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AB S TRACT

Corresponding to the recent observational claims that we are in a local void (an underdense

region) on scales of 200–300Mpc, the magnitude–redshift relation in a cosmological model

with a local void is investigated. It is already evident that the accelerating behaviour of high-z

supernovae can be explained in this model, because the local void plays a role similar to the

positive cosmological constant. In this paper the dependence of the behaviour on the gaps of

cosmological parameters in the inner (low-density) region and the outer (high-density)

region, the radius of the local void, and the clumpiness parameter is studied and its

implications are discussed.
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1 INTRODUCTION

One of the most important cosmological observations at present is

the [m, z] relation for high-z supernovae (SNIa), which act as

standard candles at the stage reaching epochs z * 1. So far the

observed data of SNIa have been compared with the theoretical

relation in homogeneous and isotropic models, and many workers

have made efforts to determine their model parameters (Garnavich

et al. 1998; Schmidt et al. 1998; Perlmutter et al. 1999; Riess et al.

1998, 2000; Riess 2000).

There is, however, an essentially important problem to be taken

into consideration: the homogeneity of the Universe. According to

Giovanelli et al. (1998, 1999) and Dale et al. (1999), the Universe

is homogeneous in the region within 70 h 21Mpc (the Hubble

constant H0 is 100 h km s21Mpc21). On the other hand, recent

galactic redshift surveys (Marinoni et al. 1999; Marzke et al. 1998;

Folkes et al. 1999; Zucca et al. 1997) show that in the region

around 200–300 h21 Mpc from us, the distribution of galaxies may

be inhomogeneous. This is because the galactic number density in

the region of z , 0:1 or ,300 h 21Mpc from us was shown to be

smaller by a factor of .1.5 than that in the remote region of

z . 0:1. Recently a large-scale inhomogeneity suggesting a wall

around the void on scales of ,250 h 21Mpc has been found by

Blanton et al. (2001) in the SDSS commissioning data (cf. their figs

7 and 8). Similar walls on scales of ,250 h 21Mpc have already

been found in the Las Campanas and 2dF redshift surveys near the

northern and southern Galactic caps (Shectman et al. 1996; Folkes

et al. 1999; Cole et al. 2001). These results mean that there is a

local void with a radius of 200–300 h21 Mpc and we live in it.

Moreover, the measurements by Hudson et al. (1999) and

Willick (1999) for a systematic deviation of the motions of clusters

from the global Hubble flow may show some inhomogeneity on

scales larger than 100 h 21Mpc. Another suggestion for inhom-

ogeneity comes from the periodic wall structures on scales of

,130 h 21Mpc, as have been shown by Broadhurst et al. (1990),

Landy et al. (1996) and Einasto et al. (1997). This is connected

with the anomaly of the power spectrum around 100–200 h21 Mpc

(so-called ‘excess power’) which was discussed by Einasto et al.

(1999). This fact also may suggest some inhomogeneity in the

above nearby region.

If the local void really exists, the Hubble constant must also be

inhomogeneous, as must the density parameters, and the

theoretical relations between observed quantities are different

from those in homogeneous models. At present, however, the

large-scale inhomogeneity of the Hubble constant has not yet been

observationally established because of the large error bars in the

various measurements (cf. Tomita 2001).

In my previous papers (Tomita 2000a,b), cited as Paper I and

Paper II, I showed various models with a local void and discussed

the bulk flow, cosmic microwave background (CMB) dipole

anisotropy, distances and the [m, z] relation in them in the limited

parameter range. It was found that the accelerating behaviour of

supernovae can be explained in these models without a

cosmological constant. On the other hand, Kim et al. (1997)

showed that the difference between the local and global values of

the Hubble constant should be smaller than 10 per cent in

homogeneous cosmological models in order to be consistent with

the SNIa data. However, this does not impose any strong condition

on the difference in inhomogeneous models, because their analyses

were done using the luminosity distance in homogeneous models

and so they are incomplete. In fact my previous papers showed

concretely that, in inhomogeneous models, larger differences can

be consistent with the data. The possibility that the above

difference may explain the behaviour of SNIa was later discussed

also by Goodwin et al. (1999).

In this paper I describe first (in Section 2) a simplifiedPE-mail: tomita@yukawa.kyoto-u.ac.jp

Mon. Not. R. Astron. Soc. 326, 287–292 (2001)

q 2001 RAS



cosmological model with a local void, and treat distances in light

paths with the non-zero clumpiness (smoothness) parameter a. In

the previous paper (Paper II), I considered only distances in full-

beam light paths ða ¼ 1Þ, but in realistic paths there are deviations

from a ¼ 1 as a result of lensing effects from inhomogeneous

matter distributions. In Section 3, I show the dependence of the

[m, z] relation on model parameters such as the radius of the local

void, the ratios of density parameters and Hubble constants in

the inner (low-density) and outer (high-density) regions, and the

clumpiness parameter. The constraints to the parameters are

derived in comparison between the above relations in the present

models and the relations in homogeneous models.

Finally, in Section 4, we discuss the remaining problems and

describe concluding remarks.

2 DISTANCES IN MODELS WITH A LOCAL

VOID

The inhomogeneous models we consider consist of an inner (low-

density) region VI and an outer (high-density) region VII, which are

separated by a single shell. It is treated as a spherical singular shell

and the mass in it compensates for the mass deficiency in VI. So VI

and the shell are regarded as a local void and the wall, respectively.

The line-elements in the two regions are

ds 2 ¼ gjmnðdx
jÞmðdx jÞn

¼ 2c 2ðdt jÞ2 1 ½a jðt jÞ�2{dðx jÞ2 1 ½f jðx jÞ�2 dV2}; ð1Þ

where j (¼I or II) represents the regions, f jðx jÞ ¼ sin x j, x j and

sinh x j for k j ¼ 1; 0;21, respectively, and dV2
¼ du 2

1

sin2u dw 2
: In the following, the negative curvature is assumed in

all regions. The Hubble constants and density parameters are

expressed as ðHI
0;H

II
0 Þ and ðVI

0;V
II
0 Þ, where we assume that HI

0 .

HII
0 and VI

0 , VII
0 . The distances of the shell and the observer O

(in VI) from the centre C (in VI) are assumed to be 200 and 40 h21
I

as a standard case. This shell corresponds to the redshift �z1 ¼ 0:067

(see Fig. 1).

In Paper II we derived the full-beam distances (CS) between the

centre C and a source S, and the distances (OS) between an

observer O and S. The two distances are nearly equal in the case

when CS or OS is much larger than CO. Since this is the only case

we deal with in the following, we treat the light paths as being CS

for simplicity. Then the angular-diameter distance dA is

dA ¼ a Ið �hI
sÞ sinhð �x

I
sÞ; ð2Þ

if a source S is in VI, where ð �hI
s; �x

I
sÞ are the coordinates of S, and h

is the conformal time coordinate. Here bars are used for the

coordinates along the light paths to the virtual observer at C. If S is

in VII, we have

dA ¼ a Ið �hI
1Þ sinhð �x

I
1Þ1 ½a IIð �hII

s sinhð �x
II
s Þ2 a IIð �hII

1 Þ sinhð �x
II
1 Þ�;

ð3Þ

where ð �hI
1; �x

I
1Þ stand for the shell, and we have

a Ið �hI
1Þ sinhð �x

I
1Þ ¼ a IIð �hII

1 Þ sinhð �x
II
1 Þ ð4Þ

from the junction condition.

Here we treat the following equation for the angular-diameter

distance to take into consideration the clumpiness along the paths

(Dyer & Roeder 1973; Schneider, Ehler & Falco 1992; Kantowski

1998; Tomita 1999):

d2ðd
j
AÞ

dðz jÞ2
1

2

11 z j
1

1

2
ð11 z jÞ½V

j
0ð11 3z jÞ1 22 2l

j
0�F

21

� �

�
dðd

j
AÞ

dz j
1

3

2
V

j
0að11 z jÞF21d

j
A ¼ 0; ð5Þ

where j ¼ I and II, z j is the redshift in the region Vj, a is the

clumpiness parameter, and

F; ð11V
j
0z

jÞð11 z jÞ2 2 l
j
0z

jð21 z jÞ: ð6Þ

Here and in the following the bars are omitted for simplicity. The

two redshifts at the shell are equal, i.e.

zI1 ¼ zII1 ð; z1Þ ð7Þ

for the comoving shell (cf. Paper I).

The distances dIA in VI is obtained solving equation (5) under the

conditions at z I ¼ 0 :

ðdIAÞ0 ¼ 0; ðdIA/dz
IÞ0 ¼ c/HI

0; ð8Þ

and dIIA in VII is obtained similarly under the conditions at z II ¼ 0 :

ðdIIAÞ0 ¼ constant; ðdIIA/dz
IIÞ0 ¼ c/HII

0 ; ð9Þ

where constant is determined so that the junction condition

dIAðz1Þ ¼ dIIAðz1Þ may be satisfied at the shell. Then the distance

dA(zs) from C to the source S is

dAðzsÞ ¼ dIAðzsÞ for zs # z1; ð10Þ

and

dAðzsÞ ¼ dIAðz1Þ1 dIIAðzsÞ2 dIIAðz1Þ for zs . z1; ð11Þ

where zs ¼ zIs and zIIs for zs # z1 and zs . z1, respectively. The

luminosity distance dL is related to the angular-diameter distance

dA by dL ¼ ð11 zÞ2dA.

As for the clumpiness parameter a, we studied the distribution

function N(a) as a function of z in our previous papers (Tomita

1998, 1999). To obtain N(a), we first derived model universes

consisting of galaxies and haloes using an N-body simulation

technique; secondly, we calculated the angular-diameter distance

by solving null-geodesic equations along many light paths between

an observer and sources at epoch z, and finally we derived a
Figure 1. Model with a spherical single shell. Redshifts for observers at O

and C are z and z̄.
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statistical distribution of a determined in a comparison with the

Friedmann distance ða ¼ 1:0Þ and the Dyer–Roeder distance

ða ¼ 0:0Þ. As the result of these studies, it was found that the

average value ā of a is 1.0, which represents the Friedmann

distance, and the dispersion sa can be ,0.5 for z , 2:0. If the

detection of high-z supernovae is done in completely random

directions, the observed average value of a is equal to the above

theoretical average value ā. However, if the detections are biased

to the directions with a lower galactic number per steradian to

avoid the dust obscuration, we may have the value of a , �a2 sa.

Then the angular-diameter and luminosity distances are some-

what longer than the average Friedmann distances. In the next

section, we show the cases with a ¼ 1:0; 0:5, and 0.0 for

comparison. The lensing effect on the [m, z] relation of SNIa has

also been discussed by Holz (1998), Porciani & Madau (2000)

and Barber (2000).

3 PARAMETER DEPENDENCE OF THE

MAGNITUDE -REDSHIFT RELATION

As for homogeneous models, it is well-known from the comparison

with observational data that the flat case with non-zero

cosmological constant of ðV0; l0Þ ¼ ð0:3; 0:7Þ can represent the

accelerating behaviour of high-z SNIa, while an open model with

(0.3, 0) cannot explain their data for z < 1:0 (Garnavich et al. 1998;

Schmidt et al. 1998; Perlmutter et al. 1999; Riess et al. 1998, 2000;

Riess 2000). In the present inhomogeneous models, we have six

model parameters ðVI
0; l

I
0;H

I
0;H

II
0 /H

I
0;V

II
0 /V

I
0; z1Þ, and their direct

fitting with the observational data is very complicated in contrast to

the homogeneous case, which has three parameters. In this paper,

the parameter dependence of [m, z] relations is examined for the

preliminary study, and the relations in these two homogeneous

models are used as a measure for inferring how the relations in

inhomogeous models with various parameters can reproduce the

observational data. That is, we deduce that the model parameters

are consistent with the observational data, if at the interval 0:5 ,

z , 1:0 the curve in the [m, z] relation is similar to that in the

homogeneous model (0.3, 0.7) comparing with the difference

between the curves for (0.3, 0.7) and (0.3, 0).

For the [m, z] relation in an inhomogeneous model, we first treat

the case with the following standard parameters to reproduce the

accelerating behaviour in the above homogeneous model (0.3, 0.7)

Figure 2. The [m, z] relation in cosmological models with a local void. The solid line denotes the case with a standard parameter set given in equation (12). The

dotted and dashed lines stand for homogeneous models with ðV0; l0Þ ¼ ð0:3; 0:7Þ and (0.3, 0.0), respectively, for comparison.
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in a similar way.

ðVI
0;V

II
0 Þ ¼ ð0:3; 0:6Þ;

HI
0 ¼ 71; HII

0 /H
I
0 ¼ 0:82;

a ¼ 1:0; z1 ¼ 0:067; and lI0 ¼ lII0 ¼ 0: ð12Þ

The radius of the local void is r1 ; ðc/HI
0Þz1 ¼ 200ðhIÞ

21 Mpc. In

Fig. 2, the relation is shown for z ¼ 0:01–2:0 in comparison with

that in two homogeneous models with parameters: ðV0; l0Þ ¼

ð0:3; 0:7Þ and ð0:3; 0Þ;H0 ¼ 71 and a ¼ 1:0. For z , z1 the relation

is equal to that in the open model (0.3, 0.0).

It is found that the behaviour in the case of ðVI
0;V

II
0 Þ ¼ ð0:3; 0:6Þ

with lI0 ¼ lII0 ¼ 0 accords approximately with that in the flat,

homogeneous model with ðV0; l0Þ ¼ ð0:3; 0:7Þ for z1 , z , 1:0.

Accordingly there is a similar fit for the observed data of SNIa.

Next, to examine the parameter dependence of the [m, z]

relation, we take up various cases with the following parameters

(different from the above standard case):

VII
0 ¼ 0:45 and 0:80 ðfor VI

0 ¼ 0:3Þ

HII
0 /H

I
0 ¼ 0:80 and 0:87 ðfor HI

0 ¼ 71Þ;

a ¼ 0:0 and 0:5; z1 ¼ 0:05 and 0:167; and

lII0 ¼ 0:4: ð13Þ

Here, for z1 ¼ 0:05 and 0.167, we have r1 ¼ ð150 and 500)

(hI)
21Mpc, respectively. Since l

j
0 ;

1
3
Lðc/H

j
0Þ

2, we have

lI0 ¼ lII0 ðH
II
0 /H

I
0Þ

2.

In Fig. 3 (curves a), the cases with z1 ¼ 0:05, 0.067 and 0.167

are shown in a model with ðVI
0;V

II
0 Þ ¼ ð0:3; 0:6Þ, HII

0 /H
I
0 ¼ 0:82,

a ¼ 1:0, and lI0 ¼ lII0 ¼ 0. The range of z was changed to 0:3 ,

z , 2:0 to magnify the figures. From this figure it may be seen that

if r1 ¼ 150 and 200 (hI)
21Mpc, the [m, z] relation is similar to that

in the flat, homogeneous model with ðV0;l0Þ ¼ ð0:3; 0:7Þ for

z , 0:5, but if r1 ¼ 500 ðhIÞ
21 Mpc, the relation is rather different

Figure 3. The [m, z] relation in cosmological models with a local void. The solid lines denote: (a) the cases with z1 ¼ 0:05; 0:067, and 0.167 (from the top to the

bottom), which correspond to the shell radius r1 ¼ 150; 200, and 500(hI)
21Mpc, respectively; (b) the cases with HII

0 /H
I
0 ¼ 0:87; 0:82, and 0.80 from the top to

the bottom; (c) the cases with VII
0 ¼ 0:45; 0:6, and 0.8 from the top to the bottom; and (d) the cases with a ¼ 0:0; 0:5, and 1.0 from the top to the bottom. The

other parameters are the same as those in a standard parameter set given in (12). The dotted and dashed lines stand for homogeneous models, as in Fig. 2. Curves

(a), (b) and (c) were depicted in the single figure together with (d) by shifting upward as Dð5 log dLÞ ¼ 6; 4; 2, respectively.
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from that in the latter model. This means that r1 must be

&300(hI)
21Mpc to explain the [m, z] relation of SNIa. This

observational constraint is consistent with the observationally

estimated radius of the local void (&300 h 21Mpc) (cf. Marinoni

et al. 1999; Marzke et al. 1998; Folkes et al. 1999; Zucca et al.

1997).

In Fig. 3 (curves b), the cases with HII
0 /H

I
0 ¼ 0:80; 0:82, and

0.87 are shown in a model with ðVI
0;V

II
0 Þ ¼ ð0:3; 0:6Þ, z1 ¼ 0:067,

a ¼ 1:0, and lI0 ¼ lII0 ¼ 0. In the cases with HII
0 /H

I
0 ¼ 0:82; 0:87,

the relations are found to be consistent with the relation in the

above flat, homogeneous model for z ¼ 0:5–1:0, but in the case

with HII
0 /H

I
0 ¼ 0:80 or , 0.80, the [m, z] relation is difficult to

explain the observed data.

In Fig. 3 (curves c), the cases with VII
0 ¼ 0:45; 0:6, and 0.8 are

shown in a model with VI
0 ¼ 0:3, HII

0 /H
I
0 ¼ 0:82, z1 ¼ 0:067,

a ¼ 1:0, and lI0 ¼ lII0 ¼ 0. In the case withVII
0 ¼ 0:45 and 0.6, the

relations are found to be consistent with those in the above flat,

homogeneous model for z ¼ 0:5–1:0, but in the case withVII
0 ¼ 0:8

we have less consistency.

Here let us examine the lensing effect on the [m, z] relation. In

Fig. 3 (curves d), the cases with a ¼ 0:0; 0:5, and 1.0 are shown in

a model with ðVI
0;V

II
0 Þ ¼ ð0:3; 0:6Þ, HII

0 /H
I
0 ¼ 0:82, z1 ¼ 0:067,

and lI0 ¼ lII0 ¼ 0. Compared with the case a ¼ 1:0, the relations

for a ¼ 0:0 and 0.5, give larger magnitudes especially at epochs

z . 1:0. For a ¼ 0:5, the magnitudes are larger by about 0.1 and

0.2mag than those for a ¼ 1:0 in the relations at epochs z ¼ 1:0

and 2.0, respectively. If the value a ¼ 0:5 is realistic, the cases with

larger VII
0 and smaller HII

0 /H
I
0 may be consistent with the observed

data.

Next we consider the cases with a non-zero cosmological

constant. In Fig. 4 (curves a), the cases with lII0 ¼ 0:0 and 0.4 are

shown in a model with ðVI
0;V

II
0 Þ ¼ ð0:3; 0:6Þ, HII

0 /H
I
0 ¼ 0:82,

z1 ¼ 0:067, and a ¼ 1:0. In the case with lII0 ¼ 0:4, the space in the

outer region is spatially flat. In this case, the role of the

Figure 4. The [m, z] relation in cosmological models with a local void. The upper and lower solid lines denote: (a) the cases with lII0 ¼ 0:4 and 0.0,

respectively; and (b) the cases with HII
0 /H

I
0 ¼ 0:87; 0:82, and 0.80 for lII0 ¼ 0:4 from the top to the bottom. (c) The [m, z] relation in two homogeneous

cosmological models with ðV0;l0Þ ¼ ð0:3; 0:7Þ and (0.3,0.0). The upper and lower groups of three lines stand for models (0.3,0.7) and (0.3,0.0). The upper,

middle and lower lines in each group are for a ¼ 0:0; 0:5, and 1.0, respectively. The other parameters are same as those in a standard parameter set given in (12).

The dotted and dashed lines stand for homogeneous models, as in Fig. 2. Curves (a) and (b) were depicted in the single figure together with (c) by shifting

upward as Dð5 log dLÞ ¼ 4; 2, respectively.
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cosmological constant to the accelerating behaviour is not

dominant, but is supplementary to the role of the local void.

In Fig. 4 (curves b), the cases with HII
0 /H

I
0 ¼ 0:80; 0:82, and

0.87 are shown in a model with ðVI
0;V

II
0 Þ ¼ ð0:3; 0:6Þ, z1 ¼ 0:067,

a ¼ 1:0, and lII0 ¼ 0:4. In this outer-flat case also, larger HII
0 /H

I
0

gives larger magnitudes in the [m, z] relation.

Finally, the lensing effect in homogeneous models is examined

for comparison. In Fig. 4 (curves c), the cases with a ¼ 0:0; 0:5,

and 1.0 are shown in homogeneous models with ðV0; l0Þ ¼

ð0:3; 0:7Þ and (0.3, 0) forH0 ¼ 71. As in Fig. 3 (set of curves d), the

magnitudes in the relation for a ¼ 0:5 are larger by about 0.1 and

0.2mag than those for a ¼ 1:0 in the relations at epochs z ¼ 1:0

and 2.0, respectively.

4 CONCLUDING REMARKS

As for the [m, z] relation in cosmological models with a local void,

we studied the parameter dependence of their accelerating

behaviour, and found that the local void with r1 & 200 h21 Mpc,

HII
0 /H

I
0 * 0:82, and VII

0 & 0:6 is appropriate for explaining the

accelerating behaviour of SNIa without a cosmological constant,

that the lensing with a , 0:5 is effective at epochs of z * 1:0, and

that the cosmological constant ðlII0 , 0:4Þ necessary for flatness in

the outer region has a role supplementary to the accelerating

behaviour. On the basis of these results, the next step is

determining what values of the model parameters are best for a

direct comparison with the observational data of SNIa.

In the Universe with cold dark matter, the probability that the

inhomogeneity of Hubble constant dH/H , 0:2 on scales

,200Mpc associated with general density perturbations is realized

is extremely small, as was clarified and discussed by Turner, Cen &

Ostriker (1992), Nakamura & Suto (1995), Shi & Turner (1998)

and Wang, Spergel & Turner (1998). The constraint from CMB

dipole anisotropy was also discussed by Wang et al. (1998). It

should be noticed here that the spherical void which we are

considering is exceptionally compatible with the constraint from

CMB dipole anisotropy, in spite of the above large deviation of the

Hubble constant, as long as the observers are near the centre (cf.

Paper I). Inversely, it may be suggested that the local void on scales

,200Mpc must be spherical or nearly spherical, if its existence is

real.

In comparison with observations of the galactic number count–

magnitude relation, on the other hand, Phillips & Turner (1998)

have once studied the possibility of an underdense region on scales

of ,300 h 21Mpc. However, a necessary wall for the mass

compensation has not been considered in their simple models and,

in the small-angle observations of the above relation, the boundary

between the inside region and the outside region was rather vague

in contrast to the large-angle redshift surveys.

In the near future the void structure on scales of ,200 h 21Mpc

will be clarified by the galactic redshift survey of SDSS in the

dominant part of whole sky. Then, observational cosmology will be

developed, taking into account the fact that we are in a local void.
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