
Appendix A.

Noether's Theorem in Both
Linearly Accelerated and Inertial Frames

Aa. Noether's Theorem

In physics , Noether's theorem is of fundamental importance because it

reveals an intimate relation between conservation laws or conserved quantities

and symmetries of a physical system. It was first proved by Emmy Noether

(1882-1935) in 1918 . 1 It is usually employed in inertial frames. There was little

discussion of its implications in non-inertial frames because the symmetry

properties of a physical system viewed from non-inertial frames are not

obvious. Furthermore , the conventional Noether's theorem based on symmetry

in spacetime is generalized to the case with symmetry in the phase space.

In classical mechanics , Noether's Theorem can be stated as follows:

Suppose a physical system is described by the Lagrangian equation with the

Lagrangian L = L(gi,cji ,w), where qi = dqi/dw. Let

w' = w + eT(gi,4i,w) ,
(A.1)

q'i = qi + cQ(9i,4i,w) ,

be a set of infinitesimal transformations with a continuous parameter e. If the

Lagrangian L( q'j,4'j,w '), where 4'1 = dq'i/dw', satisfies

_ dfSS r "
Zae LdwL8=0 dw

IpiQa -HT-f
i

is a constant of motion, where

(A.2)

(A.3)
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Chap.26. Epilogue 373

pi =aVav and H= J:piih -L.
i

(A.4)

To see the result (A.2) it suffices to calculate (dw'/dw)L(q'i,q'i,w') in (A.2)
to the first order in e. Since

d,V d
g'i= =qi + e -egjad' ,

we have

rrdw, 2
ae Ldw L(g'i,g 'i,w')] S

=
tae [ (1 +ed) L(qi+cQj,4i +e dg -BCLd ,w + ET)]SE=O

(A.5)

L ^ (1 + ea) L(gi,gt,w) + a9i eQi + e (aL/a9i)( dw - 9ia ) + aw eT] Sri

= L dW + + (alJacji)(d - 9i d ) + L T=
df

.a%
A

Td = Tdw
d (Wagi]9i)-TLgi -T[aIJ64] i -TaL

ag► dw aw

Substituting (alaw)T in (A. 6) into (A.7) and using (A.4), one obtains

(A.6)

(A.7)

d
dw(y,PiCA -HT-f) =(Qi-Tgi)(dN [aL/a9i]- a-) 0, (A.8)

which vanishes because of the Lagrangian equation

dw aqi = 0. (A.9)

The result (A.8) implies that the quantity in (A.3) is a constant of motion.
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374 Einstein's Relativity and Beyond

To see the intimate relation among Noether's theorem and symmetry of a

physical system, we observe that, if df/dw = 0, the condition (A.2) is equivalent

to the property that the action of a physical system is invariant under the

transformation (A.1) because

S a _ 22
tae Itd L I.g'I,w')] Std

- a [L(q'I,4 'I,w')dw' - L(gi,4j,w)dw] 1 S,.= 0. (A.10)
ae dw

In general, even if the difference, [L(q'i,q'i,w')dw' - L(gi,gi,w)dw], is a total

differential of some function f(gi,gi,w) rather than zero, we still have a

conservation law, according to Noether's theorem. This is related to the fact that

a total differential in the action of a physical system does not affect the equation

of motion.
Now, let us consider a few specific cases to illustrate Noether's theorem.

Ab. Symmetry of Time and Space Translations in Inertial Frames

Let us consider a simple action,

b WIb

S = I -mds = I L dw1,
a Wia

L = L(rl,ii,wJ = - in d dsw, = -m 1 - zrz - yrz -

(A.11)

where r1 = (xi y1 zi) is the Cartesian coordinate and the velocity is ii = dri/dwi.

This Lagrangian L depends only on the velocities and does not depend on space

and time. Suppose we consider infinitesimal translations in time and space

WI-,W'1=wi+eTO'

x1 -+x'I=x1+cQo , YI -4 Y'I=YI, z1->z'1=z1,

(A.12)

where To and Qo are constant. One can verify that df/dw in (A.2) vanishes,
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Chap.26. Epilogue 375

{C
a '

(a6 I

'tae - m 1 -X42 - Y12 - jj2 ^ } - 0, (A.13)

so that f is simply a constant. Therefore, the result (A.3) of Noether' s theorem
implies

pxQo - HTo = constant. (A.14)

If one considers only the time translation , i.e., To = 1 and Qo = 0 in (A. 12), the

result (A.14) leads to the conservation of energy,

H = constant, (A.15 )

where H = E. Similarly, the symmetry of the Lagrangian (A. 11) under space

translations along the x-axis, i.e., To = 0 and Qo = 1 in (A.12), implies by Noether's

theorem the conservation of momentum , px = constant.

Ac. Symmetry of the Lorentz Group for Inertial Frames

We know that the action (A. 11) is invariant under the infinitesimal 4-

dimensional transformation

w'I = W I - P x l, x'I = x1- o w l, Y'I = YI , Z'1= 7j . (A.16)

Indeed, it follows from (A. 11) and (A. 16) that

^1 L(r'1,r'Lw'I))J p=0

-€a-m(1- ^xI )[(1-r^)(1-2P:4)]1/2) 2P=0 a0. (A.17)
0

Thus, fin (A.2) is a constant. Noether's theorem (A.3) implies
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376 Einstein 's Relativity and Beyond

pawl - Hx1 = constant, (A.18)

where

pix = al/a;4 = m(di4/dw1)/[1- r>z]L2 , H = pI 'rI - L = m/[1- j12]1/2.

The invariance of the quantity (A. 18) can also be directly verified by using the

4-dimensional transformations of coordinates and momenta , (7.4) and (10.5).

The form (A.18) resembles that of angular momentum because, mathematically,

it is related to the property that the Lorentz transformation (A.16) can be viewed

as a rotation of wI and xI axes in a 4-dimensional space with yI and zI fixed.

If one pauses and reflects for a moment concerning the physical

implications of (A. 18 ), one cannot refrain from wondering : Why a splendid and

useful Lorentz invariance turns out to be associated with such a dull and useless

conservation law (A. 18)?!

Ad. Generalized Translational Symmetry of the Wu Group in

Accelerated Frames

In a non- inertial frame such as F(w ,x,y,z) with a constant- linear-

acceleration along the x axis, the energy p0 and momentum px of a "free" (or

non-interacting ) particle are clearly not constant, as one can see from (22.6)

and (22.9). Evidently, this is intimately related to the fact that the action (22.1)

in F for a "free" particle, i .e., aµ=0, does not have the usual symmetries of

translations in time w and space in the x direction , in contrast to the action in

(A.11) in FI .

However, there are more sophisticated symmetries associated with the

action (22.1) with aµ=0 in non-inertial frames. They are the generalizations of

translations (A.12) from an inertial frame FI to an non-inertial frame F. Let us

substitute the infinitesimal translations in (A.12) into the inverse Wu

transformation (21.47)

(w'I + po/ayo) _ Do
w = (ax'I + 1/7o) a '

x' = (x'i + 1/yOa)2 - (w'I + po/ayo)2
1

(A.19)

OCy 2 , Y=YI, Z=ZI•
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Chap.26. Epilogue 377

Using (A.19) and (A.12), we have the generalized translations in a CIA frame

F(w,x,y,z),

w'=w+ET,

(A.20
x'=xteQ., y'=y, Z'=Z,

where c is an infinitesimal parameter and the functions T and Q are given by

To - Qo(wt + Po/acy0)
T=a(xI + 1/acyo ) a(x1 + 1 /acyo)2 =To(W) -Qo( ), (A.21)

Qo(xI + 1 /ayo ) - To(wI + Po/ayo)

(xI + 1/yoa)Z - (WI + po/ayo)2

Let us evaluate (A.2) with the Lagrangian ( 22.4) with a=0 and primed variables.
We find that df/dw/dw = 0,

[tdae Ldw L(r',r',w')] 1e-0

_ dw ae l W'Zdw'Z - dr'2Ie-O

Wdw2(2a WT + w?Q) + W2dwdT - dxdQ = 0

dw W2dw2 - dr2

)

(A.23)

where we have used

ZaeWS^ = 2WaWT +ayzQ, (A.24)

tae dw'2 o =2dwdT, €ae dr'2 } = 2dxdQ, (A.25)

dT - a^y3V o dw - ary3 dx - W ay- ap2y3]dw + QW_o2 Wdx , (A.26)

dQ= 4y3Qo dw - ay3To dw . (A.27)
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Thus, Noether 's theorem implies

Px(7Qo - -ffiTO) - H(LOTY - QOPY ) = constant,

Einstein 's Relativity and Beyond

(A.28)

in CLA frames. This is the generalization of the conservation (A.14) of inertial

frames. For the generalized time translational symmetry , i.e., To=l, Q,0=0, the

result (A.28) leads to

Px(- yo) - H (W) = - Y(W + PPx) = constant, (A.29)

where po, px and W are functions of space r and time w. Similarly, the

generalized space translational symmetry (i.e., To=O, Qo=1) implies

px(y) - H (- W) = 7(Px + V-WH) = constant. (A.30)

Equations (A.29) and (A.30) are consistent with the constant energy pIo and

momentum pii=-pit =-Pix in an inertial frame , as shown in the 4-momentum

transformation (22.10).

Ae. Classical and Quantum Rings (or Closed Strings) in a Central

Force Field

Some conservation laws for the motion of physical objects in a potential

field are not related to Noether's theorem. For example, a string-like object,

which has been extensively discussed in recent years, may have a different type

of symmetry from that of ordinary particles. Let us consider a simple string

which is closed and moves in a potential field with a constant radius. Based on a

formal analogy between the equation of the Nambu string2 and the massless

Klein-Gordon equation with cyclic radial momentum Pr and cyclic angular

momentum Pe, it has been suggested that a closed quantum string with a

constant radius could be described by a Hamiltonian with cyclic radial momenta

Pr and Pe.3 The Lagrangian Lr for such a "ring" moving in a Coulomb-like

potential V(r) was assumed to have the form
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Chap.26. Epilogue 379

_ -m(1-r22sin29)1/2 - V(r) , (A.31)

which has cyclic velocities i=dr/dw and 6=d9/dw. Since the generalized

coordinates are q1=(g1,g2,q3 )=(r,9,$), their conjugate momenta are given by

a4 aL aLr mr2msin29
Pr =0, Pe=-=O, P4_ (A.32)

ar a6 a4 (1-r2 2sin2g) 1/2

Thus, one cannot obtain a relation for the velocity r (or 6) in terms of pr (or pe)

and coordinates. In some cases, the lack of these relations will render the

Legendre transformation and, hence, the Hamiltonian undefined.4 However, in

this case one can follow Routh's procedure for treating cyclic variables5 and
define a new Hamiltonian Hr for the ring

Hr(r,9,$,p.) = p# j - li = Jm2+p,2( r2sin29) + V(r) , (A.33)

where we have used the equations in (A.32). The usual Hamiltonian equations

for $ and p# can be obtained. The momenta pr and pe are cyclic in Hr. We also

have the following equations (in which Hr plays the role of the Lagrangian) for

the ring's motion:

ar = Uw- (Mr/-r) = 0 , (aHr/a6) = 0.0-9 aw-

r=ar, 9=ae.

(A.34)

(A.35)

For an arbitrary central potential V(r), the second equation in (A.34) leads to
ae=n/2, while the numerical value of r depends on the specific form of the

potential V(r) in the model.

Classically, the Hamiltonian (A.33) describes a particle with a mass in

moving in a circular orbit. Since a rotating ring with a constant radius can be

pictured as a collection of N particles moving in the same orbit, we can also

interpret (A.33) as the Hamiltonian for a rotating ring with a total rest mass m.
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380 Einstein's Relativity and Beyond

The Hamiltonian (A.33) has the cyclic momenta pr and Pe which can be used to

construct a "ring - model of quarks " with permanent confinement of the

quantum ring.3

Af. A Generalized Noether 's Theorem for Symmetry in Phase Space

The constants of motion in (A.35) for inertial frames are not covered by

the conventional Noether 's theorem based on symmetry in spacetime. However,

one can generalize Noether's theorem to imply (A.35) as a special case by

considering symmetry in the phase space.

Let us introduce a new function called "Jingsian " is which symmetrizes

the p and q variables explicitly and plays a double role of the Lagrangian and

the Hamiltonian:

Js(gi,..gn,Pi,•,Ps, is+l,..gn,t) = L(gi,gi,t) - 1(Pi gl - qi Pi)
i-1

s l 05s^ii-Z(Pigi), (A.36)

This form enables us to treat pi and qi on a more equal footing in performing

variational calculations than the usual Hamiltonian form. That is, the Jingsian

is makes the p-q symmetry more explicit and does not depend on pi, so that one

can deal with symmetry related to the momenta pi, P2...... p5 and the coordinates

qi, g2......gs•

When s=0, the Jingsian Jo is just the Lagrangian L, which is defined in a

configuration space formed from the n generalized coordinates. And when s=n,

Jn reduces to the negative Hamiltonian -H(q,p,t) defined in the phase space. The

general Jingsian Js, 1 s s <- n-1, is defined in a combined phase space (pi,..,ps,

gi,..,gs.) and configuration space (qs+i, qs+2...... qn), which may be called "Jingsian
z

space" for short. The Hamilton's principle 8S = 81Ldt = 0 indicates that one can

have the modified Hamilton's principle in the Jingsian space by expressing L in

terms of the Jingsian is in (A.36). We have
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+ Js(gi... .gn,p,.... .ps,4s+ 1.... 4n,t) Idt ,

2

J { E
(918P1 - P18g1) +

rags
8gi+api&p►

]

n r a J s d U s-
+ , , qi dt aqi" Sqi dt = 0, qi L (A.37)

where we have used the following conditions in the Jingsian space,

8g1(tl ) = 8%(t2) = 0, i = 1,2....n

(A.38)

8p1(t1 ) = 8p1(t2 ) = 0, i= 1,2....s .

We obtain the desired equations of motion

dpk _ aJs dqk aJs
k=1 2 ... s.' (A.39), , ,dt aqk dt apk '

Equations (A.39) involving the coordinates gi,...,gs and the momenta pl,...,ps are

in the form of Hamilton 's equations with the negative Jingsian, -Js, as the

Hamiltonian . However, the (n-s) coordinates and velocities obey the Lagrange

equations2

dt (aJs/a91) - (aJs/aq1) = 0, i = s+1......n . (A.40)

Suppose a physical system is described by the equations of motion (A.39)

and (A.40). The last term involving a total differential in (A.37) does not

contribute to the equations of motion and it can be ignored in the action

functional without affecting physics. Thus , the action functional S of a physical

system can be written in the following symmetrized form:
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382 Einstein's Relativity and Beyond

2

S= J{i (
'A . q- 22W) + Js(gl.•••gn,PL••.Ps ,4s+ 1,.. 4n,t) } dt (A.41)

1

Suppose this action S is invariant under the following infinitesimal

transformations in the Jingsian space,

P'k = Pk + EPk', k=1.... s ;

q'1=qt+eQ,

t'=t+eT.

That is,

i=1,...,n ; (A.42)

2p ,t q'i - 2l'1 P't)+Js( q'1. ...q'n;P '1,•••,P's,q ' s+1,....q'n,t') Sil 18=0taeIk i_1

df dP'k
- & , P,k = dt, , (A.43)

where Pk*, Qi', T and f are functions of (gl,••gn,Pl,•,Ps,4s+1,..,4n,t). Following

similar steps from (A.5) to (A.9), we have the generalized Noether's theorem for

the case with symmetry in the phase space:

dt [HT + f - E P,, + E qk Pk]= 0,
i-l k-i

(A.44)

1 1 1 1
where Pi= (zp1*,••, *) and Q1= (zQ1*,••, (W,Qs+l...... Q.:)•
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Appendix B.

Quantum Electrodynamics in Both
Linearly Accelerated and Inertial Frames

Ba. Quantum Electrodynamics of Bosons in CIA and Inertial Frames

Quantum scalar field operators obey equation (24.35) in CIA frames. This

suggests that we use the taiji-time w in a general frame as the evolution

variable for a state 40)(w) in the Schrodinger representation:

i a`^aww) = H(s)(w)^(s)(w) , H(S)= Hos)+ H1(S), J= 1. (B.1)

The reason is that the evolution of a physical system is assumed to be described

by a Hamiltonian operator which has the same transformation property as a/aw.
A covariant partial derivative is the same as an ordinary partial derivative, Dµ =

aµ, when they operate on scalar functions. We may remark that the form (B.1) is

no longer true if the Hamiltonian involves spinor fields; in this case, the time
derivative as has to be replaced by the gauge covariant derivative Vo, according

to equation (24.56).

It is natural to assume that the usual covariant formalism of perturbation

theoryl can also be applied to QBD of scalar bosons in CIA frames, which are

smoothly connected to inertial frames in the limit of zero acceleration. Let us

briefly consider the interaction representation and the S-matrix in CIA frames.

The transformations of the state vector O(w) and operator O(w) from the

SchrOdinger representation to the interaction representation are defined as

D(W) 41(')(w) = exp [iH(o)w]m(s)(w)

O(w) = O(')(w) = exp[iH(o)w]O(s)exp[-iH(o )w] .

Because O(s) and O(w) are the same for w = 0, we have

(B.2)

(B.3)

i s aww) H (w)4'(w), H= e [iH w H a iH w (B.4)

384
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O(w)=exp[iH^o)w]O(0)exp[-iH^o)w] • (B.5)

The U-matrix can be defined in terms of the time w: 4'(w) = U(w,wo)O(wo),

U(wo,wo) = I. It follows from (B.4) and (B.5) that

aU(w,wo)
i ', = HI(w)U(w,w0)

If a physical system is in the initial state 4)1 at time

finding it in the final state of at a later time w is
Wo,

(B.6)

the probability of

I(4bfI U(w,wo) bi) 11 = I Ufi(w,wo)12. (B.7)

Evidently, the average transition probability per unit time for o f -4 Oi is

U fi(w,wo) - 8f.12/ (w - wo) . (B.8)

As usual, we can express the S-matrix in terms of the U-matrix, i.e. S = U(oo, -m)

and obtain the following form

w

S = 1- i fH1(W)dW + (-i)2 JH,(w)dw JH1(w')dw' + ...... (B.9)

For w-dependent operators, one can introduce a w-product W'k (corresponding

to the usual chronological product), so that (B.9) can be written in an

exponential form:

S = W`[exp[- i 5HI(xµ)dwd3r]I , JHi(x►t)d3r = HI(w) . (B.10)

Since J is a truly universal constant, we can have the "natural units" J = 1
in both CIA and inertial frames . Thus, we have the relation of dimensions

[aµ] = [V2,13] = [mass] = [1/length], (B.11)

in CIA and inertial frames.
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386 Einstein's Relativity and Beyond

To obtain the rules for Feynman diagrams for scalar QED in CIA frames,

we follow the usual procedure) and assume 1sW to be

LSQFD = I-sp - (aIaµ)2/(2p) ,

Isp = € gµv[(iaµ - eaµ )fi*]I(iav - eav)fi] - m2fi*O - 4 fµvfµv ,

fµv = Dµav-Dvaµ = aµav-avaµ , e = -1.6021891x10-2O4TX(g•cm)1n

(B.12)

where p is a gauge parameter. The lagrangian Lsp is gauge invariant and

observable results are independent of the gauge parameter p.

To see that there is a "conservation" of 4-momentum at each vertex of the

Feynman diagram in CIA frames, let us consider the wave function fi(w,x) _

4b(x) for a "free particle" given by (24.23) with the phase P given by (24.19) and

the condition (24.21) for a plane wave. In CIA frames, one can verify that

aw P = kio(xl + 1/ay02)y3a+ kI1(xl + 1/ayo2)y3ap

= (ykl0 + 7Rki1)W = k0 ,

T P=ktoyP +klly=kl, a P=k2, a3P=k3,

where we have used (a/aw)yl = y3a and (a/aw)_y= y3ap. Thus, the relation

i a e-iP = kµ a-iP
NP

(B.13)

(B.14)

holds for a "free wave" in CIA frames, just as in inertial frames.

However, the zeroth component po (or ko) of the covariant 4-momentum

depends on the Wu alteration function W(w,x), as shown in (22.9), and is not

conserved in a particle collision process. Fortuately, the conservation of

"momentum" in a collision process, e.g., a+b-,c+d, as observed in CIA frames can

be expressed in terms of
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Chap.26. Epilogue 387

(Po/W, P1, P2, P3 ) Pµ; (Po, P1, 02, 03), (B.15)

gµvpµpv = (Po/W) 2 - (p1)2 - (P2)2 - (P3)2 = TIIL ppPv , ^lMV = (1. 1 ,-1,-1)

This Pµ may be termed "alteration momentum" which is not exactly a 4-vector

under the Wu or the MWL transformation. But the momentum space of Pµ is

formally closer to the space of the 4-momentum p in inertial frames than that

of the true 4-momentum pp as far as the S-matrix and Feynman rules are

concerned. For the scattering process a+b-ac+d, we have the following relations

for momentum:

Poa+ POb= YB(Ploa+ PIOb- OBIP[la+ Pub]) ,

P1a+P1b= TB(P[1a+ Pub - PB[P[oa+ p[Ob]) ,

P22+ Pzb= P[za+ P12b' p3a+ P3b= PI3a+ Pub

Poc+ Pod= YA(PIot+ Plod- PAIP[lc+ PIld])

Plc+ Pid= TA(puic+ P11d - YAIPIoc+ P[od]) ,

P2c+ P2d= P12c+ P12d, P3c+ Pad= P13c+ Pud ; P,

(B.16)

which can be derived from the inverse transformation of (22.10) and (B.15).
Since the 4-monentum is conserved in the inertial frame F1, i.e., Ptoc + Plod= Pioa

+ p[ob = constant and plc + P [d = Pia + Pub = constant, we have the conservation of

the alteration momentum in CIA frames:

Poc+ Pod= Poa+ Pob and Pc+Pd=Pa+Pb, (B.17)

at the "instant of collision," so to speak. The reason for their conservation is

that, although both sides are not constant as shown in (B.16), they must be the

same when OB = DA which is realized at the instant of collision.

Based on the Wu transformation for coordinates and 4-momenta, we have
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388 Einstein 's Relativity and Beyond

Jd4x exp(-ipIµxe) = ( 2x)484(Pt) = J'd4x e_11

= (2E)48(fpO-Y&P1)8(1'P1-?PPo)8(P2)8(P3) (B.18)

= (2n)48(P0)8(P1)8(P2)8(P3) = (2x)484(P) = (2n)4W84(P) ,

8(P1o)8(P11) = 6(77po- ypPl)S(fpj - y0P0) = S(Po)S(PI) = S(po)S(Pl)
J(Pa./P0

where we have used the 'free-wave' (24.9), the momentum transformation

(22.10) and the Wu transformation (21.46). In the last equation, J(pa/px) is the

Jacobian of the pv,, with respect to the P2, which can be calculated by using

(22.10). This result is the 2-dimensional generalization of the 1-dimensional

case given by (24.20) with x = 0.2 In a CIA frame, the integral of a "plane wave"

over the "whole spacetime" is limited and complicated by the presence of a

"black wall" (i.e., a wall singularity) at x = -1/(ayo2). The integration can be

carried out by a change of variables and this amounts to using variables in an

inertial frame as a crutch to obtain the result. The relation (B.17) or (B.18)

implies that we have a conservation of momentum at a vertex in the generalized

Feynman rules in CIA frames. Those properties in (B.13)-(B.18) are convenient

for writing down the generalized Feynman rules for quantum electrodynamics

in CIA frames.

As usual, if there are no identical particles in the final state, we define

the relationship between the M- and S-matrices for initial (i) and final (f)

states as follows:

Sfl = Sn - i(2a)484 (Pt( tot> - PI(tot))[next P.(ni/V)] 1/2Mfl , (B.19)

where "ext par" denotes external particles, nj = mi/o'kjfor spin 1/2 fermions and

nj = 1/(2(ukj) for bosons. Note that the S-matrix elements for physical processes

which are observed and measured in CIA frames are defined only for those

cases in which the momenta of the initial and final states are constant in an

inertial frame.

Because of the 4-dimensional symmetry in (B.12) and (B.19), the

generalized Feynman rules for writing the amplitude Mn are formally the same
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as those in the usual QJED, except that certain quantities (e.g., w, J and 1d) have

different dimensions from the corresponding quantities in conventional QhD.

One can use a more intuitive method of Feynman to obtain the generalized

rules for Feynman diagrams in CIA frames . For example , the scalar boson

propagator can be obtained from the scalar wave equations ( 24.1) and the

relation (B.14) for a "free boson " with the momentum pp. The vertex of

interaction can be obtained from the interaction Lagrangian density LSQ);D in

(B.12).3

The generalized Feynman rules for the amplitude Mt, in both constant-

linear-acceleration frames and inertial frames are as follows:

(a) The covariant photon propagator is given by

kµkv

P) (kXkj. + ie)

(kak(Y + ie)

where p = 1 is the Feynman gauge, and p = 0 the Landau gauge.

(b) The scalar boson propagator is

i
(p'p -m2+ie).

(c) The vertex <D(p)+y(k,µ) -, 4(p') is

-ie(pµ+pµ),

(B.20)

(B.21)

(B.22)

where y(k,µ) is an incoming photon line toward the vertex with the momentum

k), and a polarization index g.

(d) The vertex 't+y(µ) -* b+y(v) has the factor

2i -E2ggV. (B.23)

(e) Each external photon line with an index µ has a polarization vector eµ.

(f) A factor 1/2 for each closed loop containing only two photon lines, e.g., 4+'

-^ Y(N)+y( v) -j 4D+4.

Other rules such as a integration with W-1d4k/(2a)4 = d4k/(2x)4 over a
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390 Einstein's Relativity and Beyond

momentum kµ not fixed by the "conservation" of momentum at each vertex are

the same as the usual rules in inertial frames.

Bb. Feynman Rules for QED in both CIA and Inertial Frames

To obtain the rules for Feynman diagrams of spinor QJD in CIA frames, we

have to replace the time derivative ao = a/aw by the gauge covariant time

derivative V0, according to equation ( 24.56). We follow the usual quantization

procedure and define LTQED by adding a gauge fixing term in the Lagrangian

density,

LTQ$D = L - (Dµaµ)2/2p , (B.24)

L = yjr►1(iVµ-eaµ)W-11-9 Inw, (B.25)

V µ = (a0 + 2(akW) I ', a1, a2, a3)

where p is a gauge parameter. As usual, the M-matrix is defined in (B. 19). One

can verify that the plane-wave solution (24.57) of a free fermion satisfies

Vµe(-iP(x) - G(w)) = kµe(-iP(x) - G(w)) (B.26)

in CIA frames.
The generalized Feynman rules for the amplitude Mn of QED in both CIA

frames and inertial frames are as follows:

(a) The covariant photon propagator is given by (B.20).

(b) The electron propagator is

-i (B.27)
(rupµ - m + ic)

(c) The electron-photon vertex is

-iel'µ. (B.28)
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(d) Each external photon line has an additional factor eµ. Each external electron

line has u(s,p) for the annihilation of an electron and u(s,p) for the creation of

an electron. Each external positron line has v (s,p) for the annihilation of a

positron and v(s,p ) for the creation of a positron.

Other rules such as taking the trace with a factor (- 1) for each closed

electron loop , integration with d4k/[W(2a)4] over a momentum kµ not fixed by

the conservation of alteration momentum at each vertex are the same as the

usual.

Thus , if one calculates scattering cross sections and decay rates (with

respect to the taiji-time w) of a physical process, one will get formally a similar

result as that in conventional U D. For example, let us consider the decay rate

r(1-,2+3+...+N) for a physical process 1-,2+3+...+ N. It is given by the expression

r(1^2+3+...+N) =1wtmm J I(flSlli)I2 d3xzd3Pz d3x3d3p3 ... d3xd3pN

( 270)3 (2903 (211)3

,...=f-1- IMflR II (2m^)] d3pz ......
2.P1 ext rer (2n)320)P2

d3 _ _

x (27t)32WPN
(2a)4S4(pl + p2 - P3 - P4 ""- PN)SO ,

(B.29)

where (fSli) = Sfl is the S-matrix element between the initial state i and the final

state f given by (B.19). The decay rate r(1-42+3+...+N) has the dimension of

inverse length and So denotes a factor 1/n! for each kind of (n) identical

particles in the final state. When there is no external fermion in a process,

then [next rer (2mrer )] in (B.29 ) is replaced by 1. The decay length D is given by

D= 1/r(1-,2+3+...+N).

For a scattering process 1+2-,3+4+ ....+N, the differential cross section do,

which has the dimension of area, is given by

dcr - 1 2[ II (2m )] d3P3
4[(p1.p2)2-(m1m2 )2]v2I I ext fer rer (2x )320)P3....

d3PN + P P P P )so , (B.30)
••••• (2X)32wpN

(2g)484(p
, 2 3 4 ....- N
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392 Einstein 's Relativity and Beyond

where p1= pi, i = 1, 2, 3 and po = mp = (p2+m2 )1/2. If the initial particles are

unpolarized , one takes the average over initial spin states. When there is no
external fermion in a process, then [r t fer ( 2mf.. )] in (B.30) is replaced by 1.

Bc. Some QED Results in Both CIA and Inertial Frames

Let us consider some well-known physical processes in QEDD4 to illustrate

the generalized Feynman rules in both CLA frames and inertial frames, and see

how the conventional results in inertial frames are modified if they are

measured in a laboratory with constant-linear-acceleration.

A. Electron Scattering from a Point Like Proton

According to the generalized Feynman rules , the amplitude Mfl for such

an electron scattering from a point-like proton , e(pl + p ( Pj) -> e(pf) + p(Pf) with

the exchange of a photon y(q), where qµ = pfµ - pyf, is given by

M[1 = u(sf,pf)[- i er1 ]u ( s1,p1) [(qaq +ie ) ]u(SfPf)[- i erti] u(Sl,P1) , (B.31)

where we have used the Feynman gauge for the photon propagator (p = 1). The

S-matrix element Sf1 in (B.19) takes the form

m m M M 1 1/2
Sfi = - i(2n)484(P f + pf - P1- A)

r

`mpf mpi mpf mPi
`J4] M11 , (B.32)

where m and M are , respectively , masses for the electron and the proton. The

differential cross section is given by ( B.30),

_ mM 2 md3p f Md3Pf

[(pj P1)2- (mM)2]1/2 IMfI (2rz) 3mpf (2a )3 mpf

x(2n)484 (pf + Of - pl - P1) , (B.33)

where po = mpf= (pf2+m2 ) 1/2, mpf = ( P12+M2 )1/2 and IM I2 is given by
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F4
IMfl12 = 2m2Mzg4 [Pf.pfPfpi + Pf piPfpf - m2PfPi

- M2pf pi + 2M2m2], (B.34)

Since Pfpf = PWp 1, etc . we see that the differential cross section is formally the

same as the usual one in an inertial frame, except that each individual

momentum is not constant in CIA frames,

da(CIA frame) = do(inertial frame) . (B.35)

The origin of this identical result is the limiting 4-dimensional symmetry which

dictates the invariance of the action or the S-matrix.

After integration, (B.35) gives the total cross section which can be

pictured as the effective size of the target particle, i.e., proton. This effective

size of the proton depends of the strength of the interaction. For the

electromagnetic interaction, the coupling strength is ae - 1/137 - 10-2, the weak

interaction coupling strength is about 10-12. The size (or cross section) of a

proton is about 10-24 cm2 from the 'viewpoint' of the electron. But from the

'viewpoint' of a neutrino, which has only weak interactions with the proton, the

size of a proton is extremely small, about 1"4 cm2.

B. Compton Scattering
The S-matrix element for the Compton scattering process, y(k) + e(pi) -^

y(k') + e(pf), is given by

Sfi i ( 2n)484(k + pf - k - p) fap
m m 1 1 4 1 /2 . (B.36)

= - f aOpi 2cok 2a1k, V

where 0k = IkI= Iki, opf = pf2+m2 and the M-matrix element is given by

Mi = u(sf,pf) € [-ierae'el -1 [_ier^evl
yµ (p4µ+1cµ)-m+ie

+ [-ieruEj _t ^[-ier^e'vl u(s►,p) , (B.37)
(P4µ7k'µ)-m+ie
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394 Einstein 's Relativity and Beyond

according to the generalized Feynman rules.

We have seen that the differential cross section for the Compton

scattering is also the same as that in an inertial frame,

dacompton(CLA frame) = do compton(inertial frame) . (B.38)

C. Self-Mass of the Electron

The self-mass of the electron is given by the expression

d4k µ
-8 = [lcak6+ie) [- ierK] [- i erW(2 )a [tp(pp-kp)-m+ie)

= Sm(inertial frame) , (B.39)

where we have set p=1 for simplicity and used (24.43) and (B.15). This is
consistent with the fact that the (rest) mass of the electron in an inertial frame
is the same as that of the electron in CIA frames, as shown in (23.8).

In all these calculations, the particles must move with constant velocities

as measured in an inertial frame. This is the condition imposed in defining the

S-matrix and for obtaining the generalized Feynman rules in both linearly

accelerated and inertial frames. These discussons for Q)ID can also be applied to

non-inertial frames with a constant rotational motion, since we have the taiji

rotational transformations (25.11) with limiting 4-dimensional symmetry.
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Appendix C.

De Sitter and Poincare Gauge-Invariant
Fermion Lagrangians and Gravity*

We present a new fermion lagrangian which possesses exact

symmetry under the local de Sitter group . The lagrangian involves

new "scale gauge fields " related to the newtonian force and the usual

Yang-Mills "phase gauge fields " related to a new "gravitational spin

force" between two fermions . Generalization of the usual gauge

theory for external symmetry groups is also discussed.

It has been suggested that gravity is related to gauge fields of

four-dimensional symmetry such as the de Sitter group [1,2] . The idea is quite

interesting because the de Sitter group possesses the maximum four-dimen-

sional symmetry [3 ] and is the unique generalization of the Poincare group. It

also suggests the existence of a new "gravitational spin force" between objects

with nonzero net spin densities . The de Sitter group is a rotational group in de

Sitter space, which is the hypersurface of a four-dimensional sphere of a

hyperbolic character in one direction, embedded in a five-dimensional space.

The radius of the sphere is denoted by L The de Sitter group reduces to the

Poincare group in the flat space limit L-*o.

One important ingredient in a realistic gauge theory of gravity is the

fermion field - a source of the gravitational field. But in previous discussions

[1,2] one either ignored the fermion field or discussed a fermion lagrangian

which has only approximate symmetry under local de Sitter gauge

transformations . It appears that one cannot get a fermion lagrangian with

exact external gauge symmetry if one just employs the usual Yang -Mills fields,

i.e. "phase gauge fields" [4].

*by J. P. Hsu, Physics Department, University of Massachusetts Dartmouth , N. Dartmouth,

MA 02747, USA. The work is supported in part by University of Massachusetts Dartmouth.

Reprint from Physics Letters 119B, 328 (1982).
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Chap.26. Epilogue 397

In this paper, we present a new fermion lagrangian , which has exact

symmetry under the local de Sitter group. It is necessary that the lagrangian

involves new "scale gauge fields" in addition to the usual Yang-Mills "phase

gauge fields". They have different transformation property and, therefore,

must be treated as different and independent fields.
Let us consider the generalization of 4aµy in the form for a non-abelian

external symmetry group:

e Dµiy (C.1)

where rµ involves both the Dirac matrices and scale gauge fields eA and the

gauge-covariant derivative Dµ contains phase gauge fields b' = (b^, bj ):

r eA yA = ek rk + eik i(YiYi` - 14)/4L A ZA, (C.2)

l = aµ-igbµ, bµ- bOZA' (C.3)

ZA =(Zi,Za) = (Ti/2L, i(Yi'k - y )/4) , a = jk ,

{lj,'Yk) = 211jk , 11jk s (1, -I, -1, -1)

OA = (2Le;` , eik/L) .

Tile quantity ZA is the matrix representation of the SO( 3,2) de Sitter group

generators:

[ZB, ZC] = if ZA A = i, jk ; etc. (C.4)

The local de Sitter gauge transformations are given by

40

bµ->b'µ bµ +(aµ)ta/(ig) , (C.5)

rµ -, r'µ = Edrµ4a
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398 Einstein 's Relativity and Beyond

where

4d= exp[iwA(x)ZA] .

The gauge functions wA(x)=(w1 (x), coa(x)) are real and arbitrary.
It can be shown that W(r►' Dµ+m)yr is invariant under the local de Sitter

gauge transformations (C.5):

W'(r'M D'µ+m
)W' = W(r1` D^+m)W. (C.6)

We stress that this symmetry property holds if and only if both ey and elk are

introduced.

Note that the field eA is dimensionless and is related to a change in the

scale rather than a change in the phase [4], so that eA may be termed a "scale

gauge field". In view of the presence of this new scale gauge field , the present

gauge theory is a generalization of the Yang-Mills theory. Such a

generalization appears to be necessary because the de Sitter group is an

external symmetry group , in which the generator ZA does not commute with yk,

in contrast to the case of an internal symmetry group.

The phase field strength Fµ„ is given by

(r LD, - DvDµ )W = igFµ,ZAV, (C.7)

FA = a,b^ - ^,bµ + gif bµb^ . (C.8)

One can verify that Fµv = F IZA is gauge covariant and transforms as follows:

Fµv F'µv = gdFµvta

Thus, Tr(FµvFap) is a gauge-invariant quantity:

Tr(F'µvF'ap) = Tr(FµvFcp)

which is usually used as the lagrangian for the phase field bVV.

(C.9)

(C.10)
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Chap.26. Epilogue

We observe that Tr(rµrv) is gauge invariant:

Tr(r'µr'v) = Tr(r1tr°') .

399

(C.11)

Thus, we expect that eA enters the lagrangian for the scale field through the

combination

$µv n Tr(rµrv/4)

= Tl j ek + e j ekn1likTUn/(2L)

-, gµv as L-+-. (C.12)

gµv a Tlikeµek .

For large I, gµv is approximately the same as gµv. In the limit L-+-, it is natural

to interpret eµ as the vierbein component and gµv as the spacetime metric. Thus

we can interpret gµv as the spacetime metric in the present theory with the de

Sitter gauge group. We are able to define the affine connection Tµv and the

Riemann curvature tensor R°C^,µv in terms of the new gauge-invariant metric gµv

by the usual relations:

Flaw = 2 !Xa(avgµ7^ + aS^.v - aRgvµ) , $^` -gxv = 8gv .

R Aµv = a v r 7 y i - aµrA + r µ -F - r v rM `µ • (C.13)

In this way, rµv, , R ;,µv and gµv are all invariant under the local de Sitter gauge

transformations (C.5). The invariant lagrangian for these fields is uniquely

determined by the principle of gauge invariance and the principle of general

covariance:

Jd4x(det $µv)in L2(i^yri'Dµy + h.c.) - im,#- 8Tr(FµvWv) + 8 R^ , (C.14)
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400 Einstein's Relativity and Beyond

where G is a constant and R = R µvagµv. Field equations for eµ, bo and ty can be

determined from the lagrangian (C.14).
When we take the limit L-^-, some components of gauge fields , i.e. bA and

eij disappear from the theory and we obtain the following lagrangian L

L = (de[ gµv ) In [A, - 8 Tr(FµvZaF.$Zb)gµagvP + R]

R = Raµvagµv = (aarµv - avrA + rµ rr - r fv) gµv ,

rµv = 2 gAA (avggl + aµgIv - a)Lgvµ)

gµv = ei
µ
e

v
k71ik, gµv = e4e1ik ,

e^e i = svµ , eµeI` = 8'k,

Tr(FµvZaF4$Zb) = 2FµvF7nimnkn a=ik, b=nm ,

LW = 2 iWn` ( aµ - igbµ)W + 2 iW( 'aµ - igbµ)r►L W -iymW ,

(C.15)

where the last term in (C.15) is identical with Einstein 's lagrangian. The

lagrangian (C.15) is invariant under local Poincare gauge transformations (i.e.

the transformations (C.5) with L--) and general coordinate transformations

(with the spacetime metric tensor gµa). The Poincar@ gauge-invariant

lagrangian (C.15) differs from that discussed by Kibble [5]. From the viewpoint

of symmetry, the lagrangian (C.15) is more satisfactory than Kibble's

lagrangian involving fermions.

Physically, the radius L of the de Sitter space is probably very large. In

this case, physical effects of ba and e j are negligible . Experimentally, the

difference between the de Sitter gauge-invariant lagrangian (C.14) and the

Poincare gauge-invariant lagrangian (C.15) cannot be distinguished in the near

future. So the important fields are ba and eµ, which are generated by the spin

density and mass density, respectively. This can be seen from the field

equations derived from (C.15). For example, the source of b^ in the

approximation of static and weak fields is
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Chap.26. Epilogue

b^ = ge'k1U(r)a,U(r) , µ=0,

=0, µ:0,

401

(C.16)

where U(r) and ai are respectively the positive-energy Pauli spinor and the

Pauli matrices. Of course, the result (C.16) can also be derived from the de Sitter

gauge-invariant lagrangian (C.14) with the approximation of very large L.

These gauge fields are interpreted as follows: Gravity is related to scale

gauge fields rather than the usual Yang-Mills gauge fields because the scale

gauge field is generated by the mass density, according to gauge-invariant

lagrangians . The massless Yang-Mills field bµ is generated by the spin density

of fermions and corresponds to a new long-range force between two bodies with

nonzero spin densities. The strength of this new force is determined by a new

dimensionless coupling constant g2, which is independent of the newtonian

gravitational constant G. These hold for both finite G. These hold for both finite

L (i.e. the de Sitter group) and infinite L (i.e. the Poincar(! group).

Our interpretation of gauge fields for external symmetry groups differs

from previous interpretations by Kibble and others [5-7] (see also refs. [2,8] ).

We may remark that a "contact spin force" between fermions has been discussed

by Kibble based on a non-gauge-invariant fermion lagrangian. Since the

external four-dimensional symmetry group is a fundamental symmetry of

nature, the prediction of the new long-range gravitational. spin force should be

taken seriously.

We conclude that gauge field theory based on external four-dimensional

symmetry groups dictates the presence of a new "scale gauge field", which

differs from the Yang-Mills "phase gauge field" [9]. Furthermore, the theory

predicts a new long-range gravitational spin force between fermions. It

appears that the quantization of these fields cannot be accomplished by a

straightforward application of the usual quantization procedure for Yang-Mills

fields. This needs further investigation.
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Appendix D.

The Relativity of Lifetime Dilatation and an Experimental
Test of "Twin Particles " Involving Linear Accelerations

Da. Three Relations of t' and t (At'-yAt, At'-At /y, At20-At10) for "Twin

Particles " Under Different Conditions of Measurements in
Special Relativity

Let us consider the relativity of the lifetime dilatation in special relativity
(or, equivalently , that of decay-length dilatation in taiji relativity) and
experimental tests of " twin particles" involving linear accelerations. The

discussion can also illustrate some interesting and puzzling aspects of problems

related to the so-called "clock paradox" or "twin paradox." 1,2. Some physicists3

insist that the effect of acceleration on the twin is very important and must be

taken into account, in sharp contrast to the conventional interpretation, which

will be discussed below. In view of different and incompatible views in the

literature, it is highly desirable that the matter can be resolved by a direct and

unambiguous experimental test with linear accelerators . This can be done in
the near future.

When one talks about the lifetime of unstable particles such as pions, it is

understood that one is talking about the mean lifetime which is measured by

observing the decays of many pions. The basic reason for this is that the decay

of a single unstable pion is dictated by quantum-mechanical laws of probability

and does not have a single fixed value of lifetime for all pions. Nevertheless, the

physical time should have the same property as the mean lifetime of unstable
particles.

In order to observe relativistic motions and effects , clocks and twins must

be accelerated to speeds comparable to that of light, but since they are

macroscopic objects, the task is difficult. However, it is useful to note that as far

as "twins" are concerned , no pair of human identical twins are more twin-like

than two identical unstable particles. At the present time, the decay lifetime

dilatation of unstable particles in flight has been experimentally established

beyond a reasonable doubt. Furthermore, if the acceleration is neglected in

numerical calculations, then the "twin-particle paradox" can be treated and

calculated completely within special relativity.

403
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404 Einstein's Relativity and Beyond

Within the conceptual framework of special relativity, some people have

used the experimental results of the lifetime dilatation of unstable particles to

support the conventional interpretation of the twin paradox.4 This goes as

follows: The traveler twin's rocket lifts off and reaches a constant velocity V in

a negligibly short time. After traveling for a very long distance Lo as measured

by the stay-at-home twin on the earth, the rocket reverses its velocity, comes

back to the earth and stops. Reversal and stopping again occur in a negligibly

short time. The stay-at-home twin records an elapsed time To=2LoN. However,

the traveler twin will have recorded an elapsed time of 2To 1-V2/c2, and will be

younger than his stay-at-home twin.5 This result agrees with the experimental

evidence for the lifetime dilatation of particles decaying in flight .4

However, this argument is not completely satisfactory because the

relation for the lifetime dilatation involving constant linear velocity is

completely relative and is symmetric (or reciprocal) between the twins or any

two inertial frames. Thus, it cannot be used to conclude that the stay-at-home

twin is absolutely younger than his traveler twin within the framework of

special relativity.

To see the flaw in the preceding line of reasoning, let us consider the

"twin-particle paradox" in detail within the framework of special relativity.

Suppose an unstable pion ni is at rest in an inertial frame F and another pion n2

is at rest in a second inertial frame F' which moves relative to F with a constant

velocity V along the +x direction. Let us consider the pion xj. Its mean lifetime

is At10 as measured by observers in F and At" as measured by observers in F.

These two time intervals are related by

At1 =
At10

V _J-V2/c2
Ax=O, (D. 1)

because x, is at rest in F (i .e. Ax=O in the Lorentz transformations ( 5.7)) and At10

is the "proper lifetime ." Similarly, for the second pion 7[2, its lifetimes as

measured by observers in F and F ( i.e. Ate and At20) satisfy the relation

et -
At20

Ax'=0, (D.2)
2 1-V2/c2 '

because 92 is at rest in F' (i.e. Ax'=O). It should be stressed that the result (D.1) [or

(D.2)] is a relationship between the lifetime of a single pion as measured by two
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Chap.26. Epilogue 405

different observers and thus is not yet related to the experimental result, in

which a single observer compares the lifetimes of two different pions x, and x2,

one at rest and one in motion . For example, if F is the laboratory frame,

experiments show that

At -
At10

2 1-V2/c2.
(D.3)

i.e., the lifetime of 92 decaying in flight is longer than that of xl, which is at rest

in the laboratory frame F. It follows from relations (D.1)-(D.3) that

and

At10 = At;o , (D.4)

At; = Ate . (D.5)

Result (D.4) implies that the lifetime At10 of xl at rest in F as measured by

observers at rest in F is the same as the lifetime At '20 of 92 at rest in F' as

measured by observers at rest in P. The physical reason for the equality in

(D.4) is exactly the same as that for the equality of meter sticks in equation

(5.12). This is completely in harmony with the equivalence of the two inertial

frames F and F' in special relativity. The two time intervals, At10 and At'20, in

(D.4) are not related by the Lorentz transformations.

The results in (D.1 ), (D.2), (D.4) and (D.5) bring out the most puzzling

aspect of relativity theory.

Logically, (D.4) is directly implied by the first principle of relativity. One

should say that the relation (D.4) together with the relation (D.2) derived from

the Lorentz transformations, leads to the experimental prediction (D.3). Now

suppose the decay process, the clock ticking, and the aging process are the

same . Then it could be argued that the result (D.4) suggests that the aging of the

twin brothers in F(earth ) and F' (rocket ship ) are the same , when they are

brought back together both have the same age, provided that the time intervals

of accelerations are negligible and the ages are measured according to the

conditions related in (D.4). For example, the twins may express their ages in

terms of the mean lifetime of the particles decaying at rest relative to them.

This appears to be the qualitative argument of Dingle.6 It must be stressed that

the equality in the relation (D.4), i.e ., the twins have the "same age, " cannot be
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406 Einstein's Relativity and Beyond

observed by a single observer, until they are brought back together with

negligible effects due to acceleration.

Clearly, the results (D.1) and (D.2) are just another way of saying that two

observers in different frames comparing two time intervals will arrive at

different conclusions depending on how the intervals are measured . This is one

of the most basic traits of relativity theory. One cannot use the lifetime

dilatation experiment , which gives a relationship between measurements made

by a single observer, to rule out result (D.4) because it refers to measurements

made by two different observers. Similarly, to design an experiment to rule out

(D.4) and confirm (D.2) (or vice versa) is impossible. If one reflects for a

moment, one can see that both (D.2) and (D.4) are correct for different

conditions of measurement within the conceptual framework of special

relativity. This is the so-called "paradox"-the heart of the problem which is the

source of a long controversy.6 So far, all experiments support the first postulate

of relativity that two inertial frames F and F' are equivalent and symmetrical as

long as their relative velocity is constant. However, in the final analysis, it can

be asserted unequivocally that, logically, there is absolutely no paradox in

relativity theory.

As a result of this analysis, it appears reasonable to conclude that (i) the

relativity (or the reciprocal relation of the two particles' lifetimes) can only be

broken by taking into account the acceleration7 of one of the particles and (ii)

the numerical difference between the two lifetimes must be determined by

taking the effects of linear accelerations into account. All physicists appear to

agree with the conclusion (i), but not (ii).8 Thus, a direct experimental test of

these different views is warranted.

Db. A Direct Experiment on the interpretations of the "Twin

Paradox" by Using Twin Particles

Since special relativity has been tested by hundreds of experiments, one

might think that there is no point in doing one more experiment to test it.

However , this experiment involving constant -linear-acceleration is necessary.

The reason is that it really does not test special relativity. Rather, it tests

various interpretations of the "twin paradox." Furthermore, it tests the

transformations for linearly accelerated frames and gives clues to the

understanding of physics in non-inertial frames, as discussed in chapter 23.
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An idealized experimental setup for testing the "paradox" of the twins by
using identical particles is as follows:

pions V

stop and decay

+a -V

Fig. D. 1 An idealized experimental arrangement to
illustrate the test of the "twin paradox"

To be specific for comparisons, let us first consider an idealized trip (as
shown in Fig. D. 1 ). We have two twin brothers , Tl and T2, who were born at the

same time in the earth laboratory and have the same life expectancy. (The
following discussions hold also for two identical clocks with the same 'life
expectancy.') Let us omit the initial acceleration and suppose Tl (travelling
twin ) moves with a constant velocity V over a very long distance L. He then

turns 180° and travels with the same speed V over the same distance. Then twin
Tl decelerates and stops within a certain time interval . There are two ways to

check whether he is absolutely younger. One is to measure his age when he

returns and one is to measure his remaining lifetime, and to compare with his
stay-at-home brother Ts.

Now suppose one replaces the two twin brothers by two "identical groups"

of identical pions in an inertial laboratory . One has the following clear

analogous experimental situation:

A bunch of identical pions are created in a high-energy laboratory. They

are separated into two groups , denoted by G(al) and G(az), and both groups move

with a constant velocity V. The first group G( al) (representing the travelling

twin ) moves with a constant velocity V over a suitable distance 1.0, as measured

from the earth laboratory frame F. Then it undergoes an acceleration which

reverses its velocity , so that it returns with a constant velocity V' = -V. After it

travels a distance 4r it is decelerated (by a field) within a certain time to zero
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velocity. When the group G(al) stops, one counts the number of pions left in the

group and deduces the mean lifetime T(al).

On the other hand, the second group G(a2) is allowed to move with the

constant velocity without any acceleration or deceleration. One can measure its

mean lifetime decaying in flight with the velocity V. As discussed in section

llb, after the effect due to motion is taken into account, the result can lead to

the "rest lifetime" 'CO(X2) which is the same as the lifetime of the pions produced

at rest in the laboratory. Therefore, T°(a2) corresponds to the lifetime of the

stay-at-home twin because these pions in the second group G(a2) are neither

accelerated nor decelerated. With the help of To(n2), one can calculate the

number of pions left in the G(a2), if it is produced at rest, at the time when the

group G(al) stops.

Note that, in this experiment, one compares the lifetimes of both groups,

G(al) and G(a2), when they are at rest in the earth laboratory, after the traveler

group of pions has returned. This measurement is free from the reciprocal

relations of the lifetime dilatation when they have constant relative motion.

One can perform experiments with different distance I. and/or the

acceleration. The result can test the conventional relation

T(ai) - To(a2) = V (1- 1 V2/c2) > 0 . (D.6)

provided twin's lifetime (or clocks' time) and particles' mean lifetime have the

same physical property-9

In order to test the "twin paradox", one should choose particles with

suitable lifetimes, vary the distance to of the particle moving with a constant

velocity and to should be sufficiently large, so that the difference in (D.6) can

be detected. In view of these considerations, the muon with a longer lifetime (ct

6.6x104 cm) is more suitable than the pion (cT - 780 cm) for such an

experiment.

Actually, it is not necessary for the angle between V and V' to be 180°.

All that is needed is for the traveler group to have the experience of

acceleration. This property could simplify the experiment. A much more

simplified version of the "twin paradox" experiment is to do just half of the

round-trip as follows:
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pions V -a

stop and
decay

Fig. D.2 An idealized half-trip test of the
"twin paradox" by using twin particles

The traveler twin can be represented the pions in Fig. D.2 because they

travel a certain distance Lo and are decelerated by a field to stop and decay. In

this case their age difference will be just half of that in (D.6):

't(ni) -'CO(n2) = V (1 - NT-I > 0 . (D.7)

This is the simplest experiment to test the "twin paradox." 10

The effect on lifetime due to the acceleration "a" of charged particles in a

potential field should be investigated. The experimental results can also test

another two views:

"Naive view": T(al) - To(a2) = 0, (D.8)

"Noninertial view": T(111) -'CO(92) = f(Lo,V,a). (D.9)

The function f(1o,V,a) can be calculated if one has accelerated transformations,

as discussed in chapter 23.

It must be stressed that this type of experiment tests only various

interpretations of the theory of special relativity regarding the "twin paradox"

or the "clock paradox," but not the theory itself. In other words, even if, say,

(D.9) is confirmed by future experiments, this does not invalidate Einstein's

theory of special relativity because it involves assumptions related to

accelerations of reference frames.
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LINEAR MOTION. ( ii) the experimental asymmetry of their lifetimes [or

the asymmetry of clocks' times in the Lorentz transformation] is

completely due to the asymmetric conditions of measurements ( i.e., Ax=0 or

Ax'=O) and has nothing to do with the acceleration of particles or clocks for

a certain period of time, as discussed in section 1l b. If travelling twin's

acceleration which reverses his velocity and the condition Ax'=0 can be

shown to be equivalent , then the controversy would be clarified.
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moves along a closed path and returns. When clock A stops at the original

position , it falls behind relative to clock B . However, Einstein changed his

mind in 1916: He said that the logic of special relativity does not suffice for

the explanation of this phenomenon since non-inertial frames are

involved. See, for example , A. Pais, Subtle is the Lord..., The Science and the

Life of Albert Einstein (Oxford Univ. Press, Oxford, 1982), p. 145. Today, at

the dawn of the 21st century, most physicists believe the effects of

accelerations can be neglected in the quantitative calculations in the "twin

paradox" problem and follow Einstein's conclusion in 1905 rather than that

in 1916. Such a difference can only be settled by experiments.

9. For the twins , one can measure their remaining lifetime T(R, traveler)

after the traveler twin returns . However, this cannot be done with the

twin particles. When the traveler group G(al) returns, one can only

measure their mean lifetime, according to quantum mechanics and field

theory.

10. Actually, this type of half-trip experiment has been carried out in many

experiments in the early days to measure the mean lifetimes .of particles

decaying at rest . However, they were designed neither to test the "twin

paradox" nor to detect effects due to acceleration , so that possible relevant

effects were not explicitly investigated.
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