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Abstract I discuss the spherically symmetric but inhomogeneous Lemaitre–
Tolman–Bondi (LTB) metric, which provides an exact toy model for an inhomoge-
neous universe. Since we observe light rays from the past light cone, not the expansion
of the universe, spatial variation in matter density and Hubble rate can have the same
effect on redshift as acceleration in a perfectly homogeneous universe. As a conse-
quence, a simple spatial variation in the Hubble rate can account for the distant super-
nova data in a dust universe without any dark energy. I also review various attempts
towards a semirealistic description of the universe based on the LTB model.

Keywords Dark energy · Supernovae · Cosmology · Gravitation

1 Introduction

The simplest homogeneous and isotropic cosmological models, based on the
Friedmann–Robertson–Walker (FRW) metric, have proved to be remarkably success-
ful ever since Edwin Hubble in 1929 rather cautiously suggested that the apparent
linear correlation between the observed redshifts and distances of 24 galaxies could
hint towards the possibility “that the velocity-distance relation may represent the de
Sitter effect, and hence that numerical data may be introduced into discussions of the
general curvature of space” [1]. Indeed, numerical data now guides the development of
cosmology, which has become a precision science, albeit mostly within the framework
of a perfectly homogenous background metric.

K. Enqvist (B)
Department of Physical Sciences and Helsinki Institute of Physics,
University of Helsinki, 00014 Helsinki, Finland
e-mail: enqvist@mappi.helsinki.fi

123



452 K. Enqvist

The FRW universe is characterized by two functions, the Hubble rate H and the
density parameter �, or the average expansion rate and the average density of mass
energy, respectively, which depend on time but are independent of the spatial location.
However, one should keep in mind that their values cannot be extracted directly from
the observations but must be deduced from the properties of light coming from the
past light cone. In the context of the FRW model this is almost trivial, since the
redshift z and scale factor a(t) are everywhere related by z = a(to)/a(te) − 1, where
the subscripts refer, respectively, to the observation and the emission of light. This
theoretical simplicity should however not cloud the fact that all cosmological parameter
determination requires an element of interpretation of the data. Of course, the FRW
interpretation of the properties of the past light cone has served cosmology well, giving
a good fit to observations and, until the late 90’s, implying a matter dominated universe
with � ≈ �M .

The situation changed dramatically with the WMAP [2] and distant supernova data
[3,4]. Considering the recent data from supernovae [5,6], galaxy distributions [7] and
anisotropies of the cosmic microwave background [8], the simplest FRW model would
now lead to a highly contradictory picture of the universe, with the following best fit
values for the average matter density:

• Cosmic microwave background: �M ∼ 1
• Galaxy surveys: �M ∼ 0.3
• Type Ia supernovae: �M ∼ 0

As is well known, the glaring discrepancies between the different data sets have
conventionally been remedied by introducing the cosmological constant � or vacuum
energy �� to the Einstein equations. This gives rise to an accelerated expansion
of the universe. As a consequence, the apparent dimming of the luminosity of dis-
tant supernovae finds, in the context of perfectly homogeneous universe, a natural
explanation.1

However, although the cosmological concordance �CDM-model [9] fits the obser-
vations well, there is no theoretical understanding of the origin of the cosmological
constant or its magnitude. For particles physicists, who have spent a long time trying
to prove that the cosmological constant must be zero, the tremendously small cos-
mological constant which just now happens to start to dominate the energy budget
of the universe, is a theoretical nightmare. There exist a large number of different
dark energy models (see e.g., [9,10]) that attempt to provide a dynamical explanation
for the cosmological constant, but none of them are compelling from particle phy-
sics point of view; moreover, very often they require fine-tuning. Modifications of the
general theory of relativity on cosmological scales appear to suffer from analogous
problems. For instance, f (R) gravity theories [12] in the metric formalism are plagued
by instabilities [13] while in the Palatini approach the cosmological constant seems to
be essentially the only consistent modification that fits all the cosmological data [14].

1 Even if the primordial perturbation is not scale free, the combination of the CMB fluctuations and the
shape of the correlation function up to ∼ 100h−1Mpc, seems to require dark energy for a homogeneous
FRW model [11].
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Lemaitre–Tolman–Bondi model and accelerating expansion 453

Facing such difficulties, one might be tempted to consider relinquishing the FRW
assumption of the perfect homogeneity of the universe. After all, inhomogeneities
are abundant in the universe: there are not only clusters of galaxies but also large
voids. Because general relativity is a non-linear theory, even relatively small local
inhomogeneities with a sufficiently large density contrast could in principle give rise
to cosmological evolution that is not accessed by the usual cosmological perturbation
theory in an FRW background. In fact, the potentially interesting consequences of
the inhomogeneities were recognized already at the time when the homogeneous and
isotropic models of the universe were first studied, but their impact on the global dyna-
mics of the universe is still largely unknown (see e.g., [15]). Then the question arises:
could the acceleration of the universe be just a trick of light, a misinterpretation that
arises due to the oversimplification of the real, inhomogeneous universe inherent in the
FRW model? Light, while traveling though inhomogeneities, does not see the average
Hubble expansion but rather feels its variations, which could sum up to an important
correction.2 This effect is particularly important for the case of large scale inhomoge-
neities which will be the focus of the present paper. If the local Hubble expansion rate
were to vary smoothly at scales of the order of, say, thousand megaparsecs, that would
very much change our interpretation of the distant supernova redshifts. In such an
inhomogeneous universe we could also just happen to be located in a special position.
For instance, fate could have relegated us to an underdense region with a larger than
average local Hubble parameter so that the discrepancy between nearby and distant
supernovae luminosities could be resolved without dark energy.

Local inhomogeneities have recently been invoked as the culprit for the apparent
acceleration of the expansion of the universe,3 in particular by virtue of their so-called
backreaction on the metric (for a discussion on the issues involved and a comprehensive
list of references, see [18,19]). One constructs an effective description of the universe
by averaging out the inhomogeneities to obtain averaged, effective Einstein equations
which, in addition to the terms found in the usual homogeneous case, include new
terms that represent the effect of the inhomogeneities [20–22].

However, since we can only observe the redshift and energy flux of light arriving
from a given source, not the expansion rate or the matter density of the universe nor
their averages, one may wonder what are the actual observables related to the averaged
equations. To wit, since we do not observe the average expansion of the universe
directly, its average acceleration is also an indirect conclusion, arising from the fact that
in the perfectly homogeneous cosmological models dark energy is required for a good
fit. Consequently, there is no a priori reason to assume that an accelerated expansion
is necessarily required to fit the data if one assumes a general inhomogeneous model
of the universe. One may also add that the averaging procedure as such is not without
problems: in general it is not correct to integrate out constrained degrees of freedom as
if they were independent, and in cosmology the fact that we can make observations only
along our past light cone makes the observable universe a constrained system. Hence

2 For a recent calculation of the small scale inhomogeneity-induced correction to the cosmological constant
that one would infer from an analysis of the luminosities and redshifts of Type Ia supernovae, assuming a
homogeneous universe, see [16].
3 Inhomogeneities as an alternative to dark energy were first discussed in [17].
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it would be desirable to study the effects of the the inhomogeneities on the directly
observable light in an exact cosmological model. Unfortunately, in the presence of
generic inhomogeneities this would be practically an impossible task. Instead, one
must resort to toy models, the simplest of which is the spherically symmetric but
inhomogeneous Lemaitre–Tolman–Bondi (LTB) model [23–25].

The great virtue of the LTB model is that it is exact. Because of its high degree of
symmetry, it may not be realistic as such, but the LTB model is nevertheless interesting
at least on two counts. First, it serves as a simple testing ground for the effects of
inhomogeneities when fitting the cosmological data without dark energy. Second,
since the fits can be performed unambiguously, the nature of the effective acceleration
in the models where the spatial degrees of freedom have been averaged out, can be
made transparent by comparing the averaged and “exact” models.

Of course, one can also take the LTB model more seriously. For instance, one
may use the LTB metric to describe a local underdense bubble in FRW universe,
for which there is some evidence both from supernova [26] and galaxy data [27].
First attempts along these directions [28–30] assumed an underdense region separated
from the outside homogeneous FRW universe by a singular mass shell, followed
by investigations of more realistic models with a continuous transition between the
inner underdensity and the outer homogeneous universe (see e.g., [31,32]). More
complicated situations, including off-centered observers, can also be addressed, as
will be discussed in Sect. 4.

2 The LTB metric

Let us consider a spherically symmetric dust universe with radial inhomogeneities
as seen from our location at the center. Choosing spatial coordinates to comove
(dxi/dt = 0) with the matter, the spatial origin (xi = 0) as the symmetry center,
and the time coordinate (x0 ≡ t) to measure the proper time of the comoving fluid,
the line element takes the general form [23–25]

ds2 = −dt2 + X2(r, t)dr2 + A2(r, t)
(

dθ2 + sin2 θdϕ2
)

, (2.1)

where the functions A(r, t) and X (r, t) have both temporal and spatial dependence.
The homogeneous FRW-metric is a special case and is obtained by letting

X (r, t) → a(t)√
1 − kr2

, A(r, t) → a(t)r. (2.2)

The energy momentum tensor is given by

T µ
ν = −ρM (r, t)δµ

0 δ0
ν − ρ�δµ

ν, (2.3)

where ρM (r, t) is the matter density, uµ = δ
µ
0 represent the components of the

4-velocity-field of the fluid, and we have kept the vacuum energy ρ� for generality.
Note that although the fluid is staying at fixed spatial coordinates, it can physically
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move in the radial direction. Plugging Eq. (2.1) into the Einstein equation, Gµ
ν =

8πGT µ
ν , one finds the set of equations

−2
A′′

AX2 +2
A′ X ′

AX3 +2
Ẋ Ȧ

AX
+ 1

A2 +
(

Ȧ

A

)2

−
(

A′

AX

)2

= 8πG(ρM +ρ�), (2.4)

Ȧ′ = A′ Ẋ

X
, (2.5)

2
Ä

A
+ 1

A2 +
(

Ȧ

A

)2

−
(

A′

AX

)2

= 8πGρ�, (2.6)

and

− A′′

AX2 + Ä

A
+ Ȧ

A

Ẋ

X
+ A′ X ′

AX3 + Ẍ

X
= 8πGρ�. (2.7)

These contain only three independent differential equations, and we may solve Ẋ and
Ẍ from Eq. (2.5) and A′2 and A′′ from Eq. (2.6). Then one can substitute these into
Eq. (2.7) and find that it yields an identity. Thus only two of Eqs. (2.5)–(2.7) are
independent. One can easily solve Eq. (2.5) to obtain

X (r, t) = C(r)A′(r, t), (2.8)

where the function C(r) depends only on the coordinate r . By redefining C(r) ≡
1/

√
1 − k(r), where k(r) < 1, we can thus write the LTB metric Eq. (2.1) in its usual

form:

ds2 = −dt2 + (A′(r, t))2

1 − k(r)
dr2 + A2(r, t)

(
dθ2 + sin2 θdϕ2

)
, (2.9)

where k(r) is a function associated with the curvature of t = const. hypersurfaces.
The FRW metric is the limit A(r, t) → a(t)r and k(r) → kr2.

The two independent equations are given by

Ȧ2 + k(r)

A2 + 2 Ȧ Ȧ′ + k′(r)

AA′ = 8πG(ρM + ρ�), (2.10)

Ȧ2 + 2AÄ + k(r) = 8πGρ� A2. (2.11)

The first integral of Eq. (2.11) is

Ȧ2

A2 = F(r)

A3 + 8πG

3
ρ� − k(r)

A2 , (2.12)

where F(r) is a non-negative function that, like k(r), is fixed by the boundary condi-
tion. Substituting Eq. (2.12) into Eq. (2.10) yields

F ′

A′ A2 = 8πGρM . (2.13)
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By combining Eqs. (2.10) and (2.11) we can construct the generalized acceleration
equation

2

3

Ä

A
+ 1

3

Ä′

A′ = −4πG

3
(ρM − 2ρ�) (2.14)

which implies that the total acceleration, represented by the left hand side, is negative
everywhere unless the vacuum energy is large enough: ρ� > ρM/2. However, it does
not exclude the possibility of having radial acceleration ( Ä′(r, t) > 0), even in the
pure dust universe, if the angular scale factor A(r, t) is decelerating fast enough, and
vice versa. This serves to demonstrate how the very notion of the acceleration becomes
ambiguous in the presence of the inhomogeneities [33].

The boundary condition functions F(r) and k(r) are specified by the exact physical
nature of the inhomogeneities. Their relation to the FRW model parameters can be
recognized by comparing Eq. (2.12) with the Einstein equation for the homogeneous
FRW-model

H2(t) ≡ ȧ(t)

a(t)
= 8πG

3
(ρM + ρ�) − k

a2 (2.15)

= H2
0

[
�M

(a0

a

)3 + �� + (1 − �� − �M )
(a0

a

)2
]

, (2.16)

where a0 ≡ a(t0) and H0 ≡ H(t0). Thus, a comparison between Eqs. (2.12) and
(2.15) motivates one to define the local Hubble rate as

H(r, t) ≡ Ȧ(r, t)

A(r, t)
. (2.17)

The local matter density can be defined through

F(r) ≡ H2
0 (r)�M (r)A3

0(r), (2.18)

with
k(r) ≡ H2

0 (r)(�M (r) + ��(r) − 1)A2
0(r), (2.19)

where we have defined the boundary values at t0 through A0(r) ≡ A(r, t0), H0(r) ≡
H(r, t0), and ��(r) ≡ 8πGρ�/3H2

0 (r). With these definitions, the position-
dependent Hubble rate, Eq. (2.12), takes a physically transparent form [34]:

H2(r, t) = H2
0 (r)

[
�M (r)

(
A0

A

)3

+ ��(r) + �c(r)

(
A0

A

)2
]

, (2.20)

where �c(r) ≡ 1 − ��(r) − �M (r).
The difference between the conventional Friedmann equation (2.15) and its LTB

generalization, Eq. (2.20), is that all the quantities in the LTB case depend on the
r -coordinate. Thus in the presence of inhomogeneities, the values of the Hubble rate
and the matter density can vary at every spatial point so that the inhomogeneous dust
models are defined by two functions of the spatial coordinates: H0(xi ) and �M (xi ). As
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a consequence, the inhomogeneities are of two physically different kinds: inhomoge-
neities in the matter distribution, and inhomogeneities in the expansion rate. Although
their dynamics are coupled via the Einstein equation, as boundary conditions they are
independent. The universe could have an inhomogeneous big bang, where the uni-
verse came into being at different times at different points, and/or an inhomogeneous
matter density. This opens up the possibility for an inhomogeneous universe that has
a homogeneous present-day �M ; a model of this kind could potentially fit the super-
nova data as well as the galaxy surveys without invoking dark energy. However, if
�M (r) = const., the physical matter distribution ρM itself has a spatial dependence
provided H0(r) �= const.. It can be made constant by choosing �M (r)H2

0 (r) = const.
The spatial dependence holds true even for the gauge freedom of the scale function.

In the FRW case the present value of the scale factor a(t0) can be chosen to be any
positive number. Similarly, the corresponding present-day scale function A(r, t0) of
the LTB model can be chosen to be any smooth and invertible positive function. In
what follows we will choose the conventional gauge

A(r, t0) = r. (2.21)

Integrating Eq. (2.20) then gives the relation between the scale factor A(r, t) and the
coordinates r and t , which can also be used to find the age of the LTB universe. One
finds

t0 − t = 1

H0(r)

1∫

A(r,t)
A0(r)

dx√
�M (r)x−1 + ��(r)x2 + �c(r)

. (2.22)

For any space-time point with coordinates (t, r, θ, ϕ), Eq. (2.22) determines the func-
tion A(r, t) and all its derivatives. Thus the metric Eq. (2.9) is specified, and given the
inhomogeneities, all the observable quantities can be computed. Equation (2.22) can be
integrated in terms of elementary functions when ��(r) = 0 or ��(r)+�M (r) = 1;
as an example, in the latter case one finds

(t − t0)H0 = 2

3
√

1 − �M (r)

⎡
⎣arsinh

√
ω(r)

(
A(r, t)

A0(r)

)3

− arsinh
√

ω(r)

⎤
⎦ , (2.23)

where

ω(r) = 1 − �M (r)

�M (r)
. (2.24)

In this particular case A(r, t) can be found explicitly as

A(r, t) = A0(r)

[
cosh(τ ) +

√
3

8πGρ�

H0(r)sinh(τ )

]
, (2.25)

where τ = √
6πGρ�(t − t0).
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3 Inhomogeneities and luminosity distance

To compare the inhomogeneous LTB model e.g., with the supernova observations,
we need an equation that relates the redshift and energy flux of light with the exact
nature of the inhomogeneities. For this, one must study propagation of light in the
LTB universe.4 Let us here derive the appropriate equations for notational clarity; a
more general derivation for an off-center observer can be found in [36].

From the symmetry of the situation, it is clear that light can travel radially, that is,
there exist geodesics with dθ = dϕ = 0. Moreover, since light always travels along
null geodesics, we have ds2 = 0. Inserting these conditions into the equation for the
line element, Eq. (2.9), we obtain the constraint equation for light rays

dt

du
= − dr

du

A′(r, t)√
1 − k(r)

, (3.1)

where u is a curve parameter, and the minus sign indicates that we are studying radially
incoming light rays.

Consider two light rays with solutions to Eq. (3.1) given by t1 = t (u) and t2 =
t (u) + λ(u). Inserting these to Eq. (3.1) we obtain

d

du
t1 = dt (u)

du
= − dr

du

A′(r, t)√
1 − k(r)

(3.2)

d

du
t2 = dt (u)

du
+ dλ(u)

du
= − dr

du

A′(r, t)√
1 − k(r)

+ dλ(u)

du
(3.3)

d

du
t2 = − dr

du

A′(r, t (u) + λ(u))√
1 − k(r)

= − dr

du

A′(r, t) + Ȧ′(r, t)λ(u)√
1 − k(r)

, (3.4)

where Taylor expansion has been used in the last step and only terms linear in λ(u) have
been kept. Combining the right hand sides of Eqs. (3.3) and (3.4) gives the equality

dλ(u)

du
= − dr

du

Ȧ′(r, t)λ(u)√
1 − k(r)

. (3.5)

Differentiating the definition of the redshift, z ≡ (λ(0) − λ(u))/λ(u), we obtain

dz

du
= −dλ(u)

du

λ(0)

λ2(u)
= dr

du

(1 + z) Ȧ′(r, t)√
1 − k(r)

, (3.6)

4 Luminosity distance in a perturbed FRW universe has been considered in [35].
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where in the last step we have used Eq. (3.5) and the definition of the redshift. Finally,
we can combine Eqs. (2.19), (3.1) and (3.6) to obtain the pair of differential equations

dt

dz
= −A′(r, t)

(1 + z) Ȧ′(r, t)
, (3.7)

dr

dz
=

√
1 + H2

0 (r)(1 − �M (r) − ��(r))A2
0(r)

(1 + z) Ȧ′(r, t)
, (3.8)

which determine the relations between the coordinates and the observable redshift,
i.e., t (z) and r(z).

Now that we have related the redshift to the inhomogeneities, we still need the
relation between the redshift and the energy flux F , or the luminosity-distance, defined
as dL ≡ √

L/4π F , where L is the total power radiated by the source. This is given
by [37]

dL(z) = (1 + z)2 A(r(z), t (z)). (3.9)

Likewise, the angular distance diameter is given by

dA(z) = A(r(z), t (z)). (3.10)

As the z-dependence of t and r are determined by Eqs. (3.7) and (3.8) and the scale
function A(r, t) by Eq. (2.22), using Eq. (3.9) one can calculate dL for a given z.
All of these relations have a manifest dependence on the inhomogeneities (i.e., on
the functions H0(r) and �M (r)). What remains is a comparison of Eq. (3.9) with the
observed dL(z).

Because the boundary functions of the LTB model are arbitrary, it comes as no
surprise that any isotropic set of observations can be explained by the appropriate
inhomogeneities of the LTB model [38]. That the supernova data could be interpreted
in terms of an inhomogeneous LTB model with no cosmological constant was first
suggested by Célérier [39], who pointed out that the LTB model is degenerate with
respect to any magnitude-redshift relation so that the accelerated expansion could be
modeled by a very large number of inhomogeneity profiles. In this sense the LTB
model is not predictive. The intriguing aspect here is rather the matter of principle
which the LTB model can be used to demonstrate: that the supernova data does not
necessarily imply accelerating expansion and hence the existence of dark energy is
not an unavoidable consequence of the data but rather depends on the framework the
data is interpreted in. Moreover, the inhomogeneities need not contradict the observed
homogeneity in galaxy surveys [7], as is often claimed (see e.g., [40]), since the model
admits solutions with constant �M but with a position-dependent H .

To demonstrate this, let us consider the gold sample of 157 supernovae of Riess
et al. [5] and disregard LSS and CMB data for the moment. In the FRW model the
parameters that best describe our universe are found by maximizing the likelihood
function exp(−χ2(H0,�M ,��)) constructed from the observations. However, to
find the boundary conditions of the LTB universe that best describe our universe, we
should in principle maximize the likelihood functional exp(−χ2(H0(r),�M (r))). In
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practice, this is impossible. One can only consider some physically motivated types
for the functions H0(r) and �M (r) that contain free parameters; these are then fitted
to the supernova observations by maximizing the leftover likelihood function. In the
literature there exist several fits to the supernova data employing a simple LTB model
with different authors having chosen different density profiles (and, unfortunately,
often a different notation) [31,34,41–44].

Since the expansion rate of the FRW universe has to accelerate in order to fit
the supernova data, the second time derivative of the FRW scale function should be
positive. In contrast, in the LTB universe the observations are affected by the variation
of all the dynamical quantities along the past light cone, not just the time variation.
Indeed, the directional derivative along the past light cone is given by

d

dt
= ∂

∂t
+ dt

dr

∂

∂r
= ∂

∂t
− A′(r, t)√

1 − k(r)

∂

∂r
≈ ∂

∂t
− ∂

∂r
, (3.11)

where the approximation in the last step is more accurate for small values of r , but is
qualitatively correct even for larger r .

The main message of Eq. (3.11) is that from the observational point of view, the
negative r -derivative roughly corresponds to the positive time derivative. This is natural
since by looking at a source, we simultaneously look into the past (i.e., along the
negative t-axis) and into a spatial distance (i.e., along the positive r -axis). Hence, to
mimic the acceleration, i.e., for the expansion rate to look as if it were to increase
towards us along the past light cone, the expansion H0(r) must decrease as r grows:
hence we should look for an LTB model with H ′

0(r) < 0. Thus, keeping in mind the
homogeneity of galaxy distributions, we could choose a simple four parameter LTB
model like [34]

H0(r) = H + �He−r/r0 ,

�M (r) = �0 = constant, (3.12)

where H , �H , �0 and r0 are free parameters determined by the supernova observa-
tions. The best fit values are found to be [34]

H + �H = 66.8 km/s/Mpc, �H = 10.5 km/s/Mpc, r0 = 500 Mpc, �0 = 0.45.

(3.13)
The goodness of the fit is χ2 = 172.6 (χ2/157 = 1.10). The confidence level
contours with fixed values of �0 and H are shown in Fig. 1. For comparison with
the homogeneous case, the best fit nonflat �CDM has �M = 0.5, �� = 1.0 with
χ2 = 175 (χ2/157 = 1.11). What is perhaps surprising is the fact that the supernova
fit is not only in qualitative agreement with the observed homogeneity in galaxy sur-
veys but also automatically yields a value for the present-day matter density that is
consistent with the observations. The smallness (∼15%) of the spatial variation in the
Hubble parameter is also somewhat surprising, considering that it is of the same order
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Fig. 1 Confidence level contours in the LTB model with �M (r) = constant = 0.45 and H0(r) = 56.3
km/s/Mpc + �He−r/r0 . From [34]

as the uncertainty of the model-independent5 determination of the local Hubble rate
by the Hubble space telescope [45]. The variation of the Hubble parameter found by
Alnes et al. [31], who used a different model Ansatz, has also similar magnitude, but
in contrast their model contains a large (∼ 400%) variation in the matter density at
scales larger than the current range of galaxy surveys.

One can also fit data with Eq. (3.12) together with a cosmological constant. Taking
�M (r) + ��(r) = 1 one finds no improvement [34]. If instead of �M = const. we
assume a strictly uniform present-day matter distribution with ρM (r, t0) = constant,
which implies H2

0 (r)�M (r) = constant, we may choose the parametrization

H0(r) = H + �He−r/r0 ,

�M (r) = �0(H + �H)2/(H + �He−r/r0)2. (3.14)

The best fit values in this case are

H + �H = 67 km/s/Mpc, �H = 10 km/s/Mpc, r0 = 450 Mpc, �0 = 0.29.

(3.15)

5 Note that the smaller uncertainties found in the CMB data analysis cannot be used here as those fits
assume that the entire universe is perturbatively close to the homogeneous FRW model.
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Fig. 2 Confidence level contours in the LTB model with perfectly uniform present-day matter density:
H0(r) = 57 km/s/Mpc + �He−r/r0 , �M (r) = 0.29 (67 km/s/Mpc)2/H2

0 (r). From [34]

Here the goodness of the fit is χ2 = 172.6 (χ2/157 = 1.10). The confidence level
contours with �0 and H fixed to their best fit values are displayed in Fig. 2.

All these models have an inhomogenous Big Bang. One could also have an inho-
mogenous expansion with a spatially constant age of the universe by choosing e.g.,

H0(r) = H

⎡
⎣

√
1 − �M (r) − �M (r)arsinh

√
1−�M (r)
�M (r)

(1 − �M (r))3/2

⎤
⎦,

�M (r) = �0

(1 + δe−r/r0)2 . (3.16)

The constraint of a simultaneous Big Bang leaves us with only one free function. The
best fit values are [34]

H = 76.5 km/s/Mpc, δ = 1.21, r0 = 1000 Mpc, �0 = 0.29 (3.17)

with χ2 = 175.5 (χ2/157 = 1.12). Eq. (3.17) implies that the Hubble function
H0(r) varies from the value H0(0) = 65 km/s/Mpc near us to its asymptotic value
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H0(r � r0) = 52 km/s/Mpc. The age of the universe is then tage = 1/H = 12.8
Gyr. Similar values have also been found in the model of ref. [31].

Thus simple and at least seemingly semirealistic LTB dust models can fit the su-
pernova data. The point to note is that although the LTB equations of motion do not in
general permit locally accelerated expansion, this does not exclude the possibility that
there can be an effective, volume averaged acceleration, where a scale factor defined
via the physical volume of some comoving region has a positive double time derivative
[46]. However, it can be shown there is no effective average acceleration [34] for the
models considered above.6

4 Towards more realistic LTB models

Whether the supernova data combined with the CMB and LSS data would nevertheless
require an accelerating universe is an open question; cosmological perturbation theory
in LTB background is still non-existent.

Some issues can be addressed, though. In particular, when the LTB metric models
a local underdensity, one may assume that the evolution of perturbations is identical
to that in a homogeneous universe until the time of last scattering. Adopting this
approach, Alnes et al. [31] have considered in an approximation constraints arising
from the position l1 of first acoustic peak. They find a shift relative to the concordance
�CDM model that is given by

S = l1
l�C DM
1

= 0.01419(1 − φ1)
dA

rs
, (4.1)

where dA is the angular diameter distance to the last scattering surface, given by
Eq. (3.10); this is the part that depends on the local underdensity, whereas rs , the sound
horizon at recombination, and the (small) value of the parameter φ1 can be obtained
from the conventional homogeneous model. To be in agreement with the WMAP
observations, the shift parameter should be within the range S = 1.00 ± 0.01. The
locally underdense model depends on the density contrast parameter �α, functionally
related to A(r, t) and specifying the difference between the two region, the transition
point r0 from LTB to FRW, and the transition width �r/r0. A set of parameter values
that yields a good fit both to the supernova data and the first CMB peak position can
be found, as can be seen from Table 1. Generically, for the void picture to work, one
should have a local underdense region that extends at least up to the nearby supernovae
or about 300–400 Mpc/h.

These considerations hold if we occupy the exact center of the local LTB uni-
verse. For an observer that is located off-center, the universe appears to be anisotro-
pic. Estimating the luminosity distance for an off-center observer is somewhat more
complicated task than in the case of an observer at the center [36,49]. One finds an

6 Although fitting the supernova data does not require accelerating expansion, for some profiles the LTB
model may give rise to a suitably defined average acceleration [47]. For a discussion on backreaction in
LTB models, see also [48].
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Table 1 The best fit parameters of the locally underdense inhomogeneous model of [31]

Description Symbol Value

Density contrast parameter �α 0.90

Transition point r0 1.35 Gpc

Transition width �r/r0 0.40

Fit to supernovae χ2
SN 176.5

Position of first CMB peak S 1.006

Age of the universe t0 12.8 Gyr

Relative density inside underdensity �m,in 0.20

Relative density outside underdensity �m,out 1.00

Hubble parameter inside underdensity hin 0.65

Hubble parameter outside underdensity hout 0.51

Physical distance to last scattering surface DL SS 11.3 Gpc

Length scale of baryon oscillation from SDSS R0.35 107.1

anisotropic relation between the redshifts and the luminosity distances of supernovae,
which however yields only a mild constraint as up to about 20% displacement from
the center is consistent with the data [50]. In contrast, the constraint from the CMB
dipole appears to be very stringent, allowing only a displacement of about 15 Mpc
from the center of the underdense bubble [36]. This result is obtained by assuming
that all of the observed dipole a10 ∼ 10−3 is due to the displacement. A cancelation
of the dipole due to our local peculiar motion towards the center of the underdensity
is a possibility that would allow for a larger displacement. Whether such a peculiar
motion can arise naturally or only by an accident, remains to be seen.

For an off-center observer the direction towards the center of the bubble singles
out a special axis. Therefore one could hope that a local LTB bubble could provide
an explanation for the observed peculiar alignments of the CMB quadrupoles and
octopoles [51,52]. Because of the smallness of the displacement allowed by the dipole,
the quadru- and octopoles appear not to have enough power to explain their observed
alignment [36], although again the conclusion depends on the assumption that our
local average motion has been accounted for correctly.

Instead of a single underdensity, one could also consider an “onion model” with
a homogeneous background density, on top of which there are density fluctuations
which are periodic as a function of the radial coordinate. The observer sits in some
generic position and looks at sources along the radial direction, and the LTB dust
solution incorporates the entire Universe. To study this set-up, Biswas et al. [49] have
derived an expression for the luminosity distance in an LTB metric for an off-centre
observer. The corrections due to underdensities to light propagation were found to have
a tendency to cancel far away from the observer because a radial light ray unavoidably
meets both underdense and overdense structures. However, in the real universe light
encounters hardly any structure, so the cancellations might be an artifact of the onion
model. Since in the real universe the photon is mostly traversing voids it should
get redshifted faster as the nonlinearities increase with time and thereby effectively
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produce an apparent acceleration. In the onion model one can nevertheless mimic an
accelerating �CDM cosmology under certain special conditions: the observer has to
be located around a minimum of the density contrast that is required to be quite high
[49].

Yet another approach is the “Swiss cheese” model of the inhomogeneous universe,
where each spherical void is described by the LTB metric. At the boundary of these
regions the LTB metric is matched with the FRW metric that describes the evolution
between the inhomogeneities. One can then seek for the modifications of the luminosity
distance as the light passes through the underdense regions [53]. In the extreme case
where one assumes that light traverses the centers of all the inhomogeneities along
its path, assuming that the locations of the source and the observer are random and
inhomogeneities have sizes of order 10 Mpc, the relative increase of the luminosity
distance is however just of the order of a few percent near z 	 1. A qualitatively
similar conclusion has been reached in [54].

Structure formation and the smallness of CMB perturbations may in general pose a
difficulty for LTB models. For instance, for a class of inhomogeneities a homogeneous
universe is actually a late time attractor solution. This means that at earlier times matter
density and/or Hubble rate tends to be even more inhomogeneous than today. Whether
this presents an unsurmountable problem remains to be seen. Nevertheless, the LTB
model serves as a reminder that the interpretation of the cosmological data is not only
quantitatively but even qualitatively very much model dependendent. Therefore, all
options should be carefully examined before firm conclusions can be drawn. This
is true in particular for dark energy, which is both an observational and theoretical
enigma.
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