AL 1, 520-573 (1978) -520-

New quantum rules for dissipative systems.
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Abstract

It is difficult to incorporate the concept of interacting physical particles in the frame of conventional guantum mechanics. It
comes from the fact the in this formalism the hamiltonian plays a dual role as the generator of motion and as the observable associ-
ated with the energy. As a result it is easy to define either a representation in which particles interact but are not well defined (a
representation in which the hamiltonian is not diagonal) ora representation in which the units are well defined but do notinteract.
We expect that in the search for a representation in which we may speak of both well defined and still interacting particles, the
distinction between reversible and irreversible processes should play a basic role. Certainly we do not want to eliminate irreversi-
ble processes such as scattering, producticsi or decay which are basically related to the mechanisms through which we observe
particles.

To distinguish between reversibie and irreversible processes we have to work in a representation such thata Liapounov function
(the “entropy”) may be ascribed to the time evolution of the system. The introduction of such a representation through a specific
class of non-unitary transforms is described. We then propose new quantum rules directly applicable to dissipative systems with
a Liapounov function. For systems with a discrete spectrum these new quantum rules reduce trivially to the usual quantum rulesas
formulated by Born, Jordan and Heisenberg.

The theory is applied to a simple field theoretical mode! - the so-called Friedrichs model-for which all calculations can be per-
formed exactly. The results are most encouraging. In this new perspective the problem of “glementary” particles comes only after
the formulation of the second law of thermodynamics (through the introduction of a Liapounov function). Elementary particles
express in a simple way the time evolution of the field in terms of the various irreversible processes in which they participate.

* Also Center for Statistical Mechanics and Thermodynamics, The University of Texas at
Austin, 78712, U.S.A.
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1. Introducticn - Quantum Rules for Dissipative Systems.

There is, at present, much interest in irreversible

1)

occuring at various levels of description
On the macroscopic level, much work has bean
devoted to "dissipative structures" arising in non equili-
herge
prium conditions. The wo»:?\ﬁvan is essential for us is
that dissipative structures imply the validity of the
Second Law - the law of increase of entropy through dissi-
pation. From the microscopic point of view, it has bcecen
shown that one can mc:Wﬁw:On non unitary transformations
("star unitary" transformations) leading to "Liapounov
representations”, i.e. representations of dynamics which

display, on the microscopic level, the basic thermodynamic

. . ) . . : 2)
distinction between reversible and irreversible pracesgses

More precisely, such a representation is characterized by

the existence, in the thermodynamic limit, of a Liapounov

tunctiron ST which behaves like theentropy : it varies mono-
tonously in time as the result of microscopic irreversible
processes such as scattering, production and decay of

particles.

These results are of obvious interest for one of
the basic questions of modern physics : the dynamical

definition of "elementary particles". In the standard
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approach, one starts with a hamiltonian involving "bare"
particles (for instance, electrons and photons} and an
interaction. Some part of this interaction is then used

3)

to define the "physical" particles through renormalization
The rest must then be used to describe the "true" evolution.
The difficulties associated with this program are well-
x:oz:»v. One is always faced with a fundamental dilemma
either one works in a representation in which units are
interacting but have no well defined energles (the energy

is "partly" between the particles and leads to virtual
processes) or one transforms to an unitarily equivalent
representation in which particles do not interact (i.e. a

representation in which the total hamiltonian is diagonal) .

Is therc a way out ? The distinction between

reversible and irreversible processes on the microscopic

level opens new possibilities. Indeed , in sufficiently
complex systems, the interaction must clearly not be
completely transformed away. We certainly do not want

to eliminate irreversible processes such as scattering,
decay... as these are the very processes through which we
observe particles. Whatever the transformation we perform,
we should keep the particles embedded in the physical
evolution as expressed by the increase of entropy. This

is the reason why we believe that the progress achieved

in the theory of irreversible processes is also of interest

in this new context.




From the mathe

this dilemma in the following way. In
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ical point of view we may present

the formulation of

gquantum mechanics in terms of state vectors, the hamiltonian

plays a dual role as the generator of the c¢volution

Schrddinger equation) and the encrgy observable (the

eigenvalucs of H detexrmine the energy spectrum). To gect

out of the dilemma mentioned above, one

ciate thesc two roles of 1. Iindeed, 1if

may trxy to disso-

we think, for

instance, of an unstable particle, it is characterized by

two different guantities : Jts cnevrgy and its life time.

If the two roles of B are separated

once the Ltransition to continuous spectrum is perfox

it may be possible to discuss these two
. N . 5)
To achieve this,a superoperator formalism
"superoperators" act on operators, such
operator % B Indeed the time evolution

matrix % is given by the Liouville-von

one may hope that,

d,

aspects separately.

is required in which
as the density
of the density

Neumann equation

(1.1)

wherec L is the superoperator corresponding to the commutator

with H :

or, more explicitly :

L= Hx1 -1 xH

(1.2)

(1.3)
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Thus, the generator of the motion is the Licuvillian

superoperator L while the energy H, as an obsexvable

operator, is an objcct of a different nature. An interesting

additional feature is at this distinction may le
introduced at the very same superoperator level. Tndeed,
we may define a superoperator Eu corresponding to the

anticommutator with the hamiltonian :

= 1 - |
W= LW, M,M:ZIXE
(1.4)
The average value of the energy is then given by :
{HY = Trcdp) = T HY
(1.5)

0f course, each of the two supcroperators L and u& is
related in a simple way to H and their common origin shows

up in the fact that h. %u@ always commute
L, ®]) -0

However, as we shall see, when, for systems with a continuous

spectrum, we go through a non unitary transformation to a

Liapounov representation, the relation between the tranesformed
L and 3% is no longer so simple, through they will keep

commuting.
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ITndecd these nen-unitary transformations are also in general

non factorizable and do not conserve the structure (1.3)

and (1.4) of superoperators L and I

Lot > bhe an invert:ble non unitary

leading Lo a new reprecentation where the state 1s given by

SIREAN

The above considerations lead us to propose the following

(1.6)

quantization vules

A

a) gu to a Liapounov reprecscentation ﬁ in which the gistinction

bet 2

ren reversible and irreversihle processes is explicitly

displayed. More precisely, look for transformations

such that the quadratic functional

2 - T &w*&w

(1.7)
decreases monotonously in time :
A ¢,
dk (1.8)

d

b) among these representations %\ choose those vw which
lead to states without dispersion for arbitrary functions

of H , i.e. such that

H> - ZOED g

(1.9)
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[

b
where m

is the diagonal element of v% in a representation
where Ia is diagonal. (In (1.9) and later on the notation used
obviously includes discrete as well as continuous cases).

Represcentations such at conditions a) and b)

are sati ¢l will be called "p

n&%:. H:m:nrnovwemo:|
tations, we may speak of units with well defined energies

mr (see 1.9), evolving in time (see n.m%. These two
rules, which we shall describe in more details in scctions
2 and 3, replace the Born-Heisenberg-Jordan quantization

G
rules (see e.g. uméammuvv H

a) consider canonical representations of motion

b) among them, choose thosc which diagonalize *L .

The aim of this paper is to show that such
transformations exist in the case of the simplest field
theoretical model, the so-called Friedrichs' model which
we have alrcady studiecd in previous vctuwnmnkO:mqv@ The
simplicity of this model stems from the fact that we may
limit ourselves to the one particle gector. (It is, in a
sense, a "one dimecnsional"” model) . The results are most

encouraging : in particular the energy and the inverse life time

of the decaying state appecar as diagonal matrix elements of two different
superoperators : one of the Aa«m:mmOREmmvuﬁ and the other

of the (transformed) L. Although the above rules do not

%) . . .
Physical representations are of course particular Liapounov represen-

tations. So that,as,like in previous work, we are looking for special

7

classes of Liapounov representatiomns, we shall use % as a unifying notation.
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lead to an unigue > -transformation (neither do the Born-

Heilsenberg-Jordan rules), they are however sufficient to
determine completely these matrix elements ; as far as such

partial results are concerned, they are identical witih those

9)

obtained using the Green's functilo approa . Some

further conditions (weak coupling limit, symmetry consi-
derations) lead to the choice of a well-defined >\Aﬁ21%0hamﬂb:,
As we shall sece in the corresponding representation, the

equations of motion for the density matrix i

volve only
observable guantities such as life-tiwes, emission,

absorption and scattering cross sections.

Of course, the Friedrich's model is a highly
idealized model. Still.
some very general and, we believe interesting features

emerge which may have a wider range of applications :

a) in the conventional view, particles come first, the
second law of thermodynamics (the Liapounov function) comes
later. Here, the order is inverted - the second law {(on

the microscopic scale) is used to define the particles.

b) in the conventional view, quantization is performed on
the level of operators ; here, it appears in conjunction

%)
with superoperators.

Let us now present more details about our

method.

»vajo distinction is somewhar similar to that betwcen vector

and tensor calculus. From this point of view "ordinary" quantun

mechanics corresponds to the level cf vector calculus.
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2. Liapounov representations.

What we mean by Liapounov representations has

be

n discussed in recent papers (sce e.g. 2) and we shall
only recall it brieflly. Basically, they are obtained
through non unitary troensformations such that the distinction
between reversible and irreversible processes is explicitly

displayed in the equations of motion.

Yirst of all, we restrict oursclves to non unitary

transformations >mhv such that :

a) the average value of observables is preserved

b) the theory admits eguivalent formulations in Schrddinger
and Heisenberg pictures

c) the hermitian character of supervectors 1is preserved.

Indeed observable and density operators must remain

hermitian operaters in all represcntations.

The first condition means :

+ +
<A = TAate  Lw At Ty
(2.1)
where vw is the transformed density operator given by

(1.6) and JP the transformed observable (see appendix I)

PAL - (AFADYT - AT A .2
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As,using the hermiticity of the superoperator L (see
appendix 1), the ¢guation of evolution for (hermitian)

observables in the Heisenberg picture is

AL = -LA

s

The second condition b) is satisfied when (2.2) is related

(1.6) by L-inversion, i.e.

A - AT (L) A

(2.4)
Combining these two requirements, we obtain the star-

unitarity condition :

AN (L)

{As in our previous work we use the star notation for

ATy = AT(L)

n

{(2.5)

hermitian conjugation combined with L-inversion}). The
third property of > has been called adjoint symmetry and
noted (sce Appendix I)

A = AT

(2.6)

It is interesting to notice that the three conditions we
imposed on \/mr V may be mmwwwmwoa by two types of trans-
formations

LN \/._AHFJ\/ (2.4a)

with

\A_.»rd ﬂ\/.,rwrv (2.52)

The sign + corresponds to the usual, unitary transformations,
the sign - to the mnwacnwﬂmHM.OBmm‘ Unitary transformations
are of no interest in the construction of the Liapounov
functional. That is the reason why we turn to the second

class which satisfy the starunitary condition (2.9%)

In the new, starunitarily equivalent, representation, the

Liouville equation (1.1) becomes :

—..‘ J\M = GT *W
-
(2.7)

where the generator of motion, #V\ is related to L by a

similitude :

b« ALA

(2.8)

and is star hermitian :

?%V* A o

Again the two possibilities corresponding to

(2.9)

(2.5a) lead to the two classes

cety = c(rL)
(2.9a)
The choice of the - sign leads to new possibilities of
direct relevance for the microscopic theory of irreversible

processes. Indeed wu may then be split into two parts,
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respectively even and odd with respect to L-inversion :

R

(2.10)

nAu () - wAmeL

(2.11)
Py =~ Pl-v)
(2.12)
In order that the new representation be a Liapouncv repre-
sentation, condition (1.8) must be satisfied. This implies
the well-known "dissipativity condition"

(2.13)

The decomposition (2.10) of ﬁvﬁﬁm:mﬁOmmm‘ into
the microscopic description, the distinction between rever-
sible and irreversible processecs. OQur first guantum rule
means that we have to look for particles in a Liapounov
representation in which (2.13) is satisfied. Particles

have, in this sense, to be embedded in “"becoming" as

expressed by the change in time of the Liapounov functionalS2.

The remarkable properties of starunitary trans-

)

*
formations should be clear at this point. Whenever they

ay be constructed we transform the description of the

time evolution in terms of a hermitian operator (L) into

a description displaying explicitly the dissipativity due
to irreversible processes, Once {2.13) is satisfied we may
ammw:o the Liapounov function as in (1.7) and verify the
inequality (1.8).

* . . . .
va:m relation hetween starunitary transformations and Liouville's theor

will be studied in a scparate p erl0},
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3. Physical representations.

We now turn to our second quantum rule, which

can be expressed as a condition on the transformed superope-

rator :
- N A
{3.1)
indeed, from (1.4), we ecasily obtain
S A B VA
(3.2)
hence
'y = T R - T 1.6 = Tr L(Pg) e
(3.3)
where
Bl N = A
(3.0

In order that (3.3) reduces te (1.9), we first impose
that the unity supervector is conserved by the >. transfor-
mation :
A = AR =
(3.5)
This property insures the form invariance of the trace
under the transformation :

T =Tlgp - Trftp = T fp

(3.6)

- v 5 g
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To go further, let us use for operators and
superoperators a matrix representation in which Ia is
diagonal (see appendix 1) ; (3.3) becomes

el
b s
CHy - 2 [Cy f,., ¢
e okt ke
¢ (3.7
To oblain the equivalence between (3.7) and (1.9), it is
|4
sufficient to require that > puts Mﬁ into a canonical

form, i.e. is such that :

e

(3.8)
b k$+€ & k=L +L
= o or + =€ ¥
i e £
(3.9)
When > satisfies all these conditions, we notice the
following features

b .
a) the “statc" vmn =1 / %FF =0 for r%.ﬁ R

corresponds to a state with no dispersion in the energy,

b) the "encrqgy levels" correspond to fully diagonal elements

14
of the superoperator Mﬁ .

To conclude this section, let us mention that,
for systems with discrete spectrum, this method leads to no
new results ; it is just the transcriptionin the superoperator
formalism of the usual guantization rules. This will be
shown in more details in section 5, but, before, we shall

briefly recall the main steps involved in the construction

of N .

(v}
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4. Quantization in the superoperator formalism.

The first step in the construction of > is the
introduction of a complete set of hermitian eigenprojectors
Q of the unperturbed Liouvillian _10 . For the unper-
turbed cvolution, each of these projectors defines a

subdynamics :

[(“Q, L, 1.

"
Q

(4.1)
11) ., . . L =i
1t has been shown through the analysis of theresolvent (z~ )
of the Liouvillian L, that similarly it is possible to
decompose the evolution of the interacting system hv, %ov
into various subdynamics by means of a complete set of

V)
mutually orthogonal superprojectors - such that

_HT:..._I_\\ _.l H_| _ o

~

. 2)
These projectors are star hermitian :
ch ¥ (. ._1
(4.3)

One then looks for a starunitary transformation

2
>C|V such that C..%< \w are related to n:m?:DN s through
(v (&) oy -
T = AR AY = AYG AT
(4.4)
with the further requirement :
AN(X=o)= 1
(4.5)



which guarantees that,

I
reduces to Q .

(V)
en Ao (and thusl =2 Lo ), j

Combining (4.2), (4.4) and (2.8), one obtains
(€2
1 =o
e, 1. (4.6)
Thus, the existence of subdynamics makes it possible to
require that the gencrator of evolution is block-diagonal
he dissipativity condition (2.13) can also be discussed

in each subspacc scparately.

Let us now turn our attention to the further
restrictions introduced by our second quantum rule. The
interesting point is that, to define _Hn , we neced not the

complete knowledge of > » but only a "part" which can be

determined separately.

It is quitce remarkable that we can also
requixe that the transformed energy superoperator be
block-diagonal. This is a direct consequence
of the fact that, in the original representation, the
supercperators X and L commute. Then Mﬂ commutes
with the resolvent of _n , thus with each of the super-

T:._‘q
projectors constructed using this resolvent.

Transforming the vanishing commutator using (3.1) and (4.4),
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one gets

AL BIA = [AT A A RA] L(RK] = o
- (4.7)

(v,

In the special case V=0 ( me the projector on the null-

space of Pa )+ (4.7) leads, in the tetradic notation, to :

14
vmmr.:_& R I L L
(4.8)
i.e. part of condition (3.9) is already fulfilled. Condi-
tion (3.8} and the remaining part of condition (3.9) are
conditions on the superoperator Aihw wuﬁth : it must be
diagonal. Taking into account (3.1), we thus see that our

second rule does not involve the complete > but only the

[C)
superoperator >c@ .

To make contact with our previous work, it is
useful, at this stage, to introduce some notations.
. “n
Because of the special role of the subspace (this sub-
space contains the invariants, in particular H), we shall

(o)
denote it wwsml.%j and use T instead of Q . Thus :

P="Q T =™ = APAT!

'

(4.9)
If O is an arbitrary supervector, we denote by Gp and a
the set of non vanishing elements of mua. (diagonal elements)
and of(i-P)s (off diagonal elements). Similarly, if Q is

an arbitrary superoperator, we note Qof RN\% / Q o¢ ﬁﬁnﬂ

the sets of non vanishing elements of ﬁgﬁ\ m_lﬂwg‘ﬁ ;

¥

t
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Pa A\TWV \halﬁvgm“qu . The matrices associated
with ¢ and ﬁﬁ can then be written in terms of the sub-

matrices associated with these quantities :

o . T Q\ - Que Q.Qn.

Ge mNS e

(4.10)
It has been shown that the mcmmnommHEHOHAA takes

the form :

A AD
CA CAD

T -

(4.11)

where > mm ZOQV is a starhermitian superoperator

A - A*

and C and D are star hermitian conjugates :

(4.12)

c - D"

B (4.13)
The important point is that the non vanishing elements of
ﬁ_lﬁvAﬂ {second line in 4.11) can be obtained by the
action of the superoperator C on the non vanishing elements
of dAH (first line in 4.11). In other words, the off-

diagonal elements of a Aﬂ -projection are linear functionals

of the diagonal elements

(re), = C(my),

(4.14)
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As already mentioned, to discuss our second
quantum rule, we need only the >w part of \/ , i.e. the

submatrices >n and >ho . As in our previous work, we

o

shall use the notation :

>8mvn rm. >§:2 nKa?fv
(4.15)
As a consequence of our above definitions and of (4.9),

we obtain

*
T, = A= XX
(4.16)
N, N
jnu = ﬁ) = Co 0o
(4.17)
Using (4.15) and (4.16), (4.17) becomes :
Ne, - CY¥
co (4.18)

AH is determined as soon as the problem of the construction
of 4H is solved (this involves analytic continuation and
has been discussed elsewherc). As far as X< is concerned,
the choice is restricted by (4.16) and also by conditions
(2.6), (3.5) and (4.5) which, in the tetradic notation
imply (see appendix I) :

cc

K?t = KE:?

i.e. K\ must be real

(4.19)



- 539 -

[ = W K»fm@

(4.20)
\K\Efmw mv..\on = Mnﬁ@

(4.21)

14
The diagonalization of .T Mﬂ W will bring further condi-

tions on VN\ .

As already mentioned, the knowledge of AP
is sufficient to determine _vvum ﬁ - It also allows to
determine the 1Aiw part of the collision operator. Before
we conclude this section, let us notice that, if we combine
(2.8), (3.1) and the block-diagonality conditions (4.6),
(4.7), we obtain the relations

$ oy Dox

(4.22)

% - X X

(4.23)

where

\ﬁ = _Ien m
x + M‘ﬁ m (4.24)

e

(4.25)

(note that Pou =0,
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-~
The operator L is the evolution operator for
the diagonal elements of the .D. projection 0mwu . Indeed,

combining (1.1), (4.2) for V=0 and (4.14), we have :

;2 410 r
288 (rie), - (LTS, - Lo dTe), = L (Tf),
2k
(4.26)
Also, if we take into account the fact that regular inva-
riants are in the .jxnm:Umbmnm. i.e. that one can show that
HTT -
(4.27)

we have :

CHYy = T Hg - T HTIP - & ®TI¢
T B, (9, + K (0L T = T (Tp),

(4.28)
~r

i.e. provided H is replaced by Mm , the average value of

the enexrgy may be expressed in terms of the diagonal ele-

ments of ﬂ.w .

Another way to express the average enexgy 1is

CH> = T Y
(4.29)
~I .
where is the transformed observable :

PHUo- HA = AYH

(4.30)

i




——-1

e oo W

(PRI

iy n e

1
i

bsiusan . e A i e e,
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This operator is diagonal ; indeed, using (4.27) and (4.28),
b .
the hermiticity of _L and W . we have :
"B HTA - HAP = TH P - P'H
(4.31)
The sole knowledge of ww allows us to determine this
operator. Indeed, using (4.30), we have :
’y b N \wI
W, . (PH), - (PATR) = (P A PTH) = XTCH),
(4.32)
or equivalently :
/-1
(‘) = ¥R
u (4.33)

(As in our previous work, the dash sign designates the L

inversion) .
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5. Systems with discrete spectrum.

Before applying these rules to the Friedrichs'
model, let us consider the case of discrete systems and

discuss the link between the above method and the usual

technique.

Starting with the Liouville equation (1.1},
we may proceed in two different ways. The usual way

consists in looking for particular solutions of (1.1)

corresponding to a factorized density operator :

§ - [¥> <l

(5.1)
’QV obeys the Schrdédingex equation and the standard
eigenvalue problem leads to guantization with, as eigen-—
vectors, probability amplitudes. This procedure

(v
corresponds therefore to a factorization of the space @
of density operators into an exterior product of two

mMOijwwwm< amplitudes

Hilbert spaces & for

‘W.su m@ & (5.2)

()
In the second method, @ is written as a sum of two

subspaces, symbolically :

- = T+ AA lﬂﬂv
(5.3)
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(For discrete systems, the projector d introduced in
section 4, is the projector on the zero-eigenvalue of L).
The eigenvalue problem is then formulated in the T -space
alone. This leads to an eigenvalue problem for “"probabi-
lity eigenfunctions" (and not amplitudes). Conditions
{3.8), (3.9), allowing the determination of energy levels,
extend to dissipative systems part of this
method (the determination of eigenvalues). For this
reason, we shall summarize it briefly here (for more

: - 12)13)
details, see the original papers B

We consider the hamiltonians Ia and H with
H - H, +\V
(5.4)
~. °
with eigenvectors _SV and _:V and eigenvalues mx_ MX\

We introduce the unitary transformation :

U= ;N | > <n|

(5.5}
which transforms Hinto Q.I H
v ~\\l. I H\
T; - (5.6)
corresponding to eigenvectors _Sv and energies Ew . The

determination of msﬂc:m Q ) corresponds to the usual
eigenvalue problem in Hilbert space. Equivalently, we
may work in the space of density operators and look for

a > ~transformation which diagonalizes both dﬁ and L

- 544 -

given in (1.3}, (1.4). Such a transformation is given by

the factorizable unitary superoperator :

+| Cﬁhv
N - Ux U A>a_.§ = Vi i
(5.7)
This transformation has all the properties mentionned
above. First of all, its unitarity is a consequence of the
general requirement of star unitarity plus the additional

property of invariance under L-inversion :

/
> = >
(5.8)
Furthermore, we have
= §.. 9%, (8, -E4
nv..%z o b (B-E5)
(5.9}
b e (4 E
Kogue = Sk S0 L(Ecv Ey)
(5.10)
For _\ﬂ@ , (5.10) is just (3.8), (3.9). Also, combining
(5.7) vw:m (4.15), we have :
[ |
.K.“..\_&w. - n%.
(5.11)
Hence, using also (5.8), (4.33) becomes :
14 te
A Iq = M N _C.._FF m.F = %_Q mP
o ? ﬁ
(5.12)

4 v
and I is identical with T*.
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The link (4.9) between the projectors on the
zero eigenvalue of L and L, is just the transcription in

Q

supecroperator language of the relation between _Mv m:m*xv.

The interesting point is that we may determine
uﬁﬁro:nm mr ) directly, without using (5.11). For this,
we start from {(4.28) and considexr the eigenvalue problem
in the T[ -subspace

~
uh Lﬁ = m: ﬁﬁé
(5.13)
where %F is an eigenprobabhility (not an eigen amplitude)
corresponding to m$. (This was first done in two papers

by Prigogine, George and Rae i ). Equivalently, we

may look for a similitude such that the operator
v, -t 3
X - X RX
(5.14)
is diagonal (This operator, defined in 1T -subspace, is

b
identical to Mﬂz )

v ~ m m.
um:.:rr s L Ode
(5.15)

This is nothing else than condition( 3.8) and part of (3.9).

In the case of a discrete spectrum, nothing new -
at least from the "practical" point of view - has been

achieved. Both methods of quantization are equivalent.
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One may even state that our approach appears here as
unnecessarily cumbersome. Still, we believe that, even
in this case, it has some conceptual valuc ¥ It is indeed

unexpected that the classical eigenvalue problem can still

be viewed in a new way !

When we go to more general systems, involving
a continuous spectrum the quantities ¢N‘d_:. can be
obtained by analytical continuation. It is thus very
natural to try to apply this new approach to quantization
of dissipative systems. This is what we have done for the
Friedrichs' model, which we consider as a kind of test
case . (For this reason we have discussed this model at
various stages of the development of our microscopic theory

738
of irreversible processes } v.

»v0=m may even argue that it is natural to consider the
Liouville operator L (and not the Hamiltonian H) as the
operator for time displacement. Indeed contrary to W
which is a positive operator, the spectrum of L covers in
general the real line from-to tO 4o . As the result
Pauli's well-known argument ﬁquSmHmv p. 141) which leads

to reject the existence of a conjugate time operator

associated with time di splacement does not apply.

It is interesting that von Neumann has called this limitation

of the hamiltonian formulation of guantum mechanics "an
essential,... in fact, the chief weakness of gquantum

X 6
mechanics" (Jamhex ) p. 150).
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6. The Friedrichs' model.

-_—

Even for this simple model, the calculations
are often lengthy. To keep this paper to a rcasonable
length, we are bound to refer to earlier papers and
specially to the paper by De Haan and :md»:mv. Only
calculations going beyond those given in that paper will
be presented here ; they essentially deal with the conse-
quences of our second quantum rule. To discuss this, we
only need the NP part of A , i.e. (see (4.14) and (4.16))

the operators C ang VD

The construction of a Liapounov representation
according to the technique summarized in section 4 completely
determines C and gives some conditions on vh . Moreover,
in the Friedrichs' model, the collision operator Aw is

o
~
even in L in the weak coupling limit. As | and A are also
even in L, it is possible to require (see (4.14), (4.20))
that yﬁ shares this property

X - X

/

(6.1)
This is a sufficient condjition for ﬁ. to be even in L
in all orders in the coupling constant > . With this
additional condition, only a single group of matrix

elements of VB are not yet determined. They can be further
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specified with the help of our second guantum rule. This
still leaves some slight indetermination ; symmetry consi-
derations, however, can be used to choose a uniquely

defined transformation.

As well-known, in the Friedrichs' model, a

state [1) interacts with a set of states wprvw through

I =@ 1> + M.Er_rvh_n_ + yM md_.ﬁ_.vnr_ ‘f.c‘rwn_rva:w
k k.

(6.2)
= UiVik ; L3
where Aﬂﬁ ml < 2 is assumed of order ;
rw being the volume of the guantization box. it is very

important to specify the volume dependence as we shall
need it to obtain asymptotic expansions valid for large
volumes. It is only at the end, in the evaluation of
average values of observables, that we can go to the

limit of infinite volumes.

As long as the spectrum is discrete, the eigen-
values of T* are solutions of the dispersion equation
s =°
(6.3)

where
2.

[ Vie !

7o

In the continuous spectrum limit, the sum over T. becomes

Qtwv uwlﬁ. - N.H

(6.3")

an integral N




e — o o

.

- 549 -

(6.4)
where \C‘m?:rw is defined by the relation
I3 z
Lo T lolt = Tar | (o]
RETS k
(6.5)
The equation
+
J Qu =0
(6.6)

with J\_+mwu the analytic continuation of \JAMM from above

admits a complex HOOnTL_*.My in the lower half plane

tro s e Lim e
Jmt_wv \fow

(6.7)
In the Green's function approach, the inverse life time
m+nmv of the unstable state is given by the imaginary

part of this root :

o-3-3"

(6.8)
while the energy is associated with the real part :
cec

+
mN_ = W, + \m m

z (6.9)

14

The sets of ron vanishing elements of ..vn*vﬁ . w ummu

are given by (4.22) and (4.23), together with (4.24) and
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(4.25). All cperators needed for the expression of v

have been calculated explicitly in the paper by De Haan

8)

and Heninw Let us quote here the expressions obtained

~

for the matrix elements of L. when only dominant terms

%
with respect to _(w are kept

As
| _r_:: = ©
(6.10)
-~
_l:.rr 2 — QQR
(6.11)
A
. ¢
_lrr_: k (6.12)
~ \ .
- Ve A— - vmrS
r::rr A:J:i AASE &
(6.13)
d ~ e ~ -
Lok it ™ ) _lrr.__ _\:.rw HOW
N (6.14)
where
7
gr = v,P —qFJ
& b8
M (] 6.15)
kS
2 |
&r - A vl
(8 4wy -wp) mmﬁ.&utimnﬁ
5 (6.16)

v
8)
»Hs reference B r is 50n0a® .



o § (wp-wit)

Tﬁiirzﬁ

L4
D N AR R

(6.17)

In the expression Om.@t appear the symbols of "deferred"

. . . 1 |
analytic continuation ———" f

ﬁm +E_.Ervw (54w )5 *c

They mean that, in integrations over wk . the integration
W+ f -

has to be performed with § in (% in S7), then the

expression is to be analytically continued to .w in S

Awnh in ST

~
The corresponding elemcnts of @m can be obtained

in a similar way (sce appendix I1) -

a

.uAu_:: = S2

) (6.18)
u‘m_:rr uﬁcc.n| mw;orn
(6.19)
umvrr:.mmw_\i.r»&r
' (6.20)
17 A
. .Kx_:rr k (6.21)
TN Y/ ]
I - e BT
ki ek E:srir ! - wie
. (6.22)

Q¢

where u denotes the Cauchy principal part. It is inte-
resting that the inverse life time e appears 10 the
~

[N matrix element of r (see (6.10}) . This is a

direct result of analytic continuation and does not

~
involve transformation theory. We note also that b4

is off~-diagonal. We cannot ascribe well defined enerqgies
to the particles. Finally, the time evolution as described

~
by 1. is difficult to understand in physical terms. For

instance there appears a dissymmetry between emission and
~ ~

absorption as descyribed by r.:rF and rrF: . Can a

physically acceptable description be reached through the

vﬁ transformation in (4.22), (4.23) 7? This is what we

have to study now.

)
{



m
|
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7. Liapounov and physical representations for the Friedrichs

model .
The starunitarity condition for > leads to
condition (4.16) for K.. The matrix elements of A arve
. : 8} : - :
given in ref. . From their order of magnitude with

3
respect to I° , one may deduce those of the matrix

elements of uﬁ H

K:_: ~ o(1)

(7.1)
-3
K::Fr i KrrL. ~ OVAF v
(7.2)
-3
Yaewe = otk )
. (7.3)
-C
we A~ Oﬁ._l v
W (7.4)
Using the notation
nﬁf9<hb = ¢t Vb
(7.5)

and (6.10) to (6.14), (4.22) leads to

— .
W, (7.6)

Wy = |<|<_|_| m K:}r. - Qrw
K\:_:

S:n_ < E: A&«F K:.: - Krr‘:v

(7.7)

(7.8)
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S T L G
Err : _ r_ A J+Q&L J‘ervv
(7.9)
1 Kt N z
Wiy Wi oo W S(eoeanw) L e

Zr_n\ = o z
W, [%*eon)]
(7.10)
for the relevant elements of Av in the 7] -subdynamics. The
equations of motion for the diagonal elements of the

density matrix in an arbitrary Liapounov representation

are then :

< L
2R W, xh_ + 2 Wi T
2k k

(7.11)
£ 4 4 4
Q.l.m\rm - <<§.. .mxr * <<§ u t M. Wi i
2t k!
(7.12)

The matrix elements of YP must satisfy condition (4.16),

(4.19), (4.20), (4.21). This is however insufficient to

determine them completely. We notice however that the

life time H\q..a:n_ and the forward scattering S\rﬁmo not
particular

depend on theYLiapounov representation. They only involve

~
analytic continuation (in the computation of r.v.

The arbitrariness in the determination of YV
can be reduced by the requirement (6.1). This leads to

(see appendix 3) :



\ /2

2)

\K:.: =
A _S\+Q}+wv~

(7.13)
and a relation betwecen VDFWF and Kﬁrl_ .
3 /
X\:_rr = QF ¥ K\:_: A\K\___: .@F .YE..:v
(7.14)
As a consequence of this last relation, we obtain :
= = W
<<_r il <<_£ / Wi "k
(7.15)

Symmetry between emission and absorption is now correctly
introduced. To determine completely the evolution,
there remains only one type of coefficients AK.PrIAv

to be further specified. Independently of the value
of these coefficients, it is possible to verify that the

2 14
Liapounov inequality (2.13) is satisfied (see ref. ) vV<

Decay and scattering drive the system to equilibrium (as

far as the restricted dynamics of the Friedrichs model

allows) .

To further specify K\~ we now appeal to our
second guantum rule. (At this point, we depart from our

earlier work on the Friedrichs model where we used a
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different method which, however, did not lead to dispersion-—
free energies). In an arbitrary Liapounov representation,

; S
the matrix elements of ﬂ can be derived from (4.23) and

(6.18) to (6.22). This gives :

= D_

(7.16)
!
S (s2mok ) — (K - aw)
M@:.FF A . Kzzs A !
(7.17)
_,Amr_:: o (-0 (B Yo ™ X.r_::v
(7.18)
t -
K = “k
(7.19)
14 _ 4 loelT 1Y ks o’ ,
Bprepnr A Lokl ] Zr J(= )+ Ve g (- )
' (4 ce)| Cok/ e

IAMN_ IE_L .mur. A.m:r\ - vﬁ.:?ﬁ@ - \Krb.: (e~ S2 wv\r.\.\l AQF\I ,K\.:T.F_V

i
- J\\Frt_ K:.r;\ |VM.||1 mEF!ErL
i

(7.20)
The transformation to a Liapounov representation has not

A Px
altered the meaning of the diagonal elements o

Mmrr_rﬁ . Therefore, the results obtained by analytic

continuation in section 6 are not altered. But as the



|
|

[ Ao
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with Green's function approach as stated in the
b

b
matrix Mﬁnn \: is not diagonal, we cannot speak of ' introduction. But as all off-diagonal elements
‘
p Yo . . ~
states of well defined energies. To obtain a "physical’ of "% wvanish, we may now associate -, and w, to
the excitations of the system ; indeed, we have :

representation, we must add the requirement of diagona-

lity of v%_..n&w , i.e. the conditions : AIV _ WN_ v% . Mu w0, v.ﬁ .
- " k
k.
b = (7.26)
N._._rr - (7.21)

4 b
and consider W_ ’ %rr as the probabilities of finding
t

4
= 0
mmwr.: the corresponding m_xn.wnmnwOn.m». The special state
(7.22)
4 b
By =° *%n t ., '¢ =0 Yk
' m kie (7.27)
(7.23)
To satisly these conditions, we have to take the following i corresponds to a state where only the unstable particle
| . . . . .
expressions for the off-diagonal elements of x" is present. This is a state without fluctuations (an
M, expression similar to (7.26) holds for all powers of Ho,
= a, - @ 82, -wk)
\X\:.Fr ke e m (7.24) in which the energy is exactly ,WJ!; .
= 52, -w
Krr.: = ;&.r K_:: + OAT M,m t Kv
(7.25) The arbitrariness on the elements of X can be
impose - . . . . .
and mwmo/_\w condition on Krr K - The coefficients OAP\ further reduced by imposing (6.1), i.e. (7.14), i.e.
i
@F are, to a large extent arbitrary ; they must be \X o
Wk T ?» (7.28)

such that conditions (4.19), (4.20) and (4.21) are !

satisfied (see also appendix 3). As we have seen, this leads to a symmetric collision

operator, given by (7.6), (7.9) and
From the point of view of the energies, the /L _ N
W - /L(L = - /Z; Omf whb,i Prv{/v
choice of a physical representation out of all Liapounov 75
(7.29)
representations leads to no new result. The "energies" %
The > transformation is based on analytical continuation
associated with the particles are MN_ and Wy in agreement : . . : :
procedures, i.e. it is only defined for a restricted set of
states and observables. The above interpretation holds only
if o £ v%uv < which is not necessarily the case for

given initial conditions in the bare representation. (see § 8)
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Err‘ = - />\: Al oy M.Ab_\t_hv Mhﬁw_lﬁrg‘.ar_c\ (7.30)
for this class of representations. In these expressions,
as a consequence of (4.19) and (4.20), KF is real and
must satisfy the condition

2 ol S(stmen) =

'8 (7.31)
Among these representations, it is quite natural to
choose for this model, the one which leads to isotropy
of the emission and abscrption process. This requirement

jeads to the identification ofey with a mere kinematic

factor :
kA
o | Vie |
ko~ 2
| Uil
(7.32)
In conclusion, these results are most satisfactory : the

emission and absorption probabilities are positive definite ;

moreover, Fermi's golden rule applies now to all orders in
(see (7.29}))

the coupling constant, energy is conserved in each mHOnmmwu

As shown in appendix IV, this is not in contradiction with

the existence of a finite line width in agreement with

conventional Green's function approach. Also, it is

shown in that appendix that Er( is an excess scattering

cross section : it is the difference between the total

scattering cross section ﬂfonv and "resonant" scattering,

i.e. that part of scattering consisting in the absorption

of boson with energy W< MN_ w:& subsequent emission,

: the order cf the lifetime of the excited

after a time of

state, of a boson with the same energy -
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8. Concluding remarks.

We have scen that, in the case of the Friedrichs
model, there exist star unitary \/ transformations
which satisfy the various requirements that we have
imposed in ordecr to obtain a physical representation.
Taking into account specific features of the model, we
have been naturalliy led to a unique choice for this

transformation.

As indicated earliexr, the Friedrichs model is
a somewhat idealized model and the importance of our

jdeas can only be evaluated once the present results will

be extended to more realistic situations. Nevertheless,
they already iniicate that the question : "What 1is an
excited state? is likely to receive an answer. From this

point of view our interpretation of the diagonal elements
of the density matrix in the physical representation 1is a
separate postulate : it is valid only if
o ¢ 9. £
(8.1)
From chosen initial conditions in tne bare representation

this may be satisfied or not, depending on the interaction.

For instance, with the initial condition m_movu | , one
obtains (see appendix 4), vW:Aevu vﬁ:: and vW;mL does
not satisfy (8.1) if K. >!{. conversely, one might

encounter situations such that (8.1) is satisfied, but

e |

-

)
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when one goes back to the bare representation, the APPENDIX I. MATRIX REPRESENTATION OF OPERATORS AND
corresponding does not possess all the properties

SUPEROPERATORS.
required from a density operator. In other words, it

is in gencral not possible to give a consistent
Let the density operator % and observables A

interpretation in both the bare and the physical represen-

have matrix eclements WP.? and >Q,m‘ such that the diagonal

tations. Our attitude, in the discussion of our results,
elements of «_LA hﬁsﬁ = E?v define the unperturbed hamil-

has been to depart from the bare representation and to
tonian Ic while the off-diagonal elements define the per-

grant an intrinsic status to the physical representation.
turbation PRV

This is in line with our general arguments according to
which the distinction between reversible and irreversible
Then superoperators admit a tetradic represen-

processes is a prereqguisite element for the definition
tation. For instance, the Liouvillian has matrix elements

of interacting physical particles.
_IF&R&. = Hae MQS. - Hag m>o

(AY.1)

and the energy superoperator has elements

Mﬂ»m.&

[}

£ ( Hac Sap, + Hde bac )

(A1.2)
If & is an arbitrary superoperator and O an arbitrary
supervector, one can associate through the scalar product

(2.1) various conjugate superoperators to & :

T
a) transposed operator : &Q\ = T Q\ (AT.3)
+
+ 7 F
b) adjoint superoperator : Ao = hQ. a u (AI.4)
a _+ )%t
¢) associated superoperator : %Qv Hﬁﬁ& s v (RI.S)

In the tetradic notation, these relations lead to :
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i

L v

r ﬁN* vnh ) Q\Q v cc APPENDIX 2. MATRIX ELEMENTS OF & FOR THE FRIEDRICHS' MODEL. ¥
Qe = (@0t g = (B ey = (27 e

(AI.6) We start from (4.25). Taking into account

As an example, the property of adjoint symmetry (2.6) of :

ce :

= N

> takes the form : mHAN‘k% mwmﬁ\&& +

(r2.1) !

\/nn 7

= a e

>h&\& - Awﬁ‘&D (which results from jn T and guarantees (2.6)), we !

(A1.7)

3
have at dominant order in N.. H

u_m..:: = e F ND »mw. AMF ﬁwr:__w W
(A2.2)
3 s W
Woriepe =
ce (A2.3) .
(2 “.
M)W n = NRPC.F mr:r«_n t rM C\r\ mr.:rrm ;
th
N (A2.4)
~s
arr W Re _hd._» m_r.:w
1
(A2.5) «
K = Re mqﬁ ﬁ_r\tr_\m w
(rR2.6) i
8)

Using the expressions of matrix elements of C given in -
Ces t )
and writing \J AMV in the form : ¥

J+Qv 2 F e - £°G)

(A2.7)

.4 5*%?§_E£? § =2

(s tw- Wkl

{pr2.8)
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~ «Er « vw
uo_:? = _~v, Vel m; (o)) :::L_ { J:EE_
(wi-St) Qe
(R2.9)
~ L \Z z 1 + LS v
= A.WN_\EFM N“F
(n2.10)
uxm N el (v ) (ST, -one) B Ak’
Kk k'k!

Qo -k

;Ei
(A2.11)

z:mnmprm_awr mmm@?ngﬁm;mfﬁo;mu.
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APPENDIX 3. LIAPOUNOV REPRESENTATION FOR THE FRIEDRICHS'

MODEL. DETERMINATION OF Vﬁ

From (4.16), we obtain the conditions

¥
K\.:: Youu = >_::
£ (A3. 1)
Yok + Y Xl = Ak
X (AR3.2)
er: X + X\rr:_ d >§f:
{(A3.3)
Vm\rr.: ___rr + Krr K -+ uN\rP Wk = >rr.k;\.\
(A3.4)

For this model, A is real, starhermitian and even in L

(hence hermitian), i.e.

A~ A
aa, 48 ° aa, 4t 44am (A3.9)
Also, combining (6.1) and (4.19), we have
£ +
K\E»RA = X aa bt T ,vﬁi:s»
{A3.6)
and (A3.1) to (A3.4) lead to
K Ab viﬂ m i V:M
El T
i _J_:e}w\_
(A3.7)
\K:.rr = \v/:_FF - vﬁ:ﬁ: .vm\:_:
(A3.8)
Krr‘r_r‘ + Kr.r\_rr = \D/rr‘r\r_ - Krb.: .Kr;n‘_:
(A3.9)
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Further requirements on X\mnm given by (4.20), (4.21), i.e. :

X + M_M. K«rr.: = |

X+ 2 Y e = °

kg k

(A3.11)

Lo Xy, = Lon X = G K, enr =0

i
A-jo ! Ao b

(A3.12)

If one takes into account the explicit expression of

\x/:_rr (see ref. )y, (A3.8) becomes :

K.:rr = Qe K:.: A K.:: \Nr - Krr.:v

(A3.13)

In a physical representation, K:.rr and Krr:_
for instance, are of the form (7.24), (7.25). From
(A3.10), we then obtain the condition

S« S(su-ow) = |
e
when one takesinto account
2z 1
X [ vten)| c.c
Mm &r - ~ A.%&&W ' ce -
4 O mw+5_\ﬁxvm
- c o1 4
S ECE PR

(A3.15)
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APPENDIX 4. FINITE LINEWIDTH FOR SPONTANEOUS EMISSION AND

(A3.10)

the evolution equations (7.11), (7.12) reduce to :

(A3.14)

INTERPRETATION OF SCATTERING CROSS SECTION.

Let us first consider the spontaneous emission

process, l.e. start with an initial condition of the type

F -h L
ﬂ:nav ~ OAC 4 ﬂf,r. Ti ~ Omr v /\—ﬂ

(A4.1)

2
Then, if we keep only dominant terms with respect to =,

.
25 L ow

2t :
(AR4.2)
& o
&\«m“wr = <<.f wu__
2t
(A4.3)
These equations are easily solved :
—\/‘ZW J
Py -oe
n (nd4.4)
o o Wy, W, E Jv
o = e+ B () F0
"
(A4.5)
A’Z:Acv . For
[Wle >
(A4.6)

this gives :

A
i
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oL
m_ ﬁvﬂv = ©
o Wi o
- ° - o
wﬂr mnxv XWFFA v Wy W. w
(A4.7)
i.e. in a physical representation (see 7.27)
' o (o) = w S(Q-we) TP ¢
ﬂrr (=) - %En ) = % ! F )
(24.8)

In the physical representation, the emission line is

infinitely narrow.

The discussion of spontaneous emission in the

Green's function approach is formulated in the bare particle

description. One starts with the initial condition
- = = o) = .o
Sute) = 1 1 B )= 0= O ter = G le) = fup o)
(R4.9)

and looks at the asymptotic distribution of bare bosons,

i.e. at .ﬂrr nvbv.

Let us restrict ourselves to physical represen-
tations in which (6.1) (i.e. (A3.6) and (7.26)) is satisfied.

Then using (1.6), (A4.9) gives an initial condition of the

type (A4.1). More precisely, we have :

X

.v\ﬂ__ (o) = vAJ:: = K.::

(Ad.10)
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¢
v%rr.mnv = KE:: = K.rr =

(r4.11)
We also have, taking into account (A4.7), (A4.8)
fu () = D)
kle e
(rd.12)
i.e. using (A4.8), (A4.10) and (A4.11)
NI
wu (=) = Qp = .
kk _4+mtrl
(Ad.13)

which shows that there is a line shape in this description.

(As well known, further approximations lead to the

+
Lorentzian shape : in J+n£r» , one replaces % (S by

%}rﬁt.v\k 2, +:m| when ﬂb_ IEL LWy, e <KLesp

Let us now turn to the interpretation of <<Pr\

This is a difference betwecn two positive definite

quantities :
vl o
Wi = 2T S Wi = W’ A
e m v _—\N+m5r:V

(A4.14)

S\r_ Sﬁr.
Wi

S_nr; - -

(R4.15)

In order to discuss the scattering problem, let us

V

consider an initial condition where all the elements

o3
vwﬂr mwwOwn:mmmEmOMQm~0m5mm:Hmc&o opﬁ \, %:m:\

have to keep the full equations (7.11), (7.12). The

% '

we
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solution of (7.11) may be written :
W,k & W, T
3 1 i P _
Pie)- e Tow s ldee  Z Wy f, (¢t <)
5 k
(Ad.16)

If we introduce this in (7.12) and use (14.14) and (A4.15),

we obtain

W, t
w . it

Pl Low, ey s W, e b

dr

E:

. . ,
+W- w9 e T@.iELﬂé_.Td ¢ %E.?LE

°

(A4.17)
For times much larger than the life time of the unstable

state, i.e. such that (A4.6) is satisfied, (B4.16) and
{A4.17) become (see also gmgv :
Wik ¢
SO T
koW,

(Ad4.18)

v
\u Wrr m: u /alrr v%rw :.\v |+ M a_ﬁt V%tt NWM
g2 k!

(h4.19)
which leads quite naturally to the interpretation of

é&rr‘ as the total cross section.
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