘;2' 1 (kq)i( )Il/’k( )| u R3 (23¢
~ A N, .
($.0b> = 5V EON () |dDy () + ce.=0 (23d)

where c.c. mean the complex conjugate of the preceding term. The
last two equations express the fact that, as follows from the
isotropy of the system, only the quadratic terms in the ground-
state momentum give nonvanishing contributions. Using (16) and
(23) we ﬁnally obtain

(1Y ( L (24)
__ R a
2R3 wR2+ w
3N, k2 m?

Ty= M pp—i T 24b
T 2R3<w 30R? w) (240)
(Tiy=0 ifi#j (24,0
(T:>=0 (24d)

We observe that the vanishing of the nondiagonal terms of the
expectation values of the components of T, allows us to treat the
scalar field in complete analogy to a perfect fluid. In fact, Eqgs. (24)
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fulfill the known relation
{T*™>=(p; +py)uu’ —pg" (25)

where u*=(1,0,0,0) and, in a nonrelativistic regime with
ko, <m,

. Nym
p1=<T5) = FE (26a)
: IN, k?
P1=—1/3<Ti>='3'FW (26b)

are respectively the energy density and the pressure associated to

the perturbation. For the ground-state (i.e. k=0) it is easy to

verify that
N,m

P (27a)

p=0 (27b)

where N, is the total number of scalar particle of the background.

The straightforward application of the linearized theory of
perturbations in general relativity (see Lifshits and Khalatnikov,
1963 and Weinberg, 1972) allows to develop the background
metric as

g =gOm 4 p (28)

A convenient gauge choice is given by the synchronous gauge
h,, =1, h,;=0. Following the notation of Weinberg (1972) we
obtain the coupled system of equations

. . R
h—2Hh+2<H2—E>h=—8nGR2(pl+3p1) (29a)
), +3H(p,+py)=—(p+ )I:a< h >+'V (29b)
P1 (p1+p)=—(p+p 5 \2R2 1Vu

0

a_t((P+P)R5V“1>=_R3V2P1 (29¢)

where u is the spatial component of the 4-velocity (u° = 1, u' = 0),
h=trh;; and p;, p, and u, are the first order fluctuation ampli-
tudes of the corresponding quantities.
Since we are studying adiabatic perturbation the definition of
the sound velocity is
2

3m G0

where k,, = k;/R. Assuming plane wave behavior, we get in the
nonrelativistic regime (k < m)
w . [(kE
5+2H6+<m%‘—4n6p>5=0 31)
where d=4dp/p.

We compare this equation with the one obtained by J. Ipser

and P. Sikivie (1983) for a pressureless axion field, in which the
sound velocity vanishes

S5, +2HS, ~ 4nGp,5, (32)

As underlined by Stecker and Shafi (1983) in this case the Jeans
mass of the field results to be zero so that a perturbation is free to
grow as soon as it come inside the Hubble horizon.

In analogy with Weinberg (1972), Eq. (31) can be written
g 4 A? 2
t5+§t5+ W—g 0=0

where A2 = 1277232 k2, and v? = k?/3R*m? ~t 7?1 = ' 7 with
y=>5/3. This equation has a solution of the form (see e.g. Smirnov

Vol. 11, 1977)
d=Ct Y Js2(BA " Y3)+ Ct "8 J512(3AL™113) (34)

where J | 5/, are first order Bessel functions. The Bessel functions,
J,.(x), oscillate for x> 1 and decrease with a power-law for x < 1.
So we have a critical condition for t'/3 x A, i.e.

(33)

t™2 ~6nGp ~ vZ k2, (35)

which corresponds to the classical Jeans criterion. Inserting in
Eq. (35) the sound velocity given by Eq. (30) we obtain

k2 ~m\/ﬁ

in agreement with the result of Khlopov et al. (see Eq. (6)).
The Jeans mass of the perturbation is then given by

4 (1) 3 2\ (H\!"2
M,=§np<§> z102p”“<%> le(%)(;) (37)

and is, clearly, different from zero.

(36)

4. Jeans mass in a radiation dominated phase

The interest in scalar fields in modern cosmology is often
connected to the inflationary models of evolution of the Universe.
From Eq. (16), written for a Friedmann Universe, without
fluctuations,

1.
p=<TZ>=§(I¢I2+m2I¢|2) (38a)

r 1
p=—§<Ti~>=§(I¢|2—m2|¢|2) (38b)
we see that a massive scalar field with a potential V(¢)=m2¢?
behaves like a pressureless nonrelativistic matter (dust) as long as
it is in its coherently oscillating regime (¢ ~e™) and H < m. In
fact in this limit |$|?> = m?|¢|? and it is evident that p=0.

In another limit, when | ¢|? < m?|¢|?, the pressure is negative
(see Belinsky et al., 1984; Piran and Williams, 1985) and a de Sitter
phase of exponential expansion occurs spontaneously if the scalar
field dominates the Universe’s dynamics. The case with
|$|? > m?|p|? corresponds to the equation of state p=p and has
been studied by Zeldovich (1962) and Belinsky and Khalatnikov
(1973). Belinsky et al. (1984) have also shown that the probability
of obtaining an era with such an equation of state is practically
zero in a flat Universe dominated by a massive scalar field. Two
radiation-like matter dominated phases are expected to preceed
and to follow this era (see e.g. Branderberger, 1985).

In this section we study the development of gravitational
instability in a phase of this kind. During it, we know that the
dynamics of the Universe is described by a equation of state
p=p/3 and the sound velocity is

ap 1

2P _ 39
s dp 3 (39)
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We note that now the scalar field must be considered as highly
uncoherent. In fact, there is not a macroscopical occupation of a
single state (temperature is now very high) and the field behaves
as a classical ultra-relativistic matter (see e.g. Turner, 1983). It is
impossible to apply Jean’s calculations in their original form. It is
known in fact, (see e.g. Branderberger, 1985) that in an infla-
tionary Universe a density perturbation can occur outside the
Hubble radius, also called the “effective particle horizon”
ry~ H™'. This radius defines the maximal distance over which
the microphysics can act coherently; a synchronization operation
is impossible for quantities extending to larger dimensions. For
this reason, we need to introduce a “gauge invariant formalism”
to give an unambiguous description of the evolution of such
perturbations.

We use the approach pioneered by Bardeen (1980) and in
particular we re-examine the works of M. Sasaki (1983) con-
cerning scalar gauge-invariant perturbations of classical matter
plus a classical real scalar field. Sasaki starts from Bardeen’s
gauge invariant expression of the energy density in a longitudinal
gauge and, discarding the contribution of the classical matter, he
obtains a second order relation describing the time evolution of
the scalar density fluctuations. Our calculation although similar
to that of Sasaki, leads to a different result. We found the
following evolution relation
. R 1
f+(2+3v3)<§)f+ (kf,hvf —Ex(p+p)>f=0 (40)
where y=8nG and f is the gauge invariant form of the density
contrast associated with the perturbation. It coincide with the
well known time evolution equation of density perturbation in a
FRW Universe dominated by classical matter (see e.g. Weinberg,
1972, Eq. (15.9.21)). It disagrees with Sasaki’s result in the
coefficient which multiplies k2, f; equal to one in his case, that we
found to be v?. Using Eq. (38) in a radiation dominated phase, Eq.
(40) can be written as

2

25,37 (l‘egz_l) _
tf+2tf+ = f=0 41)

3

This equation can be lead back to a Bessel equation and in
analogy with the previous section, its solution has the form

=C,t" 4 ik t)+ Cyt 14y ik t (42)
f 1 \/3% 3 h 2 _/% 3 b

Again we have a critical condition for the growth of fluctuations
that is

ky~t"'~H (43)

so that

M, = 37rp<2—n>3 = 1m,%,HZ(zE)z 10m3, H ! (44)
3 ky 6 H3

As expected, the Jeans length is independent of the particle mass
that is negligible in an ultra-relativistic phase. Further, it is easy to
verify that (44) coincides with (37) when H ~ m. We can see that
M behaves as p~!/? in this phase, similar to that of a fermion
field. This fact is not surprising: in a ultrarelativistic regime no
difference is expected between the equation of state of fermions
and bosons. Thus, according to (44) and (37) (see Fig. 1) we
conclude that the evolution of the Jeans mass of a cosmological
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Fig. 1. The logarithm of the Jeans mass of a coherent scalar in m3,/m
units is given as a function of the logarithm of the ratio of the Hubble
parameter with m. M take the maximum value when H =m at the end of
an hypothetical ultrarelativistic phase. M is the mass of the scalar field
contained in the Hubble horizon

scalar field that comes out of an inflationary stage, is qualitatively
similar to that of a fermion field. The Jeans length increases like
the Hubble scale and the density fluctuations are frozen. This
occurs as long as the scalar field behaves like radiation and its
wavelength is larger than horizon’s radius. Later, when H be-
comes smaller than m and the field behaves like dust, the Jeans
mass starts to go down and the fluctuations wavelength enters the
cosmological horizon so that bound states can begin to form.

5. Comparison with the mass of equilibrium configurations

The behavior of the Jeans mass of a coherent scalar field during
the expansion of the Universe results qualitatively similar to the
one of a fermion field. Previous works (see e.g. Bond et al., 1980;
Ruffini et al,, 1986) showed in fact that the Jeans mass of a
neutrino field in a nonrelativistic phase is

10eV \"?
M,:6.5~10‘°Mo< >(1+z)3’2
m

v

10V )7/2 w 45)

= 6.5'10“)(—
H

mV o

where m, is the neutrino mass, z the cosmological redshift
142z(t)=R,/R(t) and H, today’s Hubble constant. Thus, it results
that M is proportional to p!/2, where p, is the mass density of the
neutrinos. When the field is relativistic we know that (see e.g.
Weinberg, 1972)

M, =175-10"2752md p~ 12 = 8.86- 10 ' m3 H ~* (46)

The similarity of this equation with (44) is not surprising. In a
nonrelativistic limit there is no difference between Bose and
Fermi equation of state, and in the behavior of the associated
Jeans masses. The same does not occur in a nonrelativistic phase.
Thus, we obtain a p'/* and a p'/? behavior of M, respectively, for
the boson and the fermion fields.
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Fig. 2. This is the analogous of Fig. 1 for a neutrino field with mass of
30 GeV
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Fig. 3. The Jeans mass of a neutrino field with mass of 30 GeV, given as
function of the energy-density of the field, is compared with the mass
which maximize the capture rate of a self-gravitating neutrino configur-
ation M,

max

Fabbri et al. (1982) have shown that the neutrino Jeans mass
(in a neutrino dominated Universe) in the nonrelativistic limit,
has the same behavior (see Fig. 3) as that of the mass of the
configuration which maximizes the particle capture rate in a
asymptotically flat space. This critical mass is equal to

10eV \7/2
) (1+2)°2
m

v

IOCV 7/2 P 1/2
=13-10'°M, ( ) <—>
mv pO

The same behavior has been found by Ruffini and Bonazzola
(1969) for the equilibrium mass of an ideal system of self-
gravitating fermions in a Newtonian regime as a function of the
central density p,. This coincidence is found although the Jeans
mass derives from a linearized treatment while the critical mass

M. = 1.3-101°Mo<

47)

found by Fabbri et al. and the equilibrium mass found by Ruffini
and Bonazzola arise from a fully nonlinear treatment in general
relativity. This fact suggests that we search for a similar coinci-
dence between the boson Jeans mass and the equilibrium mass of
a fully condensed self-gravitating boson configuration in the limit
T=0. This kind of configuration has been studied by Ruffini and
Bonazzola (1969).

We note that the ground state of the condensate bosons
configurations used by Ruffini and Bonazzola is a coherent state.
This state is

1
R— d
\/N!(

where 4], is the creation operator on the ground state and where
n=1, I=0 are respectively the radial and angular quantum
numbers. The coherence of the field is an essential condition for
the control of the collapse. A similar fact was noted by Parker and
Fulling (1973) with respect to the avoidance of singularities of a
quantized scalar field in the first stages of the FWR Universe.
Sasaki (1984) noted that |¥,) is not a coherent state. A coherent
state, in fact, must be an eigenstate of d,,, in agreement with the
definition of coherent state given by Glauber (1963). But, if we
take into account the macroscopical occupation of the boson
ground state, we recover coherence. Indeed, as noted Bogoliubov
(1974), d4,, becomes a c-number equal to n'/?:

lel‘Po> = n1/2ll}10>

¥, = 10)V10> (48)

(49)

and so itis evident that [¥, ) is a coherent state. In agreement with
the result of Ruffini and Bonazzola, the limit central density of a
self-gravitating system of bosons, reached in a fully condensate
configuration, is (see Ingrosso and Ruffini, 1986)

Petim=10">m* N7 G* (50)
so we obtain
m 3/2
My ~ 10° p:{;.t,(i> (51)
m

[
A B

Log (M/(m?,/m))

|

15
Log (0/p,)

Fig. 4. The Jeans mass of a coherent scalar field with mass of 10757 g,
given as a function of the field energy-density, is compared with the mass
of the fully condensate self-gravitating configurations in a Newtonian
approximation
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which is very close to (37) providing the central density p, is
replaced by the cosmological energy density of the scalar field (see
Fig. 4).

As noted by Ruffini and Bonazzola this result, found in a
Newtonian nonrelativistic treatment, is correct until the total
mass of a configuration is smaller than a critical value equal to
M., =mé/m after that, the limit radius of the configuration,
equal to

1

Ryjm~—5—
lim Gm3N

(52)
becomes smaller than the Schwarzschild radius Rg=2GM. Thus,
it is impossible to leave out the effects of general relativity. It is
simple to verify that this happens when

Rhorizon = Rlim ~ RCompton = m_l (53)

It is interesting to note that an analogous behavior occurs in
the cosmological case: the scalar field comes out of the relativistic
phase just when the Hubble radius of the De-Sitter Universe is
equal to the Compton length of the field.

6. Conclusions

We have investigated the stability against gravitational collapse
of density fluctuations of a cosmological massive scalar field. The
analogous nature of this field to a nonrelativistic coherent state of
a superfluid has led us to treat these perturbations as Bogoliubov
quantum excitations. In this spirit, the Jeans length found by
Khlopov et al. is re-interpreted as the critical wavelength over
which the Bogoliubov spectrum takes imaginary values.

The role of the coherent zero-point oscillations, which deter-
mines many of the peculiar properties of a superfluid, is also
crucial in our case. We have shown in fact how the pressure
associated with such oscillations plays the same role as the
pressure of a thermal perfect fluid in the original Jeans theory.

The cosmological evolution of the Jeans mass has been
analyzed. The vanishing of the expected values of the non-
diagonal components of the energy-momentum tensor calculated
on the boson ground state in the volume defined by the wave-
length of the perturbation led us to write out the dynamic
equations of the compressional fluctuations using the Lifshitz-
Khalatnikov theory.

A consequence is the appearance of a nonvanishing Jeans
mass for the coherent scalar field equal to

3 32
M, = ‘_lnp<il> ~102pl4 (Tﬂ)
3 2 m

In the analysis of the field in the relativistic phase with H > m,
we have introduced a gauge-invariant perturbations formalism.
We have found a dispersion relation substantially different from
the one of Sasaki. Consequently, the expression of the Jeans mass
in this regime is given by

M; =~ 10m3 p~ 12

The behavior of the Jeans mass of the scalar field which is
qualitatively similar to the one of a fermion field has prompted us
to search for analogies between the expression of the Jeans mass
for a boson field and the mass of a self-gravitating boson
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configuration
3/2
m
~ 103 A1/4 Pl
Mlim ~ 10 pcI/im( m >

The similarity found between these expressions opens new in-
centives to the research about nonlinear analysis of equilibrium
configurations.

The positive results clearly point to the possibility of forming
discrete self-gravitating systems of bosons in an expanding
Universe.
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