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Abstract Quintessence theories for cosmic acceleration imbue dark energy with
a non-trivial dynamics that offers hope in distinguishing the physical origin of this
component. We review quintessence models with an emphasis on the dynamics and
discuss classifications of the different physical behaviors. The pros and cons of various
parameterizations are examined as well as the extension from scalar fields to other
modifications of the Friedmann expansion equation. New results on the ability of
cosmological data to distinguish among and between thawing and freezing fields are
presented.

1 Introduction

Understanding the acceleration of the cosmic expansion is a landmark problem in
physics, impacting gravitation, high energy and quantum physics, and astrophysics,
and likely to revolutionize one or more of these fields. The direction in which to
look for a solution is almost wholly unknown currently. Though there is no shortage
of suggestions, most are far from a first principles explanation of how such physics
arises.

Perhaps the simplest proposal—Einstein’s cosmological constant � [25]—is cor-
rect, though even so we have as yet no understanding of why it would arise, with the
magnitude needed to explain acceleration occurring near the present epoch. That puzz-
lement can be broken into two severe problems [12,71,91]: the fine tuning problem
of how � appears with a magnitude (energy density or energy scale) so far from the
natural (Planck) scale defined by fundamental constants, and the coincidence problem
of why acceleration appears in our recent past, at a cosmic scale factor within 2 of
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330 E. V. Linder

the present value out of perhaps 1028 since inflation. The cosmological constant is
addressed in far greater detail in the articles by [8,72] in this special volume.

To paraphrase Winston Churchill speaking about democracy, it may be that the cos-
mological constant is the worst form of accelerating physics, except for all those other
forms that have been tried from time to time. Nevertheless, this article addresses those
other forms, specifically dynamical physics that aims to ameliorate the coincidence,
and/or fine tuning, problems. We concentrate on the dynamics, the time evolution of
the cosmological expansion physics, (mostly) from a canonical scalar field, given the
name quintessence. See [15] for a particle physics perspective.

Section 2 provides a brief historical perspective on the development of quintessence
theories. Section 3 reviews key elements of the dynamics of quintessence and the phy-
sical origins of structure in the phase space, defining classes of models. Efficient repre-
sentation of the dynamical behavior through parameterization or principal component
analysis is discussed in Sect. 4, and we investigate in detail thawing models, those
which approach cosmological constant behavior, in Sect. 7. In Sect. 5, we consider a
selection of dynamical models beyond standard quintessence, and briefly mention the
effects of expansion dynamics on growth of cosmic structure in Sect. 6. We conclude
in Sect. 8.

2 Origins of quintessence

The role of a dynamical scalar field for recent acceleration of the cosmic expansion
certainly owes a debt to the use of rolling scalar fields for early universe inflation.
A scalar field, and more generally a negative equation of state, were implemented
as a substitute for the cosmological constant in a flurry of activity in the 1980s. On
the theoretical side [49] proposed a simple extension from the flat potential of the
cosmological constant to a tilted, linear potential, that releases the field to roll when
the expansion rate of the universe decreases sufficiently, what is now called a thawing
field. In 1988, two nearly simultaneous papers by [76,92] described in more detail
cosmology in the presence of a quintessence field.

At the same time, considerable work on the phenomenology of energy density
components with an arbitrary (including negative) pressure to density, or equation of
state, ratio was being carried out. [90] discussed such generalized cosmology, and
[50] then followed up on this with detailed investigation of a variety of cosmologi-
cal probes of additional components with arbitrary equation of state. These included
tests of the expansion dynamics through distance, age, volume, and abundance mea-
surements. Particular attention was paid to light propagation in such a generalized
cosmology, including possible inhomogeneities in the components [51] (some results
occurred earlier in the unpublished thesis of [41]). General equations of state had
been considered in a formal way for the growth of structure within linear perturbation
theory by [43]. Implications of general equations of state for growth were presented
in [29,52].

Thus high energy physics theory and cosmology were all ready in the 1980s for data
exploring the expansion and growth histories of the universe. It took another 10 years
for observations [73,77] to make the astonishing breakthrough that turned these
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speculations into a central subject of research into our understanding of gravitation,
quantum physics, cosmology, and the fate of the universe.

3 The quintessence of dynamics

3.1 Scalar field basics

If we view the cosmological constant as a quantum zeropoint energy corresponding
to the ground state of harmonic modes of a field filling space, we can picture this as
an array of identical springs, motionless and each stretched to the same length. By
contrast, a scalar field would be a dynamical version of this, with the springs oscillating
in time and having different lengths at different points in space. That is, a scalar field
is a very simple quantity, a magnitude at each point in space. One can literally picture
it as a field: a field of grass where each stalk may have been mown to a different height
(a vector field could then be a field of trampled grass, where each stalk has a length
and a direction in which it lies).

For quintessence, we take a scalar field φ minimally coupled, i.e., feeling only
gravity, passively through the spacetime curvature, and a self-interaction described by
the scalar field potential V (φ). Moreover, we consider the kinetic contribution to the
Lagrangian (the “bouncing of the springs”) to be canonical, i.e., involving only a term
linear in the kinetic energy of the field. (We briefly discuss relaxing these conditions
in Sect. 5.) So the Lagrangian is about as simple as possible:

Lφ = 1

2
∂µφ∂µφ − V (φ). (1)

Through the Noether prescription we define an energy-momentum tensor

Tµν = 2√−g

δ(
√−gL)

δgµν
, (2)

where gµν is the metric and g its determinant. Comparing the result for a homogeneous
and isotropic spacetime to the perfect fluid form allows identification of the energy
density and pressure:

ρφ = 1

2
φ̇2 + V (φ) + 1

2
(∇φ)2 (3)

pφ = 1

2
φ̇2 − V (φ) − 1

6
(∇φ)2. (4)

Because late time acceleration requires a very light scalar field, with effective mass of
order the Hubble parameter, the Compton wavelength of the field will be of order or
larger than the Hubble scale and so the field is expected to be spatially smooth within
the Hubble scale. Therefore we neglect the spatial gradient terms in the energy density
and pressure. These quantities can be put into the usual Friedmann equations to solve
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for the expansion history of the scale factor vs. time, a(t), from the Hubble parameter
H = ȧ/a and acceleration ä.

Because both the energy density and pressure enter the equations, it is convenient
to define an equation of state ratio,

w = pφ/ρφ, (5)

which is generally time varying. When we refer to dynamical fields, we generally
mean time-varying w, i.e., w �= constant. (Although the energy density of constant
w models varies with time, this happens as well with matter or a frozen network of
cosmic strings, say, and so does not capture the flavor of “dynamics”.)

The equation of motion for the scalar field is the Klein–Gordon equation

φ̈ + 3H φ̇ = −dV/dφ, (6)

and is interchangeable with the continuity equation. For example, multiplying through
by φ̇ gives the sequence

[φ̇2/2]˙+ 6H [φ̇2/2] = −V̇ (7)

ρ̇φ − V̇ + 3H(ρφ + pφ) = −V̇ (8)

dρφ

d ln a
= −3(ρφ + pφ) = −3ρφ (1 + w). (9)

where we have turned Eqs. (3)–(4) around to use

V = (ρφ − pφ)/2 = ρφ(1 − w)/2 (10)

K ≡ φ̇2/2 = (ρφ + pφ)/2 = ρφ(1 + w)/2. (11)

From the above equations we can formally go back and forth from the field des-
cription to the fluid description or equation of state. From Eqs. (3) to (4) we see that

w = K − V

K + V
, (12)

so for some specified theory we can calculate the equation of state and then the effects
on the cosmological expansion. The other direction, starting from observations of the
cosmological expansion, is slightly more complicated:

ρφ(a) = �w ρc exp

⎧
⎨

⎩
3

1∫

a

d ln a [1 + w(a)]
⎫
⎬

⎭
(13)

φ(a) =
∫

d ln a H−1
√

ρφ(a) [1 + w(a)] (14)

V (a) = ρφ(a) [1 − w(a)]/2 (15)

K (a) = φ̇2/2 = ρφ(a) [1 + w(a)]/2. (16)
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Such reconstruction of the scalar field physics is made difficult by a number of issues:
noisiness of measurements of the expansion, translation from the measured quantity
to density or equation of state through one or two derivatives, and finite range of scale
factor, or redshift z = a−1 − 1, coverage. In particular, from the last of the equations
above we see that

φ̇ = [ρφ(1 + w)]1/2 � H MP (1 + w)1/2, (17)

so for cases when 1 + w � 1 (as seems to be implied by observations), only a small
region of the scalar field physics, �φ ∼ φ̇/H � MP , can be probed. All these issues
together makes reconstruction problematic, and we do not consider it further. (For
attempts to carry it through, see [82] and references therein.)

While we cannot reconstruct in detail the scalar field potential, we can derive
considerable insight into the accelerating physics from study of its dynamics. We can
guess from the spring picture at the beginning of this section that there will be at least
three basic quantities we want to know: how much energy is there in the field, how
springy is it, and how stretchy are the springs? The energy density ρφ is conveniently
written in terms of the dimensionless density �w = ρφ/ρc, where ρc = 3H2

0 /(8πG)

is the critical density. For a spatially flat universe, �w = 1 − �m , where �m is
the dimensionless matter density. The analog of the springiness is how spacetime
curvature reacts to the accelerating component; the passive gravitational mass is given
by ρ + 3p, with acceleration induced by a component possessing p < −ρ/3, or
w < −1/3. So we can regard w as a measure of the springiness. As the universe
expands, the springs react, changing their springiness, like stretching the coils of a
spring. This time variation can be taken as w′ = dw/d ln a = ẇ/H . Thus we are
primarily interested in �w, w, w′. The last two quantities give a phase space for the
dynamics which we will see is enlightening.

3.2 General dynamical behavior

Scalar fields can at any epoch have one of four behaviors. Their rolling can be fast,
slow, more or less steady, or oscillatory.

Fast roll: Fast rollers have kinetic energy exceeding their potential energy, and so
by Eq. (12) have w > 0. These clearly do not act to accelerate the cosmic expansion,
but a fast roll epoch (“kination”) is a characteristic of tracker models, which follow
attractor trajectories in their dynamics such that at certain epochs their equation of state
is determined by the dominant energy density component of the universe. Because of
the fast roll, the scalar field can rapidly decrease its energy density from an initial,
early universe value near the “natural” Planck scale to a much smaller value that
will make it suitable for the observed present energy density. Due to the attractor
solution for the dynamics, for certain forms of the potential, there is a large variety of
initial conditions—“basin of attraction”—that can deliver a reasonable present energy
density, thus addressing the fine tuning problem of the cosmological constant. Of
course the field must leave both the fast roll regime and the tracking regime if it is
to cause acceleration and dominate the energy density, so the coincidence problem is
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not completely solved. In particular, tracking fields have difficulty reaching equations
of state w � −0.7, in tension with observations, and so are no longer considered
front runners for explaining the acceleration. For more on trackers (and the earlier
“tracers”), see [26,48,86,95].

Slow roll: When the kinetic energy is much smaller than the potential energy, the
equation of state is strongly negative, w ≈ −1. Of course this only leads to acceleration
of the expansion if the dark energy also dominates the energy density. The field is nearly
frozen, and the dark energy density is nearly constant (while matter and radiation are
rapidly diluting due to the expansion), so it would eventually come to dominate the
universe if nothing else changed. Note that because matter is not negligible, even
today, a field we think of as slowly rolling, w ≈ −1, may well not have a small value
for V ′/V (see, e.g., [59]), which is a conventional slow roll parameter for inflation
(where the accelerating component is completely dominant). Quintessence models
that always have the potential dominating over the kinetic term encounter the same
fine tuning and coincidence problems as the cosmological constant, lacking the basin
of attraction of tracker models. Thus generically, we want a combination of fast and
slow roll behavior for a successful model.

Steady roll: Referring to the original quintessence model of [49] using a linear
potential, this category is somewhat of a misnomer since the field does have fast and
slow roll epochs over its entire history. However, the linear potential model does have
a constant right hand side of the Klein–Gordon equation of motion, and for a long
time the dynamics stays reasonably close to the line where the field acceleration φ̈

(not the cosmic acceleration ä) is zero (see Sect. 3.3 below). This model is not only
the simplest generalization of the cosmological constant but is also interesting in its
overall history. It starts generically from a frozen, cosmological constant-like state
due to Hubble friction, then thaws and rolls down the potential. However, because
the potential has no minimum, the field rolls into territory where the potential goes
negative, which actually leads to a collapsing universe, rather than an accelerating
expansion. These models therefore have a finite future history, with a “doomsday
time” [39,45].

Oscillation: Common potentials in renormalizable field theories include V (φ) ∼
φn , which have a minimum for n even. While the field will have a conventional rolling
stage, eventually it will reach the minimum and oscillate around it. If the period for
oscillation is much smaller than the Hubble time (as is generally the case) then the
effective equation of state becomes [87]

w = n − 2

n + 2
. (18)

For a quadratic potential, the field acts like nonrelativistic matter, and for a quartic
potential it acts like radiation.

One intriguing example of such a field is the axion, or more generally pseudo-
Nambu Goldstone bosons (PNGB). If we consider them during the regime when they
are still rolling rather than oscillating, they can accelerate the expansion, though this
acceleration will eventually fade away as the field evolves to its oscillatory, matter-like
phase [28]. PNGB potentials are also radiatively stable against quantum corrections,
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unlike an ad hoc V (φ) that might be written down but then acquire a non-zero ground
state (cosmological constant) and distortion of its shape. Thus the physics of such
pseudoscalar fields offers some promise for a fundamental, high energy physics origin
rather than merely a low energy effective potential. The PNGB potential looks like

V (φ) = V0 [1 + cos(φ/ f )], (19)

where f is a symmetry energy scale. Because the potential is nonmonotonic and
the slope of the potential changes from concave to convex, a number of interesting
effects can arise, such as mimicking super-negative equations of state w < −1 and
nontrivial dynamics [18,31,40]. For a complex field, one has degrees of freedom in
both the modulus and the phase, and researchers have considered making one act as
dark energy and the other as dark matter (e.g., [66]), or one giving recent acceleration
and one early universe inflation (e.g., [78]. Other elaborations include spintessence
[9,30].

3.3 Fundamental modes of dynamics

While in the previous subsection we considered the behavior of the scalar field
dynamics at any one moment, considerably more insight comes from investigating
the overall dynamical history given by the trajectory through phase space. In parti-
cular, we will be interested not only in the present characteristics, but the asymptotic
past and future states.

By examining the physical impact of the three different terms in the Klein–Gordon
equation (6) we can identify boundaries in the phase space corresponding to different
physical conditions.

• Phantom line: This line separates physics obeying the null energy condition [32],
ρ + p ≥ 0 (w ≥ −1), from physics violating it. Also, consider the friction term
3H φ̇. From Eq. (11) one sees that where the sign of this term changes, i.e., φ̇ = 0
as the field stops rolling in one direction (and possibly begins rolling in another),
corresponds to

w = −1. (20)

Canonically the field has w ≥ −1 but there are various mechanisms (see Sect. 5)
for achieving w < −1, what is referred to as the phantom regime [10].

• Null line: Consider the forcing term of the potential slope. When the field rolls
down the potential, V̇ ≤ 0, this corresponds to

w′ ≥ −3(1 − w2), (21)

where we have used Eqs. (9)–(11) to convert the variables V̇ and φ̇ to w, w′. If the
field has a (noncanonical) negative kinetic energy so it rolls up the potential then
the inequality flips but at the same time the sign of w changes so w < −1 (one can
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think of this as the energy density increasing with time, following Eq. 9). Thus the
null line passes smoothly through the point (w,w′) = (−1, 0).

• Coasting line: Consider the acceleration term φ̈. Generally, at late times, the field
accelerates due to the potential forcing dominating over the friction, or decelerates
if the friction dominates over the potential slope (note this should not be confu-
sed with the acceleration of the cosmic expansion, which holds in either case if
w is sufficiently negative). Again from Eq. (11) the dividing line between these
dynamics, where the field is freely coasting at constant velocity φ̇, is

w′ = 3(1 + w)2, (22)

with w′ greater (smaller) than this for field acceleration (deceleration).

These three boundaries give general physical divisions for the dynamical behavior
of the field. The general equation relating the phase space variables can be derived by
taking the derivative of Eq. (10) and using the continuity equation (9) to obtain

w′ = −3(1 − w2) − (1 − w)(1 + w)1/2

√
3�w(a)

8π

MP V,φ

V
. (23)

We can readily verify the null line corresponds to V,φ = 0 (and one can specialize
to the coasting line with a little more effort). These conditions were defined in [11]
and developed further in [59,83]. The last reference in particular goes into more detail
about the derivation and the effect of the ratios of different terms in the Klein–Gordon
equation, as well as “slow roll” parameters of the potential.

Without the need for quantitative analysis of the ratios of Klein–Gordon terms,
one can broadly understand the dynamics by examining the relative dominance of the
driving vs. dragging terms, following [11]. If the Hubble friction dominates at early
times, then the field will be pinned and act like a static cosmological constant. As the
cosmic expansion reduces the Hubble parameter, eventually the potential slope induces
the field to begin rolling: such models are said to be thawing, and their dynamics in
phase space shows them “leaving �”, moving to less negative w with positive w′.
In particular, fields that thaw during the matter dominated epoch leave � along the
track w′ = 3(1 + w).1 As the matter domination wanes, the trajectory will curve
according to the driving force from the potential slope; since the potential (eventually)
becomes less steep as it approaches the minimum, the field acceleration decreases and
the curve is toward the coasting line, i.e., smaller w′. For broad classes of potentials the
condition that dark energy not completely dominate the energy density of the universe
by the present means that thawing fields are still accelerating along the potential and
the dynamics has a lower bound roughly given by w′ > 1 + w (for �w < 0.8 and
w < −0.8). Thus the thawing region of phase space is defined by a dynamical history

1 + w � w′ ≤ 3(1 + w). (24)

1 Fields whose initial conditions φ̇i are fine tuned can avoid this. Also, if the potential driving term is very
large, for example in PNGB fields with symmetry energy scale f � MP , then one can have w′ > 3(1+w).
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The alternative is that the potential forcing dominates over the Hubble drag at early
times, i.e., the potential is sufficiently steep to overcome the friction from cosmic
expansion. Such fields will look different from the cosmological constant at early
times. Certain forms of potential possess special attractor properties, as discussed
in the previous subsection, that during the matter dominated epoch cause the scalar
field dynamics to have a constant equation of state determined by the background
expansion. As the dark energy density becomes relatively more important, these fields
will depart from their tracking behavior and roll according to the dynamics of their
potential. As the field rolls toward the minimum, decelerating in its motion (lying
below the coasting line), gradually approaching asymptotically a static cosmological
constant state, it is said to be freezing. In its “approaching �”, the field contributes
an energy density ρw ∼ H2(1+w), but [59] showed that any Hα model approaching
w = −1 does so along the asymptotic trajectory w′ = 3w(1 + w). Conversely, since
dark energy dominates (though not fully) today, the field must have departed its matter
dominated tracking behavior and moved some distance away from the constant w line.
For broad classes of potential this leads to a present value w′ � 0.2w(1 + w) (for
�w > 0.6 and w < −0.8). Thus the freezing region of phase space is defined by a
dynamical history

0 ≤ w′ ≤ 3w(1 + w), (25)

with the present value of w′ more tightly restricted.
Figure 1 illustrates the three critical dividing lines of the phantom, null, and coas-

ting curves in the dynamical phase space. In addition it shows the upper and lower
boundaries of the thawing and freezing regions. Note that the lower boundary of the
freezing region coincides with the constant pressure curve (with an adiabatic sound
speed c2

a = 0) discussed in Sect. 5.
Comparing Eqs. (24) and (25), we see that they define narrow, distinct regions

in the phase space where scalar field theories obeying a combination of theoretical
and observational conditions lie. In particular, there are fairly strongly physically
motivated outer boundaries defining the extremes of w′. The exact inner boundaries
are more a function of empirical constraints on the present expansion, but there is a
distinct intermediary zone unfavorable for habitation. This “desert” lies around the
coasting line: only highly fine tuned models would, after the many e-folds of cosmic
expansion influencing the scalar field equation of motion, find themselves almost
perfectly balanced between field acceleration and deceleration, φ̈ ≈ 0.

Two important implications of the physical division into distinct thawing and free-
zing regions are for the questions of observationally distinguishing dynamical dark
energy from � and distinguishing the physical origin of the dark energy (e.g., field
theories with thawing versus freezing characteristics). Because of the degeneracy
directions of essentially all cosmological probes (see the articles by [46,69] in this
volume), the entire thawing region is difficult to distinguish from the cosmological
constant if the data is only at the sensitivity level of a constant, or time averaged, w.
For example, the entire thawing region would give an apparent 〈w〉 ≈ −1 ± 0.05.
Thus experiments sensitive to w′ are necessary for deciding between this half of the
dynamical phase space and the cosmological constant. For distinguishing between the
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Fig. 1 The dynamical phase space w-w′ is divided by three curves defined by physical conditions: the
phantom line w = −1, the null line w′ = −3(1 − w2) following from a flat potential, and the coasting line
w′ = 3(1 + w)2 following from constant field velocity. These extend across the phase space. In addition,
canonical dynamics leads to the distinct regions of the thawing regime bounded by the red dotted lines
and the freezing regime bounded between the green dot-dashed curve and the blue dashed curve (the latter
given by the constant pressure condition)

classes of effective field theories, one would like to have cosmological sensitivity to
the time variation of σ(w′) � 2(1 +w) to resolve the separation between the thawing
and freezing regions. For in depth discussion of mapping the cosmic expansion history,
see the review article by [61].

3.4 More complicated dynamics

In the previous subsection we gave physical motivations for bounded regions in phase
space but we emphasize these are based on a combination of generic behavior and
empirical data, not an absolute exclusion of other possible behaviors. In particular,
they relied on a standard matter dominated epoch at high redshift, canonical scalar
fields, avoidance of fine tuned initial conditions and potential shapes, and “fundamental
modes” of dynamics. We discuss extension of the dynamics to beyond canonical scalar
fields in Sect. 5; here we consider initial conditions and fundamental modes.

Initial conditions on the scalar field dynamics are quite important, e.g., one could
consider a field so perfectly balanced on a maximum of its potential that it only starts
rolling yesterday, or a field that has recently passed a minimum of its potential and
is now rolling uphill, or a field with kinetic and potential energies exactly crafted so
the dynamics is missing (constant equation of state) or is coasting. Physics does not
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forbid any of these a priori, but our sense of naturalness disfavors them. If dynamical
conditions are set by hand at recent times, rather than the field settling into an evo-
lution following its equation of motion over many e-folds in the early universe and
then a matter dominated epoch, then virtually arbitrary behavior can result [37,47].
One could fine tune the field such that one does not extract general physical pre-
cepts on the dynamics, but rather the phase space trajectories would spell out your
name.

Under the physics of field evolution through the cosmic expansion history, including
a matter dominated epoch, the phase space structure described in the previous subsec-
tion generically holds. One further necessary ingredient is that we are talking about
fundamental modes, or “atoms”, of the dark energy—the quintessence of dynamics.
If one combines multiple elements together, such as a scalar field plus a cosmological
constant, or plus matter, or plus another scalar field, then one can indeed break the
physical boundaries (just as multifield inflation can break consistency relations and
other basic predictions). That is, the phase space structure applies to the dynamics of
a single, fundamental field, not an effective field of multiple origins.

We can investigate this further by examining the effect on the equation of state
when multiple elements are combined. For the simplest approach, we consider adding
together two components: a canonical scalar field plus either a cosmological constant,
a matter component (e.g., misestimation of �m or dark energy contribution to dark
matter), or another scalar field.

The effect of combining two such noninteracting components is given by an effec-
tive dynamical equation of state

weff = w1
δH2

1

δH2
1 + δH2

2

+ w2
δH2

2

δH2
1 + δH2

2

, (26)

where δH2
i is the contribution of component i to the Friedmann equation. This

approach was used to first point out phantom crossing, evolution across w = −1,
by two scalar fields [55] (also see [34]). The dynamics is affected as

w′
eff = 3weff(1 + weff) + δH2

1

�
[w′

1 − 3w1(1 + w1)]

+δH2
2

�
[w′

2 − 3w2(1 + w2)], (27)

where � = δH2
1 + δH2

2 . Note that two constant pressure components (where w′
i =

3wi (1 + wi )) add without affecting the dynamics. In particular, any combination of
matter plus � keeps the same trajectory, just moving the position along the track.

Furthermore, this formula implies that the sum of components, each of which
lies on the same side of the curve w′ = 3w(1 + w), has effective dynamics doing
likewise. For example, two kinetic k-essence components give an effective dynamics
that is still kinetic k-essence-like. Similarly, the null condition w′ > −3(1 − w2)

cannot be overcome by summing components obeying w′
i > −3(1 − w2

i ). Other than
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Fig. 2 Dynamics involving combination of physics can violate the fundamental phase space regions. To
the original thawing scalar field trajectory (solid black), we add a cosmological constant (+�), extraneous
matter or quartessence component (+m), or freezing scalar field (+V ). We fix w0 = −0.8 for the fields
and take the total dimensionless dark energy density to be 0.7. For the second component of � or V we
take �2 = 0.1 (darker, black) or 0.35 (lighter, red); for included matter �+m = 0.01. Curve endpoints
correspond to z = 0, with x’s at z = 1

respecting these two boundaries, the dynamics can change significantly on combining
components.

To an initial thawing scalar field we add either a cosmological constant component,
a matter component, or a freezing field. Figure 2 shows that such combinations, as
opposed to the fundamental modes or “atoms” we discussed in the previous subsec-
tion, do not adhere to the restricted thawing and freezing regions of the phase space.
Convolutions of different physics can drastically differ from those fundamental beha-
viors.

Adding a freezing field to a thawing field dramatically alters the trajectory, since at
early times the freezing field will dominate. (Adding extra components to a dominant
freezer has less effect.) The phase space tracks therefore start off in the freezing
regime but curve up toward the thawing regime, possibly lying today in the desert
region between the two regimes. A cosmological constant rotates the dynamics toward
w′ = 0 and draws it in toward w = −1 (see also [11]); this does not generally move
a thawing field out of the thawing region. Including a matter like component with
the thawing field has the most severe effect. Adding a mere 0.01 in dimensionless
matter-like energy density alters the track wildly – this points up strongly the dangers
in attempted direct reconstruction of the dynamics from H(z) or the distance-redshift
relation. Misestimation of �m by 0.01 will completely distort the true dark energy
dynamics.
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4 Describing the dynamics

The phase space dynamics discussed in the previous section presents the dark energy
physics in terms of a function w(a) and its derivative w′, describing the “springiness”
and “stretchiness” of the spacetime in reaction to the dark energy. Each theoretical
model presents its particular description of the function and we can check each against
the data to determine whether the model fits. However, there are 10x theoretical forms
(potentials or equation of state functions) already postulated, each with their own
parameters. Moreover, we would like to predict the results of experiments, or design
experiments, more generally than for a given theory or set of existing theories.

This shows the need for a model independent approach, based on a parametrization
of the equation of state function or a similar quantity. Because we want the parametri-
zation to stay close to the underlying physics, of which both the dark energy density
and pressure enter, we concentrate on the pressure to density ratio, or equation of state
ratio. However parametrization of other quantities such as distances, Hubble para-
meter, or density alone have been considered (see, e.g., [82] and references therein);
two cautions should be stated about this route: certain forms bias the extraction of the
underlying physics, see e.g., [38,60], and if one eventually wants the equation of state
then one is forced to take numerical derivatives of a quantity extracted from noisy
data.

Numerous parametrizations exist for the equation of state w(a) but the vast majority
are purely ad hoc. We here consider a very few that are phenomenological in the best
sense, i.e., generalized from the behavior of physically motivated sets of models. From
the previous section we have seen that a single parameter model, i.e., w = constant,
involves highly fine tuned physics to remove the dynamics. While one way out of
this is to invoke a physical symmetry, such as a topological defect origin, which can
produce w = −N/3 for a frozen network of N -dimensional defects (e.g., N = 2
domain walls [94] or N = 1 light cosmic strings [89]), such values are not consistent
with data.

This leads us to two parameter models as the next simplest alternative. The para-
metrization

w(a) = w0 + wa(1 − a), (28)

where w0 is the value today (a = 1) and wa is a measure of the time variation
w′, is widely used in the literature. It is important to realize that it is in no way a
mathematical expansion about the present: neither its important introduction by [13]
nor the physical foundation work by [53] employed a Taylor expansion, nor would
that be mathematically convergent. Therefore wa is not an expansion parameter about
z = 0, but rather a fit parameter describing the overall time variation w′. The original
convention [53] giving the best description is

wa ≡ (−w′/a)|z=1 = −2w′(z = 1). (29)

Linder [53,54] give several physical supports for the wa parametrization: (1)
excellent approximation to the exact field equations for a broad range of fundamental
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or straightforward scalar field potentials, (2) well behaved at both low and high red-
shift, (3) robust against bias, e.g., if one extends the form to further parameters, the
w0, wa parameter values estimated are not strongly affected, (4) model independence.
For example, a SUGRA inspired model that evolves from w(a � 1) ≈ −0.2 to
w0 = −0.82—a substantial variation—has its equation of state reproduced to within
3% back to z = 1.7 and the distance-redshift relation in such a cosmology is accurately
matched to 0.2% back to CMB last scattering by w0 = −0.82, wa = 0.58.

Of course a two parameter description cannot describe all possible dynamics; in
particular it begins to break down for rapid transitions in the equation of state or
oscillations. However, for the fundamental modes highlighted in the previous section
it serves as an excellent, broad (i.e., model independent, good for both thawing and
freezing) parametrization of the physically favored dynamics.

Another two parameter form, which is motivated from the energy density rather
than the equation of state, is the bending parametrization of [93]. This was designed to
describe early dark energy models where at high redshift (near the CMB last scattering
surface, z ≈ 103) the scalar field component has nonnegligible energy density (though
it is then acting in a decelerating, rather than accelerating, manner on the expansion,
so it is not exactly dark energy). The bending form has

ln
�w(a)

�m(a)
≡ R0 − 3w0 ln a

1 − b ln a
(30)

w(a) = w0

(1 − b ln a)2 , (31)

where R0 = ln(�−1
m −1) and b is related to the early dark energy density. The dynamics

of this parametrization is that in the past it approaches w = 0, w′ = 0 (i.e., a finite
dark energy density that acts like matter), at some future time a∗ = e1/b it runs to
w = −∞, w′ = −∞, and then returns along the same trajectory to w = 0, w′ = 0 in
the further future. The phase space track is defined by w′ = 2bw0 (w/w0)

3/2. At any
given time in the past the variation must be slower than w′ = −(8/27)w0/ ln a.

A generalization of the wa form to three parameters was put forward by [75]. This
eases the property of the wa form where the parameter wa plays two roles: it describes
the characteristic time variation w′ but it also determines the asymptotic past value of
w(a � 1) → w0 + wa . The extended form has

w(a) = wpz + w0zt

z + zt
, (32)

where wp is the asymptotic past value and zt is the transition redshift. When zt = 1,
this reduces to the wa parametrization. The phase space dynamics is a parabola from
(w,w′) = (wp, 0) to (w f , 0), crossing w = −1 if w0 < wp.

To describe a monotonic w(a) which transitions smoothly from some asymptotic
past value wp to some asymptotic future value w f requires a minimum of four para-
meters: wp, w f , the epoch of transition at , and a rapidity parameter τ . (Note that the
previous models are not bounded in the future; this is not overly worrisome because
we have no data on the expansion future.) Such forms are particularly successful in
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describing tracking models which have both asymptotic past and future equations of
state. The transition can be described by many functional forms, but the two most
common four parameter equations of state both adopt “Fermi-Dirac” transitions. The
kink model [16] takes this in scale factor a, obtaining

w(a) = w0 + (wm − w0)
1 + eat /�

1 − e1/�

1 − e(1−a)/�

1 + e(at −a)/�
, (33)

where wm is the asymptotic value in the matter dominated era and � is related to the
rapidity, while the e-fold model [63] does the transition in the expansion e-fold factor
ln a, obtaining

w(a) = w f + wp − w f

1 + (a/at )1/τ
. (34)

One of the advantages of the e-fold model is that it allows an analytic expression for
the Hubble parameter H(a).

One could continue developing more complicated forms but sadly even the next
generation of experiments will not be able to constrain stringently more than two equa-
tion of state parameters [63]. This conclusion holds whether dealing with parameters
per se or principal components (see below). Happily, the wa parametrization is quite
satisfactory in giving a model independent, good approximation to the dynamics.

Nevertheless, let us briefly consider principal component analysis (PCA). This
approach attempts to gain some independence from the particular form of parametri-
zation, letting the data define the best constrained combination of information. This is
a valuable tool; see [36] for its development for the dark energy equation of state, and
[35] for an adaptation localizing the principal components in redshift. PCA has the
advantage over parametric forms in its nonparametric flavor, and in specifying what a
particular survey measures best, however its results are dependent on ingredients other
than the underlying physics: the type of cosmological probe, the details of the data,
the fiducial cosmology, and priors. That is, a principal component derived from one
specific experiment is not exactly comparable to a principal component from another
experiment, or the same experiment over a different redshift range. By contrast, w0
and wa , say, mean the same thing regardless of probe, survey, cosmology, or priors.
(We are talking about the meaning of the variables, not the estimation of the fit values.)
Thus, PCA is likely to be of most use as a complementary tool alongside parametric
fits.

Note there has been some confusion in the literature regarding the accuracy of PCA
fits, with some claims that more than two principal components can be stringently
fit by next generation experiments. In the analyses where there appear to be more
than two well fit parameters, this arises from consideration only of low noise in the
component coefficients αi , e.g., σ(αi ), not high signal to noise criteria σ(αi )/αi .

So we appear restricted to two parameters for our equation of state description.
However, a tilt from the cosmological constant value, 1 + w, and a time variation,
w′, contain rich information on the physics responsible for the acceleration of the
universe. Given we have only two parameters, are we sure that w0 and wa represent
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the best, model independent parameters? No, we have no guarantee of this and we
should continually be on the lookout for improvements, though to date w0, wa have
served extremely well.

One idea for an alternate parameter involves the so-called pivot or minimum
variance equation of state wp. This is the equation of state at the scale factor ap

where the variance σ 2(w(a)) is minimized, i.e., wp = w(ap). Note that wp is also
decorrelated with wa , with zero covariance between their estimations, but this holds
only due to the specific linear dependence of the equation of state w(a) on wa ;
generally the minimum variance value is not decorrelated with other equation of
state parameters. The pivot parameter possesses many of the same issues as the PCA
approach: lack of an invariant physical meaning due to dependence on probe, survey,
model, and priors. It is sometimes useful however for the narrow question of whether
the data are consistent with a cosmological constant cosmology (in one direction, at
least; one can find wp = −1 yet have dynamical dark energy). Note for thawing
models the deviation 1 + w is greatest at z = 0 so a parameter at z p may not be
optimal even for this question. Linder [60] showed that generally wp is more subject
to bias than either w0 or wa .

Another suggestion for alternate parametrization involves either so-called statefin-
der variables (r, s) [81] or combinations of derivatives of the cosmic scale factor such
as the deceleration parameter q = −aä/ȧ2 and jerk j = a2...

a /ȧ3 [7]. Note that either
parametrization convolves the equation of state parameters with the energy density:

q = 1

2
+ 3

2
w�w(a) (35)

j = 1 − 3

2
�w(a) [w′ − 3w(1 + w)] = q + 2q2 − q ′. (36)

(r is the same as j , and s = [3w(1 + w) − w′]/(3w) = c2
a(1 + w)/w, where c2

a is
the adiabatic sound speed.) These approaches also conflate different physics: j = 1,
for example, corresponds to an Einstein–de Sitter pure matter universe, or a de Sitter
pure cosmological constant universe, or any model that instantaneously lies on the
w′ = 3w(1 + w) line. Of course interpreting q and j as a Taylor expansion about the
present expansion behavior would restrict their usage to z � 1. Also note that while
the scale factor can be viewed as a kinematical quantity (e.g., no equation of motion
need be specified, just the metric, to know how light is redshifted), this breaks down
as soon as time dependence is explicit, e.g., by parametrizing q = q0 + q1z. Thus no
advantage exists for such a representation over the dynamical phase space.

5 Extending dynamics

We can now investigate whether the dynamics phase space w-w′ is useful for physical
theories beyond canonical, minimally coupled scalar fields. This includes for modified
gravity or other theories where the quantities w and w′ are effective quantities, defined
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Fig. 3 Modifications to the Friedmann equation of the form Hα lie in the freezing regime, despite possibly
not arising from a simple scalar field. Moreover, they asymptotically approach � along the lower boundary
line w′ = 3w(1 + w). The braneworld curve is shown solid to z = 0, with x’s indicating z = 1, 2, 3

in terms of the deviation in the expansion rate from the matter dominated behavior,

δH2 ≡ (H/H0)
2 − �ma−3 (37)

weff ≡ −1 − 1

3

d ln δH2

d ln a
, (38)

possibly distinct from any physical pressure or dark energy density.
As already mentioned, phenomenological models such as δH2 ∼ Hα [24] fit within

the freezing picture and the specific freezing region of the phase space, as illustrated in
Fig. 3. Note that the case α = 1 corresponds to the dynamics of an extra dimensional
braneworld model [19,23]; such models are discussed in more detail by [44] in this
volume.

Since the results of Sect. 3 were discussed in terms of canonical, minimally coupled
fields, let us examine the extension to noncanonical or coupled dark energy.

k-essence: If we remove the canonical nature of the scalar field Lagrangian that
involves an additive term linear in the kinetic energy, we have a class of theories
known as k-essence [2,14], with Lagrangians of the form

L = V (φ) F(X), (39)

where X = (∂µφ ∂µφ)/2, i.e., in the absence of spatial inhomogeneities X is just the
kinetic energy. Such models have some inspirations from field and string theory (for
an overview see e.g., [70]), can describe phantom fields with w < −1, can have sound
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speeds less than the speed of light (hence affecting structure formation differently than
quintessence) and can have attractor mechanisms to alleviate the fine tuning problem.

Without further specifying the functions V or F , it is difficult to say anything
general about k-essence dynamics. Purely kinetic k-essence, where V = constant,
does have phase space trajectories limited to one side or the other of the line w′ =
3w(1 + w) corresponding to constant pressure [59,83]. However kinetic k-essence
can dynamically mimic (or be mimicked by) quintessence as long as the portion of
the phase space trajectory of interest does not cross this line [20,84].

Coupled dark energy: The dark energy could in fact be not dark, that is it could
interact non-gravitationally. From the dynamical perspective this creates an effective
equation of state shifted from the bare one by the interaction term, e.g.,

weff = w − �

3H
, (40)

where � is the interaction appearing in the continuity equation

ρ̇w = −3Hρw(1 + w) + �ρw, (41)

representing a decay/creation process for example. This was set forth in early work
by [50,88]. Such coupling will shift the trajectories in the w-w′ phase space, allowing
for dynamics outside the thawing and freezing regions. Many different couplings,
and their cosmological effects, have been considered; see, e.g., [1,6,56]. However,
concerns have been raised about the apparent strong effect of quantum corrections on
fields coupled to matter [21]. This can be avoided if one postulates that the potential
considered is really an effective low energy potential that just happens to take on
a simple form as a result of complicated quantum loop corrections to the (in turn
necessarily complicated) classical potential; see the article by [22] on low energy
effective theories in this volume.

Scalar-tensor gravity: Rather than coupling the dark energy to the matter sector of
the Lagrangian, one could make the coupling to gravity nonminimal. These are scalar-
tensor theories; see the article by [27] in this volume. Coupling the quintessence field
to the Ricci scalar, R/(8πG) → F(φ) R in the action, these extended quintessence
theories [74] can have varied dynamics depending on the form of F , along with an in-
teresting attractor mechanism called the R-boost [3]. For a model with a cosmological
constant potential, requiring consistency with solar system tests drives the equation
of state very close to w = −1 (within 10−4) and with dynamics representative of
neither freezing nor thawing fields (C. Baccigalupi et al., 2007, in draft). For another
approach, see [68].

Model Zoo: As the fertile imagination of children’s author Dr. Seuss envisioned
an alphabet and animals “On Beyond Zebra”, so has the intense interest in the dark
energy mystery led to a zoo of models “On Beyond �”. The merest glimpse of a small
fraction of these includes: oscillating (see also slinky) models [4,5] with dynamics
corresponding to a circle in phase space [58], mocker models that arc from matter like
behavior to cosmological constant like behavior along curves of w′ = Cw(1+w) [59],
closely related to quartessence and Chaplygin gas models that attempt to unify dark
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matter and dark energy (see [67] for an overview), skating models that arc from free
field behavior (w = +1), to cosmological constant like behavior along the curve w′ =
−3(1 − w2), physically corresponding to a field moving across a constant potential
[57,80] (but also related to kinetic k-essence [20]), and wet fluid [33] (equivalent to
the sum of a constant w component and a cosmological constant; cf. Sect. 3.4) or
leveling [59] models that approach a cosmological constant as the density nears a
limiting value and have parabolic tracks—respectively w′ = 3(1 + w)(w − w∗) and
w′ = −3(1 + w)(w + w∗).

6 Dynamics and growth

The dynamics of the accelerating component affects the growth of structure in the
universe through the expansion rate. This provides a Hubble friction term opposing
gravitational instability (e.g., reducing the exponential Jeans growth in a static back-
ground to the power law growth in an expanding background). It also affects the matter
source term �m(a), i.e., the evolution of the homogeneous matter density, through the
expansion, but to the extent that dark energy remains smooth on the relevant scales it
does not directly source growth. Canonical scalar fields are very light, m � H , so they
remain smooth on scales less than the Hubble scale [65]. Therefore, within general
relativity, the growth effects of dark energy follow directly from the expansion effects
discussed in this article. A highly accurate fitting formula for the linear growth can
be given in terms of �m(a) and w(z = 1) through the gravitational growth index
formalism [56,62]:

g(a) ≡ (δρm/ρm)/a = e
∫ a

0 (da/a)[�m(a)γ −1] (42)

γ = 0.55 + 0.05 [1 + w(z = 1)], (43)

is accurate to 0.2% compared to the numerical solution of the exact second order
differential equation. Structure formation in general requires treatment of fully non-
linear growth through N-body numerical computations. Early work with dynamical
quintessence included that of [42,64], with many following investigations.

When the physics of the cosmic acceleration has a gravitational origin, or a dark
energy component is not minimally coupled, additional terms enter into the growth,
including new source terms such as from anisotropic stress and non-unity sound speed,
and varying gravitational coupling. This breaking of the degeneracy between expan-
sion effects and growth effects offers a promising window for identifying the funda-
mental physics, but is beyond the scope of this article; see, e.g., the review by [61] for
more details.

7 Thawing dark energy

Let us now return to the fundamental mode picture of quintessential dynamics, pre-
senting some new results on the specifics of determining the class of dark energy
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responsible for cosmic acceleration and the ability to zero in on characteristics within
that class.

While distinguishing the thawing class of dark energy from the freezing class would
be a major accomplishment guiding us toward the fundamental physics behind dark
energy, we can also examine thawing models in themselves. These are among the best
motivated physics, including radiatively stable PNGB pseudoscalar or axion models
and familiar quadratic, quartic, and other renormalizable potentials.

7.1 Thawing physics

Thawing models are defined by their departure from a cosmological constant-like
state in the past to a dynamical, w �= −1, behavior today. This property of being
frozen into a cosmological constant over much of the history of the universe makes
this class difficult to distinguish from a cosmological constant without highly accurate
cosmological data. Indeed, current observations are almost wholly degenerate with the
entire thawing region as defined in [11], and if an effective, constant w (e.g., a weighted
average over the data sensitivity) is determined to equal −1 within 5% then we still
have essentially no information on whether this is truly a cosmological constant � or
any model in the entire half of the physical model space that is categorized as thawing.

This challenge in uncovering the underlying physics makes this class useful as
a testbed for the science reach of next generation experiments and for the role of
phenomenological parameterization. We will particularly be interested in, of course,
distinguishing thawing models from � and seeing dynamics such that w(z) �= wconst,
but we also would learn physics more directly by verifying that the field started in a
frozen state at early times and furthermore discerning its trajectory in phase space or
at least its dynamical slope parameter w′/(1 + w).

Recall from [59] that

w′

1 + w
= 2X + 3(1 + w) (44)

= 3
1 − Y

1 + Y
+ 3w, (45)

where X = φ̈/(H φ̇) and Y = φ̈/V,φ . Thus, constraining the dynamical slope para-
meter w′/(1 + w) directly leads to information about the field acceleration, friction,
and potential tilt terms in the Klein–Gordon equation of motion (6).

7.2 Thawing models

We begin by examining three parameterizations of thawing fields, comparing their
behavior and constraints. First is the standard parameterization of w(a) = w0 +
wa(1 − a), reviewed in Sect. 4. If we choose w0 + wa = −1, then we see that at
early times (a � 1), this possessed w = −1. Furthermore, w′ = −awa so at early
times w′ = 0; thus this parameterization can describe a thawing model. However, we
have handcuffed this parameterization by doing this, reducing it to a single parameter,
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rather than a model with two degrees of freedom, putting it at a disadvantage. It is
basically restricted to the trajectory w′ = 1 + w. Nevertheless, we will see that it is
able to describe reasonably most thawing models. The alternative is to retain the two
parameters of w0, wa but at the price of not matching a cosmological constant at early
times; since cosmological data weights the recent universe more heavily, this is not a
bad approximation. The energy density of wa models is

ρw(a) = ρw a−3(1+w0+wa)e−3wa(1−a). (46)

The second parameterization w′ = F(1 + w) is motivated by PNGB models, and
is an excellent approximation to their dynamics [11], with F inversely proportional
to the symmetry breaking energy scale f . For more on PNGB models, see [28,40,
79]. These have fields starting frozen on their 1 + cos(φ/ f ) potential and, after the
Hubble drag diminishes, are released to roll. Due to the change from convexity to
concavity of the potential, they can have interesting dynamics depending on the initial
conditions. We assume they are not fine tuned in the sense of starting very near the
top of their potential, nor have they already rolled through the minimum and ascended
the potential. Eventually the field will oscillate around the minimum (which looks
quadratic, i.e., V ∼ φn with n = 2, so the effective equation of state w = (n − 2)/

(n+2) = 0 [87] as long as the oscillation period is short compared to the Hubble time),
acting like dark matter before vanishing as the field comes to rest at zero potential.
However, during the accelerating period, w′ = F(1 + w) accurately describes the
dynamics; the equation of state has two parameters, the current equation of state w0
and the dynamical slope F , with

1 + w = (1 + w0) aF . (47)

The energy density of these models is

ρw(a) = ρw e[3(1+w0)/F](1−aF ). (48)

For the third parameterization, we craft a new model specifically following the
physics of thawing, called the algebraic thawing model:

1 + w = (1 + w0) a p
(

1 + b

1 + ba−3

)1−p/3

, (49)

with parameters w0, p (b is fixed). Let us justify this form. As the field is released
from the cosmological constant state, still in the matter dominated era t ∼ a3/2, the
dynamics is given by X = 3/2, or w′ = 3(1 + w), as illustrated in [11]. This implies
that at early times 1 + w ∼ a3. So far this is identical to the PNGB model with
F = 3. To add some curvature into the trajectory in the phase plane w-w′, let us
multiply this by a factor that bends the dynamics away from this line as the scalar field
energy density becomes more important, say �w(a)q . In fact, to preserve the early
time behavior, this factor must go to a constant at early times, so we use [a3�w(a)]q ,
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which is indeed constant at early times when w → −1. The only problem with this
is that the expression for the equation of state has become non-analytic. Even if we
approximate �w(a) by some fixed function, say ��(a), then the equation of state is
intertwined with the present energy density parameter �w, or �m , rather than being
an independent quantity. For the final form we therefore replace the intruding density
ratio—in this one place—with a constant b = 0.3. The equation of state is quite
insensitive to this specific value, varying by less than 1% as b varies by 50%; of
course the value of b is irrelevant as a → 1 and for a � 1.

The dynamics of the algebraic thawing model is

w′ = (1 + w)

[

3 − 3 − p

1 + ba−3

]

, (50)

and the energy density is

ρw(a) = ρw exp

[
3(1 + w0)

αp

{
1 − (αa3 + β)p/3

}]

, (51)

where α = 1/(1 + b), β = b/(1 + b).
In a clever analysis [17] came up with a similar model by analyzing a slow roll-

like field expansion, assuming a particular combination V,φ/[V (1 + X/3)] can be
Taylor expanded about the present. After some approximations they take 1 + w ∼
a p ��(a)1−p/3. However, this form still entangles w and the present matter density,
and in fact a more exact solution of the field expansion equations works worse! The
basic problem is that even for thawing fields there is no reasonable slow roll or field
expansion approximation. Even for their less extreme model with w0 = −0.8, the
field still traverses �φ ∼ 0.4MP . The algebraic form Eq. (49) in fact gives more
accurate equations of state for the cases they illustrate.

7.3 Discriminating thawing

We can now use the wa , PNGB, and algebraic models to examine the constraints,
and parameter dependence of the constraints, from future data on the dynamics of
quintessence. For each model we have two equation of state fit parameters: (w0, wa),
(w0, F), or (w0, s), where s = w′

0/(1+w0) is the dynamical slope at present (just as F
is the dynamical slope, constant for all times). From the estimation of these parameters
(marginalizing over the matter density, in a flat universe, and other parameters such as
the supernovae absolute magnitude), and their covariances, we can find the constraints
on w and w′ at any redshift, giving confidence contours in the w-w′ phase plane.

For future data we consider Type Ia supernovae distances from z = 0 − 1.7, with
systematics, of SNAP quality (see, e.g., [85]), plus the reduced distance to the CMB
last scattering surface, of Planck quality (0.7% fractional precision). The fiducial
cosmology has w0 = −0.9 and present dynamical slope 1.5, and likelihoods are
approximated as Gaussians in a Fisher information analysis. The CMB data in fact
has little leverage on the equation of state, because for all the thawing models the high
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Fig. 4 Together with Figs. 5 and 6, this figure for the wa thawing model illustrates constraints on the
dynamical behavior of three thawing models at four redshift snapshots. While the z = 0 behavior is poorly
limited by future data, taking into account the dynamical history still allows distinction of the fiducial
w0 = −0.9, w′

0 = 0.15 model from a cosmological constant and from the freezing class of physics

redshift equation of state goes to a cosmological constant. We have checked that adding
baryon acoustic oscillation angular distance measurements at 1% precision or a matter
density prior of 0.005 (roughly mimicking weak gravitational lensing constraints) does
little to improve the constraints.

Figures 4, 5, and 6 show the w-w′ constraints for the three models at four redshifts.
We exhibit the 68% confidence level contours at z = 0, at the redshift where w and
w′ are decorrelated, giving vertical/horizontal ellipses, and at high redshift, z � 1.
The phase space trajectory is marked by the x’s at each of the four redshifts. Note that
the confidence contours vary between the models, especially when evaluated at the
present, and this may lead to concerns about parameterization dependence. However,
as we will see, the qualitative answers to the important physical questions remain
independent of the parameterization.

While constraints on the present dynamical state, i.e., w0 and w′
0, are relatively

weak, in each of the parameterizations they are still sufficient to distinguish the fiducial
model w0 = −0.9, w′

0 = 0.15 from a cosmological constant. (Note this is despite the
uncertainty σ(w0) ≈ 0.14 from the algebraic thawer, the weakest model at z = 0—one
must take into account the contour orientation in the phase plane.) At z = 0, however,
the models cannot distinguish thawing from freezing, or from a constant equation of
state wconst = −0.9. Using the information from throughout the dynamical history
greatly improves the situation. At some redshift, z ≈ 0.2 −−0.3 in the cases here, the
dynamical variables w and w′ decorrelate and the contours become vertical. This gives
the greatest distance between the constraint contour and the cosmological constant,
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Fig. 5 As Fig. 4, for the PNGB thawing model

Fig. 6 As Fig. 4, for the algebraic thawing model

showing clear distinction, and the intersection of the ellipse with the w′ = 0 axis also
provides the minimal variance estimate on the instantaneous equation of state value.
Such a decorrelation redshift is sometimes called a pivot redshift. Generically there
can be more than one decorrelation redshift, and for the models where w is not a linear
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function of the parameters we exhibit the contours at the second of these redshifts,
z ≈ 0.7–1.4. This provides a minimum variance estimate of the instantaneous time
variation of the equation of state.

Note that the confidence contours at each redshift are distinct from the cosmological
constant, showing that future data can distinguish thawing models from � (at least
at 1σ for this fiducial cosmology). Furthermore, the early time contours (except in
the wa case) distinguish the thawing model from models with constant equation of
state, thus exhibiting the presence of dynamics. The early time contours also draw
away from the freezing region of the phase plane, so the data can indeed guide us to
the correct class of physical origin. These are all important physical insights that are
not parameterization dependent. Gains are more modest in zeroing in on a specific
thawing model and these are more sensitive to parameterization. At early times, the
form of the algebraic thawer forces the contour to prefer a dynamical slope near 3.
However the PNGB and wa cases do not impose such preferences since the slope is
a free fit parameter. They do constrain w′/(1 + w) to a subset of the thawing region,
rather than the full range of 1–3.

It is heartening that the physical insights can be expected to be as clear as indicated,
and not particularly dependent on the specific parameterization. The issue of fitting the
dynamical behavior of dark energy (especially when restricted to two parameters, as
seems likely from realistic next generation data accuracy), is a fascinating one. Use of a
global parameterization like (w0, wa) allows a good fit for models over the whole phase
plane, but one can imagine that as we close in on the physical origin of dark energy, e.g.,
narrowing in on thawing models, we may move to more specific parameterizations
such as the algebraic thawing model. On the other hand, perhaps specific physical
benchmark models, such as PNGB or motivated scalar field potentials, will then be of
most use.

8 Conclusion

Dynamics, of quintessence and of the accelerating physics in general, can provide
considerable insight into the nature of the new component or new physical law domi-
nating our present universe. Fundamental modes of the physics lead to well defined,
distinct regions of w-w′ phase space that next generation cosmological probes will be
able to test and distinguish. Just as we build our physical intuition in early universe
inflation with single field models leading to consistency relations, the fundamental
modes of dark energy—the quintessence of dynamics—are a useful foundation.

Model independent parametrization, with a strong physical basis, plays an important
role, even if stringent constraints will be limited to two parameters such as the tilt from
a cosmological constant, 1 + w, and a variation w′. Nevertheless, this is as much as
we expect from inflation as well, while for dark energy we have added complications
due to the incomplete dominance of dark energy.

Sensitivity to dynamics is a requirement to make progress in understanding the
nature of cosmic acceleration. Once we begin to zero in on a class of physics, model
independence may give way to specific discriminating approaches such as the thawing
analysis presented here. Models for the equation of state which depend nonlinearly
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on the time variation parameter also possess minimum variance, or pivot, redshifts for
the time variation, z p′ , and this may prove a useful tool.

Dynamics alone, whether by its characterization or absence, will not fully solve the
dark energy enigma. The cosmic expansion history must be properly compared with
the cosmic growth history to reveal extensions to gravitational physics or microphysics.
We have scarcely addressed this important subject here, nor have we said why in the
presence of dynamics � should not still exist, at a much larger energy density than
the present, causing an abnegation of the universe we observe.

Ten years passed from the time the basic physics and cosmology for the accelerating
universe were in place until the first convincing observational evidence for its reality;
since then another ten years of work on all fronts have passed. There is clearly still an
enormous amount of exciting and challenging work ahead, and the answers, whatever
they are and whenever they come, will revolutionize our understanding of gravitation,
quantum physics, cosmology, and the fate of our universe.
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