
Extending SAT Solvers to Cryptographic

Problems

Mate Soos1, Karsten Nohl2, and Claude Castelluccia1

1 INRIA Rhône-Alpes
2 University of Virginia

Abstract. Cryptography ensures the confidentiality and authenticity of
information but often relies on unproven assumptions. SAT solvers are
a powerful tool to test the hardness of certain problems and have suc-
cessfully been used to test hardness assumptions. This paper extends
a SAT solver to efficiently work on cryptographic problems. The pa-
per further illustrates how SAT solvers process cryptographic functions
using automatically generated visualizations, introduces techniques for
simplifying the solving process by modifying cipher representations, and
demonstrates the feasibility of the approach by solving three stream ci-
phers.

To optimize a SAT solver for cryptographic problems, we extended the
solver’s input language to support the XOR operation that is common in
cryptography. To better understand the inner workings of the adapted
solver and to identify bottlenecks, we visualize its execution. Finally,
to improve the solving time significantly, we remove these bottlenecks
by altering the function representation and by pre-parsing the resulting
system of equations.

The main contribution of this paper is a new approach to solving
cryptographic problems by adapting both the problem description and
the solver synchronously instead of tweaking just one of them. Using
these techniques, we were able to solve a well-researched stream cipher
26 times faster than was previously possible.

1 Introduction

Cryptographic functions are at the base of computer security with encryption ci-
phers ensuring confidentiality and authenticity. Despite their importance, many
practical cryptographic functions rely on unproven assumptions about the com-
plexity of their underlying mathematical problems. When these assumptions are
found to be incorrect, new theoretical and practical attacks are constructed that
sharpen the understanding of a specific problem and advance the evolution of
cryptography in general. SAT solvers have been shown to be a powerful tool
in testing mathematical assumptions. In this paper, we extend SAT solvers to
better work in the environment of cryptography.

Previous work on solving cryptographic problems with SAT solvers has con-
centrated on the best mathematical representation of ciphers [1]. To further

O. Kullmann (Ed.): SAT 2009, LNCS 5584, pp. 244–257, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Extending SAT Solvers to Cryptographic Problems 245

improve the potential of SAT solvers, we adapted a SAT solver to better suit
cryptographic problems and then manipulated the representation of some cryp-
tographic problems to best fit this modified solver. We refined SAT solvers to
understand the XOR operation, which is common in cryptography, besides func-
tions in the conjunctive normal form (CNF) that is native to many SAT solvers.
We further added dynamic behavior analysis to more thoroughly understand the
workings of SAT solvers on cryptographic primitives.

To show the effectiveness of our approach, we solved a few different ciphers.
The first two targets, Crypto-1 [2] and HiTag2 [3], are weak stream ciphers,
widely used in electronic payment, access control and car immobilizers. Our third
target, Bivium [4], is a simplified version of the eSTREAM standard stream ci-
pher Trivium [5] known for its simple description. Solving these ciphers with
an unmodified SAT solver and with only basic improvements to their CNF rep-
resentation reveals the secret state within 170 hours for Crypto-1, a week for
HiTag2 and in 242.7 s [6] for Bivium. With our adapted SAT solver and tuned
cipher description techniques, the average attack time on a desktop PC drops to
40 seconds for Crypto-1, 6.5 hours for HiTag2 and 236.5 s for Bivium.

Contributions

We optimize a standard SAT solver for cryptographic problems in Sect. 3. The
SAT solver now handles XOR operations natively to faster solve cryptographic
problems and the solver’s execution is visualized to allow insight into its in-
ner workings. Based on these improvements, guidelines are derived on how to
convert ciphers to a description that can be quickly solved in Sect. 4. Finally,
three ciphers are solved using the adapted SAT solver faster than was previously
possible with other SAT solver-based techniques, in Sect. 5.

2 Background

Our results build on research in stream ciphers, SAT solvers, and algebraic crypt-
analysis. This section presents the current state of research in these areas and
indicates where they connect.

2.1 Stream Ciphers

A stream cipher is a symmetric cryptographic function that allows two parties to
communicate privately when they share a secret key. Stream ciphers produce a
stream of pseudorandom bits (the keystream) given a secret key and a non-secret
random initialization vector (IV). This key stream is XORed with a message
prior to sending and again XORed after receiving so that the message cannot
be read while in transit.

The stream ciphers discussed in this paper are based on one or more shift
registers with linear or non-linear feedback function as well as a filter function
that maps the register states to keystream bits. Stream ciphers have two phases:

246 M. Soos, K. Nohl, and C. Castelluccia

an initialization phase followed by a keystream generation phase. During initial-
ization, key and IV are typically mixed to become the initial state by shifting
the registers while feeding in a combination of the feedback function and the
filter function. During keystream generation, the registers are shifted and their
feedback function is applied, while the keystream is generated from the state
using the filter function.

2.2 SAT Solvers

Satisfiability solvers are programs that employ highly optimized mathematical
algorithms to decide whether a set of constraints have a solution. This paper only
discusses one widely-used constraint set, the conjunctive normal form (CNF). In
CNF, each element in the constraints, a or ā, is called a literal. A clause is a
disjunction (or-ing) of literals. CNF is a conjunction (and-ing) of clauses. Hence,
the constraints are presented to the SAT solver as an “and of ors”.

SAT solvers are mostly used in electronic design automation (EDA), though
they are also used in a growing number of other domains. State-of-the-art solvers
have been extended or adopted to meet the specific characteristics of different
problem domains, for example temporal induction in [7].

Modern SAT solvers that are based on the DPLL algorithm [8] evolved from
GRASP [9] which introduced learning, and later from from Chaff [10] which
introduced watched literals and dynamic variable ordering. Solvers that employ
these techniques are called conflict-driven SAT solvers. In this paper we extend
MiniSat [11], a conflict-driven SAT solver designed for researchers to adapt it to
different domains.

MiniSat employs a backtracking-based, depth-first search algorithm to find a
satisfying variable assignment for a system of clauses. The algorithm branches
on a variable by guessing it to true or false and examining whether the value
of other variables depends on this guess. The affected variables are then assigned
and the search continues until no more assignments can be made. During this pe-
riod, called propagation, a clause may be found that cannot be satisfied anymore.
If such a conflict is encountered, a learned clause is generated that captures the
wrong guesses that lead to the conflict. The topmost guess allowed by the learned
clause is then reversed and the algorithm continues. The learned clauses trim the
search tree and guide the algorithm in choosing the best next guess. Eventually,
either a satisfiable assignment is found or the search tree is exhausted, meaning
that no solution exists.

2.3 Algebraic Cryptanalysis

Algebraic cryptanalysis is a family of attacks that exploits insufficient complex-
ity in ciphers. These attacks have successfully been applied to break a number
of ciphers secure against other forms of cryptanalysis. In algebraic attacks, equa-
tions are constructed that express the output bits of a cipher in terms of its
inputs, or its state. These equations are then solved and reasoned about with
either dedicated equation solvers such as the F5 algorithm [12], or standard SAT
solvers.

Extending SAT Solvers to Cryptographic Problems 247

The first SAT-based cryptanalysis was by Massacci et al. [13], experimenting
with the Data Encryption Standard (DES) using DPLL-based SAT solvers. More
recent work by Courtois and Bard has produced attacks against KeeLoq [1]
and stream ciphers with linear feedback [14]. Algebraic cryptanalysis has also
been used on modern stream ciphers, such as the reduced version of Trivium,
Bivium [4].

3 Adapting the SAT Solver

To take full advantage of the power of SAT solving we adapted and optimized
MiniSat, a state-of-the-art DPLL-based SAT solver, for algebraic cryptanalysis.
We further added visualization to the solver to help identify bottlenecks and
improve the solving by altering the problem representation. Among the many
choices for modern SAT solvers, we chose MiniSat for its competitive perfor-
mance, code availability, and a design that specifically encourages extensions to
its input language.

3.1 XOR Support

Cryptographic building blocks such as filter and feedback functions lead to equa-
tions with many XORs. These XOR constraints, when converted to CNF repre-
sentation without further elaboration, grow exponentially in size. This is because
the XOR constraint’s Karnaugh table contains 2len−1 minterms, and hence needs
2len−1 clauses to describe in CNF.

To circumvent this limitation, previous research extended the Satz solver to
reason about 2- and 3-long XOR constraints, which they called equivalency rea-
soning [15]. For MiniSat, previous research [1, Sect. 6.4] cut up the XOR function
into groups of smaller XORs, each setting an additional variable. The full XOR
was then represented as a XOR of the additional variables.

While cutting up XORs allows MiniSat to work on long XOR chains, this ap-
proach forces the solver to watch and examine many clauses for variable changes,
when in fact only one XOR constraint should be watched. To mitigate this lim-
itation, we implemented the XOR constraint natively into MiniSat. Each XOR
constraint is represented by a single xor-clause. A xor-clause behaves as a reg-
ular clause towards all unchanged parts of the solver: it dynamically changes
appearance when propagating or causing a conflict by appearing as a different
regular clause depending on the current assignment of variables.

For example, the xor-clause a ⊕ b ⊕ c represents all the regular clauses

a ∨ b ∨ c (1) a ∨ b ∨ c (2)
a ∨ b ∨ c (3) a ∨ b ∨ c (4)

and if, for example a = true and b = true, then it changes its appearance to
the regular clause (2), and causes the propagation c = true just as its regular
representation would. If, however, a = false, b = true and c = true, the xor-
clause changes its appearance to regular clause (1) and causes a conflict just as
its regular representation would.

248 M. Soos, K. Nohl, and C. Castelluccia

Generating a conflicting or propagating clause from a xor-clause is done as
follows. All variables that are assigned to false are included as-is, and all vari-
ables that are assigned to true are included in a negated form. If propagating,
the single unassigned variable is also included, its negation depending on the
values of the other variables in the xor-clause.

Solving cryptographic functions is accelerated considerably by integrating xor-
clauses into MiniSat. For the stream ciphers Crypto-1 and Grain solving is up
to twice as fast with xor-clauses and memory usage is decreased by at least an
order of magnitude.

Besides speeding up the solving, native XOR support leads to more concise
input file and internal data structures, which simplify analyzing the dynamic be-
havior of the solver. Lastly, xor-clauses enable a straightforward implementation
of Gaussian elimination into MiniSat as explained in the next section.

3.2 Gaussian Elimination

Gaussian elimination is an efficient algorithm for solving systems of linear equa-
tions. Since each xor-clause is a linear equation, we can use this algorithm to
solve the system of equations described by the xor-clauses. Some linear problems
with as many as 100 variables can be trivially solved with Gaussian elimination
but take an excessive amount of time when solved with SAT solvers. This phe-
nomenon is due to the fact that SAT solvers solve by guessing variables and
determining if there is any equation that gives a result given the current assign-
ments. If the set of linear equations is dense (i.e. all equations contain many
variables), almost all variables need to be guessed before any equation gives a
result. Thus, for a system with 100 variables, it is not uncommon that 80 vari-
ables need to be guessed before any equation gives a result, i.e. the search space
is on the order of 280. When using Gaussian elimination, on the other hand, the
same problem can be solved in less than 220 operations.

Since Gaussian elimination and the DPLL algorithm (used in MiniSat) are op-
timal for different parts of cryptographic problems, the best results are achieved
by switching between the two. To benefit from Gaussian elimination during
solving, whenever the SAT solver cannot perform any further propagations and
would need to guess a variable, we ask the Gaussian elimination if there is any
information it could extract from the xor-clauses.

Execution of the Gaussian elimination gives one of the following results: either
it finds nothing, or it finds that a variable can be propagated by a combination
of xor-clauses, or it finds that given the current assignments, the system of
equations is unsatisfiable. In the two latter cases, the solver needs the actual
xor-clause, which when evaluated with the variable assignments, gives a unit or
empty clause, respectively. This actual xor-clause is important, as it signals the
solver what variable was propagated by what clause (in case of a propagation),
or what clause caused the conflict (in case of a conflict). To calculate the actual
xor-clauses, we keep two matrixes: one updated with the current assignments,
and one that mirrors the other only with its row-swap and row-xor operations.
Whenever there is a propagation or conflict indicated by the first matrix, the

Extending SAT Solvers to Cryptographic Problems 249

second matrix is used to generate the actual xor-clause. For example, if the two
matrixes are:

xor-clauses
with v8 assigned to true

v10 v8 v9 v12 aug⎡
⎢⎢⎣
1 − 1 1 1
0 − 1 1 1
0 − 0 1 0
0 − 0 0 0

⎤
⎥⎥⎦

actual xor-clauses

v10 v8 v9 v12 const⎡
⎢⎢⎣
1 1 1 1 0
0 0 1 1 1
0 1 0 1 1
0 1 0 0 1

⎤
⎥⎥⎦

then the second to last row of the first matrix indicates propagation of v12 =
false. The actual xor-clause can be read from the second matrix: it is v8⊕v12⊕1.
The matrix used by the Gaussian elimination algorithm is upper triangular, but
the matrix containing the actual xor-clauses is only upper triangular for the
columns representing variables that are not assigned.

Including Gaussian elimination into MiniSat is based on the idea of SAT Mod-
ulo Theories (SMT). An SMT instance is a generalization of a Boolean SAT in-
stance in which various sets of variables are replaced by predicates from a variety
of underlying theories. Naturally, SMT formulas provide a much richer modeling
language than is possible with Boolean SAT formulas. In essence, xor-clauses
enrich MiniSat’s language, which the Gaussian elimination can understand and
reason about, tightly integrating its conclusions into the DPLL algorithm of
MiniSat.

A trade-off parameter for the Gaussian elimination is the cut-off depth until
which it is worthwhile to execute the algorithm. Cutting off branches at the
top reduces the search space more than cutting at the bottom, but it takes
approximately the same time to execute the algorithm. However, if the cut-off
depth is too shallow, the constant overhead is more than the benefit, but if too
deep, the dynamic overhead is more than the benefit. In the end, we made the
cut-off depth configurable, and ran tests to decide for each cipher which depth
gave the most benefit.

To save time, the matrix is incrementally normalized as the solver travels
down the search tree and assignments are made. We save the matrix at every
search depth, and in case the solver has to jump back (due to a conflict), we
re-load the matrix from the state saved at that depth.

Using Gaussian elimination, solving Bivium and Trivium is faster by 1-5% if
we restrict the search depth to between 1 and 8, depending on the number of
guessed bits. For other instances derived from other ciphers, Gaussian elimina-
tion does not appear to decrease the overall solving time. A comparative figure
for Bivium, showing the speed of solving and the explored search space versus
the depth until which the algorithm was active is present in Fig. 1. It is appar-
ent from the graphs that using Gaussian elimination reduces the explored search
space (in the example, by up to 83%), but the algorithm takes more and more
time to execute as the cut-off depth is increased.

250 M. Soos, K. Nohl, and C. Castelluccia

300

600

900

1200

1500

0 3 6 9 12 15 18

T
im

e(
s)

Gaussian elimination active
until depth

0

4e+8

8e+8

1.2e+9

1.6e+9

0 3 6 9 12 15 18

N
o
.
o
f
p
ro

p
a
g
a
ti

o
n
s

(∼
ex

p
lo

re
d

se
a
rc

h
sp

a
ce

)

Gaussian elimination active
until depth

Fig. 1. Comparison between the time and the number of propagations (∼explored
search space), relative to the depth until which the Gaussian elimination was active.
Each point in the graphs represent 2000 random examples of the Bivium cipher, given
56 randomly guessed state bits.

Apart from the marginal speedup that Gaussian elimination brings, it is a
useful tool for multiple other reasons. First of all, it demonstrates that SAT
solvers ignore certain characteristics of the problem they are dealing with, and
by exploiting these properties the search space could be significantly reduced.
Secondly, the combined solver works much faster on problems that have large
parts that can benefit from Gaussian elimination. Lastly, our implementation of
Gaussian elimination can likely be improved upon leading to greater speedups.

3.3 Dynamic Behavior Analysis

The dynamic behavior of SAT solvers is hard to follow since branching and
propagation occur far too many times to be traceable by hand. Understanding
the solver’s dynamic behavior, however, is essential for estimating a cipher’s
complexity and for improving the solver’s performance.

To better understand how MiniSat reaches solutions, we implemented search
tree tracing into the solver. The output of our MiniSat trace extension can be
analyzed visually and statistically. Visualizing the operation of DPLL-based SAT
solvers was introduced in [16], which our implementation augments in multiple
ways. Our extension allows for variables to be named and for clauses to be
grouped, which is useful when multiple clauses are used to represent one logical
entity (e.g. a feedback function). The calculated statistics include the type of
most conflicted clauses (e.g. filter functions), the average number of propagations
per search tree branch, etc. An example search tree of the Crypto-1 cipher is in
Fig. 2. The visualization allowed us, for instance, to identify the regularly placed
filter function taps of Crypto-1 as its largest weakness over an improved variant
found in HiTag2 tags.

It is clear from the variable branching statistics that during solving, the most
important variables are picked automatically by MiniSat, which are always the

Extending SAT Solvers to Cryptographic Problems 251

BEGIN

- s[60]

guess

- s[104]

guess

 s[104]

**115

 s[63]

**121

 s[74]

**123

 s[103]

**125

 s[79]

**126

- s[103]

guess

 s[103]

**99

 s[79]

**107

 s[74]

**111

 s[63]

**113

 s[78]

**114

- s[102]

guess

- s[100]

**95

 s[63]

**97

 s[79]

**98

- s[101]

guess

 s[100]

**87

 s[79]

**91

 s[63]

**93

 s[74]

**94

- s[100]

guess

- s[99]

guess

 s[99]

**79

 s[74]

**83

 s[63]

**85

 s[79]

**86

- s[98]

guess

 s[96]

**72

 s[63]

**75

 s[79]

**77

 s[74]

**78

- s[97]

guess

- s[96]

guess

- s[95]

guess

- s[79]

**68

 s[63]

**70

 s[74]

**71

- s[94]

guess

- s[93]

guess

- s[92]

guess

- s[91]

guess

- s[90]

guess

- s[89]

guess

- s[88]

guess

- s[87]

guess

- s[86]

guess

- s[85]

guess

- s[84]

guess

 s[79]

**64

 s[74]

**66

 s[65]

**67

- s[83]

guess

- s[82]

guess

- s[81]

guess

- s[80]

guess

- s[79]

guess

- s[78]

guess

 s[78]

**60

 s[63]

**62

 s[65]

**63

- s[77]

guess

 s[77]

learned
clause no. 58

 s[74]

learned
clause no. 59

- s[76]

guess

 s[76]

**57

 s[63]

calc_s[28]

- s[65]

calc_s[17]

 s[72]

calc_s[30]

 s[74]

calc_s[93]

- s[62]

calc_s[2]

- s[75]

calc_s[100]

- s[61]

calc_s[80]

 s[76]
 s[77]
 s[78]

 s[102]
 s[79]

 s[100]
 s[60]
 s[93]

calc_s[102]

- s[63]

calc_s[28]

 s[65]

calc_s[17]

- s[72]

calc_s[30]

 s[74]

calc_s[93]

 s[77]
 s[78]
 s[79]
 s[60]
 s[93]
 s[102]
 s[100]

calc_s[31]

- s[74]

guess

- s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[74]
- s[77]
 s[79]
 s[78]
 s[93]
 s[60]

calc_s[17]

 s[72]

calc_s[31]

- s[65]

calc_s[30]

- s[63]

calc_s[93]

 s[75]

calc_s[99]

 s[76]

calc_s[28]

 s[78]
 s[79]
 s[60]
 s[103]
 s[99]
 s[93]
 s[102]
 s[100]

calc_s[103]

- s[63]

guess

 s[74]

**61

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[103]

- s[65]

calc_s[30]

 s[74]
 s[63]
 s[99]
 s[60]
- s[78]
 s[79]

 s[103]

calc_s[99]

 s[72]

calc_s[31]

 s[75]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[61]

calc_s[80]

 s[77]

calc_s[93]

 s[63]
 s[79]
- s[78]
 s[93]
 s[60]
 s[99]

 s[103]

calc_s[17]

- s[76]

calc_s[28]

- s[65]

guess

- s[72]

calc_s[30]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[74]

calc_s[31]

- s[64]

calc_s[104]

 s[75]

calc_s[96]

 s[65]
- s[78]
 s[79]
 s[85]
- s[63]
 s[96]

 s[104]
 s[60]

calc_s[85]

 s[72]

calc_s[30]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[31]

 s[79]
 s[85]
 s[60]
 s[93]
 s[96]

 s[104]
 s[99]

 s[103]
 s[102]
 s[100]

calc_s[93]

- s[74]

guess

 s[63]

**65

 s[72]

calc_s[31]

- s[63]

guess

 s[76]

calc_s[28]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[63]
 s[74]
 s[60]
- s[79]
 s[99]
 s[103]
 s[100]

calc_s[3]

- s[76]

calc_s[28]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[99]

 s[64]

calc_s[4]

 s[62]

calc_s[96]

 s[77]

calc_s[17]

 s[74]
- s[79]
 s[60]
 s[96]
 s[99]
 s[103]
 s[100]

calc_s[2]

- s[72]

calc_s[31]

- s[65]

guess

 s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

- s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[68]

calc_s[10]

 s[77]

calc_s[104]

 s[65]
- s[74]
 s[60]
- s[79]
 s[100]
 s[99]

calc_s[3]

- s[78]

calc_s[30]

- s[75]

calc_s[99]

 s[76]

calc_s[100]

 s[64]

calc_s[4]

- s[63]

calc_s[28]

- s[79]
 s[96]
 s[103]
 s[100]
 s[99]
 s[60]

calc_s[103]

- s[63]

guess

 s[74]

**69

 s[76]

calc_s[28]

- s[74]

guess

- s[78]

**61

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[93]

**60

 s[65]

calc_s[30]

 s[74]
 s[63]
 s[60]
 s[79]
 s[103]
 s[100]
 s[99]

calc_s[103]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[63]
 s[96]
 s[102]
 s[103]
 s[60]
 s[100]
 s[99]

calc_s[7]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
 s[79]

 s[103]
 s[96]

 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[96]
 s[99]
 s[102]
 s[103]
 s[100]
 s[60]

calc_s[20]

- s[63]

guess

 s[74]

**73

 s[79]

**74

 s[76]

calc_s[28]

- s[74]

guess

- s[79]

**65

 s[74]
 s[63]
 s[60]

 s[103]
 s[100]
 s[99]

**69

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

 s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

- s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[74]
 s[60]
 s[63]
 s[102]
 s[103]
- s[96]
 s[100]

calc_s[7]

 s[65]

**67

- s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[64]

calc_s[4]

 s[63]
 s[99]
 s[100]
 s[60]
 s[102]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[74]

**76

- s[79]

guess

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[79]
- s[63]
 s[60]

 s[103]
- s[96]
 s[100]

calc_s[8]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[65]

calc_s[2]

- s[61]

calc_s[19]

 s[79]
- s[63]
 s[60]
 s[102]
 s[103]
- s[96]
 s[100]

calc_s[20]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[62]

calc_s[96]

- s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[74]
- s[63]
 s[60]
- s[79]
 s[103]
- s[96]
 s[100]

calc_s[8]

 s[65]

**67

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[30]

 s[99]
 s[100]
 s[60]
 s[103]
 s[102]

calc_s[99]

- s[74]

guess

 s[63]

**81

 s[79]

**82

- s[63]

guess

 s[79]

**80

 s[76]

calc_s[28]

- s[79]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[60]
 s[74]
 s[103]
 s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]
 s[60]
 s[103]
 s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**76

 s[79]
 s[74]
 s[60]
 s[103]
 s[100]

**71

- s[96]

**78

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

 s[77]

calc_s[102]

 s[74]
 s[100]
 s[103]
 s[60]

calc_s[8]

- s[63]

guess

 s[79]

**84

 s[76]

calc_s[28]

- s[79]

guess

- s[96]

**74

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[62]

calc_s[96]

 s[78]

calc_s[103]

- s[68]

calc_s[27]

- s[77]

calc_s[102]

- s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[63]
 s[60]
 s[102]
 s[103]
 s[100]

calc_s[7]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[63]
 s[100]
 s[103]
 s[60]
 s[102]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

- s[96]

**77

 s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[62]

calc_s[96]

- s[78]

calc_s[103]

 s[68]

calc_s[27]

- s[77]

calc_s[102]

 s[65]

calc_s[2]

 s[61]

calc_s[19]

 s[79]
 s[100]
 s[102]
 s[103]
 s[60]

calc_s[20]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]
 s[102]
 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**89

 s[74]

**90

- s[63]

guess

 s[74]

**88

 s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]
 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]
 s[103]
- s[100]

calc_s[23]

- s[76]

calc_s[28]

- s[74]

guess

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
 s[103]
- s[100]

calc_s[4]

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
- s[100]
 s[103]
 s[60]

calc_s[23]

- s[63]

guess

 s[74]

**92

 s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[74]
 s[63]
 s[60]
 s[103]
- s[100]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[100]
 s[103]
 s[60]

calc_s[4]

- s[76]

calc_s[28]

- s[74]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[74]
- s[100]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]
 s[103]
 s[60]

calc_s[4]

 s[74]

**83

 s[79]

**96

 s[102]

**87

- s[63]

guess

 s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[63]
 s[104]
 s[60]
 s[103]

calc_s[104]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[63]
 s[103]
 s[60]
 s[104]

calc_s[99]

- s[76]

calc_s[28]

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[104]

calc_s[104]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[104]
 s[60]

calc_s[4]

- s[79]

guess

 s[63]

**103

 s[74]

**105

 s[78]

**106

- s[63]

guess

 s[74]

**101

 s[78]

**102

 s[76]

calc_s[28]

 s[75]

**100

- s[74]

guess

- s[72]

calc_s[31]

- s[100]

guess

- s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[75]
 s[74]
 s[79]
 s[63]
 s[60]

- s[103]

calc_s[4]

 s[100]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[63]
 s[79]
 s[60]

- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]
 s[104]
 s[79]
 s[60]

calc_s[104]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[79]
 s[60]
 s[104]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**104

- s[74]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[74]
 s[79]
- s[63]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[74]
 s[79]
 s[60]
- s[63]
- s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
- s[63]
 s[60]
 s[79]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[104]
 s[60]

calc_s[104]

- s[74]

guess

 s[63]

**109

 s[78]

**110

 s[72]

calc_s[31]

 s[78]

**108

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[60]
- s[79]
 s[74]

- s[103]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[63]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

- s[76]

calc_s[28]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[78]
 s[74]
- s[79]
 s[60]

- s[103]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]
- s[79]
 s[60]

- s[103]

calc_s[23]

- s[72]

calc_s[31]

 s[78]

**112

- s[63]

guess

 s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[76]

calc_s[28]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
- s[79]
 s[60]

- s[103]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[104]
 s[60]

calc_s[4]

- s[63]

guess

 s[74]

**117

 s[103]

**119

 s[78]

**120

 s[76]

calc_s[28]

 s[103]

**116

- s[74]

guess

- s[79]

guess

- s[103]

**101

- s[72]

calc_s[31]

- s[100]

**95

 s[102]

**85

 s[103]
 s[74]
 s[60]
 s[63]

**81

- s[79]

**113

 s[74]
 s[63]
 s[60]

**101

- s[103]

guess

 s[79]

**118

- s[100]

**95

 s[102]

**85

- s[79]

guess

 s[72]

calc_s[31]

 s[75]

calc_s[100]

 s[78]

calc_s[103]

 s[65]

calc_s[30]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]
 s[63]

calc_s[24]

- s[72]

calc_s[31]

- s[75]

calc_s[100]

 s[78]

calc_s[103]

- s[65]

calc_s[30]

 s[64]

calc_s[3]

 s[99]

**67

 s[103]
 s[63]
 s[60]

calc_s[99]

- s[79]

**113

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[78]
 s[63]
 s[60]

calc_s[24]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[60]

calc_s[23]

- s[76]

calc_s[28]

 s[103]

**122

- s[74]

guess

- s[103]

guess

- s[100]

**95

 s[102]

**87

 s[103]
 s[74]
 s[60]

**83

- s[79]

**111

 s[74]
 s[60]

**105

- s[103]

guess

 s[79]

**124

- s[100]

**95

 s[102]

**87

- s[79]

guess

 s[72]

calc_s[31]

- s[75]

calc_s[100]

- s[78]

calc_s[103]

- s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[68]

calc_s[10]

 s[79]
 s[103]
 s[60]

calc_s[24]

- s[72]

calc_s[31]

 s[75]

calc_s[100]

- s[78]

calc_s[103]

 s[65]

calc_s[30]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[103]
 s[60]

calc_s[4]

- s[79]

guess

 s[78]

**106

 s[72]

calc_s[31]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[79]
 s[60]

calc_s[24]

 s[78]

**114

- s[72]

calc_s[31]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[60]

calc_s[4]

node66

 s[60]

learnt unit clause

 s[74]

learnt unit clause

- s[74]

guess

 s[103]

**134

 s[63]

**138

 s[79]

**140

 s[78]

**141

- s[103]

guess

 s[63]

**130

 s[79]

**132

 s[78]

**133

- s[63]

guess

 s[79]

**128

 s[78]

**129

 s[76]

calc_s[28]

 s[78]

**127

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]
 s[74]

 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[63]
 s[74]
 s[103]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]
 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[103]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**131

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]

 s[103]

calc_s[25]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[103]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[86]

guess

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[103]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[103]
 s[74]

calc_s[4]

- s[63]

guess

 s[79]

**136

 s[78]

**137

 s[76]

calc_s[28]

 s[78]

**135

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

- s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[78]
 s[79]
 s[74]
 s[63]

calc_s[25]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[79]
 s[63]
 s[74]

calc_s[23]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[63]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[63]
 s[74]

calc_s[4]

- s[76]

calc_s[28]

 s[78]

**139

- s[79]

guess

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[79]
 s[74]

calc_s[23]

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[100]

calc_s[100]

 s[68]

calc_s[10]

 s[85]

calc_s[85]

 s[79]
 s[74]

calc_s[25]

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[74]

calc_s[4]

- s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[74]

calc_s[4]

- s[103]

guess

 s[63]

**145

 s[79]

**147

 s[78]

**148

- s[63]

guess

 s[79]

**143

 s[78]

**144

 s[76]

calc_s[28]

 s[78]

**142

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]
 s[63]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[63]
 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

 s[64]

calc_s[3]

 s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

 s[68]

calc_s[10]

- s[85]

calc_s[85]

 s[78]
 s[63]

 s[103]

calc_s[16]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

 s[64]

calc_s[3]

- s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[63]
 s[103]

calc_s[23]

- s[76]

calc_s[28]

 s[78]

**146

- s[79]

guess

- s[72]

calc_s[31]

- s[78]

guess

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[78]
 s[79]

 s[103]

calc_s[4]

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

- s[62]

calc_s[2]

 s[79]
 s[103]

calc_s[4]

 s[72]

calc_s[31]

- s[78]

guess

- s[65]

calc_s[30]

- s[75]

calc_s[103]

- s[64]

calc_s[3]

 s[99]

calc_s[99]

 s[77]

calc_s[17]

 s[62]

calc_s[2]

 s[78]
 s[103]

calc_s[23]

 s[65]

calc_s[30]

 s[75]

calc_s[103]

- s[64]

calc_s[3]

- s[99]

calc_s[99]

- s[77]

calc_s[17]

 s[62]

calc_s[2]

- s[100]

calc_s[100]

- s[68]

calc_s[10]

- s[85]

calc_s[85]

- s[92]

calc_s[92]

- s[61]

calc_s[18]

 s[93]

calc_s[93]

- s[104]

calc_s[104]

- s[83]

calc_s[83]

 s[87]

calc_s[87]

 s[96]

calc_s[96]

- s[102]

calc_s[102]

 s[81]

calc_s[81]

 s[97]

calc_s[97]

- s[90]

calc_s[90]

- s[98]

calc_s[98]

- s[82]

calc_s[82]

- s[88]

calc_s[88]

- s[84]

calc_s[84]

- s[101]

calc_s[101]

 s[80]

calc_s[80]

- s[94]

calc_s[94]

- s[95]

calc_s[95]

 s[89]

calc_s[89]

- s[91]

calc_s[91]

- s[86]

calc_s[86]

MODEL

- s[78]

guess
learned

clause no. 58
learned

clause no. 59

- s[83]

 s[87]

calc_s[87]

Fig. 2. Graphviz visualization of an example search for the Crypto-1 cipher’s states.
The tree is read from left to right, top to bottom: the left- and bottommost pen-
tagon is the first conflict clause, the right- and bottommost circle is the satisfying
assignment.

state or key bits. By examining smaller search graphs and the statistics on
the most conflicted clause groups, we further found that once the important
variables have been guessed, the results of these assignments are propagated to
the equations representing the known keystream bits, and if they do not match,
a conflict occurs, a guess is reversed, and the algorithm starts again.

The solver’s strategy is therefore similar to a brute force search in which all
key or state bits are tried. If one or more keystream bits can be evaluated without
knowing all state bits, the SAT solver will evaluate them, and if the equations
do not work out, stop the computation there, effectively doing partial evaluation.
Furthermore, clauses are learnt during the search, which later prune the search
tree, helping to perform partial evaluation.

The lessons learnt from search-tree tracing are as follows. It is best not to
include long initialization sequences (such as that used by Grain) in the equations
since after initialization all keystream bits depend on all key bits. This forces
the solver to calculate a large part of the cipher in an ineffective way, as its
description and subsequent evaluation in the solver is more complicated than
the way the cipher was originally meant to be calculated.

A stream cipher is considered broken if its state can be determined at any point
during keystream generation. Therefore, instead of making initialization part the
problem, its state at a suitable point should be treated as the unknown, as this
is the only possible way to take advantage of the partial evaluation property of
SAT solvers. Although this state is larger than the key for all modern ciphers, it
is relatively easy to solve a large part of it, as the keystream bits depend much
more directly on the selected state’s bits.

252 M. Soos, K. Nohl, and C. Castelluccia

4 Adapting the Cipher Representation

Finding the best representation of stream ciphers in regular and xor-clauses is a
crucial step in breaking a cipher with SAT solvers [1, Sect. 8]. For the techniques
in this paper, a cipher is described as a logical circuit with functions, variables,
the known keystream, and known inputs.

4.1 Logical Circuit Representation

In the logical circuit representation used in our approach, the unknown is the
reference state’s bits, and functions are expressed in regular and xor-clauses,
using variables as input. An example logical circuit for a 3-bit state stream cipher
is given in Fig. 3. In the figure, the cipher produces four keystream bits, and the
shift register is shifted three times, using the feedback function. Functions are
shown as hexagons, variables as simple boxes, and the reference state is marked
in gray.

The depth of a keystream bit is the number of distinct functions (resp.
hexagons) traversed on the way from the keystream bit to the reference state
bits. For example, on Fig. 3. the 1st keystream bit’s depth is one, while the 4th

keystream bit’s is four. Since the solver guesses the reference state’s bits, the
depth of the circuit indicates the number of functions that must be evaluated
by the solver to realize that a wrong guess was made for a given keystream bit.
Therefore, the shallower the overall depth of the circuit, the faster the solving.
The difficulty hidden behind the functions (resp. hexagons) is also relevant, as
when traversed, these must be calculated. If the number and length of clauses
representing these hexagons are large, the solver is slowed down considerably.

State bit
3

State bit
4

States

Filter
Function

Filter

Key
stream

Feedback
Function

Feed
back

Filter Filter

Reference state
State bit

2
State bit

1
State bit

5

Feed
back

Feed
back

State bit
6

Filter

1st bit 2nd bit 3rd bit 4th bit

Fig. 3. Logical circuit representation of an example stream cipher: The cipher has a
3-bit shift register, whose filter function depends on the first two bits in the register,
and whose feedback function depends on the last two bits in the register

Extending SAT Solvers to Cryptographic Problems 253

fe
ed

ba
ck

fu
nc

. 4
8

st
at

e
48

fa
 [3

6,
45

,4
6,

48
]

st
at

e
47

fe
ed

ba
ck

fu
nc

. 5
0

fe
ed

ba
ck

fu
nc

. 5
1

fe
ed

ba
ck

fu
nc

. 5
2

fa
 [3

5,
44

,4
5,

47
]

fa
 [3

7,
46

,4
7,

49
]

st
at

e
46

fe
ed

ba
ck

fu
nc

. 4
9

fa
 [3

4,
43

,4
4,

46
]

st
at

e
43

fa
 [3

3,
42

,4
3,

45
]

st
at

e
42

st
at

e
41

st
at

e
30

fb
 [2

7,
28

,3
0,

32
]

fb
 [2

9,
30

,3
2,

34
]

fb
 [3

0,
31

,3
3,

35
]

st
at

e
26

fb
 [1

7,
21

,2
3,

26
]

fb
 [2

0,
24

,2
6,

29
]

st
at

e
23

fb
 [1

9,
23

,2
5,

28
]

st
at

e
22

fb
 [1

6,
20

,2
2,

25
]

fb
 [1

8,
22

,2
4,

27
]

st
at

e
16

fb
 [9

,1
3,

15
,1

6]

fb
 [1

0,
14

,1
6,

17
]

st
at

e
8

fb
 [8

,1
2,

14
,1

5]

fa
 [4

,5
,7

,8
]

fa
 [5

,6
,8

,9
]

st
at

e
7

fb
 [7

,1
1,

13
,1

4]

fa
 [3

,4
,6

,7
]

st
at

e
6

fa
 [2

,3
,5

,6
]

st
at

e
3

st
at

e
2

fa
 [1

,2
,4

,5
]

st
at

e
0

st
at

e
49

st
at

e
44

st
at

e
31

fb
 [2

8,
29

,3
1,

33
]

fb
 [3

1,
32

,3
4,

36
]

st
at

e
27

st
at

e
24

st
at

e
17

fb
 [1

1,
15

,1
7,

18
]

st
at

e
9

st
at

e
4

st
at

e
1

st
at

e
50

st
at

e
45

st
at

e
32

st
at

e
28

st
at

e
25

st
at

e
18

st
at

e
10

st
at

e
5

st
at

e
51

st
at

e
33

st
at

e
29

st
at

e
19

st
at

e
11

st
at

e
52

st
at

e
34

st
at

e
20

st
at

e
12

st
at

e
13

st
at

e
14

st
at

e
15

st
at

e
21

st
at

e
35

st
at

e
36

st
at

e
37

fa
 [1

,2
,4

,5
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 0

fb
 [7

,1
1,

13
,1

4]

in
te

rn
al

 v
ar

fb
 [1

6,
20

,2
2,

25
]

in
te

rn
al

 v
ar

fb
 [2

7,
28

,3
0,

32
]

in
te

rn
al

 v
ar

fa
 [3

3,
42

,4
3,

45
]

in
te

rn
al

 v
ar

fa
 [2

,3
,5

,6
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 1

fb
 [8

,1
2,

14
,1

5]

in
te

rn
al

 v
ar

fb
 [1

7,
21

,2
3,

26
]

in
te

rn
al

 v
ar

fb
 [2

8,
29

,3
1,

33
]

in
te

rn
al

 v
ar

fa
 [3

4,
43

,4
4,

46
]

in
te

rn
al

 v
ar

fa
 [3

,4
,6

,7
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 2

fb
 [9

,1
3,

15
,1

6]

in
te

rn
al

 v
ar

fb
 [1

8,
22

,2
4,

27
]

in
te

rn
al

 v
ar

fb
 [2

9,
30

,3
2,

34
]

in
te

rn
al

 v
ar

fa
 [3

5,
44

,4
5,

47
]

in
te

rn
al

 v
ar

fa
 [4

,5
,7

,8
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 3

fb
 [1

0,
14

,1
6,

17
]

in
te

rn
al

 v
ar

fb
 [1

9,
23

,2
5,

28
]

in
te

rn
al

 v
ar

fb
 [3

0,
31

,3
3,

35
]

in
te

rn
al

 v
ar

fa
 [3

6,
45

,4
6,

48
]

in
te

rn
al

 v
ar

fa
 [5

,6
,8

,9
]

in
te

rn
al

 v
ar

fc
ou

tp
ut

 4

fb
 [1

1,
15

,1
7,

18
]

in
te

rn
al

 v
ar

fb
 [2

0,
24

,2
6,

29
]

in
te

rn
al

 v
ar

fb
 [3

1,
32

,3
4,

36
]

in
te

rn
al

 v
ar

fa
 [3

7,
46

,4
7,

49
]

in
te

rn
al

 v
ar

Fig. 4. Clause- and variable-dependency graph of HiTag2. Clause groups are repre-
sented as hexagons, and variables as boxes. The known keystream bits are the 5 final
filter functions at the top, and the feedback functions are the 5 hexagons at the bottom
right.

Finally, the number of reference state bits each keystream bit depends on plays
an important role during solving, as a large part of these must be guessed before
evaluation can take place. This dependency number can be calculated by simply
traversing the graph in a breath-first search fashion from the keystream up. The
lower this number, the faster the solving.

To summarize, when attempting to represent a cipher, the depth of the re-
sulting logical circuit, the number of reference state bit dependencies and the
complexity of the traversed functions’ representations must all be optimized to
maximize solving speed.

4.2 Generating the Logical Circuit Representation

To evaluate the effectiveness of different representations of the same stream
cipher, we extended MiniSat by a tool that generates the logical circuit’s de-
scription. Given some additional information in the input language, the circuit
is visualized with Graphviz or statistically analyzed to calculate keystream bit
depths and state-bit dependencies. In the generated circuit, just as in the search
tree, clauses are grouped into logical elements (such as a filter function), and
variables are named (such as reference state bit). An example visualization of
HiTag2’s logical circuit representation is in Fig. 4.

Having the logical circuit representation allowed us to implement a dependen-
cy-tree walker that removes functions whose output does not contribute to any
keystream bits, e.g. the last feedback function in Fig. 3. The method used is
in essence the same that is used in electric circuit design to remove unused el-
ements, applied to the domain of SAT-based cryptanalysis. Removing useless
functions gives only a minor speedup of about 1%, however, unnecessary func-
tions no longer show up on the dynamic behavior analysis statistics, which helps
in understanding the inner workings of the solver.

4.3 Optimizing the Representation of LFSRs

Most stream ciphers contain one or more linear feedback shift registers (LFSR).
For these ciphers, the state bits not in the reference state can be either be

254 M. Soos, K. Nohl, and C. Castelluccia

deduced by continually applying the forward and backward feedback functions or
be directly calculated from the reference state’s bits. This latter option increases
the interdependency of the resulting equations, which helps the solver generate
learned clauses that are useful for a larger part of the search tree. These learnt
clauses are then used later to avoid useless branches of the search tree, reducing
the overall search time.

To generate r keystream bits, r distinct states are needed since generating the
n-th keystream bit requires the filter function to be applied to the n-th state.
For the solving to be fast, we need to choose the reference state that generates
the least complex logical circuit representation. In particular, we must minimize
both the average depth and the reference state bit dependencies. According to
our experience, this optimal reference state is usually near the r/2-th state. As
an example, if we had taken state 2 (i.e. state bits 2 to 4) as reference in Fig. 3.,
the overall depth of the circuit would have been reduced.

4.4 Optimizing the Representation of Non-linear Functions

For efficient solving, the number of clauses, the average clause length, and the
number of variables should all be low, but often there exists a trade-off between
the three properties.

As an example, the simple GF(2) polynomial

x1 ⊕ x1x2 ⊕ x2x3 ⊕ x1x3

has a Karnaugh table presentation in CNF of

x̄1 ∨ x̄3 x̄2 ∨ x3 x1 ∨ x2

However, the same polynomial can be represented with each non-single monomial
expressed as a function, setting additional variables i1 . . . i3. The polynomial then
becomes

x1 ⊕ i1 ⊕ i2 ⊕ i3

Using this representation, the number of clauses increases to 3 × 3 regular + 1
xor-clause, and the average clause length increases to 4.14. Three extra variables
also need to be added, diluting the possible learnt clauses with extra variables,
thus reducing the effectiveness of learning.

The trade-offs between the two representation methods are complex; from our
experience with Grain, Trivium, Crypto-1 and other ciphers, we find that the
Karnaugh-table representation works well for functions that contain few (up to
5-6) variables and where these variables are often repeated in many monomials.
For instance, solving HiTag2 and Crypto-1 are both sped up by a factor of up
to 9x using the Karnaugh table representation.

When a polynomial can be broken up into sub-functions that do not share vari-
ables among themselves, such as the polynomials representing the filter functions
of Crypto-1 and HiTag2, then these sub-functions must be modelled separately.
This increases the overall depth of the resulting logical circuit, however, the com-
plexity of the individual functions traversed during solving is much lower, which
is crucial for the solver.

Extending SAT Solvers to Cryptographic Problems 255

5 Implemented Attacks

The extended SAT solver can solve many stream ciphers. Attacks against three
ciphers have been implemented that are faster than any previous SAT solver-
based attacks. The first two targets, Crypto-1 and its relative HiTag2, are a
weak ciphers used in contactless cards and car immobilizers. The third target,
Bivium, is a simplified version of Trivium, a modern cipher standardized through
the eSTREAM competition. The solving times for Crypto-1, HiTag2, and Bivium
are in Table 1, and their detailed discussion is below.

5.1 Crypto-1 and HiTag2

The Crypto-1 stream cipher [2] is implemented on the NXP Mifare Classic card,
which is widely used for micropayment in public transport and for building access
control. The cipher was designed to have a particularly small hardware footprint
consisting of an 48-bit LFSR and a network of small binary functions that form
the filter function. HiTag2 [3], used in car immobilizers, is a relative of Crypto-1,
and shares its structure but uses different feedback and filter functions.

The security of Crypto-1 has already been broken using MiniSat by Courtois
et al. [17]. They did not publish the details of their attack but only stated that
secret keys can be found within 200 seconds on average on a PC given 56 bits of
keystream. Their attack, however, modifies the equations describing the cipher
by mathematical means, which makes their techniques mostly orthogonal to ours.
With our method, solving Crypto-1 using 56 bits of known keystream takes 40 s,
while solving HiTag2 given the same number of keystream bits takes 214.5 s.

5.2 Bivium

The Bivium stream cipher [4], is a reduced version of the original Trivium cipher,
and is intended to be used solely as a research tool to analyze the original cipher.
The papers that have been published on this cipher [4,6] improve on each other’s
results, the best of which is solving in 242.7 s on a desktop machine.

Bivium can be solved by describing it in MiniSat using the enhancements and
insight presented in this paper. To let the solver finish within reasonable time, we
randomly guessed some randomly picked reference state bits and did a thousand
different runs for each configuration. With this approach the time to solve is
exponential in the number of guessed state bits, as illustrated in Fig. 5. Due to

Table 1. Running times for solving Crypto-1, HiTag2, and Bivium

Vanilla Karnaugh Karnaugh and xor-clause
MiniSat optimization optimizations

Crypto-1 500 s 72 s 40 s
HiTag2 217.8 s 215 s 214.5 s
Bivium 236.7 s 236.7 s 236.5 s

256 M. Soos, K. Nohl, and C. Castelluccia

100

1000

10000

100000

1e+06

40 42 44 46 48 50 52 54 56

T
im

e
(s

)

No. of randomly guessed bits

Fig. 5. Solving the Bivium cipher 1000 times, with randomly selected and assigned
guess bits. The time to solve is exponential in the number of guess bits.

the large amount of random runs for each point, we can safely extrapolate the
graph, giving the result that solving Bivium’s state given 177 keystream bits
takes about 236.5 s.

To generate this result, Gaussian elimination was turned off, as it proved to
slow down the solver if less than 58 reference state bits were guessed – for more
than 58 guessed bits however, Gaussian elimination with cut-off depth 8 gave an
average 5% speedup.

6 Conclusions

SAT solvers are a powerful tool in the analysis of mathematical assumptions,
including cryptographic hardness and complexity assumptions. The full potential
of SAT solving can only be achieved by matching the problem description to the
solver language. For cryptographic ciphers, matching the solver and the problem
requires extensive changes to the solver itself. We implemented several steps
towards a specialized SAT solver for cryptography including native support for
the XOR operation, Gaussian elimination, and logical circuit generation.

The extended solver solves problems from its target domain, simple and com-
plex stream ciphers, faster than any other known SAT-solver based techniques.
The Crypto-1 cipher is solved in 40 seconds, HiTag2 in 214.5 s, while Bivium
takes 236.5 s, 26 times less than the previous best SAT solver-based attack [6].
Stream ciphers can be strengthened against the attacks presented in this paper
through the use of larger states, more complex feedback functions, and through
longer initialization phases.

References

1. Bard, G.V.: Algorithms for the solution of polynomial and linear systems of equa-
tions over finite fields, with an application to the cryptanalysis of KeeLoq. Technical
report, University of Maryland Dissertation (April 2008)

Extending SAT Solvers to Cryptographic Problems 257

2. Garcia, F.D., et al.: Dismantling MIFARE Classic. In: Jajodia, S., Lopez, J. (eds.)
ESORICS 2008. LNCS, vol. 5283, pp. 97–114. Springer, Heidelberg (2008)

3. Nohl, K.: Description of HiTag2 (Webpage),
http://cryptolib.com/ciphers/hitag2/

4. Raddum, H.: Cryptanalytic results on Trivium. Technical Report 2006/039,
ECRYPT Stream Cipher Project (2006)

5. De Cannière, C.: Trivium: A stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006)

6. McDonald, C., Charnes, C., Pieprzyk, J.: Attacking Bivium with Minisat. Technical
Report 2007/040, ECRYPT Stream Cipher Project (2007)

7. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. In: Proc.
of Intl. Workshop on Bounded Model Checking. ENTCS, vol. 89 (2003)

8. Davis, M., Putnam, H.: A computing procedure for quantification theory. J.
ACM 7(3), 201–215 (1960)

9. Marques, J.P., Karem, S., Sakallah, A.: Conflict analysis in search algorithms for
propositional satisfiability. In: Proc. of the IEEE Intl. Conf. on Tools with Artificial
Intelligence (1996)

10. Malik, S., Zhao, Y., Madigan, C.F., Zhang, L., Moskewicz, M.W.: Chaff: Engi-
neering an efficient SAT solver. In: Design Automation Conference, pp. 530–535
(2001)

11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

12. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: ISSAC 2002, pp. 75–83. ACM Press, New York (2002)

13. Massacci, F., Marraro, L.: Logical cryptanalysis as a SAT-problem: Encoding and
analysis. Journal of Automated Reasoning 24, 165–203 (2000)

14. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg
(2003)

15. Li, C.M.: Equivalency reasoning to solve a class of hard SAT problems. Information
Processing Letters 75(1-2), 75–81 (1999)

16. Sinz, C.: Visualizing SAT instances and runs of the DPLL algorithm. J. Autom.
Reason. 39(2), 219–243 (2007)

17. Courtois, N.T., Nohl, K., O’Neil, S.: Algebraic attacks on the Crypto-1 stream
cipher in Mifare Classic and Oyster cards. Technical Report 2008/166, Cryptology
ePrint Archive (2008)

http://cryptolib.com/ciphers/hitag2/

	Extending SAT Solvers to Cryptographic Problems
	Introduction
	Background
	Stream Ciphers
	SAT Solvers
	Algebraic Cryptanalysis

	Adapting the SAT Solver
	XOR Support
	Gaussian Elimination
	Dynamic Behavior Analysis

	Adapting the Cipher Representation
	Logical Circuit Representation
	Generating the Logical Circuit Representation
	Optimizing the Representation of LFSRs
	Optimizing the Representation of Non-linear Functions

	Implemented Attacks
	Crypto-1 and HiTag2
	Bivium

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

