Proof of Noether's Theorem for Forces defined
by Conservative/Non-conservative Vector Fields

Consider a Lagrangian that is a function of only the field of a conservative force ¢ and its derivatives.
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Along a path of least action, slight variations from the path are defined by
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where the order of partial derivatives commutes due to the Clairut-Schwarz theorem. The second
derivative can be re-written as
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Collecting terms, we have the following
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For a conservative force, 0L — m = 0, so the second term mcﬁ ¢ = constant. This
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corresponds to a conserved current.
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For a non-conservative force, 0L — W = f, so the second term corresponds to the potential
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defining the non-conservative force.



