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Voigt discussed Doppler’s effect on the basis of the universal speed of light and the

invariance of the wave equation in 1887. He was very close to suggesting a conceptual

framework for special relativity. Historical remarks and discussions are made on Voigt’s

paper and a translation of his short paper with modern notation is also included.

PACS. 11.30.Cp – Lorentz and Poincare invariance.

I. Introduction

Voigt’s 1887 paper ‘ON DOPPLER’S PRINCIPLE’ [1] is a very remarkable work. It is
remarkable because it contains several original and fundamental ideas of modern physics:

(a) Voigt appears to be the first physicist to conceive of the idea of the universal speed of light.
(b) He appears to be the first physicist who postulated the invariance of a physics law, the wave
equation in ‘an elastic incompressible medium’ (i.e., the aether or ether),
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@t2

¶
Á= 0; (I1)

and employed it to derive the Doppler effect.
(c) He showed that the Doppler shift of frequency is incompatible with Newtonian absolute time

(t0 = t) and is in harmony with a ‘relative time’

t0 = t ¡ Vax
c2
; (I2)

which is the approximate relativistic time.
(d) He first derived a type of 4-dimensional space-time transformation
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which differs from the Lorentz transformations by an overall constant factor
p
1¡V 2a =c2. Ac-

cording to Voigt, the transformations (I3) are for the (absolute) rest frame F (ct;x;y;z) = F(0)
and the frame F 0(ct0;x0; y0; z0) = F 0(Va) which moves with a constant (absolute) velocity Va in
the aether. The existence of such an aether was taken for granted at that time.
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It is regrettable that Voigt’s original ideas were unnoticed and, hence, did not play a role in
the vigorous development of special relativity, somewhat similar to Poincaré’s work [2] in 1905.
Lorentz, Poincaré, Einstein and others did not refer to Voigt’s paper in their works. It appears that
young Pauli was an early physicist to mention Voigt’s transformation (I3) in his book ‘Theory of

Relativity’, [3] published in 1921, but no further comment was made.
If physicists had been imaginative enough in the 1880s, they might have recognized the

potential of these ideas to open up a virgin soil of physics. It is understandable that around 1880,

when the ideas of Newtonian absolute time dominated the whole physics, people simply dismissed
Voigt’s ideas as nonsense.

In modern language, Voigt’s result (I3) is a conformal 4-dimensional transformation which
leaves the following space-time interval in F(ct;x; y; z) and F 0(ct0;x0; y0; z 0) frames invariant:

ds2= c2dt2¡ dx2¡ dy2¡ dz2 = g¹º(Va)dx
0¹dx

0º

=

µ
1

1¡ V 2a =c2
¶
[c2dt

02 ¡dx02¡ dy02¡ dz 02];

g¹º(Va)=

µ
1

1¡ V 2a =c2
;

¡1
1¡V 2a =c2

;
¡1

1¡ V 2a =c2
;

¡1
1¡V 2a =c2

¶
:

(I4)

The conformal 4-dimensional transformation is a class of transformations of coordinates
(w; x;y; z) for which the invariant interval dw

02 ¡ dx02 ¡ dy02 ¡ dz 02 is proportional though

generally not equal to dw2¡dx2¡dy2¡dz2. If one sets dw = cdt and dw0 = cdt0, then it also
leaves the speed of light c invariant [4]. Weinberg has commented that the physical relevance of
the conformal transformations in 4-dimensional spacetime is not yet clear [5].

One might think that Voigt’s transformations differ from the Lorentz transformations in the

second order (Va=c)
2 and, therefore, it is excluded by precision experiments such as the Doppler

shift experiment with a laser. However, this turns out to be not the case. (See Appendix.) It
can be shown that his transformation (I3) leads to an observable Doppler effect which is identical

to that of special relativity and consistent with precision laser experiments. The reason for this
surprising result is that Voigt ’s transformations are endowed with a 4-dimensional symmetry,
called conformal 4-dimensional symmetry. Voigt’s conformal 4-dimensional transformation is a
special case in which the proportional constant is a function of the (absolute) velocity Va of the

inertial frame F 0(Va), as one can see in equation (I4).
One may wonder why Voigt obtained the transformation (I3) by using the invariance of

the wave equation (I1). We usually expect that if one uses the invariance of a physical law such
as the wave equation (I1) and the linearity of coordinate transformations, one should obtain the

Lorentz transformation [6].
Voigt wrote down the linear transformations between the two frames F(ct; x;y; z) and

F 0(ct0;x0; y0; z0) which moves with a constant velocity as follows:

x0=m1x+n1y + p1z ¡ ®t; etc.

t0 = t ¡ (a0x+ b0y + c0z):
(I5)

However, he chose ® = Va and set the coefficient of t in the last equation to be 1. Thus, he
effectively imposed some conditions so that he then has the obvious Galilean relation x0 = x¡Vat
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for his transformation in the x-direction. The other three transformations for y0, z0 and t0 are not
intuitively obvious, as shown in (I3). However, the transformation properties of y0, z0 and t0 are
dictated by the invariance of the wave equation (I1).

It was shown by Poincaré in 1905 that the Maxwell equations are invariant under the

transformations [2]

x0 = ·°(x¡ Vat); y0 = ·y z 0 = ·z; t0 = ·°

µ
t¡ Vax

c2

¶
; (I6)

° =
1

p
1¡ V 2a =c2

;

where, · is an arbitrary constant. The set of all these transformations forms the conformal 4-
dimensional symmetry group. The Voigt transformation (I3) is just a special case of (I6) with

·=
p
1¡ V 2a =c2 . So, it is not surprising that one cannot detect the absolute motion of the F 0(Va)

frame in the Voigt transformation (I3) by using electromagnetic and optical experiments.
One may think that kinematic properties of particles (with non-zero rest masses) in high

energy experiments may be able to test and exclude Voigt’s transformation. But it turns out to be

not so easy, as demonstrated in the Appendix.
Voigt did not discuss the physical meaning of his ‘relative time’ in (I2) and the universal

speed of light in his 1887 paper. Presumably, his understanding of these ‘new ideas’ was no better

than that of Lorentz. As Dyson pointed out that ‘when the great innovation appears, it will almost
certainly be in a muddled, incomplete and confusing form. To the discoverer himself it will be
only half-understood; to everybody else it will be a mystery. For any speculation which does not at
first glance look crazy, there is no hope.’ He explained that ‘the reason why new concepts in any

branch of science are hard to grasp is always the same; contemporary scientists try to picture the
new concept in terms of ideas which existed before’ [7]. This explains why Voigt imposed certain
conditions on the coefficients of the linear transformations (I5) rather than letting the invariance
of the wave equation (I1) to exercise its full power to guide his theory.

II. Historical remarks on Voigt’s 1887 paper

II-1. H. A. Lorentz and Voigt

The correspondence between H. A. Lorentz and W. Voigt began in March 1883. In a letter
Lorentz criticized a calculation which occured in one of Voigt’s papers on crystal physics. In

the years after 1883, there were only a few letters between the two physicists, but the number
of letters increased as the years went by. Voigt met Lorentz for the first time on July 25, 1897
when he visited Göttingen.1 From that day on, the content of the letters became more and more
personal, as the two physicists became friends in the course of time.

After Michelson’s experiment in 1881, Lorentz started to work on an explanation of the
absence of any effect due to the motion of the earth though the ether. In 1886, he wrote a paper
in which he criticised Michelson’s experiment. He dismissed Michelson’s experimental result

being doubtful of its accuracy. Michelson was persuaded by Thomson and others to repeat the
experiment and he did so with Morley, again reporting in 1887 that no effect had been found. In

1See Deutsches Museum München, Archives, HS 5523b
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spring 1888, Lorentz sent some of his work on Michelson’s experiment to Voigt. In March
1888, Lorentz sent another letter to Voigt. He read some of Voigt’s calculations concerning the
Michelson experiment and wanted to correct his own earlier remarks on Michelson’s experiment in
his letter. He asked Voigt for his opinion concerning the new calculations.2 Voigt’s paper ‘Über

das Doppler’sche Princip’ was not mentioned. But if one reads the correspondence between
Lorentz and Voigt carefully, it becomes obvious that Lorentz did not know about the existence of
Voigt’s 1887 paper in 1888.

Lorentz’s theory of the ether, the Lorentz transformations or the Michelson experiment did
not play a role at all in the correspondence with Voigt in the years between 1889 and 1908, and
after 1908. The reason might be the fact that Voigt was occupied by other things and that he did
not have time to pay much attention to Lorentz’s papers on these subjects.

However, one interesting letter from Lorentz to Voigt from July, 1908, can be found.3

H. A. Lorentz to W. Voigt Leiden, July 30, 1908

Dear friend,

I would like to thank you very much for sending me your paper on Doppler’s principle

together with your enclosed remarks. I really regret that your paper has escaped my notice.

I can only explain it by the fact, that many lectures kept me back from reading everything,

while I was already glad to be able to work a little bit.

Of course I will not miss the first opportunity to mention, that the concerned transformation

and the introduction of a local time4 has been your idea.

Sincerely,

Your H. A. Lorentz

As Lorentz had promised in his letter to Voigt, his book ‘The Theory of Electrons’ [8] (the
first edition of which had been published in 1909) contained in a footnote the statement:

‘In a paper “Über das Doppler’sche Princip”, published in 1887 (Gött. Nachr., p. 41) and

which to my regret has escaped my notice all these years, Voigt has applied to equations

of the form (6) (x3 of this book) a transformation equivalent to the formulae (287) and

(288). The idea of the transformations used above (and in x44) might therefore have been

borrowed from Voigt and the proof that it does not alter the form of the equations for the

free ether is contained in his paper.’

Since Lorentz’s book was based on his lectures at Columbia University in 1906, one might
think that Lorentz knew Voigt’s paper and mentioned his regret in the lectures [8]. However,
based on their correspondences around that time, Lorentz’s statement in the footnote was included
in his book after July 1908.

2See Deutsches Museum München, Archives, HS 5520
3See Deutsches Museum München, Archives, HS 5549 (Translation by the authors)
4It had been Lorentz’s idea to distinguish between true time t, and a so-called local time t’.
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II-2. Emil Wiechert and Voigt

We refer now to a paper by W. Schröder, published in the Archive for History of Exact
Sciences, which contained detailed information about the relations between Lorentz, Voigt and
Wiechert [9]. On November 28, 1911 Emil Wiechert asked Lorentz for a list of all of his works

concerning the theory of relativity, because he was working on his paper ‘Relativitätsprinzip und
Aether’ [10]. Apparently it was important for Lorentz to mention Voigt’s transformation in his
response to Emil Wiechert, and to mention Voigt’s priority in the development of the relativity

transformation. In his response to Lorentz’ letter, Wiechert mentioned the fact that the coefficient
of t is one in Voigt’s transformations and emphasized that it was an important progress which
Lorentz made, namely, to dismiss the factor 1 in the transformation for the x-direction. In his
response to Wiechert’s letter, Lorentz mentioned that he originally considered the t’ not to have

any physical meaning at all. Lorentz claimed that Einstein was the first who discovered that the
t’ plays the role of the physical quantity ‘time’ [11].

II-3. Hermann Minkowski and Voigt

L. Pyenson suggested that Minkowski might have known Voigt’s paper of 1887 since 1889.

Minkowski remarked in a letter [12] to David Hilbert from June 19, 1889 deprecatingly that
he had read an essay by Voigt for a jubilee [sic] of the University of Göttingen and that ‘it
was inconceivable that anyone would develop mathematical equations only with the hope that
someone might later demonstrate their utility’ [13]. Minkowski refered to the 150th anniversary

of the University of Göttingen which was celebrated in 1887. If one considers that Voigt did
not have other papers in 1887 which are of this nature, as mentioned by Minkowski, Pyenson’s
suggestion appears to be tenable.

A. Pais mentions that, many years later, Minkowski tried to draw attention to Voigt’s 1887
paper in a physics meeting in 1908 [14]. Voigt made a modest remark without referring to his own
suggestions (i.e., invariance of wave equation and universal constancy of the speed of light) made
more than 20 years earlier. In the Physikalische Zeitschrift [15], one can read in the protocol of

the discussion:

Minkowski: ‘[...] I would like to mention that, historically, the transformations which play

a role in the principle of relativity, have been first investigated mathematically by Voigt

in 1887. Using these transformations, Voigt drew already in those days some conclusions

concerning Doppler’s principle.’

Voigt: ‘Mr Minkowski has one of my old works in mind. It is about some applications of

Doppler’s principle which occur in special cases, not because of the electromagnetic but

because of the elastic theory of light. Already then some results were found which later

were obtained from the electromagnetic theory.’5

II-4. Max Born and Voigt

There is no indication that Max Born had read Voigt’s 1887 paper, even though Born was a
physicist at Göttingen university. In his well known book ‘Die RelativitÄatstheorie Einsteins’ [16]
he mentions Voigt’s transformations merely in a footnote:

5Translation by the authors.
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‘It is historically interesting to note that the formula for the transformation in a moving

frame, which we call nowadays Lorentz transformation [...], was already mentioned by

Voigt in 1877 [sic] in a dissertation, which was still based on the elastic ether theory of

the light.’6

The missing factor in Voigt’s transformation is not mentioned, and the year of publication
is incorrect. Furthermore, Born’s statement that “the formula for the transformation in a moving

frame ...... was still based on the elastic ether theory of the light” missed the main idea of
Voigt. Rather, Voigt’s formula for the transformation in a moving frame ...... was based on the
INVARIANCE OF THE WAVE EQUATIONS for the oscillations of an elastic incompressible

medium. One can conclude that Born had not read Voigt’s paper carefully or even did not read it
when he published his book. Born, who studied in Göttingen under Voigt, does often mention his
teacher in his autobiography [17], but not his transformations. However, Born’s remarks shine
some light on Prof. W. Voigt and the research at Göttingen university in the beginning of the

twentieth century:

‘[...] We studied the papers of Lorentz, Poincaré and others about the difficulties, which

confronted the theories concerning the electromagnetic ether because of Michelson’s well

known experiment. The experiment showed that the motion of the earth through the ether

did not produce an ether wind, as the common sense and all the theories predicted, which

were considered to be valid at that time. The existence of the ether was taken for granted

at that time, and some scientists claimed that its properties would be better known than

those of matter. Ether was the mostly used word in Voigt’s lectures about optics. And

now all experiments which should detect the existence of an ether led to a negative result.

This was exciting, and I had the wish to concentrate myself on this field of research.

Minkowski must have felt the same [...]’7

II-5. Arnold Sommerfeld and Waldemar Brückel

A. Sommerfeld also knew about Voigt’s transformations. In 1943, the German engineer
W. Brückel corresponded with Arnold Sommerfeld. Sommerfeld argues in a lette8 to Brückel
from September 1943 against Brückel’s attempt to disprove the theory of relativity. Voigt’s

transformations are mentioned as a ‘casual result’ of Voigt’s calculations. In his detailed response,9

Brüeckel justifies his belief in the existence of the ether, referring to Voigt’s transformations which
make the theory of relativity dispensable.

In the following translation of Voigt’s paper, we use some modern notations, e.g., c for the

speed of light; Voigt used ! and · for the speed of light and the velocity of the F 0(Va) frame

respectively. Also his notation q =
p
1¡V 2a =c2 was replaced by 1=°a.

6Translation by the authors.
7Translation by the authors.
8Deutsches Museum München, Sommerfeld Archives, NL 89, 015
9Deutsches Museum München, Sommerfeld Archives, HS 1977-28/A, 44
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III. ‘On Doppler’s principle’ by Voigt

The differential equations for the oscillations of an elastic incompressible medium are, as
is generally known,

@2u

@t2
= c2¢u;

@2v

@t2
= c2¢v;

@2w

@t2
= c2¢w;

(1)

in which c denotes the propagation velocity of the oscillations or, more precisely, the propagation

velocity of plane waves with constant amplitude. It is assumed that u, v, w satisfy the relation

@u

@x
+
@v

@y
+
@w

@z
= 0: (1’)

Let u = U, v = V , w = W be solutions of these equations, which on a given surface
f(¹x; ¹y; ¹z) = 0 take on the time-dependent values ¹U, ¹V , ¹W . Then one can say that the functions
U, V , W represent the physical law according to which the surface f = 0 shines.

If one exchanges in U, V , W , respectively,

x with » = xm1+ yn1 + zp1 ¡®t;
y with ´ = xm2 + yn2 + zp2¡ ¯t;
z with ³ = xm3 + yn3+ zp3 ¡ °t;
t with ¿ = t¡ (a0x+ b0y + c0z);

(2)

and denotes the functions thus obtained as (U), (V ), (W ), respectively, then u = (U ), v = (V ),
w= (W ) satisfy the equations in (1) as well.

For example, the first of these equations turns out to be:

@2(U)
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·
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µ
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2
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¶
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2
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¡2@
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¯
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¡2@
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= c2
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+
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¶

must be true, this equation is satisfied if the following new equations hold as well:

1¡ c2(a20+ b20 + c20)= m21+ n21 + p21¡
®2

c2

= m22+ n
2
2 + p

2
2¡

¯2

c2

= m23+ n
2
3 + p

2
3¡

°2

c2
;

(3)

¯°

c2
= m2m3+ n2n3 + p2p3;

°®

c2
=m3m1+ n3n1+ p3p1;

®¯

c2
= m1m2+ n1n2 + p1p2;

(4)

®

c2
= a0m1+ b0n

1 + c0p1;

¯

c2
= a0m2+ b0n2 + c0P2;

°

c2
= a0m3+ b0n3 + c0p3:

(5)

Suppose ®, ¯ and ° are given, then we have 12 available constants, three of which are

arbitrary. The most convenient way to obtain a solution is to use temporarily a coordinate system
X1, Y1 , Z1, for which ¯ and ° in equations (2) vanish and ® = Va; i.e., a system, whose direction
cosines of the X1 axis with respect to X, Y , Z are proportional to ®, ¯, and ° .

Furthermore, we set

m2h+ n
2
h + p

2
h = q

2
h; mh=qh = ¹h; nh=qh = ºh; ph=qh = ¼h;

a20 + b
2
0+ c

2
0 = d

2
0; a0=d0 = ¹; b0=d0 = º; c0=d0 = ¼;

then ¹, º, ¼ are the direction cosines of four directions with respect to the coordinate systemX1 ,
Y1 , Z1, which we will denote as ±1, ±2, ±3, ±. Introducing these parameters, our equations (3),
(4) and (5) become

1¡ c2d20 = q21 ¡
V 2a
c2
= q22 = q

2
3; (3’)

¹2¹3 + º2º3+ ¼2¼3 = ¹3¹1 + º3º1 +¼3¼1 = ¹1¹2+ º1º2 +¼1¼2 = 0;



VOL. 39 ANDREAS ERNST AND JONG-PING HSU 219

implying cos(±2; ±3) = cos(±3; ±1) = cos(±1; ±2) = 0; (4’)

¹¹1 + ºº1+ ¼¼1 =
Va

c2q1d0
; ¹¹2+ ºº2 +¼¼2 = ¹¹3+ ºº3 +¼¼3 = 0;

implying cos(±; ±1) =
Va

c2q1d0
; cos(±; ±2) = cos(±; ±3) = 0: (5’)

According to (4’) the three directions ±1 , ±2, ±3 are perpendicular to each other, according
to (5’) ±1 and ± have the same directions. Therefore, we must have

¹ = ¹1; º = º1; ¼ = ¼1 and
Va

c2q1d0
= 1: (6)

Inserting this into (3’) determines d0 and q1, q2, q3 . Because only positive signs make sense
here, we get first of all

q1 = 1 or
Va
c
;

d0 =
Va
c2

or
1

c
:

I will only use the first solution, because the second solution is not interesting.10 It follows
from the first solution that:

d=
Va
c2
; q1 = 1; q2 = q3 =

r

1¡ V
2
a

c2
=
1

°a
: (7)

According to this we can write the equations (2) as follows:

»1= x1¹1+ y1º1 + z1¼1¡ Vat = a1 ¡ Vat;

´1= (x1¹2 + y1º2 + z1¼2)
1

°a
= b1

1

°a
;

³1= (x1¹3 + y1º3 + z1¼3)
1

°a
= c1

1

°a
;

¿ = t ¡ Va
c2
(¹1x+ º1y +¼1z) = t¡

Vaa1
c2

;

(8)

where ¹h, ºh, ¼h do not have to satisfy any other conditions than those which come from the fact
that they are the direction cosines of three directions which are normal to each other but otherwise
arbitrary.

Therefore a1, b1, c1 can be considered to be the coordinates of the point x1 , y1, z1 with
respect to a coordinate system ABC whose axes point into the same directions as ±1, ±2 , ±3.

10From the second solution follows q2 = q3 = 0, therefore m2, n2, p2, m3 , n3 , p3 vanish as well, and therefore

³ = ´ = 0.
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Any such system ¹h, ºh, ¼h yields a solution (U), (V ), (W) from the given U, V , W .
If on a surface f(x;y;z) = 0, U , V , W take on the given values ¹U , ¹V , ¹W , then on the surface
(f) = f( ¹»; ¹́; ¹³) = 0, (U ), (V ), (W ) take on the values ( ¹U), ( ¹V ), ( ¹W ) which can be derived
from them. Because of the values of »1, ´1, ³1 the surface has the property that it is moving with

a constant velocity Va parallel to the direction ±1 or A which is given by the direction cosines ¹1 ,
º1, ¼1. Therefore the solutions (U), (V ), (W ) yield the physical laws, according to which certain
moving surfaces are shining, if they fulfil the additional condition

@(U)

@x
+
@(V )

@y
+
@(W )

@z
= 0:

The two surfaces f = 0 and (f) = 0 are in their form identical only if 1=°a = 1, i.e., if Va is
so small compared to c that V 2a can be neglected compared to c2. If this is the case, then they
differ only in their position relative to the coordinate axes. By a suitable choice of the arbitrary

constants and the functions U, V and W , one can obtain special cases that are easily visualized.
By a transformation of coordinates, one can obtain more general cases in which the shift of the
surface is not only parallel to the A-axis but points into an arbitrary direction.

We follow up the special case that the three directions ±1, ±2 , ±3 point in the directions of

the three coordinate axes X1, Y1, Z1, i.e.

¹1 = º2 = ¼3 = 1;

¹2 = ¹3 = º1 = º3 = ¼1 = ¼2 = 0: (9)

Then we obtain simply, and formally identical with (8):

»1= x1¡ Vat;

´1= y1
1

°a
;

³1= z1
1

°a
;

¿ = t¡ Vax1
c2

;

(10)

where 1=°a =
q
1¡ V 2

a

c2 .

In this case the condition (1’) has the form

µ
1¡ 1

°a

¶
@(U )

@»
=
Va
c2
@(U)

@¿
;

which can be exchanged without any difficulties with

µ
1¡ 1

°a

¶
@U

@x
=
Va
c2
U

@¿
; (10’)
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This means that in U the arguments x and t are only allowed to appear in the combination
(1 ¡ 1=°a)t + Vax=c2 or not at all. The latter is the case if U = 0, i.e., if the propagated
oscillations are normal to the direction of translation of the shining surface everywhere. If one
goes from the special coordinate system X1 , Y1, Z1 to the more general X, Y , Z which is

connected to the other by the relations

x1 = x®1 + y¯1 + z°1;

y1 = x®2 + y¯2+ z°2;

z1 = x®3+ y¯3+ z°3;

(11)

one obtains finally

» = x
1

°a
+(x®1+ y¯1+ z°1)®1

µ
1¡ 1

°a

¶
¡Va®1t;

´ = y
1

°a
+(x®1+ y¯1+ z°1)¯1

µ
1¡ 1

°a

¶
¡Va¯1t;

³ = z
1

°a
+ (x®1 + y¯1 + z°1)°1

µ
1¡ 1

°a

¶
¡ Va°1t;

¿ = t¡ Va
c2
(x®1+ y¯1+ z°1):

(12)

This is the general form (2) from which we started, but with constants which are completely
determined by Va, ®1, ¯1, °1 . It contains what we normally call the ‘Doppler principle’, if it is
valid.

If we can neglect V 2a against c2, then we have 1=°a = 1 and obtain very straightforwardly

» = x¡ Va®1t;
´ = y ¡Va¯1t;
³ = z ¡ Va°1t;

¿ = t¡ Va
c2
(x®1+ y¯1+ z°1):

(13)

Here the condition (1’) has the form

0 =
Va
c2

@

@t
(U®1+ V ¯1+W°1); (13’)

and has, with the above approximation, to be fulfilled as far as the terms to first order in Va=c.
If in addition to the shining surface the observer is also moving, for example with the constant
velocity V 0a in a direction given by the direction cosines ®0, ¯0, °0, then the shifts u, v, w are only
relative to a coordinate system X 0, Y 0, Z0 which is moving with the observer. Hence in (12) or

(13) x has to be exchanged with x0 + V 0a®
0t, y with y0 +V 0a¯

0t, z with z0 +V 0a°
0t. We are now

going to look at some applications of what we have found.
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[[1]] Suppose a plane parallel to the YZ plane is being excited to oscillate according to the
law

W =A sin
2¼t

T
;

then the motion propagating in positive X-direction is given by

W =A sin
2¼

T

³
t ¡ x

c

´
:

If we make in here the substitution according to (10) we get:

(W ) = Asin
2¼

T

µ
1+

Va
c

¶³
t¡ x

c

´
:

This yields for x = Vat:

(W ) = Asin
2¼t

T

µ
1¡ V 2a

c2

¶
=A sin

2¼t

T 0
: (14’)

Therefore, we have an oscillating (shining) plane with an oscillation period T 0 = T=(1 ¡V 2a =c2)
(differing from T only in a second order term). The transmitted oscillation can be written as

(W ) = Asin
2¼

T 0(1¡ Va=c)
³
t¡ x

c

´
: (14)

Thus the propagated wave has a period of oscillation which is decreased by a factor of

(1 ¡ Va=c)=1. If the observer is also moving, we have:

(W 0)=Asin
2¼

T 0(1 ¡Va=c)

µ
t ¡ x

0 + V 0at

c

¶

=Asin 2¼

µ
t
c +V 0a

T 0(c ¡ Va)
¡ x0

T 0(c ¡Va)

¶
:

This formula yields the ‘Doppler principle’ for plane waves. However it is not generally
valid, but requires a wave plane with a constant amplitude throughout.

[[2]] Suppose the same plane is being excited to oscillate according to the law:

W =A exp

·
(¹y + ºz)

2¼

Tc

¸
sin
2¼t

T
;

which is similar to what occurs when a wave with an originally constant amplitude has been
transmitted through a prism made of an absorbing material. Then the transmitted wave is

W =A exp

·
(¹y + ºz)

2¼

Tc

¸
sin
2¼t

T

³
t¡ x¾

c

´
;
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where ¾=
p
1 +¹2 + º2 .

If one substitutes according to (10) and sets
p
1¡V 2a =c2 = 1=°a, one obtains:

(W) =A exp

"
(¹y + ºz) 1°a2¼

Tc

#

sin
2¼t

T

·
t

µ
1 +

Va¾

c

¶
¡x

µ
¾

c
+
Va
c2

¶¸
:

This yields for x= Vat, if one writes ¹°a = ¹
0, º°a = º

0:

(W) =A exp

·
2¼(¹0y + º0z)

T 0c

¸
sin
2¼t

T 0
;

where again T 0 = T=(1 ¡ V 2a =c2). Therefore, we have a plane which is oscillating and moving

at the same time; the propagated displacement can be written as follows:

(W) =A exp

·
2¼(¹0y + º0z)

T 0c

¸
sin

·
2¼

T 0

µ
t
1 +Va¾=c

1¡V 2a =c2
¡x¾=c +Va=c

2

1¡V 2a =c2
¶¸
; (15)

where now

¾ =

s

1+ (¹
02+ º

02)

µ
1

°a

¶2
:

We notice that laws hold here that are quite different from those given by the ‘Doppler
principle’, even if we restrict ourselves to the first approximation and neglect V 2a =c

2 compared to
1.

[[3]] If the shining surface is a very small sphere of the radius R, which is oscillating
around the X-axis according to the law for the rotation angle

Ã =A sin
2¼t

T
;

then the propagated rotations Ã at distance r =
p
x2 + y2 + z2 from the center of the sphere are

given by 11 :

Ã=
R3A

r3

·
sin
2¼

T

µ
t ¡ r¡R

c

¶
+
2¼(r¡R)

Tc
cos

2¼

T

µ
t¡ r¡R

c

¶¸

=
R3A

r3

s

1+

µ
2¼(r¡R)

Tc

¶2
cos

2¼

T

µ
t¡ r¡R

c
¡ ´

¶
;

(16)

where

2¼(r¡R)
Tc

= ctg
2¼´

T
:

11 W. Voigt, Crelles Journ. Vol. 89, 298.
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Thus for r =R and ´ = 0, we have ´ = T=4 if r is very large compared to the wavelength Tc.
The transmitted displacements result from Ã as follows:

U = 0; V =¡Ãz; W = Ãy:

We set:

U = 0; V =MC; W =NC:

If one substitutes the values », ´, ³ for x; y;z according to (10), then the periodic part C
becomes:

(C) = cos
2¼

T

·
t¡ Vax

c2
¡ 1

c

³p
(x¡ Vat)2+ y2+ z2 ¡R

´
¡ (´)

¸
(17)

if

ctg
2¼(´)

T
=
2¼

Tc

³p
(x¡ Vat)2+ y2+ z2 ¡R

´
:

For (x¡ Vat)2+ y2+ z2 = R2 (i.e. on the surface of a sphere which is displaced parallel to the

X-axis with velocity Va) this becomes

(C) = sin
2¼

T

·
t

µ
1¡ V

2
a

c2

¶
¡ Va
c2

p
R2 ¡ y2¡ z2

¸
:

We assumed that V 2a =c
2 and VaR=c2 are of the second order. Hence we get

(C) = sin
2¼t

T
:

(M) and (N) have the same value as if the small sphere were oscillating around the equilibrium

position x0 = Vat reached at the time t. (U), (V ), (W ) therefore denote the motion caused by a
rotating shining point that moves with constant speed Va parallel to the rotation axis.

The propagated wave planes are characterized by the value (17) for (C), which can be

written in the relative coordinates with respect to the shining point » = x¡ Vat, y = ´, z = ³ ,
neglecting V 2a =c

2 compared to 1 and for rÀ Tc :

(C) = cos
2¼

T

·
t¡ Va»

c2
¡ 1
c

³p
»2+ ´2+ ³2 ¡R

´¸
:

Therefore the wave surfaces are spheres, but not around the shining point but rather around a
position which lies a distance of Va=c times the radii of the wave surfaces away from the shining

point in the direction which is opposite to that of the motion.
Since the direction of a light source as perceived by an observer at rest is given by the

normal to the wave surface, such an observer would see the shining point at a position where it
was located at an earlier time r=c. In other words: If his radius vector r had an angle Á with

respect to the direction of motion, he would observe an ‘Aberration’ of the magnitude (r=c) sinÁ
in the direction opposite to the direction in which the point is moving. According to the above,
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the transmitted amplitudes (M) and (N ) at position x, y, z at time t have such values, as if the
shining point had been all the time at a position which it only reached at time t. However the
wave surface in x, y, z, has a form as if the shining point had remained at rest at the position it
had reached at time [t¡ r=c]. In that sense wave surface and amplitude do not belong together

as in the case of a point at rest. The amplitude depends on the current position, the form of the
wave plane depends on a position the shining point has left behind. We obtain a strange result:
It a light source with a constant intensity is located at a distance r away from an observer at time

t (and moving in the manner described above), this observer would see the source in a distance
away from him when the source was located at time r=c, but the intensity he would see, would
be the one of its actual position (i.e., r) (which can be either larger or smaller).

The applicability of the above considerations to problems in the field of optics is restricted

by the constraint (1’), which has led us to the formulas (10’) and (13’).
Such a restriction does not occur if we look at the corresponding problems in the field of

acoustics of fluids, because the only condition for the propagated dilatation ± is

@2±

@t2
= c2¢±:

Therefore, if ± is given by the constraints along a given surface as an arbitrary function
of time, the introduction of one of the substitutions (10), (12) or (13) always gives the transition
from the action of a sound source at rest to a sound source in motion. If, for example, on a very

small sphere of radius R, ± = f(t) is given, then the propagated dilation is obtained as

± =
R

r
f

µ
t ¡ r¡R

c

¶
:

The substitution (10) gives the influence of a translation of the ‘sounding sphere’ parallel
to the X-axis. The discussion of the result is analogous to the one we considered in [[3]].
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V. Appendix

One may wonder: What are the basic postulates of Voigt’s theory with the transformations

(I3) for spacetime of inertial frames. Voigt did not discuss his postulates clearly and completely.
It is interesting and instructive to compare basic postulates in Einstein’s special relativity in his
1905 paper and Voigt’s theory:

Einstein postulated the invariance of physical laws and the universal speed of light; while
Voigt used the invariance of wave equation (I1) and the universal speed of light. The reason why
Voigt obtained (I3) rather than the Lorentz transformations (I6) with · = 1 is given in equation
(I5) and the explanations following it. In other words, the invariance of the wave equation (I1)

can only lead to a conformal transformation (I6) with an arbitrary constant ·. Voigt imposed some
extra conditions to fix · to be · =

p
1¡ V 2a =c2 , as explained before. Thus it is inadequate to use
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the invariance of the wave equation (I1) as a basic postulate for Voigt’s theory. The basic reason
for this is that an inertial frame F 0(Va) moving with a velocity Va is not completely equivalent to
an inertial frame F at rest due to the fact that the existence of an aether was taken for granted, as
one can see from (I4) or the expression for a particle’s momentum in equation (A6) below. The

difference between F and F 0(Va) must be explicitly postulated so that their transformations can
be determined.

Suppose one makes the following two basic postulates:

(I) The laws of physics are conformal 4-dimensional invariant with the metric tensor,

g¹º(Va) =

µ
1

1¡ V 2a =c2
;

¡1
1¡ V 2a =c2

;
¡1

1¡V 2a =c2
;

¡1
1¡V 2a =c2

¶
: (A1)

(II) The speed of light is a universal constant.

These two postulates imply the invariant conformal 4-dimensional interval (I4), which is the law
of motion of a free particle with a mass m > 0 (for ds2 > 0) [18] and leads to the Voigt

transformations (I3) unambiguously.
To complete the physical implications of the postulate (I), we must interpret the metric

tensor g¹º(Va) associated with an inertial frame F 0(Va) moving with an absolute velocity Va in

the aether as follows:
The spacetime coordinates x¹ is a contravariant vector and satisfies (I4). Thus, ¢t0 of

a clock or ¢x0 of a rod at rest in F 0(Va) and measured by the F 0(Va) observer is inherently

contracted by a factor
p
1¡V 2a =c2 with respect to the corresponding ¢t of a clock or ¢x of a

rod at rest in F and measured by the F observer,

¢xjat rest in F =
1

p
1¡ V 2a =c2

¢x0jat rest in F 0(Va); (A2)

¢tjat rest in F =
1p

1¡ V 2a =c2
¢t0jat rest in F 0(Va); (A3)

The changes of ¢x0 and ¢t0 in (A2) and (A3) are absolute changes, not changes relative to some
observers. For a covariant vector such as the wave 4-vector k¹ or the momentum p¹, there is a
similar interpretation. For example, the frequency !0 = k00c of a radiation emitted from a source
at rest in F 0(Va) and measured by the F 0(Va) observer is related to the frequency ! = k0c of

radiation emitted from an identical source (e.g., the same atom making the same transition) at rest
in F and measured by the F observer,

!jat rest in F =
p
1¡ V 2a =c2 !0jat rest in F0(Va): (A4)

The reason for the difference between (A3) and (A4) is that a covariant vector k0¹ satisfies
g¹º(Va)k

0
¹k
0
º = invariant rather than (I4) which is for a contravariant vector.

It must be stressed that the relations in (A2) - (A4) refer to physical situations in which
two different observers (one in F and one in F 0(Va)) measure two different objects or quantities.

Their relations has nothing to do with the transformation (I3) which strictly refer to the situation
in which two different observers measure the same object or the same quantity in spacetime.
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Now, let us consider the kinematics of particles in Voigt’s theory. The invariant action in
a moving frame F 0(Va) is assumed to be

S =¡mc
Z
ds; (A5)

which leads to the following covariant 4-momentum in the moving frame F 0(ct0, x0, y0, z0) [19]

p0¹ =
@S

@x0¹
=

1p
1¡ V 2a =c2

mv0¹p
1¡ v02=c2

; (A6)

where v0¹ = dx0¹=dt
0 (which is not a 4-vector) and v

02 = v
02
x + v

02
y + v

02
z . The 4-momentum p0¹

satisfies

g¹º(Va)p
0
¹p
0
º =m

2c2; (A7)

Suppose one does high energy experiments in the moving frame F 0(Va). One cannot use

the conservation of 4-momentum in, say, a 2-body collision process a(k01)+b(k
0
2) to c(p01)+d(p

0
2)

in the moving frame F 0(Va)

k01¹ +k
0
2¹ = p

0
1¹ + p

0
2¹; (A8)

to detect the ‘absolute velocity’ Va of the F 0(Va) frame, because the constant factors
p
1¡V 2a =c2

are cancelled on both sides of the equation. Furthermore, one also cannot use the invariant relation
(A7) to detect Va because the factors (1 ¡ V 2a =c2) in g¹º(Va) cancel precisely the same factors

(1=
p
1¡V 2a =c2)2 in p0¹p

0
º .

One might think that the Doppler frequency shift derived by Voigt,

! = !0(1¡ Va=c); (A9)

can be used to exclude Voigt’s transformation (I3) because experimentally the shift can be measured
to the second order (Va=c)2. Let us consider experiments designed to measure the Doppler shift
of frequency (A9) carefully.

Suppose one performs the experiment in the F 0(Va) frame and that the atoms are at rest in
F(0). In practice, one cannot know the frequency !0jat rest in F of the light emitted by the atoms as
measured by observers in the F(0) frame. One can only compare the shifted !0 with the unshifted

quantities !0jat rest in F 0(Va) associated with the same kind of atoms at rest in the laboratory frame
F 0(Va). Since F 0(Va) and F(0) are not equivalent, the frequency of light emitted by atoms at
rest in F 0(Va) and measured by observers in F 0(Va) are not the same as those emitted by the
same kind of atoms at rest in F(0) and measured in F(0). Thus, one does not have the usual

relations in special relativity, i.e. !jat rest in F = !
0jat rest in F0 . Rather, one has the relation in (A4).

It follows from (A4) and (A9) that the observable Doppler frequency shift measured in the moving
frame F 0(Va) is given by:

!0 = !00

s
1 +Va=c

1¡Va=c
; !00 = !

0jat rest in F 0(Va) (A10)
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which is exactly the same as that in special relativity. Therefore, we see that Voigt’s theory
is consistent with laser experiment of Doppler shift. One can verify that Voigt’s theory is also
consistent with the Michelson-Morley experiment. and the Fizeau experiment.

It appears that somehow the conformal 4-dimensional symmetry protects Voigt’s theory by

hiding the effect due to the ‘absolute’ velocity of the F 0(Va) frame. Thus it seems as if there is
a ‘conspiracy,’ so that the effect due to the ‘absolute’ velocity are cancelled to all orders in Va=c.
However, we stress that such a ‘conspiracy’ is not dynamical (i.e., not due to interactions between
matter and the aether as Poincare believed [20]). Rather, the conspiracy is ‘kinematical’, namely,

it is due to the inherent property of the conformal 4-dimensional symmetry of Voigt’s theory.

Note: Voigt’s transformations (I3) were discussed by A. G. Gluckman (Am. J. Phys. 36, 226
(1968)). He stated that the Voigt transformation (I3) “does not form a group” and that “the Voigt
transformation would yieldmv2=2 but it would also be impossible to arrive at the result E = mc2.”
These staatcments are incorrect because of inappropriate interpretations and formulations. Within
the conceptual framework of Voigt, an inertial frame F(Va) is associated with an absolute velocity
Va, where c > Va ¸ 0. The transformation (I3) is only a special case because one of the frame is at
rest, Va = 0. In order to see the group properties, one must consider the transformation between

two moving frames in general. The Voigt transformation (I3) implies that the trnasformation
between two moving frames F 0(¯0) and F

00

(¯
00

), where ¯0 = V 0a=c and ¯
00

= V
00

a =c, is given by

w¤
0

= ¡0(w¤
00

+B0w¤
00

);

x¤
0

= ¡0(x¤
00

+B0x¤
00

; y¤
0

= y¤
00

; z¤
0

= z¤
00

;

where

B0 =
¯
00 ¡ ¯0

1¡¯00¯0 ; ¡
0

=
1p

1¡B02

(w¤
0

; x¤
0

; y¤
0

; z¤
0

) =
1p
1¡ ¯02

(w0; x0; y0; z 0);

(w¤
00

; x¤
00

; y¤
00

; z¤
00

) =
1

p
1¡¯002

(w
00

; x
00

; y
00

; z
00

):

One can show that the set of the above Voigt transformations forms the “Voigt group”, i.e., a
4-dimensional conformal group with 2 parameters, V 0a and V

00

a , which characterize the absolute

motion of inertial frames F 0 and F
00

respectively in the aether. One should employ covariant
formulation with the invariant interval ds given in (I4) to write down the “invariant action” for,
say, a charged particle moving in the electromagnetic potential Au:

S =

Z ·
¡mcds ¡ e

c
A0¹dx

0¹ ¡ 1
4
F 0¹ºF

0¹º
p
¡detg®¯d4z 0

¸
;

F 0¹º = @
0
º ¡ @0ºA0¹; @0º = @=@x

0º ;

in a general frame F 0(V 00). The energy of a free particle (when A0¹ = 0) is given by

E00 = cp
0
0 =

1p
1¡ (V 0a=c)2

mc2p
1¡ (v0=c)2

;
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where º0 is the velocity of the particle as measured in the F 0(V 0a) frame. Thus, for the special
case V 0a = v

0 = 0 one has the result for the energy E0 = mc2.
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