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1. INTRODUCTION 

Astronomy and physics bring different perspectives to the "cosmological 
constant problem." Originally introduced by Einstein as a new term in his 
gravitational field equations [and later regretted by him as "the biggest 
blunder of my life" (quoted in Gamow 1970)], the cosmological constant, 
A, confronts observational astronomers as a possible additional term in 

the equation that, according to general relativity, governs the expansion 
factor of the universe R(t), 

H2 == (�)Z = 
8nG 

P + � _ � 
R 3 M 3 RZ• 1. 

Here PM is the mass density; k = -1, 0, + 1 for a Universe that is respec
tively open, "flat," and closed; and H is the Hubble constant, whose 
observable value at the present epoch to is denoted Ho. 

Equation 1 says that three competing terms drive the universal expan
sion: a matter term, a cosmological constant term, and a curvature term. 
It is convenient to assign symbols to their respective fractional con
tributions at the present epoch. We define 
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500 CARROLL, PRESS & TURNER 

where zero subscripts refer to the present epoch. Equation 1 then implies 
that 

3 .  

I t  is also sometimes convenient to  define Otot == OM+OA = I - Ok. I t  i s  
an observational question whether a nonzero OA  i s  required to  achieve 
consistency in Equation 3. This is the astronomer's cosmological constant 
problem. 

The Heisenberg uncertainty principle allows particle-antiparticle pairs 
spontaneously to appear and disappear. The theoretical particle physicist 
thus sees the OA term in Equation 3 as an inevitable concomitant to the 
OM term. As OM is associated with a density of real particles, so OA is  
associated with virtual, "vacuum" states of those same particles' species
that is, with the energy-momentum density of their vacuum states. The 
gravitational effect of these virtual particles gives the vacuum an energy 
density Pvac (Zel'dovich 1 967). Although particle physicists do not know 
how to compute Pvac exactly, theory allows one to estimate its value. 
Unfortunately, the estimates disagree with observational limits by a factor 
of 1 0  120

. This is the physicist's cosmological constant problem. 
In this review, we sample both the astronomer's and the physicist's 

viewpoints. The differing perspectives lead to different perceived goals. 
An epochal astronomical discovery would be to establish by convincing 
observation that A is nonzero. An important physics discovery, on the 
other hand, would be to adduce a convincing theoretical model that 
requires A to be exactly zero. 

Attempts to measure fundamental cosmological parameters have con
sumed enormous observational (and intellectual) resources but have met 
with only limited success (see Sandage 1 987 for a historical review). 
Hubble's constant H 0 is physically the most fundamental such parameter, 
yet independent determinations via classical techniques (see reviews by 
Tammann 1987 and de Vaucouleurs 1 98 1 )  or the latest new methods 
(Tonry 1 99 1 ,  Roberts et al 1 99 1 ,  Press et al 1 99 1 ,  Birkinshaw et al 1 99 1 ,  
Jacoby et a1 1 990, Aaronson e t  a1 1 989) give values that vary over a factor 
of two. Attempts to measure the value of OM have been even less conclusive 
(see reviews by Peebles 1 986, Trimble 1 987, Fukugita 1 99 1 ). New results 
supporting apparently inconsistent values continue to appear (e.g. Toth & 
Ostriker 1 992, Richstone et al 1 992). 

In comparison with Ho and OM, attempts to measure OA have been 
infrequent and modest in scope. Moreover, in many respects, the physical 
signatures of OA are smaller and more subtle than those of the other two 
parameters, at least from an observational perspective. These con-
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COSMOLOGICAL CONSTANT 501 

siderations should severely limit our expectations for current observational 
information concerning !lA' 

Table 1 lists five fiducial cosmological models, parametrized by OM and 
!lA, which we will refer to in following sections as Models A through E. 
They represent extreme, though not impossible, limits on the present state 
of knowledge. In fact, we will see that distinguishing among these models, 
and thus among variations in Equation 3 having dominant versus neg
ligible 0" terms, is quite challenging at present. 

2. WHY A COSMOLOGICAL CONSTANT SEEMS 
INEVITABLE 
In this section we discuss the form that the vacuum energy-momentum 
tensor must take, and why the predicted value of Pvac is unreasonably 
high (Weinberg 1 989; for nontechnical introductions see Abbott 1 988 and 
Freedman 1990). 

To a particle physicist, the word "vacuum" has a different meaning than 
to an astronomer. Rather than denoting "empty space," vacuum is used 
to mean the ground state (state of lowest energy) of a theory. In general, 
this ground state must be Lorentz invariant, that is, must look the same 
to all observers. If this is the case, then the stress-energy-momentum tensor 
f1;v of vacuum must be proportional (in any locally inertial frame) simply 
to the diagonal Minkowski metric, diag( - 1, 1 ,  1 ,  1 ), because this is the 
only 4 x 4 matrix that is invariant under Lorentz boosts in special relativity 
(as can easily be checked). As is well known, a perfect fluid with density P 
and pressure P has the stress-energy-momentum tensor diag(p, P, P, P). 
(See, e.g. Misner et al 1 973; in this section, we choose units with c = I). 
Comparing to the Minkowski metric, it follows that (a) "vacuum" is a 
perfect fluid, and (b) it has the equation of state 

Pvac = -Pvac· 4. 
Not by coincidence, this equation of state is precisely the one that, under 

Table 1 Five fiducial cosmological models 

Model O:tot OM OA Description 

A I 1 0 flat, matter dominated, no A 
B 0.1 0.1 0 open, plausible matter, no A 
C 1 0.1 0.9 flat, A plus plausible matter 
D 0.01 0.01 0 open, minimal matter, no A 
E om 0.99 flat, A plus minimal matter 
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502 CARROLL, PRESS & TURNER 

application of the first law of thermodynamics, causes Pvac to remain 
constant if a volume of vacuum is adiabatically compressed or expanded: 
PdV work provides exactly the amount of mass-energy to fill the new 
volume dV to the same density Pvac. Thus Pvac remains truly a constant. Its 
relation to A is simply A = 8nGPvac. 

In non gravitational physics, the energy of the vacuum is irrelevant. In 
nongravitational classical mechanics, for example, we speak of particles 
with energy E = T + V, where T is the kinetic energy and V the potential 
energy. The force on a particle is given by the gradient of V; therefore, we 
may add an arbitrary constant to V without affecting its motion. Often 
we choose this arbitrary constant so that the minimum of V is zero, and 
we say that the particle has zero energy in its vacuum state. 

In quantum mechanics the situation is more complicated. Consider, for 
example, a simple harmonic oscillator of frequency w; that is, a particle 
of mass m moving in a one dimensional potential well Vex) = �mw2x2. We 
have chosen the potential such that it has a minimum V(O) = O. However, 
the uncertainty principle forbids us from isolating the particle in a state 
with zero kinetic energy and zero potential energy (cf Cohen-Tannoudji 
et al 1977). In fact, the vacuum state has a zero-point energy Eo = �liw. 
Note that we could have set this energy to zero, simply by subtracting 
!hw from the definition of the potential; quantum mechanics does not 
restrict our freedom to pick the zero point of energy. However, it does 
imply that the energy of a vacuum state will differ from our classical 
expectation, and that the difference will depend on the physical system (in 
this case it is a function of w). 

The generalization of this phenomenon to quantum field theory is 
straightforward (Feynman & Hibbs 1 965, Mandl & Shaw 1 984) . A rela
tivistic field may be thought of as a collection of harmonic oscillators of 
all possible frequencies. A simple example is provided by a scalar field ¢ 

(i.e. a spinless boson) of mass m. For this system, the vacuum energy is 
simply a sum of contributions 

1 Eo=L2,liwj, 5 .  
1 

where the sum is over all possible modes of the field, i .e. over all wave
vectors k. We can do the sum by putting the system in a box of volume 
L 3, and letting L go to infinity. If we impose periodic boundary conditions, 
forcing the wavelength (in, say, the ith direction) to be A; = L/n; for some 
integer n;, then, since k; = 2n/ Ai, there are dk;L/2n discrete values of k; in 
the range (k;, k; + dkJ Therefore expression 5 becomes 

I f d3k Eo = 2,IiL3 (2n)3Wk. 6. 
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COSMOLOGICAL CONSTANT 503 

The energy density Pvac is obtained by letting L -> C1J while simultaneously 
dividing both sides by the volume L3 .  To perform the integral, we must 
use w� = k2+m2jh2, and impose a cutoff at a maximum wavevector 
kmax » mjh. Then the integral gives 

. Eo k!ax PYac == hm 3 = h 
-6 2· L�(j) L In 7. 

As we let the cutoff kmax approach infinity, Pvac becomes divergent. 
In the venerable rhetoric of quantum field theory, this is known as an 
"ultraviolet divergence," since it comes about due to the contribution from 
modes with very high k. Such divergences are only modestly worrisome. 
We know that no simple low-energy theory is likely to be exactly true at 
high energies, where other particles, and possibly new kinds of forces, 
become important. Therefore, we can estimate kmax as the energy scale at 
which our confidence in the formalism no longer holds. For example, it is 
widely believed that the Planck energy E* � 1019 GeV � 1016 erg marks 
a point where conventional field theory breaks down due to quantum 
gravitational effects. Choosing kmax = E*jh, we obtain 

8. 

This, as we will see later, is approximately 120 orders of magnitude larger 
than is allowed by observation. 

We might boldly ignore a discrepancy this large, ifit were not for gravity. 
As in classical mechanics, the absolute value of the vacuum energy has no 
measurable effect in (nongravitational) quantum field theory. However, 
one of the postulates of general relativity is that gravitation couples uni
versally to all energy and momentum; this must include the energy of the 
vacuum. Since gravity is the only force for which this is true, the only 
manifestation of vacuum energy will be through its gravitational influence. 
For a density as high as given by Equation 8, this manifestation is dramatic: 
if PYac = 1092 gjcm3, the cosmic microwave background would have cooled 
below 3 K in the first 10-41 s after the Big Bang. 

One may object that we have simply chosen an unrealistically high 
value for kmax. However, to satisfy cosmologically observed constraints, we 
would need kmax < 10- 3 cm -1;  in other words, we must neglect effects at 
energies higher than 1 0-14 erg � 10- 2 eV. This is not very high at all; the 
binding energy of the electron in a hydrogen atom is much larger, and is 
experimentally tested to very high precision. Moreover, there is direct 
experimental evidence for the reality of a vacuum energy density in the 
Casimir ( 1 948) effect: The vacuum energy between two parallel plate 
conductors depends on the separation between the plates. This leads to a 
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504 CA�ROLL, PRESS & TURNER 

force between the plates, experimentally measured by Sparnaay (1957; also 
Tabor & Winterton 1969), who found agreement with Casimir's prediction. 
Fulling (1989), in a lucid discussion of the Casimir effect, notes that "No 
worker in the field of overlap of quantum theory and general relativity can 
fail to point this fact out in tones of awe and reverence." 

One can postulate an additional "bare" cosmological constant, opposite 
in sign and exactly equal in magnitude to 8nGPvae, so that the "net" 
cosmological constant is exactly zero. However, the vacuum energy of 
quantum field theory does not simply result from the fluctuations of a 
single scalar field. In the real world there are many different particles, 
each with its own somewhat different contribution, and with additional 
contributions derived from their interactions. Given the large number of 
elementary fields in the standard model of particle physics, it is most 
unlikely that they conspire to produce a vanishing vacuum energy. 

We should finally note that possible solutions to the cosmological con
stant problem are particularly constrained if they are to be compatible 
with the inflationary universe scenario (Guth 1981, Linde 1982, Albrecht 
& Steinhardt 1982; recent reviews are by Narlikar & Padmanabhan 1991, 
Linde 1990, and Kolb & Turner 1990). Inflationary cosmology postulates 

an early, exponential expansion driven by the vacuum energy density of a 
scalar field trapped in a "false vacuum," away from the true minimum of 
its potential. During the exponential phase, this vacuum energy density is, 
in fact, a nonzero (and quite large) cosmological constant. Thus, to be 
compatible with inflation, whatever physical process enforces A = 0 today 
must also allow it to have had a large value in the past. 

For physicists, then, the cosmological constant problem is this: There 
are independent contributions to the vacuum energy density from the 
virtual fluctuations of each field, from the potential energy of each field, 
and possibly from a bare cosmological constant itself. Each of these con
tributions should be much larger than the observational bound; yet, in the 
real world, they seem to combine to be zcro to an uncanny degree of 
accuracy. Most particle theorists take this situation as an indication that 
new, unknown physics must play a decisive role. The quest to solve this 
puzzle has led to a number of intriguing speculations, some of which we 
will review in Section 5. 

3. EFFECTS OF A NONZERO COSMOLOGICAL 
CONSTANT 
In this section we discuss the observable effects of a nonzero cosmological 
constant, deferring to Section 4 discussion of the present state of obser
vational limits that derive from these effects. In some cases we are able to 

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 1

99
2.

30
:4

99
-5

42
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

A
ri

zo
na

 L
ib

ra
ry

 o
n 

11
/1

6/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.



COSMOLOGICAL CONSTANT 505 

give formulas that are simpler than those found elsewhere in the literature. 
For other summaries of effects, see Kolb & Turner ( 1 990), Charlton & 
Turner ( 1987), Felten & Isaacman ( 1 986), and Weinberg ( 1972). Earlier 
compendiums include Sandage ( 1 961 a,b) and Refsdal et al ( 1967). 

3.1 Expansion Dynamics 
If a == 1 / ( 1  +z) == R/Ro is the expansion factor relative to the present (z 
being the redshift), and if T == Hot is a dimensionless time variable (time 
in units of the measured Hubble time I/Ho), then Equation 1 can be 
rewritten in terms of measurable quantities as 

9. 

Note that QM and QA here serve as constants that parametrize the past (or 
future) evolution in terms of quantities at the present epoch. Equivalently, 
it was formerly common to parametrize the evolution by QM (or (J 0 == QM/2) 
and the deceleration parameter qo = - (RR/ R2)o. Equation 9 then readily 
yields the relation 

1 0. 

We will often use the parametrization QM and Qtot == QM+QA = l -Qk> 
since it is QtO! < I ( >  1 )  that makes the universe spatially open (closed)
a fundamental issue in cosmology. For different assumed values of QM 
and Qtot (or any other parametrization) one gets qualitatively different 
expansion histories. Figure 1 displays the various regimes. Felten & Isaac
man ( 1986) show graphs of aCT) for various values ofQM and QA. 

Qualitatively, the effect of a nonzero QA can be described as follows: 
Looking from now towards the future, a positive value of A (or QA) 
tries to drive the universe towards unbounded exponential expansion
asymptotically becoming a DeSitter spacetime. It can fail at this only if 
the matter density QM is so large as to cause the universe to recollapse 
before it reaches a sufficiently large size for the A-driven term (which scales 
asymptotically as a2 in Equation 9) to become significant-the narrow 
wedge in the upper-right corner of Figure I. A universe fated to recollapse 
has some value a greater than 1 (the present value), such that the right 
hand side of Equation 9 vanishes. Some manipulation of the resulting 
cubic equations (Glanfield 1 966, Felten & Isaacman 1 986) yields an ana
lytic formula for the boundary between recollapsing and perpetually 
expanding universes in the (QM,  QA) plane (see Figure 1 ): Unbounded 
expansion occurs when 
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Figure 1 Qualitative behavior of cosmological models in the CilM, il,o,) plane. Flat models, 
with 0,0, = I and nonzero 0A' are on the vertical line ACE. Models with ilA = 0 lie on the 
diagonal line ABD. Use this figure as a "finding chart" for Figures 4, 7, and 9. 

I I. 

Otherwise the universe recollapses. In particular, negative QA implies inevi
table recollapse, even for spatially open universes, because the effect of A 
is in the same direction as gravity (attraction) rather than opposing it 
(repulsion). 

For large, positive values of nA, the universe has a turning point in its 
past, that is, it collapsed from infinite size to a finite radius and is now 
reexpanding. This occurs when 

nA � 4nM {cossG coss-1 C ��M) Jr 1 2. 

where "coss" is defined as being cosh when nM < 1 /2 and cos when 
nM > 1 /2. (The join at nM = 1 /2 is perfectly analytic . .The need for two 
formulas to represent a single function is an artifact of solving cubic 
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equations. Here and below it is sometimes useful to use the identities 
sinh-Ix = In [x+(x2+ 1 )1 /2] and cosh-lx=ln[x+(x2- 1)1 / 2].) The 
red shift Zc of the "bounce" [which is the maximum redshift of any object 
in the universe, since the universe never gets smaller than a = ( 1  + zc)-I] 

satisfies 

2 
z;(zc+3) = (zc+ 1 )3-3(zc+ 1)+2 � OM 1 3 . 

(see, e.g. Borner & Ehlers 1 988). Inequality 1 3  can be solved for zc, giving 

( 1 [I-OM]) ZC � 2 coss 3" coss -1 � - 1 ,  1 4. 

where "coss" is as defined above. In general, such "bounce" cosmologies 
are ruled out by the mere existence of high redshift quasars and (even more 
strongly) by the cosmic microwave background (see Section 4.1). 

First noted by Lemaitre ( 1 93 1 ), so-called "hesitating" or "loitering" 
universes occur when 0" is close to, but barely outside, the bounce region 
of Equation 1 2. These are big-bang universes that are now expanding, 
exponentially in fact, but formerly had an epoch of indecision about 
whether to recollapse (from their matter content) or to continue expanding 
(due to their large positive cosmological constant). They thus spent a 
period of proper time loitering at a nearly constant value of a. (The closer 
Equation 1 2  is to an equality, the longer they coast.) The redshift of the 
loiter satisfies Equations 1 3  and 14 as equalities. This redshift is plotted in 
Figure I as a parameter along the loitering boundary. One sees that, 
analogously with bouncing universes, a high redshift loiter requires 
unreasonably small OM today. The present value 0" in a universe that had 
a loitering phase is related to Zc (or ilM) by 

I 3 Q" = 2:ilM( 1  +zJ 

(cf Equations 1 2  and 1 4) .  

IS. 

In view of the above arguments, and the observations described in 
Section 4. 1 ,  it should be no surprise that universes with large, positive 
values for il" are presently out of fashion. We think they will remain so. 
Universes with OM > I are of course out of fashion, since all evidence is 
that there is a "missing mass problem," and not an "excess mass problem." 
Our attention henceforth will therefore focus on the "fashionable" region 
in Figure I, bounded approximately by 0 < OM < I and 0 < Otot < I. In 
this region the big questions are: (a) Is Otot exactly equal to 1 ,  as is required 
by inflationary scenarios? And, (b) if it is equal to 1 ,  is Otot made of OM 
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508 CARROLL, PRESS & TURNER 

(cold matter), QA (vacuum energy), or some more exotic form of matter 
(Peebles 1 984, M .  S. Turner 1 99 1 )? 

Figure 2 shows the past and future expansion history of the models of 
Table l, found by integrating Equation 9. Model A shows the familiar [2/3 
expansion law. Nearly empty (non-A) models B and D show nearly identi
cal histories, except close to a = 0 where B's larger matter content has an 
effect. Models C and E-flat models with a cosmological constant-have 
nearly identical future histories, since both have already entered their 
exponential expansion phase. Model E, being emptier of matter, shows a 
longer exponential phase to the past, while C's matter content asserts itself 
more readily and drives the expansion to a more recent big bang (a = 0). 

3.2 The Age of the Universe 
By a trivial change of variables in Equation 9, from a to z and from r to 
t, we obtain an integral that relates redshift z, to lookback time from the 
present, 

1 6. 

3 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ;'! I I I I I I I I,;j 
i/ /;� 

" " I I 

2.5 

2 

5 1.5 
·w 
a c. x <D 

.if ,7 
E!le ,1-

il �,i'B 
.'i' ,? .�' / 

,;- ,I .if " 
/i " 

i " 
/ /" ! / 

A 

// Ih 1# � 
now 

time H.(t-t,,) 

,111" 111111,, 
1.5 2 2.5 

Figure 2 Expansion history of the five models A-E shown in Table I and Figure I. QA

dominated models like C and E have already entered an exponential expansion phase; also, 

they are older than the open QA = 0 models B and D. 
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This integral can be solvcd analytically in some spccial cases, c.g. whcn 
OA = 0 (Kolb & Turner 1 990, equations 3 .22-3.25; Sandage 1 96 1 a) or 
when Otot = I (Weinberg 1 989). In general, it can be calculated numerically 
without difficulty. By inspection of the integrand, one sees that at fixed 
OM, increasing OA lengthens the lookback time to any redshift. Eliminating 
OA in favor of O,O" one likewise finds that at fixed 0tot, the look back time 
to any z lengthens for decreasing OM' Figure 3 shows the lookback time 
as a function of redshift for the five models A-E. 

The integral in Equation 1 6  goes to a finite limit, the age of the universe, 
as z I --+ 00. Kolb & Turner ( 1 990) give analytic formulas for the special 
cases OA = 0 and 0tol = I (see also Sandage 1 96 1 a) .  Figure 4 shows the 
results of numerical integration for general cases with OA, O,ot in the same 
range that was shown in Figure 1 .  One sees that if OM, OA is bounded to 
a plausible range, then the age of the univcrse is bctween about 0.5 and 2 
Hubble times. In Section 4.2 we will compare these ages to observational 
constraints. 

Because the contours in Figure 4 are not too different from lines of 
constant slope, one can readily write a simple approximation that is valid to 
within a few percent in the range 0 < OM ::;: 1 ,  0 < O'Ol ::;: 1 ,  and serviceable 
anywhere away from the loitering line: 

.1 

I I 1 1  I I I 

() 

111 1 
.1 

I I I I I J I 

1 1 1 111 1 

redshift z 

I I I I I I I 

1 1 1 1111 
10 

Figure 3 Lookback time as a function of redshift for the five models A-E. Even at moderate 

redshifts (z :::; I), the !2A-dominated models separate cleanly from the open models. However, 
the absolute differences are small. 

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 1

99
2.

30
:4

99
-5

42
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

A
ri

zo
na

 L
ib

ra
ry

 o
n 

11
/1

6/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.



5 1 0  CARROLL, PRESS & TURNER 
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Figure 4 Contours of the age of the universe are shown in the (nM, n,o') plane. Away from 
the infinity line, the contours are close to straight lines, and Equation 1 7  is a good analytic 
approximation. 

1 7. 

where 

1 8 .  

and "sinn - ,
, ,  

i s  defined as sinh - , i f  na :s:; 1 (the usual case) and as sin - , 
if na > 1 .  (In fact, Equation 1 7  is the exact result when nlol = 1 .) 

3.3 Distance Measures 
As we look out from our self·defined position at r = 0 to observe some 
object at a radial coordinate value r" we are also looking back in time to 
some time t, < to, and back to some expansion factor R, = R(t,) that is 
smaller than the current value Ro. Note, however, that neither r" t" nor 
R, are directly measurable quantities. Rather, the measurable quantities 
are things like the red shift z; the angular diameter distance 

1 9. 
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COSMOLOGICAL CONSTANT 5 1 1  

where D is a known (or assumed) proper size of an object and (J is its 
apparent angular size; the proper motion distance 

20. 

where u is a known (or assumed) transverse proper velocity and e is an 
apparent angular motion; and the luminosity distance 

2 l .  

where 2' is a known (or assumed) rest-frame luminosity and ff is an 
apparent flux. The relation of the measurables to the unmeasurables turns 
out to be (Lightman et al 1 975, Section 1 9.9) 

(1 +z) = Ro/Rt. dA = R1rt. dM = Rort. dL = R6rdRI' 22. 

One sees in particular that dA, dM, and dL are not independent, but related 
by 

23. 
independent of the dynamics of R(t). This is perhaps a disappointment, 
since it means that we cannot learn anything about OM,OA simply by 
comparing two distance indicators of a single object. Rather, the infor
mation about OM, OA is contained in the dependence of the distance indi
cators on rcdshift z, which we now calculate. 

Looking back along a light ray, R, r, and t are related by the equation 
for a radial, null geodesic of the Friedmann-Robertson-Walker metric, 
namely 

dr (l_kr2)1/2 
dt R 24. 

Multiplying this equation by Ro, and using Equations 22 and 16, and the 
definitions of Ok and z, one obtains the integral formula for the distance 
measure at redshift z t. 

HodM = IOk
l
ll/2sinn {IOkll

/2 J:l[(I+Z)2(I+OMZ)-Z(2+Z)OA]-1/2dZ}, 

25. 

where "sinn" is now defined as sinh if Ok> 0 (open universe) and as sin 
if Ok < O. Remember that Ok is not independent, but given by Equation 
3. (In the flat.case of Ok = 0, i.e. 0101 = 1, the sinn and OkS disappear from 
Equation 25, leaving only the integral.) The integral in Equation 25 can 
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5 1 2  CARROLL, PRESS & TURNER 

be done analytically in the usual special cases OA = 0 and Olel = 1 (see 
Weinberg 1 972 and Kolb & Turner 1990), but in general is straightforward 
to evaluate numerically. Because of the dependence on Ok = I-Otet in the 
sinn function, the qualitative behavior of Equation 25 is not completely 
obvious by inspection. At fixed 0tel, or when OA = 0, the distance measures 
all increase with decreasing OM, for all z. For fixed OM, however, there is 
no monotonicity as OA is increased: The distance measure will generally 
increase at small redshifts, but decrease at redshifts greater than some 
particular value. Figure 5 illustrates these effects for the specific models 
A-E. For clarity we plot dA instead of dM because the extra factor of 
(I +Z)-l (Equation 23) spreads the curves apart. 

3.4 Comoving Density of Objects 
One is sometimes able to count objects (e.g. galaxies) in observable volume 
elements, that is, per solid angle dO and per redshift interval dz. If the 
objects counted can be identified with objects of a known comoving density 
(e.g. galaxies today), then one has in effect another distance measure in 

!!l CD E '" 
'0 
(;; "S .1 0> c: '" 

I I ,I 
.1 

I I I I I II 

I I I I III 
1 

redshift z 

J I I I I II 

I I I I III 
10 

"' 

Figure 5 Angular diameter distance as a function of redshift for models A-E. Objects of a 
small fixed z look farther away (have smaller angular diameters) in QA-dominated model�. 
At larger redshifts the situation reverses. Correspondingly, a fixed angular beam subtends, 

at high redshift, a smaller scale for QA-dominated models than for open models, giving 
smaller cosmic microwave background fluctuations for the QA-dominated case. 

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 1

99
2.

30
:4

99
-5

42
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

A
ri

zo
na

 L
ib

ra
ry

 o
n 

11
/1

6/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.



COSMOLOGICAL CONSTANT 5 1 3  

the relation between comoving density and redshift, and another oppor
tunity to learn about OM, 0". The comoving volume element of the Fried
mann-Robertson-Walker metric is 

26. 

Notice that the volume element is not simply a function of dM, or of dM 
and z, but has an additional dependence on Ok' This shows that number 
counts fundamentally probe a different aspect of the universe's geometry 
than do the distance measures of Equation 22. 

Equation 26 has the consequence that, given a population of objects of 
constant (or calibratable) density and determinable distance measures, one 
can in principle directly measure Ok (or Otot) and determine whether the 
universe is open or closed, in an almost model-independent fashion: One 
"simply" determines (e.g. along a pencil beam) whether the volume V 
scales as d�, or whether it shows evidence of the denominator in Equation 
26. If dM, the proper motion distance, were directly accessible to measure
ment, this test could be performed without measuring any redshifts! Unfor
tunately, dM is the least accessible of distance measurcs. Using dL or dA 
instead, the test requires that redshifts be known, or estimated from a 
model of the sources (as in Sandage 1 988). 

More model-dependently, one can calculate from Equations 26 and 25 
the dependence of dV on z, and use observed number counts to constrain 
the values of OM, 010t (Loh 1 986). Figure 6 shows how the comoving 
volume element dV/dzdO varies with z for the five models A-E. Notice 
that at modest redshifts (e.g. z = 1 /2) the fractional variation among the 
models is significantly larger in Figure 6 than for the other distance mea
sures in Figure 5. This is an attractive feature of number count tests, but 
(as we will see) it must be weighed against their susceptibility to evolu
tionary and selection effects. At redshifts 1 +z � 2, the models with sig
nificant 0" have volumes-per-redshift larger than the open models by a 
factor � 2, and larger than the flat OM = 1 model by a factor � 4. This 
results in A-models becoming fashionable whenever excess counts of high
redshift objects are elaimed to exist (see Section 4.3 below). 

Equation 26 can be integrated analytically to give the comoving volume 
out to a distance dM, 

V(dM) = H03(20k)-I[HodM(l +OkH5d�)1/2 

-IOkl-1/2 sinn-1 (HodM IOkII/2)], 27. 

where "sinn" is as defined after Equation 25. 
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Figure 6 Volume derivative as a function of redshift for models A-E. At redshifts z < 3 
there is a clean, and quite large, separation between the nA-dominated and open models. 

Number counts would be a powerful test, were it not for a morass of evolutionary and 
selection effects. 

3.5 Growth of Linear Perturbations 
In all the homogeneous and isotropic cosmologies, linear cold matter 
perturbations b == bpjp grow at a rate that does not depend on their 
comoving spatial scale (e.g. Peebles 1 980). An explicit expression for the 
amplitude of a growing perturbation (Heath 1 977) is 

50 da ja (da')- 3 b(a) = 2aM dr Jo dr da', 28. 

where a' is the dummy integration variable, and dajdr is to be viewed as 
a known function of a or a', in our case given explicitly by Equation 9. 
Equation 28 is normalized so that the fiducial case of OM = 1 , 0" = 0 gives 
the familiar scaling b(a) = a, with coefficient unity. 

Different values of OM, Q" lead to different linear growth factors from 
early times (a;:::; 0) to the present (a = 1 ,  dajdr = 1 ). Denoting the ratio 
of the current linear amplitude to the fiducial case by bO(QM, 0,,), we have 
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COSMOLOGICAL CONSTANT 515 

(The remarkable approximation formula-good to a few percent in 
regions of plausible OM, Ot\ -follows from Lahav et al 1 991 and Lightman 
& Schechter 1 990.) Figure 7 shows numerical values for bO(OM, Ot\) for the 
region in the (Ot\,Otot) plane previously seen in Figures I and 4. One sees 
that as OM is reduced from unity, both along the line Qt\ = 0 and along 
the line Qtot = 1 ,  the growth of perturbations is suppressed, but somewhat 
less suppressed in the Otot = I case. The reason is that, for fixed OM, linear 
growth effectively stopped at a redshift ( 1  + z) = QM I in the open case 
(when the universe became curvature dominated), but, more recently, at 
( 1  + z) = QM tfJ in the fiat case (when the universe became A dominated). 

To the right of the line Otot = 1 in Figure 7, one sees values of 60(QM, Qt\) 

3 rT.-".-"-.,,-r,,-r,,-r,,-r,,rr.-rr.-,,-.,,-r.,,-.,,� 
............ ,.. 

Linear Perturbation Growt;t///// 2.5 

.. , ....... , ... , ... ,.. relative to n...; 1. nA;o 
" /' 

2 "', 
" " " "  

."" , / 

o!,. "�"""'< ,
",.'

,
'
,
'

,
"
,
'

,. ",
'
. 

1.0 

----- """ " 
. 

, •.
..

...• 
, .. ... ,

. "
. 

............ " - " ................ '.... ' " 
.............

........ 

5 ------__________ _ 
o��±IIIL2LU�����OU���lLLLLU� 

-1 -.5 o .5 1 .5 2 2.5 3 
n,ot" (including !lA) 

Figure 7 Growth factor for linear perturbations, as contours in the (nM, ntot) plane, nor
malized to unity for the case nM = 1, nA = O. There is relatively less suppression of growth 
as nM is decreased along the line ntot = I than along the line nA = 0; but for credible values 
of nM the difference is not a large factor. Perturbation growth approaches 00 at the "loiter 

line," but for credible nM it occurs at too small a redshift to explain quasars (see Figure I) ,  
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5 1 6  CARROLL, PRESS & TURNER 

that are greater than I, in fact approaching infinity at the loitering
cosmology line (cf Figure 1 and discussion above). Loitering cos
mologies allow the arbitrarily large growth of linear perturbations, since 
the perturbations continue to grow during the (arbitrarily long) loiter 
time. 

Related to the growth of linear perturbations is the relation between 
peculiar velocity v and peculiar acceleration g, or (as a special case) the 
radial infall velocity Vrad around a spherical perturbation of radius fll. 
These quantities depend not directly on Equation 28, but on its logarithmic 
derivative, the exponent in the momentary power law relating /j to a, 

J =- (din c5)j(dln a), 

the relation being 

2Jg 
v = 

3HQM 

Vrad = � J</j) 
Hfll 3 

30. 

3 1 .  

where <,5> is the overdensity averaged over the interior of the sphere of 
radius fll (Peebles 1 980, Section 1 4). One can calculate J accurately by 
taking the derivative of Equation 28, using Equation 9, and solving the 
resulting integral numerically. Lahav et al ( 1 99 1 ), however, give an 
approximation formula valid for all red shifts z, 

32. 

Figure 8 plots J(z) for our standard models A-E. One sees that, at small 
redshifts, peculiar velocities depend almost entirely on QM and are quite 
insensitive to QA. This is because they are driven by the matter per
turbations in primarily the most recent Hubble time. Looking back to 
red shifts z � I, however, the peculiar velocities do start depending on QA, 
allowing in principle for observational tests (but see Lahav et al 1 99 1  for 
caveats). 

3.6 Gravitational Lens Probabilities 
One effect of a nonzero cosmological constant is to change, in some 
cases drastically, the probability that quasars are gravitationally lensed by 
intervening galaxies (Fukugita et al 1990a, Turner 1 990). While the absol
ute lens probability obviously depends on the absolute density and gravi
tational potential of the lensing galaxies, a useful statistic is the probability 
for lensing by a population of isothermal spheres of constant comoving 
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Figure 8 Peculiar velocities around fixed-density condensations as a function of redshift, 
for models B-E, relative to model A. For z ;S  I ,  peculiar velocities, and other related 
dynamical effects, are extremely insensitive to the value of OA-

density relative to the fiducial case QM = 1, QA = 0, given by the integral 

15 [ 1 
J
-3 

Plens = 4" 1- (1 +Z5)1/2 

(Fukugita et al 1992). Here Z5 is the redshift of the source (quasar). The 
prefactor normalizes the fiducial value to unity. The function d(z h Z2) is 
the angular diameter distance from red shift Z I to red shift Z 2, given by the 
generalization of Equation 25, 

1 d (Zt.Z2) = (1 +z2)IQk II/2 

x sinn {IQk 11/2 f2[(1+Z)2(1+QMZ)-Z(2+Z)QA]-1/2dZ}. 34. 
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518 CARROLL, PRESS & TURNER 

Equation 33 quantifies the geometrical differences affecting ray paths and 
volumetric factors among different QM and QA models. Figure 9 plots the 
value of Plens in the (QM, Qtot) plane for the specific (but reasonable) choice 
Zs = 2. Along the diagonal line QA = 0, one sees that lens probabilities 
increase as the universe becomes emptier, but only by a modest factor � 2.  
By contrast, as the matter density is decreased along the line Qtot = I (that 
is, compensated by increasing QA), the lens probability rises dramatically, 
by a factor � 1 0. We will see below that gravitational lensing, because i t  
distinguishes so sharply between low QM universes of differing QA, holds 
great promise for putting firm limits on QA' 

4. OBSERVATIONAL STATUS OF THE 
COSMOLOGICAL CONSTANT 
In the preceding section's catalog of effects, we avoided discussion of the 
present status of actual observations. Here, we redress the balance. 

3 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 

2.5 
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. 5 .' 

o 1 
-1 

Relative Lens Probability 
forz, = 2 

.. .. 

0.4 ...... 
. 

0.6 .... ···· 

0.8. .... · .... 

1.0 

o .5 

I I I I 

. ... 

.. ... 

...... 

0.0'" (including nA) 
1 .5 

I 1 1 1 1 I I I I I 
2 2.5 3 

Figure 9 Probability for observing a gravitational lens, as contours in the (nM.ntot) plane, 
normalized to unity for the case nM = I, nA = O. Gravitational lens statistics are the most 
promising method for ruling out nA-dominated models along the ntot = 1 line, and already 
give the best bounds on nA to the right of that line. 
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4.1 Existence of High-Redshift Objects 

Bounce cosmologies are ruled out by the mere existence of high-redshift 
phenomena. High-redshift quasars are known with z = 4.89 (Schneider et 
al 1991). The restriction on OM implied by Equation 13 is thus OM < 0.Q1, 
which is quite unlikely on direct observational grounds, and also incom
patible with the successful predictions of the theory of big bang nucleo
synthesis (Olive et al 1990, Peebles et al 1991). Thermalization of the 
microwave background at z > 103 implies OM < 2 X 10- 9, which is surely 
impossible (Trimble 1987). 

The case against loitering cosmologies is strong, though not quite so 
airtight .  At one time, there was some belief that an excess number of 
quasars with z � 1.95 pointed to the existence of a loitering model with 
OM � 0.106, OA = 1.361 (Burbidge 1967, Shklovsky 1967). However, if a 
loitering phase lasts long enough, then the point of the universe antipodal 
to us becomes visible, at high magnification and with various exotic effects. 
Petrosian et a1 (1967), Shk10vsky (1 967), and Rowan-Robinson (1968) 
investigated this for red shifts around 1.95. 

More recently, Gott (1985), Gott & Rees (1987), and Gott et al (1989) 
have found constraints on the redshift of the antipodes (and therefore any 
loiter) arising from gravitational lensing. Under rather general assump
tions, they find that no quasar at a redshift larger than that of the antipodes 
can be lensed to morc than one image. The existence of the lensed quasar 
QSO 2016 at a redshift z = 3.27 then bounds possible values of OA sig
nificantly away from the critical value of Equation 12 if OM;;;:; 0.03-as 
seems quite likely on dynamical grounds (see below; Lahav et al 1991; 
note, however, Paczynski's caveat mentioned in Gott 1985). Durrer & 
Kovner (1990) have argued that the range 0.01 < OM < 0.03 is conceivably 
viable and have investigated possible effects of antipodal focusing of cos
mic microwave background fluctuations, while R. D. Blandford (unpub
lished) has directed attention to peculiarities in the observed lens. Such 
arguments seem forced, however. To circumvent these limits on OM, one 
can postulate a time-variable cosmological constant (Sahni et al 1992), but 
such models are also artificial .  

We have already noted (Section 3.5) that linear density perturbations 
can grow by a largc factor during a loitcring phase. However, the existence 
of high-red shift quasars (lensed or not) argues against the theoretical 
invocation of a loitering cosmology to magnify perturbations: Since the 
gravitational condensation that creates (or fuels) the quasar (E. L. Turner 
1991) must come after the perturbations have grown, the implied redshift 
of loiter should be larger than the redshift of any observed quasar; this is 
inconsistent with the firm fact that OM > 0.01 (Equations 1 3  or 14). 
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4.2 Age Concordance: Globular Clusters and Cosmic 
Nuclear Data 

Perhaps the most compelling, plausibly achievable demonstration of a 
nonzero value of Q" would be the identification of objects or material 
older than Ho '. Figure 4 shows that one would be forced to invoke models 
with Q" significantly greater than zero if QM > 0. 1 .  Such an argument 
would be strong because it is difficult to imagine escaping it through the 
usual sort of loopholes of "astrophysical complications" which prevent 
definite conclusions in so many cosmological considerations. In other 
words, the universe ought to be at least as old as the objects and material 
it contains. Of course astrophysical complications are still able to enter 
the picture when we get down to the quantitative question of how old the 
oldest objects actually are! 

Galactic globular clusters are the stellar systems with the most reliably 
determined extreme ages. The calibration of stellar ages is a complex and 
highly developed subject with many thorough reviews (e.g. Rood 1 990, 
VandenBerg & Smith 1 988, VandenBerg 1990) and even whole volumes 
concerning it (Philip 1 988). Here we only comment briefly on the most 
salient issues. 

There are basically two techniques for using the models of stellar evolu
tionary theory to derive ages from observed globular cluster H-R diagrams. 
One may fit the theoretical isochrones directly to the observed main 
sequence color-magnitude track and turn-off in order to determine the 
mass of stars which have just exhausted their central hydrogen fuel. Alter
nately, one may use the magnitude difference between the main sequence 
and the horizontal branch (HB) to find the turn-off luminosity (taking the 
HB to have a fixed luminosity). The primary advantage of the former 
method is that it relies on the most secure regime of stellar evolution theory. 
Its worst disadvantage is that very small errors in matching theoretical to 
observed colors (which could be due to inaccurate reddening corrections, 
stellar atmosphere models, photometric calibration, and so on) lead to 5� 
7 times larger fractional errors in the derived ages. In other words, a 0.04 
magnitude systematic shift in the color match corresponds to a 20-30% 
error in the age. The main advantage of the latter method is that it avoids 
color fitting (and hence these problems) altogether. Its primary difficulty 
is that the HB absolute magnitude is poorly known (based on RR Lyrae 
star studies) with the uncertainty being at least 0.2 magnitudes (Sandage 
1990) corresponding to a 20% age uncertainty. Both techniques are dis
cussed in detail and applied to the best available data for a large sample 
of globular clusters by Sandage & Cacciari (1990). 

Despite these formidable difficulties, observational and theoretical, the 
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consensus of expert opinion concerning the ages of the oldest globular 
clusters is impressive. All seem to agree that the best-fit ages are 15-18 
Gyr or more, perhaps considerably more. (It turns out to be easier to extend 
the main sequence lifetime of low mass stars by introducing theoretical 
complications, which typically provide additional nuclear fuel or added 
support against gravity, than to lower the ages.) Of more interest in the 
present context, one wishes to know the lower limit on these oldest stellar 
ages; unfortunately, it is not a matter of formal errors but rather of 
informed judgments of how far various effects and uncertainties can be 
pushed. The range of expert opinion clusters around 12-14 Gyr whether 
based on considerations of many clusters (Sandage & Cacciari 1990, Rood 
1990) or the few best studied cases such as 47 Tuc and M92 (VandenBerg 
1990, Pagel 1990). 

It may provide a useful perspective to note that determination of an age 
with some fractional accuracy corresponds to determining the distance 
twice as accurately. Thus, a 20% age uncertainty (the difference between 
15 and 1 2  Gyr) corresponds to claiming a 10% uncertainty in the distance! 
This holds true whichever of the two techniques is employed. 

Nuclear chronometers also offer the possibility of obtaining a useful 
lower limit on the age of the universe. They give the age of the Solar 
System with great precision (Anders 1963), and a few chronometric pairs 
(notably 232Th_238U, 235U_238U, and I 87Re-I870s) can, in principle, yield 
a mean heavy element age prior to the condensation of the Solar System 
(Schramm & Wasserburg 1970). Unfortunately, due to both observational 
uncertainties in their relative abundances and to the necessity of relying 
on highly speculative and poorly constrained models for the Galactic 
history of nucleosynthesis, the indicated age of the universe is extremely 
uncertain (Clayton 1988, Arnould & Takahashi 1990, Cowan et al 1991). 
Nevertheless, a conservative analysis (essentially assuming all of the heavy 
elements were synthesized promptly at the beginning of the universe) which 
allows for the abundance uncertainties indicates a somewhat interesting 
lower limit of 9.6 Gyr (Schramm 1990) for the age of the oldest heavy 
elements. Although this is less restrictive than the lower limits obtained 
from globular cluster studies discussed above, it may be more secure 
because the physics of nuclear decay is so much better understood than 
that of stellar evolution. 

With these lower limits for the universe's age, we could obtain decisive 
information on Qi\ from Figure 4 if only we had an accurately measured 
value of H o. Figure 10 illustrates the situation. The shaded boxes show a 
reasonable range of observational determinations of the dynamical com
ponent ofQM, and of Ho. Taking 0.1 as a lower limit ofQM from dynamical 
studies (Trimble 1987), the open (k = - 1) models with Qi\ = 0 require Ho 
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Open A=O Models 
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Ho (in km/S/Mpc) 

Flat MO Models 
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Figure 10 The age of the universe is shown as solid contours in the plane defined by Ho 
and nM, (left) for open models with n" = 0, and (right) for flat models with ntot = I. Shaded 

boxes indicate likely observational ranges for these quantities. The contribution of baryons 

to nM is bounded by nucieosynthesis to lie between the dotted curves. See text for discussion. 

to be no larger than 64-76 km/s/Mpc, to be consistent with globular cluster 
ages. In the extreme case ofQM = I, QA = 0, the range is 48-57 km/s/Mpc. 
There would be an additional 25% increase to 7 1  or 95 km/s/Mpc (for the 
k = 0 and k = - I cases, respectively) if one more cautiously used the 
nucleochronometer limit quoted above. If the true value of Ho were shown 
to be larger than these limits (pick your favorite!), then a nonzero QA 
would be required . 

A more extreme version of this argument is to take best-fit globular 
cluster ages of 1 5-20 Gyr and note that this places upper limits of 33-43 
km/s/Mpc if one insists on a model with QM = I, QA = O. 

Clearly there is  the possibility of a discovery here, but is there really any 
problem at the moment? Some optimIstic commentators (Fukugita 1 99 1 ,  
Peacock 1 99 1 ,  Fukugita & Hogan 1 990) have been encouraged by the 
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precision and consistency of several modern extragalactic distance indi
cators (Aaronson et al 1 989, Jacoby et al 1 990, Tonry 1 99 1 ,  Fukugita & 
Hogan 1 99 1 )  to conclude that Ho is quite likely to be within 1 0% of 
80 km/s/Mpc. Such a value would require either invoking a nonzero 
cosmological constant or both abandoning a k = 0 cosmology and stretch
ing the globular cluster ages to roughly the limit of their usually claimed 
uncertainties. This view has been a significant motivation for the recent 
renewed interest in nonzero Q". Moreover, even if the various extragalactic 
indicators (cited above) that indicate a large Ho value are accurate indi
cators of relative distance, the resulting Ho value is still dependent on the 
distances of the same few local calibrators, which are not established 
beyond reasonable doubt either (though see Madore & Freedman 1 99 1 ,  
Freedman 1990). On the other hand, there i s  also some substantial evidence 
for small Ho values (Arnett 1 982, Arnett et al 1 985, Branch 1 987, Tam
mann 1 987, Sandage 1 988b,c, Eastman & Kirshner 1 989, Roberts et al 
1 99 1 ,  Press et a1 1 992, Narayan 199 1 )  which we have no reason to 
disregard. In summary, a value of Ho small enough to avoid any age 
concordance problems, even in an QM = 1 ,  Q" = 0 model, is not yet excluded. 

As a matter of related interest, Figure 1 0  also shows as dotted lines the 
upper and lower bounds on QbaryonH� that derive from cosmological light 
element abundances (Olive et al 1 990, Walker et al 1 99 1). At the lower
left corner of the shaded box in the left-hand figure, one notes that an 
open model consisting entirely of baryons with A = 0 and QM = 0. 1 is by 
no means strongly excluded. That such a model is currently so unfashion
able testifies to the strength of theoretical prejudice for one or more of (a) 
inflation, (b) CDM theory (see below), or (c) exotic dark matter. The 
corresponding flat A i= 0 model (right-hand figure) has an age that exceeds 
30 Gyr, and is thus much less plausible: Not one observed stellar system 
even approaches such an age. One sees that a flat A model thus effectively 
requires a nonbaryonic component of dynamical matter. The necessity of 
invoking two speculative elements should perhaps be counted as a strike 
against A models. 

4.3 Galaxy Counts as a Function of Redshift or Apparent 
Magnitude 
As discussed in Section 3.4 and illustrated in Figure 6, the variation of 
dV/dz with cosmological parameters is substantial and offers a promising 
effect on which Q" determinations might be based. This has been pursued 
primarily in terms of counting galaxies, either as a function of their esti
mated red shifts or their apparent magnitudes in some band. Neither tech
nique has yet given a decisive result despite significant efforts reviewed 
below. 
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There are two major difficulties which make galaxy number-redshift 
counts problematic. First, red shifts for a very large unbiased sample of 
faint galaxies are required as input data. The sample must be unbiased with 
respect to red shift, despite the expected strong anti-correlation between 
redshift and surface brightness. Second, one must take careful account of 
any galaxy evolution with redshift to make sure the low-z counts refer to 
the same population of objects as the high-z counts. 

The most notable and fearless use of this technique was reported 
by Loh & Spillar ( 1 986, see also Loh 1 986) who used broadband photom
etry in six optical-near IR bands to estimate redshifts for 1 000 galaxies 
down to a brightness level of approximately 22 in I. They used a very 
simple model for galaxy evolution (essentially assuming that the lumin
osities of all galaxies at any past epoch to be a constant factor times 
their present luminosities) described by a single parameter which they 
simultaneously fit to the data. Their results were very well fit by a k = 0, 
QM = I ,  QA = 0 model and were seen as strong support for that popu
lar cosmological scenario; however, they were in fact consistent with a 
significant range of other possibilities, including nonzero QA cases (Peebles 
1 988). 

More seriously, consideration of even slightly more realistic models of 
galactic evolution (e.g. allowing for the possibly separate evolution of early 
and late type galaxy populations) greatly increases the error ranges for the 
cosmological parameters derived by Loh & Spillar (Bahcall & Tremaine 
1 988, Yoshii & Takahara 1 989). Worse still, the peculiar behavior of faint 
galaxy counts and color-magnitude diagrams (see below), the surprisingly 
rapid evolution of the spectroscopic populations of rich galaxy clusters 
(Dressler 1 984), and the redshifts distributions for small samples of faint 
galaxies studied with slit spectroscopy (Broadhurst et a1 1 988, Cowie 1 99 1 )  
all make i t  abundantly clear that low-redshift galaxy evolution i s  a complex 
process which probably cannot be described by any simple model with a 
small number of parameters. These same complications call into doubt the 
accuracy of photometric redshifts which must rely on the overall spectral 
shape of galaxy optical-IR emission changing in a predictable and simple 
way. 

It thus appears unlikely that any compelling constraints on cosmological 
parameters can be derived from galaxy number-red shift counts until there 
are great improvements in both empirical information on faint galaxies 
and our theoretical understanding of their evolution. 

An observationally less challenging approach to d V/dz tests is to aban
don redshift determinations altogether and simply count galaxies as a 
function of flux (apparent magnitude). In fact, galaxy number-magnitude 
counts in the B (blue) band (Tyson 1 988, Maddox et al 1 990b) are sub-
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stantially better fit by QA-dominated cosmologies than by QA = 0 ones, 
even taking into account the uncertainties in relatively sophisticated 
modern galaxy evolution models (Fukugita et al I 990h ) . This realization 
also prompted a flurry of interest in the cosmological constant, but was 
soon undermined by the discovery that near-IR K band counts do not 
require (and, in fact, are poorly fit by) QA-dominated models (Cowie 
1 99 1 )  and that selection effects, including seeing-dependent ones, must be 
carefully accounted for in the interpretation of such number-magnitude 
counts (Fukugita 1 99 1 ) .  

Once again, i t  seems difficult not only to draw any firm conclusions but 
even to discern which cosmological models are marginally favored by the 
available data. 

4.4 Dynamical Tests of QA 
Since a nonzero QA might be thought of as producing significant non
gravitational long range forces in the evolution of the universe, it is natural 
to hope that the large-scale dynamics of the material in the universe (i.e. 
large-scale galaxy clustering) might be sensitive to its value and thus 
provide some useful tests. Unfortunately, as Martel & Wasserman ( 1990), 
Martel ( 1 991) ,  and Lahav et al ( 1 99 1 )  have shown in detail, the properties 
of present day structures and galaxy clusters are remarkably insensitive 
to QA; it is doubtful that anything significant can be learned about the 
cosmological constant from their study. 

On the other hand, if one considers not merely the present day clustering 
but also some information on its derivatives (time evolution), there is hope 
of some purchase on the A issue. For example, Carlberg ( 1 99 1 )  has shown 
that the expected rate of galaxy mergers increases much more rapidly with 
redshift (at z � 1 )  for zero A models than for A-dominated ones, at least 
for conventional models of structure formation, and has interpreted some 
evidence for a high rate of galaxy mergers at moderate red shifts as evidence 
against a significant value of QA. However, since it may be reasonably 
doubted that galaxy mcrgers were ever a common process (Ostriker 1 980) 
and since it is anything but clear how cosmic structure formed (Peebles & 
Silk 1 990), it is probably more sensible to regard this test as an interesting 
idea for further investigation than as yet giving any clear result. 

Similarly, Richstone et al ( 1 992) have pointed out that the mean density 
(in absolute units or relative to the critical density) of just collapsing 
structures are expected to be somewhat lower in A-dominated cosmologies 
(assuming only gravity-driven structure formation) than in conventional 
ones, because the increased age of the universe allows time for their slower 
dynamical evolution. Thus, if one could use the presence of unrelaxed 
substructure, galaxy populations, or some other indicator to identify just 
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post-collapse clusters and could measure their mean cluster densities accu
rately enough, a test might be feasible. Again, available data and our 
current understanding of cluster evolution are still far from up to the task. 

Recently, a nonzero Oi\ term has been advocated (Efstathiou et a1 1 990, 
M .  S. Turner 1 99 1 )  as a means of saving the cold dark matter (CDM) 
model of structure formation (e.g. Davis et al 1 985, Bardeen et a1 1 986) 
from the contrary discoveries of excess matter perturbations on large scales 
(e.g. Maddox et al 1 990a, Geller & Huchra 1 990). In CDM theory, there 
is a change of logarithmic slope in the perturbation spectrum, caused by 
suppression of the growth of perturbations that are smaller than the size 
of the horizon during the radiation-dominated era. The length scale of this 
break becomes larger if the epoch of matter dominance is made more 
recent, i.e. if OM is decreased. Therefore, for fixed (observed) normalization 
of the perturbations at the small-scale end, the amplitudes of large-scale 
matter perturbations increases as OM decreases. A value OM � 0.2 is found 
to give best agreement with observation. 

If Oi\ = 0, such a value is incompatible not only with theoretical preju
dices in favor of inflationary models with Otot = I ,  but also directly with 
anisotropy measurements of the cosmic microwave background (Bond et 
al 1 990, Vittorio et al 1 99 1 ) .  One can see the problem in Figure 5, whose 
ordinate is proportional (by Equation 1 9) to the proper size of a scale that 
subtends a fixed angle 8: Models A, B, and D, with progressively decreasing 
OM and Oi\ = 0, subtend respectively larger proper scales, which are there
fore less correlated, implying increasing anisotropies. The sequence A, C, 
E, where Otot = I and decreasing OM is compensated by increasing Oi\, 
yields much smaller increases in scale, therefore smaller increases in ani
sotropy (Vittorio & Silk 1 985, Kofman & Starobinskii 1 985, Sugiyama et 
al 1 990, Gorski et al 1 99 1 ). A model with OM = 0.2, Oi\ = 0.8 is claimed 
to be compatible with both observed large-scale structure and present 
microwave anisotropy limits. Whether this model can be confirmed or 
ruled out by other tests-e.g. gravitational lensing (see below) or the x
ray temperature distribution . of clusters of galaxies (Lilje 1 992)-is an 
important current question. 

The patching up of CDM, by itself, can hardly be taken as firm evidence 
of a nonzero Oi\. CDM theory has been perhaps unjustifiably wed to the 
assumption of a single, constant bias factor b relating mass to light. Large
scale structure is no more direct evidence of a nonzero Oi\ than it is evidence 
of a scale-dependent value of b. In fact, scale- and velocity-dependent 
biasing is seen in recent, as yet unpublished, numerical simulations by 
Carlberg ( 199 1 ), and by Cen & Ostriker ( 1 992); these simulations include 
hydrodynamical and radiative effects and attempt to calculate, rather than 
assume, biasing effects. 
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4.5 Quasar Absorption Line Statistics 
Gas clouds, believed to be associated with the halos of galaxies, are dis
tributed through intergalactic space and cause narrow absorption features 
in quasar spectra. These are the most numerous objects that can be counted 
to high redshift. Their statistical distribution with redshift, dN/dz, offers 
another possible !lA test somewhat akin to the dV/dz count tests. Poten
tially, the evolution of ionized gas clouds might be more easily under
standable than that of physically much more complex whole galaxies; at 
least in the case of the clouds, one probably knows what the relevant 
fundamental equations and physical effects are. This gives some hope that 
evolution and cosmology might someday be clearly disentangled for quasar 
absorption line statistics. 

In an early application of this idea, Tytler ( 198 1 )  used the absence of 
strong features in the distribution of quasar absorption line red shifts to 
argue against loitering cosmologies. Turner & Ikeuchi ( 1992) have studied 

quasar absorption line statistics in cosmological models corresponding to 
our cases A and C, using an identical simple physical model for the clouds 
in each case to account for their evolution. They find that no clear choice 
between these two extreme possibilities can be made from the available 
data; however, the extrapolation to low redshift of high-redshift fits of 
various absorption lines predicts quite different frequencies for the two 
models. Typically 2-3 times more frequent absorptions are predicted for 
model C than for model A. When space far-UV spectroscopy of quasars 
provides a substantial body of data on low-redshift quasar absorption 
lines (not now available), this effect may well provide an interesting test. 
Also, flat !lA-dominated models predict an inflection in dN/dz versus z for 
all types of lines at a redshift of about (OA/OM) 1 / 3  due to the universe's 
transition into roughly exponential expansion. Consistent detection of 
such a feature in a wide variety of classes of absorbers might give some 
confidence that it was due to a cosmological, rather than an evolutionary, 
effect. This is clearly an area which deserves further work, especially as 
data on low-redshift absorption systems becomes available. 

The first Hubble Space Telescope (HST) data on low-redshift Lyman
alpha clouds (Morris et al 1 99 1 ,  Bahcall et al 1 99 1 )  have been tentatively 
interpreted on this basis as evidence against !lA-dominated models by 
Fukugita & Lahav ( 1 99 1 ), with, however, a variety of caveats (Turner & 
Ikeuchi 1 992, Ikeuchi & Turner 1 99 1) .  

4.6 Gravitational Lensing 
As described in Section 3.6 and illustrated in Figure 9, gravitational lensing 
frequencies are potentially sensitive indicators of a nonzero !lA, especially 
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along the fashionable ilk = 0 line. This fact, implicit in the lensing statistics 
analysis of Gott et al ( 1 989), was pointed out explicitly by Fukugita et al 
( 1 990a) and by Turner ( 1 990). It is an effect that has the potential for 
making a decisive test of the possibility of an il,,-dominated universe. 
Earlier work on lensing with nonzero A values (Paczynski & Gorski 1 98 1 ,  
Alcock & Anderson 1 986) concentrated on quantities such as image angu
lar separations which are quite insensitive indicators (Fukugita et al 1 992) 
and thus gave little hope for a useful test. 

Whether or not currently available data on, and understanding of, 
gravitational lens statistics yet allows any clear conclusion is a somewhat 
controversial question. Turner ( 1 990) found that a naive calculation of the 
expected lensing rates in flat il,,-dominated models predicted far more lens 
systems in known quasar samples than have been observed and concluded 
that the data excluded large il" values (with various caveats). Fukugita & 
Turner ( 1 99 1 )  reexamined the issue attempting to take into account more 
carefully both observational and theoretical uncertainties and concluded 
that although the strength of the conclusion was weakened, models as il,,
dominated as model C in Table 1 could only be accommodated by stretch
ing both sorts of uncertainties to their plausible limits (i .e. that it was only 
marginally allowed). A yet more elaborate treatment by Fukugita et al 
( 1992) reached a similar conclusion. 

The principal difficulties in calculating lensing frequencies and com
paring the results to observational determinations include: (a) char
acterizing the mass distributions of the low-redshift galaxy population 
accurately enough to allow a determination of its lensing effectiveness (the 
critical issues being the space density of galaxies, the distribution of their 
potential well depths, their mass core radii, and their ellipticities); (b) 
accounting for possible evolution of the galaxy population (note that 
here one need only consider evolution of the galaxies' mass distributions 
without regard to any possible luminosity evolution); (c) determining the 
selection biases in specific quasar and lens surveys, particularly those which 
might cause lens systems to be entirely omitted from the sample (e.g. by 
the rejection of objects with nonstellar images) or to go unrecognized (e.g. 
by lack of sufficient resolution to detect the multiple images); and (d) 
adjusting the predictions for the effect of amplification biases-the some
times strong tendency of lens systems to be preferentially included in flux 
limited samples due to the boosting of their brightnesses (Turner 1 980, 
Turner et al 1984). 

. 

These are a formidable set of complications, which cannot yet be dealt 
with precisely; however, the uncertainties in accounting for them amount 
to a factor of 1 .5 or perhaps 2, while the differences associated with 
substantial variations of il" are substantially larger, typically an order of 
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magnitude (see Figure 9). Furthermore, the effect of increasing Q" is to 
make some of these uncertainties smaller; for example, lensing cross sec
tions become less sensitive to galaxy core radii, and significant galaxy 
evolution at redshifts that dominate the total lensing integrated prob
abilities become less astrophysically plausible (because the universe is 
vacuum rather than mass dominated). It is also important that large !1" 
values tend to predict too many lensing events; a prediction of too few 
events would be far easier to explain away by invoking an otherwise 
unknown population of lenses or by supposing that physical multiples 
were being mistaken for lens systems. It is these considerations which give 
some reason for confidence in the upper limits on Q" (now typically 
about 0.9) in !1k = 0 cosmologies that have been adduced from available 
calculations and observations. 

On the other hand, Kochanek ( 1 99 1 )  and Mao ( 1 99 1 )  have emphasized 
these possible sources of systematic error, and believe that firm conclusions 
are premature. Since both improved theoretical (numerical) predictions 
are possible (Kochanek 1 99 1) and since a variety of carefully controlled 
quasar surveys (in which lensing events may be found with predictable 
efficiencies) are becoming available or are in progress (Crampton 1 99 1 ,  
Hartwick & Schade 1 990), rapid progress should be possible for this test. 
In the end, its value may be limited by our understanding of galaxy 
properties (i.e. the lens population) and their evolution (Mao 1 99 1 ), just 
as for several of the other A tests already discussed. 

Recently, Kochanek ( 1 992) has suggested a new test ofQ". He considers 
the expected lens redshift distribution for systems with given source 
redshift and image separations (i.e. angular diameters of the lens Einstein 
ring) and shows that flat, zero !1" models predict much lower typical lens 
redshifts than do Q,,-dominated flat models (like model C). Comparing 
this to the data for the small number of known lens systems for which all 
of the required data is available, he concludes that the results significantly 
favor the Q" = 0 model. This technique is extremely promising, although 
it too needs to be examined for possible systematic problems (e.g. closer 
lenses are easier to detect and have their redshifts measured more readily) 
and for possible worries about its sensitivity to details of the lens (galaxy) 
properties and their evolution. 

On balance, it is probably fair to conclude that gravitational lens sta
tistics (of both sorts discussed above) currently offer the biggest empirical 
challenge to cosmological models with significant QA terms, and that they 
are perhaps the most immediately promising area for further study, both 
observational and theoretical. However, no conclusions strong enough to 
deter either theoretical A enthusiasts nor the pursuit of other observational 
tests are yet in hand. 
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4.7 Astrophysics of Distant Objects 
One possible test for the cosmological constant has been explored very 
little. A zero value of QA is almost invariably assumed by investigators 
whose interest is focused not on cosmology per se but on attempts to build 
detailed physical models of distant cosmic objects. Since the various cosmic 
distance measures depend on QA significantly (see Section 3 .3), the physical 
properties (sizes, velocities, luminosities, etc) of distant objects are influ
enced by these choices. At least in principle, it is  possible that physical 
models of some such object or class of objects might work (or at least be 
plausible) for certain values of QA and QM and not for others. Possible 
candidate types of objects include high-redshift radio source lobes, quasars, 
the gas clouds that produce quasar absorption lines, superluminal motion 
VLBI sources, and thermal x-ray sources in high-redshift galaxy clusters. 
One such possibility which has been explored slightly (Malhotra & Turner 
1 992) is the population properties of quasars which differ significantly in 
flat QA-dominated models from those normally considered (based on zero 
cosmological constant cosmologies). Of course, our astrophysical under
standing of extragalactic objects is not generally so firm (nor scale depen
dent) that this approach offers hope of easy progress, but it may deserve 
at least selective exploration. 

5. POSSIBLE SOLUTIONS TO THE PHYSICIST' S 
C OSMOLOGICAL CONSTANT PROBLEM 
5. 1 Wormholes and the Cosmological Constant 
One of the most provocative explanations for the small value of the 
cosmological constant invokes quantum cosmology and fluctuations in 
the topology of spacetime known as "wormholes." Although we will not 
give a technical description of the relevant arguments, we will try to give 
a pedagogical introduction to the essential ideas and the troubles with 
their realization. 

Quantum cosmology is the study of the universe as a quantum gravi
tational system (Wheeler 1 968, DeWitt 1 967). Since one does not have a 
consistent quantum theory of gravity, it is common to use approximation 
schemes based on Feynman's path integral formulation of quantum mech
anics (Feynman & Hibbs 1 965). In this picture, we compute the wavefunc
tion for a particle with initial state ¢o to be in state ¢ by integrating over 
all paths that connect the two states: 

35 .  
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where p is a path from cPo to cP, and S[p] is the action for the path. In 
quantum cosmology, a "state" is a three-dimensional slice L of a four
dimensional spacetime, and the wave function of a particle is replaced by 
the "wave function of the universe" \f(�), which is the probability ampli
tude that the universe contains �. 

Since an oscillating integral such as that of Equation 35 will generally 
not converge, it is common to analytically continue the time parameter to 
imaginary values: t ---> ir. This transformation changes the signature of the 
metric from ( - + + + )  to ( +  + + +), so the resulting paths are in a 
Euclidean space rather than a Lorentzian one. At the same time, the action 
becomes imaginary, so that we may write S ---> iSE, where SE is called 
the Euclidean action. The path integral is then damped by a decaying 
exponential, and will converge if SE is bounded below. In quantum cos
mology, this transformation implies that we should integrate over mani
folds of Euclidean signature rather than Lorentzian spacetimes. We there
fore compute the wave function of the universe via 

36. 

where M is a four-dimensional Euclidean space containing a three-dimen
sional slice L. (We will not discuss the contentious issue of boundary 
conditions; see Hartle & Hawking 1 983; Vilenkin 1 982, 1 988; Linde 1 984). 

Observation tells us that our universe is large and smooth on a global 
scale; therefore, our next step is to estimate the integral in Equation 36 for 
three-surfaces L which are large and smooth. Although performing the 
integral is well beyond our capabilities, it is possible to estimate it as the 
exponential of an "effective action" r [M] .  The effective action may be 
thought of as an action with all quantum fluctuations integrated out: 
S [dM] exp ( - SE[M]/h) = exp ( - r[Me]/h), where Me is the "classical" 
space, for which r is stationary. As Coleman ( 1 988b) points out, it may 
not seem very useful to define a function (r) in terms of a path integral over 
another function (SE) which we do not know; howe'ver, an approximate 
expression for r for large spaces is known. The leading terms are simply 
those of the (Euclidean) action for general relativity: 

r = 
1 6
�

G 
f d4xj9(2A - R) +  . . .  37. 

where 9 is the determinant of the metric g�v and R is the Ricci scalar 
(R == g�VR'1V)' This expression may be roughly thought of as a power series 
expansion in the inverse size of the space; for large manifolds, gravitation 
is always dominant, and we may neglect terms representing other fields. 
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Since Equation 37  is simply the action for general relativity, its stationary 
point is the solution to Einstein's equations with cosmological constant; 
in Euclidean space, this is a four-dimensional sphere. For such spaces, 
R = 4A and f d4xJg = 24n2/A 2. Inserting these into Equation 37 yields 
r = - 3n/GA. Since the path integral in Equation 36 is the exponential of 
- r /h, we have 

38. 

If we consider A as an independent parameter, this expression is infinitely 
peaked at A = 0; the cosmological constant problem is solved! The answer 
is simply that universes in which A = 0 dominate the path integral, making 
it overwhelmingly probable that the cosmological constant vanishes. 

However, the cosmological constant may not normally be thought of as 
a free parameter. Hawking ( 1 984; see also Baum 1 984) proposed a field 
which would contribute to the action in such a way as to mimic a cos
mological constant; this field would be varied in the path integral, turning 
A into a free parameter and making Equation 38 the wave function of the 
universe. However, there is no compelling reason to believe in the existence 
of such a field (except for solving the cosmological constant problem). 

A more natural mechanism for making A a free parameter is provided 
by wormholes-topologically nontrivial spacetime geometries. Roughly, 
a wormhole may be thought of as a thin tube which connects two separated 
regions of a Euclidean space (see Figure 1 1 ) .  (The Euclidean wormholes 
we consider are distinct from wormholes which connect spatial regions in 

Figure J J Example of a Euclidean space that contributes to the Feynman path integral for 

quantum cosmology. This manifold consists of large spheres connected by wormholes. 
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a Lorentzian geometry; see Wheeler 1 964 and Morris et al 1 988.) Since 
the action for an infinitesimally small wormhole is negligible, manifolds 
consisting of large spheres connected by wormholes are approximate 
stationary points of the effective action (Equation 37), and therefore con
tribute to the path integral; the effect of these configurations has been 
the object of some debate (Hawking 1 979, 1 982, 1 988; Teitelboim 1 982; 
Strominger 1 984; Gross 1 984; Lavrelashvili et al 1 987). A resolution was 
provided by Coleman (l 988a) and Giddings & Strominger ( 1 988), who 
found that wormholes induced a distribution of values for all the constants 
of nature -precisely what is necessary to solve the cosmological constant 
problem. Tn other words, the interaction of our "universe" with other 
universes through wormholes allows the cosmological constant to attain 
a range of values; since the effective action is stationary at 1\ = 0, this 
value is singled out. (One must not take this concept too literally-the 
universes being spoken of are fictional Euclidean spaces used to calculate 
a path integral, not alternate worlds that coexist with our own.) 

This is essentially the argument assembled by Coleman in his celebrated 
paper (Coleman 1 988b). (See also Banks 1 988; for later variations, see 
Accetta et al 1 989, Adler 1 989, Elizalde & Gaztaiiaga 1 990, Hosoya 1 989, 
Kosower 1 989, Rubakov 1 988, Unruh 1 989b, and Veneziano 1 989.) One 
subtlety arises because there are many connected spheres contributing to 
the path integral; the associated combinatorics makes the wave function 
of the universe a double exponential, 'P � exp (e31!/hGA); this displays the 
infinite peak at 1\ = 0 in an even more impressive way. As a solution to 
the cosmological constant problem, this proposal has at least two very 
favorable features. First, although highly speculative physics is essential 
to the argument, there was no need to introduce any new laws or invent 
new phenomena; all that was necessary was to include in the path integral 
wormhole configurations which should be there anyway. Second, the com
munication with other large universes explains how our universe "knows 
ahead of time" to set 1\ = 0 at low temperature, rather than at early 
times. In Coleman's phrase, "prearrangement is replaced by precognition" 
(Coleman 1 988b). 

At the same time, there are many unanswered questions relating to 
Coleman's proposal; we will mention just a few. Before looking at worm
holes specifically, it is worth noting a long-standing problem of quantum 
cosmology: The Euclidean action for gravitation is not bounded below, 
and therefore the path integral of Equation 36 does not converge. Many 
remedies to this problem have been proposed, including allowing t to vary 
along a complex contour (Gibbons et al 1 978), adding additional terms to 
the action such that it becomes bounded below (Horowitz 1 985), or staying 
in Lorentzian-signature space all along (Farhi 1 989, Strominger 1 989). 
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Unfortunately, the solution to the cosmological constant problem seems 
to depend intimately on the "wrong" sign for the action (Giddings & 
Strominger 1989), and attempts to base analogous calculations in Lorentzian 
space do not find a peak at A = 0 (Fischler et al 1 989, Cline 1 989). 

If we accept for the moment the viability of Euclidean quantum gravity, 
there is still some question of the reliability of approximating the path 
integral by large spheres connected by small wormholes. V. Kaplunovsky 
(unpublished) and Fischler & Susskind ( 1 989) have suggested that large 
wormholes may dominate small ones; since then a debate has raged back 
and forth with no clear winner (Preskill 1 989; Coleman & Lee 1 989, 1 990; 
Polchinski 1 989a; Iwazaki 1 989). Equally troubling is an argument by 
Polchinski ( 1 989b) that the integration over spheres connected by worm
holes induces a phase ( - i)d+ 2 in the wave function, where d is the dimen
sion of spacetime. Thus, in a four-dimensional universe 'I' � exp 
( _ e3rr/hGA), which exhibits no peak at A = O. Lastly, several authors have 
explored a suggestion by Coleman ( 1988b) that wormholes may determine 
all of the constants of nature. To date, attempts to implement this plan 
have not met with great success (Pres kill 1 989, Hawking 1 990, Klebanov 
et al 1 989, Preskill et al 1 989). 

These results serve to emphasize that quantum cosmology is an 
ambitious but unsettled subject, insufficiently developed for crucial ques
tions to be definitively answered. The solution to the cosmological constant 
problem offered by wormholes is certainly elegant as well as provocative; 
only further work will allow us to judge its physical rclevance. 

5.2 Other Explanations 
Although quantum cosmology has attracted significant attention recently, 
there are many other proposed alternative solutions to the cosmological 
constant problem. We briefly review several here, noting in advance that 
while many are provocative, none could be described as compelling. More 
details and references to many of these proposals may be found in Zee 
( 1 985) and Weinberg ( 1 989). 

A popular explanation for various unusual coincidences in physics is 
the anthropic principle, which holds that life (and scientists) will exist only 
if the laws of physics so allow; therefore, constants of nature must have 
friendly values. This argument has been applied to the cosmological con
stant by Banks ( 1 985), Abbott ( 1 985), Brown & Teitelboim ( 1 987), and 
Linde ( 1 989). An interesting consequence of this argument is that A should 
not be zero, but only small enough for life to exist. Weinberg ( 1 987, 
1 989) argues that this bound is very close to the observational limits. The 
possibility that A is  small for anthropic reasons is therefore of interest to 
astronomers, since they should then be able to detect a nonvanishing value. 
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Another suggestion which allows for a nonzero cosmological constant 
today is to let A vary smoothly with time (Freese et al 1 987, Ozer & Taha 
1 987, Peebles & Ratra 1 988, Ratra & Peebles 1 988, Chen & Wu 1 990, 
Abdel-Rahman 1990, Berman 1 99 1 ,  Fujii & Nishioka 1 99 1 ). (Even in 
conventional theories, A varies rapidly with time during cosmological 
phase transitions.) The extra degree of freedom introduced allows models 
to be constructed in which A is appreciable, either today or in the early 
universe. Unfortunately, attempts at constructing a realistic field theory 
incorporating such features run into difficulty with cosmological nucIeo
synthesis and observations of cosmic background radiation (Freese et al 
1 987, Weinberg 1 989). 

Many authors have proposed the existence of a scalar field which serves 
to cancel out the cosmological constant (Dolgov 1 982, Zee 1 985, Ford 
1 987, Peccei et al 1 987, Barr & Hochberg 1 988, Sola 1 989, Tomboulis 
1 990). A similar procedure has found theoretical, if not observational, 
success with the CP-violating parameter of QCD (Peccei & Quinn 1 977, 
Weinberg 1978, Wilczek 1 978). Unfortunately, none of these models has 
proven to be workable. W cinberg ( 1 989) argues that there is a good reason 
for this failure: The condition that a scalar field relax the cosmological 
constant to zero will generally overdetermine the field equations, such that 
no solution can be found without fine-tuning. On the other hand, he notes 
that this argument relies on technical assumptions which may be in error. 

It is natural to wonder, given that the cosmological constant problem 
involves the overlap of quantum theory with general relativity, whether a 
solution will eventually be provided by a true quantum theory of gravity. 
Although such a theory is not available at present, progress has been made 
in understanding the cosmological constant problem in the context of 
supersymmetry and superstring theory. In supersymmetry, every boson is 
associated with a fermion of equal mass. Both bosons and fermions con
tribute identically to the energy of the vacuum, as given in Equation 6; 
however, they contribute with opposite signs! Therefore, in the presence 
of supersymmetry the net contribution of quantum fluctuations to the 
vacuum energy is zero (Zumino 1 975). Unfortunately, we do not observe 
supersymmetry in the real world-if it exists, it must be spontaneously 
broken, in which case the vacuum energies of the bosons and fermions will 
no longer cancel. Nevertheless, the startling cancellation has led many 
workers to search for supergravity or superstring theories in which the 
cosmological constant remains zero even after super symmetry breaking 
(Christensen et al 1 980, Cremmer et al 1 983,  Witten 1 985,  Dine et al 1 985, 
Moore 1 987, Siopsis 1 989). It is probably safe to say that no 
firm conclusions can be drawn until the theories themselves are better 
understood. 
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Other proposals have been made. Linde ( 1 988), in a precursor to the 
wormhole proposal, suggested a model in which two interacting universes 
contain particles with energies of opposite sign, in which the effective 
cosmological constant in each universe vanished. Pagels ( 1 984) proposed 
a theory of gravitation in which the metric did not enter into the action. 
Many groups (Zee 1 985, Buchmiiller & Dragon 1 989, Henneaux & Teitel
boim 1 989, Unruh 1 989a) have noted that A multiplies ( _g) 1/2 in the action 
for general relativity; they therefore suggest changing gravity in a way 
which demands � be fixed, so that A becomes a Langrangian multiplier. 
Weinberg ( 1 989) notes that this "does not solve the cosmological constant 
problem, but it does change it in a suggestive way," while Ng & Dam 
( 1990) maintain that, in the context of quantum cosmology, it does 
provide a solution. La ( 1 99 1 )  has proposed an "elastic vacuum theory," 
in which the vacuum energy oscillates rapidly but averages to zero. Taylor 
& Veneziano ( 1 989) propose that quantum gravity corrections (not involv
ing wormholes) can serve to rearrange the vacuum energy to produce a 
vanishing cosmological constant today. Finally, it has been argued that 
quantum fluctuations could destabilize a universe dominated by a cos
mological constant, although there are many issues still to be resolved 
(Mottola 1 986, Traschen & Hill 1 986, Ford 1 985, Isaacson & Rogers 
1 99 1  ) .  

The multiplicity of proposed solutions to the cosmological constant 
problem is telling-one correct solution would be enough. However, the 
search for a solution has led in some instances to increased understanding 
of the relationship between gravitation, field theory, and cosmology. While 
it is difficult to judge the relative likelihood that any of the above proposals 
will ultimately succeed, one can predict with confidence that the cos
mological constant problem will continue to produce creative, and some
times interesting, speculations. 

6. CONCLUSIONS 

The cosmological constant A is an idea whose time has come . . .  and 
gone . . . and come . . . and so on. The most recent cycle of interest 
derives from a mutually supportive combination of aggressive theoretical 
prejudice and new, suggestive, observations. 

Theorists, in aggregate, strongly believe (on the basis of little or no 
observational evidence) that nlol = 1 .  This belief is not only supported by 
the Copernican view that the present cosmological epoch should not be 
special, but is also the firm prediction of inflationary models (which also 
explain several, other otherwise, mystifying cosmological puzzles). Nucleo-
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synthetic evidence against baryons providing more than OM = 0. 1 does 
not sway this conviction, but only fuels equally fervent belief in non
baryonic dark matter. 

However, the preponderance of evidence against any form of dynamical 
matter able to provide OM > 0.2 or so is a definite embarrassment. Even the 
tentative evidence of large-scale velocity flows, which may allow OM � I, 
cannot be warmly embraced by the many theorists who favor the Cold 
Dark Matter theory of structure formation in its canonical form: CDM 
with OM = I and a constant bias factor does not provide sufficient power 
on large spatial scales. 

Postulating an OA-dominated model seems to solve a lot of problems at 
once. The cosmological constant supplies the "missing matter" to make 
Otat = I. It modifies CDM to put more (perhaps sufficient) power on large 
scales, and it does so in a way compatible with anisotropy limits on 
the cosmic microwave background. Simultaneously, it cleans up that old 
embarrassment: the apparent discrepancy, for larger values of Ho in its 
observationally viable range, between the age of the universe and the age 
of globular clusters. 

On the observational side, the new cycle of interest in A was for a time 
supported by evidence of an excess of faint galaxics in B band number vs 
magnitude counts, and by the realization that previous number vs redshift 
evidence against a significant OA (Loh-Spillar) was flawed in its reliance 
on an overly simple model for galaxy evolution. 

Unfortunately, this new evidence has been undermined by near-IR K 
band counts that show an opposite trend, and by new appreciation of the 
importance of selection effects. 

Furthermore, while arguably convenient, a nonzero OA is not really 
necessary for solving the theorists' problems: OM = I in the form of 
dynamical baryonic plus nonbaryonic dark matter (of unknown charac
ter!) is not ruled out, and is perhaps supported by large-scale streaming 
velocities. Closing the universe with OA in fact does not remove the need 
to postulate nonbaryonic matter, unless one is willing to have the universe 
be older than 30 Gyr and have a very low value for Ho (Figure 1 0). CDM 
theory can be fixed by abandoning the assumption (made originally as a 
matter of convenient simplification, not physical necessity) of a constant 
bias factor; indeed this may be forced on the theory by new numerical 
simulations, and by the COBE microwave anisotropy measurements. 

In terms of ruling in a nonzero cosmological constant, the situation now 
is not too different than it has been in the past. A high value of H 0 ( >  80 
km/s/Mpc, say), combined with no loss of confidence in a value 1 2-14 Gyr 
as a minimum age for some globular clusters, would effectively prove the 
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existence of a significant nA term. Given such observational results, we 
would know of no convincing alternative hypotheses. 

What is most different now from in the past, and what provides hope 
for breaking the seemingly endless alternation between A-fashionability 
and A-rejection, is the existence of a new set of tests-gravitational lens 
statistics-that have the ability to rule out a dominant nA contribution. 
Both the raw number of expected lenses, and also the statistics of their 
rcdshifts, arc highly sensitive to nA as it approaches I along the ntot = I 
line (Figure 9). While there are formidable complications to be dealt with, 
there is a good case that, along the ntot = 1 line, gravitational lens tests 
already bound nA to be less than 0.9, about the same as the bound from 
the existence of dynamical matter in amounts nM � 0. 1 .  It is possible that 
bounds to less than 0.5 can be achieved, by which point A is rendered 
uninteresting as a solution for theoretical ills-its "constituency" ought 
to evaporate. 

It will never be possible to rule out a sufficiently small fractional value 
for nA, particularly since the effects ofnA are smaller in the higher-redshift 
past than they are today. 

The particle theorist who has no prejudice for Utot = 1 might want to 
know current, observationally secure, bounds on A. For negative A, a 
bound derives from the minimum age of the universe (Figure 4). Taking 
nM < I, to > 1 0  Gyr, and Ho > 40 km/s/Mpc, one gets Hot > 0.40, 
nA > - 7, and A >  - 2  X 1 0 - 29 g/cm3. For positive A, the best bound 
derives from gravitational lens statistics (Figure 9), although a bound 
from the simple existence of high-redshift objects would be not much less 
stringent. Taking nM < 1 ,  one gets nA < 2; with Ho < 1 00 km/s/Mpc, one 
obtains A < 4 X 1 0 - 29 g/cm3. If these bounds seem broad in cosmological 
terms, astronomers can nevertheless take satisfaction in bounding A to a 
fractional range of one part in 1 0  1 2 0 of that allowed by' contemporary 
particle theory, thus making it the most precisely measured constant in all 
of physics. That same precision convinces most theoretical physicists that 
A must be precisely zero. 
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